Device Sensor

The Device Sensor feature is used to gather raw endpoint data from network devices using protocols such as Cisco Discovery Protocol (CDP), Link Layer Discovery Protocol (LLDP), and DHCP. The endpoint data that is gathered is made available to registered clients in the context of an access session.

- Finding Feature Information, page 1
- Restrictions for Device Sensor, page 1
- Information About Device Sensor, page 2
- How to Configure Device Sensor, page 3
- Configuration Examples for the Device Sensor Feature, page 12
- Additional References, page 13
- Feature Information for Device Sensor, page 14

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Device Sensor

- Only Cisco Discovery Protocol, LLDP, DHCP, MDNS, SIP, and H323 protocols are supported.
- The session limit for profiling ports is 32.
- The length of one Type-Length-Value (TLV) must not be more than 1024 and the total length of TLVs (combined length of TLVs) of all protocols must not be more than 4096.
- The sensor profiles devices that are only one hop away.
• The Device Sensor feature is enabled by default, but cannot be disabled. Disabling device classifier using `no device classifier` command in global configuration mode does not disable device sensor. This is because device sensor is independent of IP device tracking and device classifier.

Note

In Cisco IOS Release 15.2(1)E and later releases, you can exclude the protocols so that the Device Sensor feature does not analyze the data. To exclude the protocols, use the `device-sensor filter-spec protocol exclude all` command in global configuration mode.

Information About Device Sensor

Device Sensor

The device sensor is used to gather raw endpoint data from network devices. The endpoint information that is gathered helps in completing the profiling capability of devices. Profiling is the determination of the endpoint type based on information gleaned from various protocol packets from an endpoint during its connection to a network.

The profiling capability consists of two parts:

- **Collector**—Gathers endpoint data from network devices.
- **Analyzer**—Processes the data and determines the type of device.

The device sensor represents the embedded collector functionality. The illustration below shows the Cisco sensor in the context of the profiling system and also features other possible clients of the sensor.
A device with sensor capability gathers endpoint information from network devices using protocols such as Cisco Discovery Protocol, LLDP, and DHCP, subject to statically configured filters, and makes this information available to its registered clients in the context of an access session. An access session represents an endpoint’s connection to the network device.

The device sensor has internal and external clients. The internal clients include components such as the embedded Device Classifier (local analyzer), ATM switch processor (ASP), MSI-Proxy, and EnergyWise (EW). The external client, that is the Identity Services Engine (ISE) analyzer, will use RADIUS accounting to receive additional endpoint data.

Client notifications and accounting messages containing profiling data along with the session events and other session-related data, such as the MAC address and the ingress port, are generated and sent to the internal and external clients (ISE). By default, for each supported peer protocol, client notifications and accounting events are only generated where an incoming packet includes a TLV that has not previously been received in the context of a given session. You can enable client notifications and accounting events for all TLV changes, where either a new TLV has been received or a previously received TLV has been received with a different value using CLI commands.

The device sensor’s port security protects the switch from consuming memory and crashing during deliberate or unintentional denial-of-service (DoS) type attacks. The sensor limits the maximum device monitoring sessions to 32 per port (access ports and trunk ports). In case of lack of activity from hosts, the age session time is 12 hours.

How to Configure Device Sensor

The device sensor is enabled by default.
In Cisco IOS Release 15.2(1)E and later releases, you can exclude the protocols so that the Device Sensor feature does not analyze the data. To exclude the protocols, use the `device-sensor filter-spec protocol exclude all` command in global configuration mode.

The following tasks are applicable only if you want to configure the sensor based on your specific requirements.

Enabling Accounting Augmentation

Perform this task to add device sensor protocol data to accounting records.

Before You Begin

For the sensor protocol data to be added to the accounting messages, you must enable session accounting by using the following standard authentication, authorization, and accounting (AAA), and RADIUS configuration commands:

```text
Device(config)#aaa new-model
Device(config)#aaa accounting dot1x default start-stop group radius
Device(config)#radius-server host {hostname | ip-address} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string]
Device(config)#radius-server vsa send accounting
```

SUMMARY STEPS

1. enable
2. configure terminal
3. device-sensor accounting
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Creating a Cisco Discovery Protocol Filter

Perform this task to create a Cisco Discovery Protocol filter containing a list of TLVs that can be included or excluded in the device sensor output.

SUMMARY STEPS

1. enable
2. configure terminal
3. device-sensor filter-list cdp list tlv-list-name
4. tlv {name tlv-name | number tlv-number}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device> enable</td>
</tr>
</tbody>
</table>
Creating an LLDP Filter

Perform this task to create an LLDP filter containing a list of TLVs that can be included or excluded in the device sensor output.

