CHAPTER 3

Configuring Authorization and Revocation of Certificates in a PKI 33

Finding Feature Information 33

Prerequisites for Authorization and Revocation of Certificates 34

Restrictions for Authorization and Revocation of Certificates 34

Information About Authorization and Revocation of Certificates 35

PKI Authorization 35

PKI and AAA Server Integration for Certificate Status 35

RADIUS or TACACS+ Choosing a AAA Server Protocol 35

Attribute-Value Pairs for PKI and AAA Server Integration 36

CRLs or OCSP Server Choosing a Certificate Revocation Mechanism 37

What Is a CRL 37

What Is OCSP 38

When to Use Certificate-Based ACLs for Authorization or Revocation 39

Ignore Revocation Checks Using a Certificate-Based ACL 40
Contents

Configuring Certificate Chain Validation Through a Gap 73
Additional References for Configuring Authorization and Revocation of Certificates in a PKI 74
Feature Information for Certificate Authorization and Revocation 75

CHAPTER 4 Configuring Certificate Enrollment for a PKI 79
Finding Feature Information 79
Prerequisites for PKI Certificate Enrollment 79
Information About Certificate Enrollment for a PKI 80
What Are CAs 80
Framework for Multiple CAs 80
Authentication of the CA 81
Supported Certificate Enrollment Methods 81
Cisco IOS Suite-B Support for Certificate Enrollment for a PKI 82
Registration Authorities 82
Automatic Certificate Enrollment 83
Certificate Enrollment Profiles 84
How to Configure Certificate Enrollment for a PKI 84
Configuring Certificate Enrollment or Autoenrollment 84
Configuring Manual Certificate Enrollment 90
PEM-Formatted Files for Certificate Enrollment Request 90
Restrictions for Manual Certificate Enrollment 90
Configuring Cut-and-Paste Certificate Enrollment 90
Configuring TFTP Certificate Enrollment 92
Certifying a URL Link for Secure Communication with a Trend Micro Server 95
Configuring a Persistent Self-Signed Certificate for Enrollment via SSL 99
Persistent Self-Signed Certificates Overview 100
Restrictions 100
Configuring a Trustpoint and Specifying Self-Signed Certificate Parameters 100
Enabling the HTTPS Server 102
Configuring a Certificate Enrollment Profile for Enrollment or Reenrollment 103
What to Do Next 106
Configuration Examples for PKI Certificate Enrollment Requests 107
Configuring Certificate Enrollment or Autoenrollment Example 107
Configuring Autoenrollment Example 107

Public Key Infrastructure Configuration Guide, Cisco IOS Release 15MT
vi
CHAPTER 5
PKI Credentials Expiry Alerts 121
Finding Feature Information 121
Restrictions for PKI Credentials Expiry Alerts 121
Information About PKI Alerts Notification 122
 Overview of Alerts Notification 122
 PKI Traps 123
Additional References for PKI Credentials Expiry Alerts 123
Feature Information for PKI Credentials Expiry Alerts 124

CHAPTER 6
Setting Up Secure Device Provisioning for Enrollment in a PKI 125
Finding Feature Information 125
Prerequisites for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI 126
Information About Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI 127
 SDP Overview 127
 How SDP Works 128
 SDP Prep-Connect Phase 128
 SDP Connect Phase 129
 SDP Start Phase 131
 SDP Welcome Phase 132
 SDP Introduction Phase 133
 SDP Completion Phase 134
 SDP Leveraging USB Tokens 134
 Use of SDP to Configure the USB Token 135
 Use of the Configured USB Token 136
How SDP Uses an External AAA Database 137
 Authentication and Authorization Lists for SDP 137
 Authentication and Authorization Lists for an Administrative Introducer 138
How Custom Templates Work with SDP 138
 Custom Template Variable Expansion 139
 Custom Template Variable Expansion Rules 139
 Default Templates for SDP Transaction Web Pages 142
 Default Template for the Configuration File 145
How SDP Deploys Apple iPhones in a PKI 145
 SDP Registrar Deployment Phases of the Apple iPhone in a PKI 146
How to Set Up Secure Device Provisioning (SDP) for Enrollment in a PKI 151
 Enabling the SDP Petitioner 151
 Troubleshooting Tips 153
 What to Do Next 153
 Enabling the SDP Registrar and Adding AAA Lists to the Server 153
 Prerequisites 154
 Restrictions 154
 The template config Command 154
 Enabling the SDP Registrar for Certificate-Based Authorization 157
 Configuring the SDP Registrar to Deploy Apple iPhones 159
 Apple CA Server Trustpoint Certificate Configuration 161
 Configuring an Administrative Introducer 163
 Configuring Custom Templates 166
Configuration Examples for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI 168
 Verifying the SDP Registrar Example 168
 Verifying the SDP Petitioner Example 171
 Adding AAA Lists to a RADIUS or TACACS+ Server Examples 173
 TACACS+ AAA Server Database Example 174
 RADIUS AAA Server Database Example 174
 AAA List on a TACACS+ and a RADIUS AAA Server Example 174
 Using a Configuration Template File Example 174
 CGI Script Example 175
 Configuring the Petitioner and Registrar for Certificate-Based Authentication Example 177
Configuring an Administrative Introducer Using Authentication and Authorization Lists Example 178

Additional References 178

Feature Information for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI 179

CHAPTER 7

Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment 183

Finding Feature Information 183

Prerequisites for Configuring a Cisco IOS Certificate Server 184

Restrictions for Configuring a Cisco IOS Certificate Server 184

Information About Cisco IOS Certificate Servers 185

RSA Key Pair and Certificate of the Certificate Server 185

How the CA Certificate and CA Key Are Automatically Archived 185

Certificate Server Database 186

Certificate Server Database File Storage 186

Certificate Server Database File Publication 187

Trustpoint of the Certificate Server 187

Certificate Revocation Lists (CRLs) 188

Certificate Server Error Conditions 189

Certificate Enrollment Using a Certificate Server 189

SCEP Enrollment 190

Types of CA Servers Subordinate and Registration Authorities (RAs) 190

Automatic CA Certificate and Key Rollover 191

Automatic CA Certificate Rollover How It Works 191

Support for Specifying a Cryptographic Hash Function 192

How to Set Up and Deploy a Cisco IOS Certificate Server 192

Generating a Certificate Server RSA Key Pair 192

Configuring Certificate Servers 195

Prerequisites for Automatic CA Certificate Rollover 195

Restrictions for Automatic CA Certificate Rollover 196

Configuring a Certificate Server 196

Configuring a Subordinate Certificate Server 198

Configuring a Certificate Server to Run in RA Mode 205

Configuring the Root Certificate Server to Delegate Enrollment Tasks to the RA Mode Certificate Server 207
CHAPTER 12 PKI Split VRF in Trustpoint 289
- Finding Feature Information 289
- Information About PKI Split VRF in Trustpoint 289
 - Overview of PKI Split VRF in Trustpoint 289
- How to Configure PKI Split VRF in Trustpoint 290
 - Configuring the Split VRF 290
- Configuration Examples for PKI Split VRF in Trustpoint 291
 - Example: Configuring the PKI Split VRF in Trustpoint 291
- Additional References for PKI Split VRF in Trustpoint 291
- Feature Information for PKI Split VRF in Trustpoint 292

CHAPTER 13 EST Client Support 293
- Finding Feature Information 293
- Prerequisites for EST Client Support 293
- Restrictions for EST Client Support 293
- Information About EST Client Support 294
 - Overview of EST Client Support 294
- How to Configure EST Client Support 294
 - Configuring a Trustpoint to Use EST 294
- Configuration Examples for EST Client Support 295
 - Example: Configuring a Trustpoint to Use EST 295
- Additional References for EST Client Support 296
- Feature Information for EST Client Support 297

CHAPTER 14 OCSP Response Stapling 299
- Finding Feature Information 299
- Information About OCSP Response Stapling 299
 - Overview of OCSP Response Stapling 299
- How to Configure OCSP Response Stapling 300
 - Configuring PKI Client to Request EKU Attribute 300
 - Configuring PKI Server to Include EKU Attributes 302
- Additional References for OCSP Response Stapling 304
- Feature Information for OCSP Response Stapling 305
Cisco IOS PKI Overview Understanding and Planning a PKI

Cisco IOS public key infrastructure (PKI) provides certificate management to support security protocols such as IP Security (IPSec), secure shell (SSH), and secure socket layer (SSL). This module identifies and describes concepts that are needed to understand, plan for, and implement a PKI.

• Finding Feature Information, on page 1
• Information About Cisco IOS PKI, on page 1
• Planning for a PKI, on page 5
• Where to Go Next, on page 5
• Additional References, on page 6
• Glossary, on page 7

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Cisco IOS PKI

What Is Cisco IOS PKI

A PKI is composed of the following entities:

• Peers communicating on a secure network
• At least one certification authority (CA) that grants and maintains certificates
PKI provides customers with a scalable, secure mechanism for distributing, managing, and revoking encryption and identity information in a secured data network. Every entity (a person or a device) participating in the secured communication is enrolled in the PKI in a process where the entity generates an Rivest, Shamir, and Adelman (RSA) key pair (one private key and one public key) and has their identity validated by a trusted entity (also known as a CA or trustpoint).

After each entity enrolls in a PKI, every peer (also known as an end host) in a PKI is granted a digital certificate that has been issued by a CA. When peers must negotiate a secured communication session, they exchange digital certificates. Based on the information in the certificate, a peer can validate the identity of another peer and establish an encrypted session with the public keys contained in the certificate.

Although you can plan for and set up your PKI in a number of different ways, the figure below shows the major components that make up a PKI and suggests an order in which each decision within a PKI can be made. The figure is a suggested approach; you can choose to set up your PKI from a different perspective.

Figure 1: Deciding How to Set Up Your PKI

RSA Keys Overview

An RSA key pair consists of a public key and a private key. When setting up your PKI, you must include the public key in the certificate enrollment request. After the certificate has been granted, the public key will be included in the certificate so that peers can use it to encrypt data that is sent to the router. The private key is kept on the router and used both to decrypt the data sent by peers and to digitally sign transactions when negotiating with peers.
RSA key pairs contain a key modulus value. The modulus determines the size of the RSA key. The larger the modulus, the more secure the RSA key. However, keys with large modulus values take longer to generate, and encryption and decryption operations take longer with larger keys.

What Are CAs

A CA, also known as a trustpoint, manages certificate requests and issues certificates to participating network devices. These services (managing certificate requests and issuing certificates) provide centralized key management for the participating devices and are explicitly trusted by the receiver to validate identities and to create digital certificates. Before any PKI operations can begin, the CA generates its own public key pair and creates a self-signed CA certificate; thereafter, the CA can sign certificate requests and begin peer enrollment for the PKI.

You can use a CA provided by a third-party CA vendor, or you can use an “internal” CA, which is the Cisco IOS Certificate Server.

Hierarchical PKI Multiple CAs

PKI can be set up in a hierarchical framework to support multiple CAs. At the top of the hierarchy is a root CA, which holds a self-signed certificate. The trust within the entire hierarchy is derived from the RSA key pair of the root CA. The subordinate CAs within the hierarchy can be enrolled with either the root CA or with another subordinate CA. These enrollment options are how multiple tiers of CAs are configured. Within a hierarchical PKI, all enrolled peers, can validate the certificate of one another if the peers share a trusted root CA certificate or a common subordinate CA.

The figure below shows the enrollment relationships among CAs within a three-tiered hierarchy.

Figure 2: Three-Tiered CA Hierarchy Sample Topology

Each CA corresponds to a trustpoint. For example, CA11 and CA12 are subordinate CAs, holding CA certificates that have been issued by CA1; CA111, CA112, and CA113 are also subordinate CAs, but their CA certificates have been issued by CA11.

When to Use Multiple CAs

Multiple CAs provide users with added flexibility and reliability. For example, subordinate CAs can be placed in branch offices while the root CA is at the office headquarters. Also, different granting policies can be implemented per CA, so you can set up one CA to automatically grant certificate requests while another CA within the hierarchy requires each certificate request to be manually granted.
Scenarios in which at least a two-tier CA is recommended are as follows:

- Large and very active networks in which a large number of certificates are revoked and reissued. A multiple-tier CA helps to control the size of the CRLs.
- When online enrollment protocols are used, the root CA can be kept offline with the exception of issuing subordinate CA certificates. This scenario provides added security for the root CA.

Certificate Enrollment How It Works

Certificate enrollment is the process of obtaining a certificate from a CA. Each end host that wants to participate in the PKI must obtain a certificate. Certificate enrollment occurs between the end host requesting the certificate and the CA. The figure below and the following steps describe the certificate enrollment process.

Figure 3: Certificate Enrollment Process

1. The end host generates an RSA key pair.
2. The end host generates a certificate request and forwards it to the CA (or the RA, if applicable).
3. The CA receives the certificate enrollment request, and, depending on your network configuration, one of the following options occurs:
 1. Manual intervention is required to approve the request.
 2. The end host is configured to automatically request a certificate from the CA. Thus, operator intervention is no longer required at the time the enrollment request is sent to the CA server.

Note

If you configure the end host to automatically request certificates from the CA, you should have an additional authorization mechanism.

1. After the request is approved, the CA signs the request with its private key and returns the completed certificate to the end host.
2. The end host writes the certificate to a storage area such as NVRAM.
Certificate Enrollment Via Secure Device Provisioning

Secure Device Provisioning (SDP) is a web-based certificate enrollment interface that can be used to easily deploy PKI between two end devices, such as a Cisco IOS client and a Cisco IOS certificate server.

SDP (also referred to as Trusted Transitive Introduction [TTI]) is a communication protocol that provides a bidirectional introduction between two end entities, such as a new network device and a Virtual Private Network (VPN). SDP involves the following three entities:

- **Introducer**—A mutually trusted device that introduces the petitioner to the registrar. The introducer can be a device user, such as a system administrator.
- **Petitioner**—A new device that is joined to the secure domain.
- **Registrar**—A certificate server or other server that authorizes the petitioner.

