Dynamic PCC

The Stateful Path Computation Element Protocol (PCEP) enables a router to report and optionally delegate Label Switched Paths (LSPs) which is established using either Resource Reservation Protocol (RSVP) protocol or Segment Routing Traffic Engineering (SR-TE) to a stateful Path Computation Element (PCE). An LSP delegated to a PCE can be updated by the PCE and a stateful PCE can compute and provide the path of an LSP to the Path Computation Client (PCC).

SR-TE and RSVP-TE LSPs require link-state routing protocols such as OSPF or ISIS to distribute and learn traffic engineering topology. A stateful PCE can learn the traffic engineering topology through BGP Link-State protocol. You can use the verbatim path option in the case when all or some of the intermediate nodes in a network do not support IGP extensions for TE.

- Information About Dynamic PCC, page 1
- How to Configure Dynamic PCC, page 2
- Verifying Dynamic PCC, page 3
- Verifying Verbatim Path Option With Dynamic PCC, page 5
- Additional References for Dynamic PCC, page 6
- Feature Information for Dynamic PCC, page 7

Information About Dynamic PCC

Path Computation Element Protocol Functions

A Path Computation Element Protocol (PCEP) session is a TCP session between a PCC and a PCE with protocol messages. The PCEP functions are verified based on the PCC functions. The configuration and verification show that the request is accepted and path computation is provided based on PCReq message from the client. The passive reporting enables a router to report a tunnel instead of delegating it to a PCE. The PCE is aware of the tunnel even though it cannot modify the tunnel.

PCEP functions are useful when a network has both router-controlled and PCE delegated tunnels. The PCE is aware of both the tunnels and can make an accurate decision on path computation.
Redundant Path Computation Elements

For redundancy it may be required to deploy redundant PCE servers. A PCC uses precedence to select stateful PCEs for delegating LSPs. Precedence can take any value between 0 and 255. The default precedence value is 255. When there are multiple stateful PCEs with active PCEP session, PCC chooses the PCE with the lowest precedence value. In case where primary PCE server session goes down, PCC router re-delegates all tunnels to next available PCE server. You can use the following CLIs in the case of redundant PCEs:

R2(config)#mpls traffic-eng pcc peer 77.77.77.77 source 22.22.22.22 precedence 255
R2(config)#mpls traffic-eng pcc peer 88.88.88.88 source 22.22.22.22 precedence 100

In the above example PCE server with IP address 88.88.88.88 is the primary PCE server since it has lower precedence value.

How to Configure Dynamic PCC

Configuring Dynamic PCC Globally

Perform the following task to configure dynamic PCC globally

```
enable
cfg register terminal
mpls traffic-eng tunnels
mpls traffic-eng pcc peer 10.0.0.1 ----
mpls traffic-eng pcc report-all
end
```

Note: `mpls traffic-eng pcc report-all` is not mandatory for PCE/PCC basic operational delegated tunnels. It is required to report locally calculated LSPs to the PCE server.

Configuring Dynamic PCC on an Interface

Perform the following task to configure dynamic PCC on an interface

```
interface Tunnel1
  ip unnumbered Loopback0
  tunnel mode mpls traffic-eng
  tunnel destination 7.7.7.7
  tunnel mpls traffic-eng autoroute announce
  tunnel mpls traffic-eng priority 5 5
  tunnel mpls traffic-eng bandwidth 200
  tunnel mpls traffic-eng path-option 10 dynamic pce segment-routing
end
```
Configuring Dynamic PCC With Verbatim Path Option

To enable Dynamic PCC with verbatim path option, use the following CLI under the SR-TE tunnel interface:

```
R1# interface Tunnel2
ip unnumbered Loopback11
tunnel mode mpls traffic-eng
tunnel destination 66.66.66.66
tunnel mpls traffic-eng autoroute destination
tunnel mpls traffic-eng path-option 1 dynamic segment-routing pce verbatim
```