SUMMARY STEPS

1. enable
2. configure terminal
3. device-sensor filter-list lldp list tlv-list-name
4. tlv \{name tlv-name | number tlv-number\}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 device-sensor filter-list lldp list tlv-list-name</td>
<td>Creates a TLV list and enters LLDP sensor configuration mode, where you can configure individual TLVs.</td>
</tr>
<tr>
<td>Example: Device(config)# device-sensor filter-list lldp list lldp-list</td>
<td></td>
</tr>
<tr>
<td>Step 4 tlv {name tlv-name</td>
<td>number tlv-number}</td>
</tr>
<tr>
<td>Example: Device(config-sensor-lldplist)# tlv number 15</td>
<td>• You can delete the TLV list without individually removing TLVs from the list by using the <code>no device-sensor filter-list lldp list *tlv-list-name*</code> command.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-sensor-lldplist)# end</td>
<td></td>
</tr>
</tbody>
</table>

Creating a DHCP Filter

Perform this task to create a DHCP filter containing a list of options that can be included or excluded in the device sensor output.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `device-sensor filter-list dhcp list *option-list-name*`
4. `option {name *option-name* | number *option-number*}`
5. `end`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>device-sensor filter-list dhcp list option-list-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# device-sensor filter-list dhcp list dhcp-list</td>
</tr>
<tr>
<td>Purpose</td>
<td>Creates an options list and enters DHCP sensor configuration mode, where you can configure individual options.</td>
</tr>
<tr>
<td>Step 4</td>
<td>option {name option-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-sensor-dhcplist)# option name option-name</td>
</tr>
<tr>
<td>Purpose</td>
<td>Adds individual DHCP options to the option list.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-sensor-dhcplist)# end</td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Applying a Protocol Filter to the Sensor Output

Perform this task to apply a Cisco Discovery Protocol, LLDP, or DHCP filter to the sensor output. Session notifications are sent to internal sensor clients and accounting requests.

Summary Steps

1. enable
2. configure terminal
3. device-sensor filter-spec {cdp | dhcp | lldp} {exclude {all | list list-name} | include list list-name}
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>device-sensor filter-spec {cdp</td>
<td>dhcp</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# device-sensor filter-spec cdp include list list1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Tracking TLV Changes

Perform this task to enable client notifications and accounting events for all TLV changes. By default, for each supported peer protocol, client notifications and accounting events will only be generated where an incoming packet includes a TLV that has not previously been received in the context of a given session.
SUMMARY STEPS

1. enable
2. configure terminal
3. device-sensor notify all-changes
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Device> enable
 • Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
 Device# configure terminal |
| **Step 3** device-sensor notify all-changes | Enables client notifications and accounting events for all TLV changes, that is, where either a new TLV is received or a previously received TLV is received with a new value in the context of a given session.
 Note Use the **default device-sensor notify** or the **device-sensor notify new-tlvs** command to return to the default TLV.
 Example:
 Device{config}# device-sensor notify all-changes |
| **Step 4** end | Returns to privileged EXEC mode.
 Example:
 Device{config}# end |

Verifying the Device Sensor Configuration

Perform this task to verify the sensor cache entries for all devices.

SUMMARY STEPS

1. enable
2. show device-sensor cache mac mac-address
3. show device-sensor cache all
DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode.

Example:
Device> enable

Step 2 show device-sensor cache mac mac-address
Displays sensor cache entries (the list of protocol TLVs or options received from a device) for a specific device.

Example:
Device# show device-sensor cache mac 0024.14dc.df4d

Device: 0024.14dc.df4d on port GigabitEthernet1/0/24
--
Proto Type:Name Len Value
 cdp 26:power-available-type 16 00 1A 00 00 00 00 00 00 00 00 00 00 00 FF FF FF
 cdp 22:mgmt-address-type 17 00 16 00 11 00 00 00 01 01 01 CC 00 04 09 1B 65
 0E
 cdp 11:duplex-type 5 00 0B 00 05 01
 cdp 9:vt-pmgmt-domain-type 4 00 09 00 04
 cdp 4:capabilities-type 8 00 04 00 08 00 00 00 28
 cdp 1:device-name 14 00 01 00 0E 73 75 70 70 6C 69 63 61 6E 74
 lldp 0:end-of-lldpdu 2 00 00
 lldp 8:management-address 14 10 0C 05 01 09 1B 65 0E 03 00 00 00 01 00
 lldp 7:system-capabilities 6 0E 04 00 14 04
 lldp 4:port-description 23 08 15 47 69 67 61 62 69 74 45 74 68 65 74 31 2F 30 2F 32 34
 lldp 5:system-name 12 0A 0A 73 75 70 70 6C 69 63 61 6E 74
 dhcp 82:relay-agent-info 20 52 12 01 06 00 04 00 18 01 18 02 08 00 06 00 24
 14 DC 80
 dhcp 61:client-identifier 32 3D 1E 00 63 69 73 63 6F 2D 30 30 31 63 2E 30 66 37 34 2E 38 34 38 30 2D 56 31
 dhcp 57:max-message-size 4 39 02 04 80