SDP is implemented over a web browser in three phases—welcome, introduction, and completion. Each phase is shown to the user via a web page. For more information on each phase and how SDP works, see the “Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI” module.

Certificate Revocation Why It Occurs

After each participant has successfully enrolled in the PKI, the peers are ready to begin negotiations for a secure connection with each other. Thus, the peers present their certificates for validation followed by a revocation check. After the peer verifies that the other peer’s certificate was issued by an authenticated CA, the CRL or Online Certificate Status Protocol (OCSP) server is checked to ensure that the certificate has not been revoked by the issuing CA. The certificate usually contains a certificate distribution point (CDP) in the form of a URL. Cisco IOS software uses the CDP to locate and retrieve the CRL. If the CDP server does not respond, the Cisco IOS software reports an error, which may result in the peer’s certificate being rejected.

Planning for a PKI

Planning for a PKI requires evaluating the requirements and expected use for each of the PKI components. It is recommended that you (or the network administrator) thoroughly plan the PKI before beginning any PKI configuration.

Although there are a number of approaches to consider when planning the PKI, this document begins with peer-to-peer communication. However you or the network administrator choose to plan the PKI, understand that certain decisions influence other decisions within the PKI. For example, the enrollment and deployment strategy could influence the planned CA hierarchy. Thus, it is important to understand how each component functions within the PKI and how certain component options are dependent upon decisions made earlier in the planning process.

Where to Go Next

Begin to configure a PKI by setting up and deploying RSA keys. For more information, see the module “Deploying RSA Keys Within a PKI.”
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>PKI commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
<tr>
<td>Certificate enrollment:</td>
<td>Configuring Certificate Enrollment for a PKI</td>
</tr>
<tr>
<td>supported methods,</td>
<td></td>
</tr>
<tr>
<td>enrollment profiles,</td>
<td></td>
</tr>
<tr>
<td>configuration tasks</td>
<td></td>
</tr>
<tr>
<td>Certificate revocation and</td>
<td>Configuring Revocation and Authorization of Certificates in a PKI</td>
</tr>
<tr>
<td>authorization:</td>
<td></td>
</tr>
<tr>
<td>configuration tasks</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS certificate server</td>
<td>Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment</td>
</tr>
<tr>
<td>overview information and</td>
<td></td>
</tr>
<tr>
<td>configuration tasks</td>
<td></td>
</tr>
<tr>
<td>Secure Device Provisioning:</td>
<td>Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI</td>
</tr>
<tr>
<td>functionality overview and</td>
<td></td>
</tr>
<tr>
<td>configuration tasks</td>
<td></td>
</tr>
<tr>
<td>Storing RSA keys and</td>
<td>Storing PKI Credentials</td>
</tr>
<tr>
<td>certificates on a USB eToken</td>
<td></td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2459</td>
<td>Internet X.509 Public Key Infrastructure Certificate and CRL Profile</td>
</tr>
<tr>
<td>RFC 2511</td>
<td>Internet X.509 Certificate Request Message Format</td>
</tr>
<tr>
<td>RFC 2527</td>
<td>Internet X.509 Public Key Infrastructure Certificate Policy and</td>
</tr>
<tr>
<td></td>
<td>Certification Practices Framework</td>
</tr>
<tr>
<td>RFC 2528</td>
<td>Internet X.509 Public Key Infrastructure</td>
</tr>
<tr>
<td>RFC 2559</td>
<td>Internet X.509 Public Key Infrastructure Operational Protocols -</td>
</tr>
<tr>
<td></td>
<td>LDAPv2</td>
</tr>
<tr>
<td>RFC 2560</td>
<td>X.509 Internet Public Key Infrastructure Online Certificate Status</td>
</tr>
<tr>
<td></td>
<td>Protocol - OCSP</td>
</tr>
<tr>
<td>Standard/RFC</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>RFC 2585</td>
<td>Internet X.509 Public Key Infrastructure Operational Protocols: FTP and HTTP</td>
</tr>
<tr>
<td>RFC 2587</td>
<td>Internet X.509 Public Key Infrastructure LDAPv2 Schema</td>
</tr>
<tr>
<td>RFC 2875</td>
<td>Diffie-Hellman Proof-of-Possession Algorithms</td>
</tr>
<tr>
<td>RFC 3029</td>
<td>Internet X.509 Public Key Infrastructure Data Validation and Certification Server Protocols</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PKI MIB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS software releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Glossary

CDP—certificate distribution point. Field within a digital certificate containing information that describes how to retrieve the CRL for the certificate. The most common CDPs are HTTP and LDAP URLs. A CDP may also contain other types of URLs or an LDAP directory specification. Each CDP contains one URL or directory specification.

certificates—Electronic documents that bind a user’s or device’s name to its public key. Certificates are commonly used to validate a digital signature.

CRL—certificate revocation list. Electronic document that contains a list of revoked certificates. The CRL is created and digitally signed by the CA that originally issued the certificates. The CRL contains dates for when the certificate was issued and when it expires. A new CRL is issued when the current CRL expires.

CA—certification authority. Service responsible for managing certificate requests and issuing certificates to participating IPSec network devices. This service provides centralized key management for the participating devices and is explicitly trusted by the receiver to validate identities and to create digital certificates.

peer certificate—Certificate presented by a peer, which contains the peer’s public key and is signed by the trustpoint CA.
PKI—public key infrastructure. System that manages encryption keys and identity information for components of a network that participate in secured communications.

RA—registration authority. Server that acts as a proxy for the CA so that CA functions can continue when the CA is offline. Although the RA is often part of the CA server, the RA could also be an additional application, requiring an additional device to run it.

RSA keys—Public key cryptographic system developed by Ron Rivest, Adi Shamir, and Leonard Adleman. An RSA key pair (a public and a private key) is required before you can obtain a certificate for your router.
Deploying RSA Keys Within a PKI

This module explains how to set up and deploy Rivest, Shamir, and Adelman (RSA) keys within a public key infrastructure (PKI). An RSA key pair (a public and a private key) is required before you can obtain a certificate for your router; that is, the end host must generate a pair of RSA keys and exchange the public key with the certification authority (CA) to obtain a certificate and enroll in a PKI.

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring RSA Keys for a PKI

• Before setting up and deploying RSA keys for a PKI, you should be familiar with the module Cisco IOS PKI Overview: Understanding and Planning a PKI.
Information About RSA Keys Configuration

RSA Keys Overview

An RSA key pair consists of a public key and a private key. When setting up your PKI, you must include the public key in the certificate enrollment request. After the certificate has been granted, the public key will be included in the certificate so that peers can use it to encrypt data that is sent to the router. The private key is kept on the router and used both to decrypt the data sent by peers and to digitally sign transactions when negotiating with peers.

RSA key pairs contain a key modulus value. The modulus determines the size of the RSA key. The larger the modulus, the more secure the RSA key. However, keys with large modulus values take longer to generate, and encryption and decryption operations take longer with larger keys.

Usage RSA Keys Versus General-Purpose RSA Keys

There are two mutually exclusive types of RSA key pairs—usage keys and general-purpose keys. When you generate RSA key pairs (via the `crypto key generate rsa` command), you will be prompted to select either usage keys or general-purpose keys.

Usage RSA Keys

Usage keys consist of two RSA key pairs—one RSA key pair is generated and used for encryption and one RSA key pair is generated and used for signatures. With usage keys, each key is not unnecessarily exposed. (Without usage keys, one key is used for both authentication methods, increasing the exposure of that key.)

General-Purpose RSA Keys

General-purpose keys consist of only one RSA key pair that used for both encryption and signatures. General-purpose key pairs are used more frequently than usage key pairs.

How RSA Key Pairs are Associated with a Trustpoint

A trustpoint, also known as the certificate authority (CA), manages certificate requests and issues certificates to participating network devices. These services provide centralized key management for the participating devices and are explicitly trusted by the receiver to validate identities and to create digital certificates. Before any PKI operations can begin, the CA generates its own public key pair and creates a self-signed CA certificate; thereafter, the CA can sign certificate requests and begin peer enrollment for the PKI.

Caution

Do not manually generate an rsa keypair under trustpoint. If we want to manually generate the keys, generate the key pairs as usage-keys and not as general-purpose keys.

Reasons to Store Multiple RSA Keys on a Router

Configuring multiple RSA key pairs allows the Cisco IOS software to maintain a different key pair for each CA with which it is dealing or the software can maintain multiple key pairs and certificates with the same CA. As a result, the Cisco IOS software can match policy requirements for each CA without compromising...
the requirements specified by the other CAs, such as key length, key lifetime, and general-purpose versus usage keys.

Named key pairs (which are specified via the label key-label option) allow you to have multiple RSA key pairs, enabling the Cisco IOS software to maintain a different key pair for each identity certificate.

Benefits of Exportable RSA Keys

⚠️ **Caution**

Exportable RSA keys should be carefully evaluated before use because using exportable RSA keys introduces the risk that these keys might be exposed. Any existing RSA keys are not exportable. New keys are generated as nonexportable by default. It is not possible to convert an existing nonexportable key to an exportable key.

As of Cisco IOS Release 12.2(15)T, users can share the private RSA key pair of a router with standby routers, therefore transferring the security credentials between networking devices. The key pair that is shared between two routers will allow one router to immediately and transparently take over the functionality of the other router. If the main router were to fail, the standby router could be dropped into the network to replace the failed router without the need to regenerate keys, reenroll with the CA, or manually redistribute keys.

Exporting and importing an RSA key pair also enables users to place the same RSA key pair on multiple routers so that all management stations using Secure Shell (SSH) can be configured with a single public RSA key.

Exportable RSA Keys in PEM-Formatted Files

Using privacy-enhanced mail (PEM)-formatted files to import or export RSA keys can be helpful for customers who are running Cisco IOS software Release 12.3(4)T or later and who are using secure socket layer (SSL) or secure shell (SSH) applications to manually generate RSA key pairs and import the keys back into their PKI applications. PEM-formatted files allow customers to directly use existing RSA key pairs on their Cisco IOS routers instead of generating new keys.

Passphrase Protection While Importing and Exporting RSA Keys

You have to include a passphrase to encrypt the PKCS12 file or the PEM file that will be exported, and when the PKCS12 or PEM file is imported, the same passphrase has to be entered to decrypt it. Encrypting the PKCS12 or PEM file when it is being exported, deleted, or imported protects the file from unauthorized access and use while it is being transported or stored on an external device.

The passphrase can be any phrase that is at least eight characters in length; it can include spaces and punctuation, excluding the question mark (?), which has special meaning to the Cisco IOS parser.

How to Convert an Exportable RSA Key Pair to a Nonexportable RSA Key Pair

Passphrase protection protects the external PKCS12 or PEM file from unauthorized access and use. To prevent an RSA key pair from being exported, it must be labeled “nonexportable.” To convert an exportable RSA key pair into a nonexportable key pair, the key pair must be exported and then reimported without specifying the “exportable” keyword.
How to Set Up and Deploy RSA Keys Within a PKI

Generating an RSA Key Pair

Perform this task to manually generate an RSA key pair.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto key generate rsa [general-keys | usage-keys | signature | encryption] [label key-label] [exportable] [modulus modulus-size] [storage devicename:] [on devicename:]
4. exit
5. show crypto key mypubkey rsa

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Enters global configuration mode.
configure terminal	
Example:	
Router# configure terminal	

Step 3	(Optional) Generates the RSA key pair for the certificate server.			
crypto key generate rsa [general-keys	usage-keys	signature	encryption] [label key-label] [exportable] [modulus modulus-size] [storage devicename:] [on devicename:]	
Example:				
Router(config)# crypto key generate rsa usage-keys modulus 2048				

- The storage keyword specifies the key storage location.
- When specifying a label name by specifying the key-label argument, you must use the same name for the label that you plan to use for the certificate server (through the crypto pki server cs-label command). If a key-label argument is not specified, the default value, which is the fully qualified domain name (FQDN) of the router, is used.

If the exportable RSA key pair is manually generated after the CA certificate has been generated, and before issuing the no shutdown command, then use the crypto ca export pkcs12 command to export a PKCS12 file that contains the certificate server certificate and the private key.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• By default, the modulus size of a CA key is 1024 bits. The recommended modulus for a CA key is 2048 bits. The range for a modulus size of a CA key is from 360 to 4096 bits.</td>
<td></td>
</tr>
<tr>
<td>• The on keyword specifies that the RSA key pair is created on the specified device, including a Universal Serial Bus (USB) token, local disk, or NVRAM. The name of the device is followed by a colon (:).</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Keys created on a USB token must be 2048 bits or less.</td>
</tr>
<tr>
<td>Caution</td>
<td>Do not manually generate an rsa keypair under trustpoint. If we want to manually generate the keys, generate the key pairs as usage-keys and not as general-purpose keys.</td>
</tr>
</tbody>
</table>

Step 4

exit

Example:

Router(config)# exit

- Exits global configuration mode.

Step 5

show crypto key mypubkey rsa

Example:

Router# show crypto key mypubkey rsa

- (Optional) Displays the RSA public keys of your router.
- This step allows you to verify that the RSA key pair has been successfully generated.

What to Do Next

After you have successfully generated an RSA key pair, you can proceed to any of the additional tasks in this module to generate additional RSA key pairs, perform export and import of RSA key pairs, or configure additional security parameters for the RSA key pair (such as encrypting or locking the private key).

Managing RSA Key Pairs and Trustpoint Certificates

Perform this task to configure the router to generate and store multiple RSA key pairs, associate the key pairs with a trustpoint, and get the certificates for the router from the trustpoint.

Before you begin

You must have already generated an RSA key pair as shown in the task “Generating an RSA Key Pair task.”