Verifying Dynamic PCC

The following sample output is from the `show pce client peer detail` command.

```
Device# show pce client peer detail
PCC's peer database:
----------------------
Peer address: 1.1.1.1
State up
Capabilities: Stateful, Update, Segment-Routing
PCEP has been up for: 23:44:58
PCEP session ID: local 1, remote: 0
Sending KA every 30 seconds
Minimum acceptable KA interval: 20 seconds
Peer timeout after 120 seconds
Statistics:
  Keepalive messages: rx 2798 tx 2112
  Request messages: rx 0 tx 32
  Reply messages: rx 32 tx 0
  Error messages: rx 0 tx 0
  Open messages: rx 1 tx 1
  Report messages: rx 0 tx 57
  Update messages: rx 72 tx 0
```

The following sample output is from the `show mpls traffic-eng tunnels tunnel 1` command which shows the LSP details.

```
Device# show mpls traffic-eng tunnels tunnel 1
Name: d1_t1 (Tunnel1) Destination: 7.7.7.7
Status:
  Admin: up Oper: up Path: valid Signalling: connected
  path option 10, (SEGMENT-ROUTING) (PCE) type dynamic (Basis for Setup, path weight 0)
Config Parameters:
  Bandwidth: 200 kbps (Global) Priority: 5 5 Affinity: 0x0/0xFFFF
  Metric Type: TE (default)
  Path Selection:
    Protection: any (default)
    Path-selection Tiebreaker:
      Global: not set Tunnel Specific: not set Effective: min-fill (default)
  Hop Limit: disabled
  Cost Limit: disabled
  Path-invalidation timeout: 10000 msec (default), Action: Tear
  AutoRoute: enabled LockDown: disabled Loadshare: 200 [10000000] bw-based
  auto-bw: disabled
  Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
  State: dynamic path option 10 is active
  BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
```
PCEP Info:
 Delegation state: Working: yes Protect: no
Current Path Info:
 Request status: processed
 Created via PCRep message from PCE server: 1.1.1.1
Reported paths:
 Tunnel Name: csr551_t2001
 LSPs:
 LSP[0]:
 source 2.2.2.2, destination 7.7.7.7, tunnel ID 1, LSP ID 5
 State: Admin up, Operation active
 Setup type: SR
 Bandwidth: signaled 0
 LSP object:
 PLSP-ID 0x807D1, flags: D:0 S:0 R:0 A:1 O:2
 Reported path:
 Metric type: TE, Accumulated Metric 0

History:
 Tunnel:
 Time since created: 34 minutes, 3 seconds
 Time since path change: 1 minutes, 44 seconds
 Number of LSP IDs (Tun_Instances) used: 5
 Current LSP: [ID: 5]
 Uptime: 1 minutes, 44 seconds
 Prior LSP: [ID: 3]
 ID: path option unknown
 Removal Trigger: path verification failed
 Tun_Instance: 5
Segment-Routing Path Info (isis level-1)
 Segment0[Node]: 3.3.3.3, Label: 20270
 Segment1[Node]: 6.6.6.6, Label: 20120
 Segment2[Node]: 7.7.7.7, Label: 20210

The following sample output is from the `show pce client lsp detail` command.

Device# show pce client lsp detail

PCC's tunnel database:

Tunnel Name: d1_t1
LSPs:
 LSP[0]:
 source 2.2.2.2, destination 7.7.7.7, tunnel ID 1, LSP ID 5
 State: Admin up, Operation active
 Setup type: SR
 Bandwidth: signaled 0
 LSP object:
 PLSP-ID 0x807D1, flags: D:0 S:0 R:0 A:1 O:2
 Reported path:
 Metric type: TE, Accumulated Metric 0

The following sample output is from the `show pce lsp detail` command which shows the tunnel is delegated.

Device# show pce lsp detail

Thu Jul 7 10:24:30.836 EDT
PCE's tunnel database:

PCC 102.103.2.1:
 Tunnel Name: d1_t1
 LSPs:
 LSP[0]:
 source 2.2.2.2, destination 7.7.7.7, tunnel ID 1, LSP ID 5
 State: Admin up, Operation active
 Binding SID: 0
 PCEP information:
 plsp-id 526289, flags: D:1 S:0 R:0 A:1 O:2
The following sample output is from the `show pce client lsp detail` command for reported tunnel.

```
Device# show pce client lsp detail
PCC's tunnel database:----------------------
Tunnel Name: d1_t2
LSPs:
   LSP[0]:
      source 2.2.2.2, destination 7.7.7.7, tunnel ID 2, LSP ID 1
      State: Admin up, Operation active
      Setup type: SR
      Bandwidth: signaled 0
      LSP object:
         PLSF-ID 0x807D0F, flags: D:0 S:0 R:0 A:1 O:2
      Reported path:
         Metric type: TE, Accumulated Metric 30
```

