Secure Shell Version 2 Support

Last Updated: November 5, 2012

The Secure Shell Version 2 Support feature allows you to configure Secure Shell (SSH) Version 2. SSH runs on top of a reliable transport layer and provides strong authentication and encryption capabilities. Currently, the only reliable transport that is defined for SSH is TCP. SSH provides a means to securely access and securely execute commands on another computer over a network. The Secure Copy Protocol (SCP) feature that is provided with SSH also allows for the secure transfer of files.

- Finding Feature Information, page 1
- Prerequisites for Secure Shell Version 2 Support, page 1
- Restrictions for Secure Shell Version 2 Support, page 2
- Information About Secure Shell Version 2 Support, page 2
- How to Configure Secure Shell Version 2 Support, page 3
- Configuration Examples for Secure Shell Version 2 Support, page 14
- Where to Go Next, page 17
- Additional References, page 17
- Feature Information for Secure Shell Version 2 Support, page 19

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Secure Shell Version 2 Support

Prior to configuring SSH, perform the following task:

- Download the required image on your router. The SSH server requires you to have a k9 (Triple Data Encryption Standard [3DES]) software image from downloaded on your router.
Restrictions for Secure Shell Version 2 Support

- SSH servers and SSH clients are supported in k9 software images.
- Execution Shell, remote command execution, and Secure Copy Protocol (SCP) are the only applications supported.
- Rivest, Shamir, and Adelman (RSA) key generation is an SSH server side requirement. Routers that act as SSH clients do not need to generate RSA keys.
- The RSA key-pair size must be greater than or equal to 768.
- The following functionality is not supported:
 - RSA user authentication (in the SSH server or SSH client for Cisco IOS XE software)
 - Public key authentication
 - SSH server strict host key check
 - Port forwarding
 - Compression

Information About Secure Shell Version 2 Support

- Secure Shell Version 2, page 2
- Secure Shell Version 2 Enhancements, page 3
- SNMP Trap Generation, page 3

Secure Shell Version 2

The configuration for the SSH Version 2 server is similar to the configuration for SSH Version 1. The command `ip ssh version` has been introduced so that you may define which version of SSH that you want to configure. If you do not configure this command, SSH by default runs in compatibility mode; that is, both SSH Version 1 and SSH Version 2 connections are honored.

Note: SSH Version 1 is a protocol that has never been defined in a standard. If you do not want your router to fall back to the undefined protocol (Version 1), you should use the `ip ssh version` command and specify Version 2.

The `ip ssh rsa keypair-name` command was also introduced so that you can enable a SSH connection using RSA keys that you have configured. Previously, SSH was linked to the first RSA keys that were generated (that is, SSH was enabled when the first RSA key pair was generated). The behavior still exists, but by using the `ip ssh rsa keypair-name` command, you can overcome that behavior. If you configure the `ip ssh rsa keypair-name` command with a key-pair name, SSH is enabled if the key pair exists, or SSH will be enabled if the key pair is generated later. If you use this command to enable SSH, you are not forced to configure a host name and a domain name, which was required in SSH Version 1 of the Cisco IOS XE software.
Secure Shell Version 2 Enhancements

The Secure Shell Version 2 Enhancements include a number of additional capabilities such as supporting VRF aware SSH, SSH debug enhancements, and Diffie-Hellman group exchange support.

The Cisco IOS XE SSH implementation has traditionally used 768 bit modulus but with an increasing need for higher key sizes to accommodate Diffie-Hellman (DH) Group 14 (2048 bits) and Group 16 (4096 bits) cryptographic applications a message exchange between the client and server to establish the favored DH group becomes necessary. The `ip ssh dh min size` command was introduced so you can configure modulus size on the SSH server. In addition to this the `ssh` command was extended to add VRF awareness to SSH client side functionality through which the VRF instance name in the client is provided with the IP address to look up the correct routing table and establish a connection.

Debugging has been enhanced by modifying SSH debug commands. The `debug ip ssh` command has been extended to allow you to simplify the debugging process. Previously this command printed all debug messages related to SSH regardless of what was specifically required. The behavior still exists, but if you configure the `debug ip ssh` command with a keyword messages are limited to information specified by the keyword.