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. rsakeypair key-label [key-size [encryption-key-size]]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
<p>| • Enter your password if prompted. |
| Example: | |
| Router> enable | |
| Step 2 configure terminal | Enters global configuration mode. |
| Example: | |
| Router# configure terminal | |
| Step 3 crypto pki trustpoint name | Creates a trustpoint and enters ca-trustpoint configuration mode. |
| Example: | |
| Router(config)# crypto pki trustpoint TESTCA | |
| Step 4 rsakeypair key-label [key-size [encryption-key-size]] | (Optional) The key-label argument specifies the name of the RSA key pair generated during enrollment (if it does not already exist or if the auto-enroll regenerate command is configured) to be used with the trustpoint certificate. By default, the fully qualified domain name (FQDN) key is used. |
| Example: | |
| Router(ca-trustpoint)# rsakeypair fancy-keys | |
| Step 5 enrollment selfsigned | (Optional) Specifies self-signed enrollment for a trustpoint. |
| Example: | |
| Router(ca-trustpoint)# enrollment selfsigned | |
| Step 6 subject-alt-name name | (Optional) The name argument specifies the trustpoint’s name in the Subject Alternative Name (subjectAltName) field in the X.509 certificate, which is contained in the trustpoint certificate. By default, the Subject Alternative Name field is not included in the certificate. |
| Example: | |
| Router(ca-trustpoint)# subject-alt-name TESTCA | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>This X.509 certificate field is defined in RFC 2511. This option is used to create a self-signed trustpoint certificate for the router that contains the trustpoint name in the Subject Alternative Name (subjectAltName) field. This Subject Alternative Name can be used only when the <code>enrollment selfsigned</code> command is specified for self-signed enrollment in the trustpoint policy.</td>
<td></td>
</tr>
</tbody>
</table>

Step 7

Example:

Router

(ca-trustpoint)# exit

Exits ca-trustpoint configuration mode.

Step 8

`crypto pki enroll name`

Example:

Router(config)# crypto pki enroll TESTCA

% Include the router serial number in the subject name? [yes/no]: no

`% Include an IP address in the subject name? [no]:`

Generate Self Signed Router Certificate? [yes/no]: yes

Router Self Signed Certificate successfully created

Requests the certificates for the router from the trustpoint. The `name` argument specifies the trustpoint name. Once this command is entered, answer the prompts.

Note Use the same trustpoint name entered with the `crypto pki trustpoint` command.

Step 9

Example:

Router(config)# exit

Exits global configuration mode.

Step 10

`show crypto key mypubkey rsa`

Example:

Router# show crypto key mypubkey rsa

(Optional) Displays the RSA public keys of your router. This step allows you to verify that the RSA key pair has been successfully generated.
Example

The following example shows how to create a self-signed trustpoint certificate for the router that contains the trustpoint name in the Subject Alternative Name (subjectAltName) field:

Router> enable
Router# configure terminal
Router(config)#crypto pki trustpoint TESTCA
Router(ca-trustpoint)#hash sha256
Router(ca-trustpoint)#rsakeypair testca-rsa-key 2048
Router(ca-trustpoint)#exit
Router(config)#crypto pki enroll TESTCA
% Include the router serial number in the subject name? [yes/no]:no
% Include an IP address in the subject name? [yes/no]:no
Generate Self Signed Router Certificate? [yes/no]: yes

Router Self Signed Certificate successfully created

Router(config)#
Router(config)#exit
Router#

The following certificate is created:

Router#show crypto pki certificate verbose
Router Self-Signed Certificate
Status: Available
Version: 3
Certificate Serial Number (hex): 01
Certificate Usage: General Purpose
Issuer:
 hostname=Router.cisco.com
Subject:
 Name: Router.cisco.com
 hostname=Router.cisco.com
Validity Date:
 start date: 11:41:50 EST Aug 13 2012
 end date: 19:00:00 EST Dec 31 2019
Subject Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)
Signature Algorithm: SHA256 with RSA Encryption
Fingerprint SHA1: 57A9D411 62DFAC81 68260F2F C6C8D7CF 4833F3E9
X509v3 extensions:
 X509v3 Subject Key ID: 44340F76 A6B8DC37 80724650 0672875F 741D518C
 X509v3 Basic Constraints: CA: TRUE
X509v3 Authority Info Access:
 Associated Trustpoints: TESTCA
-----BEGIN CERTIFICATE-----
MIIBszCCAV2gAwIBAgIBAjANBgkqhkiG9w0BAOQQFADAuMQUQwDQYDVQQDEwZURVNU
Q0ExGzAZBgkqhkiG9w0BCQczWDIxMmNmNpc2ZvNlNvbTAeFw0xMDAxMjIyMDI2MjBa
Fw0yMDAzMjIyMDI2MjBaFw0yMDAxMjIyMDI2MjBa
-----END CERTIFICATE-----

Deploying RSA Keys Within a PKI
Managing RSA Key Pairs and Trustpoint Certificates
Exporting and Importing RSA Keys

This section contains the following tasks that can be used for exporting and importing RSA keys. Whether you are using PKCS12 files or PEM files, exportable RSA keys allow you to use existing RSA keys on Cisco IOS routers instead of having to generate new RSA keys if the main router were to fail.

Exporting and Importing RSA Keys in PKCS12 Files

Exporting and importing RSA key pairs enables users to transfer security credentials between devices. The key pair that is shared between two devices allows one device to immediately and transparently take over the functionality of the other router.

Before you begin

You must generate an RSA key pair and mark it “exportable” as specified in the “Generating an RSA Key Pair” task.

Note

- You cannot export RSA keys that existed on the router before your system was upgraded to Cisco IOS Release 12.2(15)T or later. You have to generate new RSA keys and label them as “exportable” after you upgrade the Cisco IOS software.
- When you import a PKCS12 file that was generated by a third-party application, the PKCS12 file must include a CA certificate.
- If you want reexport an RSA key pair after you have already exported the key pair and imported them to a target router, you must specify the exportable keyword when you are importing the RSA key pair.
- The largest RSA key a router may import is 2048-bits.

SUMMARY STEPS

1. crypto pki trustpoint name
2. rsakeypair key-label [key-size [encryption-key-size]]
3. exit
4. crypto pki export trustpointname pkcs12 destination-url password password-phrase
5. crypto pki import trustpointname pkcs12 source-url password password-phrase
6. exit
7. show crypto key mypubkey rsa

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 crypto pki trustpoint name</td>
<td>Creates the trustpoint name that is to be associated with the RSA key pair and enters ca-trustpoint configuration mode.</td>
</tr>
</tbody>
</table>

Example:
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>crypto pki trustpoint my-ca</code></td>
<td>Specifies the key pair that is to be used with the trustpoint.</td>
</tr>
<tr>
<td><code>rsakeypair key-label [key-size [encryption-key-size]]</code></td>
<td>Exits ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td><code>crypto pki export trustpointname pkcs12 destination-url password password-phrase</code></td>
<td>Exports the RSA keys through the trustpoint name.</td>
</tr>
<tr>
<td><code>crypto pki import trustpointname pkcs12 source-url password password-phrase</code></td>
<td>Imports the RSA keys to the target router.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><code>show crypto key mypubkey rsa</code></td>
<td>(Optional) Displays the RSA public keys of your router.</td>
</tr>
</tbody>
</table>

Step 2

```
Router(config)# crypto pki trustpoint my-ca
```

Example:

```
Router(ca-trustpoint)# rsakeypair my-keys
```

Step 3

```
Router(ca-trustpoint)# exit
```

Example:

```
Router(ca-trustpoint)# exit
```

Step 4

```
Router(config)# crypto pki export my-ca pkcs12 tftp://tftpserver/my-keys password mypassword123
```

Example:

```
Router(config)# crypto pki export my-ca pkcs12 tftp://tftpserver/my-keys password mypassword123
```

Step 5

```
Router(config)# crypto pki import my-ca pkcs12 tftp://tftpserver/my-keys password mypassword123
```

Example:

```
Router(config)# crypto pki import my-ca pkcs12 tftp://tftpserver/my-keys password mypassword123
```

Step 6

```
Router(config)# exit
```

Example:

```
Router(config)# exit
```

Step 7

```
Router# show crypto key mypubkey rsa
```

Example:

```
Router# show crypto key mypubkey rsa
```
Exporting and Importing RSA Keys in PEM-Formatted Files

Perform this task to export or import RSA key pairs in PEM files.

Before you begin

You must generate an RSA key pair and mark it “exportable” as specified the “Generating an RSA Key Pair” task.

Note

- You cannot export and import RSA keys that were generated without an exportable flag before your system was upgraded to Cisco IOS Release 12.3(4)T or a later release. You have to generate new RSA keys after you upgrade the Cisco IOS software.
- The largest RSA key a router may import is 2048 bits.

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

SUMMARY STEPS

1. `crypto key generate rsa {usage-keys | general-keys} label key-label [exportable]`
2. `crypto pki export trustpoint pem {terminal | url destination-url} {3des | des} password password-phrase`
3. `crypto pki import trustpoint pem {check | exportable} {usage-keys} {terminal | url source-url} password password-phrase`
4. `exit`
5. `show crypto key mypubkey rsa`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Generates the RSA key pair.
To use PEM files, the RSA key pair must be labeled exportable. |
| `crypto key generate rsa {usage-keys | general-keys} label key-label [exportable]` |
Example:
Router(config)# crypto key generate rsa general-keys label mykey exportable
| **Step 2** |Exports the certificates and RSA keys that are associated with a trustpoint in a PEM-formatted file.
• Enter the `trustpoint` name that is associated with the exported certificate and RSA key pair. The trustpoint name must match the name that was specified through the `crypto pki trustpoint` command |
| `crypto pki export trustpoint pem {terminal | url destination-url} {3des | des} password password-phrase` |
Example:
Router(config)# crypto pki export mycs pem url nvram: 3des password mypassword123 |
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use the <code>terminal</code> keyword to specify the certificate and RSA key pair that is displayed in PEM format on the console terminal.</td>
</tr>
<tr>
<td>• Use the <code>url</code> keyword and <code>destination-url</code> argument to specify the URL of the file system where your router should export the certificates and RSA key pair.</td>
</tr>
<tr>
<td>• (Optional) the <code>3des</code> keyword exports the trustpoint using the Triple Data Encryption Standard (3DES) encryption algorithm.</td>
</tr>
<tr>
<td>• (Optional) the <code>des</code> keyword exports the trustpoint using the DES encryption algorithm.</td>
</tr>
<tr>
<td>• Use the <code>password-phrase</code> argument to specify the encrypted password phrase that is used to encrypt the PEM file for import.</td>
</tr>
</tbody>
</table>

Tip

Be sure to keep the PEM file safe. For example, you may want to store it on another backup router.

Step 3

crypto pki import trustpoint pem [check | exportable | usage-keys] {terminal | url source-url} password password-phrase

Example:

`Router(config)# crypto pki import mycs2 pem url nvram: password mypassword123`

Imports certificates and RSA keys to a trustpoint from PEM-formatted files.

- Enter the `trustpoint` name that is associated with the imported certificate and RSA key pair. The trustpoint name must match the name that was specified through the `crypto pki trustpoint` command.
- (Optional) Use the `check` keyword to specify that an outdated certificate is not allowed.
- (Optional) Use the `exportable` keyword to specify that the imported RSA key pair can be exported again to another Cisco device such as a router.
- (Optional) Use the `usage-keys` argument to specify that two RSA special usage key pairs will be imported (that is, one encryption pair and one signature pair), instead of one general-purpose key pair.
- Use the `source-url` argument to specify the URL of the file system where your router should import the certificates and RSA key pairs.
- Use the `password-phrase` argument to specify the encrypted password phrase that is used to encrypt the PEM file for import.
Purpose

Command or Action

Note

The password phrase can be any phrase that is at least eight characters in length; it can include spaces and punctuation, excluding the question mark (?), which has special meaning to the Cisco IOS parser.

Note

If you do not want the key to be exportable from your CA, import it back to the CA after it has been exported as a nonexportable key pair. Thus, the key cannot be taken off again.

Step 4

exit

Example:

Router(config)# exit

Exits global configuration mode.

Step 5

show crypto key mypubkey rsa

Example:

Router# show crypto key mypubkey rsa

(Optional) Displays the RSA public keys of your router.

Encrypting and Locking Private Keys on a Router

Digital signatures are used to authenticate one device to another device. To use digital signatures, private information (the private key) must be stored on the device that is providing the signature. The stored private information may aid an attacker who steals the hardware device that contains the private key; for example, a thief might be able to use the stolen router to initiate a secure connection to another site by using the RSA private keys stored in the router.

Note

RSA keys are lost during password recovery operations. If you lose your password, the RSA keys will be deleted when you perform the password recovery operation. (This function prevents an attacker from performing password recovery and then using the keys.)

To protect the private RSA key from an attacker, a user can encrypt the private key that is stored in NVRAM via a passphrase. Users can also “lock” the private key, which blocks new connection attempts from a running router and protects the key in the router if the router is stolen by an attempted attacker.

Perform this task to encrypt and lock the private key that is saved to NVRAM.

Note

The RSA keys must be unlocked while enrolling the CA. The keys can be locked while authenticating the router with the CA because the private key of the router is not used during authentication.
Before you begin

Before encrypting or locking a private key, you should perform the following tasks:

- Generate an RSA key pair as shown in the task “Generating an RSA Key Pair, on page 12.”
- Optionally, you can authenticate and enroll each router with the CA server.

Note

Backward Compatibility Restriction

Any image prior to Cisco IOS Release 12.3(7)T does not support encrypted keys. To prevent your router from losing all encrypted keys, ensure that only unencrypted keys are written to NVRAM before booting an image prior to Cisco IOS Release 12.3(7)T.

If you must download an image prior to Cisco IOS Release 12.3(7)T, decrypt the key and immediately save the configuration so the downloaded image does not overwrite the configuration.

Interaction with Applications

An encrypted key is not effective after the router boots up until you manually unlock the key (via the crypto key unlock rsa command). Depending on which key pairs are encrypted, this functionality may adversely affect applications such as IP security (IPsec), SSH, and SSL; that is, management of the router over a secure channel may not be possible until the necessary key pair is unlocked.