The following sample output is from the `show pce lsp detail` command which shows the tunnel is not delegated.

```
Device# show pce lsp detail
Thu Jul 7 10:29:48.754 EDT
PCE's tunnel database:----------------------
PCC 10.0.0.1:
Tunnel Name: d1_t2
LSPs:
   LSP[0]:
      source 2.2.2.2, destination 7.7.7.7, tunnel ID 2, LSP ID 1
      State: Admin up, Operation active
      Binding SID: 0
      PCEP information:
         plsp-id 526290, flags: D:0 S:0 R:0 A:1 O:2
      Reported path:
         Metric type: TE, Accumulated Metric 30
```

Verifying Verbatim Path Option With Dynamic PCC

To verify proper operation with verbatim path option, use the following command:

```
R1#sh mpl tr tun tun 2
Name: R1_t2 (Tunnel2) Destination: 66.66.66.66
```
Status:
Admin: up Oper: up Path: valid Signalling: connected
path option 1, (SEGMENT-ROUTING) (PCE) type dynamic (verbatim) (Basis for Setup)

Config Parameters:
Bandwidth: 0 kbps (Global) Priority: 7 7 Affinity: 0x0/0xFFFF
Metric Type: TE (interface)
Path Selection:
Protection: any (default)
Path-selection Tiebreaker:
 Global: not set Tunnel Specific: not set Effective: min-fill (default)
Hop Limit: disabled [ignore: Verbatim Path Option]
Cost Limit: disabled
Path-invalidation timeout: 10000 msec (default), Action: Tear
AutoRoute: disabled [ignore: LockDown]
 LockDown: disabled [ignore: Loadshare]
 AutoRoute destination: enabled
 auto-bw: disabled
Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
State: dynamic path option 1 is active
BandwidthOverride: disabled LockDown: disabled Verbatim: enabled

PCEP Info:
Delegation state: Working: yes Protect: no
Delegation peer: 77.77.77.77
Working Path Info:
Request status: processed
Created via PCRep message from PCE server: 77.77.77.77
PCE metric: 4, type: TE
Reported paths:
Tunnel Name: Tunnel2_w
LSPs:
 LSP[0]:
 source 11.11.11.11, destination 66.66.66.66, tunnel ID 2, LSP ID 1
 State: Admin up, Operation active
 Binding SID: 17
 Setup type: SR
 Bandwidth: requested 0, used 0
 LSP object:
 FlSP-ID 0x80002, flags: D:0 S:0 R:0 A:1 O:2
 ERO:
 SID[0]: Adj, Label 24, NAI: local 12.12.12.1 remote 12.12.12.2
 SID[1]: Adj, Label 26, NAI: local 25.25.25.2 remote 25.25.25.5
 SID[2]: Adj, Label 22, NAI: local 56.56.56.5 remote 56.56.56.6

History:
Tunnel:
 Time since created: 39 days, 19 hours, 9 minutes
 Time since path change: 1 minutes, 3 seconds
 Number of LSP IDs (Tun_Instances) used: 1
 Current LSP: [ID: 1]
 Uptime: 1 minutes, 3 seconds
 Tun_Instance: 1
Segment-Routing Path Info (IGP information is not used)
 Segment1[Link]: 25.25.25.2 - 25.25.25.5, Label: 26
 Segment2[Link]: 56.56.56.5 - 56.56.56.6, Label: 22

end

Additional References for Dynamic PCC

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>
Feature Information for Dynamic PCC

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for Dynamic PCC

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic PCC</td>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>The Dynamic Path Computation Client (PCC) feature supports an LSP delegated to a Path Computation Element (PCE). The following commands were added or modified: show pce client peer detail, show mpls traffic-eng tunnels tunnel 1, show pce client lsp detail, show pce lsp detail.</td>
</tr>
</tbody>
</table>