THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2011 Cisco Systems, Inc. All rights reserved.
CONTENTS

SSL VPN 1
  Finding Feature Information 1
  Prerequisites for SSL VPN 2
Restrictions for SSL VPN 2
  General Restrictions for SSL VPN 3
  Cisco AnyConnect VPN Client 3
  Thin Client Control List Support 3
  HTTP Proxy 3
  Features Not Supported on the Cisco IOS SSL VPN 3
Information About SSL VPN 4
  SSL VPN Overview 4
  Licensing 5
Modes of Remote Access 7
  Remote Access Overview 7
  Clientless Mode 8
  Thin-Client Mode 9
    Options for Configuring HTTP Proxy and the Portal Page 10
  Tunnel Mode 11
SSL VPN Features 12
  Access Control Enhancements 12
  SSL VPN Client-Side Certificate-Based Authentication 13
    Certificate-Only Authentication and Authorization Mode 13
    Two-Factor Authentication and Authorization Mode 13
    Identification of WebVPN Context at Runtime Using Certificate Map Match Rules 13
    Support for AnyConnect Client to Implement Certificate Matching Based on Client Profile Attributes 13
  AnyConnect Client Support 14
  Application ACL Support 14
  Automatic Applet Download 14
Backend HTTP Proxy  15
Front-Door VRF Support  15
Full-Tunnel Cisco Express Forwarding Support  16
GUI Enhancements  16
   Login Screen  16
   Banner  17
       Customization of a Login Page  18
   Portal Page  18
Internationalization  21
Max-User Limit Message  23
Netegrity Cookie-Based Single SignOn Support  23
NTLM Authentication  23
RADIUS Accounting  23
Stateless High Availability with Hot Standby Router Protocol  23
TCP Port Forwarding and Thin Client  24
URL Obfuscation  26
URL Rewrite Splitter  27
User-Level Bookmarking  27
Virtual Templates  27
License String Support for the 7900 VPN Client  27
SSLVPN DVTI Support  27
   Prerequisites for SSLVPN DVTI Support  28
   Restrictions for SSLVPN DVTI Support  28
       Virtual Template Infrastructure  28
SSL VPN Phase-4 Features  29
   Prerequisites for SSL VPN Phase-4 Features  29
   Full Tunnel Package  29
   SSL VPN per-User Statistics  29
DTLS Support for IOS SSL VPN  29
   Prerequisites for DTLS Support for IOS SSL VPN  30
   Restrictions for DTLS Support for IOS SSL VPN  30
Cisco AnyConnect VPN Client Full Tunnel Support  30
   Remote Client Software from the SSL VPN Gateway  30
   Address Pool  30
   Manual Entry to the IP Forwarding Table  31
Examples 73
Configuring VRF Virtualization 74
Configuring ACL Rules 75
Associating an ACL Attribute with a Policy Group 78
Monitoring and Maintaining ACLs 79
Configuring SSO Netegrity Cookie Support for a Virtual Context 79
Associating an SSO Server with a Policy Group 81
Configuring URL Obfuscation (Masking) 82
Adding a CIFS Server URL List to an SSL VPN Context and Attaching It to a Policy Group 83
Configuring User-Level Bookmarks 85
Configuring FVRF 85
Disabling Full-Tunnel Cisco Express Forwarding 87
Configuring Automatic Authentication and Authorization 88
Configuring SSL VPN Client-Side Certificate-Based Authentication 89
Configuring a URL Rewrite Splitter 91
Configuring a Backend HTTP Proxy 92
Configuring Stateless High Availability with HSRP for SSL VPN 93
Configuring Internationalization 94
Generaing the Template Browser Attribute File 95
What to Do Next 95
Importing the Browser Attribute File 95
What to Do Next 96
Verifying That the Browser Attribute File Was Imported Correctly 96
What to Do Next 97
Creating the Language File 97
What to Do Next 98
Importing the Language File 98
What to Do Next 99
Verifying That the Language File Was Imported Correctly 99
What to Do Next 99
Creating the URL List 99
What to Do Next 100
Importing the File into the URL List and Binding It to a Policy Group 100
What to Do Next 102
Verifying That the URL List File Was Bound Correctly to the Policy Group 102
Configuring a Virtual Template 102
Configuring SSLVPN DVTI Support 104
  Configuring per-Tunnel Virtual Templates 104
  Troubleshooting Tips 106
  Configuring per-Context Virtual Templates 106
  Troubleshooting Tips 107
Configuring SSL VPN Phase-4 Features 107
  Configuring the Start Before Logon Functionality 108
  Troubleshooting Tips 110
  Configuring Split ACL Support 110
  Configuring IP NetMask Functionality 112
Configuring the DTLS Port 113
  Troubleshooting Tips 115
Using SSL VPN clear Commands 115
Verifying SSL VPN Configurations 116
Using SSL VPN Debug Commands 118
Configuration Examples for SSL VPN 119
  Example: Configuring a Generic SSL VPN Gateway 120
  Example: Configuring an ACL 120
  Example: Configuring HTTP Proxy 120
  Example: Configuring Microsoft File Shares for Clientless Remote Access 121
  Example: Configuring Citrix Application Support for Clientless Remote Access 121
  Example: Configuring Application Port Forwarding 121
  Example: Configuring VRF Virtualization 122
  Example: RADIUS Accounting for SSL VPN Sessions 122
  Example: URL Obfuscation (Masking) 123
  Example: Adding a CIFS Server URL List and Attaching It to a Policy List 123
  Example: Typical SSL VPN Configuration 123
  Example: Cisco Express Forwarding-Processed Packets 125
  Example: Multiple AnyConnect VPN Client Package Files 125
  Example: Local Authorization 126
  Example: URL Rewrite Splitter 126
  Example: Backend HTTP Proxy 127
  Example: Stateless High Availability with HSRP 127
  Example: Internationalization 127
Example: Generated Browser Attribute Template 128
Example: Copying the Browser Attribute File to Another PC for Editing 128
Example: Copying the Edited File to flash 128
Example: Output Showing That the Edited File Was Imported 128
Example: Copying the Language File to Another PC for Editing 129
Example: Copying the Edited Language File to the Storage Device 129
Example: Language Template Created 129
Example: URL List 129
Example: Virtual Template 130
Example: SSL VPN DVTI Support 130
  Example: Configuring per-Tunnel Virtual Templates 130
    Example: Configuring in the per-Tunnel Context Using Virtual Templates 131
    Example: Configuring in the per-Tunnel Context Using Virtual Templates and a
    AAA Server 132
  Example: Configuring per-Context Virtual Templates 133
Example: SSL VPN Phase-4 Features 134
  Example: Configuring the Start Before Logon Functionality 134
  Example: Configuring Split ACL Support 134
  Example: Configuring IP NetMask Functionality 135
Example: Debug Command Output 135
  Example: Configuring SSO 135
Example: Show Command Output 135
  Example: show webvpn context 136
  Example: show webvpn context name 136
  Example: show webvpn gateway 136
  Example: show webvpn gateway name 136
  Example: show webvpn install file 137
  Example: show webvpn install package svc 137
  Example: show webvpn install status svc 137
  Example: show webvpn nbns context all 137
  Example: show webvpn policy 138
  Example: show webvpn policy (with NTLM Disabled) 138
  Example: show webvpn session 138
  Example: show webvpn session user 138
  Example: show webvpn stats 139
Example: show webvpn stats sso 140
Example: FVRF show Command Output 141

Additional References 141
Feature Information for SSL VPN 143

Notices 150
  OpenSSL Project 151
  License Issues 151

SSL VPN Remote User Guide 155
  Finding Feature Information 155
  SSL VPN Prerequisites for the Remote User 156
  Restrictions for SSL VPN Remote User Guide 157
  Usernames and Passwords 157
  Remote User Interface 158
    Page Flow 158
    Initial Connection 159
      503 Service Unavailable Message 159
      SSL TLS Certificate 159
    Login Page 159
    Certificate Authentication 160
    Logout Page 160
    Portal Page 161
  Remote Servers 162
  Toolbar 163
    Web Browsing 164
    Moving the Toolbar 164
    Returning to the Portal Page 164
    Adding the Current Page to the Personal Bookmark Folder 164
    Displaying the Help Page 165
    Logging Out 165
  Session Timeout 165
  TCP Port Forwarding and Thin Client 166
  Tunnel Connection 168
  User-Level Bookmarking 168
    Adding a Bookmark 168
    Editing a Bookmark 169
SSL VPN

The SSL VPN feature (also known as WebVPN) provides support, in Cisco IOS software, for remote user access to enterprise networks from anywhere on the Internet. Remote access is provided through a Secure Socket Layer (SSL)-enabled SSL VPN gateway. The SSL VPN gateway allows remote users to establish a secure VPN tunnel using a web browser. This feature provides a comprehensive solution that allows easy access to a broad range of web resources and web-enabled applications using native HTTP over SSL (HTTPS) browser support. SSL VPN delivers three modes of SSL VPN access: clientless, thin-client, and full-tunnel client support.

This document is primarily for system administrators. If you are a remote user, see the document SSL VPN Remote User Guide.

Note

The Cisco AnyConnect VPN Client is introduced in Cisco IOS Release 12.4(15)T. This feature is the next-generation SSL VPN Client. If you are using Cisco software earlier than Cisco IOS Release 12.4(15)T, you should be using the SSL VPN Client and see the GUI for the SSL VPN Client when you are web browsing. However, if you are using Cisco Release 12.4(15)T or a later release, you should be using the Cisco AnyConnect VPN Client and see the GUI for Cisco AnyConnect VPN Client when you are web browsing.

• Finding Feature Information, page 1
• Prerequisites for SSL VPN, page 2
• Restrictions for SSL VPN, page 2
• Information About SSL VPN, page 4
• How to Configure SSL VPN Services on a Router, page 35
• Configuration Examples for SSL VPN, page 119
• Additional References, page 141
• Feature Information for SSL VPN, page 143
• Notices, page 150

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for SSL VPN

To securely access resources on a private network behind an SSL VPN gateway, the remote user of an SSL VPN service must have the following:

- An account (login name and password)
- An SSL-enabled browser (for example, Internet Explorer, Netscape, Mozilla, or Firefox)
- Operating system support
- "Thin client" support used for TCP port-forwarding applications requires administrative privileges on the computer of the remote user.
- "Tunnel mode" for Cisco SSL VPN requires administrative privileges for initial installation of the full tunnel client.
- The remote user must have local administrative privileges to use thin client or full tunnel client features.
- The SSL VPN gateway and context configuration must be completed before a remote user can access resources on a private network behind an SSL VPN. For more information, see the How to Configure SSL VPN Services on a Router, page 35 section.
- ACL Support--The time range should have already been configured.
- Single SignOn Netegrity Cookie Support--A Cisco plug-in must be installed on a Netegrity SiteMinder server.
- Licensing--In Cisco IOS Release 15.0(1)M, the SSL VPN gateway is a seat-counted licensing feature on Cisco 880, Cisco 890, Cisco 1900, Cisco 2900, and Cisco 3900 platforms. A valid licence is required for a successful SSL VPN session.
- SSL VPN-supported browser--The following browsers have been verified for SSL VPN. Other browsers might not fully support SSL VPN features.

Note

Later versions of the following software are also supported.

- Firefox 2.0 (Windows and Linux)
- Internet Explorer 6.0 or 7.0
- Linux (Redhat RHEL 3.0 +, FEDORA 5, or FEDORA 6)
- Macintosh OS X 10.4.6
- Microsoft Windows 2000, Windows XP, or Windows Vista
- Safari 2.0.3

Restrictions for SSL VPN

- General Restrictions for SSL VPN, page 3
- Cisco AnyConnect VPN Client, page 3
- Thin Client Control List Support, page 3
- HTTP Proxy, page 3
- Features Not Supported on the Cisco IOS SSL VPN, page 3
General Restrictions for SSL VPN

- URLs referred by the Macromedia Flash player cannot be modified for secure retrieval by the SSL VPN gateway.
- Cisco Secure Desktop (CSD) 3.1 and later versions are not supported.

Cisco AnyConnect VPN Client

The Cisco AnyConnect VPN Client is not supported on Windows Mobile when the client connects to a Cisco IOS headend router (supported in Cisco IOS Release 15.0(1)M and later releases). The Cisco AnyConnect VPN Client does not support the following:

- Client-side authentication (supported in Cisco IOS Release 15.0(1)M and later releases)
- Compression support
- IPsec
- IPv6 VPN access
- Language translation (localization)
- Sequencing
- Standalone Mode (supported in Cisco IOS Release 12.4(20)T and later releases)

Thin Client Control List Support

Although there is no limitation on the maximum number of filtering rules that can be applied for each access control list (ACL) entry, keeping the number below 50 should have no impact on router performance.

HTTP Proxy

The HTTP Proxy feature works only with Microsoft Internet Explorer.
The HTTP Proxy feature will not work if the browser proxy setup cannot be modified because of any security policies that have been placed on the client workstation.

Features Not Supported on the Cisco IOS SSL VPN

The following features are not supported on the Cisco IOS SSL VPN:

- Application Profile Customization Framework (APCF): an XML-based rule set for clientless SSL VPN
- Java and ActiveX Client Server Plugins
- On Board Built-in Single Sign On
- Smart Tunnels
- SharePoint Support
- Portal Page Customization
- Using Smartcard for Authentication (supported in Cisco IOS Release 15.0(1)M and later releases)
- Support for External Statistics Reporting and Monitoring Tools
- Dynamic Access Policies (DAP)
- Cisco Unified Communications Manager (Cisco UCM) 8.0.1 VPN-enabled 7900 series IP phones
The following features introduced in the AnyConnect 2.5.217 release:

- AnyConnect Profile Editor
- Captive Portal Hotspot Detection
- Captive Portal Remediation
- Client Firewall with Local Printer and Tethered Device Support
- Connect Failure Policy
- Optimal Gateway Selection
- Post Log-in Always-on VPN
- Quarantine

Although you can connect to a Cisco IOS headend using AnyConnect 2.5, the features introduced in AnyConnect 2.5 will not be supported. However, features introduced in AnyConnect 2.4 and earlier releases are supported when you are using AnyConnect 2.5 with a Cisco IOS headend.

Note

AnyConnect 3.0 is not supported when you are connecting to a Cisco IOS headend.

Information About SSL VPN

- SSL VPN Overview, page 4
- Licensing, page 5
- Modes of Remote Access, page 7
- SSL VPN Features, page 12
- Other SSL VPN Features, page 31
- Platform Support, page 35

SSL VPN Overview

Cisco IOS SSL VPN provides SSL VPN remote-access connectivity from almost any Internet-enabled location using only a web browser that natively supports SSL encryption. This feature allows your company to extend access to its secure enterprise network to any authorized user by providing remote-access connectivity to corporate resources from any Internet-enabled location.

Cisco IOS SSL VPN can also support access from noncorporate-owned machines, including home computers, Internet kiosks, and wireless hot spots. These locations are difficult places to deploy and manage VPN client software and the remote configuration required to support IPsec VPN connections.

The figure below shows how a mobile worker (the lawyer at the courthouse) can access protected resources from the main office and branch offices. Site-to-site IPsec connectivity between the main and remote sites
is unaltered. The mobile worker needs only Internet access and supported software (web browser and operating system) to securely access the corporate network.

**Figure 1**  Secure SSL VPN Access Model

SSL VPN delivers the following three modes of SSL VPN access:

- **Clientless**—Clientless mode provides secure access to private web resources and will provide access to web content. This mode is useful for accessing most content that you would expect to access in a web browser, such as Internet access, databases, and online tools that employ a web interface.

- **Thin client (port-forwarding Java applet)**—Thin-client mode extends the capability of the cryptographic functions of the web browser to enable remote access to TCP-based applications such as Post Office Protocol version 3 (POP3), Simple Mail Transfer Protocol (SMTP), Internet Message Access protocol (IMAP), Telnet, and Secure Shell (SSH).

- **Tunnel mode**—Full tunnel client mode offers extensive application support through its dynamically downloaded Cisco AnyConnect VPN Client (next-generation SSL VPN Client) for SSL VPN. Full tunnel client mode delivers a lightweight, centrally configured and easy-to-support SSL VPN tunneling client that provides network layer access to virtually any application.

SSL VPN application accessibility is somewhat constrained relative to IPsec VPNs; however, SSL-based VPNs provide access to a growing set of common software applications, including web page access, web-enabled services such as file access, e-mail, and TCP-based applications (by way of a downloadable thin-client applet). SSL-based VPN requires slight changes to user workflow because some applications are presented through a web browser interface, not through their native GUI. The advantage for SSL VPN comes from accessibility from almost any Internet-connected system without needing to install additional desktop software.

**Licensing**

Starting in Cisco IOS Release 15.0(1)M, the SSL VPN gateway is a seat-counted licensing feature on the Cisco 880, Cisco 890, Cisco 1900, Cisco 2900, and Cisco 3900 platforms. A license count is associated
with each license, and the count indicates the instances of the feature available for use in the system. In the case of SSL VPN, a seat refers to the maximum number of sessions allowed at a time.

You can get the license at http://www.cisco.com/go/license.


SSL VPN supports the following types of licenses:

- Permanent licenses—No usage period is associated with these licenses. All permanent licenses are node locked and validated during installation and usage.
- Evaluation licenses—These are metered licenses that are valid for a limited period. The usage period of a license is based on a system clock. The evaluation licenses are built into the image and are not node locked. The evaluation licenses are used only when there are no permanent, extension or grace period licenses available for a feature. An end-user license agreement (EULA) has to be accepted before using an evaluation license.
- Extension licenses—Extension licenses are node-locked metered licenses. These licenses are installed using the management interfaces on the device. A EULA has to be accepted as part of installation.
- Grace-rehost licenses—Grace period licenses are node locked metered licenses. These licenses are installed on the device as part of the rehost operation. A EULA has to be accepted as a part of the rehost operation.

For all the license types, except the evaluation license, a EULA has to be accepted during the license installation. This means that all the license types except the evaluation license are activated after installation. In the case of an evaluation license, a EULA is presented during an SSL VPN gateway configuration or an SSL VPN context configuration.

An SSL VPN session corresponds to a successful login to the SSL VPN service. An SSL VPN session is created when a valid license is installed and the user credentials are successfully validated. On a successful user validation, a request is made to the licensing module to get a seat. An SSL VPN session is created only when the request is successful. If a valid license is not installed, the SSL VPN gateway configuration and SSL VPN context configurations are successful, but the user cannot login successfully. When multiple gateways and contexts are configured, the total number of sessions are equal to the total sessions allowed by the license.

The same user can create multiple sessions and for each session a seat count is reserved. The seat reservation does not happen in the following cases:

- Multiple TCP connections such as web server content, Outlook Web Access (OWA) and Common Intermediate Format (CIF) file shares.
- Port forward session initiation.
- Full tunnel session creation from a browser session.
- Full tunnel session is up and a crypto rekey is done.

When the total active sessions are equal to the maximum license count of the current active license, no more new sessions are allowed.

The reserved seat count or session is released when

- a user logs out.
- a Dead Peer Detection (DPD) failure happens.
- a session timeout occurs.
- an idle timeout occurs.
- a session is cleared administratively using the `clear webvpn session` command.
- disconnected from the tunnel.
- context is removed even when there are active sessions.

You can use the `show webvpn license` command to display the available count and the current usage. To display the current license type and time period left in case of a nonpermanent license, use the `show license` command. To get information related to license operations, events, and errors, use the `debug webvpn license` command.

For migrating from any Cisco IOS 12.4T release to Cisco IOS 15.x release, use the license migration tool at https://tools.cisco.com/SWIFT/Licensing/LicenseAdminServlet/migrateLicense.

New Cisco IOS SSL VPN licenses that are generated are cumulative. Therefore the old licenses become inactive when a new license is applied. For example, when you are upgrading your license from 10 counts to 20 counts (an increase of 10 counts on the current 10 counts), Cisco provides a single 20 count license. The old license for 10 counts is not required when a permanent license for a higher count is available. However, the old license will exist in an inactive state as there is no reliable method to clear the old license.

In Cisco IOS Release 15.1(4)M1 and later releases, a Crypto Export Restrictions Manager (CERM) license is reserved only after the user logs in. If you have an Integrated Services Router Generation 2 (ISR G2) router with a CERM license, you must upgrade to Cisco IOS Release 15.1(4)M1 or later releases. Before Cisco IOS Release 15.1(4)M1, a CERM license is reserved for every SSL or Transport Layer Security (TLS) session.

### Modes of Remote Access

- Remote Access Overview, page 7
- Clientless Mode, page 8
- Thin-Client Mode, page 9
- Tunnel Mode, page 11

### Remote Access Overview

End-user login and authentication is performed by the web browser to the secure gateway using an HTTP request. This process creates a session that is referenced by a cookie. After authentication, the remote user is shown a portal page that allows access to the SSL VPN networks. All requests sent by the browser include the authentication cookie. The portal page provides all the resources available on the internal networks. For example, the portal page could provide a link to allow the remote user to download and install a thin-client Java applet (for TCP port forwarding) or a tunneling client.
The figure below shows an overview of the remote access modes.

**Figure 2  \ Modes of Remote Access Overview**

The following table summarizes the level of SSL VPN support that is provided by each access mode.

**Table 1  \ Access Mode Summary**

<table>
<thead>
<tr>
<th>Access Mode Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A-- Clientless Mode</strong></td>
</tr>
<tr>
<td>• Browser-based (clientless)</td>
</tr>
<tr>
<td>• Microsoft Windows or Linux</td>
</tr>
<tr>
<td>• Web-enabled applications, file sharing, Outlook Web Access</td>
</tr>
<tr>
<td>• Gateway performs address or protocol conversion and content parsing and rewriting</td>
</tr>
</tbody>
</table>

| **B--Thin-Client Mode** |
| • TCP port forwarding |
| • Uses Java Applet |
| • Extends application support |
| • Telnet, e-mail, SSH, Meeting Maker, Sametime Connect |
| • Static port-based applications |

| **C--Tunnel Mode** |
| • Works like “clientless” IPsec VPN |
| • Tunnel client loaded through Java or ActiveX (approximately 500 kB) |
| • Application agnostic--supports all IP-based applications |
| • Scalable |
| • Local administrative permissions required for installation |

**Clientless Mode**

In clientless mode, the remote user accesses the internal or corporate network using the web browser on the client machine. The PC of the remote user must run the Windows 2000, Windows XP, or Linux operating systems.

The following applications are supported in clientless mode:
• Web browsing (using HTTP and HTTPS) -- provides a URL box and a list of web server links in the portal page that allows the remote user to browse the web.

• File sharing (using common Internet file system [CIFS]) -- provides a list of file server links in the portal page that allows the remote user to do the following operations:
  ◦ Browse a network (listing of domains)
  ◦ Browse a domain (listing of servers)
  ◦ Browse a server (listing of shares)
  ◦ List the files in a share
  ◦ Create a new file
  ◦ Create a directory
  ◦ Rename a directory
  ◦ Update a file
  ◦ Download a file
  ◦ Remove a file
  ◦ Rename a file

Note
Linux requires that the Samba application is installed before CIFS file shares can be remotely accessed.

• Web-based e-mail, such as Microsoft Outlook Web Access (OWA) 2003 (using HTTP and HTTPS) with Web Distributed Authoring and Versioning (WebDAV) extensions -- provides a link that allows the remote user to connect to the exchange server and read web-based e-mail.

Thin-Client Mode
Thin-client mode, also called TCP port forwarding, assumes that the client application uses TCP to connect to a well-known server and port. In thin-client mode, the remote user downloads a Java applet by clicking the link provided on the portal page, or the Java applet is downloaded automatically (see the Options for Configuring HTTP Proxy and the Portal Page, page 10 section). The Java applet acts as a TCP proxy on the client machine for the services that you configure on the gateway.

The applications that are supported in thin-client mode are mainly e-mail-based (SMTP, POP3, and Internet Map Access Protocol version 4 [IMAP4]) applications.

Note
The TCP port-forwarding proxy works only with the Sun Microsystems Java Runtime Environment (JRE) version 1.4 or later versions. A Java applet is loaded through the browser that verifies the JRE version. The Java applet will refuse to run if a compatible JRE version is not detected.

The Java applet initiates an HTTP request from the remote user client to the SSL VPN gateway. The name and port number of the internal e-mail server is included in the HTTP request (POST or CONNECT). The SSL VPN gateway creates a TCP connection to that internal e-mail server and port.

The Java applet starts a new SSL connection for every client connection.

You should observe the following restrictions when using thin-client mode:

• The remote user must allow the Java applet to download and install.
• You cannot use thin-client mode for applications such as FTP, where the ports are negotiated dynamically. You can use TCP port forwarding only with static ports.
There is a known compatibility issue with the encryption type and Java. If the Java port-forwarding applet does not download properly and the configuration line `ssl encryption 3des-sha1 aes-sha1` is present, you should remove the line from the WebVPN gateway subconfiguration.

**Options for Configuring HTTP Proxy and the Portal Page, page 10**

**Options for Configuring HTTP Proxy and the Portal Page**

Effective with Cisco IOS Release 12.4(11)T, administrators have more options for configuring the HTTP proxy and the portal page. If HTTP proxy is enabled, the Java applet acts as the proxy for the browser of the user, thereby connecting the client workstation with the gateway. The home page of the user (as defined by the user group) is opened automatically or, if configured by the administrator, the user is directed to a new website.

HTTP proxy supports both HTTP and HTTPS.

**Benefits of Configuring HTTP Proxy**

HTTP supports all client-side web technologies (including HTML, Cascading Style Sheets [CSS], JavaScript, VBScript, ActiveX, Java, and flash), HTTP Digest authentication, and client certificate authentication. Remote users can use their own bookmarks, and there is no limit on cookies. Because there is no mangling involved and the client can cache the objects, performance is much improved over previous options for configuring the HTTP proxy and portal page.

**Illustrations of Port Forwarding with and Without an HTTP Proxy Configuration**

The figure below illustrates TCP port forwarding without HTTP proxy configured.

**Figure 3  TCP Port Forwarding Without HTTP Proxy Configured**

In the figure above, the following steps occur:

1. User downloads the proxy applet.
2. Applet updates the registry to add HTTP as a Remote Procedure Call (RPC) transport.
3. Applet examines the registry to determine the exchange (and local catalog) server and create server entries that refer to those servers.
4 Applet opens local port 80 and listens for connections.
5 User starts Outlook, and Outlook connects to 10.0.0.254:80.
6 Applet opens a connection to the secure gateway and delivers the requests from Outlook.
7 Secure gateway examines the requests to determine the endpoint exchange server.
8 Data flows from Outlook, through the applet and the secure gateway, to the exchange server.
9 User terminates Outlook.
10 User closes the applet. Before closing, the applet undoes configuration Steps 3 and 4.

The figure below illustrates TCP port forwarding when HTTP proxy is configured.

**Figure 4 HTTP Proxy**

In the figure above, the following steps occur:
1 Proxy applet is downloaded automatically.
2 Applet saves the original proxy configuration of the browser.
3 Applet updates the proxy configuration of the browser to be the local loopback address with an available local port (by default, port 8080).
4 Applet opens the available local port and listens for connections.
5 Applet, if so configured, opens the home page of the user, or the user browses to a new website.
6 Applet accepts and looks at the HTTP or HTTPS request to determine the destination web server.
7 Applet opens a connection to the secure gateway and delivers the requests from the browser.
8 Secure gateway examines the requests to determine the endpoint web server.
9 Data flows from the browser, through the applet and the secure gateway, to the web server.
10 User closes applet. Before closing, the applet undoes configuration Steps 2 and 3.

**Note**

HTTP proxy can also be enabled on an authentication, authorization, and accounting (AAA) server. See the table SSL VPN RADIUS Attribute-Value Pairs in the Configuring RADIUS Attribute Support for SSL VPN, page 51 section (port-forward-http-proxy and port-forward-http-proxy-url attributes).

---

**Tunnel Mode**

In a typical clientless remote access scenario, remote users establish an SSL tunnel to move data to and from the internal networks at the application layer (for example, web and e-mail). In tunnel mode, remote users use an SSL tunnel to move data at the network (IP) layer. Therefore, tunnel mode supports most IP-
based applications. Tunnel mode supports many popular corporate applications (for example, Microsoft Outlook, Microsoft Exchange, Lotus Notes E-mail, and Telnet).

The tunnel connection is determined by the group policy configuration. The Cisco AnyConnect VPN Client is downloaded and installed on the remote user PC, and the tunnel connection is established when the remote user logs into the SSL VPN gateway.

By default, the Cisco AnyConnect VPN Client is removed from the client PC after the connection is closed. However, you have the option to keep the Cisco AnyConnect VPN Client installed on the client PC.

SSL VPN Features

- Access Control Enhancements, page 12
- SSL VPN Client-Side Certificate-Based Authentication, page 13
- AnyConnect Client Support, page 14
- Application ACL Support, page 14
- Automatic Applet Download, page 14
- Backend HTTP Proxy, page 15
- Front-Door VRF Support, page 15
- Full-Tunnel Cisco Express Forwarding Support, page 16
- GUI Enhancements, page 16
- Internationalization, page 21
- Max-User Limit Message, page 23
- Netegrity Cookie-Based Single SignOn Support, page 23
- NTLM Authentication, page 23
- RADIUS Accounting, page 23
- Stateless High Availability with Hot Standby Router Protocol, page 23
- TCP Port Forwarding and Thin Client, page 24
- URL Obfuscation, page 26
- URL Rewrite Splitter, page 27
- User-Level Bookmarking, page 27
- Virtual Templates, page 27
- License String Support for the 7900 VPN Client, page 27
- SSLVPN DVTI Support, page 27
- SSL VPN Phase-4 Features, page 29
- DTLS Support for IOS SSL VPN, page 29
- Cisco AnyConnect VPN Client Full Tunnel Support, page 30

Access Control Enhancements

Effective with Cisco IOS Release 12.4(20)T, administrators can configure automatic authentication and authorization for users. Users provide their usernames and passwords via the gateway page URL and do not have to reenter their user names and passwords from the login page. Authorization is enhanced to support more generic authorization, including local authorization. In previous releases, only RADIUS authorization was supported.