SNMP Trap Generation

Simple Network Management Protocol (SNMP) traps will be generated automatically when an SSH session terminates if the traps have been enabled and SNMP debugging has been turned on. For information about enabling SNMP traps, see the Configuring SNMP Support feature module.

When configuring the `snmp-server host` command, the IP address must be the address of the PC that has the SSH (telnet) client and that has IP connectivity to the SSH server. See Example Setting an SNMP Trap, page 15 for more information.

You must also turn on SNMP debugging using the `debug snmp packet` command to display the traps. The trap information includes information such as the number of bytes sent and the protocol that was used for the SSH session. See Example SNMP Debugging, page 16 for more information.

How to Configure Secure Shell Version 2 Support

- Configuring a Router for SSH Version 2 Using a Host Name and Domain Name, page 4
- Configuring a Router for SSH Version 2 Using RSA Key Pairs, page 5
- Starting an Encrypted Session with a Remote Device, page 6
- Enabling Secure Copy Protocol on the SSH Server, page 7
- Verifying the Status of the Secure Shell Connection, page 9
- Verifying the Secure Shell Status Using the `show ip ssh` Command, page 11
- Monitoring and Maintaining Secure Shell Version 2, page 12
Configuring a Router for SSH Version 2 Using a Host Name and Domain Name

To configure your router for SSH Version 2 using a host name and domain name, perform the following steps. You may also configure SSH Version 2 by using the RSA key pair configuration. See Configuring a Router for SSH Version 2 Using RSA Key Pairs, page 5 for more information.

SUMMARY STEPS

1. enable
2. configure terminal
3. hostname hostname
4. ip domain-name name
5. crypto key generate rsa
6. ip ssh [time-out seconds | authentication-retries integer]
7. ip ssh version [1 | 2]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 hostname hostname</td>
<td>Configures a host name for your router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# hostname cisco 7200</td>
</tr>
<tr>
<td>Step 4 ip domain-name name</td>
<td>Configures a domain name for your router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# ip domain-name example.com</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
Step 5 | Enables the SSH server for local and remote authentication.
| **crypto key generate rsa** | **Example:**
| ```
Router (config)# crypto key generate rsa
``` | (Optional) Configures SSH control variables on your router.

**Step 6** | (Optional) Specifies the version of SSH to be run on your router.
| **ip ssh [time-out seconds [authentication-retries integer]** | **Example:**
| ```
Router (config)# ip ssh time-out 120
``` | (Optional) Configures SSH control variables on your router.

Step 7 | **Example:**
| **ip ssh version [1 | 2]** | ```
Router (config)# ip ssh version 1
``` | Enables privileged EXEC mode.

### Configuring a Router for SSH Version 2 Using RSA Key Pairs

To enable SSH Version 2 without configuring a host name or domain name, perform the following steps. SSH Version 2 will be enabled if the key pair that you configure already exists or if it is generated later. You may also configure SSH Version 2 by using the host name and domain name configuration. See Configuring a Router for SSH Version 2 Using a Host Name and Domain Name, page 4 for more information.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip ssh rsa keypair-name *keypair-name*
4. crypto key generate rsa usage-keys label *key-label* modulus *modulus-size*
5. ip ssh [time-out seconds [authentication-retries integer]
6. ip ssh version 2

**DETAILED STEPS**

| Command or Action | Purpose |
---|---|
**Step 1** | Enables privileged EXEC mode.
| **enable** | **Example:**
| ```
Router> enable
``` | • Enter your password if prompted. |
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip ssh rsa keypair-name keypair-name</td>
<td>Specifies which RSA keypair to use for SSH usage.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# ip ssh rsa keypair-name sshkeys</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>crypto key generate rsa usage-keys label key-label modulus modulus-size</td>
<td>Enables the SSH server for local and remote authentication on the router. For SSH Version 2, the modulus size must be at least 768 bits.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# crypto key generate rsa usage-keys label sshkeys modulus 768</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>ip ssh [time-out seconds</td>
<td>authentication-retries integer]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# ip ssh time-out 120</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>ip ssh version 2</td>
<td>Specifies the version of SSH to be run on a router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router (config)# ip ssh version 2</td>
<td></td>
</tr>
</tbody>
</table>

Starting an Encrypted Session with a Remote Device

To start an encrypted session with a remote networking device, perform the following step. (You do not have to enable your router. SSH can be run in disabled mode.)