>

SUMMARY STEPS

1. crypto key encrypt [write] rsa [name key-name] passphrase passphrase
2. exit
3. show crypto key mypubkey rsa
4. crypto key lock rsa name key-name passphrase passphrase
5. show crypto key mypubkey rsa
6. crypto key unlock rsa [name key-name] passphrase passphrase
7. configure terminal
8. crypto key decrypt [write] rsa [name key-name] passphrase passphrase

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** crypto key encrypt [write] rsa [name key-name] passphrase passphrase
Example:
Router(config)# crypto key encrypt write rsa name pki.example.com passphrase password | Encrypts the RSA keys.
After this command is issued, the router can continue to use the key; the key remains unlocked.
Note If the **write** keyword is not issued, the configuration must be manually written to NVRAM; otherwise, the encrypted key will be lost next time the router is reloaded. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2** | exit | Exits global configuration mode.
Example:
Router(config)# exit |
| **Step 3** | show crypto key mypubkey rsa | (Optional) Shows that the private key is encrypted (protected) and unlocked.
Note: You can also use this command to verify that applications such as Internet Key Exchange (IKE) and SSH are properly working after the key has been encrypted.
Example:
Router# show crypto key mypubkey rsa |
| **Step 4** | crypto key lock rsa **name** key-name **passphrase** passphrase
Example:
Router# crypto key lock rsa name pki.example.com passphrase password | (Optional) Locks the encrypted private key on a running router.
Note: After the key is locked, it cannot be used to authenticate the router to a peer device. This behavior disables any IPSec or SSL connections that use the locked key. Any existing IPSec tunnels created on the basis of the locked key will be closed. If all RSA keys are locked, SSH will automatically be disabled. |
| **Step 5** | show crypto key mypubkey rsa
Example:
Router# show crypto key mypubkey rsa | (Optional) Shows that the private key is protected and locked.
The output will also show failed connection attempts via applications such as IKE, SSH, and SSL. |
| **Step 6** | crypto key unlock rsa **[name** key-name]** passphrase passphrase
Example:
Router# crypto key unlock rsa name pki.example.com passphrase password | (Optional) Unlocks the private key.
Note: After this command is issued, you can continue to establish IKE tunnels. |
| **Step 7** | configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| **Step 8** | crypto key decrypt **[write]** rsa **[name** key-name]** passphrase passphrase
Example:
Router(config)# crypto key decrypt write rsa name pki.example.com passphrase password | (Optional) Deletes the encrypted key and leaves only the unencrypted key.
Note: The write keyword immediately saves the unencrypted key to NVRAM. If the write keyword is not issued, the configuration must be manually written to NVRAM; otherwise, the key will remain encrypted the next time the router is reloaded. |
Removing RSA Key Pair Settings

An RSA key pair may need to be removed for one of the following reasons:

- During manual PKI operations and maintenance, old RSA keys can be removed and replaced with new keys.
- An existing CA is replaced and the new CA requires newly generated keys; for example, the required key size might have changed in an organization so you would have to delete the old 1024-bit keys and generate new 2048-bit keys.
- The peer router’s public keys can be deleted in order to help debug signature verification problems in IKEv1 and IKEv2. Keys are cached by default with the lifetime of the certificate revocation list (CRL) associated with the trustpoint.

Perform this task to remove all RSA keys or the specified RSA key pair that has been generated by your router.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto key zeroize rsa [key-pair-label]
4. crypto key zeroize pubkey-chain [index]
5. exit
6. show crypto key mypubkey rsa

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto key zeroize rsa [key-pair-label]</td>
<td>Deletes RSA key pairs from your router.</td>
</tr>
<tr>
<td>Example:</td>
<td>• If the key-pair-label argument is not specified, all RSA keys that have been generated by your router will be deleted.</td>
</tr>
<tr>
<td>Router(config)# crypto key zeroize rsa fancy-keys</td>
<td></td>
</tr>
<tr>
<td>Step 4 crypto key zeroize pubkey-chain [index]</td>
<td>Deletes the remote peer’s public key from the cache.</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Use the index argument to delete a particular public key index entry. If no index entry is specified, then</td>
</tr>
<tr>
<td>Router(config)# crypto key zeroize pubkey-chain</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>show crypto key mypubkey rsa</td>
<td>(Optional) Displays the RSA public keys of your router. This step allows you to verify that the RSA key pair has been successfully generated.</td>
</tr>
</tbody>
</table>

Configuration Examples for RSA Key Pair Deployment

Generating and Specifying RSA Keys Example

The following example is a sample trustpoint configuration that shows how to generate and specify the RSA key pair “exampleCAkeys”:

```plaintext
crypto key generate rsa general-purpose exampleCAkeys
crypto ca trustpoint exampleCAkeys
enroll url http://exampleCAkeys/certsrv/mscep/mscep.dll
rsakeypair exampleCAkeys 1024 1024
```

Exporting and Importing RSA Keys Examples

Exporting and Importing RSA Keys in PKCS12 Files Example

In the following example, an RSA key pair “mynewkp” is generated on Router A, and a trustpoint name “mynewtp” is created and associated with the RSA key pair. The trustpoint is exported to a TFTP server, so that it can be imported on Router B. By importing the trustpoint “mynewtp” to Router B, the user has imported the RSA key pair “mynewkp” to Router B.

Router A

```plaintext
crypto key generate rsa general label mykeys exportable
! The name for the keys will be mynewkp
Choose the size of the key modulus in the range of 360 to 2048 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys ...[OK]
!
crypto pki trustpoint mynewtp
rsakeypair mykeys
exit
crypto pki export mytp pkcs12 flash:myexport password mypassword123
```
Exporting and Importing and RSA Keys in PEM Files Example

The following example shows the generation, exportation, and importation for the RSA key pair "mytp", and verifies its status:

! Generate the key pair
!
Router(config)# crypto key generate rsa general-purpose label mytp exportable

The name for the keys will be: mytp
Choose the size of the key modulus in the range of 360 to 2048 for your
General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.
How many bits in the modulus [512]: 2048
% Generating 2048 bit RSA keys ...[OK]
!
! Archive the key pair to a remote location, and use a good password.
!
Router(config)# crypto pki export mytp pem url nvram:mytp 3des password mypassword123

% Key name:mytp
Usage:General Purpose Key
Exporting public key...
Destination filename [mytp.pub]?
Writing file to nvram:mytp.pub
Exporting private key...
Destination filename [mytp.prv]?
Writing file to nvram:mytp.prv
!
! Import the key pair as a different name.
!
Router(config)# crypto pki import mytp2 pem url nvram:mytp2 password mypassword123

% Importing public key or certificate PEM file...
Source filename [mytp2.pub]?
Reading file from nvram:mytp2.pub
% Importing private key PEM file...
Source filename [mytp2.prv]?
Reading file from nvram:mytp2.prv% Key pair import succeeded.
!
! After the key has been imported, it is no longer exportable.
!
! Verify the status of the key.
!
Router# show crypto key mypubkey rsa

% Key pair was generated at: 18:04:56 GMT Jun 6 2011
Encrypting and Verifying an Encrypted Key Example

The following example shows how to encrypt the RSA key “pki-123.example.com.” Thereafter, the `show crypto key mypubkey rsa` command is issued to verify that the RSA key is encrypted (protected) and unlocked.

```
Router(config)# crypto key encrypt rsa name pki-123.example.com passphrase password
Router(config)# exit
Router# show crypto key mypubkey rsa

% Key pair was generated at: 00:15:32 GMT Jun 25 2003
Key name: pki-123.example.com
Usage: General Purpose Key
*** The key is protected and UNLOCKED. ***
Key is not exportable.
Key Data:
305C300D 06092A86 4886F70D 01010105 00034B00 30480241 000E0CC9A 1D23B52C
CD00910C ABD392AE BA6D0E3F FC47A0EF 8AFFEE340 0EC1E62B D40E7DCC
23C4D09E
03018B98 E0C07B42 3CFD1A32 2A3A13C0 1FF919C5 8DE9565F 1F020301 0001
% Key pair was generated at: 00:15:33 GMT Jun 25 2003
Key name: pki-123.example.com.server
Usage: Encryption Key
Key is exportable.
Key Data:
307C300D 06092A86 4886F70D 01010105 00036B00 30680261 00D3491E 2A21D383
```
Configuring and Verifying a Locked Key Example

The following example shows how to lock the key “pki-123.example.com.” Thereafter, the `show crypto key mypubkey rsa` command is issued to verify that the key is protected (encrypted) and locked.

```
Router#crypto key lock rsa name pki-123.example.com passphrase password
!
Router#show crypto key mypubkey rsa
% Key pair was generated at: 20:29:41 GMT Jun 20 2003
Key name: pki-123.example.com
Usage: General Purpose Key
*** The key is protected and LOCKED. ***
Key is exportable.
Key Data:
305C300D 06092A86 4886F70D 01010105 00034B00 30480241 00D7808D C5FF14AC
0D2B55AC 5D199F2F 7CB4B355 C555E07B 6D0DECBE 4519B1F0 75B12D6F 902D6E9F
B6F7A0D8D 654EF851 5701D5D7 EDA047ED 9A2A619D 5639DF18 EB020301 0001
```

Where to Go Next

After you have generated an RSA key pair, you should set up the trustpoint. If you have already set up the trustpoint, you should authenticate and enroll the routers in a PKI. For information on enrollment, see the module “Configuring Certificate Enrollment for a PKI.”

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of PKI, including RSA keys, certificate enrollment, and CAs</td>
<td>Cisco IOS PKI Overview: Understanding and Planning a PKI</td>
</tr>
<tr>
<td>PKI commands: complete command syntax, command mode, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>Recommended cryptographic algorithms</td>
<td>Next Generation Encryption</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2409</td>
<td>The Internet Key Exchange (IKE)</td>
</tr>
<tr>
<td>RFC 2511</td>
<td>Internet X.509 Certificate Request Message Format</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for RSA Keys Within a PKI

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for RSA Keys Within a PKI

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS 4096-Bit Public Key Support</td>
<td>12.4(12)T</td>
<td>This feature introduces Cisco IOS 4096-bit peer public key support.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Software Releases</td>
<td>Feature Configuration Information</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Exporting and Importing RSA Keys</td>
<td>12.4(15)T</td>
<td>This feature allows you to transfer security credentials between devices by exporting and importing RSA keys. The key pair that is shared between two devices will allow one device to immediately and transparently take over the functionality of the other router. The following commands were introduced or modified by this feature: <code>crypto ca export pkcs12, crypto ca import pkcs12, crypto key generate rsa (IKE)</code></td>
</tr>
<tr>
<td>Import of RSA Key Pair and Certificates in PEM Format</td>
<td>12.3(4)T</td>
<td>This feature allows customers to use PEM-formatted files to import or export RSA key pairs. PEM-formatted files allow customers to directly use existing RSA key pairs on their Cisco IOS routers instead of generating new keys. The following commands were introduced by this feature: <code>crypto ca export pem, crypto ca import pem, crypto key export pem, crypto key import pem</code></td>
</tr>
<tr>
<td>Multiple RSA Key Pair Support</td>
<td>12.2(8)T</td>
<td>This feature allows a user to configure a router to have multiple RSA key pairs. Thus, the Cisco IOS software can maintain a different key pair for each identity certificate. The following commands were introduced or modified by this feature: <code>crypto key generate rsa, crypto key zeroize rsa, rsakeypair</code></td>
</tr>
<tr>
<td>Protected Private Key Storage</td>
<td>12.3(7)T</td>
<td>This feature allows a user to encrypt and lock the RSA private keys that are used on a Cisco IOS router, thereby, preventing unauthorized use of the private keys. The following commands were introduced or modified by this feature: <code>crypto key decrypt rsa, crypto key encrypt rsa, crypto key lock rsa, crypto key unlock rsa, show crypto key mypubkey rsa</code></td>
</tr>
<tr>
<td>RSA 4096-bit Key Generation in Software Crypto Engine Support</td>
<td>15.1(1)T</td>
<td>The range value for the modulus keyword value for the <code>crypto key generate rsa</code> command is extended from 360 to 2048 bits to 360 to 4096 bits.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Software Releases</td>
<td>Feature Configuration Information</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| IOS PKI Performance Monitoring and Optimization | 15.1(3)T | The IOS Performance Monitoring and Optimization feature provides a way to characterize the performance within the Public Key Infrastructure (PKI) subsystem and debug and analyze PKI performance related issues. This feature is discussed in further detail in the IOS Performance Monitoring and Optimization feature document. This feature also includes the following enhancements that can be found in this document:
 • A self-signed trustpoint certificate can be created for the router that contains the trustpoint name in the Subject Alternative Name (subjectAltName) field.
 • A peer router’s public keys can be deleted to help debug signature verification problems in IKE version 1 and IKE version 2 and optimize the peer router’s performance as a result of taking this action.
 The following commands were introduced or modified by this feature:
 :crypto key zeroize pubkey-chain, subject-alt-name

| PKI IPv6 Support for VPN Solutions | 15.2(1)T | The crypto pki export pem command was modified. Support was added in the CLI for hiding the password in an exported PEM-formatted file with the introduction of the password keyword followed by the password-phrase argument.
 The crypto pki export pkcs12 password command was modified. Support was added in the CLI for hiding the password in an exported PKCS12-formatted file with the introduction of the password keyword followed by the password-phrase argument.
 The crypto pki import pem command was modified. Support was added in the CLI for hiding the password in an imported PEM-formatted file with the introduction of the password keyword followed by the password-phrase argument.
 The crypto pki import pkcs12 password command was modified. Support was added in the CLI for hiding the password in an imported PKCS12-formatted file with the introduction of the password keyword followed by the password-phrase argument. |
CHAPTER 3

Configuring Authorization and Revocation of Certificates in a PKI

This module describes how to configure authorization and revocation of certificates in a public key infrastructure (PKI). It includes information on high-availability support for the certificate server.

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

• Finding Feature Information, on page 33
• Prerequisites for Authorization and Revocation of Certificates, on page 34
• Restrictions for Authorization and Revocation of Certificates, on page 34
• Information About Authorization and Revocation of Certificates, on page 35
• How to Configure Authorization and Revocation of Certificates for Your PKI, on page 42
• Configuration Examples for Setting Up Authorization and Revocation of Certificates, on page 61
• Additional References for Configuring Authorization and Revocation of Certificates in a PKI, on page 74
• Feature Information for Certificate Authorization and Revocation, on page 75

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Authorization and Revocation of Certificates

Plan Your PKI Strategy

It is strongly recommended that you plan your entire PKI strategy before you begin to deploy actual certificates.