For information about configuring this feature, see the Configuring Automatic Authentication and Authorization, page 88 section.
SSL VPN Client-Side Certificate-Based Authentication

This feature enables SSL VPN to authenticate clients based on the client’s AAA username and password and also supports WebVPN gateway authentication of clients using AAA certificates.

SSL VPN Client-Side Certificate-Based Authentication feature includes the following features:

- Two-Factor Authentication and Authorization Mode, page 13
- Support for AnyConnect Client to Implement Certificate Matching Based on Client Profile Attributes, page 13

Certificate-Only Authentication and Authorization Mode

Certificate-only authorization requires the user to provide a AAA authentication certificate as part of the WebVPN request, but does not require the username and password for authorization. The user requests WebVPN access with the AAA authentication certificate from the WebVPN gateway. The WebVPN gateway validates the identity of the client using the AAA authentication certificate presented to it. The WebVPN extracts the username from the AAA authentication certificate presented to it and uses it as the username in the AAA request. AAA authentication and AAA authorization are then completed with a hard-coded password. To configure certificate-only authorization use the `authentication certificate` command.

Two-Factor Authentication and Authorization Mode

Two-factor authorization requires the user to request WebVPN access and present a AAA authentication certificate. The AAA authentication certificate is validated and the client’s identity is verified. The WebVPN gateway then presents the login page to the user. The user enters their username and password and WebVPN sends AAA authentication and AAA authorization requests to the AAA server. The AAA authentication list and the AAA authorization lists configured on the server are then used for authentication and authorization. To configure two-factor authentication and authorization mode use the `authentication certificate aaa` command.

Note

If the `username-prefill` command is configured, the username textbox on the login page will be disabled. The user will be asked only for their password on the login page.

Identification of WebVPN Context at Runtime Using Certificate Map Match Rules

Certificate map match rules are used by SSL VPN to identify the WebVPN context at runtime. The WebVPN context is required for AAA authentication and authorization mode and trustpoint configuration. When the user does not provide the WebVPN context, the identification of the WebVPN context at runtime is possible using certificate map matching by matching the certificate presented by the client with the certificate map match rules. To configure certificate map matching in WebVPN use the `match-certificate` command.

Support for AnyConnect Client to Implement Certificate Matching Based on Client Profile Attributes

Cisco AnyConnect client has certificate match functionality allowing it to select a suitable certificate while initiating tunnel connection with SSL VPN. In the case of standalone mode, the certificate selection is made based on the certificate match. When selecting a certificate, Cisco AnyConnect client can select the
appropriate certificate based on the AnyConnect client profile attributes. This requires SSL VPN to support AnyConnect client profiles. The profile file is imported after modification by the administrator using the `svc profile` command. To create an AnyConnect client profile use the template that appears after installing Cisco AnyConnect in this location: `\Documents and Settings\All Users\Application Data\Cisco\CiscoAnyConnectVPNClient\Profile\AnyConnectProfile.tmpl`.

The following are the certificate match types available with Cisco AnyConnect client:

**Certificate Key Usage Matching**

Certificate key usage matching offers a set of constraints based on the broad types of operations that can be performed with a given certificate.

**Extended Certificate Key Usage Matching**

This matching allows an administrator to limit the certificates that can be used by the client based on the Extended Key Usage fields.

**Certificate Distinguished Name Mapping**

This certificate matching capability allows an administrator to limit the certificates that can be used by the client to those matching the specified criteria and criteria match conditions. This includes the ability to specify that a certificate must or must not have a specified string and also if wild carding for the string should be allowed.

**AnyConnect Client Support**

Effective with Cisco IOS Release 12.4(20)T, AnyConnect Client support is added for several client-side platforms, such as Microsoft Windows, Apple-Mac, and Linux. The ability to install AnyConnect in a standalone mode is also added. In addition, the Release 12.4(20)T allows you to install multiple AnyConnect VPN client packages to a gateway. For information on configuring multiple packages, see the section “Configuring the SSL VPN Gateway to Distribute CSD and Cisco AnyConnect VPN Client Package Files.”

**Application ACL Support**

Effective with Cisco IOS Release 12.4(11)T, the Application ACL Support feature provides administrators with the flexibility to fine-tune access control at the application layer level, for example, on the basis of a URL.

For information about configuring this feature, see the Configuring ACL Rules, page 75, and Associating an ACL Attribute with a Policy Group, page 78 sections.

**Automatic Applet Download**

Effective with Cisco IOS Release 12.4(9)T, administrators have the option of automatically downloading the port-forwarding Java applet. The Automatic Applet Download feature must be configured on a group policy basis.

> **Note**
> Users still have to allow the Java applet to be downloaded. The dialog box appears, asking for permission.

To configure the automatic download, see the Configuring an SSL VPN Policy Group, page 43 section.
Backend HTTP Proxy

The Backend HTTP Proxy feature, added in Cisco IOS Release 12.4(20)T, allows administrators to route user requests through a backend HTTP proxy, providing more flexibility and control than routing requests through internal web servers. This feature adds the following new AAA attributes:

http-proxy-server
http-proxy-server-port

For information about configuring this feature, see the Configuring a Backend HTTP Proxy, page 92 section.

Front-Door VRF Support

Effective with Cisco IOS Release 12.4(15)T, front-door virtual routing and forwarding (FVRF) support, coupled with the already supported internal virtual routing and forwarding (IVRF), provides for increased security. The feature allows the SSL VPN gateway to be fully integrated into a Multiprotocol Label Switching (MPLS) or non-MPLS network (wherever the VRFs are deployed). The virtual gateway can be placed into a VRF that is separate from the Internet to avoid internal MPLS and IP network exposure. This placement reduces the vulnerability of the router by separating the Internet routes or the global routing table. Clients can now reach the gateway by way of the FVRF, which can be separate from the global VRF. The backend, or IVRF, functionality remains the same.

This FVRF feature provides for overlapping IP addresses.

The figure below is a scenario in which FVRF has been applied.

Figure 5  Scenario in Which FVRF Has Been Applied
To configure FVRF, see the Configuring FVRF, page 85 section.

**Full-Tunnel Cisco Express Forwarding Support**

Effective with Cisco IOS Release 12.4(20)T, Full-Tunnel Cisco Express Forwarding support is added for better throughput performance than in earlier releases. This feature is enabled by default. To turn off full-tunnel Cisco Express Forwarding support, use the `no webvpn cef` command.

---

**Note**

To take full advantage of Cisco Express Forwarding support, the hardware crypto engine is required.

For sample output showing Cisco Express Forwarding-processed packets, see the Example: Cisco Express Forwarding-Processed Packets, page 125.

Network Address Translation (NAT) configuration is sometimes used to forward TCP port 443 traffic destined to the WAN interface of a router through an internal webserver.

There are two methods of implementing Cisco IOS SSL VPN on a preexisting NAT configuration. The Cisco-recommended method is to use the WebVPN gateway IP address as the secondary address on the WAN interface. This method helps improve the WebVPN throughput performance. The following is a sample configuration of the recommended method on Cisco IOS SSL VPN:

```plaintext
interface GigabitEthernet 0/0
  ip address 10.1.1.1 255.255.255.0
  ip address 10.1.1.2 255.255.255.0 secondary !
  webvpn gateway ssl_vpn
  ip address 10.1.1.2 port 443
```

In the second method the WebVPN gateway uses a private IP address configured on a loopback interface and performs a NAT operation to convert the private IP address to a publicly routable address. The following configuration is not supported on Cisco IOS SSL VPN because this configuration causes packets to become process-switched instead of being Cisco Express Forwarding-switched:

```plaintext
interface Loopback 10
  ip address 192.0.2.1 255.255.255.0

interface GigabitEthernet 0/0
  description WAN interface
  ip address 10.1.1.1 255.0.0.0

  ip nat inside source static 192.0.2.1 10.1.1.2!
  webvpn gateway ssl_vpn
  ip address 192.0.2.1 port 443
```

**GUI Enhancements**

In Cisco IOS Release 12.4(15)T, ergonomic improvements are made to the GUI of the Cisco IOS SSL VPN gateway. The improved customization of the user interface provides for greater flexibility and the ability to tailor portal pages for individualized views. Enhancements are made to the following web screens:

- Login Screen, page 16
- Banner, page 17
- Customization of a Login Page, page 18
- Portal Page, page 18

**Login Screen**
The figure below is an example of a typical login screen.

Figure 6  Typical Login Screen

Banner

The banner is a small popup box (see `GUID-13305E90-FC6F-436E-A2F0-379CF6BFF4EE9`) that appears after the user is logged in and before the portal page appears.

The message in the popup box is configured using the `banner` command.

Figure 7  Banner
Customization of a Login Page

Login screens can be customized by an administrator. GUID-0474E4CE-EA60-4496-9BB4-D1C9C613A15F3 shows the fields that can be customized.


Figure 8  Login Page with Callouts of the Fields That Can Be Customized

Portal Page

The portal page (see the figure below) is the main page for the SSL VPN functionality. You can customize this page to contain the following:

- Custom logo (the default is the Cisco bridge logo)
- Custom title (the default is “WebVPN Services”)
- Custom banner (the default is an empty string)
- Custom colors (the default is a combination of white and greens)
- List of web server links (can be customized)
Note

The Bookmark links are listed under the Personal folder, and the server links are listed under Network File in the figure below.

- URL entry box (may be present or can be hidden using the `hide-url-bar` command)
- Thin Client link (may or may not be present)

Note

The Application Access box allows you to download and install the Tunnel Connection and Thin Client Application.

- Links for Help, Home (that is, the portal page), and Logout

Items that you have not configured are not displayed on the portal page.

Note

E-mail access is supported by thin-client mode, which is downloaded using the Thin Client link.

The figure below is an example of a typical portal page.

**Figure 9   Typical Portal Page**

Time to redirect to the home page is displayed on the WebVPN portal page if you have configured the home page redirect time using the `webvpn-homepage` command. See the *Cisco IOS Security Command Reference* for information about the `webvpn-homepage` command. You can click the “Click here to stop homepage redirection” link to stop redirection.

**Customization of a Portal Page**

Portal pages can be customized by an administrator. GUID-3652D4EB-E7DF-4CC2-B3C3-4A55FD48A247D shows various fields, including the fields that can be customized by an administrator. The fields that can be customized by an administrator are as follows:
The table below provides information about various fields on the portal page. For information about setting elements such as color or titles, see command information in the *Cisco IOS Security Command Reference, Release 12.4T*, for the **color**, **functions**, **hide-url-bar**, **logo**, **port-forward**, **title**, **title-color**, **secondary-color**, **secondary-text-color**, and **url-list** commands.

**Table 2  Information About Fields on the Portal Page**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-level bookmark add icon</td>
<td>If a user clicks it, a dialog box is added so that a new bookmark can be added to the Personal folder.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Network File location bar</td>
<td>A user can enter the file server here. Both of the <strong>functions file-access</strong> and <strong>functions file-entry</strong> commands must be configured for the input box to appear.</td>
</tr>
<tr>
<td>Header</td>
<td>Shares the same color value as the title.</td>
</tr>
<tr>
<td>Last login</td>
<td>Time stamp of the last login.</td>
</tr>
<tr>
<td>Browse network</td>
<td>Allows a user to browse the file network. The <strong>functions file-access</strong> and <strong>functions file-browse</strong> commands must be configured for the icon to appear.</td>
</tr>
<tr>
<td>Tunnel Connection</td>
<td>A user can choose when to start the tunnel connection by configuring the <strong>functions svc-enabled</strong> command.</td>
</tr>
<tr>
<td>Port forwarding</td>
<td>Downloads the applet and starts port forwarding.</td>
</tr>
<tr>
<td>User-level bookmark edit icon</td>
<td>Allows a user to edit or delete an existing bookmark.</td>
</tr>
<tr>
<td>User-level bookmarks</td>
<td>A user can add a bookmark by using the plus icon on the bookmark panel or toolbar. See the document <em>SSL VPN Remote User Guide</em> for information about the toolbar. A new window is opened when the link is clicked.</td>
</tr>
<tr>
<td>Administrator-defined bookmarks</td>
<td>Administrator-defined URL lists cannot be edited by the user.</td>
</tr>
<tr>
<td>URL address bar</td>
<td>A new window is opened when a user clicks Go.</td>
</tr>
</tbody>
</table>

**Internationalization**

The Internationalization feature provides multilanguage support for messages initiated by the headend for SSL VPN clients, such as Cisco Secure Desktop (CSD) and SSL VPN Client (SVC). With the Internationalization feature, administrators can import their own attribute files in an XML format so that other languages can be imported using an editor that supports multilanguages.
The figure below shows a portal page in English. Users can select any language you have imported for certain SSL VPN web pages (login message, title page, and URL lists).

**Figure 11  Portal Page in English**

The figure below shows that an administrator has imported files in Japanese. A user has selected Japanese as the language for certain SSL VPN web pages (login message, title, and URL lists).

**Figure 12  Portal Page in Japanese**
For information about configuring this feature, see the Configuring Internationalization, page 94 section. For examples relating to this feature, see the Example: Internationalization, page 127 section.

**Max-User Limit Message**

A user that tries to log in to a Web VPN context when the maximum user limit has been reached receives a “Max-user limit reached” message.

**Netegrity Cookie-Based Single SignOn Support**

The Netegrity SiteMinder product provides a Single SignOn feature that allows a user to log in a single time for various web applications. The benefit of this feature is that users are prompted to log in only once. This feature is accomplished by setting a cookie in the browser of a user when the user initially logs in. Effective with Cisco IOS Release 12.4(11)T, Netegrity cookie-based SSO is integrated with SSL VPN. It allows administrators to configure an SSO server that sets a SiteMinder cookie in the browser of a user when the user initially logs in. This cookie is validated by a SiteMinder agent on subsequent user requests to resources that are protected by a SiteMinder realm. The agent decrypts the cookie and verifies whether the user has already been authenticated.

For information about configuring SSO Netegrity Cookie Support and associating it with a policy group using the CLI, see the sections Configuring SSO Netegrity Cookie Support for a Virtual Context, page 79 and Associating an SSO Server with a Policy Group, page 81 section.

An SSO server can also be associated with a policy group using RADIUS attributes, as in the following example:

```
webvpn:sso-server-name=server1
```

For a list of RADIUS attribute-value (AV) pairs that support SSL VPN, see the Configuring RADIUS Attribute Support for SSL VPN, page 51 section.

**NTLM Authentication**

NT LAN Manager (NTLM) is supported for SSL VPN effective with Cisco IOS Release 12.4(9)T. The feature is configured by default.

**RADIUS Accounting**

Effective with Cisco IOS Release 12.4(9)T, this feature provides for RADIUS accounting of SSL VPN user sessions.

For information about configuring SSL VPN RADIUS accounting for SSL VPN user sessions, see the Configuring RADIUS Accounting for SSL VPN User Sessions, page 50 section.

For more information about configuring RADIUS accounting, see the Configuring RADIUS module in the Cisco IOS Security Configuration Guide: Securing User Services.

For a list of RADIUS AV pairs that support SSL VPN, see the Configuring RADIUS Attribute Support for SSL VPN, page 51 section.

**Stateless High Availability with Hot Standby Router Protocol**

Hot Standby Router Protocol (HSRP) provides high network availability by routing IP traffic from hosts on Ethernet networks without having to rely on the availability of any single router. HSRP is particularly useful for hosts that do not support a router discovery protocol, such as ICMP Router Discovery Protocol...
(IRDП), and that do not have the functionality to switch to a new router when their selected router reloads or loses power. Without this functionality, a router that loses its default gateway because of a router failure is unable to communicate with the network.

HSRP is configurable on LAN interfaces using standby CLI. It is possible to use the standby IP address from an interface as the local IPsec identity, or local tunnel endpoint.

You can use the standby IP address as the SSL VPN gateway address to apply failover to VPN routers by using HSRP. Remote SSLVPN users connect to the local VPN gateway using the standby address that belongs to the active device in the HSRP group. In the event of failover, the standby device takes over ownership of the standby IP address and begins to service remote VPN users.

Using the Stateless High Availability with Hot Standby Router Protocol feature, the remote user has to be aware of only the HSRP standby address instead of a list of gateway addresses.

The figure below shows the enhanced HSRP functionality topology. Traffic is serviced by the active Router P, the active device in the standby group. In the event of failover, traffic is diverted to Router S, the original standby device. Router S assumes the role of the new active router and takes ownership of the standby IP address.

Figure 13  Stateless High Availability with HSRP for SSL VPN

For information about configuring Stateless High Availability with HSRP, see the Configuring Stateless High Availability with HSRP for SSL VPN, page 93 section.

Note
In the case of a failover, HSRP does not facilitate SSL VPN state information transfer between VPN gateways. Without this state transfer, existing SSL VPN sessions with the remote users will be deleted, requiring users to reauthenticate and establish SSL VPN sessions with the new active gateway.

TCP Port Forwarding and Thin Client
The TCP Port Forwarding and Thin Client feature requires the Java Runtime Environment (JRE) version 1.4 or later releases to properly support SSL connections.

Because this feature requires installing JRE and configuring the local clients, and because doing so requires administrator permissions on the local system, it is unlikely that remote users will be able to use applications when they connect from public remote systems.

When the remote user clicks the Start button of the Thin Client Application (under “Application Access), a new window is displayed. This window initiates the downloading of a port-forwarding applet. Another window is then displayed. This window asks the remote user to verify the certificate with which this applet is signed. When the remote user accepts the certificate, the applet starts running, and port-forwarding entries are displayed (see the figure below). The number of active connections and bytes that are sent and received is also listed on this window.

When remote users launch Thin Client, their system may display a dialog box regarding digital certificates, and this dialog box may appear behind other browser windows. If the remote user connection hangs, tell the remote user to minimize the browser windows to check for this dialog box.

You should have configured IP addresses, Domain Name System (DNS) names, and port numbers for the e-mail servers. The remote user can then launch the e-mail client, which is configured to contact the e-mail servers and send and receive e-mails. POP3, IMAP, and SMTP protocols are supported. The window attempts to close automatically if the remote user is logged out using JavaScript. If the session terminated and a new port forwarding connection is established, the applet displays an error message.

Figure 14 TCP Port Forwarding Page

Close this window when you finish using Application Access. Please wait for the table to be displayed before starting applications.

If you shut down your computer without closing this window, you might later have problems running the applications listed below. Click here for details.

<table>
<thead>
<tr>
<th>Name</th>
<th>Local</th>
<th>Remote</th>
<th>Bytes Sent</th>
<th>Bytes Received</th>
<th>Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAP</td>
<td>mail.yourdomain.com:143</td>
<td>mail.yourdomain.com:143</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>POP3</td>
<td>172.16.0.1:600002</td>
<td>mail.yourdomain.com:600002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SMTP</td>
<td>mail.yourdomain.com:110</td>
<td>mail.yourdomain.com:110</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Users should always close the Thin Client window when finished using applications by clicking the close icon. Failure to quit the window properly can cause Thin Client or the applications to be disabled. See the section “Application Access--Recovering from Hosts File Errors” in the document SSL VPN Remote User Guide.

The table below lists remote system requirements for Thin Client.

### Table 3  SSL VPN Remote System Thin-Client Requirements

<table>
<thead>
<tr>
<th>Remote User System Requirements</th>
<th>Specifications or Use Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client applications installed.</td>
<td>-</td>
</tr>
<tr>
<td>Cookies enabled on browser.</td>
<td>-</td>
</tr>
<tr>
<td>Administrator privileges.</td>
<td>You must be the local administrator on your PC.</td>
</tr>
<tr>
<td>Sun Microsystems JRE version 1.4 or later</td>
<td>SSL VPN automatically checks for JRE whenever the remote user starts Thin Client. If it is necessary to install JRE, a popup window displays directing remote users to a site where it is available.</td>
</tr>
<tr>
<td>installed.</td>
<td></td>
</tr>
<tr>
<td>Client applications configured, if necessary.</td>
<td>To configure the client application, use the locally mapped IP address and port number of the server. To find this information, do the following:</td>
</tr>
<tr>
<td><strong>Note</strong> The Microsoft Outlook client does not</td>
<td>• Start SSL VPN on the remote system and click the Thin-Client link on the SSL VPN home page. The Thin-Client window is displayed.</td>
</tr>
<tr>
<td>require this configuration step.</td>
<td>• In the Name column, find the name of the server that you want to use, and then identify its corresponding client IP address and port number (in the Local column).</td>
</tr>
<tr>
<td></td>
<td>• Use this IP address and port number to configure the client application. The configuration steps vary for each client application.</td>
</tr>
<tr>
<td>Windows XP SP2 patch.</td>
<td>If you are running Windows XP SP2, you must install a patch from Microsoft that is available at the following address: <a href="http://support.microsoft.com/?kbid=884020">http://support.microsoft.com/?kbid=884020</a></td>
</tr>
<tr>
<td></td>
<td>This is a known Microsoft issue.</td>
</tr>
</tbody>
</table>

### URL Obfuscation

The URL Obfuscation feature provides administrators with the ability to obfuscate, or mask, sensitive portions of an enterprise URL, such as IP addresses, hostnames, or part numbers. For example, if URL masking is configured for a user, the URL in the address bar could have the port and hostname portion obfuscated, as in this example:
URL Rewrite Splitter

Effective with Cisco IOS Release 12.4(20)T, the URL Rewrite Splitter feature allows administrators to mangle selective URLs. Mangling is a CPU-intensive and time-consuming process, so mangling only selective URLs can result in a savings of memory and time.

For information about configuring this feature, see the Configuring a URL Rewrite Splitter, page 91 section.

User-Level Bookmarking

Effective with Cisco IOS Release 12.4(15)T, users can bookmark URLs while connected through an SSL VPN tunnel. Users can access the bookmarked URLs by clicking the URLs.

User-level bookmarking is turned by default. There is no way to turn it off. To set the storage location, administrators can use the user-profile location command. If the user-profile location command is not configured, the location flash:/webvpn/\{context name\}/ is used.

Virtual Templates

A virtual template enables SSL VPN to interoperate with IP features such as Network Address Translation (NAT), firewall, and policy-based routing.

For information about configuring this feature, see the section Configuring a Virtual Template, page 102.

License String Support for the 7900 VPN Client

The Cisco IOS SSL VPN accepts license strings from Cisco IP Phones. Cisco IOS VPN concentrators support the VPN license type linksys-phone in order to support the Galactica VPN client on 79x2 and 79x5 phones.

In the case of a transformer platform, response to the license message (linksys-phone) will succeed if the license requirements are met. However, an Integrated Services Routers (ISR) router must always respond with a success message so that the Galactica VPN client can attempt to establish a VPN connection.

SSLVPN DVTI Support

The SSLVPN DVTI Support feature adds Dynamic Virtual Tunnel Interface (DVTI) support to the Secure Socket Layer Virtual Private Network (SSL VPN) and hence enables seamless interoperability with IP features such as Firewall, Network Address Translation (NAT), Access Control Lists (ACLs), and Virtual Routing and Forwarding (VRF). This feature also provides DVTI support, which allows IP feature configuration on a per-tunnel basis.

SSL VPN provides three modes to access a VPN: clientless, thin client, and full tunnel. The full tunnel mode uses an internal virtual interface to route the traffic to and from the SSL VPN tunnel. Before the SSL VPN DVTI Support feature was introduced, the virtual interface was created during the SSL VPN virtual interface configuration and users were not allowed to apply IP features to the SSL VPN traffic.

The SSLVPN DVTI Support feature uses a virtual template infrastructure to provide DVTI support for SSL VPN. IP features are configured in a virtual template that is associated with the SSL VPN or WebVPN.
context. The IP features configured in the virtual template are used to create a virtual access interface that is internally used to tunnel SSL VPN traffic. Virtual templates in a WebVPN context are applied in two ways: per-context and per-tunnel.

Note

You can configure any IP feature with SSL VPN. However, in the Cisco IOS Release 15.1(1)T, interoperability has been tested only with the firewall, NAT, ACL, policy-based routing (PBR), and VRF IP features.

The SSL VPN DVTI Support feature contains the following:

- Prerequisites for SSLVPN DVTI Support, page 28
- Restrictions for SSLVPN DVTI Support, page 28
- Virtual Template Infrastructure, page 28

Prerequisites for SSLVPN DVTI Support

- You must have the IP features configured in a virtual template. See the Configuring a Virtual Template, page 102 section for information on configuring a virtual template.
- SSL VPN must be able to fetch configurations from the AAA server.
- The SSL VPN gateway and context configurations must be enabled and operational.
- If VRF is needed, configure it before creating the virtual template.

Restrictions for SSLVPN DVTI Support

- In order for a virtual template to work with SSL VPN, the `ip unnumbered` command must be configured on the virtual template.

Virtual Template Infrastructure

A generic interface template service is required with features such as stackability, Virtual Private Dialup Network (VPDN), Multilink PPP (MLP), and virtual profiles. Virtual template interface service delivers a generic interface template service. The virtual template interface, command buffer, and virtual access interface functions enables you to populate a virtual-access interface using a pre-defined configuration that is stored in a virtual template interface and security servers such as TACACS+ and RADIUS.

For example, in stackability, a virtual template interface is assigned to a stack group. Whenever a stack member needs a virtual interface, the virtual template interface service is called by a member to obtain a virtual access interface cloned with the same configuration as the configuration of the assigned virtual template interface.

In a virtual profile, the per-user configuration can be stored in a security server. That is, when the user dials in, the desired configuration can be cloned into the virtual access interface associated with the user. The virtual template service provides an application programming interface (API) for a virtual profile to clone a buffer of commands to a virtual access interface. The virtual profile does the actual interaction with the security server.
Note
If you do not configure a virtual template, then the default virtual template (VT0) will be used for cloning the virtual access interface.

SSL VPN Phase-4 Features

The SSL VPN Phase-4 Features feature provides the following enhancements to the Cisco IOS Secure Sockets Layer Virtual Private Network (SSL VPN):

- ACL support for split tunneling
- IP mask for IP pool address assignment
- Undoing the renaming of AnyConnect or SSL VPN Client (SVC) Full Tunnel Cisco package during installation on a Cisco IOS router
- Adding per-user SSL VPN session statistics
- “Start before logon” option for the Cisco IOS SSL VPN headend

The SSL VPN Phase-4 features contains the following:

- Prerequisites for SSL VPN Phase-4 Features, page 29
- Full Tunnel Package, page 29
- SSL VPN per-User Statistics, page 29

Prerequisites for SSL VPN Phase-4 Features

You must use a valid K9 image to configure the SSL VPN Phase-4 Features.

Full Tunnel Package

When you install the AnyConnect or SVC full tunnel package using the `webvpn install svc` command on the Cisco IOS headend, the package name gets renamed to `svc_pkg_<number>`. This renaming omits package information and Base Station Ethernet (BSE) operating system information, and thus makes you difficult to remove or uninstall the package. This functionality was modified in Cisco IOS Release 15.1(1)T to retain the name during installation of the package.

The limit on the filename size on the Cisco IOS file system (IFS) is 120 bytes. Unless the package name is greater than this limit, the package name does not change. If the filename exceeds this limit, then the installation fails. The following error message is displayed on the router console:

```
Error: Package name exceeds 120 characters
```

SSL VPN per-User Statistics

Per-user statistics functionality provides an option to filter the cumulative statistics on a per-user basis for the Cisco IOS SSL VPN sessions. Use the `show webvpn session user` command to enable this functionality. This command is applicable only for user session statistics and tunnel statistics. See Cisco Cisco IOS Security Command Reference for more information on the `show webvpn session` command.

DTLS Support for IOS SSL VPN

The DTLS Support for IOS SSL VPN feature enables DTLS as a transport protocol for the traffic tunneled through SSL VPN.

An AnyConnect client with a Transport Layer Security (TLS) tunnel can face problems for real-time traffic and the traffic that is not sensitive to data loss, such as VoIP. This happens because of the delay introduced
by the TCP channel (AnyConnect client uses TLS over TCP channel). Also, when the TCP sessions are channeled over the TLS tunnel we have TCP in TCP. Here both the TCPs try to control the flow and achieve in-sequence reliable delivery. This causes slow down of the application and also increases the network bandwidth utilization. DTLS solves this problem by hosting TLS over UDP after making the necessary changes to TLS.

The DTLS Support for IOS SSL VPN feature is enabled by default on the Cisco IOS SSL VPN. You can use the `no svc dtls` command in the WebVPN group policy configuration mode to disable the DTLS support on the SSL VPN.

- Prerequisites for DTLS Support for IOS SSL VPN, page 30
- Restrictions for DTLS Support for IOS SSL VPN, page 30

**Prerequisites for DTLS Support for IOS SSL VPN**

You must use a valid K9 image to have the DTLS Support for IOS SSL VPN feature.

**Restrictions for DTLS Support for IOS SSL VPN**

- Cisco IOS gateway supports the DTLS Support for IOS SSL VPN feature only with an AnyConnect clients.
- The DTLS Support for IOS SSL VPN feature is supported on AnyConnect clients with version 2.x.
- The DTLS Support for IOS SSL VPN feature is not supported on SSL VPN Client (SVC) with version 1.x.

**Cisco AnyConnect VPN Client Full Tunnel Support**

- Remote Client Software from the SSL VPN Gateway, page 30
- Address Pool, page 30
- Manual Entry to the IP Forwarding Table, page 31

**Remote Client Software from the SSL VPN Gateway**

The Cisco AnyConnect VPN Client software package is pushed from the SSL VPN gateway to remote clients when support is needed. The remote user (PC or device) must have either the Java Runtime Environment for Windows (version 1.4 later), or the browser must support or be configured to permit Active X controls. In either scenario, the remote user must have local administrative privileges.

**Address Pool**

The address pool is first defined with the `ip local pool` command in global configuration mode. The standard configuration assumes that the IP addresses in the pool are reachable from a directly connected network.

**Address Pools for Nondirectly Connected Networks**

If you need to configure an address pool for IP addresses from a network that is not directly connected, perform the following steps:

1. Create a local loopback interface and configure it with an IP address and subnet mask from the address pool.
2 Configure the address pool with the `ip local pool` command. The range of addresses must fall under the subnet mask configured in Step 1.

3 Set up the route. If you are using the Routing Information Protocol (RIP), configure the `router rip` command and then the `network` command, as usual, to specify a list of networks for the RIP process. If you are using the Open Shortest Path First (OSPF) protocol, configure the `ip ospf network point-to-point` command in the loopback interface. As a third choice (instead of using the RIP or OSPF protocol), you can set up static routes to the network.