Note
The device you wish to connect with must support a SSH server that has an encryption algorithm that is supported in Cisco IOS XE software.
SUMMARY STEPS

1. ssh [-v {1 | 2}] [-c {3des | aes128-cbc | aes192-cbc | aes256-cbc}] [-m {hmac-md5 | hmac-md5-96 | hmac-sha1 | hmac-sha1-96}] [-l userid] [-o numberofpasswordprompts n] [-p port-num] [ip-addr | hostname] [command]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Starts an encrypted session with a remote networking device.</td>
</tr>
</tbody>
</table>

Example:

```
Router# ssh -v 2 -c aes256-cbc -m hmac-sha1-96 -l user2 10.76.82.24
```

Example:

```
Router# ssh -v 2 -c aes256-cbc -m hmac-sha1-96 user2@10.76.82.24
```

Troubleshooting Tips

The `ip ssh version` command can be used for troubleshooting your SSH configuration. By changing versions, you can determine the SSH version that has a problem.

Enabling Secure Copy Protocol on the SSH Server

To configure server-side functionality for SCP, perform the following steps. This example shows a typical configuration that allows the router to securely copy files from a remote workstation.
SCP relies on AAA authentication and authorization to function correctly. Therefore AAA must be configured on the router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `aaa new-model`
4. `aaa authentication login default local`
5. `aaa authorization exec default local`
6. `username name privilege privilege-level password password`
7. `ip ssh time-out seconds`
8. `ip ssh authentication-retries integer`
9. `ip scp server enable`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>aaa new-model</code></td>
<td>Enables the authentication, authorization, and accounting (AAA) access control model.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>aaa authentication login default local</code></td>
<td>Sets authentication, authorization, and accounting (AAA) authentication at login to use the local username database for authentication.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa authentication login default local</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td><code>aaa authorization exec default local</code></td>
<td>Sets the parameters that restrict user access to a network; runs the authorization to determine if the user ID allowed to run an EXEC shell; and specifies that the system uses the local database for authorization.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config)# aaa authorization exec default local
```

| Step 6 | `username name privilege privilege-level password password` | Establishes a username-based authentication system, specifies the username, the privilege level, and an unencrypted password. |

Example:

```
Router(config)# username samplename privilege 15 password password1
```

| Step 7 | `ip ssh time-out seconds` | Sets the time interval (in seconds) that the router waits for the SSH client to respond. |

Example:

```
Router(config)# ip ssh time-out 120
```

| Step 8 | `ip ssh authentication-retries integer` | Sets the number of authentication attempts after which the interface is reset. |

Example:

```
Router(config)# ip ssh authentication-retries 3
```

| Step 9 | `ip scp server enable` | Enables the router to securely copy files from a remote workstation. |

Example:

```
Router(config)# ip scp server enable
```

- **Troubleshooting Tips, page 9**

Troubleshooting Tips

To troubleshoot SCP authentication problems, use the `debug ip scp` command.

Verifying the Status of the Secure Shell Connection

SUMMARY STEPS

1. enable
2. show ssh
3. exit
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted.
 Example:
 Device> enable |
| **Step 2** show ssh | Displays the status of SSH server connections.
 Example:
 Device# show ssh |
| **Step 3** exit | Exits privileged EXEC mode and returns to user EXEC mode.
 Example:
 Device# exit |

Examples

The following sample output from the **show ssh** command displays status of various SSH Version 1 and Version 2 connections for Version 1 and Version 2 connections:

```
%Device# show ssh
Connection  Version  Encryption  State           Username
           0        1.5       3DES         Session started  lab
%Device# show ssh
Connection  Version  Mode  Encryption  Hmac  State       Username
           1  2.0       IN    aes128-cbc  hmac-md5    Session started  lab
           1  2.0       OUT   aes128-cbc  hmac-md5    Session started  lab
```

The following sample output from the **show ssh** command displays status of various SSH Version 1 and Version 2 connections for a Version 2 connection with no Version 1 connection:

```
%Device# show ssh
Connection  Version  Mode  Encryption  Hmac  State       Username
           1  2.0       IN    aes128-cbc  hmac-md5    Session started  lab
           1  2.0       OUT   aes128-cbc  hmac-md5    Session started  lab
%No SSHv1 server connections running.
```

The following sample output from the **show ssh** command displays status of various SSH Version 1 and Version 2 connections for a Version 1 connection with no Version 2 connection:

```
%Device# show ssh
Connection  Version  Mode  Encryption  Hmac  State       Username
           1  2.0       IN    aes128-cbc  hmac-md5    Session started  lab
%No SSHv1 server connections running.
```

Verifying the Status of the Secure Shell Connection

Troubleshooting Tips

10
Verifying the Secure Shell Status Using the show ip ssh Command

To verify your SSH configuration, perform the following steps.

SUMMARY STEPS

1. enable
2. show ip ssh

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| Example: | Router> enable |
| **Step 2** show ip ssh | Displays the version and configuration data for SSH. |
| Example: | Router# show ip ssh |

Examples

Version 1 and Version 2 Connections

Version 2 Connection with No Version 1

Version 1 Connection with No Version 2

The following examples from the `show ip ssh` command display the version of SSH that is enabled, the authentication timeout values, and the number of authentication retries.

```
router# show ip ssh  
3d06h: %SYS-5-CONFIG_I: Configured from console by consoleh  
SSH Enabled - version 1.99  
Authentication timeout: 120 secs; Authentication retries: 3
```

```
Router# show ip ssh  
SSH Enabled - version 2.0  
Authentication timeout: 120 secs; Authentication retries: 3
```
Monitoring and Maintaining Secure Shell Version 2

To display debug messages about the SSH connections, use the `debug ip ssh` command.

SUMMARY STEPS

1. `enable`
2. `debug ip ssh`
3. `debug snmp packet`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>debug ip ssh</code></td>
<td>Displays debugging messages for SSH.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# debug ip ssh</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>debug snmp packet</code></td>
<td>Displays information about every SNMP packet sent or received by the router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# debug snmp packet</code></td>
<td></td>
</tr>
</tbody>
</table>

Example

The following output from the `debug ip ssh` command shows that the digit 2 keyword has been assigned, signifying that it is an SSH Version 2 connection.