Step 3 show device-sensor cache all
Displays sensor cache entries for all devices.

Example:
Device# show device-sensor cache all

Device: 001c.0f74.8480 on port GigabitEthernet2/1
--
Proto Type:Name Len Value
dhcp 52:option-overload 3 34 01 03
dhcp 60:class-identifier 11 3C 09 64 6F 63 73 69 73 31 2E 30
dhcp 55:parameter-request-list 8 37 06 01 42 06 03 43 96
dhcp 61:client-identifier 27 3D 19 00 63 69 73 63 6F 2D 30 30 31 31 33 34 32 34 38 30 2D 56 31
37 34 2E 38 34 38 30 2D 56 6C 31
dhcp 57:max-message-size 4 39 02 04 80
Device: 000f.f7a7.234f on port GigabitEthernet2/1
--
Proto Type:Name Len Value
cdp 22:mgmt-address-type 8 00 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 cdp 19:cos-type 5 00 13 00 05 00
cdp 18:trust-type 5 00 12 00 05 00
cdp 11:duplex-type 5 00 0B 00 05 01
Troubleshooting Tips

After you have configured AAA Dead-Server Detection, you should verify your configuration using the `show running-config` command. This verification is especially important if you have used the `no` form of the `radius-server dead-criteria` command. The output of the `show running-config` command must show the same values in the "Dead Criteria Details" field that you configured using the `radius-server dead-criteria` command.

Configuration Examples for the Device Sensor Feature

Examples: Configuring the Device Sensor

The following example shows how to create a Cisco Discovery Protocol filter containing a list of TLVs:

```
Device> enable
Device# configure terminal
Device(config)# device-sensor filter-list cdp list cdp-list
Device(config-sensor-cdplist)# tlv name address-type
Device(config-sensor-cdplist)# tlv name device-name
Device(config-sensor-cdplist)# end
```

The following example shows how to create an LLDP filter containing a list of TLVs:

```
Device> enable
Device# configure terminal
Device(config)# device-sensor filter-list lldp list lldp-list
Device(config-sensor-lldplist)# tlv name chassis-id
Device(config-sensor-lldplist)# tlv name management-address
Device(config-sensor-lldplist)# end
```

The following example shows how to create a DHCP filter containing a list of options:

```
Device> enable
Device# configure terminal
Device(config)# device-sensor filter-list dhcp list dhcp-list
Device(config-sensor-dhcpplist)# option name address-type
Device(config-sensor-dhcpplist)# option name device-name
Device(config-sensor-dhcpplist)# option number 34
Device(config-sensor-dhcpplist)# end
```

The following example shows how to apply a Cisco Discovery Protocol TLV filter list to the device sensor output:

```
Device> enable
Device# configure terminal
Device(config)# device-sensor filter-spec cdp include cdp-list1
```
The following example shows how to enable client notifications and accounting events for all TLV changes:

```
Device> enable
Device# configure terminal
Device(config)# device-sensor notify all-changes
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Master Command List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Security Command Reference: Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Security Command Reference: Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Security Command Reference: Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Security Command Reference: Commands S to Z</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Device Sensor

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for Device Sensor

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Sensor</td>
<td>Cisco IOS 15.2(1)E</td>
<td>The Device Sensor feature is used to gather raw endpoint data from network devices using protocols such as Cisco Discovery Protocol, Link Layer Discovery Protocol (LLDP), and DHCP. The endpoint data that is gathered is made available to registered clients in the context of an access session. The following commands were introduced or modified: debug device-sensor, device-sensor accounting, device-sensor filter-list cdp, device-sensor filter-list dhcp, device-sensor filter-list lldp, device-sensor filter-spec, device-sensor notify, and show device-sensor cache.</td>
</tr>
</tbody>
</table>