4 Configure the `svc address-pool` command with the name configured in Step 2.

**Manual Entry to the IP Forwarding Table**

If the SSL VPN software client is unable to update the IP forwarding table on the PC of the remote user, the following error message will be displayed in the router console or syslog:

```
Error : SSL VPN client was unable to Modify the IP forwarding table ......
```

This error can occur if the remote client does not have a default route. You can work around this error by performing the following steps:

1 Open a command prompt (DOS shell) on the remote client.
2 Enter the `route print` command.
3 If a default route is not displayed in the output, enter the `route` command followed by the `add` and `mask` keywords. Include the default gateway IP address at the end of the route statement. See the following example:

```
C:\>route ADD 0.0.0.0 MASK 0.0.0.0 10.1.1.1
```

**Other SSL VPN Features**

The following table lists the requirements for various SSL VPN features.
Table 4  
**SSL VPN Remote User System Requirements**

<table>
<thead>
<tr>
<th>Task</th>
<th>Remote User System Requirements</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Browsing</td>
<td>Usernames and passwords for protected websites</td>
<td>Users should log out on SSL VPN sessions when they are finished.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The look and feel of web browsing with SSL VPN might be different from what users are</td>
</tr>
<tr>
<td></td>
<td></td>
<td>accustomed to. For example, when they are using SSL VPN, the following should be noted:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The SSL VPN title bar appears above each web page.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Websites can be accessed as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◦ Entering the URL in the Enter Web Address field on the SSL VPN home page</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◦ Clicking a preconfigured website link on the SSL VPN home page</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◦ Clicking a link on a webpage accessed by one of the previous two methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Also, depending on how a particular account was configured, the following might have</td>
</tr>
<tr>
<td></td>
<td></td>
<td>occurred:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Some websites are blocked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Only the websites that appear as links on the SSL VPN home page are available.</td>
</tr>
<tr>
<td>Task</td>
<td>Remote User System Requirements</td>
<td>Additional Information</td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Network Browsing and File Management     | File permissions configured for shared remote access  
                                           | Server name and passwords are necessary for protected file servers  
                                           | Domain, workgroup, and server names where folders and files reside                     | Only shared folders and files are accessible through SSL VPN.  
                                           | A user might not be familiar with how to locate files through the network of an organization.  
                                           | **Note** You should not interrupt the Copy File to Server operation or navigate to a different window while the copying is in progress. Interrupting this operation can cause an incomplete file to be saved on the server. |
| Using e-mail:Thin Client                 | Same requirements as for Thin Client (see the TCP Port Forwarding and Thin Client, page 24) section. | To use e-mail, users must start Thin Client from the SSL VPN home page. The e-mail client is then available for use.  
                                           | Other Mail Clients  
                                           | **Note** If you use an IMAP client and lose the e-mail server connection or you are unable to make a new connection, you should close the IMAP application and restart SSL VPN. | Microsoft Outlook Express versions 5.5 and 6.0 have been tested.  
                                           | SSL VPN should support other SMTPS, POP3S, or IMAP4S e-mail programs, such as Netscape Mail, Lotus Notes, and Eudora, but they have not been verified. |
## Remote User System Requirements

### Using e-mail: Web Access

Web-based e-mail product installed

**Supported products are as follows:**

- OWA 5.5, 2000, and 2003

Netscape, Mozilla, and Internet Explorer are supported with OWA 5.5 and 2000.

Internet Explorer 6.0 or a later version is required with OWA 2003. Netscape and Mozilla are supported with OWA 2003.

- Lotus Notes

### Operating system support:

**Note** Later versions of the following browsers are also supported.

- Microsoft Windows 2000, Windows XP, or Windows Vista
- Macintosh OS X 10.4.6
- Linux (Redhat RHEL 3.0 +, FEDORA 5, or FEDORA 6)

### SSL VPN-supported browser:

The following browsers have been verified for SSL VPN. Other browsers might not fully support SSL VPN features.

**Note** Later versions of the following software are also supported.

- Internet Explorer 6.0 or 7.0
- Firefox 2.0 (Windows and Linux)
- Safari 2.0.3

Other web-based e-mail products should also work, but they have not been verified.
## Platform Support

For information about platform support for the SSL VPN feature, see the data sheet Cisco IOS SSL VPN (“Feature Availability” section).

## How to Configure SSL VPN Services on a Router

- Configuring an SSL VPN Gateway, page 36
- Configuring a Generic SSL VPN Gateway, page 38
- Configuring an SSL VPN Context, page 39
- Configuring an SSL VPN Policy Group, page 43
- Configuring Local AAA Authentication for SSL VPN User Sessions, page 46
- Configuring AAA for SSL VPN Users Using a Secure Access Control Server, page 48
- Configuring RADIUS Accounting for SSL VPN User Sessions, page 50
- Monitoring and Maintaining RADIUS Accounting for an SSL VPN Session, page 51
- Configuring RADIUS Attribute Support for SSL VPN, page 51
- Configuring a URL List for Clientless Remote Access, page 55
- Configuring Microsoft File Shares for Clientless Remote Access, page 57
- Configuring Citrix Application Support for Clientless Remote Access, page 59
- Configuring Application Port Forwarding, page 61
- Configuring the SSL VPN Gateway to Distribute CSD and Cisco AnyConnect VPN Client Package Files, page 63
- Configuring Cisco Secure Desktop Support, page 65
- Configuring Cisco AnyConnect VPN Client Full Tunnel Support, page 66
- Configuring Advanced SSL VPN Tunnel Features, page 71
- Configuring VRF Virtualization, page 74

### Table: Using the Cisco Tunnel Connection

<table>
<thead>
<tr>
<th>Task</th>
<th>Remote User System Requirements</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the Cisco Tunnel</td>
<td>--</td>
<td>To retrieve Tunnel Connection log messages using the Windows Event Viewer, go to Program Files &gt; Administrative Tools &gt; Event Viewer in Windows.</td>
</tr>
</tbody>
</table>
| Using Secure Desktop Manager| A Secure Desktop Manager-supported browser | On Microsoft Windows:  
  - Internet Explorer version 6.0 or 7.0  
  - Netscape version 7.2  
  On Linux:  
  - Netscape version 7.2 |
| Using Cache Cleaner or Secure Desktop | A Cisco Secure Desktop-supported browser | Any browser supported for Secure Desktop Manager. |
Configuring an SSL VPN Gateway

The SSL VPN gateway acts as a proxy for connections to protected resources. Protected resources are accessed through an SSL-encrypted connection between the gateway and a web-enabled browser on a remote device, such as a personal computer. Entering the `webvpn gateway` command places the router in SSL VPN gateway configuration mode. The following configuration are accomplished in this task:

- The gateway is configured with an IP address.
- A port number is configured to carry HTTPS traffic (443 is default).
- A hostname is configured for the gateway.
- Crypto encryption and trust points are configured.
- The gateway is configured to redirect HTTP traffic (port 80) over HTTPS.
- The gateway is enabled.

The SSL VPN provides remote-access connectivity from almost any Internet-enabled location using only a web browser and its native SSL encryption. The `ssl encryption` command is configured to restrict the encryption algorithms that SSL uses in Cisco IOS software.

---

**Note**

There is a known compatibility issue with the encryption type and Java. If the Java port-forwarding applet does not download properly and the configuration line `ssl encryption 3des-sha1 aes-sha1` is present, you should remove the line from the WebVPN gateway subconfiguration.
The configuration of the `ssl trustpoint` command is required only if you need to configure a specific certification authority (CA) certificate. A self-signed certificate is automatically generated when an SSL VPN gateway is put in service.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. `webvpn gateway name`
4. `hostname name`
5. `ip address number [port number] [standby name]`
6. `http-redirect [port number]`
7. `ssl encryption [3des-sha1] [aes-sha1] [rc4-md5]`
8. `ssl trustpoint name`
9. inservice

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
• Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal |
| **Step 3** `webvpn gateway name` | Enters WebVPN gateway configuration mode to configure an SSL VPN gateway.  
• Only one gateway is configured in an SSL VPN-enabled network. |
| **Example:** Router(config)# webvpn gateway GW_1 |
| **Step 4** `hostname name` | (Optional) Configures the hostname for an SSL VPN gateway. |
| **Example:** Router(config-webvpn-gateway)# hostname VPN_1 |
| **Step 5** `ip address number [port number] [standby name]` | (Optional) Configures a proxy IP address on an SSL VPN gateway.  
• `port` --Specifies the port number for proxy traffic. A number from 1 to 65535 can be entered for the `number` argument.  
• `standby` --Indicates that the gateway is standby. A redundancy group name must be entered for the `name` argument. |
<p>| <strong>Example:</strong> Router(config-webvpn-gateway)# ip address 10.1.1.1 |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong> http-redirect [port number]</td>
<td>(Optional) Configures HTTP traffic to be carried over HTTPS.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-gateway)# http-redirect</td>
</tr>
<tr>
<td><strong>Step 7</strong> ssl encryption [3des-sha1] [aes-sha1] [rc4-md5]</td>
<td>(Optional) Specifies the encryption algorithm that the SSL protocol uses for SSL VPN connections.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-gateway)# ssl encryption rc4-md5</td>
</tr>
<tr>
<td><strong>Step 8</strong> ssl trustpoint name</td>
<td>(Optional if a self-signed certificate is to be used.) Configures the certificate trust point on an SSL VPN gateway.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-gateway)# ssl trustpoint CA_CERT</td>
</tr>
<tr>
<td><strong>Step 9</strong> inservice</td>
<td>(Optional) Enables an SSL VPN gateway.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-gateway)# inservice</td>
</tr>
</tbody>
</table>

- What to Do Next, page 38

**What to Do Next**

SSL VPN context and policy group configurations must be configured before an SSL VPN gateway can be operationally deployed. Proceed to the section “Configuring an SSL VPN Context” to see information on SSL VPN context configuration.

**Configuring a Generic SSL VPN Gateway**

To configure a generic SSL VPN gateway, perform the following steps in privileged EXEC mode.

- **Note**
  The advantage of this configuration over the one in the configuration task in the Configuring an SSL VPN Gateway, page 36 is that basic commands and context can be configured quickly using just the **webvpn enable** command.
SUMMARY STEPS

1. enable
2. webvpn enable gateway-addr ip-address

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> webvpn enable gateway-addr ip-address</td>
<td>Configures a generic SSL VPN gateway.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# webvpn enable gateway-addr 10.1.1.1</td>
<td></td>
</tr>
</tbody>
</table>

Configuring an SSL VPN Context

The SSL VPN context defines the virtual configuration of the SSL VPN. Entering the webvpn context command places the router in SSL VPN configuration mode. The following configurations are accomplished in this task:

- A gateway and domain is associated.
- The AAA authentication method is specified.
- A group policy is associated.
- The remote user portal (web page) is customized.
- A limit on the number users sessions is configured.
- The context is enabled.

The ssl authenticate verify all command is enabled by default when a context configuration is created. The context cannot be removed from the router configuration while an SSL VPN gateway is in an enabled state (in service).

A virtual hostname is specified when multiple virtual hosts are mapped to the same IP address on the SSL VPN gateway (similar to the operation of a canonical domain name). The virtual hostname differentiates host requests on the gateway. The host header in the HTTP message is modified to direct traffic to the virtual host. The virtual hostname is configured with the gateway command in WebVPN context configuration mode.

The SSL VPN gateway configuration has been completed.
SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context name
4. aaa authentication {domain name | list name}
5. policy group name
6. exit
7. default-group-policy name
8. exit
9. gateway name [domain name | virtual-host name]
10. inservice
11. login-message [message-string]
12. logo [file filename | none]
13. max-users number
14. secondary-color color
15. secondary-text-color {black | white}
16. title [title-string]
17. title-color color
18. svc platform {lin | mac | win} seq sequence-number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn context name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Tip</strong></td>
<td>The context can be optionally named using the domain or virtual hostname.</td>
</tr>
<tr>
<td><strong>Tip</strong></td>
<td>This is recommended as a best practice. It simplifies the management of multiple context configurations.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 4** aaa authentication {domain name | (Optional) Specifies a list or method for SSL VPN remote-user authentication.  
| list name} |  
| **Tip** If this command is not configured, the SSL VPN gateway will use global AAA parameters (if configured) for remote-user authentication.  
| Example: | Router(config-webvpn-context)# aaa authentication domain SERVER_GROUP  
| **Step 5** policy group name | (Optional) Creates a policy group within the SSL VPN context and enters WebVPN group policy configuration mode.  
| | • Used to define a policy that can be applied to the user.  
| **Example:** | Router(config-webvpn-context)# policy group ONE  
| **Step 6** exit | (Optional) Exits WebVPN group policy configuration mode.  
| **Example:** | Router(config-webvpn-group)# exit  
| **Step 7** default-group-policy name | (Optional) Associates a group policy with an SSL VPN context configuration.  
| | • This command is configured to attach the policy group to the SSL VPN context when multiple group policies are defined under the context.  
| | • This policy will be used as default, unless a AAA server pushes an attribute that specifically requests another group policy.  
| **Example:** | Router(config-webvpn-context)# default-group-policy ONE  
| **Step 8** exit | (Optional) Exits WebVPN context configuration mode.  
| **Example:** | Router(config-webvpn-context)# exit  
| **Step 9** gateway name [domain name | (Optional) Associates an SSL VPN gateway with an SSL VPN context.  
| virtual-host name] | Router(config-webvpn-context)# gateway GW_1 domain cisco.com
### Command or Action | Purpose
--- | ---
**Step 10** | *inservice*  
(Optional) Enables an SSL VPN context configuration.  
- The context is put “in service” by entering this command. However, the context is not operational until it is associated with an enabled SSL VPN gateway.  
**Example:**  
Router(config-webvpn-gateway)#  
*inservice*

**Step 11** | *login-message [message-string]*  
(Optional) Configures a message for the user login text box displayed on the login page.  
**Example:**  
Router(config-webvpn-context)#  
*login-message “Please enter your login credentials”*

**Step 12** | *logo [file filename | none]*  
(Optional) Configures a custom logo to be displayed on the login and portal pages of an SSL VPN.  
- The source image file for the logo is a gif, jpg, or png file that is up to 255 characters in length (filename) and up to 100 KB in size.  
- The file is referenced from a local file system, such as flash memory. An error message will be displayed if the file is not referenced from a local file system.  
- No logo will be displayed if the image file is removed from the local file system.  
**Example:**  
Router(config-webvpn-context)#  
*logo file flash:/mylogo.gif*

**Step 13** | *max-users number*  
(Optional) Limits the number of connections to an SSL VPN that will be permitted.  
**Example:**  
Router(config-webvpn-context)#  
*max-users 500*

**Step 14** | *secondary-color color*  
(Optional) Configures the color of the secondary title bars on the login and portal pages of an SSL VPN.  
- The value for the *color* argument is entered as a comma-separated red, green, blue (RGB) value, an HTML color value (beginning with a pound sign [#]), or the name of the color that is recognized in HTML (no spaces between words or characters). The value is limited to 32 characters. The value is parsed to ensure that it matches one of the following formats (using Perl regex notation):  
  - `\#/x{6}`  
  - `\d{1,3},\d{1,3},\d{1,3}` (and each number is from 1 to 255)  
  - `\w+`  
- The default color is purple.  
**Example:**  
Router(config-webvpn-context)#  
*secondary-color darkseagreen*
**Command or Action** | **Purpose**  
--- | ---  
**Step 15** secondary-text-color (black | white) | (Optional) Configures the color of the text on the secondary bars of an SSL VPN.  
- The color of the text on the secondary bars must be aligned with the color of the text on the title bar.  
- The default color is black.  
  
Example:  
Router(config-webvpn-context)#secondary-text-color white  
**Step 16** title [title-string] | (Optional) Configures the HTML title string that is shown in the browser title and on the title bar of an SSL VPN.  
- The optional form of the title command is entered to configure a custom text string. If this command is issued without entering a text string, a title will not be displayed in the browser window. If the no form of this command is used, the default title string “WebVPN Service” is displayed.  
  
Example:  
Router(config-webvpn-context)#title "Secure Access: Unauthorized users prohibited"  
**Step 17** title-color color | (Optional) Specifies the color of the title bars on the login and portal pages of an SSL VPN.  
- The value for the color argument is entered as a comma-separated red, green, blue (RGB) value, an HTML color value (beginning with a pound sign [#]), or the name of the color that is recognized in HTML (no spaces between words or characters). The value is limited to 32 characters. The value is parsed to ensure that it matches one of the following formats (using Perl regex notation):  
  - \#/x{6}  
  - \d{1,3},\d{1,3},\d{1,3} (and each number is from 1 to 255)  
  - \w+  
- The default color is purple.  
  
Example:  
Router(config-webvpn-context)#title-color darkseagreen  
**Step 18** svc platform {lin | mac | win} seq sequence-number | (Optional) Configures the platform of an AnyConnect version per context.  
- If the svc platform command is not used, AnyConnect is configured in standalone mode.  
- The seq keyword assigns a priority number to an AnyConnect client in the same platform. The range of sequence-number argument is from 1 to 10.  
  
Example:  
Router(config-webvpn-context)#svc platform lin seq 1  

**What to Do Next**  
An SSL VPN policy group configuration must be defined before an SSL VPN gateway can be operationally deployed. Proceed to the Configuring an SSL VPN Policy Group, page 43 to see information on SSL VPN policy group configuration.

**Configuring an SSL VPN Policy Group**  
The policy group is a container that defines the presentation of the portal and the permissions for resources that are configured for a group of remote users. Entering the policy group command places the router in
WebVPN group policy configuration mode. After it is configured, the group policy is attached to the SSL VPN context configuration by configuring the `default-group-policy` command. The following tasks are accomplished in this configuration:

- The presentation of the SSL VPN portal page is configured.
- A NetBIOS server list is referenced.
- A port-forwarding list is referenced.
- The idle and session timers are configured.
- A URL list is referenced.

Outlook Web Access (OWA) 2003 is supported by the SSL VPN gateway upon completion of this task. The Outlook Exchange Server must be reachable by the SSL VPN gateway via TCP/IP.

A URL list can be configured under the SSL VPN context configuration and then separately for each individual policy group configuration. Individual URL list configurations must have unique names.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `webvpn context name`
4. `policy group name`
5. `banner string`
6. `hide-url-bar`
7. `nbns-list name`
9. `timeout {idle seconds | session seconds}`
10. `url-list name`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn context <em>name</em></td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> policy group <em>name</em></td>
<td>Enters WebVPN group policy configuration mode to configure a group policy.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# policy group ONE</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> banner <em>string</em></td>
<td>(Optional) Configures a banner to be displayed after a successful login.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# banner &quot;Login Successful&quot;</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> hide-url-bar</td>
<td>(Optional) Prevents the URL bar from being displayed on the SSL VPN portal page.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# hide-url-bar</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> nbns-list <em>name</em></td>
<td>(Optional) Attaches a NetBIOS Name Service (NBNS) server list to a policy group configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# nbns-list SERVER_LIST</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> port-forward <em>name</em> [auto-download][http-proxy [proxy-url homepage-url]]</td>
<td>(Optional) Attaches a port-forwarding list to a policy group configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# port-forward EMAIL auto-download http-proxy proxy-url &quot;<a href="http://www.example.com">http://www.example.com</a>&quot;</td>
<td></td>
</tr>
<tr>
<td>• auto-download --(Optional) Allows for automatic download of the port-forwarding Java applet on the portal page of a website.</td>
<td></td>
</tr>
<tr>
<td>• http-proxy --(Optional) Allows the Java applet to act as a proxy for the browser of the user.</td>
<td></td>
</tr>
<tr>
<td>• proxy-url --(Optional) Page at this URL address opens as the portal (home) page of the user.</td>
<td></td>
</tr>
<tr>
<td>• homepage-url --URL of the home page.</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

**Step 9**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout {idle $</td>
<td>$ session $}</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-webvpn-group)# timeout idle 1800
```

**Step 10**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>url-list $name$</td>
<td>(Optional) Attaches a URL list to policy group configuration.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-webvpn-group)# url-list ACCESS
```

### What to Do Next

At the completion of this task, the SSL VPN gateway and context configurations are operational and enabled (in service), and the policy group has been defined. The SSL VPN gateway is operational for clientless remote access (HTTPS only). Proceed to the Configuring Local AAA Authentication for SSL VPN User Sessions, page 46 to see information about configuring AAA for remote-user connections.

### Configuring Local AAA Authentication for SSL VPN User Sessions

The steps in this task show how to configure a local AAA database for remote-user authentication. AAA is configured in global configuration mode. In this task, the `aaa authentication` command is not configured under the SSL VPN context configuration. Omitting this command from the SSL VPN context configuration causes the SSL VPN gateway to use global authentication parameters by default.

SSL VPN gateway and context configurations are enabled and operational.

### SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
4. username name secret {0 user-secret | 5 secret-string | user-secret}
5. aaa authentication login default local
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
• Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** aaa new-model | Enables the AAA access control model. |
| **Example:** | |
| Router(config)# aaa new-model | |
| **Step 4** username name secret {0 user-secret | 5 secret-string | user-secret} | Establishes a username-based authentication system.  
• Entering 0 configures the password as clear text. Entering 5 encrypts the password. |
| **Example:** | |
| Router(config)# username USER1 secret 0 PsW2143 | |
| **Step 5** aaa authentication login default local | Configures local AAA authentication. |
| **Example:** | |
| Router(config)# aaa authentication login default local | |

### What to Do Next

The database that is configured for remote-user authentication on the SSL VPN gateway can be a local database, as shown in this task, or the database can be accessed through any RADIUS or TACACS+ AAA server.

It is recommended that you use a separate AAA server, such as a Cisco ACS. A separate AAA server provides a more robust security solution. It allows you to configure unique passwords for each remote user and accounting and logging for remote-user sessions. Proceed to the Configuring AAA for SSL VPN Users Using a Secure Access Control Server, page 48 to see more information.
Configuring AAA for SSL VPN Users Using a Secure Access Control Server

The steps in this task show how to configure AAA using a separate RADIUS or TACACS+ server. AAA is configured in global configuration mode. The authentication list or method is referenced in the SSL VPN context configuration with the `aaa authentication` command. The steps in this task configure AAA using a RADIUS server.

- SSL VPN gateway and context configurations are enabled and operational.
- A RADIUS or TACACS+ AAA server is operational and reachable from the SSL VPN gateway.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `aaa new-model`
4. `aaa group server {radius group-name | tacacs+ group-name}`
5. `server ip-address [auth-port port-number] [acct-port port-number]`
6. `exit`
7. `aaa authentication login {default | list-name} method1 [method2...]
   radius-server host {hostname | ip-address} [auth-port port-number] [acct-port port-number]
   [timeout seconds] [retransmit retries] [key string] [alias {hostname | ip-address}]
8. `webvpn context name`
9. `aaa authentication {domain name | list name}`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> aaa new-model</td>
<td>Enables the AAA access control model.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong> aaa group server {radius group-name</td>
<td>tacacs+ group-name}</td>
</tr>
</tbody>
</table>
| **Example:**  
Router(config)# aaa group server radius myServer | |
| **Step 5** server ip-address [auth-port port-number] [acct-port port-number] | Configures the IP address of the AAA group server. |
| **Example:**  
Router(config-sg-radius)# server 10.1.1.20 auth-port 1645 acct-port 1646 | |
| **Step 6** exit | Exits server-group configuration mode. |
| **Example:**  
Router(config-sg-radius)# exit | |
| **Step 7** aaa authentication login \{default | list-name\} method1 \{method2...\} | Sets AAA login parameters. |
| **Example:**  
Router(config)# aaa authentication login default local group myServer | |
| **Step 8** radius-server host \{hostname | ip-address\} [auth-port port-number] [acct-port port-number] [timeout seconds] [retransmit retries] [key string] [alias \{hostname | ip-address\}] | Specifies a host as the group server. |
| **Example:**  
Router(config)# radius-server host 10.1.1.20 auth-port 1645 acct-port 1646 | |
| **Step 9** webvpn context name | Enters SSL VPN configuration mode to configure the SSL VPN context. |
| **Example:**  
Router(config)# webvpn context context1 | |
| **Step 10** aaa authentication \{domain name | list name\} | Configures AAA authentication for SSL VPN sessions. |
| **Example:**  
Router(config-webvpn-context)# aaa authentication domain myServer | |
What to Do Next

Proceed to the section “Configuring RADIUS Attribute Support for SSL VPN, page 51” to see RADIUS attribute-value pair information introduced to support this feature.

Configuring RADIUS Accounting for SSL VPN User Sessions

Before configuring RADIUS accounting for SSL VPN user sessions, you should first have configured AAA-related commands (in global configuration mode) and have set the accounting list.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `aaa new-model`
4. `webvpn context context-name`
5. `aaa accounting list aaa-list`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>aaa new-model</code></td>
<td>Enables the AAA access control model.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# aaa new-model</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>webvpn context context-name</code></td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# webvpn context context1</code></td>
<td></td>
</tr>
</tbody>
</table>
Monitoring and Maintaining RADIUS Accounting for an SSL VPN Session

To monitor and maintain your RADIUS accounting configuration, perform the following steps (the `debug` commands can be used together or individually).

**SUMMARY STEPS**

1. `enable`
2. `debug webvpn aaa`
3. `debug aaa accounting`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>debug webvpn aaa</code></td>
<td>Enables SSL VPN session monitoring for AAA.</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# debug webvpn aaa</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>debug aaa accounting</code></td>
<td>Displays information on accountable events as they occur.</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# debug aaa accounting</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring RADIUS Attribute Support for SSL VPN

This section lists RADIUS attribute-value (AV) pair information introduced to support SSL VPN. For information on using RADIUS AV pairs with Cisco IOS software, see the Configuring RADIUS module in the RADIUS Configuration Guide.
The following table shows information about SSL VPN RADIUS attribute-value pairs. All SSL VPN attributes (except for the standard IETF RADIUS attributes) start with `webvpn:` as follows:

webvpn:urllist-name=cisco webvpn:nbnslist-name=cifs webvpn:default-domain=cisco.com

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type of Value</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>addr (Framed-IP-Address&lt;sup&gt;+&lt;/sup&gt;)</td>
<td>ipaddr</td>
<td><code>IP_address</code></td>
<td>--</td>
</tr>
<tr>
<td>addr-pool</td>
<td>string</td>
<td><code>name</code></td>
<td>--</td>
</tr>
<tr>
<td>auto-applet-download</td>
<td>integer</td>
<td>0 (disable) 1 (enable)&lt;sup&gt;2&lt;/sup&gt;</td>
<td>0</td>
</tr>
<tr>
<td>banner</td>
<td>string</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>citrix-enabled</td>
<td>integer</td>
<td>0 (disable) 1 (enable)&lt;sup&gt;2&lt;/sup&gt;</td>
<td>0</td>
</tr>
<tr>
<td>default-domain</td>
<td>string</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>dns-servers</td>
<td>ipaddr</td>
<td><code>IP_address</code></td>
<td>--</td>
</tr>
<tr>
<td>dpd-client-timeout</td>
<td>integer (seconds)</td>
<td>0 (disabled)-3600</td>
<td>300</td>
</tr>
<tr>
<td>dpd-gateway-timeout</td>
<td>integer (seconds)</td>
<td>0 (disabled)-3600</td>
<td>300</td>
</tr>
<tr>
<td>file-access</td>
<td>integer</td>
<td>0 (disable) 1 (enable)</td>
<td>0</td>
</tr>
<tr>
<td>file-browse</td>
<td>integer</td>
<td>0 (disable) 1 (enable)</td>
<td>0</td>
</tr>
<tr>
<td>file-entry</td>
<td>integer</td>
<td>0 (disable) 1 (enable)</td>
<td>0</td>
</tr>
<tr>
<td>hide-urlbar</td>
<td>integer</td>
<td>0 (disable) 1 (enable)</td>
<td>0</td>
</tr>
<tr>
<td>home-page</td>
<td>string</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

---

1 Standard IETF RADIUS attributes.
2 Any integer other than 0 enables this feature.
3 Any integer other than 0 enables this feature.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type of Value</th>
<th>Values</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>idletime (Idle-Timeout)</td>
<td>integer (seconds)</td>
<td>0-3600</td>
<td>2100</td>
</tr>
<tr>
<td>ie-proxy-exception</td>
<td>string</td>
<td>DNS_name</td>
<td>--</td>
</tr>
<tr>
<td>ipaddr</td>
<td>IP_address</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ie-proxy-server</td>
<td>ipaddr</td>
<td>IP_address</td>
<td>--</td>
</tr>
<tr>
<td>inacl</td>
<td>integer</td>
<td>1-199, 1300-2699</td>
<td>--</td>
</tr>
<tr>
<td>keep-svc-installed</td>
<td>integer</td>
<td>0 (disable) 1 (enable)</td>
<td>1</td>
</tr>
<tr>
<td>nbnslist-name</td>
<td>string</td>
<td>name</td>
<td>--</td>
</tr>
<tr>
<td>netmask (Framed-IP-Netmask)</td>
<td>ipaddr</td>
<td>IP_address_mask</td>
<td>--</td>
</tr>
<tr>
<td>port-forward-auto</td>
<td>integer</td>
<td>0 (disable) 1 (enable)</td>
<td>If this AV pair is not configured, the default is whatever was configured for the group policy. If this AV pair is configured with an integer of 1, the 1 will override a group policy value of 0.</td>
</tr>
<tr>
<td>port-forward-http-proxy</td>
<td>integer</td>
<td>0 (disable) 1 (enable)</td>
<td>HTTP proxy is not enabled. If this AV pair is configured with an integer of 1, the 1 will override a group policy value of 0.</td>
</tr>
<tr>
<td>port-forward-http-proxy-url</td>
<td>string</td>
<td>URL address (for example, <a href="http://example.com">http://example.com</a>)</td>
<td>--</td>
</tr>
<tr>
<td>port-forward-name</td>
<td>string</td>
<td>name</td>
<td>--</td>
</tr>
<tr>
<td>Attribute</td>
<td>Type of Value</td>
<td>Values</td>
<td>Default</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>primary-dns</td>
<td>ipaddr</td>
<td>IP_address</td>
<td>--</td>
</tr>
<tr>
<td>rekey-interval</td>
<td>integer (seconds)</td>
<td>0-43200</td>
<td>21600</td>
</tr>
<tr>
<td>secondary-dns</td>
<td>ipaddr</td>
<td>IP_address</td>
<td>--</td>
</tr>
<tr>
<td>split-dns</td>
<td>string</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| split-exclude    | ipaddr ipaddr | IP_address  
|                 |               | IP_address_mask             | --       |
| split-include    | ipaddr ipaddr | IP_address  
|                 |               | IP_address_mask             | --       |
| sso-server-name  | string        | name                        | --       |
| svc-enabled      | integer       | 0 (disable) 1 (enable)      | 0        |
| svc-ie-proxy-policy | word        | none, auto, bypass-local   | --       |
| svc-required     | integer       | 0 (disable) 1 (enable)      | 0        |
| timeout          | integer (seconds) | 1-1209600                 | 43200    |
| urllist-name     | string        | name                        | --       |
| user-vpn-group   | string        | name                        | --       |
| wins-server-primary | ipaddr     | IP_address                  | --       |
| wins-servers     | ipaddr        | IP_address                  | --       |
| wins-server-secondary | ipaddr   | IP_address                  | --       |

4 You can specify either split-include or split-exclude, but you cannot specify both options.
5 You can specify either svc-enable or svc-required, but you cannot specify both options.
What to Do Next

See the Configuring a URL List for Clientless Remote Access, page 55 for information about customizing the URL list configured in Step 10 of the section Configuring an SSL VPN Policy Group, page 43.