```
Router# debug ip ssh
00:33:55: SSH1: starting SSH control process
00:33:55: SSH1: sent protocol version id SSH-1.99-Cisco-1.25
00:33:55: SSH1: protocol version id is - SSH-2.0-OpenSSH_2.5.2p2
00:33:55: SSH2 1: send: len 280 (includes padlen 4)
00:33:55: SSH2 1: SSH2_MSG_KEXINIT sent
00:33:55: SSH2 1: ssh_receive: 536 bytes received
00:33:55: SSH2 1: input: packet len 632
00:33:55: SSH2 1: partial packet 8, need 624, maclen 0
00:33:55: SSH2 1: ssh_receive: 96 bytes received
00:33:55: SSH2 1: partial packet 8, need 624, maclen 0
00:33:55: SSH2 1: input: padlen 11
00:33:55: SSH2 1: received packet type 20
```
Monitoring and Maintaining Secure Shell Version 2

Troubleshooting Tips

00:33:55: SSH2 1: SSH2_MSG_KEXINIT received
00:33:55: SSH2: kex: client->server aes128-cbc hmac-md5 none
00:33:55: SSH2: kex: server->client aes128-cbc hmac-md5 none
00:33:55: SSH2 1: expecting SSH2_MSG_KEXDH_INIT
00:33:55: SSH2 1: ssh_receive: 144 bytes received
00:33:55: SSH2 1: input: packet len 144
00:33:55: SSH2 1: partial packet 8, need 136, maclen 0
00:33:55: SSH2 1: input: padlen 5
00:33:55: SSH2 1: received packet type 30
00:33:55: SSH2 1: SSH2_MSG_KEXDH_INIT received
00:33:55: SSH2 1: signature length 111
00:33:55: SSH2 1: ssh derive keys complete
00:33:55: SSH2 1: ssh receive: 48 bytes received
00:33:55: SSH2 1: input: packet len 32
00:33:55: SSH2 1: partial packet 16, need 16, maclen 16
00:33:55: SSH2 1: MAC #3 ok
00:33:55: SSH2 1: input: padlen 10
00:33:55: SSH2 1: newkeys: mode 1
00:33:55: SSH2 1: received packet type 5
00:33:55: SSH2 1: send: len 32 (includes padlen 10)
00:33:55: SSH2 1: ssh receive: 64 bytes received
00:33:55: SSH2 1: input: packet len 48
00:33:55: SSH2 1: partial packet 16, need 48, maclen 16
00:33:55: SSH2 1: MAC #4 ok
00:33:56: SSH2 1: input: padlen 9
00:33:56: SSH2 1: received packet type 50
00:33:56: SSH2 1: send: len 32 (includes padlen 13)
00:33:56: SSH2 1: ssh receive: 160 bytes received
00:33:56: SSH2 1: input: packet len 64
00:33:56: SSH2 1: partial packet 16, need 48, maclen 16
00:33:56: SSH2 1: MAC #6 ok
00:33:56: SSH2 1: input: padlen 6
00:33:56: SSH2 1: received packet type 2
00:33:56: SSH2 1: ssh receive: 64 bytes received
00:33:56: SSH2 1: input: packet len 48
00:33:56: SSH2 1: partial packet 16, need 32, maclen 16
00:33:56: SSH2 1: MAC #7 ok
00:33:56: SSH2 1: input: padlen 19
00:33:56: SSH2 1: received packet type 90
00:33:56: SSH2 1: send: len 32 (includes padlen 10)
00:33:56: SSH2 1: ssh receive: 192 bytes received
00:33:56: SSH2 1: input: packet len 64
00:33:56: SSH2 1: partial packet 16, need 48, maclen 16
00:33:56: SSH2 1: MAC #8 ok
00:33:56: SSH2 1: input: padlen 13
00:33:56: SSH2 1: received packet type 98
00:33:56: SSH2 1: pty-req request
00:33:56: SSH2 1: setting TTY - requested: height 24, width 80; set: height 24, width 80
00:33:56: SSH2 1: input: packet len 96
00:33:56: SSH2 1: partial packet 16, need 80, maclen 16
Configuration Examples for Secure Shell Version 2 Support

- Example Configuring Secure Shell Version 1, page 15
- Example Configuring Secure Shell Version 2, page 15
- Example Configuring Secure Shell Versions 1 and 2, page 15
Example Configuring Secure Shell Version 1

Router# configure terminal
Router (config)# ip ssh version 1
Router (config)# end

Example Configuring Secure Shell Version 2

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip ssh version 2
Router(config)# end

Example Configuring Secure Shell Versions 1 and 2

Router# configure terminal
Router (config)# no ip ssh version
Router (config)# end

Example Starting an Encrypted Session with a Remote Device

Router# ssh -v 2 -c aes256-cbc -m hmac-sha1-160 -l shaship 10.76.82.24

Example Configuring Server-Side SCP

The following example shows how to configure server-side functionality for SCP. This example also configures AAA authentication and Authorization on the router. This example uses a locally defined username and password.

Router# configure terminal
Router (config)# aaa new-model
Router (config)# aaa authentication login default local
Router (config)# aaa authorization exec default local
Router (config)# username samplename privilege 15 password password1
Router (config)# ip ssh time-out 120
Router (config)# ip ssh authentication-retries 3
Router (config)# ip scp server enable
Router (config)# end

Example Setting an SNMP Trap

The following shows that an SNMP trap has been set. The trap notification is generated automatically when the SSH session terminates. For an example of SNMP trap debug output, see the section “Example SNMP Debugging, page 16.”

snmp-server
snmp-server host a.b.c.d public tty
Example SNMP Debugging

The following is sample output using the `debug snmp packet` command. The output provides SNMP trap information for an SSH session.