Authorization and revocation can occur only after you or a network administrator have completed the following tasks:

- Configured the certificate authority (CA).
- Enrolled peer devices with the CA.
- Identified and configured the protocol (such as IP Security [IPsec] or secure socket layer [SSL]) that is to be used for peer-to-peer communication.

You should decide which authorization and revocation strategy you are going to configure before enrolling peer devices because the peer device certificates might have to contain authorization and revocation-specific information.

“crypto ca” to “crypto pki” CLI Change

As of Cisco IOS Release 12.3(7)T, all commands that begin as “crypto ca” have been changed to begin as “crypto pki.” Although the router will still accept crypto ca commands, all output will be read back as crypto pki.

High Availability

For high availability, IPsec-secured Stream Control Transmission Protocol (SCTP) must be configured on both the active and the standby routers. For synchronization to work, the redundancy mode on the certificate servers must be set to ACTIVE/STANDBY after you configure SCTP.

Restrictions for Authorization and Revocation of Certificates

- PKI High Availability (HA) support of intra-chassis stateful switchover (SSO) redundancy is currently not supported on all switches running the Cisco IOS Release 12.2 S software. See Cisco bug CSCtb59872 for more information.
- Depending on your Cisco IOS release, Lightweight Directory Access Protocol (LDAP) is supported.
Information About Authorization and Revocation of Certificates

PKI Authorization

PKI authentication does not provide authorization. Current solutions for authorization are specific to the router that is being configured, although a centrally managed solution is often required.

There is not a standard mechanism by which certificates are defined as authorized for some tasks and not for others. This authorization information can be captured in the certificate itself if the application is aware of the certificate-based authorization information. But this solution does not provide a simple mechanism for real-time updates to the authorization information and forces each application to be aware of the specific authorization information embedded in the certificate.

When the certificate-based ACL mechanism is configured as part of the trustpoint authentication, the application is no longer responsible for determining this authorization information, and it is no longer possible to specify for which application the certificate is authorized. In some cases, the certificate-based ACL on the router gets so large that it cannot be managed. Additionally, it is beneficial to retrieve certificate-based ACL indications from an external server. (For more information on using certificate-based ACLs for authentication, see the section “When to Use Certificate-Based ACLs for Authorization or Revocation, on page 39.”)

Current solutions to the real-time authorization problem involve specifying a new protocol and building a new server (with associated tasks, such as management and data distribution).

PKI and AAA Server Integration for Certificate Status

Integrating your PKI with an authentication, authorization, and accounting (AAA) server provides an alternative online certificate status solution that leverages the existing AAA infrastructure. Certificates can be listed in the AAA database with appropriate levels of authorization. For components that do not explicitly support PKI-AAA, a default label of “all” from the AAA server provides authorization. Likewise, a label of “none” from the AAA database indicates that the specified certificate is not valid. (The absence of any application label is equivalent, but “none” is included for completeness and clarity.) If the application component does support PKI-AAA, the component may be specified directly; for example, the application component could be “ipsec,” “ssl,” or “osp.” (ipsec=IP Security, ssl=Secure Sockets Layer, and osp=Open Settlement Protocol.)

Note

Currently, no application component supports specification of the application label.

• There may be a time delay when accessing the AAA server. If the AAA server is not available, the authorization fails.

RADIUS or TACACS+ Choosing a AAA Server Protocol

The AAA server can be configured to work with either the RADIUS or TACACS+ protocol. When you are configuring the AAA server for the PKI integration, you must set the RADIUS or TACACS attributes that are required for authorization.

If the RADIUS protocol is used, the password that is configured for the username in the AAA server should be set to “cisco,” which is acceptable because the certificate validation provides authentication and the AAA database is only being used for authorization. When the TACACS protocol is used, the password that is
configured for the username in the AAA server is irrelevant because TACACS supports authorization without requiring authentication (the password is used for authentication).

In addition, if you are using TACACS, you must add a PKI service to the AAA server. The custom attribute “cert-application=all” is added under the PKI service for the particular user or user group to authorize the specific username.

Attribute-Value Pairs for PKI and AAA Server Integration

The table below lists the attribute-value (AV) pairs that are to be used when setting up PKI integration with a AAA server. (Note the values shown in the table are possible values.) The AV pairs must match the client configuration. If they do not match, the peer certificate is not authorized.

<table>
<thead>
<tr>
<th>AV Pair</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cisco-avpair=pki:cert-application=all</code></td>
<td>Valid values are “all” and “none.”</td>
</tr>
<tr>
<td><code>cisco-avpair=pki:cert-trustpoint=msca</code></td>
<td>The value is a Cisco IOS command-line interface (CLI) configuration trustpoint label. Note The cert-trustpoint AV pair is normally optional. If it is specified, the Cisco IOS router query must be coming from a certificate trustpoint that has a matching label, and the certificate that is authenticated must have the specified certificate serial number.</td>
</tr>
<tr>
<td><code>cisco-avpair=pki:cert-serial=16318DB7000100001671</code></td>
<td>The value is a certificate serial number. Note The cert-serial AV pair is normally optional. If it is specified, the Cisco IOS router query must be coming from a certificate trustpoint that has a matching label, and the certificate that is authenticated must have the specified certificate serial number.</td>
</tr>
</tbody>
</table>

Users can sometimes have AV pairs that are different from those of every other user. As a result, a unique username is required for each user. The **all** parameter (within the `authorization username` command) specifies that the entire subject name of the certificate will be used as the authorization username.
Value

The cert-lifetime-end AV pair is available to artificially extend a certificate lifetime beyond the time period that is indicated in the certificate itself. If the cert-lifetime-end AV pair is used, the cert-trustpoint and cert-serial AV pairs must also be specified. The value must match the following form: hours:minutes month day, year.

Note
Only the first three characters of a month are used: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec. If more than three characters are entered for the month, the remaining characters are ignored (for example Janxxxx).

CRLs or OCSP Server Choosing a Certificate Revocation Mechanism

After a certificate is validated as a properly signed certificate, a certificate revocation method is performed to ensure that the certificate has not been revoked by the issuing CA. Cisco IOS software supports two revocation mechanisms—certificate revocation lists (CRLs) and Online Certificate Status Protocol (OCSP). Cisco IOS software also supports AAA integration for certificate checking; however, additional authorization functionality is included. For more information on PKI and AAA certificate authorization and status check, see the PKI and AAA Server Integration for Certificate Status section.

The following sections explain how each revocation mechanism works:

What Is a CRL

A certificate revocation list (CRL) is a list of revoked certificates. The CRL is created and digitally signed by the CA that originally issued the certificates. The CRL contains dates for when each certificate was issued and when it expires.

CAs publish new CRLs periodically or when a certificate for which the CA is responsible has been revoked. By default, a new CRL is downloaded after the currently cached CRL expires. An administrator may also configure the duration for which CRLs are cached in router memory or disable CRL caching completely. The CRL caching configuration applies to all CRLs associated with a trustpoint.

When the CRL expires, the router deletes it from its cache. A new CRL is downloaded when a certificate is presented for verification; however, if a newer version of the CRL that lists the certificate under examination is on the server but the router is still using the CRL in its cache, the router does not know that the certificate has been revoked. The certificate passes the revocation check even though it should have been denied.

When a CA issues a certificate, the CA can include in the certificate the CRL distribution point (CDP) for that certificate. Cisco IOS client devices use CDPS to locate and load the correct CRL. The Cisco IOS client supports multiple CDPS, but the Cisco IOS CA currently supports only one CDP; however, third-party vendor CAs may support multiple CDPS or different CDPS per certificate. If a CDP is not specified in the certificate, the client device uses the default Simple Certificate Enrollment Protocol (SCEP) method to retrieve the CRL. (The CDP location can be specified through the cdp-url command.)

When implementing CRLs, you should consider the following design considerations:
- CRL lifetimes and the security association (SA) and Internet Key Exchange (IKE) lifetimes.

- The CRL lifetime determines the length of time between CA-issued updates to the CRL. The default CRL lifetime value, which is 168 hours [1 week], can be changed through the `lifetime crl` command.

- The method of the CDP determines how the CRL is retrieved; some possible choices include HTTP, Lightweight Directory Access Protocol (LDAP), SCEP, or TFTP. HTTP, TFTP, and LDAP are the most commonly used methods. Although Cisco IOS software defaults to SCEP, an HTTP CDP is recommended for large installations using CRLs because HTTP can be made highly scalable.

- The location of the CDP determines from where the CRL is retrieved; for example, you can specify the server and file path from which to retrieve the CRL.

Querying All CDPs During Revocation Check

When a CDP server does not respond to a request, the Cisco IOS software reports an error, which may result in the peer’s certificate being rejected. To prevent a possible certificate rejection and if there are multiple CDPs in a certificate, the Cisco IOS software will attempt to use the CDPs in the order in which they appear in the certificate. The router will attempt to retrieve a CRL using each CDP URL or directory specification. If an error occurs using a CDP, an attempt will be made using the next CDP.

Note
Prior to Cisco IOS Release 12.3(7)T, the Cisco IOS software makes only one attempt to retrieve the CRL, even when the certificate contains more than one CDP.

Tip
Although the Cisco IOS software will make every attempt to obtain the CRL from one of the indicated CDPs, it is recommended that you use an HTTP CDP server with high-speed redundant HTTP servers to avoid application timeouts because of slow CDP responses.

What Is OCSP

OCSP is an online mechanism that is used to determine certificate validity and provides the following flexibility as a revocation mechanism:

- OCSP can provide real-time certificate status checking.

- OCSP allows the network administrator to specify a central OCSP server, which can service all devices within a network.

- OCSP also allows the network administrator the flexibility to specify multiple OCSP servers, either per client certificate or per group of client certificates.

- OCSP server validation is usually based on the root CA certificate or a valid subordinate CA certificate, but may also be configured so that external CA certificates or self-signed certificates may be used. Using external CA certificates or self-signed certificates allows the OCSP servers certificate to be issued and validated from an alternative PKI hierarchy.

A network administrator can configure an OCSP server to collect and update CRLs from different CA servers. The devices within the network can rely on the OCSP server to check the certificate status without retrieving and caching each CRL for every peer. When peers have to check the revocation status of a certificate, they send a query to the OCSP server that includes the serial number of the certificate in question and an optional
unique identifier for the OCSP request, or a nonce. The OCSP server holds a copy of the CRL to determine if the CA has listed the certificate as being revoked; the server then responds to the peer including the nonce. If the nonce in the response from the OCSP server does not match the original nonce sent by the peer, the response is considered invalid and certificate verification fails. The dialog between the OCSP server and the peer consumes less bandwidth than most CRL downloads.

If the OCSP server is using a CRL, CRL time limitations will be applicable; that is, a CRL that is still valid might be used by the OCSP server although a new CRL has been issued by the CRL containing additional certificate revocation information. Because fewer devices are downloading the CRL information on a regular basis, you can decrease the CRL lifetime value or configure the OCSP server not to cache the CRL. For more information, check your OCSP server documentation.

When to Use an OCSP Server

OCSP may be more appropriate than CRLs if your PKI has any of the following characteristics:

- Real-time certificate revocation status is necessary. CRLs are updated only periodically and the latest CRL may not always be cached by the client device. For example, if a client does not yet have the latest CRL cached and a newly revoked certificate is being checked, that revoked certificate will successfully pass the revocation check.

- There are a large number of revoked certificates or multiple CRLs. Caching a large CRL consumes large portions of Cisco IOS memory and may reduce resources available to other processes.

- CRLs expire frequently, causing the CDP to handle a larger load of CRLs.

Note

As of Cisco IOS Release 12.4(9)T or later, an administrator may configure CRL caching, either by disabling CRL caching completely or setting a maximum lifetime for a cached CRL per trustpoint.

When to Use Certificate-Based ACLs for Authorization or Revocation

Certificates contain several fields that are used to determine whether a device or user is authorized to perform a specified action.

Because certificate-based ACLs are configured on the device, they do not scale well for large numbers of ACLs; however, certificate-based ACLs do provide very granular control of specific device behavior. Certificate-based ACLs are also leveraged by additional features to help determine when PKI components such as revocation, authorization, or a trustpoint should be used. They provide a general mechanism allowing users to select a specific certificate or a group of certificates that are being validated for either authorization or additional processing.

Certificate-based ACLs specify one or more fields within the certificate and an acceptable value for each specified field. You can specify which fields within a certificate should be checked and which values those fields may or may not have.

There are six logical tests for comparing the field with the value--equal, not equal, contains, does not contain, less than, and greater than or equal. If more than one field is specified within a single certificate-based ACL, the tests of all of the fields within the ACL must succeed to match the ACL. The same field may be specified multiple times within the same ACL. More than one ACL may be specified, and ACL will be processed in turn until a match is found or all of the ACLs have been processed.
Ignore Revocation Checks Using a Certificate-Based ACL

Certificate-based ACLs can be configured to instruct your router to ignore the revocation check and expired certificates of a valid peer. Thus, a certificate that meets the specified criteria can be accepted regardless of the validity period of the certificate, or if the certificate meets the specified criteria, revocation checking does not have to be performed. You can also use a certificate-based ACL to ignore the revocation check when the communication with a AAA server is protected with a certificate.

Ignoring Revocation Lists

To allow a trustpoint to enforce CRLs except for specific certificates, enter the `match certificate` command with the `skip revocation-check` keyword. This type of enforcement is most useful in a hub-and-spoke configuration in which you also want to allow direct spoke-to-spoke connections. In pure hub-and-spoke configurations, all spokes connect only to the hub, so CRL checking is necessary only on the hub. For one spoke to communicate directly with another spoke, the `match certificate` command with the `skip revocation-check` keyword can be used for neighboring peer certificates instead of requiring a CRL on each spoke.