Configuring a URL List for Clientless Remote Access

The steps in this configuration task show how to configure a URL list. The URL list, as the name implies, is a list of HTTP URLs that are displayed on the portal page after a successful login. The URL list is configured in WebVPN context configuration and WebVPN group policy configuration modes.

SSL VPN gateway and context configurations are enabled and operational.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. webvpn context name
4. url-list name
5. heading text-string
6. url-text name url-value url
7. exit
8. policy group name
9. url-list name

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn context name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>url-list name</td>
<td>Enters WebVPN URL list configuration mode to configure the list of URLs to which a user has access on the portal page of an SSL VPN.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-context)# url-list ACCESS</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>heading text-string</td>
<td>Configures the heading that is displayed above URLs listed on the portal page of an SSL VPN.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-url)# heading “Quick Links”</td>
<td>• The heading for the URL list is entered as a text string. The heading must be entered inside of quotation marks if it contains spaces.</td>
</tr>
<tr>
<td>Step 6</td>
<td>url-text name url-value url</td>
<td>Adds an entry to a URL list.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-url)# url-text &quot;Human Resources&quot; url-value example.com</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
<td>Exits WebVPN URL list configuration mode, and enters SSL VPN context configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-url)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>policy group name</td>
<td>Enters WebVPN group policy configuration mode to configure a group policy.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-context)# policy group ONE</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>url-list name</td>
<td>Attaches the URL list to the policy group configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-group)# url-list ACCESS</td>
<td></td>
</tr>
</tbody>
</table>

### What to Do Next

See the Configuring Microsoft File Shares for Clientless Remote Access, page 57 for information about configuring clientless remote access to file shares.
Configuring Microsoft File Shares for Clientless Remote Access

In clientless remote access mode, files and directories created on Microsoft Windows servers can be accessed by the remote client through the HTTPS-enabled browser. When clientless remote access is enabled, a list of file server and directory links is displayed on the portal page after login. The administrator can customize permissions on the SSL VPN gateway to provide limited read-only access for a single file or full-write access and network browsing capabilities. The following access capabilities can be configured:

- Network browse (listing of domains)
- Domain browse (listing of servers)
- Server browse (listing of shares)
- Listing files in a share
- Downloading files
- Modifying files
- Creating new directories
- Creating new files
- Deleting files

Common Internet File System Support—CIFS is the protocol that provides access to Microsoft file shares and support for common operations that allow shared files to be accessed or modified.

NetBIOS Name Service Resolution—Windows Internet Name Service (WINS) uses NetBIOS name resolution to map and establish connections between Microsoft servers. A single server must be identified by its IP address in this configuration. Up to three servers can be added to the configuration. If multiple servers are added, one server should be configured as the master browser.

Samba Support—Microsoft file shares can be accessed through the browser on a Linux system that is configured to run Samba.

- SSL VPN gateway and context configurations are enabled and operational.
- A Microsoft file server is operational and reachable from the SSL VPN gateway over TCP/IP.

Note

File shares configured on Windows 2008 is not supported. Only file shares configured on Microsoft Windows 2000, Windows 2003, Windows XP, and Red Hat Linux servers are supported.

SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context name
4. nbns-list name
5. nbns-server ip-address [master] [timeout seconds] [retries number]
6. exit
7. policy group name
8. nbns-list name
9. functions {file-access | file-browse | file-entry | svc-enabled | svc-required}
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn context name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> nbns-list name</td>
<td>Enters WebVPN NBNS list configuration mode to configure an NBNS server list for CIFS name resolution.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# nbns-list SERVER_LIST</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> nbns-server ip-address [master] [timeout seconds] [retries number]</td>
<td>Adds a server to an NBNS server list and enters WebVPN NBNS list configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-nbnslist)# nbns-server 172.16.1.1 master</td>
<td></td>
</tr>
<tr>
<td>• The server specified with the ip-address argument can be a primary domain controller (PDC) in a Microsoft network.</td>
<td></td>
</tr>
<tr>
<td>• When multiple NBNS servers are specified, a single server is configured as master browser.</td>
<td></td>
</tr>
<tr>
<td>• Up to three NBNS server statements can be configured.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> exit</td>
<td>Exits WebVPN NBNS list configuration mode and enters WebVPN context configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-nbnslist)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> policy group name</td>
<td>Enters WebVPN group policy configuration mode to configure a group policy.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# policy group ONE</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 8</strong> nbns-list name</td>
<td>Attaches an NBNS server list to a policy group configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-webvpn-group)# nbns-list SERVER_LIST</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> functions {file-access</td>
<td>file-browse</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-webvpn-group)# functions file-access</code></td>
<td></td>
</tr>
<tr>
<td>• Entering the <strong>file-access</strong> keyword enables network file share access. File servers in the server list are listed on the SSL VPN portal page when this keyword is enabled.</td>
<td></td>
</tr>
<tr>
<td>• Entering the <strong>file-browse</strong> keyword enables browse permissions for server and file shares. The file-access function must be enabled in order to also use this function.</td>
<td></td>
</tr>
<tr>
<td>• Entering the <strong>file-entry</strong> keyword enables “modify” permissions for files in the shares listed on the SSL VPN portal page.</td>
<td></td>
</tr>
</tbody>
</table>

**What to Do Next**

See the Configuring Citrix Application Support for Clientless Remote Access, page 59 for information about configuring clientless remote access for Citrix- enabled applications.

**Configuring Citrix Application Support for Clientless Remote Access**

Clientless Citrix support allows the remote user to run Citrix-enabled applications through the SSL VPN as if the application were locally installed (similar to traditional thin-client computing). Citrix applications run on a MetaFrame XP server (or server farm). The SSL VPN gateway provides access to the remote user. The applications run in real time over the SSL VPN. This task shows how to enable Citrix support for policy group remote users.

The Independent Computing Architecture (ICA) client carries keystrokes and mouse clicks from the remote user to the MetaFrame XP server. ICA traffic is carried over TCP port number 1494. This port is opened when a Citrix application is accessed. If multiple application are accessed, the traffic is carried over a single TCP session.

• A Citrix MetaFrame XP server is operational and reachable from the SSL VPN gateway over TCP/IP.  
• SSL VPN gateway and context configurations are enabled and operational.
### SUMMARY STEPS

1. enable
2. configure terminal
3. access-list access-list-number {permit | deny} protocol source destination
4. webvpn context name
5. policy group name
6. citrix enabled
7. filter citrix extended-acl

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
- Enter your password if prompted.  
| Example:  
Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example:  
Router# configure terminal |
| **Step 3** access-list access-list-number {permit | deny} protocol source destination | Configures the access list mechanism for filtering frames by protocol type or vendor code. |
| Example:  
Router(config)# access-list 100 permit ip 192.168.1.0 0.255.255.255 |
| **Step 4** webvpn context name | Enters WebVPN context configuration mode to configure the SSL VPN context. |
| Example:  
Router(config)# webvpn context context1 |
| **Step 5** policy group name | Enters WebVPN group policy configuration mode to configure a group policy. |
| Example:  
Router(config-webvpn-context)# policy group ONE |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong> citrix enabled</td>
<td>Enables Citrix application support for remote users in a policy group.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# citrix enabled</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> filter citrix extended-acl</td>
<td>Configures a Citrix Thin Client filter.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# filter citrix 100</td>
<td></td>
</tr>
<tr>
<td>• What to Do Next, page 61</td>
<td></td>
</tr>
</tbody>
</table>

**What to Do Next**

Support for standard applications that use well-known port numbers, such as e-mail and Telnet, can be configured using the port forwarding feature. See the Configuring Application Port Forwarding, page 61 for more information.

**Configuring Application Port Forwarding**

Application port forwarding is configured for thin-client mode SSL VPN. Port forwarding extends the cryptographic functions of the SSL-protected browser to provide remote access to TCP and UDP-based applications that use well-known port numbers, such as POP3, SMTP, IMAP, Telnet, and SSH.

When port forwarding is enabled, the hosts file on the SSL VPN client is modified to map the application to the port number configured in the forwarding list. The application port mapping is restored to default when the user terminates the SSL VPN session.

When you are enabling port forwarding, the SSL VPN gateway will modify the hosts file on the PC of the remote user. Some software configurations and software security applications will detect this modification and prompt the remote user to choose “Yes” to permit. To permit the modification, the remote user must have local administrative privileges.

There is a known compatibility issue with the encryption type and Java. If the Java port-forwarding applet does not download properly and the configuration line `ssl encryption 3des-shal aes-shal` is present, you should remove the line from the WebVPN gateway subconfiguration.

SSL VPN gateway and SSL VPN context configurations are enabled and operational.
### SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context name
4. port-forward name
5. local-port number remote-server name remote-port number description text-string
6. exit
7. policy group name
8. port-forward name

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| Example:          |         |
| Router> enable    |         |

| **Step 2** configure terminal | Enters global configuration mode. |
| Example:                      |         |
| Router# configure terminal    |         |

| **Step 3** webvpn context name | Enters WebVPN context configuration mode to configure the SSL VPN context. |
| Example:                       |         |
| Router(config)# webvpn context context1 |         |

| **Step 4** port-forward name | Enters WebVPN port-forward list configuration mode to configure a port forwarding list. |
| Example:                      |         |
| Router(config-webvpn-context)# port-forward EMAIL |         |

| **Step 5** local-port number remote-server name remote-port number description text-string | Remaps (forwards) an application port number in a port forwarding list.  
- The remote port number is the well-known port to which the application listens. The local port number is the entry configured in the port forwarding list. A local port number can be configured only once in a given port forwarding list. |
| Example:                       |         |
| Router(config-webvpn-port-fwd)# local-port 30016 remote-server example.com remote-port 110 description POP3 |         |
### Command or Action | Purpose
--- | ---
**Step 6** exit | Exits WebVPN port-forward list configuration mode, and enters WebVPN context configuration mode.

**Example:**
```
Router(config-webvpn-port-fwd)# exit
```

**Step 7** policy group *name* | Enters WebVPN group policy configuration mode to configure a group policy.

**Example:**
```
Router(config-webvpn-context)# policy group ONE
```

**Step 8** port-forward *name* | Attaches a port forwarding list to a policy group configuration.

**Example:**
```
Router(config-webvpn-group)# port-forward EMAIL
```

---

### Configuring the SSL VPN Gateway to Distribute CSD and Cisco AnyConnect VPN Client Package Files

The SSL VPN gateway is preconfigured to distribute Cisco Secure Desktop (CSD) or Cisco AnyConnect VPN Client software package files to remote users. The files are distributed only when CSD or Cisco AnyConnect VPN Client support is needed. The administrator performs the following tasks to prepare the gateway:

- The current software package is downloaded from www.cisco.com.
- The package file is copied to a local file system.
- The package file is installed for distribution by configuring the `webvpn install` command.

The remote user must have administrative privileges, and the JRE for Windows version 1.4 or later must be installed before the CSD client package can be installed.

For Cisco AnyConnect VPN Client software installation, the remote user must have either the Java Runtime Environment for Windows (version 1.4 or later), or the browser must support or be configured to permit Active X controls.

CSD and Cisco AnyConnect VPN Client software packages should be installed for distribution on the SSL VPN gateway. Download the latest version that supports your device and the image you are using (consult a compatibility matrix for your particular setup).

The CSD software package can be downloaded at the following URL:
- [http://www.cisco.com/cgi-bin/tablebuild.pl/securedesktop](http://www.cisco.com/cgi-bin/tablebuild.pl/securedesktop)

The Cisco AnyConnect VPN Client software package can be downloaded at the following URL:
- [http://www.cisco.com/cgi-bin/tablebuild.pl/anyconnect](http://www.cisco.com/cgi-bin/tablebuild.pl/anyconnect)

The Cisco SSL VPN Client software package can be downloaded at the following URL:
You will be prompted to enter your login name and password to download these files from cisco.com.

SSL VPN gateway and context configurations are enabled and operational.

Software installation packages are copied to a local file system, such as flash memory.

---

**SUMMARY STEPS**

1. enable
2. configure terminal
3. webvpn install [csd location-name | svc location-name [sequence sequence-number]]

---

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn install [csd location-name</td>
<td>svc location-name [sequence sequence-number]]</td>
</tr>
<tr>
<td>Example: Router(config)# webvpn install svc flash:/webvpn/svc.pkg</td>
<td>- The CSD and Cisco AnyConnect VPN Client software packages are pushed to remote users as access is needed.</td>
</tr>
<tr>
<td>or Router(config)# webvpn install svc vpn-2_1386-Release-2.0.0077-k9.pkg sequence 6</td>
<td>- The <code>sequence</code> keyword and <code>sequence-number</code> argument are used to install multiple packages to a gateway.</td>
</tr>
</tbody>
</table>

---

**Examples**

The following example, starting in global configuration mode, installs the Cisco AnyConnect VPN Client package to an SSL VPN gateway:

```
Router(config)# webvpn install svc flash:/webvpn/svc.pkg
```
SSL VPN Package SSL-VPN-Client : installed successfully

The following example, starting in global configuration mode, installs the CSD package to an SSL VPN gateway:

Router(config)# webvpn install csd flash:/securedesktop_10_1_0_9.pkg
SSL VPN Package Cisco-Secure-Desktop : installed successfully

The following example shows that Package B is being installed to an SSL VPN gateway:

Router(config)# webvpn install svc flash:/webvpn/packageB sequence 2

What to Do Next

Support for CSD and Cisco AnyConnect VPN Client can be enabled for remote users after the gateway has been prepared to distribute CSD or Cisco AnyConnect VPN Client software.

Configuring Cisco Secure Desktop Support

CSD provides a session-based interface where sensitive data can be shared for the duration of an SSL VPN session. All session information is encrypted. All traces of the session data are removed from the remote client when the session is terminated, even if the connection is terminated abruptly. CSD support for remote clients is enabled in this task.

The remote user (PC or device) must have administrative privileges, and the JRE for Windows version 1.4 or later must be installed before the CSD client packages can be installed.

- SSL VPN gateway and context configurations are enabled and operational.
- The CSD software package is installed for distribution on the SSL VPN gateway.

See the Configuring the SSL VPN Gateway to Distribute CSD and Cisco AnyConnect VPN Client Package Files, page 63 section if you have not already prepared the SSL VPN gateway to distribute CSD software.

Note

Only Microsoft Windows 2000, Windows XP, Windows Vista, Apple-Mac, and Linux are supported on the remote client.

SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context name
4. csd enable
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Example:**

Router> enable

- Enter your password if prompted.

<table>
<thead>
<tr>
<th>Step 2 configure terminal</th>
<th>Enters global configuration mode.</th>
</tr>
</thead>
</table>

**Example:**

Router# configure terminal

<table>
<thead>
<tr>
<th>Step 3 webvpn context <strong>name</strong></th>
<th>Enters WebVPN context configuration mode to configure the SSL VPN context.</th>
</tr>
</thead>
</table>

**Example:**

Router(config)# webvpn context context1

<table>
<thead>
<tr>
<th>Step 4 csd enable</th>
<th>Enables CSD support for SSL VPN sessions.</th>
</tr>
</thead>
</table>

**Example:**

Router(config-webvpn-context)# csd enable

- What to Do Next, page 66

### What to Do Next

Upon completion of this task, the SSL VPN gateway has been configured to provide clientless and thin-client support for remote users. The SSL VPN feature also has the capability to provide full VPN access (similar to IPsec). Proceed to the Configuring Cisco AnyConnect VPN Client Full Tunnel Support, page 66 to see more information.

### Configuring Cisco AnyConnect VPN Client Full Tunnel Support

The Cisco AnyConnect VPN Client is an application that allows a remote user to establish a full VPN connection similar to the type of connection that is established with an IPsec VPN. Cisco AnyConnect VPN Client software is pushed (downloaded) and installed automatically on the PC of the remote user. The Cisco AnyConnect VPN Client uses SSL to provide the security of an IPsec VPN without the complexity required to install IPsec in your network and on remote devices. The following tasks are completed in this configuration:

- An access list is applied to the tunnel to restrict VPN access.
- Cisco AnyConnect VPN Client tunnel support is enabled.
- An address pool is configured for assignment to remote clients.
• The default domain is configured.
• DNS is configured for Cisco AnyConnect VPN Client tunnel clients.
• Dead peer timers are configured for the SSL VPN gateway and remote users.
• The login home page is configured.
• The Cisco AnyConnect VPN Client software package is configured to remain installed on the remote client.
• Tunnel key refresh parameters are defined.
• SSL VPN gateway and context configurations are enabled and operational.
• The Cisco AnyConnect VPN Client software package is installed for distribution on the SSL VPN gateway.
• The remote client has administrative privileges. Administrative privileges are required to download the SSL VPN software client.

See the Configuring the SSL VPN Gateway to Distribute CSD and Cisco AnyConnect VPN Client Package Files, page 63 section if you have not already prepared the SSL VPN gateway to distribute SSL VPN software.

Note
Only Microsoft Windows 2000, Windows XP, Windows Vista, Apple-Mac, and Linux are supported on the remote client.

SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context name
4. policy group name
5. filter tunnel extended-acl
6. functions {file-access | file-browse | file-entry | svc-enabled | svc-required}
7. svc address-pool name
8. svc default-domain name
9. svc dns-server {primary | secondary} ip-address
10. svc dpd-interval {client | gateway} seconds
11. svc keepalive seconds
12. svc homepage string
13. svc keep-client-installed
14. svc rekey {method {new-tunnel | ssl} | time seconds}
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if</td>
<td></td>
</tr>
<tr>
<td>prompted.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn context</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN</td>
</tr>
<tr>
<td>name</td>
<td>context.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn</td>
<td></td>
</tr>
<tr>
<td>context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> policy group</td>
<td>Enters WebVPN group policy configuration mode to configure a group</td>
</tr>
<tr>
<td>name</td>
<td>policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# policy group ONE</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> filter tunnel</td>
<td>Configures an SSL VPN tunnel access filter.</td>
</tr>
<tr>
<td>extended-acl</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# filter tunnel 101</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> functions</td>
<td>Configures Cisco AnyConnect VPN Client tunnel mode support.</td>
</tr>
<tr>
<td>{file-access</td>
<td>file-browse</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# functions svc-enabled</td>
<td></td>
</tr>
<tr>
<td>• Entering the <strong>svc-enabled</strong> keyword enables tunnel support for the</td>
<td></td>
</tr>
<tr>
<td>remote user. If the Cisco AnyConnect VPN Client software package fails to</td>
<td></td>
</tr>
<tr>
<td>install, the remote user can continue to use clientless mode or thin-client</td>
<td></td>
</tr>
<tr>
<td>mode.</td>
<td></td>
</tr>
<tr>
<td>• Entering the <strong>svc-required</strong> keyword enables only tunnel support for</td>
<td></td>
</tr>
<tr>
<td>the remote user. If the Cisco AnyConnect VPN Client software package fails</td>
<td></td>
</tr>
<tr>
<td>to install (on the PC of the remote user), the other access modes cannot be</td>
<td></td>
</tr>
<tr>
<td>used.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 7** svc address-pool *name* | Configures a pool of IP addresses to assign to remote users in a policy group.  
- The address pool is first defined with the `ip local pool` command in global configuration mode.  
- If you are configuring an address pool for a network that is not directly connected, an address from the pool must be configured on a locally loopback interface. See the third example at the end of this section.  
  
  **Example:**  
  ```plaintext```  
  ```bash```  
  ```router(config-webvpn-group)# svc address-pool ADDRESSES```  
  ```bash```  
  | **Step 8** svc default-domain *name* | Configures the default domain for a policy group.  
  
  **Example:**  
  ```plaintext```  
  ```bash```  
  ```router(config-webvpn-group)# svc default-domain cisco.com```  
  ```bash```  
  | **Step 9** svc dns-server {primary | secondary} *ip-address* | Configures DNS servers for policy group remote users.  
  
  **Example:**  
  ```plaintext```  
  ```bash```  
  ```router(config-webvpn-group)# svc dns-server primary 192.168.3.1```  
  ```bash```  
  | **Step 10** svc dpd-interval {client | gateway} *seconds* | Configures the dead peer detection (DPD) timer value for the gateway or client.  
- The DPD timer is reset every time a packet is received over the SSL VPN tunnel from the gateway or remote user.  
  
  **Example:**  
  ```plaintext```  
  ```bash```  
  ```router(config-webvpn-group)# svc dpd-interval gateway 30```  
  ```bash```  
  | **Step 11** svc keepalive *seconds* | (Optional) Enables the SVC to send keepalive messages by default with a frequency of 30 seconds.  
- Use this command to adjust the frequency of keepalive messages to ensure that an SVC connection through a proxy, Cisco IOS firewall, or NAT device remains active, even if the device limits the time that the connection can be idle. Adjusting the frequency also ensures that the SVC does not disconnect and reconnect when the remote user is not actively running a socket-based application, such as Microsoft Outlook or Microsoft Internet Explorer.  
- If the `svc keepalive` command is configured with a value of 0 seconds, then the keepalive function is disabled.  
  
  **Example:**  
  ```plaintext```  
  ```bash```  
  ```router(config-webvpn-group)# svc keepalive 300```  
  ```bash```  
  |
### Command or Action | Purpose
--- | ---
**Step 12** `svc homepage string` | Configures the URL of the web page that is displayed upon successful user login.
- The *string* argument is entered as an HTTP URL. The URL can be up to 255 characters in length.
**Example:**
```
Router(config-webvpn-group)# svc homepage www.cisco.com
```

**Step 13** `svc keep-client-installed` | Configures the remote user to keep Cisco AnyConnect VPN Client software installed when the SSL VPN connection is not enabled.
**Example:**
```
Router(config-webvpn-group)# svc keep-client-installed
```

**Step 14** `svc rekey {method {new-tunnel | ssl} | time {seconds}}` | Configures the time and method that a tunnel key is refreshed for policy group remote users.
- The tunnel key is refreshed by renegotiating the SSL connection or initiating a new tunnel connection.
- The time interval between tunnel refresh cycles is configured in seconds.
**Example:**
```
Router(config-webvpn-group)# svc rekey method new-tunnel
```

• Examples, page 70
• What to Do Next, page 71

## Examples

### Tunnel Filter Configuration

The following example, starting in global configuration mode, configures a deny access filter for any host from the 172.16.2/24 network:

```
Router(config)# access-list 101 deny ip 172.16.2.0 0.0.0.255 any
Router(config)# webvpn context context1
Router(config-webvpn-context)# policy group ONE
Router(config-webvpn-group)# filter tunnel 101
Router(config-webvpn-group)# end
```

### Address Pool (Directly Connected Network) Configuration

The following example, starting in global configuration mode, configures the 192.168.1/24 network as an address pool:

```
Router(config)# ip local pool ADDRESSES 192.168.1.1 192.168.1.254
Router(config)# webvpn context context1
Router(config-webvpn-context)# policy group ONE
Router(config-webvpn-group)# svc address-pool ADDRESSES
Router(config-webvpn-group)# end
```
Address Pool (Nondirectly Connected Network) Configuration

The following example, starting in global configuration mode, configures the 172.16.1/24 network as an address pool. Because the network is not directly connected, a local loopback interface is configured.

```
Router(config)# interface loopback 0
Router(config-int)# ip address 172.16.1.126 255.255.255.0
Router(config-int)# no shutdown
Router(config-int)# exit
Router(config)# ip local pool ADDRESSES 172.16.1.1 172.16.1.254
```

Full Tunnel Configuration

The following example, starting in global configuration mode, configures full Cisco AnyConnect VPN Client tunnel support on an SSL VPN gateway:

```
Router(config)# webvpn context context1
Router(config-webvpn-context)# policy group ONE
Router(config-webvpn-group)# functions svc-enabled
Router(config-webvpn-group)# functions svc-required
Router(config-webvpn-group)# svc default-domain cisco.com
Router(config-webvpn-group)# svc dns-server primary 192.168.3.1
Router(config-webvpn-group)# svc dns-server secondary 192.168.4.1
Router(config-webvpn-group)# svc dpd-interval gateway 30
Router(config-webvpn-group)# svc dpd-interval client 300
Router(config-webvpn-group)# svc homepage www.cisco.com
Router(config-webvpn-group)# svc keep-client-installed
Router(config-webvpn-group)# svc rekey method new-tunnel
Router(config-webvpn-group)# svc rekey time 3600
Router(config-webvpn-group)# end
```

What to Do Next

Proceed to the Configuring Advanced SSL VPN Tunnel Features, page 71 to see advanced Cisco AnyConnect VPN Client tunnel configuration information.

Configuring Advanced SSL VPN Tunnel Features

This section describes advanced Cisco AnyConnect VPN Client tunnel configurations. The following configuration steps are completed in this task:

- Split tunnel support and split DNS resolution are enabled on the SSL VPN gateway.
- SSL VPN gateway support for Microsoft Internet Explorer proxy settings is configured.
- WINS resolution is configured for Cisco AnyConnect VPN Client tunnel clients.

Microsoft Internet Explorer Proxy Configuration--The SSL VPN gateway can be configured to pass or bypass Microsoft Internet Explorer (MSIE) proxy settings. Only HTTP proxy settings are supported by the SSL VPN gateway. MSIE proxy settings have no effect on any other supported browser.

Split Tunneling--Split tunnel support allows you to configure a policy that permits specific traffic to be carried outside of the Cisco AnyConnect VPN Client tunnel. Traffic is either included (resolved in tunnel) or excluded (resolved through the Internet service provider [ISP] or WAN connection). Tunnel resolution configuration is mutually exclusive. An IP address cannot be both included and excluded at the same time. Entering the `local-lans` keyword permits the remote user to access resources on a local LAN, such as network printer.

- SSL VPN gateway and context configurations are enabled and operational.
• The Cisco AnyConnect VPN Client software package is installed for distribution on the SSL VPN gateway.

Note
Only Microsoft Windows 2000, Windows XP, Windows Vista, Apple-Mac, and Linux are supported on the remote client.

SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context name
4. policy group name
5. svc split exclude \{(ip-address mask | local-lans) | include ip-address mask\}
6. svc split dns name
7. svc msie-proxy \{exception host | option \{auto | bypass-local | none\}\}
8. svc msie-proxy server host
9. svc wins-server \{primary | secondary\} ip-address

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 webvpn context name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td>Step 4 policy group name</td>
<td>Enters WebVPN group policy configuration mode to configure a group policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# policy group ONE</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 5** svc split exclude \{ip-address mask | local-lans | include ip-address mask\} | Configures split tunneling for policy group remote users.  
  - Split tunneling is configured to include or exclude traffic in the Cisco AnyConnect VPN Client tunnel. Traffic that is included is sent over the SSL VPN tunnel. Excluded traffic is resolved outside of the tunnel.  
  - Exclude and include statements are configured with IP address/wildcard mask pairs. |
| **Example:**  
  Router(config-webvpn-group)# svc split exclude 192.168.1.1 0.0.0.255 | |
| **Step 6** svc split dns name | Configures the SSL VPN gateway to resolve the specified fully qualified DNS names through the Cisco AnyConnect VPN Client tunnel. |
| **Example:**  
  Router(config-webvpn-group)# svc split dns www.examplecompany.com |  
  - A default domain was configured in the previous task with the **svc default-domain** command. DNS names configured with the **svc split dns** command are configured in addition.  
  - Up to 10 split DNS statements can be configured. |
| **Step 7** svc msie-proxy {exception host | option \{auto | bypass-local | none\}} | Configures MSIE browser proxy settings for policy group remote users.  
  - Entering the **option auto** keywords configures the browser of the remote user to autodetect proxy settings.  
  - Entering the **option bypass-local** keywords configures local addresses to bypass the proxy.  
  - Entering the **option none** keywords configures the browser on the remote client to not use a proxy. |
| **Example:**  
  Router(config-webvpn-group)# svc msie-proxy option auto | |
| **Step 8** svc msie-proxy server host | Specifies an MSIE proxy server for policy group remote users.  
  - The proxy server is specified by entering an IP address or a fully qualified domain name. |
| **Example:**  
  Router(config-webvpn-group)# svc msie-proxy server 10.10.10.1:80 | |
| **Step 9** svc wins-server \{primary | secondary\} ip-address | Configures WINS servers for policy group remote users. |
| **Example:**  
  Router(config-webvpn-group)# svc wins-server primary 172.31.1.1 |  
  - Examples, page 73 |

**Examples**
Split DNS Configuration

The following example, starting in global configuration mode, configures the following DNS names to be resolved in the Cisco AnyConnect VPN Client tunnel:

Router(config)# webvpn context context1
Router(config-webvpn-context)# policy group ONE
Router(config-webvpn-group)# svc split dns www.example.com
Router(config-webvpn-group)# svc split dns myexample.com

Including and Excluding IP Prefixes

The following example configures a list of IP addresses to be resolved over the tunnel (included) and a list to be resolved outside of the tunnel (excluded):

Router(config-webvpn-group)# svc split exclude 192.168.1.0 255.255.255.0
Router(config-webvpn-group)# svc split include 172.16.1.0 255.255.255.0

MSIE Proxy Configuration

The following example configures MSIE proxy settings:

Router(config-webvpn-group)# svc msie-proxy option auto
Router(config-webvpn-group)# svc msie-proxy exception www.example.com
Router(config-webvpn-group)# svc msie-proxy exception 10.20.20.1
Router(config-webvpn-group)# svc msie-proxy server 10.10.10.1:80

WINS Server Configuration

The following example configures primary and secondary WINS servers for the policy group:

Router(config-webvpn-group)# svc wins-server primary 172.31.1.1
Router(config-webvpn-group)# svc wins-server secondary 172.31.2.1
Router(config-webvpn-group)# svc wins-server secondary 172.31.3.1
Router(config-webvpn-group)# end

Configuring VRF Virtualization

VRF Virtualization allows you to associate a traditional VRF with an SSL VPN context configuration. This feature allows you to apply different configurations and reuse address space for different groups of users in your organization.