```
Router1# debug snmp packet
SNMP packet debugging is on
Router1# ssh -l lab 10.0.0.2
Password:
Router2# exit
[Connection to 10.0.0.2 closed by foreign host]
Router1#
```

Example SSH Debugging Enhancements

The following is sample output from the `debug ip ssh detail` command. The output provides debugging information regarding the SSH protocol and channel requests.

```
Router# debug ip ssh detail
00:04:22: SSH0: starting SSH control process
00:04:22: SSH0: sent protocol version id SSH-1.99-Cisco-1.25
00:04:22: SSH0: protocol version id is - SSH-1.99-Cisco-1.25
00:04:22: SSH2 0: SSH2_MSG_KEXINIT sent
00:04:22: SSH2 0: SSH2_MSG_KEXINIT received
00:04:22: SSH2 0: expecting SSH2_MSG_KEXDH_INIT
00:04:22: SSH2 0: SSH2_MSG_KEXDH_INIT received
00:04:22: SSH2 0: kex_derive_keys complete
00:04:22: SSH2 0: SSH2_MSG_NEWKEYS sent
00:04:22: SSH2 0: waiting for SSH2_MSG_NEWKEYS
00:04:22: SSH2 0: SSH2_MSG_NEWKEYS received
00:04:24: SSH2 0: authentication successful for lab
00:04:24: SSH2 0: channel open request
00:04:24: SSH2 0: pty-reg request
00:04:24: SSH2 0: shell message received
00:04:24: SSH2 0: starting shell for vty
00:04:38: SSH0: Session terminated normally
```

The following is sample output from the `debug ip ssh packet` command. The output provides debugging information regarding the ssh packet.

```
Router# debug ip ssh packet
00:05:43: SSH2 0: send:packet of length 280 (length also includes padlen of 4)
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: input: total packet length of 280 bytes
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 272 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 272 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 64 bytes received
00:05:43: SSH2 0: partial packet length(block size)8 bytes,needed 272 bytes, maclen 0
00:05:43: SSH2 0: ssh_receive: 64 bytes received
```
Where to Go Next

You have to use a SSH remote device that supports SSH Version 2, and you have to connect to a router.

Additional References

- Related Documents, page 17
- Standards, page 18
- MIBs, page 18
- RFCs, page 18
- Technical Assistance, page 18

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Security commands: complete command syntax,</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>command modes, command history, defaults, usage</td>
<td></td>
</tr>
<tr>
<td>guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Configuring Secure Shell, a host name and host</td>
<td>Configuring Secure Shell feature module.</td>
</tr>
<tr>
<td>domain</td>
<td></td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Debugging commands</td>
<td>Cisco IOS Debug Command Reference</td>
</tr>
<tr>
<td>IPsec</td>
<td>Configuring Security for VPNs with IPsec feature module.</td>
</tr>
<tr>
<td>SNMP, configuring traps</td>
<td>Configuring SNMP Support feature module.</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Secure Shell Version 2 Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 Feature Information for Secure Shell Version 2 Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure Shell Version 2 Support</td>
<td>Cisco IOS XE Release 2.1</td>
<td>The Secure Shell Version 2 Support feature allows you to configure Secure Shell (SSH) Version 2. SSH runs on top of a reliable transport layer and provides strong authentication and encryption capabilities. In Cisco IOS Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. The following commands were introduced or modified by this feature: debug ip ssh, ip ssh min dh size, ip ssh rsa keypair-name, ip ssh version, ssh.</td>
</tr>
<tr>
<td>Secure Shell Version 2 Enhancements</td>
<td>Cisco IOS XE Release 2.1</td>
<td>The Secure Shell Version 2 Enhancements include a number of additional capabilities such as support for VRF aware SSH, SSH debug enhancements, and Diffie-Hellman group 14 and group 16 exchange support. In Cisco IOS Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.