Ignoring Expired Certificates

To configure your router to ignore expired certificates, enter the `match certificate` command with the `allow expired-certificate` keyword. This command has the following purposes:

- If the certificate of a peer has expired, this command may be used to “allow” the expired certificate until the peer can obtain a new certificate.

- If your router clock has not yet been set to the correct time, the certificate of a peer will appear to be not yet valid until the clock is set. This command may be used to allow the certificate of the peer even though your router clock is not set.

Note

If Network Time Protocol (NTP) is available only via the IPSec connection (usually via the hub in a hub-and-spoke configuration), the router clock can never be set. The tunnel to the hub cannot be “brought up” because the certificate of the hub is not yet valid.

- “Expired” is a generic term for a certificate that is expired or that is not yet valid. The certificate has a start and end time. An expired certificate, for purposes of the ACL, is one for which the current time of the router is outside the start and end times specified in the certificate.

Skipping the AAA Check of the Certificate

If the communication with an AAA server is protected with a certificate, and you want to skip the AAA check of the certificate, use the `match certificate` command with the `skip authorization-check` keyword. For example, if a virtual private network (VPN) tunnel is configured so that all AAA traffic goes over that tunnel, and the tunnel is protected with a certificate, you can use the `match certificate` command with the `skip authorization-check` keyword to skip the certificate check so that the tunnel can be established.

The `match certificate` command and the `skip authorization-check` keyword should be configured after PKI integration with an AAA server is configured.
If the AAA server is available only via an IPSec connection, the AAA server cannot be contacted until after the IPSec connection is established. The IPSec connection cannot be “brought up” because the certificate of the AAA server is not yet valid.

PKI Certificate Chain Validation

A certificate chain establishes a sequence of trusted certificates --from a peer certificate to the root CA certificate. Within a PKI hierarchy, all enrolled peers can validate the certificate of one another if the peers share a trusted root CA certificate or a common subordinate CA. Each CA corresponds to a trustpoint.

When a certificate chain is received from a peer, the default processing of a certificate chain path continues until the first trusted certificate, or trustpoint, is reached. In Cisco IOS Release 12.4(6)T and later releases, an administrator may configure the level to which a certificate chain is processed on all certificates including subordinate CA certificates.

Configuring the level to which a certificate chain is processed allows for the reauthentication of trusted certificates, the extension of a trusted certificate chain, and the completion of a certificate chain that contains a gap.

Reauthentication of Trusted Certificates

The default behavior is for the router to remove any trusted certificates from the certificate chain sent by the peer before the chain is validated. An administrator may configure certificate chain path processing so that the router does not remove CA certificates that are already trusted before chain validation, so that all certificates in the chain are re-authenticated for the current session.

Extending the Trusted Certificate Chain

The default behavior is for the router to use its trusted certificates to extend the certificate chain if there are any missing certificates in the certificate chain sent by the peer. The router will validate only certificates in the chain sent by the peer. An administrator may configure certificate chain path processing so that the certificates in the peer’s certificate chain and the router’s trusted certificates are validated to a specified point.

Completing Gaps in a Certificate Chain

An administrator may configure certificate chain processing so that if there is a gap in the configured Cisco IOS trustpoint hierarchy, certificates sent by the peer can be used to complete the set of certificates to be validated.

If the trustpoint is configured to require parent validation and the peer does not provide the full certificate chain, the gap cannot be completed and the certificate chain is rejected and invalid.

It is a configuration error if the trustpoint is configured to require parent validation and there is no parent trustpoint configured. The resulting certificate chain gap cannot be completed and the subordinate CA certificate cannot be validated. The certificate chain is invalid.
CRL Auto Download and CRL Cache Extension

CRL Auto Download

As part of certificate validation the revocation status of the certificate must be checked by the router’s security policy. The certificate is checked using a certificate revocation list (CRL) published by the Certificate Authority to the CRL repository, which exists on an external server. However, a situation could arise where CRL repository could be unreachable due to network connectivity or certificates are revoked until a new CRL is published. These situations could be mitigated by fetching or downloading the CRL before certificate validation occurs and specifying the auto download schedule through the CRL pre-fetch with Tunable Timers feature. The CRLs can be fetched by specifying the URL where the CRL resides or by using the CRL distribution point (CDP) from the device certificate associated with the trustpoint.

The CRL auto download is implemented using timers that queue the download CRL requests. The timers are created in accordance with the schedule that you configured. When a timer expires a CRL download request is queued.

Note

If the downloaded CRL is the same as the CRL that is present in the device, the downloaded CRL is discarded.

CRL Cache Extension

The CRL Cache Extension feature allows you to retain a CRL until a new CRL can be downloaded when a CRL is scheduled to be published. To configure CRL cache extension use the `crl cache extend` command.

How to Configure Authorization and Revocation of Certificates for Your PKI

Configuring PKI Integration with a AAA Server

Perform this task to generate a AAA username from the certificate presented by the peer and specify which fields within a certificate should be used to build the AAA database username.
The following restrictions should be considered when using the `all` keyword as the subject name for the `authorization username` command:

- Some AAA servers limit the length of the username (for example, to 64 characters). As a result, the entire certificate subject name cannot be longer than the limitation of the server.

- Some AAA servers limit the available character set that may be used for the username (for example, a space [] and an equal sign [=] may not be acceptable). You cannot use the `all` keyword for a AAA server having such a character-set limitation.

- The `subject-name` command in the trustpoint configuration may not always be the final AAA subject name. If the fully qualified domain name (FQDN), serial number, or IP address of the router are included in a certificate request, the subject name field of the issued certificate will also have these components. To turn off the components, use the `fqdn`, `serial-number`, and `ip-address` commands with the `none` keyword.

- CA servers sometimes change the requested subject name field when they issue a certificate. For example, CA servers of some vendors switch the relative distinguished names (RDNs) in the requested subject names to the following order: CN, OU, O, L, ST, and C. However, another CA server might append the configured LDAP directory root (for example, O=cisco.com) to the end of the requested subject name.

- Depending on the tools you choose for displaying a certificate, the printed order of the RDNs in the subject name could be different. Cisco IOS software always displays the least significant RDN first, but other software, such as Open Source Secure Socket Layer (OpenSSL), does the opposite. Therefore, if you are configuring a AAA server with a full distinguished name (DN) (subject name) as the corresponding username, ensure that the Cisco IOS software style (that is, with the least significant RDN first) is used.

```
or
radius-server host  hostname [key string]
```

SUMMARY STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>2. configure</td>
<td></td>
</tr>
<tr>
<td>3. aaa new-model</td>
<td></td>
</tr>
<tr>
<td>4. aaa authorization</td>
<td>Network listname [method]</td>
</tr>
<tr>
<td>5. crypto pki trustpoint</td>
<td>name</td>
</tr>
<tr>
<td>6. enrollment [mode] [retry period minutes] [retry count number] url url [pem]</td>
<td></td>
</tr>
<tr>
<td>7. revocation-check method</td>
<td></td>
</tr>
<tr>
<td>8. exit</td>
<td></td>
</tr>
<tr>
<td>9. authorization username subjectname subjectname</td>
<td></td>
</tr>
<tr>
<td>10. authorization list listname</td>
<td></td>
</tr>
<tr>
<td>11. tacacs-server host hostname [key string]</td>
<td></td>
</tr>
</tbody>
</table>

DETAILED STEPS
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Example:**
Router> enable | • Enter your password if prompted. |
| **Step 2**
configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| **Step 3**
aaa new-model
Example:
Router(config)# aaa new-model | Enables the AAA access control model. |
| **Step 4**
aaa authorization network listname [method]
Example:
Router (config)# aaa authorization network maxaaa group tacacs+ | Sets the parameters that restrict user access to a network.
• *method* --Can be group radius, group tacacs+, or group group-name. |
| **Step 5**
crypto pki trustpoint name
Example:
Route (config)# crypto pki trustpoint msca | Declares the trustpoint and a given name and enters ca-trustpoint configuration mode. |
| **Step 6**
enrollment [mode] [retry period minutes] [retry count number] url url [pem]
Example:
Router (ca-trustpoint)# enrollment url http://caserver.myexample.com
- or-
Router (ca-trustpoint)# enrollment url http://[2001:DB8:1:1::1]:80 | Specifies the following enrollment parameters of the CA:
• (Optional) The *mode* keyword specifies the registration authority (RA) mode, if your CA system provides an RA. By default, RA mode is disabled.
• (Optional) The *retry period* keyword and *minutes* argument specifies the period, in minutes, in which the router waits before sending the CA another certificate request. Valid values are from 1 to 60. The default is 1.
• (Optional) The *retry count* keyword and *number* argument specifies the number of times a router will resend a certificate request when it does not receive a response from the previous request. Valid values are from 1 to 100. The default is 10.
• The *url* argument is the URL of the CA to which your router should send certificate requests. |
Purpose

With the introduction of Cisco IOS Release 15.2(1)T, an IPv6 address can be added to the http: enrolment method. For example: http://[ipv6-address]:80. The IPv6 address must be enclosed in brackets in the URL. See the Command Reference document for more information on the other enrollment methods that can be used.

- (Optional) The `pem` keyword adds privacy-enhanced mail (PEM) boundaries to the certificate request.

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>With the introduction of Cisco IOS Release 15.2(1)T, an IPv6 address can be added to the http: enrolment method. For example: http://[ipv6-address]:80. The IPv6 address must be enclosed in brackets in the URL. See the Command Reference document for more information on the other enrollment methods that can be used.</td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>revocation-check method</td>
<td>(Optional) Checks the revocation status of a certificate.</td>
</tr>
</tbody>
</table>

Example:

```plaintext
Router (ca-trustpoint)# revocation-check crl
```

Step 8

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits ca-trustpoint configuration mode and returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```plaintext
Router (ca-trustpoint)# exit
```

Step 9

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>authorization username subjectname subjectname</td>
<td>Sets parameters for the different certificate fields that are used to build the AAA username.</td>
</tr>
</tbody>
</table>

Example:

```plaintext
Router (config)# authorization username subjectname subjectname serialnumber
```
Troubleshooting Tips

To display debug messages for the trace of interaction (message type) between the CA and the router, use the `debug crypto pki transactions` command. (See the sample output, which shows a successful PKI integration with AAA server exchange and a failed PKI integration with AAA server exchange.)

Successful Exchange

```plaintext
Router# debug crypto pki transactions
Apr 22 23:15:03.695: CRYPTO_PKI: Found a issuer match
Apr 22 23:15:03.955: CRYPTO_PKI: cert revocation status unknown.
Apr 22 23:15:03.955: CRYPTO_PKI: Certificate validated without revocation check
```

Each line that shows “CRYPTO_PKI_AAA” indicates the state of the AAA authorization checks. Each of the AAA AV pairs is indicated, and then the results of the authorization check are shown.

```plaintext
Apr 22 23:15:04.019: CRYPTO_PKI_AAA: checking AAA authorization (ipsecc_script_aaalist, PKIAAA-L, <all>)
Apr 22 23:15:04.503: CRYPTO_PKI_AAA: reply attribute ("cert-application" = "all")
Apr 22 23:15:04.503: CRYPTO_PKI_AAA: reply attribute ("cert-trustpoint" = "CA1")
Apr 22 23:15:04.503: CRYPTO_PKI_AAA: reply attribute ("cert-serial" = "15DE")
Apr 22 23:15:04.503: CRYPTO_PKI_AAA: authorization passed
Apr 22 23:12:30.327: CRYPTO_PKI: Found a issuer match
```

Failed Exchange