- A VRF has been configured in global configuration mode.
- SSL VPN gateway and context configurations are enabled and operational.
- A policy group has been configured and associated with the WebVPN context.

Note

Only a single VRF can be configured for each SSL VPN context configuration.

SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context name
4. vrf-name name
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1 enable</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2 configure terminal</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3 webvpn context name</strong></td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td>Example: Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4 vrf-name name</strong></td>
<td>Associates a VRF with an SSL VPN context.</td>
</tr>
<tr>
<td>Example: Router(config-webvpn-context)# vrf-name vrf1</td>
<td>% IP VRF vrf1 configuration applied.</td>
</tr>
<tr>
<td>% But please use Virtual-Template to configure VRF.</td>
<td></td>
</tr>
<tr>
<td>See the Configuring SSLVPN DVTI Support, page 104 section for the procedure to configure IP features using virtual template.</td>
<td></td>
</tr>
</tbody>
</table>

Configuring ACL Rules

The ACL rules can be overridden for an individual user when the user logs in to the gateway (using AAA policy attributes). If a user session has no ACL attribute configured, all application requests from that user session are permitted by default.

Before configuring the ACL rules, you must have first configured the time range using the time-range command (this prerequisite is in addition to optionally configuring the time range, in the task table, as part of the permit or deny entries).

Note There is no limitation on the maximum number of filtering rules that can be configured for each ACL entry, but keeping the number below 50 should have no significant impact on router performance.
**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `webvpn context name`
4. `acl acl-name`
5. Do one of the following:
   - `permit [url [any | url-string]] [ip | tcp | udp | http | https | cifs] [any | source-ip source-mask] [any | destination-ip destination-mask] [time-range time-range-name] [syslog]`
   - `deny [url [any | url-string]] [ip | tcp | udp | http | https | cifs] [any | source-ip source-mask] [any | destination-ip destination-mask] [time-range time-range-name] [syslog]`
6. `add position acl-entry`
7. `error-url access-deny-page-url`
8. `error-msg message-string`
9. `list`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt;</code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>webvpn context name</code></td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# webvpn context context1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>acl acl-name</code></td>
<td>Defines the ACL and enters WebVPN ACL configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-webvpn-context)# acl acl1</code></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• permit [url [any</td>
</tr>
<tr>
<td></td>
<td>• deny [url [any</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-acl)# permit url any</td>
</tr>
<tr>
<td>Step 6</td>
<td>add position acl-entry</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-acl)# add 3 permit url any</td>
</tr>
<tr>
<td>Step 7</td>
<td>error-url access-deny-page-url</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-acl)# error-url “<a href="http://www.example.com%E2%80%9D">http://www.example.com”</a></td>
</tr>
<tr>
<td>Step 8</td>
<td>error-msg message-string</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-acl)# error-msg “If you have any questions, please contact &lt;a href+<a href="mailto:employee1@example.com">mailto:employee1@example.com</a>&gt;Employee1&lt;/a&gt;.”</td>
</tr>
<tr>
<td>Step 9</td>
<td>list</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-acl)# list</td>
</tr>
</tbody>
</table>

### Purpose

Sets conditions in a named SSL VPN access list that will permit or deny packets.

(Optional) Adds an ACL entry at a specified position.

(Optional) Defines a URL as an ACL violation page.

- If the error-url command is configured, the user is redirected to a predefined URL for every request that is not allowed. If the error-url command is not configured, the user gets a standard, gateway-generated error page.

(Optional) Displays a specific error message when a user logs in and his or her request is denied.

(Optional) Lists the currently configured ACL entries sequentially and assigns a position number.
Associating an ACL Attribute with a Policy Group

**Note**

Associating an ACL attribute for an individual user must be performed as part of a AAA operation.

- The ACL rules can be overridden for an individual user when the user logs in to the gateway (using AAA policy attributes).
- If a user session has no ACL attribute configured, all application requests from that user session are permitted by default.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `webvpn context name`
4. `policy group name`
5. `exit`
6. `acl acl-name`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1 enable</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2 configure terminal</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3 webvpn context name</strong></td>
<td>Configures the SSL VPN context and enters WebVPN context configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4 policy group name</strong></td>
<td>Defines a policy that can be applied to the user and enters WebVPN policy group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# policy group group1</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring and Maintaining ACLs

SUMMARY STEPS

1. enable
2. debug webvpn acl

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 debug webvpn acl</td>
<td>Displays information about ACLs.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug webvpn acl</td>
<td></td>
</tr>
</tbody>
</table>

Configuring SSO Netegrity Cookie Support for a Virtual Context

To configure SSO Netegrity cookie support for a virtual context, perform the following steps.

Note: A Cisco plug-in must first be installed on a Netegrity server.
**SUMMARY STEPS**

1. enable
2. configure terminal
3. webvpn context *name*
4. sso-server *name*
5. web-agent-url *url*
6. secret-key *key-name*
7. max-retry-attempts *number-of-retries*
8. request-timeout *number-of-seconds*

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable         | Enables privileged EXEC mode.  
 | Example:                  | • Enter your password if prompted. |
 | Router> enable            |         |
| **Step 2** configure terminal | Enters global configuration mode. |
 | Example:                  |         |
 | Router# configure terminal |         |
| **Step 3** webvpn context *name* | Enters WebVPN context configuration mode to configure the SSL VPN context. |
 | Example:                  |         |
 | Router(config)# webvpn context context1 |         |
| **Step 4** sso-server *name* | Creates an SSO server name under an SSL VPN context and enters WebVPN SSSO server configuration mode. |
 | Example:                  |         |
 | Router(config-webvpn-context)# sso-server “test-sso-server” |         |
| **Step 5** web-agent-url *url* | Configures the Netegrity agent URL to which SSO authentication requests will be dispatched. |
 | Example:                  |         |
 | Router(config-webvpn-sso-server)# web-agent-url http://www.example.com/webvpn/ |         |
### Command or Action and Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong> secret-key <em>key-name</em></td>
<td>Configures the policy server secret key that is used to secure authentication requests.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-webvpn-sso-server)# secret-key &quot;12345&quot;</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> max-retry-attempts <em>number-of-retries</em></td>
<td>Sets the maximum number of retries before SSO authentication fails.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-webvpn-sso-server)# max-retry-attempts 3</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> request-timeout <em>number-of-seconds</em></td>
<td>Sets the number of seconds before an authentication request times out.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-webvpn-sso-server)# request-timeout 15</code></td>
<td></td>
</tr>
</tbody>
</table>

### Associating an SSO Server with a Policy Group

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `webvpn context name`
4. `policy group name`
5. `sso-server name`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring URL Obfuscation (Masking)

#### SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context *name*
4. policy group *name*
5. mask-urls

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
--- | ---
**Step 3** `webvpn context name` | Configures the SSL VPN context and enters WebVPN context configuration mode.

**Example:**

```
Router(config)# webvpn context context1
```

**Step 4** `policy group name` | Configures a group policy and enters group policy configuration mode.

**Example:**

```
Router(config-webvpn-context)# policy group ONE
```

**Step 5** `mask-urls` | Obfuscates, or masks, sensitive portions of an enterprise URL, such as IP addresses, hostnames, or port numbers.

**Example:**

```
Router(config-webvpn-group)# mask-urls
```

### Adding a CIFS Server URL List to an SSL VPN Context and Attaching It to a Policy Group

Before adding a CIFS server URL list to an SSL VPN context, you must have already set up the Web VPN context using the `webvpn context` command, and you must be in WebVPN context configuration mode.

**SUMMARY STEPS**

1. `cifs-url-list name`
2. heading `text-string`
3. `url-text name`
4. `exit`
5. `policy group name`
6. `cifs-url-list name`
7. `exit`
8. `exit`

**DETAILED STEPS**

| Command or Action | Purpose |
--- | --- |
**Step 1** `cifs-url-list name` | Enters WebVPN URL list configuration mode to configure a list of CIFS server URLs to which a user has access on the portal page of an SSL VPN.

**Example:**

```
Router(config-webvpn-context)# cifs-url-list cl
```
### Command or Action

<table>
<thead>
<tr>
<th>Command/Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong> heading <em>text-string</em></td>
<td>Configures the heading that is displayed above URLs listed on the portal page of an SSL VPN.</td>
</tr>
<tr>
<td>Example: Router(config-webvpn-url)# heading “cifs-url”</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 3** url-text *name* | Adds an entry to a URL list. |
| Example: Router(config-webvpn-url)# url-text “SSLVPN-SERVER2” url-value “\SSLVPN-SERVER2” | • More than one entry can be added by reentering the url-text command for each subsequent entry. |

| **Step 4** exit | Exits WebVPN URL list configuration mode and returns to WebVPN context configuration mode. |
| Example: Router(config-webvpn-url)# exit | |

| **Step 5** policy group *name* | Enters WebVPN group policy configuration mode to configure a group policy. |
| Example: Router(config-webvpn-context)# policy group ONE | |

| **Step 6** cifs-url-list *name* | Attaches a URL list to a policy group. |
| Example: Router(config-webvpn-group)# cifs-url-list “c1” | |

| **Step 7** exit | Exits WebVPN group policy configuration mode. |
| Example: Router(config-webvpn-group)# exit | |

| **Step 8** exit | Exits global configuration mode. |
| Example: Router(config)# exit | |
Configuring User-Level Bookmarks

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `webvpn context name`
4. `user-profile location flash: directory`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>webvpn context name</code></td>
<td>Configures the SSL VPN context and enters WebVPN context configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>user-profile location flash: directory</code></td>
<td>Stores bookmarks on a directory.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# user-profile location flash:webvpn/sslvpn/vpn_context/</td>
<td></td>
</tr>
</tbody>
</table>

Configuring FVRF

To configure FVRF so that the SSL VPN gateway is fully integrated into an MPLS network, perform the following steps.

As the following configuration task shows, IP VRF must be configured before the FVRF can be associated with the SSL VPN gateway. For more information about configuring IP VRF, see the Configuring IP VRF (`ip vrf` command) in the Additional References, page 141 section.
### SUMMARY STEPS

1. enable
2. configure terminal
3. ip vrf vrf-name
4. exit
5. webvpn gateway name
6. vrfname name
7. exit
8. exit

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
• Enter your password if prompted. |
| Example:          |         |
|                   | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example:          |         |
|                   | Router# configure terminal |
| **Step 3** ip vrf vrf-name | Defines a VPN VRF instance and enters VRF configuration mode.  
**Note**: The `vrf-name` argument specified here must be the same as the `name` argument in Step 6. |
| Example:          |         |
|                   | Router(config)# ip vrf vrf_1 |
| **Step 4** exit | Exits VRF configuration mode. |
| Example:          |         |
|                   | Router(config-vrf)# exit |
| **Step 5** webvpn gateway name | Enters WebVPN gateway configuration mode to configure an SSL VPN gateway. |
| Example:          |         |
|                   | Router(config)# webvpn gateway mygateway |
| **Step 6** vrfname name | Associates a VPN FVRF with an SSL VPN gateway.  
**Note**: The value for the `name` argument here must be the same as the value for the `vrf-name` argument in Step 3. |
| Example:          |         |
|                   | Router(config-webvpn-gateway)# vrfname vrf_1 |
Disabling Full-Tunnel Cisco Express Forwarding

Note
The no webvpn cef command disables all Web VPN Cisco Express Forwarding support, not just full-tunnel Cisco Express Forwarding support.

SUMMARY STEPS
1. enable
2. configure terminal
3. no webvpn cef

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong> no webvpn cef</td>
<td>Disables full-tunnel Cisco Express Forwarding support.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# no webvpn cef</td>
</tr>
<tr>
<td></td>
<td>Note  The webvpn cef command is enabled by default.</td>
</tr>
</tbody>
</table>
# Configuring Automatic Authentication and Authorization

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `webvpn context name`
4. `aaa authentication auto`
5. `aaa authorization list name`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1 enable</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2 configure terminal</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3 webvpn context name</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4 aaa authentication auto</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# aaa authentication auto</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5 aaa authorization list name</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>

---

**SSL VPN Configuration Guide, Cisco IOS Release 12.4T**
Configuring SSL VPN Client-Side Certificate-Based Authentication

**SUMMARY STEPS**

1. enable
2. configure terminal
3. `webvpn import svc profile profile-name device-name`
4. `webvpn context context-name`
5. `authentication certificate aaa`
6. `username-prefill`
7. `ca trustpoint trustpoint-name`
8. `match-certificate certificate-name`
9. `policy group policy-name`
10. `svc profile profile-name`
11. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>webvpn import svc profile profile-name device-name</code></td>
<td>Imports an AnyConnect profile.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn import svc profile profile1 flash:AnyconnectProfile.tmpl</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>webvpn context context-name</code></td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>authentication certificate aaa</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;<code>Router(config-webvpn-context)# authentication certificate aaa</code></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enables certificate-based AAA authentication.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>username-prefill</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;<code>Router(config-webvpn-context)# username-prefill</code></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enables trustpoint configuration to prefill the username field from an authentication certificate.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>ca trustpoint trustpoint-name</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;<code>Router(config-webvpn-context)# ca trustpoint trustpoint1</code></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enables the trustpoint to authenticate users using the specified trust point name.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>match-certificate certificate-name</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;<code>Router(config-webvpn-context)# match-certificate certificate1</code></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enables certificate map matching.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>policy group policy-name</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;<code>Router(config-webvpn-context)# policy group policy3</code></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enters WebVPN group policy configuration mode to configure a WebVPN group policy.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>svc profile profile-name</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;<code>Router(config-webvpn-group)# svc profile profile1</code></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enables a WebVPN group policy with an AnyConnect profile.</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>exit</strong>&lt;br&gt;&lt;br&gt;<strong>Example:</strong>&lt;br&gt;<code>Router(config-webvpn-group)# exit</code></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Exits WebVPN group policy mode.</td>
</tr>
</tbody>
</table>
## Configuring a URL Rewrite Splitter

### SUMMARY STEPS

1. enable
2. configure terminal
3. **webvpn context** *name*
4. url rewrite
5. host *host-name*
6. ip *ip-address*
7. unmatched-action [direct-access | redirect]

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <strong>webvpn context</strong> <em>name</em></td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> url rewrite</td>
<td>Allows you to mangle selective URL requests and enters URL rewrite mode. Note You must enter either the <strong>host</strong> command (Step 5) or the <strong>ip</strong> command (Step 6).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# url rewrite</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> host <em>host-name</em></td>
<td>Hostname of the site to be mangled. Note You must enter either the <strong>host</strong> command (Step 5) or the <strong>ip</strong> command (Step 6).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-url-rewrite)# host <a href="http://www.examplecompany.com">www.examplecompany.com</a></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring a Backend HTTP Proxy

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `webvpn context name`
4. `policy group name`
5. `http proxy-server {ip-address | dns-name} port port-number`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>webvpn context name</code></td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# webvpn context context1</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Stateless High Availability with HSRP for SSL VPN

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type slot/port`
4. `standby number ip ip-address`
5. `standby number name standby-name`
6. `exit`
7. `webvpn gateway name`
8. `ip address number port port-number standby name`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type slot/port</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface gateway 0/0</td>
</tr>
<tr>
<td><strong>Step 4</strong> standby number ip ip-address</td>
<td>Configures a standby IP address.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# standby 0 ip 10.1.1.1</td>
</tr>
<tr>
<td><strong>Step 5</strong> standby number name standby-name</td>
<td>Configures a standby name.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# standby 0 name SSLVPN</td>
</tr>
<tr>
<td><strong>Step 6</strong> exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td><strong>Step 7</strong> webvpn gateway name</td>
<td>Enters WebVPN gateway configuration mode to configure an SSL VPN gateway.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# webvpn gateway Gateway1</td>
</tr>
<tr>
<td><strong>Step 8</strong> ip address number port port-number standby name</td>
<td>Configures a standby IP address as the proxy IP address on an SSL VPN gateway.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip address 10.1.1.1 port 443 standby SSLVPN</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> The IP address configured here must be the same as the IP address that was configured as the standby IP address (standby number ip ip-address).</td>
</tr>
</tbody>
</table>

**Configuring Internationalization**

- Generating the Template Browser Attribute File, page 95
- Importing the Browser Attribute File, page 95
- Verifying That the Browser Attribute File Was Imported Correctly, page 96
- Creating the Language File, page 97
- Importing the Language File, page 98
- Verifying That the Language File Was Imported Correctly, page 99
- Creating the URL List, page 99
- Importing the File into the URL List and Binding It to a Policy Group, page 100
- Verifying That the URL List File Was Bound Correctly to the Policy Group, page 102
Generating the Template Browser Attribute File

SUMMARY STEPS

1. enable
2. `webvpn create template browser-attribute device:`
3. Copy the browser attribute file to another device on which you can edit the language being configured.
4. Copy the edited file back to the storage device.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>webvpn create template browser-attribute device:</code></td>
<td>Generates the browser attribute template XML file (battr_tpl.xml).</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# webvpn create template browser-attribute flash:</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> Copy the browser attribute file to another device on which you can edit the language being configured.</td>
<td>For an example of how to copy the file to your PC, see the <strong>Example: Copying the Browser Attribute File to Another PC for Editing</strong>, page 128.</td>
</tr>
<tr>
<td><strong>Step 4</strong> Copy the edited file back to the storage device.</td>
<td>For an example of how to copy the edited file to a storage device, see the <strong>Example: Copying the Edited File to flash</strong>, page 128.</td>
</tr>
</tbody>
</table>

• What to Do Next, page 95

What to Do Next

Proceed to the **Importing the Browser Attribute File**, page 95.

Importing the Browser Attribute File

SUMMARY STEPS

1. enable
2. `configure terminal`
3. `webvpn context name`
4. `browser-attribute import device:file-name`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
• Enter your password if prompted. |

**Example:**

```
Router> enable
```

<table>
<thead>
<tr>
<th><strong>Step 2</strong> configure terminal</th>
<th>Enters global configuration mode.</th>
</tr>
</thead>
</table>

**Example:**

```
Router# configure terminal
```

<table>
<thead>
<tr>
<th><strong>Step 3</strong> webvpn context <em>name</em></th>
<th>Enters WebVPN context configuration mode to configure the SSL VPN context.</th>
</tr>
</thead>
</table>

**Example:**

```
Router(config)# webvpn context context1
```

<table>
<thead>
<tr>
<th><strong>Step 4</strong> browser-attribute import *device:*file-name</th>
<th>Imports the edited browser attribute file from the storage device.</th>
</tr>
</thead>
</table>

**Example:**

```
Router(config-webvpn-context)# browser-attribute import flash:battrTpl.xml
```

-  

**What to Do Next, page 96**

**What to Do Next**

Proceed to the **Verifying That the Browser Attribute File Was Imported Correctly, page 96**.

### Verifying That the Browser Attribute File Was Imported Correctly

#### SUMMARY STEPS

1. enable  
2. show running-config

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
• Enter your password if prompted. |

**Example:**

```
Router> enable
```
**Command or Action** | **Purpose**
--- | ---
**Step 2** | show running-config

Verifies that the browser attribute file was imported correctly.

**Example:**

```
Router# show running-config
```

- What to Do Next, page 97

**What to Do Next**

Proceed to the Creating the Language File, page 97.

**Creating the Language File**

**SUMMARY STEPS**

1. **enable**
2. `webvpn create template language device:`
3. Copy the language lang.js file to a PC for editing.
4. Copy the edited language lang.js file to the storage device.
5. `webvpn create template language {japanese | customize language-name device:file}`

**DETAILED STEPS**

**Command or Action** | **Purpose**
--- | ---
**Step 1** | enable

Enables privileged EXEC mode.

- Enter your password if prompted.

**Example:**

```
Router> enable
```

**Step 2** | `webvpn create template language device:`

Creates the language template file lang.js.

**Note**

A lang.js file does not have to be created if the language is English or Japanese.

**Example:**

```
Router# webvpn create template language flash:
```

**Step 3** | Copy the language lang.js file to a PC for editing.

For an example of how to copy the language file to another PC, see the Example: Copying the Language File to Another PC for Editing, page 129.

**Step 4** | Copy the edited language lang.js file to the storage device.

For an example of how to copy the edited file to the storage device, see the Example: Copying the Edited Language File to the Storage Device, page 129.
### Command or Action | Purpose
--- | ---
**Step 5** `webvpn create template language {japanese | customize language-name device:file}` | Creates templates for multilanguage support for messages initiated by the headend in an SSL VPN.

**Example:**
Router# webvpn create template language japanese

---

**What to Do Next**
Proceed to the **Importing the Language File**, page 98.

### Importing the Language File

**SUMMARY STEPS**
1. `enable`
2. `configure terminal`
3. `webvpn context name`
4. `language {japanese | customize language-name device:file}`

**DETAILED STEPS**

| Command or Action | Purpose |
--- | --- |
**Step 1** `enable` | Enables privileged EXEC mode.  
- Enter your password if prompted.  
**Example:**  
Router> enable  

**Step 2** `configure terminal` | Enters global configuration mode.  
**Example:**  
Router# configure terminal  

**Step 3** `webvpn context name` | Enters WebVPN context configuration mode to configure the SSL VPN context.  
**Example:**  
Router# webvpn context context1
### Command or Action

| Step 4  | language {japanese | customize language-name device:file} | Purpose |
|----------------|-------------------------------------------------|---------|
| **Example:** | Router(config-webvpn-context)# language Japanese | Imports the language file. |

- What to Do Next, page 99

### Verifying That the Language File Was Imported Correctly

**SUMMARY STEPS**

1. enable
2. show running-config

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> show running-config</td>
<td>Verifies that the language file was imported correctly.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# show running-config</td>
<td></td>
</tr>
</tbody>
</table>

- What to Do Next, page 99

### What to Do Next

Proceed to the Creating the URL List, page 99.

### Creating the URL List
SUMMARY STEPS

1. enable
2. `webvpn create template url-list device`
3. Copy the XML file to a PC for editing.
4. Copy the edited url-list XML file back to the storage device.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>webvpn create template url-list device:</code></td>
<td>Creates the url-list template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# webvpn create template url-list flash:</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> Copy the XML file to a PC for editing.</td>
<td>For an example of how to copy an XML file to a PC for editing, see the Example: URL List, page 129.</td>
</tr>
<tr>
<td><strong>Step 4</strong> Copy the edited url-list XML file back to the storage device.</td>
<td>For an example of how to copy the edited url-list XML file back to a storage device, see the Example: URL List, page 129.</td>
</tr>
</tbody>
</table>

- What to Do Next, page 100

What to Do Next

Proceed to the Importing the File into the URL List and Binding It to a Policy Group, page 100.

Importing the File into the URL List and Binding It to a Policy Group

SUMMARY STEPS

1. enable
2. `configure terminal`
3. `webvpn context name`
4. `url-list name`
5. `import device:file`
6. `exit`
7. `policy group group name`
8. `url-list name`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn context name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> url-list name</td>
<td>Enters WebVPN URL list configuration mode to configure a list of URLs to which a user has access on the portal page of an SSL VPN and attaches the URL list to a policy group.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# url-list testlist</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> import device file</td>
<td>Imports the user-defined URL list.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-url)# import flash:testlist</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> exit</td>
<td>Exits WebVPN URL list configuration mode.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-url)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> policy group group name</td>
<td>Enters WebVPN group policy configuration mode to configure a group policy.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# policy group policygroup1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> url-list name</td>
<td>Binds the URL list to the policy group.</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-group)# url-list testlist</td>
<td></td>
</tr>
</tbody>
</table>

- What to Do Next, page 102
What to Do Next

Proceed to the Verifying That the URL List File Was Bound Correctly to the Policy Group, page 102.

Verifying That the URL List File Was Bound Correctly to the Policy Group

SUMMARY STEPS

1. enable
2. show running-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> show running-config</td>
<td>Verifies that the url-list file was bound correctly to the policy group.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# show running-config</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Virtual Template

A virtual template enables SSL VPN to interoperate with IP features such as NAT, firewall, and policy-based routing.

- SSL VPN gateway and context configurations are enabled and operational.
- If a VRF is needed, configure it before creating the virtual template.
- If the virtual template is to be associated with a firewall security zone, create the security zone before creating the virtual template.

**Note**

In order for a virtual template to work with SSL VPN, you must configure the `ip unnumbered` command on the virtual template.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface virtual-template number
4. ip unnumbered type number
5. exit
6. webvpn context name
7. virtual-template number
8. show webvpn context [name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 interface virtual-template number</td>
<td>Creates an interface for the virtual template and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface virtual-template 200</td>
</tr>
<tr>
<td>Step 4 ip unnumbered type number</td>
<td>Enables IP processing on an interface without assigning an explicit IP address to the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip unnumbered GigabitEthernet 0/0</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td>Step 6 webvpn context name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# webvpn context context1</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step 7</th>
<th>virtual-template number</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-webvpn-context)# virtual-template 200</td>
</tr>
</tbody>
</table>

Associates a virtual template with an SSL VPN context.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>show webvpn context [name]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Router# show webvpn context context1</td>
</tr>
</tbody>
</table>

Verifies that the virtual template is configured correctly.

### Configuring SSLVPN DVTI Support

- Configuring per-Tunnel Virtual Templates, page 104
- Configuring per-Context Virtual Templates, page 106

### Configuring per-Tunnel Virtual Templates

Perform this task to configure per-tunnel virtual templates. This task describes how to provide DVTI support for an SSL VPN.

A virtual template is configured with the desired IP features. This virtual template is configured in a WebVPN context on a per-tunnel or per-user basis (because a user will have only one tunnel established at a time). Hence the virtual template configuration is applied on a per-tunnel basis for each SSL VPN full tunnel established in the WebVPN context. This configuration also helps you apply a distinct configuration to each user connecting to the WebVPN context using a AAA server.

The distinct per-user policy configuration is downloaded from the AAA server. This configuration includes group policy attributes and ACLs, and is applied to every user connecting to the WebVPN context on a per-user basis.

If a per-user attribute such as ACL is configured both on the AAA server and the virtual template, then the attribute configured on the AAA server takes precedence. The users logged in to the client computer will have the ACL configuration from the AAA server but will have other configurations, such as firewalls and VRF, from the virtual template. That is, the configuration applied to the users will be a combination of the virtual template configuration and the configuration available on the AAA server.

For example, if IP features such as firewalls, ACLs, and VRF are configured in a virtual template and user attributes such as ACLs are configured on the AAA server, the attributes configured on the AAA server take precedence. The users logged in to the client computer will have the ACL configuration from the AAA server but will have firewall and VRF configurations from the virtual template. That is, the configuration applied to the users will be a combination of virtual templates and AAA, where AAA attributes have a higher priority when there is a configuration conflict.

See the Configuring RADIUS Attribute Support for SSL VPN, page 51 for a list of AAA attributes that support SSL VPN.
### SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context context-name
4. virtual-template interface-number tunnel
5. inservice
6. end

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn context context-name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> virtual-template interface-number tunnel</td>
<td>Associates virtual templates for each full tunnel session.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# virtual-template interface-number tunnel</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> inservice</td>
<td>Enables an SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# inservice</td>
<td></td>
</tr>
</tbody>
</table>

**Note** If a context is already configured and enabled, then you must disable the context using the **no inservice** command, specify the virtual template using the **virtual-template interface-number** command, and then enable the SSL VPN context using the **inservice** command.
### Troubleshooting Tips

Use the following commands to debug any errors that you may encounter when you configure the per-Tunnel Virtual Templates:

- `debug vtemplate { cloning | error | event }`
- `debug webvpn tunnel`

### Configuring per-Context Virtual Templates

This task describes how to configure virtual tunnel interface support on a per-context basis.

A virtual template is configured with IP features such as NAT, firewalls, and PBR. This virtual template is configured in a WebVPN context, and enables SSL VPN to interoperate with the IP features configured. This configuration is applied to all users connecting to that WebVPN context.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `webvpn context context-name`
4. `virtual-template interface-number`
5. `inservice`
6. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

**Example:**

```bash
Router> enable
```
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>webvpn context context-name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>virtual-template interface-number</td>
<td>Associates a virtual template with an SSL VPN context.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-context)# virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>inservice</td>
<td>Enables an SSL VPN context.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-context)# inservice</td>
<td><strong>Note</strong> If a context is already configured and enabled, then you must disable the context using the <code>no inservice</code> command, specify the virtual template using the <code>virtual-template interface-number</code> command, and then enable the SSL VPN context using the <code>inserface</code> command.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
<td>Exits WebVPN context configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-webvpn-context)# end</td>
<td></td>
</tr>
</tbody>
</table>

- Troubleshooting Tips, page 107

### Troubleshooting Tips

Use the following commands to debug any errors that you may encounter when you configure the per-Context Virtual Templates:

- `debug vtemplate {cloning | error | event}`
- `debug webvpn tunnel`

### Configuring SSL VPN Phase-4 Features

- Configuring the Start Before Logon Functionality, page 108
- Configuring Split ACL Support, page 110
Configuring the Start Before Logon Functionality

In order to import the AnyConnect profile to the Cisco IOS headend, the administrator must download the AnyConnect profile from an AnyConnect client (this profile comes by default with AnyConnect), update the UseStartBeforeLogin XML tag available in the profile file to inform AnyConnect to support SBL, and then import the modified profile into the Cisco IOS software.

The secure gateway administrator maintains the AnyConnect profile file and distributes it to the clients. Following is an extract of the Cisco IOS AnyConnect VPN client profile XML file:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<AnyConnectProfile xmlns="http://schemas.xmlsoap.org/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.xmlsoap.org/encoding/
AnyConnectProfile.xsd">
    <ClientInitialization>
        <UseStartBeforeLogon UserControllable="false">true</UseStartBeforeLogon>
    </ClientInitialization>
    <ServerList>
        <HostEntry>
            <HostName>abc</HostName>
            <HostAddress>abc.cisco.com</HostAddress>
        </HostEntry>
    </ServerList>
</AnyConnectProfile>
```

You can select the hosts from the above list.

Data is required to connect to a specific host.

The SBL functionality connects the client PC to the enterprise network even before the users log into the PC. This functionality allows the administrator to run the logon scripts even if the user is not connected to the enterprise network. This is useful for a number of deployment scenarios where the user is outside the physical corporate network and cannot access the resources until his system is connected to the corporate network.

Only an administrator can enable or disable SBL. The end users accessing the client PC are not allowed to enable or disable this functionality.

SSL VPN must have the ability to import profiles on the Cisco IOS software and must be able to send the AnyConnect profile to the client.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. webvpn import svc profile profile-name device-name
4. webvpn context context-name
5. policy group group-name
6. svc profile profile-name
7. svc module module-name
8. end
9. show running-config
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal |
| **Step 3** webvpn import svc profile *profile-name* device-name | Imports the AnyConnect profile to the Cisco IOS headend. |
| **Example:** Router(config)# webvpn import svc profile profile1 flash:newName |
| **Step 4** webvpn context *context-name* | Enters WebVPN context configuration mode to configure the SSL VPN context. |
| **Example:** Router(config)# webvpn context context1 |
| **Step 5** policy group *group-name* | Enters WebVPN group policy configuration mode to configure a group policy. |
| **Example:** Router(config-webvpn-context)# policy group group1 |
| **Step 6** svc profile *profile-name* | Applies the concerned profile to the respective WebVPN group policy. |
| **Example:** Router(config-webvpn-group)# svc profile profile1 |
| **Step 7** svc module *module-name* | Enables the SBL functionality support for the Cisco IOS SSL VPN headend. |
| **Example:** Router(config-webvpn-group)# svc module vpngina |

**Note** Only the vpngina SVC module is supported.
### Command or Action | Purpose
--- | ---
**Step 8** end | Exits WebVPN group policy configuration mode.  
**Note** You must restart your system for the SBL functionality to take effect.

**Example:**
```
Router(config-webvpn-group)# end
```

**Step 9** show running-config | (Optional) Displays the contents of the current running configuration file or the configuration for a specific module, Layer 2 VLAN, class map, interface, map class, policy map, or virtual circuit (VC) class.

**Example:**
```
Router# show running-config
```

- Troubleshooting Tips, page 110

### Troubleshooting Tips
Use the `debug webvpn cookie` command to debug any errors that you may encounter when you configure the SBL functionality.

### Configuring Split ACL Support
Perform this task to configure split ACL support.

When the tunnel is active, Cisco IOS SSL VPN supports the **split include** and **split exclude** commands to filter and classify the traffic based on IP. Because the Cisco IOS software supports ACLs to classify the traffic, standard ACL support is provided to filter the traffic.

#### SUMMARY STEPS
1. enable  
2. configure terminal  
3. ip access-list standard {access-list-number | access-list-name}  
4. permit ip-address  
5. deny ip-address  
6. exit  
7. webvpn context context-name  
8. policy group policy-name  
9. svc split {include | exclude} acl acl-list-name  
10. end  
11. show running-config
# DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip access-list standard {access-list-number</td>
<td>access-list-name}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip access-list standard 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> permit ip-address</td>
<td>Sets conditions to allow packets to pass a named SSL VPN access list.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-std-nacl)# permit 10.0.0.1</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>You can use the <strong>permit</strong> and <strong>deny</strong> commands in any combination, as required.</td>
</tr>
<tr>
<td><strong>Step 5</strong> deny ip-address</td>
<td>Sets conditions in a named SSL VPN access list that will deny packets.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-std-nacl)# deny 10.0.0.2</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>You can use the <strong>permit</strong> and <strong>deny</strong> commands in any combination, as required.</td>
</tr>
<tr>
<td><strong>Step 6</strong> exit</td>
<td>Exits standard ACL configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-std-nacl)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> webvpn context context-name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# webvpn context context1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> policy group policy-name</td>
<td>Enters WebVPN group policy configuration mode to configure a group policy.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-webvpn-context)# policy group default</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring IP NetMask Functionality

The IP NetMask functionality provides SVC or AnyConnect client provision to configure the network mask when the `ip local pool` command is configured on the router. This mask must be a classless mask.

#### SUMMARY STEPS

1. enable
2. configure terminal
3. webvpn context `context-name`
4. policy group `group-name`
5. svc address-pool `pool-name` [netmask `ip-mask`]
6. end
7. show running-config

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong> webvpn context context-name</td>
<td>Enters WebVPN context configuration mode to configure the SSL VPN context.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Router(config)# webvpn context context1</td>
</tr>
<tr>
<td><strong>Step 4</strong> policy group group-name</td>
<td>Enters WebVPN group policy configuration mode to configure a group policy.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Router(config-webvpn-context)# policy group default</td>
</tr>
<tr>
<td><strong>Step 5</strong> svc address-pool pool-name [netmask ip-mask]</td>
<td>Configures the desired netmask on the router.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Router(config-webvpn-group)# svc address-pool pool1 netmask 255.255.0.0</td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Exits WebVPN group policy configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Router(config-webvpn-group)# end</td>
</tr>
<tr>
<td><strong>Step 7</strong> show running-config</td>
<td>(Optional) Displays the contents of the current running configuration file or the configuration for a specific module, Layer 2 VLAN, class map, interface, map class, policy map, or virtual circuit (VC) class.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Router# show running-config</td>
</tr>
</tbody>
</table>

**Configuring the DTLS Port**

DTLS listens on port 443 by default. Perform this task to configure the desired DTLS port.
### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `webvpn gateway gateway-name`
4. `dtls port port-number`
5. `end`
6. `show webvpn session [user user-name] context {context-name | all} [detail]`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** `enable` | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Example:** | router> enable |
| **Step 2** `configure terminal` | Enters global configuration mode. |
| **Example:** | router# configure terminal |
| **Step 3** `webvpn gateway gateway-name` | Enters WebVPN gateway configuration mode to configure a SSL VPN gateway. |
| **Example:** | router(config)# webvpn gateway gateway1 |
| **Step 4** `dtls port port-number` | Configures a DTLS port. |
| **Example:** | router(config-webvpn-gateway)# dtls port 1045 |
| **Step 5** `end` | Exits WebVPN gateway configuration mode. |
| **Example:** | router(config-webvpn-gateway)# end |
Using SSL VPN clear Commands

### Troubleshooting Tips

The `debug webvpn dtls [errors | events | packets]` command can help troubleshoot IOS SSL VPN DTLS support.

### Using SSL VPN clear Commands

This section describes `clear` commands that are used to perform the following tasks:

- Clear NBNS cache information
- Clear remote user sessions
- Clear (or reset) SSL VPN application and access counters

#### SUMMARY STEPS

1. enable
2. clear webvpn nbns [context {name | all}]
3. clear webvpn session [user name] context {name | all}
4. clear webvpn stats [cifs | citrix | mangle | port-forward | sso | tunnel] [context {name | all}]

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> clear webvpn nbns [context {name</td>
<td>all}]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear webvpn nbns context all</td>
<td></td>
</tr>
</tbody>
</table>
Verifying SSL VPN Configurations

This section describes how to use `show` commands to verify the following:

- SSL VPN gateway configuration
- SSL VPN context configuration
- CSD and Cisco AnyConnect VPN Client installation status
- NetBIOS name services information
- SSL VPN group policy configuration
- SSL VPN user session information
- SSL VPN application statistics
- SSLVPN DVTI Support configuration

**SUMMARY STEPS**

1. `enable`
2. `show webvpn context [name]`
3. `show webvpn gateway [name]`
4. `show webvpn install [file name] package [csd | svc] status [csd | svc]`
5. `show webvpn nbns context [all | name]`
6. `show webvpn policy group [name] context [all | name]`
7. `show webvpn session [user name] context [all | name]`
8. `show webvpn stats [cifs | citrix | mangle | port-forward | sso | tunnel] [detail] [context [all | name]]`
9. `show webvpn context [context-name | brief]`
10. `show interface virtual-access interface-number`
11. `show webvpn session [user user-name] context [context-name | all] [detail]`
12. `show running-config interface virtual-access interface-number`
## Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router&gt; enable</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong> show webvpn context [name]</td>
<td>Displays the operational status and configuration parameters for SSL VPN context configurations.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router# show webvpn context</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong> show webvpn gateway [name]</td>
<td>Displays the status of the SSL VPN gateway.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router# show webvpn gateway</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong> show webvpn install {file name</td>
<td>package {csd</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router# show webvpn install status csd</strong></td>
</tr>
<tr>
<td><strong>Step 5</strong> show webvpn nbns context {all</td>
<td>name}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router# show webvpn nbns context all</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong> show webvpn policy group name context {all</td>
<td>name}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router# show webvpn policy group ONE context all</strong></td>
</tr>
<tr>
<td><strong>Step 7</strong> show webvpn session [user name] context {all</td>
<td>name}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router# show webvpn session context all</strong></td>
</tr>
</tbody>
</table>
### Using SSL VPN Debug Commands

To monitor and manage your SSL VPN configurations, perform the following steps.

#### SUMMARY STEPS

1. enable
2. debug webvpn [verbose] [aaa | acl | cifs | citrix | verbose] [cookie | verbose] [count | csd | data | dns | emweb | state | entry context-name [source ip [network-mask]] | user username | http [authentication | trace | verbose] | package | sdps [level number] | sock [flow] | sso | timer | trie | tunnel [traffic acl-number | verbose] | url-disp | webservice [verbose]]

---

**Command or Action** | **Purpose**
--- | ---
**Step 8** show webvpn stats [cifs | citrix | mangle | port-forward | sso | tunnel] [detail] [context [all | name]] | Displays SSL VPN application and network statistics.
**Example:**
Router# show webvpn stats tunnel detail context all

**Step 9** show webvpn context [context-name | brief] | (Optional) Displays the operational status and configuration parameters for SSL VPN context configurations.
**Example:**
Router# show webvpn context brief

**Step 10** show interface virtual-access interface-number | (Optional) Displays detailed information about the virtual access interface.
**Example:**
Router# show interface virtual-access 1

**Step 11** show webvpn session [user user-name] [context [context-name | all]] [detail] | (Optional) Displays SSL VPN user session information.
**Example:**
Router# show webvpn session user user1 context all

**Step 12** show running-config interface virtual-access interface-number | (Optional) Displays the configuration applied on the virtual access interface.
**Example:**
Router# show running-config interface virtual-access 1
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables the display of debug information for SSL VPN applications and network activity.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug webvpn</td>
</tr>
</tbody>
</table>

**Configuration Examples for SSL VPN**

- Example: Configuring a Generic SSL VPN Gateway, page 120
- Example: Configuring an ACL, page 120
- Example: Configuring HTTP Proxy, page 120
- Example: Configuring Microsoft File Shares for Clientless Remote Access, page 121
- Example: Configuring Citrix Application Support for Clientless Remote Access, page 121
- Example: Configuring Application Port Forwarding, page 121
- Example: Configuring VRF Virtualization, page 122
- Example: RADIUS Accounting for SSL VPN Sessions, page 122
- Example: URL Obfuscation (Masking), page 123
- Example: Adding a CIFS Server URL List and Attaching It to a Policy List, page 123
- Example: Typical SSL VPN Configuration, page 123
- Example: Cisco Express Forwarding-Processed Packets, page 125
- Example: Multiple AnyConnect VPN Client Package Files, page 125
- Example: Local Authorization, page 126
- Example: URL Rewrite Splitter, page 126
- Example: Backend HTTP Proxy, page 127
- Example: Stateless High Availability with HSRP, page 127
- Example: Internationalization, page 127
- Example: Virtual Template, page 130
- Example: SSL VPN DVTI Support, page 130
- Example: SSL VPN Phase-4 Features, page 134
- Example: Debug Command Output, page 135
- Example: Show Command Output, page 135
Example: Configuring a Generic SSL VPN Gateway

The following output example shows that a generic SSL VPN gateway has been configured in privileged EXEC mode:

```conf
test example: Configuring a Generic SSL VPN Gateway

webvpn gateway SSL_gateway2
  ip address 10.1.1.1 port 442
  ssl trustpoint TP_self_signed _4138349635
  inservice

webvpn context SSL_gateway2
  ssl authenticate verify all

policy group default
default-group-policy default
gateway SSL_gateway2
inservice
```

Example: Configuring an ACL

The following output example shows the ACL is “acl1.” It has been associated with policy group “default.”

```conf
test example: Configuring an ACL

webvpn context context1
  ssl authenticate verify all
!
  acl "acl1"
  error-msg "warning!!!..."
  permit url "http://www.example1.com"
  deny url "http://www.example2.com"
  permit http any any
!
  nbns-list l1
  nbns-server 10.1.1.20
!
  cifs-url-list "c1"
  heading "cifs-url"
  url-text "SSL VPN-SERVER2" url-value "\\SSL VPN-SERVER2"
  url-text "SSL-SERVER2" url-value "\\SSL-SERVER2"
!
  policy group default
  acl "acl1"
  cifs-url-list "c1"
  nbns-list "l1"
  functions file-access
  functions file-browse
  functions file-entry
  default-group-policy default
gateway public
inservice
```

Example: Configuring HTTP Proxy

The following output example shows that HTTP proxy has been configured and that the portal (home) page from URL "http://www.example.com" will automatically download the home page of the user:

```conf
test example: Configuring HTTP Proxy

webvpn context myContext
  ssl authenticate verify all
!
! port-forward "email"
  local-port 20016 remote-server "ssl-server1.SSL example1.com" remote-port 110
description "POP-ssl-server1"
```
Example: Configuring Microsoft File Shares for Clientless Remote Access

NBNS Server List Example

The following example, starting in global configuration mode, configures a server list for NBNS resolution:

```
Router(config)# webvpn context context1
Router(config-webvpn-context)# nbns-list SERVER_LIST
Router(config-webvpn-nbnslist)# nbns-server 172.16.1.1 master
Router(config-webvpn-nbnslist)# nbns-server 172.16.2.2 timeout 10 retries 5
Router(config-webvpn-nbnslist)# nbns-server 172.16.3.3 timeout 10 retries 5
Router(config-webvpn-nbnslist)# exit
```

File Share Permissions Example

The following example attaches the server list to and enables full file and network access permissions for policy group ONE:

```
Router(config-webvpn-context)# policy group ONE
Router(config-webvpn-group)# nbns-list SERVER_LIST
Router(config-webvpn-group)# functions file-access
Router(config-webvpn-group)# functions file-browse
Router(config-webvpn-group)# functions file-entry
Router(config-webvpn-group)# end
```

Example: Configuring Citrix Application Support for Clientless Remote Access

The following example, starting in global configuration mode, enables Citrix application support for remote users with a source IP address in the 192.168.1.0/24 network:

```
Router(config)# access-list 100 permit ip 192.168.1.0 0.255.255.255 any
Router(config)# webvpn context context1
Router(config-webvpn-context)# policy group ONE
Router(config-webvpn-group)# citrix enabled
Router(config-webvpn-group)# filter citrix 100
```

Example: Configuring Application Port Forwarding

The following example, starting in global configuration mode, configures port forwarding for well-known e-mail application port numbers:

```
Router(config)# webvpn context context1
Router(config-webvpn-context)# port-forward EMAIL
Router(config-webvpn-port-fwd)# local-port 30016 remote-server mail1.company.com remote-port 110 description POP3
Router(config-webvpn-port-fwd)# local-port 30017 remote-server mail2.company.com remote-port 25 description SMTP
Router(config-webvpn-port-fwd)# local-port 30018 remote-server mail3.company.com remote-port 143 description IMAP
Router(config-webvpn-port-fwd)# exit
Router(config-webvpn-context)# policy group ONE
Router(config-webvpn-group)# port-forward EMAIL
Router(config-webvpn-group)# end
```
Example: Configuring VRF Virtualization

The following example, starting in global configuration mode, associates the VRF under the SSL VPN context configuration:

```
Router(config)# ip vrf vrf1
Router(config-vrf)# rd 10.100.100.1:1
Router(config-vrf)# exit
Router(config)# webvpn context context1
Router(config-webvpn-context)# policy group group1
Router(config-webvpn-context)# default-group-policy policy1
Router(config-webvpn-context)# vrf-name vrf2
Router(config-webvpn-context)# end
```

When you configure the VRF Virtualization feature in Cisco IOS Release 12.4(24)T1 and later releases, the following message is displayed:

```
% IP VRF vrf1 configuration applied.
% But please use Virtual-Template to configure VRF.
```

See the SSLVPN DVTI Support, page 27 for an example on how to use a virtual template to configure a VRF.

Example: RADIUS Accounting for SSL VPN Sessions

The following example shows that RADIUS accounting has been configured for SSL VPN user sessions:

```
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname host1
!
aaa new-model
!
!
aaa accounting network SSL VPN aaa start-stop group radius
aaa accounting update periodic 1
aaa session-id common
ip subnet-zero
ip cef
!
!
no ip domain lookup
ip domain name cisco.com
ip name-server 172.16.2.133
ip name-server 172.16.11.48
!
line con 0
exec-timeout 0 0
line aux 0
line vty 0 4
!
webvpn gateway GW1
ip address 172.19.216.141 port 443
inservice
!
webvpn gateway SSL VPN
no inservice
!
webvpn install svc flash:/webvpn/svc.pkg
webvpn aaa accounting-list SSL VPNaaa
!
```
Example: URL Obfuscation (Masking)

The following output example shows that URL obfuscation (masking) has been configured for policy group “gp_urlobf.”

```plaintext
! policy group gp_urlobf
  mask-urls
default-group-policy gp_urlobf
gateway gw
domain dom
inservice
!
```

Example: Adding a CIFS Server URL List and Attaching It to a Policy List

The following example shows that the CIFS server URLs "SSLVPN-SERVER2" and "SSL-SERVER2" have been added as portal page URLs to which a user has access. The example also shows that the two servers are attached to a policy group.

```plaintext
webvpn context context_1
ssl authenticate verify all
! acl "acl1"
  error-msg "Warning!!!..."
  permit url "http://www.example1.com"
  deny url "http://www.example2.com"
  permit http any any
!
nbns-list l1
nbns-server 10.1.1.20
!
cifs-url-list "c1"
  heading "cifs-url"
  url-text "SSLVPN-SERVER2" url-value "\SSLVPN-SERVER2"
  url-text "SSL-SERVER2" url-value "\SSL-SERVER2"
!
policy group default
  acl "acl1"
cifs-url-list "c1"
nbns-list "l1"
functions file-access
functions file-browse
functions file-entry
default-group-policy default
gateway public
inservice
!
```

Example: Typical SSL VPN Configuration

The following is an example of an SSL VPN configuration that includes most of the features that are available using SSL VPN:

```plaintext
hostname sslvpn
```
aaa new-model
aaa authentication login default local group radius

crypto pki trustpoint Gateway
    enrollment selfsigned
    ip-address 192.168.22.13
    revocation-check crl
    rsakeypair keys 1024 1024

crypto pki certificate chain Gateway
certificate self-signed 02

interface Loopback0
    ip address 10.10.10.1 255.255.255.0

interface GigabitEthernet0/1
    ip address 192.168.22.14 255.255.255.0 secondary
    ip address 192.168.22.13 255.255.255.0
duplex auto
    speed auto
    media-type rj45

ip local pool svc-pool 10.10.10.100 10.10.10.110

ip radius source-interface FastEthernet1/1

webvpn gateway ssl-vpn
    ip address 192.168.22.13 port 443
    http-redirect port 80
    ssl trustpoint Gateway
    inservice

The following line is required for SSLVPN Client.
webvpn install svc flash:/webvpn/svc.pkg

The following line is required for Cisco Secure Desktop.
webvpn install csd flash:/webvpn/sdesktop.pkg

webvpn context ssl-vpn
    ssl authenticate verify all
    !
    url-list "sslvpn-dt"
    url-text "sslvpn-dt" url-value "http://10.1.1.40"
    url-text "Exchange Server" url-value "http://10.1.1.40/exchange"
    !
    sso-server "netegrity"
    web-agent-url "http://10.1.1.37/vpauth/"
    secret-key "sslvpn1"
    retries 3
    timeout 15
    !
    nbns-list cifs
    nbns-server 10.1.1.40
    !
    port-forward "mail_test"
    local-port 30016 remote-server "example1.com" remote-port 143 description "IMAP-test"
    local-port 30017 remote-server "example2.com" remote-port 110 description "POP3-test"
    local-port 30018 remote-server "example3.com" remote-port 25 description "SMTP-test"
    !
    policy group default
    ! The following line applies the URL list.
    url-list "sslvpn-dt"
Example: Cisco Express Forwarding-Processed Packets

The following output example from the `show webvpn stats` command shows information about Cisco Express Forwarding-processed packets:

```
Router# show webvpn stats
User session statistics:
Active user sessions       : 56         AAA pending reqs           : 0
Peak user sessions         : 117        Peak time                  : 00:13:19
Active user TCP conns      : 0         Terminated user sessions    : 144
Session alloc failures     : 0         Authentication failures    : 0
VPN session timeout        : 0         VPN idle timeout           : 0
User cleared VPN sessions  : 0      Exceeded ctx user limit        : 0
Exceeded total user limit  : 0
Client process rcvd pkts   : 1971       Server process rcvd pkts   : 441004
Client process sent pkts   : 921291     Server process sent pkts   : 2013
Client CEF received pkts   : 1334       Server CEF received pkts   : 951610
Client CEF rcv punt pkts   : 0          Server CEF rcv punt pkts   : 779
Client CEF sent pkts       : 1944439    Server CEF sent pkts       : 0
Client CEF sent punt pkts  : 21070      Server CEF sent punt pkts  : 0
```

Example: Multiple AnyConnect VPN Client Package Files

The following example shows that three AnyConnect VPN Client packages have been installed to a gateway and shows the resulting `show webvpn install` command output:

```
Router(config)# webvpn install svc vpn1_i386-Release-2.0.0077-k9.pkg sequence 6
Router(config)# webvpn install svc vpn2_powerpc-Release-2.0.0077-k9.pkg sequence 8
Router(config)# webvpn install svc svc_1.pkg sequence 4
Router# show webvpn install status svc
SSLVPN Package SSL-VPN-Client version installed:  
CISCO STC win2k+  
2,0,0148  
SSLVPN Package SSL-VPN-Client version installed:  
CISCO STC Darwin_i386  
2,0,0  
Wed Nov 8 04:01:57 MST 2006  
SSLVPN Package SSL-VPN-Client version installed:  
CISCO STC Darwin_powerpc
```
The following example shows that three AnyConnect VPN client packages have been configured and typical output from the `show running-config` command:

```
Router# show running-config | begin webvpn
webvpn install svc flash:/webvpn/svc_4.pkg sequence 4
webvpn install svc flash:/webvpn/svc_6.pkg sequence 6
webvpn install svc flash:/webvpn/svc_9.pkg sequence 9
```

**Example: Local Authorization**

The following example shows that local authorization has been configured:

```
aaa new-model
aaa authentication login default local
aaa authorization network default local
aaa attribute list l2
    attribute type banner "user2"
aaa attribute list l1
    attribute type banner "user1"
    attribute type urllist-name "my-url-list"
username user1 password 0 passwd1
username user1 aaa attribute list l1
username user2 password 0 passwd2
username user2 aaa attribute list l2
webvpn context best
    ssl authenticate verify all
    url-list "my-url-list"
        heading "external url"
        url-text "example" url-value "http://www.example.com"
    policy group default
default-group-policy default
aaa authorization list default
gateway public domain d1
    inservice
```

**Example: URL Rewrite Splitter**

The following example shows that URL mangling has been configured for a specific host and IP address. The unmatched action has been defined as direct access.

```
webvpn context e1
    url rewrite
        host "www.example.com"
        ip 10.1.0.0 255.255.0.0
        unmatched-action direct-access
```
Example: Backend HTTP Proxy

The following example shows that a backend HTTP proxy has been configured:

webvpn context e1
! policy group g1
  http proxy-server "192.0.2.0" port 2034
default-group-policy g1

Example: Stateless High Availability with HSRP

The figure below shows the topology of a typical stateless high availability with HSRP setup. Router 1 and Router 2 are configured for HSRP on gateway Webvpn. The example following the figure below shows the actual configuration.

**Figure 15** Stateless High Availability with HSRP Setup

**Router 1 Configuration**

Router(config)# interface gateway 0/1
Router(config-if)# standby 0 ip 10.1.1.1
Router(config-if)# standby 0 name SSLVPN
Router(config-if)# exit
Router(config)# webvpn gateway Webvpn
Router(config-webvpn-gateway)# ip address 10.1.1.1 port 443 standby SSLVPN

**Router 2 Configuration**

Router(config)# interface gateway 0/0
Router(config-if)# standby 0 ip 10.1.1.1
Router(config-if)# standby 0 name SSLVPN2
Router(config-if)# exit
Router(config)# webvpn gateway Webvpn
Router(config-webvpn-gateway)# ip address 10.1.1.1 port 443 standby SSLVPNhigh2

Example: Internationalization

- Example: Generated Browser Attribute Template, page 128
- Example: Copying the Browser Attribute File to Another PC for Editing, page 128
- Example: Copying the Edited File to flash, page 128
Example: Generated Browser Attribute Template

The following is an example of a generated browser attribute template:

```xml
<?xml version="1.0" encoding="utf-8"?>
<!--
 - Template file for browser attributes import
 <color> - primary color
 <scolor> - secondary color
 <tcolor> - text color
 <stcolor> - secondary text color
 <lmsg> - login message
 <title> - browser title
 <ticolor> - title color
 Default value will be used if the field is not defined
 Copyright (c) 2007-2008 by Cisco Systems, Inc. All rights reserved.
-->
<settings>
  <color>#003333</color>
  <scolor>#336666</scolor>
  <tcolor>white</tcolor>
  <stcolor>black</stcolor>
  <lmsg>Welcome to Cisco Systems WebVPN Service</lmsg>
  <title>WebVPN Service</title>
  <ticolor>#003333</ticolor>
</settings>
```

Example: Copying the Browser Attribute File to Another PC for Editing

The following example shows how to copy a browser attribute file to another PC for editing:

```
Router# copy flash: tftp:
Source filename [battr_tpl.xml]
Address or name of remote host []? 10.1.1.30
Destination filename [battr_tpl.xml]
!!
677 bytes copied in 0.004 secs (169250 bytes/sec)
```

Example: Copying the Edited File to flash

The following example shows how to copy an edited attribute file to flash:

```
Router# copy tftp://directory/edited_battr_tpl.xml flash:
```

Example: Output Showing That the Edited File Was Imported

The following `show running-config` output shows that the browser attribute file was correctly copied to flash:

```
Router# show running-config
```
Example: Copying the Language File to Another PC for Editing

The following example shows how to copy a language file to another PC for editing:

Router# `copy flash: tftp`
Source filename `lang.js`?
Address or name of remote host `10.1.1.30`?
Destination filename `lang.js`?
!!
10649 bytes copied in 0.028 secs (380321 bytes/sec)

Example: Copying the Edited Language File to the Storage Device

The following example shows how to copy the edited language file to flash:

Router# `copy tftp://directory/edited_lang.js flash`

Example: Language Template Created

The following `show running-config` command output shows that the language file "lang.js" has been imported correctly:

Router# `show running-config`
```
policy group default
  functions file-access
  functions file-browse
  functions file-entry
  functions svc-enabled
  mask-urls
  svc address-pool "mypool"
  svc keep-client-installed
  svc split include 10.1.1.0 255.255.255.0
  default-group-policy default
gateway g
language customize mylang flash:lang.js
inservice
```

Example: URL List

The following example shows that the URL list template file has been copied to another PC for editing:

Router# `copy flash: tftp`
Source filename `url_list_tpl.xml`?
Address or name of remote host `10.1.1.30`?
Destination filename `url_list_tpl.xml`?

The following example shows that the URL template file has been copied to flash:

Router# `copy tftp://directory/edited_url_list_tpl.xml flash`
flash:

The following `show running-config` command output shows that URL list file has been imported into the `url-list` and that it has been bound to the policy group:

Router# `show running-config`
Example: Virtual Template

The following configuration and output examples display various aspects of the virtual template feature. The following example, starting in global configuration mode, creates a virtual template and associates it with an SSL VPN context configuration. It also configures the virtual template for VRF and NAT:

Router(config)# interface virtual-template 100
Router(config-if)# ip unnumbered GigabitEthernet 0/0
Router(config-if)# ip vrf forwarding vrf1
Router(config-if)# ip nat inside
Router(config-if)# exit
Router(config)# webvpn context context1
Router(config-webvpn-context)# virtual-template 100
Router(config-webvpn-context)# exit

The following example creates a virtual template and associates it with a security zone:

Router(config)# interface virtual-template 200
Router(config-if)# ip unnumbered GigabitEthernet 0/0
Router(config-if)# zone-member security vpn
Router(config-if)# exit
Router(config)# webvpn context context2
Router(config-webvpn-context)# virtual-template 200
Router(config-webvpn-context)# exit

Example: SSL VPN DVTI Support

- Example: Configuring per-Tunnel Virtual Templates, page 130
- Example: Configuring per-Context Virtual Templates, page 133

Example: Configuring per-Tunnel Virtual Templates
The figure below shows an example network where remote users User1 and User2 belong to a context called Context1, User3 belongs to a context called Context2, and they connect to the SSL VPN gateway and access the backend server in the corporate network.

**Figure 16  Topology Showing a per-Tunnel Virtual Template**

This section contains the following examples:

- Example: Configuring in the per-Tunnel Context Using Virtual Templates, page 131
- Example: Configuring in the per-Tunnel Context Using Virtual Templates and a AAA Server, page 132

**Example: Configuring in the per-Tunnel Context Using Virtual Templates**

The following example shows how to apply VRF, a firewall policy, and ACLs to each user based on the virtual template configuration.

If the VRF, firewall policy, and ACL features are configured in the virtual template and user policies are not configured on the AAA server, then only the IP features configured in the virtual template are applied to the users. In this example, User1 and User2 belonging to Context1 have zone1, vrf1, and ACL 1 configured whereas User3 belonging to Context2 has zone3, vrf3, and ACL 3 configured. Hence, different users have different IP features configured.

**Virtual Template for User1 and User2**