```plaintext
Router# debug crypto pki transactions
Apr 22 23:11:13.703: CRYPTO_PKI_AAA: checking AAA authorization -
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: reply attribute ("cert-application" = "all")
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: reply attribute ("cert-trustpoint" = "CA1")
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: reply attribute ("cert-serial" = "233D")
Apr 22 23:11:14.203: CRYPTO_PKI_AAA: parsed cert-lifetime-end as: 21:30:00
```
In the above failed exchange, the certificate has expired.

Configuring a Revocation Mechanism for PKI Certificate Status Checking

Perform this task to set up a CRL as the certificate revocation mechanism--CRLs or OCSP--that is used to check the status of certificates in a PKI.

The revocation-check Command

Use the `revocation-check` command to specify at least one method (OCSP, CRL, or skip the revocation check) that is to be used to ensure that the certificate of a peer has not been revoked. For multiple methods, the order in which the methods are applied is determined by the order specified via this command.

If your router does not have the applicable CRL and is unable to obtain one or if the OCSP server returns an error, your router will reject the peer’s certificate--unless you include the `none` keyword in your configuration. If the `none` keyword is configured, a revocation check will not be performed and the certificate will always be accepted.

Nonces and Peer Communications with OCSP Servers

When using OCSP, nonces, unique identifiers for OCSP requests, are sent by default during peer communications with your OCSP server. The use of nonces offers a more secure and reliable communication channel between the peer and OCSP server.

If your OCSP server does not support nonces, you may disable the sending of nonces. For more information, check your OCSP server documentation.

Before you begin

- Before issuing any client certificates, the appropriate settings on the server (such as setting the CDP) should be configured.
- When configuring an OCSP server to return the revocation status for a CA server, the OCSP server must be configured with an OCSP response signing certificate that is issued by that CA server. Ensure that the signing certificate is in the correct format, or the router will not accept the OCSP response. See your OCSP manual for additional information.

Note

- OCSP transports messages over HTTP, so there may be a time delay when you access the OCSP server.
- If the OCSP server depends on normal CRL processing to check revocation status, the same time delay that affects CRLs will also apply to OCSP.

SUMMARY STEPS

1. enable
2. configure terminal
Nonces and Peer Communications with OCSP Servers

3. crypto pki trustpoint name
4. ocsp url url
5. revocation-check method1 [method2 method3]
6. ocsp disable-nonce
7. exit
8. exit
9. show crypto pki certificates
10. show crypto pki trustpoints [status [label [status]]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto pki trustpoint name</td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint hazel</td>
<td></td>
</tr>
<tr>
<td>Step 4 ocsp url url</td>
<td>The url argument specifies the URL of an OCSP server so that the trustpoint can check the certificate status. This URL overrides the URL of the OCSP server (if one exists) in the Authority Info Access (AIA) extension of the certificate. All certificates associated with a configured trustpoint are checked by the OCSP server. The URL can be a hostname, IPv4 address, or an IPv6 address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# ocsp url http://ocsp-server</td>
<td>- or -</td>
</tr>
<tr>
<td></td>
<td>Router(ca-trustpoint)# ocsp url http://10.10.10.1:80</td>
</tr>
<tr>
<td></td>
<td>Router(ca-trustpoint)# ocsp url http://[2001DB8:1:1::2]:80</td>
</tr>
<tr>
<td>Step 5 revocation-check method1 [method2 method3]</td>
<td>Checks the revocation status of a certificate.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# revocation-check ocsp none</td>
<td></td>
</tr>
</tbody>
</table>

- **crl** --Certificate checking is performed by a CRL. This is the default option.
- **none** --Certificate checking is ignored.
- **ocsp** --Certificate checking is performed by an OCSP server.
Configuring Certificate Authorization and Revocation Settings

Perform this task to specify a certificate-based ACL, to ignore revocation checks or expired certificates, to manually override the default CDP location, to manually override the OCSP server setting, to configure CRL caching, or to set session acceptance or rejection based on a certificate serial number, as appropriate.

Configuring Certificate-Based ACLs to Ignore Revocation Checks

To configure your router to use certificate-based ACLs to ignore revocation checks and expired certificates, perform the following steps:

- Identify an existing trustpoint or create a new trustpoint to be used when verifying the certificate of the peer. Authenticate the trustpoint if it has not already been authenticated. The router may enroll with this trustpoint if you want. Do not set optional CRLs for the trustpoint if you plan to use the `match certificate` command and `skip revocation-check` keyword.

- Determine the unique characteristics of the certificates that should not have their CRL checked and of the expired certificates that should be allowed.

- Define a certificate map to match the characteristics identified in the prior step.
• You can add the `match certificate` command and `skip revocation-check` keyword and the `match certificate command` and `allow expired-certificate` keyword to the trustpoint that was created or identified in the first step.

Note
Certificate maps are checked even if the peer’s public key is cached. For example, when the public key is cached by the peer, and a certificate map is added to the trustpoint to ban a certificate, the certificate map is effective. This prevents a client with the banned certificate, which was once connected in the past, from reconnecting.

Manually Overriding CDPs in a Certificate

Users can override the CDPs in a certificate with a manually configured CDP. Manually overriding the CDPs in a certificate can be advantageous when a particular server is unavailable for an extended period of time. The certificate’s CDPs can be replaced with a URL or directory specification without reissuing all of the certificates that contain the original CDP.

Manually Overriding the OCSP Server Setting in a Certificate

Administrators can override the OCSP server setting specified in the Authority Information Access (AIA) field of the client certificate or set by the issuing the `ocsp url` command. One or more OCSP servers may be manually specified, either per client certificate or per group of client certificates by the `match certificate override ocsp` command. The `match certificate override ocsp` command overrides the client certificate AIA field or the `ocsp url` command setting if a client certificate is successfully matched to a certificate map during the revocation check.

Note
Only one OCSP server can be specified per client certificate.

Configuring CRL Cache Control

By default, a new CRL will be downloaded after the currently cached CRL expires. Administrators can either configure the maximum amount of time in minutes a CRL remains in the cache by issuing the `crl cache delete-after` command or disable CRL caching by issuing the `crl cache none` command. Only the `crl-cache delete-after` command or the `crl-cache none` command may be specified. If both commands are entered for a trustpoint, the last command executed will take effect and a message will be displayed.

Neither the `crl-cache none` command nor the `crl-cache delete-after` command affects the currently cached CRL. If you configure the `crl-cache none` command, all CRLs downloaded after this command is issued will not be cached. If you configure the `crl-cache delete-after` command, the configured lifetime will only affect CRLs downloaded after this command is issued.

This functionality is useful when a CA issues CRLs with no expiration date or with expiration dates days or weeks ahead.

Configuring Certificate Serial Number Session Control

A certificate serial number can be specified to allow a certificate validation request to be accepted or rejected by the trustpoint for a session. A session may be rejected, depending on certificate serial number session
control, even if a certificate is still valid. Certificate serial number session control may be configured by using either a certificate map with the **serial-number** field or an AAA attribute, with the **cert-serial-not** command.

Using certificate maps for session control allows an administrator to specify a single certificate serial number. Using the AAA attribute allows an administrator to specify one or more certificate serial numbers for session control.

Before you begin

- The trustpoint should be defined and authenticated before attaching certificate maps to the trustpoint.
- The certificate map must be configured before the CDP override feature can be enabled or the **serial-number** command is issued.
- The PKI and AAA server integration must be successfully completed to use AAA attributes as described in “PKI and AAA Server Integration for Certificate Status.”

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **crypto pki certificate map label sequence-number**
4. **field-name match-criteria match-value**
5. **exit**
6. **crypto pki trustpoint name**
7. Do one of the following:
 - **crl-cache none**
 - **crl-cache delete-after time**
8. **match certificate certificate-map-label [allow expired-certificate | skip revocation-check | skip authorization-check**
9. **match certificate certificate-map-label override cdp {url | directory} string**
10. **match certificate certificate-map-label override ocsp [trustpoint trustpoint-label] sequence-number url ocsp-url**
11. **exit**
12. **aaa new-model**
13. **aaa attribute list list-name**
14. **attribute type {name} {value}**
15. **exit**
16. **exit**
17. **show crypto pki certificates**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 | Command or Action: configure terminal **Example:**

Router# configure terminal |

| Purpose | Enters global configuration mode. |

| Step 3 | Command or Action: crypto pki certificate map label sequence-number **Example:**

Router(config)# crypto pki certificate map Group 10 |

| Purpose | Defines values in a certificate that should be matched or not matched and enters ca-certificate-map configuration mode. |

| Step 4 | Command or Action: field-name match-criteria match-value **Example:**

Router(ca-certificate-map)# subject-name co MyExample |

| Purpose | Specifies one or more certificate fields together with their matching criteria and the value to match. The field-name is one of the following case-insensitive name strings or a date:

- alt-subject-name
- expires-on
- issuer-name
- name
- serial-number
- subject-name
- unstructured-subject-name
- valid-start

Note Date field format is dd mm yyyy hh:mm:ss or mmm dd yyyy hh:mm:ss.

The match-criteria is one of the following logical operators:

- **co** --contains (valid only for name fields and serial number field)
- **eq** --equal (valid for name, serial number, and date fields)
- **ge** --greater than or equal (valid only for date fields)
- **lt** --less than (valid only for date fields)
- **nc** --does not contain (valid only for name fields and serial number field)
- **ne** --not equal (valid for name, serial number, and date fields)
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PurposeCommand or Action</td>
<td>The match-value is the name or date to test with the logical operator assigned by match-criteria.</td>
</tr>
<tr>
<td>Note</td>
<td>Use this command only when setting up a certificate-based ACL—not when setting up a certificate-based ACL to ignore revocation checks or expired certificates.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit Example:</td>
</tr>
<tr>
<td>Router(ca-certificate-map)# exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>crypto pki trustpoint name Example:</td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint Access2</td>
<td>Declares the trustpoint, given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td>• crl-cache none</td>
<td>(Optional) Disables CRL caching completely for all CRLs associated with the trustpoint.</td>
</tr>
<tr>
<td>• crl-cache delete-after time</td>
<td>The crl-cache none command does not affect any currently cached CRLs. All CRLs downloaded after this command is configured will not be cached.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# crl-cache none</td>
<td>(Optional) Specifies the maximum time CRLs will remain in the cache for all CRLs associated with the trustpoint.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# crl-cache delete-after 20</td>
<td>• time --The amount of time in minutes before the CRL is deleted.</td>
</tr>
<tr>
<td>Step 8</td>
<td>match certificate certificate-map-label [allow expired-certificate</td>
</tr>
<tr>
<td>skip revocation-check</td>
<td>• certificate-map-label --Must match the label argument specified via the crypto pki certificate map command.</td>
</tr>
<tr>
<td>skip authorization-check</td>
<td>• allow expired-certificate --Ignores expired certificates.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# match certificate Group</td>
<td>• skip revocation-check --Allows a trustpoint to enforce CRLs except for specific certificates.</td>
</tr>
<tr>
<td>skip revocation-check</td>
<td>• skip authorization-check --Skips the AAA check of a certificate when PKI integration with an AAA server is configured.</td>
</tr>
</tbody>
</table>
Command or Action

Step 9

`match certificate certificate-map-label override cdp {url | directory} string`

Example:

```
Router(ca-trustpoint)# match certificate Group1 override cdp url http://server.cisco.com
```

- `certificate-map-label`: A user-specified label that must match the `label` argument specified in a previously defined `crypto pki certificate map` command.
- `url`: Specifies that the certificate’s CDPs will be overridden with an HTTP or LDAP URL.
- `directory`: Specifies that the certificate’s CDPs will be overridden with an LDAP directory specification.
- `string`: The URL or directory specification.

Purpose

(Optional) Manually overrides the existing CDP entries for a certificate with a URL or directory specification.

Step 10

`match certificate certificate-map-label override ocsp [trustpoint trustpoint-label] sequence-number url ocsp-url`

Example:

```
Router(ca-trustpoint)# match certificate mycertmapname override ocsp trustpoint mytp 15 url http://192.0.2.2
```

- `certificate-map-label`: The name of an existing certificate map.
- `trustpoint`: The trustpoint to be used when validating the OCSP server certificate.
- `sequence-number`: The order the `match certificate override ocsp` command statements apply to the certificate being verified. Matches are performed from the lowest sequence number to the highest sequence number. If more than one command is issued with the same sequence number, it overwrites the previous OCSP server override setting.
- `url`: The URL of the OCSP server.

Purpose

(Optional) Specifies an OCSP server, either per client certificate or per group of client certificates, and may be issued more than once to specify additional OCSP servers and client certificate settings including alternative PKI hierarchies.

Note

Some applications may time out before all CDPs have been tried and will report an error message. The error message will not affect the router, and the Cisco IOS software will continue attempting to retrieve a CRL until all CDPs have been tried.

When the certificate matches a configured certificate map, the AIA field of the client certificate and any previously issued `ocsp url` command settings are overwritten with the specified OCSP server.

If no map-based match occurs, one of the following two cases will continue to apply to the client certificate.
Purpose

- If OCSP is specified as the revocation method, the AIA field value will continue to apply to the client certificate.
- If the `ocsp url` configuration exists, the `ocsp url` configuration settings will continue to apply to the client certificates.

### Command or Action	Purpose
Step 11 | **exit**
Example:
Router(ca-trustpoint)# exit | Returns to global configuration mode. |
Step 12 | **aaa new-model**
Example:
Router(config)# aaa new-model | (Optional) Enables the AAA access control model. |
Step 13 | **aaa attribute list list-name**
Example:
Router(config)# aaa attribute list crl | (Optional) Defines an AAA attribute list locally on a router and enters config-attr-list configuration mode. |
Step 14 | **attribute type {name}{value}**
Example:
Router(config-attr-list)# attribute type cert-serial-not 6C4A | (Optional) Defines an AAA attribute type that is to be added to an AAA attribute list locally on a router. To configure certificate serial number session control, an administrator may specify a specific certificate in the `value` field to be accepted or rejected based on its serial number where `name` is set to `cert-serial-not`. If the serial number of the certificate matches the serial number specified by the attribute type setting, the certificate will be rejected. For a full list of available AAA attribute types, execute the `show aaa attributes` command. |
Step 15 | **exit**
Example:
Router(ca-trustpoint)# exit | Returns to global configuration mode. |
Step 16 | **exit**
Example:
Router(config-attr-list)# exit | Returns to privileged EXEC mode. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 17</td>
<td></td>
</tr>
<tr>
<td><code>show crypto pki certificates</code></td>
<td>(Optional) Displays the components of the certificates installed on the router if the CA certificate has been authenticated.</td>
</tr>
</tbody>
</table>

Example

The following is a sample certificate. The OCSP-related extensions are shown using exclamation points.