```config
configure terminal
  interface virtual-template 1
  zone-member security zone1
  ip vrf forwarding vrf1
  ip access-group 1 in
  ip unnumbered GigabitEthernet 0/1
```

**Virtual Template for User3**

```config
configure terminal
  interface virtual-template 3
```

SSL VPN Configuration Guide, Cisco IOS Release 12.4T 131
Example: Configuring in the per-Tunnel Context Using Virtual Templates and a AAA Server

The following example shows how to apply the IP feature configuration to the users based on the user-specific configuration available on the AAA server. The user-specific attributes configured on the AAA server are applied to the users when an SSL VPN session establishes a virtual tunnel. The configuration applied to the users will be a combination of the configurations in the virtual template and the AAA server, where AAA attributes have a higher priority when there is a configuration conflict.

In this example, ACL 1 is configured for User1, ACL 2 is configured for User2, and ACL 3 is configured for User3 on the AAA server using the `inacl` attribute. Even though ACL 4 is applied to all the users in the virtual template, User1 has ACL 1, User2 has ACL 2, and User3 has ACL 3 configured along with zone and VRF configurations available in the virtual template.

**Virtual Template for User1 and User2**

```plaintext
configure terminal
interface virtual-template 1
zone-member security zone1
ip vrf forwarding vrf1
ip access-group 4 in
ip unnumbered GigabitEthernet 0/1
```

**Virtual Template for User3**

```plaintext
configure terminal
interface virtual-template 3
zone-member security zone3
ip vrf forwarding vrf3
ip access-group 4 in
ip unnumbered GigabitEthernet 0/1
```

SSL VPN

Example: Configuring in the per-Tunnel Context Using Virtual Templates and a AAA Server

The following example shows how to apply the IP feature configuration to the users based on the user-specific configuration available on the AAA server. The user-specific attributes configured on the AAA server are applied to the users when an SSL VPN session establishes a virtual tunnel. The configuration applied to the users will be a combination of the configurations in the virtual template and the AAA server, where AAA attributes have a higher priority when there is a configuration conflict.

In this example, ACL 1 is configured for User1, ACL 2 is configured for User2, and ACL 3 is configured for User3 on the AAA server using the `inacl` attribute. Even though ACL 4 is applied to all the users in the virtual template, User1 has ACL 1, User2 has ACL 2, and User3 has ACL 3 configured along with zone and VRF configurations available in the virtual template.

**Virtual Template for User1 and User2**

```plaintext
configure terminal
interface virtual-template 1
zone-member security zone1
ip vrf forwarding vrf1
ip access-group 4 in
ip unnumbered GigabitEthernet 0/1
```

**Virtual Template for User3**

```plaintext
configure terminal
interface virtual-template 3
zone-member security zone3
ip vrf forwarding vrf3
ip access-group 4 in
ip unnumbered GigabitEthernet 0/1
```

SSL VPN Configuration Guide, Cisco IOS Release 12.4T

132
Note
You can configure different IP feature commands in the virtual template to configure SSL VPN interoperability with different IP features.

Example: Configuring per-Context Virtual Templates

The following figure shows remote users User1 and User2 belonging to context1 and User3 belonging to context2, connecting to the SSL VPN gateway and accessing the backend server in the corporate network. Here, the IP feature configuration is applied to each user based on the configuration applied to the WebVPN context of the user.

**Figure 17** Topology Showing a per-Context Virtual Template

The following example shows how to apply VRF and a firewall policy to each user based on the WebVPN context of the user. In this example, User1 and User 2 connected to Context1 have zone1 and vrf1 configured on the virtual template 1, and User3 connected to Context2 has zone2 and vrf2 configured on virtual template 2.

**Virtual Template for User1**

```plaintext
configure terminal
interface virtual-template 1
zone-member security zone1
ip vrf forwarding vrf1
ip unnumbered GigabitEthernet 0/1
```

**Virtual Template for User2**

```plaintext
configure terminal
interface virtual-template 2
```
zone-member security zone2
ip vrf forwarding vrf2
ip unnumbered GigabitEthernet 0/1

**WebVPN Context for User1**

configure terminal
webvpn context context1
 virtual-template 1
 inservice

**WebVPN Context for User2**

configure terminal
webvpn context context2
 virtual-template 2
 inservice

---

**Note**

You can configure different IP features in the virtual template to configure SSL VPN interoperability with different IP features.

---

**Example: SSL VPN Phase-4 Features**

- Example: Configuring the Start Before Logon Functionality, page 134
- Example: Configuring Split ACL Support, page 134
- Example: Configuring IP NetMask Functionality, page 135

---

**Example: Configuring the Start Before Logon Functionality**

The following example shows how to configure SBL functionality:

```plaintext
enable
configure terminal
webvpn import svc profile profile1 flash:newName
policy group group1
 svc profile profile1
end
```

**Example: Configuring Split ACL Support**

The following example shows how to configure split ACL support:

```plaintext
enable
configure terminal
ip access-list standard 1
 permit 10.0.0.1
 deny 10.0.0.2
 exit
webvpn context context1
 policy group policy1
 svc split include acl 1
end
```
Example: Configuring IP NetMask Functionality

The following example shows how to configure IP netmask functionality:

```
enable
configure terminal
webvpn context context1
policy group policy1
svc address-pool pool1 netmask 255.255.0.0
end
```

Example: Debug Command Output

- Example: Configuring SSO, page 135

Example: Configuring SSO

The following output example displays ticket creation, session setup, and response handling information for an SSO configuration:

```
Router# debug webvpn sso
*Jun 12 20:37:01.052: WV_SSO: Set session cookie with SSO redirect
*Jun 12 20:37:01.056: WV-SSO: Set SSO auth flag
*Jun 12 20:37:01.056: WV-SSO: Attach credentials - building auth ticket
*Jun 12 20:37:01.060: WV-SSO: user: [user11], secret: [secret123], version: [1.0], login time: [C077F97A], SHA1 hash: [B07D0A924DB33988D423AE9F937C1C5A66404819]
*Jun 12 20:37:01.060: WV-SSO: auth_ticket:
user11:1.0@C077F97A@C077F97A@BCEFC86D0B07D0A924DB33988D423AE9F937C1C5A66404819
*Jun 12 20:37:01.060: WV-SOO: Base64 credentials for the auth_ticket:
dXNlcjExOjEuMEBDMDc3Rjk3QUBCQ0VGQzg2REBCMDdEMEE5MjREQjMzOTg4RDQyM0FFOUY5MzdDMUM1QTY2ND44
*Jun 12 20:37:01.060: WV-SOO: Decoded credentials =
user11:1.0@C077F97A@C077F97A@BCEFC86D0B07D0A924DB33988D423AE9F937C1C5A66404819
*Jun 12 20:37:01.060: WV-SOO: Starting SSO request timer for 15-second
*Jun 12 20:37:01.572: WV-SOO: SSO auth response rcvd - status[200]
*Jun 12 20:37:01.572: WV-SOO: Parsed non-SM cookie: SMCHALLENGE
*Jun 12 20:37:01.576: WV-SOO: Parsed SSMSESSION cookie
*Jun 12 20:37:01.576: WV-SOO: Sending logon page after SSO auth success
```

Example: Show Command Output

- Example: show webvpn context, page 136
- Example: show webvpn context name, page 136
- Example: show webvpn gateway, page 136
- Example: show webvpn gateway name, page 136
- Example: show webvpn install file, page 137
- Example: show webvpn install package svc, page 137
- Example: show webvpn install status svc, page 137
- Example: show webvpn nbns context all, page 137
- Example: show webvpn policy, page 138
- Example: show webvpn policy (with NTLM Disabled), page 138
- Example: show webvpn session, page 138
Example: show webvpn context

The following is sample output from the `show webvpn context` command:

```
Router# show webvpn context
Codes: AS - Admin Status, OS - Operation Status
VHost - Virtual Host
Context Name      Gateway  Domain/VHost  VRF      AS    OS
----------------- -------  ------------  -------  ----  --------
Default_context   n/a      n/a           n/a      down down
con-1             gw-1     one            -        up   up
con-2             -        -              -        up   down
```

Example: show webvpn context name

The following is sample output from the `show webvpn context` command, entered with the name of a specific SSL VPN context:

```
Router# show webvpn context context1
Admin Status: up
Operation Status: up
CSD Status: Disabled
Certificate authentication type: All attributes (like CRL) are verified
AAA Authentication List not configured
AAA Authentication Domain not configured
Default Group Policy: PG_1
Associated WebVPN Gateway: GW_ONE
Domain Name: DOMAIN_ONE
Maximum Users Allowed: 10000 (default)
NAT Address not configured
VRF Name not configured
```

Example: show webvpn gateway

The following is sample output from the `show webvpn gateway` command:

```
Router# show webvpn gateway
Gateway Name admin   Operation
---------- ------ -------
GW_1       up      up
GW_2       down    down
```

Example: show webvpn gateway name

The following is sample output from the `show webvpn gateway` command, entered with a specific SSL VPN gateway name:

```
Router# show webvpn gateway GW_1
Admin Status: up
Operation Status: up
IP: 10.1.1.1, port: 443
SSL Trustpoint: TP-self-signed-26793562
```
Example: show webvpn install file

The following is sample output from the show webvpn install command, entered with the file keyword:

```
Router# show webvpn install file \webvpn\stc\version.txt
SSL VPN File \webvpn\stc\version.txt installed:
CISCO STC win2k+ 1.0.0
1,1,0,116
Fri 06/03/2005 03:02:46.43
```

Example: show webvpn install package svc

The following is sample output from the show webvpn install command, entered with the package svc keyword:

```
Router# show webvpn install package svc
SSL VPN Package SSL-VPN-Client installed:
File: \webvpn\stc\1\binaries\detectvm.class, size: 555
File: \webvpn\stc\1\binaries\java.htm, size: 309
File: \webvpn\stc\1\binaries\main.js, size: 8049
File: \webvpn\stc\1\binaries\ocx.htm, size: 244
File: \webvpn\stc\1\binaries\setup.cab, size: 176132
File: \webvpn\stc\1\binaries\stc.exe, size: 94696
File: \webvpn\stc\1\binaries\stcjava.class, size: 7166
File: \webvpn\stc\1\binaries\stcjava.jar, size: 4846
File: \webvpn\stc\1\binaries\stcweb.cab, size: 13678
File: \webvpn\stc\1\binaries\update.txt, size: 11
File: \webvpn\stc\1\empty.html, size: 153
File: \webvpn\stc\1\images\alert.gif, size: 2042
File: \webvpn\stc\1\images\buttons.gif, size: 1842
File: \webvpn\stc\1\images\loading.gif, size: 313
File: \webvpn\stc\1\images\title.gif, size: 2739
File: \webvpn\stc\1\index.html, size: 4725
File: \webvpn\stc\2\index.html, size: 325
File: \webvpn\stc\version.txt, size: 63
Total files: 18
```

Example: show webvpn install status svc

The following is sample output from the show webvpn install command, entered with the status svc keyword:

```
Router# show webvpn install status svc
SSL VPN Package SSL-VPN-Client version installed:
CISCO STC win2k+ 1.0.0
1,0,2,127
Fri 07/22/2005 12:14:45.43
```

Example: show webvpn nbns context all

The following is sample output from the show webvpn nbns command, entered with the context all keyword:

```
Router# show webvpn nbns context all
NetBIOS name                   IP Address       Timestamp
0 total entries
NetBIOS name                   IP Address       Timestamp
0 total entries
NetBIOS name                   IP Address       Timestamp
```
Example: show webvpn policy

The following is sample output from the `show webvpn policy` command:

```
Router# show webvpn policy group ONE context all
WEBVPN: group policy = ONE ; context = SSL VPN
  idle timeout = 2100 sec
  session timeout = 43200 sec
  citrix disabled
  dpd client timeout = 300 sec
  dpd gateway timeout = 300 sec
  keep SSL VPN client installed = disabled
  rekey interval = 3600 sec
  rekey method =
  lease duration = 43200 sec
WEBVPN: group policy = ONE ; context = SSL VPN_TWO
  idle timeout = 2100 sec
  session timeout = 43200 sec
  citrix disabled
  dpd client timeout = 300 sec
  dpd gateway timeout = 300 sec
  keep SSL VPN client installed = disabled
  rekey interval = 3600 sec
  rekey method =
  lease duration = 43200 sec
```

Example: show webvpn policy (with NTLM Disabled)

The following is sample output from the `show webvpn policy` command. NTLM authentication has been disabled.

```
Router# show webvpn policy group ntlm context ntlm
WEBVPN: group policy = ntlm; context = ntlm
  url list name = "ntlm-server"
  idle timeout = 2100 sec
  session timeout = 43200 sec
  functions =
    httpauth-disabled
    file-access
    svc-enabled
  citrix disabled
  dpd client timeout = 300 sec
  dpd gateway timeout = 300 sec
  keep SSL VPN client installed = disabled
  rekey interval = 3600 sec
  rekey method =
  lease duration = 43200 sec
```

Example: show webvpn session

The following is sample output from the `show webvpn session` command. The output is filtered to display user session information for only the specified context.

```
Router# show webvpn session context SSL VPN
WebVPN context name: SSL VPN

Client_Login_Name Client_IP_Address No_of_Connections Created Last_Used
user1 10.2.1.220 2 04:47:16 00:01:26
user2 10.2.1.221 2 04:48:36 00:01:56
```

Example: show webvpn session user
The following is sample output from the `show webvpn session` command. The output is filtered to display session information for a specific user.

```
Router# show webvpn session user user1 context all
WebVPN user name = user1 ; IP address = 10.2.1.220; context = SSL VPN
No of connections: 0
Created 00:00:19, Last-used 00:00:18
CSD enabled
  CSD Session Policy
  CSD Web Browsing Allowed
  CSD Port Forwarding Allowed
  CSD Full Tunneling Disabled
  CSD FILE Access Allowed
User Policy Parameters
  Group name = ONE
  Group Policy Parameters
    url list name = "Cisco"
    idle timeout = 2100 sec
    session timeout = 43200 sec
    port forward name = "EMAIL"
    tunnel mode = disabled
citrix disabled
dpd client timeout = 300 sec
dpd gateway timeout = 300 sec
keep stc installed = disabled
rekey interval = 3600 sec
rekey method = ssl
lease duration = 3600 sec
```

Example: show webvpn stats

The following is sample output from the `show webvpn stats` command entered with the `detail` and `context` keywords:

```
Router# show webvpn stats detail context SSL VPN
WebVPN context name : SSL VPN
User session statistics:
  Active user sessions : 0  AAA pending reqs : 0
  Peak user sessions : 0  Peak time : never
  Active user TCP conns : 0  Terminated user sessions : 0
  Session alloc failures : 0  Authentication failures : 0
  VPN session timeout : 0  VPN idle timeout : 0
  User cleared VPN sessions: 0  Exceeded ctx user limit : 0
  CEF switched packets - client: 0 , server: 0
  CEF punted packets - client: 0 , server: 0
Mangling statistics:
  Relative urls : 0  Absolute urls : 0
  Non-http(s) absolute urls: 0  Non-standard path urls : 0
  Interesting tags : 0  Uninteresting tags : 0
  Interesting attributes : 0  Uninteresting attributes : 0
  Embedded script statement: 0  Embedded style statement : 0
  Inline scripts : 0  Inline styles : 0
  HTML comments : 0  HTTP/1.0 requests : 0
  HTTP/1.1 requests : 0  Unknown HTTP version : 0
  GET requests : 0  POST requests : 0
  CONNECT requests : 0  Other request methods : 0
  Through requests : 0  Gateway requests : 0
  Pipelined requests : 0  Req with header size >1K : 0
  Processed req hdr bytes : 0  Processed req body bytes : 0
  HTTP/1.0 responses : 0  HTTP/1.1 responses : 0
  HTML responses : 0  CSS responses : 0
  XML responses : 0  JS responses : 0
  Other content type resp : 0  Chunked encoding resp : 0
  Resp with encoded content: 0  Resp with content length : 0
  Resp with header size >1K: 0
Close after response : 0
Processed resp hdr size : 0  Processed resp body bytes: 0
Backend https response : 0  Chunked encoding requests: 0
CIFS statistics:
  SMB related Per Context:
    TCP VC's : 0  UDP VC's : 0
```
Active VC's : 0  Active Contexts : 0
Aborted Conns : 0
NetBIOS related Per Context:
Name Queries : 0  Name Replies : 0
NB DGM Requests : 0  NB DGM Replies : 0
NB TCP Connect Fails : 0  NB Name Resolution Fails : 0
HTTP related Per Context:
Requests : 0  Request Bytes RX : 0
Request Packets RX : 0  Response Bytes TX : 0
Response Packets TX : 0  Active Connections : 0
Active CIFS context : 0  Requests Dropped : 0

Socket statistics:
Sockets in use : 0  Sock Usr Blocks in use : 0
Sock Data Buffers in use : 0  Sock Buf desc in use : 0
Select timers in use : 0  Sock Select Timeouts : 0
Sock Tx Blocked : 0  Sock Tx Unblocked : 0
Sock Rx Blocked : 0  Sock Rx Unblocked : 0
Sock UDP Connects : 0  Sock UDP Disconnects : 0
Sock Premature Close : 0  Sock Pipe Errors : 0
Sock Select Timeout Errs : 0

Port Forward statistics:
Connections serviced : 0  Server Aborts (idle) : 0
Client
in pkts : 0  out pkts : 0
in bytes : 0  out bytes : 0
out pkts : 0  in pkts : 0
out bytes : 0  in bytes : 0

WEBVPN Citrix statistics:
Connections serviced : 0
Server
Packets in : 0
Packets out : 0
Bytes in : 0
Bytes out : 0

Tunnel Statistics:
Active connections : 0
Peak connections : 0  Peak time : never
Connect succeed : 0  Connect failed : 0
Reconnect succeed : 0  Reconnect failed : 0
SVCLP install IOS succeed : 0  SVCIP install IOS failed : 0
SVCLP install TCP succeed : 0  SVCIP install TCP failed : 0
DPD timeout : 0
Client
in CSTP frames : 0  out IP pkts : 0
in CSTP data : 0  out stitched pkts : 0
in CSTP control : 0  out copied pkts : 0
in CSTP Addr Req : 0  out bad pkts : 0
in CSTP DDP Req : 0  out filtered pkts : 0
in CSTP DDP Resp : 0  out non faged pkts : 0
in CSTP Msg Req : 0  out forwarded pkts : 0
in CSTP bytes : 0  out IP bytes : 0
out CSTP frames : 0  in IP pkts : 0
out CSTP data : 0  in invalid pkts : 0
out CSTP control : 0  in congested pkts : 0
out CSTP Addr Resp : 0  in bad pkts : 0
out CSTP DDP Resp : 0  in unfwad pkts : 0
out CSTP DDP Resp : 0  in forwarded pkts : 0
out CSTP Msg Resp : 0  in IP bytes : 0
out CSTP bytes : 0  in IP bytes : 0

Example: show webvpn stats sso

The following output example displays statistics for an SSO server:

Router# show webvpn stats sso
Single Sign On statistics:
Auth Requests : 4  Pending Auth Requests : 0
Successful Requests : 1  Failed Requests : 3
Retransmissions : 0  DNS Errors : 0
Connection Errors : 0         Request Timeouts : 0
Unknown Responses :

The following output example displays extra information about SSO servers that are configured for the SSL VPN context:

Router# show webvpn context test_sso
Context SSO server: sso-server
   Web agent URL : "http://example1.examplecompany.com/vpnauth/"
   Policy Server Secret : "Secret123"
   Request Re-tries : 5, Request timeout: 15-second

The following output example displays extra information about an SSO server that is configured for the policy group of the SSL VPN context:

Router# show webvpn policy group sso context test_sso
WV: group policy = sso ; context = test_sso
   idle timeout = 2100 sec
   session timeout = 43200 sec
   sso server name = "server1"
   citrix disabled
   dpd client timeout = 300 sec
   dpd gateway timeout = 300 sec
   keep SSL VPN client installed = disabled
   rekey interval = 3600 sec
   rekey method =
   lease duration = 43200 sec

Example: FVRF show Command Output

The following output example shows that FVRF has been configured:

Router# show webvpn gateway mygateway
Admin Status: down
Operation Status: down
Error and Event Logging: Disabled
GW IP address not configured
SSL Trustpoint: TP-self-signed-788737041
FVRF Name: vrf_1

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td></td>
<td>• Cisco AnyConnect VPN Client Administrator Guide, Release 2.4</td>
</tr>
<tr>
<td></td>
<td>• Release Notes for Cisco AnyConnect VPN Client, Release 2.4</td>
</tr>
<tr>
<td>Cisco Secure Desktop</td>
<td>Cisco Secure Desktop Home Page</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>Configuring IP VRF (ip vrf command)</td>
<td>Cisco IOS IP Application Services Command Reference</td>
</tr>
<tr>
<td>IANA Application Port Numbers</td>
<td>Port Numbers</td>
</tr>
<tr>
<td>RADIUS accounting</td>
<td>Configuring RADIUS module in the RADIUS Configuration Guide</td>
</tr>
<tr>
<td>Security commands</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>SSL VPN platforms</td>
<td>Cisco IOS SSL VPN (“Feature Availability” section)</td>
</tr>
<tr>
<td>SSL VPN remote users guide</td>
<td>SSL VPN Remote User Guide</td>
</tr>
</tbody>
</table>

**Standards**

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>Title</td>
</tr>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

**MIBs**

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIBs</td>
<td>MIBs Link</td>
</tr>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

**RFCs**

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs</td>
<td>Title</td>
</tr>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td><a href="http://www.cisco.com/cisco/web/support/">http://www.cisco.com/cisco/web/support/</a></td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td>index.html</td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies. Access to most tools on the Cisco</td>
<td></td>
</tr>
<tr>
<td>Support and Documentation website requires a Cisco.com user ID and</td>
<td></td>
</tr>
<tr>
<td>password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for SSL VPN

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 6  Feature Information for SSL VPN

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Control Enhancements</td>
<td>12.4(20)T</td>
<td>This feature allows administrators to configure automatic authentication and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>authorization for users. Users provide their usernames and passwords via the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gateway page URL and do not have to reenter their usernames and passwords from the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>login page. Authorization is enhanced to support more generic authorization,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>including local authorization.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced by this feature: aaa authentication auto,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aaa authorization list.</td>
</tr>
</tbody>
</table>
### Feature Information

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnyConnect Client Support</td>
<td>12.4(20)T</td>
<td>Effective with this release, AnyConnect Client adds support for several client-side platforms, such as Microsoft Windows, Apple-Mac, and Linux. The ability to install AnyConnect in a standalone mode is also added. In addition, this feature allows multiple SSL VPN client package files to be configured on a gateway. The following command was modified by this feature: <code>webvpn install</code>.</td>
</tr>
<tr>
<td>Application ACL Support</td>
<td>12.4(11)T</td>
<td>This feature provides administrators with the flexibility to fine-tune access control at the application layer level. The following commands were introduced by this feature: <code>acl add error-msg, error-url, list</code>.</td>
</tr>
<tr>
<td>Auto Applet Download</td>
<td>12.4(9)T</td>
<td>This feature provides administrators with the option of automatically downloading the port-forwarding applet under the policy group. The following command was modified by this feature: <code>port-forward (policy group)</code>.</td>
</tr>
<tr>
<td>Backend HTTP Proxy</td>
<td>12.4(20)T</td>
<td>This feature allows administrators to route user requests through a backend HTTP proxy, providing more flexibility and control than routing through internal web servers. The following command was added by this feature: <code>http proxy-server</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Release</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>--------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Cisco AnyConnect VPN Client</td>
<td>12.4(15)T</td>
<td>This feature is the next-generation SSL VPN Client. The feature provides remote users with secure VPN connections to the router platforms supported by SSL VPN and to the Cisco 5500 Series Adaptive Security Appliances. Users having Cisco IOS releases before Release 12.4(15)T see SSL VPN Client GUI. Users having Release 12.4(15)T and later releases see Cisco AnyConnect VPN Client GUI. The task configurations in this document for tunnel mode apply to SVC and AnyConnect VPN Client. For more information about the Cisco AnyConnect VPN Client feature, see the Cisco AnyConnect VPN Client Administrator Guide, Release 2.4 and the Release Notes for Cisco AnyConnect VPN Client, Release 2.4. Note Many of the features listed in the documents Cisco AnyConnect VPN Client Administrator Guide and Release Notes for Cisco AnyConnect VPN Client, Version 2.0 apply only to the Cisco ASA 5500 Series Adaptive Security Appliances. For a list of features that do not currently apply to other Cisco platforms, see the restriction in the Cisco AnyConnect VPN Client, page 3 of this document.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Release</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Debug Infrastructure     | 12.4(11)T | Updates to the `webvpn debug` command provide administrators with the ability to turn debugging on for any one user or group.  
The following keywords were introduced by this feature: `acl`, `entry sso`, `verbose`.  
The following keyword options were added for the `http` keyword: `authentication`, `trace`, and `verbose`.  
The `verbose` keyword option was added for the `citrix`, `cookie`, `tunnel`, and `webservice` keywords.  
The `port-forward` keyword was deleted and the `detail` keyword option for the `tunnel` keyword was deleted. |
| Front-Door VRF Support   | 12.4(15)T | Coupled with the already supported internal VRF, this feature allows the SSL VPN gateway to be fully integrated into an MPLS network. |
| Full-Tunnel CEF Support  | 12.4(20)T | This feature provides better performance for full-tunnel packets.                                                                                     |
| GUI Enhancements         | 12.4(15)T | These enhancements provide updated examples and explanation of the Web VPN GUIs.                                                                     |
| Internationalization     | 12.4(22)T | The Internationalization feature provides multilanguage support for SSL VPN clients, such as Cisco Secure Desktop (CSD) and SSL VPN Client (SVC).  
The following commands were introduced: `browser-attribute import`, `import language`, `webvpn create template`. |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licensing support for Cisco IOS SSL VPNs</td>
<td>15.0(1)M</td>
<td>A license count is associated with each counted license and the count indicates the instances of the feature available for use in the system. In Cisco IOS Release 15.0(1)M, support was added for Cisco 880, Cisco 890, Cisco 1900, Cisco 2900, and Cisco3900 series routers. The following commands were introduced or modified: <code>debug webvpn license</code>, <code>show webvpn license</code>.</td>
</tr>
<tr>
<td>Max-user limit message</td>
<td>12.4(22)T</td>
<td>This error message is received when a user tries to log in to a Web VPN context and his or her maximum user limit has been reached.</td>
</tr>
<tr>
<td>Netegrity Cookie-Based Single SignOn (SSO) Support</td>
<td>12.4(11)T</td>
<td>This feature allows administrators to configure an SSO server that sets a SiteMinder cookie in the browser of a user when the user initially logs in. The benefit of this feature is that users are prompted to log in only a single time. The following commands were modified for this feature: <code>clear webvpn stats</code>, <code>debug webvpn</code>, <code>show webvpn context</code>, <code>show webvpn policy</code>, and <code>show webvpn stats</code>. The following commands were added for this feature: <code>max-retry-attempts</code>, <code>request-timeout</code>, <code>secret-key</code>, <code>sso-server</code>, and <code>web-agent-url</code>.</td>
</tr>
<tr>
<td>NTLM Authentication</td>
<td>12.4(9)T</td>
<td>This feature provides NT LAN Manager (NTLM) authentication support. The following command was modified by this feature: <code>functions</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Release</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>-----------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Port-Forward Enhancements</td>
<td>12.4(11)T</td>
<td>This feature provides administrators with more options for configuring HTTP proxy and portal pages. The following commands were added for this feature: <code>acl</code>, <code>add</code>, <code>deny</code>, <code>error-msg</code>, <code>error-url</code>, <code>list</code>, and <code>permit</code>.</td>
</tr>
<tr>
<td>RADIUS Accounting</td>
<td>12.4(9)T</td>
<td>This feature provides for RADIUS accounting for SSL VPN sessions. The following command was added by this feature: <code>webvpn aaa accounting-list</code>.</td>
</tr>
<tr>
<td>SSL VPN</td>
<td>12.4(6)T</td>
<td>This feature enhances SSL VPN support in Cisco IOS software. This feature provides a comprehensive solution that allows easy access to a broad range of web resources and web-enabled applications using native HTTP over SSL (HTTPS) browser support. SSL VPN introduced three modes of SSL VPN access: clientless, thin-client, and full-tunnel client support. The following command was introduced in Cisco IOS Release 12.4(15)T: <code>cifs-url-list</code>.</td>
</tr>
<tr>
<td>SSL VPN Client-Side Certificate-Based Authentication</td>
<td>15.0(1)M</td>
<td>This feature enables SSL VPN to authenticate clients based on the client’s AAA username and password and also supports webvpn gateway authentication of clients using AAA certificates. The following command was modified by this feature: <code>authentication certificate</code>, <code>ca trustpoint</code>, <code>match-certificate</code>, <code>svc profile</code>, <code>username-prefill</code>, <code>webvpn import svc profile</code>.</td>
</tr>
</tbody>
</table>

SSL VPN Feature Information for SSL VPN

SSL VPN Configuration Guide, Cisco IOS Release 12.4T

148
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSLVPN DVTI Support</td>
<td>15.1(1)T</td>
<td>The SSLVPN DVTI Support feature adds DVTI support to the SSLVPN and hence enables seamless interoperability with IP features such as firewalls, NAT, ACL, and VRF. This feature also provides DVTI support, which allows the configuration of IP features on a per-tunnel basis. The following command was introduced or modified: <strong>virtual-template</strong>.</td>
</tr>
<tr>
<td>SSL VPN Phase-4 Features</td>
<td>15.1(1)T</td>
<td>The SSL VPN Phase-4 Features feature provides the following enhancements to the Cisco IOS SSL VPN:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACL support for split tunneling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IP mask for IP pool address assignment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Undoing the renaming of AnyConnect or SVC Full Tunnel Cisco package during installation on a Cisco IOS router</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adding per-user SSL VPN session statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Start Before Logon option for the Cisco IOS SSL VPN headend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: <strong>show webvpn session, svc address-pool, svc module, svc split</strong>.</td>
</tr>
<tr>
<td>DTLS Support for IOS SSL VPN</td>
<td>15.1(2)T</td>
<td>The DTLS Support for IOS SSL VPN feature enables DTLS as a transport protocol for the traffic tunneled through SSL VPN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: <strong>debug webvpn dtls, dtls port, svc dtls</strong>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Release</td>
<td>Feature Information</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>-----------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Stateless High Availability with Hot Standby Router Protocol (HSRP)</td>
<td>12.4(20)T</td>
<td>This feature allows stateless failover to be applied to VPN routers by using HSRP. The following command was modified by this feature: <code>ip address</code>.</td>
</tr>
<tr>
<td>URL Obfuscation</td>
<td>12.4(11)T</td>
<td>This feature provides administrators with the ability to obfuscate, or mask, sensitive portions of an enterprise URL, such as IP addresses, hostnames, or port numbers. The following command was added by this feature: <code>mask-urls</code>.</td>
</tr>
<tr>
<td>URL Rewrite Splitter</td>
<td>12.4(20)T</td>
<td>This feature allows administrators to selectively mangle requests to the gateway. The following commands were added by this feature: <code>host</code>, <code>ip</code>, <code>unmatched-action</code>, and <code>url rewrite</code>.</td>
</tr>
<tr>
<td>User-Level Bookmarking</td>
<td>12.4(15)T</td>
<td>This feature allows a user to bookmark URLs while connected through an SSL VPN tunnel. The following command was added by this feature: <code>user-profile location</code>.</td>
</tr>
<tr>
<td>Virtual Templates</td>
<td>12.4(24)T1</td>
<td>A virtual template enables SSL VPN to interoperate with IP features such as NAT, firewall, and policy-based routing. The following command was introduced: <code>virtual-template</code>.</td>
</tr>
</tbody>
</table>

## Notices

The following notices pertain to this software license.

- OpenSSL Project, page 151
OpenSSL Project

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

- License Issues, page 151

License Issues

The OpenSSL toolkit stays under a dual license; that is, both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License:

Copyright © 1998-2007 The OpenSSL Project. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1 Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution.
3 All advertising materials mentioning features or use of this software must display the following acknowledgment: “This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)”.
4 The names “OpenSSL Toolkit” and “OpenSSL Project” must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.
5 Products derived from this software may not be called “OpenSSL” nor may “OpenSSL” appear in their names without prior written permission of the OpenSSL Project.
6 Redistributions of any form whatsoever must retain the following acknowledgment:
“This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)”.

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).
Original SSLeay License:

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscape’s SSL.

This library is free for commercial and non-commercial use as long as the following conditions are adhered to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, Ihash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

   “This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)”.

The word ‘cryptographic’ can be left out if the routines from the library being used are not cryptography-related.

1. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement: “This product includes software written by Tim Hudson (tjh@cryptsoft.com)”.

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this code cannot be changed; that is, this code cannot simply be copied and put under another distribution license [including the GNU Public License].

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
SSL VPN Remote User Guide

The SSL VPN feature (also known as WebVPN) provides support, in Cisco IOS software, for remote user access to enterprise networks from anywhere on the Internet. Remote access is provided through a Secure Socket Layer- (SSL-) enabled SSL Virtual Private Network (VPN) gateway. The SSL VPN gateway allows remote users to establish a secure VPN tunnel using a web browser. This feature provides a comprehensive solution that allows easy access to a broad range of web resources and web-enabled applications using native HTTP over SSL (HTTPS) browser support.

This document describes how a remote user, whose enterprise network is configured for SSL VPN, can access the network by launching a browser and connecting to the SSL VPN gateway.

For information about SSL VPN from the point of view of a system administrator, see the document SSL VPN.

Note

The Cisco AnyConnect VPN Client is introduced in Cisco IOS Release 12.4(15)T. This feature is the next-generation SSL VPN Client. If you are using Cisco software earlier than Cisco IOS Release 12.4(15)T, you should use SSL VPN Client and see GUI for the SSL VPN Client when you are web browsing. However, if you are using Cisco software Release 12.4(15)T or later, you should use Cisco AnyConnect VPN Client and see GUI for Cisco AnyConnect VPN Client when you are web browsing.

- Finding Feature Information, page 155
- SSL VPN Prerequisites for the Remote User, page 156
- Usernames and Passwords, page 157
- Remote User Interface, page 158
- Security Tips, page 172
- Troubleshooting Guidelines, page 175
- Additional References, page 176
- Feature Information for SSL VPN for Remote Users, page 177
- Notices, page 179

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

**SSL VPN Prerequisites for the Remote User**

The following prerequisites are required to start SSL VPN on a PC or device:

- Connection to the Internet--Any Internet connection is supported, including:
  - Home DSL, cable, or dial-ups
  - Public kiosks
  - Hotel connections
  - Airport wireless nodes
  - Internet cafes
- Operating system support

**Note**

Later versions of the following software are also supported.

- Microsoft Windows 2000, Windows XP, or Windows Vista
- Macintosh OS X 10.4.6
- Linux (Redhat RHEL 3.0+, FEDORA 5, or FEDORA 6)
- SSL VPN-supported browser--The following browsers have been verified for SSL VPN. Other browsers might not fully support SSL VPN features.

**Note**

Later versions of the following software are also supported.

- Internet Explorer 6.0 or 7.0
- Firefox 2.0 (Windows and Linux)
- Safari 2.0.3
- Cookies enabled--Cookies must be enabled on the browser to access applications through port forwarding.
- Pop-ups enabled--Pop-ups should be enabled on the browser to display the floating SSL VPN toolbar and timeout warnings. If pop-ups are blocked, change the browser setting and click the SSL VPN floating toolbar icon on the in-page toolbar to display the floating toolbar.

If pop-ups are disabled on the browser, SSL VPN does not warn you before disconnecting because of an idle timeout or a maximum connect time.

- URL for SSL VPN--An HTTPS address in the following form:
  https://address
  where address is the IP address or Domain Name System (DNS) hostname of an interface of the SSL VPN gateway, for example https://10.89.192.163 or https://vpn.example.com.
- SSL VPN username and password
Restrictions for SSL VPN Remote User Guide

Cisco AnyConnect VPN Client

Cisco AnyConnect VPN Client does not support the following:

- Adaptive Security Appliance (ASA) and Adaptive Security Device Manager (ASDM) and any command-line interface (CLI) associated with the them
- Adjusting Maximum Transmission Unit (MTU) size
- Client-side authentication
- Compression support
- Datagram Transport Layer Security (DTLS) with SSL connections
- IPv6 VPN access
- Language Translation (localization)
- If the maximum user limit has been reached for an SSL VPN and a user tries to log in, he or she receives a “Max-user limit reached” error.
- (Optional) Local printer--SSL VPN does not support printing in clientless mode from a web browser to a network printer. However, printing to a local printer is supported.
- Sequencing
- Standalone Mode

Usernames and Passwords

The table below lists the type of usernames and passwords that SSL VPN users might have to know.

<table>
<thead>
<tr>
<th>Login Username/Password Type</th>
<th>Purpose</th>
<th>Entered When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer</td>
<td>Access the computer</td>
<td>Starting the computer</td>
</tr>
<tr>
<td>Internet Provider</td>
<td>Access the Internet</td>
<td>Connecting to an Internet provider</td>
</tr>
<tr>
<td>SSL VPN</td>
<td>Access the remote network</td>
<td>Starting SSL VPN</td>
</tr>
<tr>
<td>File Server</td>
<td>Access the remote file server</td>
<td>Using the SSL VPN file browsing feature to access a remote file server</td>
</tr>
<tr>
<td>Corporate Application Login</td>
<td>Access the firewall-protected internal server</td>
<td>Using the SSL VPN web browsing feature to access an internal protected website</td>
</tr>
<tr>
<td>Mail Server</td>
<td>Access the remote mail server via SSL VPN</td>
<td>Sending or receiving e-mail messages</td>
</tr>
</tbody>
</table>
Remote User Interface

If your enterprise network has been configured for SSL VPN, you can access the network by launching a browser and connecting to the SSL VPN gateway. Present your credentials and authenticate, and then a portal page (home page) of the enterprise site is displayed. The portal page displays SSL VPN features (for example, e-mail and web browsing) to which you have access on the basis of your credentials. If you have access to all features enabled on the SSL VPN gateway, the home page will provide access links.

The following sections explain the remote user interface in more detail:

- Page Flow, page 158
- Initial Connection, page 159
- Login Page, page 159
- Certificate Authentication, page 160
- Logout Page, page 160
- Portal Page, page 161
- Remote Servers, page 162
- Toolbar, page 163
- Session Timeout, page 165
- TCP Port Forwarding and Thin Client, page 166
- Tunnel Connection, page 168
- User-Level Bookmarking, page 168
- Internationalization, page 170

Page Flow

This section describes the page flow process (see the figure) for a SSL VPN session. When you enter the HTTPS URL (https://address) into your browser, you are then redirected to https://address/index.html, where the login page is located.

Note

Depending on the configuration of the browser, this redirection may display a warning message in your browser, which indicates that you are being redirected to a secure connection.

Figure 18 Page Flow

![Diagram of page flow process](https://example.com/diagram.png)
Initial Connection

When you connect for the first time, you might be presented with one of the following scenarios:

- 503 Service Unavailable Message, page 159
- SSL TLS Certificate, page 159

503 Service Unavailable Message

You might see a “503 Service Unavailable” message if the gateway is experiencing high traffic loads. If you receive this message, try to connect again later.

SSL TLS Certificate

When the HTTPS connection is established, a warning about the SSL/Transport Layer Security (TLS) certificate may display. If the warning displays, you should install this certificate. If the warning does not display, the system already has a certificate that the browser trusts.

You are then connected to the login page.

Login Page

The default login page (see figure below) prompts you to enter your username and password, which are entered into an HTML form. If an authentication failure occurs, the login page displays an error message.

Figure 19 Default Login Page
Certificate Authentication

Client certificate authentication is not supported. Only username and password authentication is supported.

Logout Page

The logout page (figure below) displays if you click the logout link or if the session terminates because of an idle timeout or a maximum connection time.

Figure 20  Logout Page
Portal Page

The portal page (figure below) is the main page for the SSL VPN functionality. See the callouts for functions that exist for administrators and users.

![Portal Page Diagram]

The table below provides information about various fields on the portal page.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator-defined bookmarks</td>
<td>Administrator-defined URL lists that cannot be edited by the user.</td>
</tr>
<tr>
<td>Browse network</td>
<td>Allows you to browse the file network.</td>
</tr>
<tr>
<td>Header</td>
<td>Shares the same color value as the “Title.” Set by the administrator.</td>
</tr>
<tr>
<td>Network File location bar</td>
<td>Allows you to access the network share or folder directly by entering \server\share\folder.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Port forwarding</td>
<td>Downloads the applet and starts port forwarding.</td>
</tr>
<tr>
<td>Tunnel connection</td>
<td>Allows you to download the tunnel client and to install tunnel connect.</td>
</tr>
<tr>
<td>URL address bar</td>
<td>A new window is opened when you click Go.</td>
</tr>
<tr>
<td>User-level bookmark add icon</td>
<td>Clicking the icon opens a dialog box so you can add a new bookmark to the Personal folder.</td>
</tr>
<tr>
<td>User-level bookmark edit icon</td>
<td>Allows you to edit or delete an existing bookmark.</td>
</tr>
<tr>
<td>User-level bookmarks</td>
<td>You can add a bookmark by using the plus icon (see below)</td>
</tr>
</tbody>
</table>

Remote Servers

You may enter an address or URL path of a website that you want to visit in the text box on the portal page. Pages from the remote server are displayed in the browser window. You can then browse to other links on the page.
Toolbar

A toolbar has been introduced to help you access the SSL VPN functionalities that are outside the portal page. The toolbar is in the upper right corner of the figure below and is outlined in red.

Figure 22  Website with a Toolbar

The toolbar is expanded below in the figure below. The sections that follow it explain how to use the toolbar icons.

Figure 23  Toolbar

- Web Browsing, page 164
- Moving the Toolbar, page 164
- Returning to the Portal Page, page 164
- Adding the Current Page to the Personal Bookmark Folder, page 164
- Displaying the Help Page, page 165
- Logging Out, page 165
Web Browsing

The web browser is the plus icon (see the figure below).

Figure 24  Web Browsing Icon

If you click the web browsing icon (see GUID-1474CC93-9C82-4E91-AB74-3FBDA282E210D), the toolbar expands so that you can enter a URL (see the figure below).

Figure 25  URL Bar

When a remote user goes to a URL through the URL address bar, the window that is already open is used for display.

Moving the Toolbar

The push-pin icon (see the figure below) allows you to move the toolbar to the right or left side of the portal page.

Figure 26  Toolbar Repositioning

Returning to the Portal Page

The house icon allows you to return to the portal page (see the figure below).

Figure 27  Return to the Portal Page

If the portal page is present in the parent window and you click to return to the portal page, your screen jumps back (sets the focus) to that window; otherwise, the current page is loaded with the portal page.

Adding the Current Page to the Personal Bookmark Folder

You can add the current page to your personal bookmark folder by clicking the page-with-a-plus icon (see the figure below).

Figure 28  Adding Current Page to Personal Bookmark Folder
Displaying the Help Page

You can display the help page by clicking the question mark icon (see the figure below).

Logging Out

The door icon (see the figure below) allows you to log out.

Session Timeout

You receive a warning message approximately 1 minute before the session is set to expire, and you receive another message when the session expires. On the workstation, the local time indicates when the message was displayed.

The first message will be similar to the following: “Your session will expire in x seconds due to inactivity. Click Close to reset the inactivity timer. (browser time and date)” (See the figure below.)

The last message, as shown below in the figure, displays when the time runs out (depending on whether the reason of the session termination is known):

SSL VPN Configuration Guide, Cisco IOS Release 12.4T
TCP Port Forwarding and Thin Client

Note
This feature requires the Java Runtime Environment (JRE) version 1.4 or later releases to properly support SSL connections.

Note
Because this feature requires installing JRE and configuring the local clients, and because doing so requires administrator permissions on the local system, it is unlikely that you can use applications when you connect from public remote systems.

When you click the Start button of the Thin Client application (under Application Access), a new window is displayed. This window initiates the downloading of a port-forwarding applet. Another window is then displayed. This window asks you to verify the certificate with which this applet is signed. When you accept the certificate, the applet starts running, and port-forwarding entries are displayed (see the figure below). The number of active connections and bytes that are sent and received is also listed on this window.

Note
When you click the Thin Client link, your system may display a dialog box regarding digital certificates, and this dialog box may appear behind other browser windows. If your connection hangs, minimize the browser windows to find this dialog box.

The administrator should have configured IP addresses, DNS names, and port numbers for the e-mail servers. If they are configured, you can launch the e-mail client, which is configured to contact these e-mail servers and send and receive e-mails. Point of Presence3 (POP3), Internet Message Access Protocol (IMAP), and Simple Mail Transfer Protocol (SMTP) protocols are supported.
The window attempts to close automatically if you are logged out using JavaScript. If the session terminated and a new port forwarding connection is established, the applet displays an error message.

Figure 33  TCP Port Forwarding Page

Caution

You should always close the Thin Client window when you finish using applications by clicking the close icon. Failure to quit the window properly can cause Thin Client or the applications to be disabled. See the Thin Client-Recovering from Hosts File Error, page 172 for details.

The table below lists the requirements for Thin Client (Port Forwarding) on your PC or device.

Table 9  SSL VPN Remote System Thin Client Requirements

<table>
<thead>
<tr>
<th>Remote User System Requirements</th>
<th>Specifications or Use Suggestions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client applications installed</td>
<td>--</td>
</tr>
<tr>
<td>Cookies enabled on browser</td>
<td>--</td>
</tr>
<tr>
<td>Administrator privileges</td>
<td>You must be the local administrator on your PC.</td>
</tr>
<tr>
<td>Sun Microsystems JRE version 1.4 or later installed</td>
<td>SSL VPN automatically checks for JRE whenever you start Thin Client. If it is necessary to install JRE, a pop-up window displays, directing you to a site where it is available.</td>
</tr>
</tbody>
</table>
Remote User System Requirements | Specifications or Use Suggestions
--- | ---
Client applications configured, if necessary | To configure the client application, use the locally mapped IP address and port number of the server. To find this information, do the following:

- Start SSL VPN on the remote system and click the Thin Client link on the SSL VPN home page. The Thin Client window is displayed.
- In the Name column, find the name of the server that you want to use, and then identify its corresponding client IP address and port number (in the Local column).
- Use this IP address and port number to configure the client application. The configuration steps vary for each client application.

**Note** The Microsoft Outlook client does not require this configuration step.

Windows XP SP2 patch | If you are running Windows XP SP2, you must install a patch from Microsoft that is available at the following address:

http://support.microsoft.com/?kbid=884020

This problem is a known Microsoft issue.

---

**Tunnel Connection**

In a typical clientless remote access scenario, you establish an SSL tunnel to move data to and from the internal networks at the application layer (for example, web and e-mail). In tunnel mode, you use an SSL tunnel to move data at the network (IP) layer. Therefore, tunnel mode supports most IP-based applications. Tunnel mode supports many popular corporate applications (for example, Microsoft Outlook, Microsoft Exchange, Lotus Notes E-mail, and Telnet).

The tunnel connection is determined by the group policy configuration. The Cisco AnyConnect VPN Client (next-generation SSL VPN Client) is downloaded and installed on your PC, and the tunnel connection is established after the installation.

By default, Cisco AnyConnect VPN Client is removed from your PC after the connection is closed. However, you have the option to keep the Cisco AnyConnect VPN Client installed on your PC.

**User-Level Bookmarking**

Effective with Cisco IOS Release 12.4(15)T, you can bookmark URLs while connected through an SSL VPN tunnel. You can access the bookmarked URLs by clicking the URL.

- Adding a Bookmark, page 168
- Editing a Bookmark, page 169

**Adding a Bookmark**
The figure below shows a typical web page to which a bookmark can be added.

**Figure 34 Add Bookmark**

![Add Bookmark](image)

**Editing a Bookmark**
The figure below shows a typical web page to which a bookmark can be edited.

**Figure 35  Edit Bookmark**

**Internationalization**

The Internationalization feature allows you to select any language your administrator has imported to view certain SSL VPN web pages (currently: login message, title page, and URL lists).
The figure below shows a portal page in English, as shown in the language selection box.

**Figure 36  Portal Page in English**

The figure below shows a portal page in Japanese, as shown in the language selection box.

**Figure 37  Portal Page in Japanese**
Security Tips

You should always log out from the SSL VPN session when you are finished. (To log out of SSL VPN, click the logout icon on the SSL VPN toolbar or quit the browser.)

Using SSL VPN does not ensure that communication with every site is secure. SSL VPN ensures the security of data transmission between your PC or workstation and the SSL VPN gateway on the corporate network. If you then access a non-HTTPS web resource (located on the Internet or on the internal network), the communication from the corporate SSL VPN gateway to the destination web server is not secured.

- Browser Caching and Security Implications, page 172
- Thin Client-Recovering from Hosts File Error, page 172

Browser Caching and Security Implications

If you access SSL VPN through a public or shared Internet system, such as an Internet cafe or kiosk, to ensure the security of your information after terminating or logging out of the SSL VPN session, you must delete all files that you have saved on the PC during the SSL VPN session. These files are not removed automatically upon disconnect.

Note

SSL VPN does not save the content of web pages viewed during the session. However, for additional security, we recommend that you clear your browser cache. Deleting content from a PC does not ensure that it cannot be recovered; keep this fact in mind when downloading sensitive data.

Thin Client-Recovering from Hosts File Error

It is important that you close the Thin Client window properly by clicking the close icon. If you do not close the window properly, the following could occur:

- The next time you try to start Thin Client, it might be disabled; you will receive a “Backup HOSTS File Found” error message.
- The applications might be disabled or might malfunction even when you are running them locally.

These errors can result if you terminate the Thin Client window in any improper way:

- The browser crashes while using Thin Client.
- A power outage or system shutdown occurs while using Thin Client.
- You minimize the Thin Client window and then shut down the computer with the window active (but minimized).

- How SSL VPN Uses the Hosts File, page 172
- What Happens If You Stop Thin Client Improperly, page 173

How SSL VPN Uses the Hosts File

The hosts file on your system maps IP addresses to hostnames. When you start Thin Client, SSL VPN modifies the hosts file by adding SSL VPN-specific entries. When you stop Thin Client by properly closing the Thin Client window, SSL VPN returns the hosts file to its original state. The hosts file goes through the following states:
• Before invoking Thin Client, the hosts file is in its original state.
• When Thin Client starts, SSL VPN does the following:
  • Copies the hosts file to hosts.webvpn and creates a backup.
  • Edits the hosts file, inserting SSL VPN-specific information.
• When Thin Client stops, SSL VPN does the following:
  • Copies the backup file to the hosts file, restoring the hosts file to its original state.
  • Deletes hosts.webvpn.
• After finishing Thin Client, the hosts file is in its original state.

**What Happens If You Stop Thin Client Improperly**

If you improperly terminate Thin Client, the hosts file is left in the SSL VPN-customized state. SSL VPN checks for this possibility the next time you start Thin Client by searching for a hosts.webvpn file. If SSL VPN finds the file, you receive a “Backup HOSTS File Found” error message, and Thin Client is temporarily disabled.

If you improperly shut down Thin Client, you leave the remote access client or server applications in a suspended state. If you start these applications without using SSL VPN, the applications might malfunction. You might find that hosts that you normally connect to are unavailable. This situation could commonly occur if you run applications remotely from home, fail to quit the Thin Client window before shutting down the computer, and then try to run the applications later from the office.

• What to Do, page 173
• Reconfiguring the Hosts File Manually, page 174

**What to Do**

To reenable Thin Client or malfunctioning applications, you should do the following:

**Reconfiguring the Hosts File Automatically Using SSL VPN**

If you can connect to your remote access server, you should follow these steps to reconfigure the hosts file and reenable both Thin Client and the applications:

**SUMMARY STEPS**

1. Start SSL VPN and log in. The portal page opens.
2. Click the Applications Access link. A “Backup HOSTS File Found” message displays.
3. Choose one of the following options:

**DETAILED STEPS**

**Step 1**
Start SSL VPN and log in. The portal page opens.

**Step 2**
Click the Applications Access link. A “Backup HOSTS File Found” message displays.

**Step 3**
Choose one of the following options:

• Restore from backup--SSL VPN forces a proper shutdown. SSL VPN copies the hosts.webvpn backup file to the hosts file, restoring it to its original state, and then deletes the hosts.webvpn backup file. You then have to restart Thin Client.
• Do nothing--Thin Client does not start. You are returned to the remote access home page.
• Delete backup--SSL VPN deletes the hosts.webvpn file, leaving the hosts file in its SSL VPN-customized state. The original hosts file settings are lost. Then Thin Client starts, using the SSL VPN-customized hosts file as the
Reconfiguring the Hosts File Manually

If you cannot connect to your remote access server from your current location, or if you have customized the hosts file and do not want to lose your edits, you should follow these steps to reconfigure the hosts file and reenable both Thin Client and the applications:

SUMMARY STEPS

1. Locate and edit your hosts file.
2. Check to see if any lines contain the “added by WebVpnPortForward” string.
3. Delete the lines that contain the “# added by WebVpnPortForward” string.
4. Save and close the file.
5. Start SSL VPN and log in. Your home page appears.
6. Click the Thin Client link. The Thin Client window appears. Thin Client is now enabled.

DETAILED STEPS

Step 1
Locate and edit your hosts file.

Step 2
Check to see if any lines contain the “added by WebVpnPortForward” string.
If any lines contain this string, your hosts file is customized for SSL VPN. If your hosts file is customized, it looks similar to the following example:

Example:

```
10.23.0.3 server1 # added by WebVpnPortForward
10.23.0.3 server1.example.com emailxyz.com # added by WebVpnPortForward
10.23.0.4 server2 # added by WebVpnPortForward
10.23.0.4 server2.example.com.emailxyz.com # added by WebVpnPortForward
10.23.0.5 server3 # added by WebVpnPortForward
10.23.0.5 server3.example.com.emailxyz.com # added by WebVpnPortForward
# Copyright (c) 1993-1999 Microsoft Corp.
# This is a sample HOSTS file used by Microsoft TCP/IP for Windows.
# This file contains the mappings of IP addresses to hostnames. Each
# entry should be kept on an individual line. The IP address should
# be placed in the first column followed by the corresponding hostname.
# The IP address and the hostname should be separated by at least one
# space.
# Additionally, comments (such as these) may be inserted on individual
# lines or following the machine name denoted by a '#' symbol.
# For example:
# 172.16.102.97 rhino.acme.com # source server
```
Step 3  Delete the lines that contain the “# added by WebVpnPortForward” string.
Step 4  Save and close the file.
Step 5  Start SSL VPN and log in. Your home page appears.
Step 6  Click the Thin Client link. The Thin Client window appears. Thin Client is now enabled.

## Troubleshooting Guidelines

The table below provides a list of messages notifying you of various problems, causes, and fixes.

<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>The request to <code>{url}</code> is not allowed. WebVPN has dropped the request. If you have any questions, please ask {...}.</td>
<td>The administrator does not allow you to access a particular URL.</td>
<td>Contact the administrator.</td>
</tr>
<tr>
<td>Unable to connect to server <code>{server name}</code>. The server may not exist, or access to it may not be allowed.</td>
<td>Problem with the server.</td>
<td>Check the server name or contact the administrator if it persists.</td>
</tr>
<tr>
<td>Unable to find the server <code>{server or url}</code>. The server may not exist, or access to it may not be allowed.</td>
<td>DNS cannot resolve the server name or URL location.</td>
<td>Check the URL address or contact the administrator if it persists.</td>
</tr>
<tr>
<td>This (client) machine does not match any identification of a WebVPN user. Please contact your WebVPN provider for assistance.</td>
<td>The client computer does not match any profile of Cisco Secure Desktop (CSD).</td>
<td>Contact the administrator.</td>
</tr>
<tr>
<td>This (client) machine does not have the web access privilege. Please contact your WebVPN provider for assistance.</td>
<td>The client computer does not meet the security criteria of having web access functionality through the SSL VPN gateway.</td>
<td>Check the URL to the gateway or contact the administrator if it persists.</td>
</tr>
<tr>
<td>CSD is enabled, but not installed. Please contact your WebVPN provider for assistance.</td>
<td>The CSD has been enabled on the gateway, but it is not available.</td>
<td>Contact the administrator.</td>
</tr>
<tr>
<td>The requested information is not available.</td>
<td>Various causes.</td>
<td>Contact the administrator.</td>
</tr>
</tbody>
</table>
Additional References

The following sections provide references related to SSL VPN.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>Cisco Secure Desktop</td>
<td>Cisco Secure Desktop Home Page</td>
</tr>
<tr>
<td>Cisco AnyConnect VPN Client</td>
<td>• Cisco AnyConnect VPN Client Administrator Guide, Release 2.4</td>
</tr>
<tr>
<td></td>
<td>• Release Notes for Cisco AnyConnect VPN Client, Release 2.4</td>
</tr>
<tr>
<td>SSL VPN (administrator guide)</td>
<td>SSL VPN</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for SSL VPN for Remote Users

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL VPN Remote User Guide</td>
<td>12.4(6)T</td>
<td>This section was originally included in the SSL VPN feature document.</td>
</tr>
</tbody>
</table>
### Feature Name: Cisco AnyConnect VPN Client
**Releases:** 12.4(15)T

This feature is the next-generation SSL VPN Client. The feature provides remote users with secure VPN connections to the router platforms supported by SSL VPN and to the Cisco 5500 Series Adaptive Security Appliances.

**Note**
Users who are using Cisco IOS software releases before Release 12.4(15)T see the SSL VPN Client GUI interface when they are web browsing. Users who are using Cisco IOS software Release 12.4(15)T and later see the Cisco AnyConnect VPN Client GUI when they are web browsing.

**Note**
See the restrictions in the Feature Information for SSL VPN for Remote Users, page 177 for features not currently supported by Cisco AnyConnect VPN Client on platforms other than the Cisco ASA 5500 series Adaptive Security Appliance.

### Feature Name: GUI Enhancements
**Releases:** 12.4(15)T

These enhancements provide updated examples and explanation of the Web VPN GUIs.

The following sections provide information about these updates:

### Feature Name: Internationalization
**Releases:** 12.4(22)T

This feature allows administrators to customize certain SSL VPN web pages so they can be viewed in languages other than English.

The following section provides information about this feature:
## Notices

The following notices pertain to this software license.

- OpenSSL Open SSL Project, page 179

### OpenSSL Open SSL Project

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

- License Issues, page 179

### License Issues

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License and the original SSLeay license apply to the toolkit. See below for the actual license texts. Actually both licenses are BSD-style Open Source licenses. In case of any license issues related to OpenSSL please contact openssl-core@openssl.org.

#### OpenSSL License:

Copyright © 1998-2007 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgment: “This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).”
4. The names “OpenSSL Toolkit” and “OpenSSL Project” must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called “OpenSSL” nor may “OpenSSL” appear in their names without prior written permission of the OpenSSL Project.
Redistributions of any form whatsoever must retain the following acknowledgment:

“This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLyay License:

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are adhered to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

“This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)”.

The word ‘cryptographic’ can be left out if the routines from the library being used are not cryptography-related.

1. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an acknowledgement: “This product includes software written by Tim Hudson (tjh@cryptsoft.com)”.

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this code cannot be changed. i.e. this code cannot simply be copied and put under another distribution license [including the GNU Public License].

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.