```
Certificate:
  Data:
    Version: v3
    Serial Number:0x14
    Signature Algorithm:SHAwithRSA - 1.2.840.113549.1.1.4
    Issuer:CN=CA server,OU=PKI,O=Cisco Systems
    Validity:
      Not Before:Thursday, August 8, 2002 4:38:05 PM PST
      Not After:Tuesday, August 7, 2003 4:38:05 PM PST
    Subject:CN=OCSP server,OU=PKI,O=Cisco Systems
    Subject Public Key Info:
      Algorithm:RSA - 1.2.840.113549.1.1.1
      Public Key:
        Exponent:65537
        Public Key Modulus:(2048 bits) :
          <snip>
    Extensions:
      Identifier:Subject Key Identifier - 2.5.29.14
      Critical:no
      Key Identifier:
        <snip>
      Identifier:Authority Key Identifier - 2.5.29.35
      Critical:no
      Key Identifier:
        <snip>
      Identifier:OCSP NoCheck:- 1.3.6.1.5.5.7.48.1.5
      Critical:no
      Identifier:Extended Key Usage:= 2.5.29.37
      Critical:no
      Extended Key Usage:
        OCSPSigning
      <snip>
    Identifier:CRL Distribution Points - 2.5.29.31
      Critical:no
      Number of Points:1
      Point 0
        Distribution Point:
          [URIName:ldap://CA-server/CN=CA server,OU=PKI,O=Cisco Systems]
      Signature:
        Algorithm:SHAwithRSA - 1.2.840.113549.1.1.4
      Signature:
        <snip>
```

The following example shows an excerpt of the running configuration output when adding a **match certificate override ocs**p command to the beginning of an existing sequence:
match certificate map3 override ocsp 5 url http://192.0.2.3/

troubleshooting tips

match certificate map1 override ocsp 10 url http://192.0.2.1/
match certificate map2 override ocsp 15 url http://192.0.2.2/

The following example shows an excerpt of the running configuration output when an existing match
certificate override ocsp command is replaced and a trustpoint is specified to use an alternative PKI
hierarchy:

match certificate map4 override ocsp trustpoint tp4 10 url http://192.0.2.4/newvalue

troubleshooting tips

If you ignored revocation check or expired certificates, you should carefully check your configuration. Verify
that the certificate map properly matches either the certificate or certificates that should be allowed or the
AAA checks that should be skipped. In a controlled environment, try modifying the certificate map and
determine what is not working as expected.

configuring certificate chain validation

perform this task to configure the processing level for the certificate chain path of your peer certificates.

before you begin

- The device must be enrolled in your PKI hierarchy.
- The appropriate key pair must be associated with the certificate.

note

- A trustpoint associated with the root CA cannot be configured to be validated to the next level.

The chain-validation command is configured with the continue keyword for the trustpoint associated with
the root CA, an error message will be displayed and the chain validation will revert to the default
chain-validation command setting.

summary steps

1. enable
2. configure terminal
3. `crypto pki trustpoint name`
4. `chain-validation [{stop | continue} [parent-trustpoint]]`
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto pki trustpoint name
Example:
Router(config)# crypto pki trustpoint ca-sub1</td>
</tr>
<tr>
<td>Step 4</td>
<td>**chain-validation [{stop</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit
Example:
Router(ca-trustpoint)# exit</td>
</tr>
</tbody>
</table>

Configuring CRL Autodownload

Perform this step to configure the certificate revocation list (CRL) autodownload.

Improper configuration of this feature can enable excessive CRL downloads for CRLs already cached by the device thereby halting validations because the CRL download and CRL validation cannot be executed in parallel. If a CRL is already downloaded, the downloaded CRL can be used for certificate validation without downloading additional CRLs.
If you configure the `crl-cache none` command, you cannot auto download a CRL for a trustpoint. To download the CRL, execute the `no crl cache none` command to remove the CRL cache from trustpoint. Similarly, when a CRL download is configured, you cannot enable the `crl-cache none` command.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki crl download url url [source-interface interface-name | vrf vrf-name]
4. crypto pki crl download trustpoint trustpoint-label
5. crypto pki crl refresh-cache
6. crypto pki crl download schedule time day hh:ss
7. crypto pki crl download schedule prepublish minutes
8. crypto pki crl download schedule retries number interval minutes
9. end
10. show crypto pki crl download
11. show crypto pki timers

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto pki crl download url url [source-interface interface-name</td>
<td>Specifies that the CRL auto download must fetch the CRL through the source interface or the VRF or both.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto pki crl download url www.abc.com source-interface GigabitEthernet 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 crypto pki crl download trustpoint trustpoint-label</td>
<td>Specifies that the CRL auto download must fetch the CRL distribution point (CDP) from the device certificate associated with that trustpoint.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto pki crl download trustpoint trp1</td>
<td></td>
</tr>
<tr>
<td>Step 5 crypto pki crl refresh-cache</td>
<td>Refreshes the CRL entries in the cache.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto pki crl refresh cache</td>
<td></td>
</tr>
<tr>
<td>Step 6 crypto pki crl download schedule time day hh:ss</td>
<td>Specifies the day and time when the CRL auto download must be triggered.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto pki crl download schedule time day hh:ss</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>crypto pki crl download schedule time Monday 00:00</code></td>
<td>time—Indicates the exact time of the day to download the CRL, if no CRL is found. Must be specified in hour and minute format (mm:ss).</td>
</tr>
<tr>
<td><code>crypto pki crl download schedule prepublish minutes</code></td>
<td>Time interval, in minutes, to download the CRL before the CRL expires. The default value is 0.</td>
</tr>
<tr>
<td><code>crypto pki crl download schedule retries number interval minutes</code></td>
<td>Specifies the time interval, in minutes, for a device to retry downloading a CRL from a CDP location if previous download attempts fail. The default number of retries is 5.</td>
</tr>
<tr>
<td><code>crypto pki crl download schedule retries 10 interval 10</code></td>
<td>interval minutes—Time interval between retry attempts, in minutes. The default retry interval is 30 minutes.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show crypto pki crl download</code></td>
<td>Displays auto download configurations.</td>
</tr>
<tr>
<td><code>show crypto pki timers</code></td>
<td>Displays information about the timers set for Cisco IOS for public key infrastructure.</td>
</tr>
</tbody>
</table>

Example

The following is a sample output from the `show crypto pki crl download` command.

```
Device# show crypto pki crl download

CRL Issuer Name: cn=ios
LastUpdate: 10:38:23 IST Sep 18 2013
NextUpdate: 16:38:23 IST Sep 18 2013
Valid after expiry till: 16:58:23 IST Sep 18 2013
CRL Downloaded at 12:38:23 IST Sep 18 2013
Retrieved from CRL Distribution Point:
  ** CDP Not Published - Retrieved via SCEP
CRL DER is 213 bytes
CRL is stored in parsed CRL cache
```
CRL prepublish timer interval: 10

Parsed CRL cache current size is 213 bytes
Parsed CRL cache maximum size is 65536 bytes

- The field Valid after expiry till: indicates the duration for which the CRL is valid after expiry when crl cache extend is configured.
- The field CRL Downloaded at denotes the time when the CRL is downloaded.

The following is a sample output from the `show crypto pki timer` command.

```
Device# show crypto pki timers

PKI Timers
| 13:42.564 SESSION CLEANUP
| 11:44.111 CRL UPDATE cn=IOS-CA
| 21:44.111 CRL EXPIRE cn=IOS-CA
| 7:59:56.917 STATIC CRL DOWNLOAD

CS Timers
| 1:44.071 CS DB CLEANUP
| 11:43.999 CS SHADOW CERT GENERATION
| 21:43.883 CS CERT EXPIRE
```

The field CRL UPDATE denotes the updated timer based on the prepublish time.

Configuration Examples for Setting Up Authorization and Revocation of Certificates

Configuring and Verifying PKI AAA Authorization Examples

This section provides configuration examples of PKI AAA authorizations:

Router Configuration Example

The following `show running-config` command output shows the working configuration of a router that is set up to authorize VPN connections using the PKI Integration with AAA Server feature:

```
Router# show running-config
Building configuration...
!
version 12.3
!
hostname router7200
!
aaa new-model
!
!
aaa authentication login default group tacacs+
aaa authentication login no_tacacs enable
aaa authentication ppp default group tacacs+
aaa authorization exec ACSLab group tacacs+
```
aaa authorization network ACSLab group tacacs+
aaa accounting exec ACSLab start-stop group tacacs+
aaa accounting network default start-stop group ACSLab
aaa session-id common

! ip domain name example.com

! crypto pki trustpoint EM-CERT-SERV
 enrollment url http://192.0.2.33:80
 serial-number
 rsakeypair STOREVPN 2048
 auto-enroll
 authorization list ACSLab

! crypto pki certificate chain EM-CERT-SERV
 certificate 04

quit

crypto pki trustpoint EM-CERT-SERV
 enrollment url http://192.0.2.33:80
 serial-number
 rsakeypair STOREVPN 2048
 auto-enroll
 authorization list ACSLab

! crypto pki certificate list EM-CERT-SERV
 certificate 01

quit

crypto isakmp policy 10
 encr aes
 group 14

! crypto ipsec transform-set ISC_TS_1 esp-aes esp-sha-hmac

! crypto ipsec profile ISC_IPSEC_PROFILE_2
set security-association lifetime kilobytes 530000000
set security-association lifetime seconds 14400
set transform-set ISC_TS_1
!
controller ISA 1/1
!
interface Tunnel0
description MGRE Interface provisioned by ISC
bandwidth 10000
ip address 192.0.2.172 255.255.255.0
no ip redirects
ip mtu 1408
ip nhrp map multicast dynamic
ip nhrp network-id 101
ip nhrp holdtime 500
ip nhrp server-only
no ip split-horizon eigrp 101
tunnel source FastEthernet2/1
tunnel mode gre multipoint
tunnel key 101
tunnel protection ipsec profile ISC_IPSEC_PROFILE_2
!
interface FastEthernet2/0
ip address 192.0.2.1 255.255.255.0
duplex auto
speed auto
!
interface FastEthernet2/1
ip address 192.0.2.2 255.255.255.0
duplex auto
speed auto
!
tacacs-server host 192.0.2.55 single-connection
tacacs-server directed-request
tacacs-server key company lab
!
ntp master 1
!
end

Debug of a Successful PKI AAA Authorization Example

The following show debugging command output shows a successful authorization using the PKI Integration with AAA Server feature:

Router# show debugging
General OS:
 TACACS access control debugging is on
 AAA Authentication debugging is on
 AAA Authorization debugging is on
Cryptographic Subsystem:
 Crypto PKI Trans debugging is on
Router#
May 28 19:36:11.117: CRYPTO_PKI: Trust-Point EM-CERT-SERV picked up
May 28 19:36:12.789: CRYPTO_PKI: Found a issuer match
May 28 19:36:12.813: CRYPTO_PKI_AAA: checking AAA authorization (ACSLab, PDG5.example.com, <all>)
May 28 19:36:12.813: AAA/BIND(00000042): Bind i/f
Debugs of a Failed PKI AAA Authorization Example

The following show debugging command output shows that the router is not authorized to connect using VPN. The messages are typical of those that you might see in such a situation.

In this example, the peer username was configured as not authorized, by moving the username to a Cisco Secure ACS group called VPN_Router_Disabled in Cisco Secure ACS. The router, router7200.example.com, has been configured to check with a Cisco Secure ACS AAA server prior to establishing a VPN connection to any peer.

```
Router# show crypto isakmp sa
dst src state conn-id slot
192.0.2.22 192.0.2.102 QM_IDLE 84 0
```
May 28 19:48:31.537: TPLUS(00000044)/0/READ: read entire 12 header bytes (expect 6 bytes)
May 28 19:48:31.537: TPLUS(00000044)/0/READ: read entire 18 bytes response
May 28 19:48:31.537: TPLUS(00000044)/0/203A4C50: Processing the reply packet
May 28 19:48:31.537: CRYPTO_PKI_AAA: authorization declined by AAA, or AAA server not found.
May 28 19:48:31.537: %CRYPTO-5-IKMP_INVAL_CERT: Certificate received from 192.0.2.162 is bad: certificate invalid
May 28 19:48:41.481: CRYPTO_PKI: Found a issuer match
May 28 19:48:41.505: CRYPTO_PKI_AAA: checking AAA authorization (ACSLab, POD5.example.com, <all>)
May 28 19:48:41.505: AAA/AUTHOR (0x45): Pick method list 'ACSLab'
May 28 19:48:41.505: TPLUS: processing authorization request id 69
May 28 19:48:41.505: TPLUS: Protocol set to NoneSkipping
May 28 19:48:41.505: TPLUS: Sending AV service=pki
May 28 19:48:41.505: TPLUS: Authorization request created for 69(POD5.example.com)
May 28 19:48:41.509: TPLUS(00000045)/0/IDLE/63B22834: got immediate connect on new 0
May 28 19:48:41.509: TPLUS(00000045)/0/WRITE/63B22834: Started 5 sec timeout
May 28 19:48:41.509: TPLUS(00000045)/0/WRITE: wrote entire 46 bytes request
May 28 19:48:41.509: TPLUS(00000045)/0/READ: read entire 12 header bytes (expect 6 bytes)
May 28 19:48:41.509: TPLUS(00000045)/0/READ: read entire 18 bytes response
May 28 19:48:41.509: TPLUS(00000045)/0/203A4C50: Processing the reply packet
May 28 19:48:41.509: CRYPTO_PKI_AAA: authorization declined by AAA, or AAA server not found.
May 28 19:48:41.509: %CRYPTO-5-IKMP_INVAL_CERT: Certificate received from 192.0.2.162 is bad: certificate invalid

Router# show crypto iskmp sa
dst src state conn-id slot
192.0.2.2 192.0.2.102 MM_KEY_EXCH 95 0

Configuring a Revocation Mechanism Examples

This section contains the following configuration examples that can be used when specifying a revocation mechanism for your PKI:

Configuring an OCSP Server Example

The following example shows how to configure the router to use the OCSP server that is specified in the AIA extension of the certificate:

Router(config)# crypto pki trustpoint mytp
Router(ca-trustpoint)# revocation-check ocs
Specifying a CRL and Then an OCSP Server Example

The following example shows how to configure the router to download the CRL from the CDP. If the CRL is unavailable, the OCSP server that is specified in the AIA extension of the certificate will be used. If both options fail, certificate verification will also fail.

```bash
Router(config)# crypto pki trustpoint mytp
Router(ca-trustpoint)# revocation-check crl ocsp
```

Specifying an OCSP Server Example

The following example shows how to configure your router to use the OCSP server at the HTTP URL “http://myocspserver:81.” If the server is down, the revocation check will be ignored.

```bash
Router(config)# crypto pki trustpoint mytp
Router(ca-trustpoint)# ocsp url http://myocspserver:81
Router(ca-trustpoint)# revocation-check ocsp none
```

Disabling Nonces in Communications with the OCSP Server Example

The following example shows communications when a nonce, or a unique identifier for the OCSP request, is disabled for communications with the OCSP server:

```bash
Router(config)# crypto pki trustpoint mytp
Router(ca-trustpoint)# ocsp url http://myocspserver:81
Router(ca-trustpoint)# revocation-check ocsp none
Router(ca-trustpoint)# ocsp disable-nonce
```

Configuring a Hub Router at a Central Site for Certificate Revocation Checks Example

The following example shows a hub router at a central site that is providing connectivity for several branch offices to the central site.

The branch offices are also able to communicate directly with each other using additional IPSec tunnels between the branch offices.

The CA publishes CRLs on an HTTP server at the central site. The central site checks CRLs for each peer when setting up an IPSec tunnel with that peer.

The example does not show the IPSec configuration—only the PKI-related configuration is shown.

Home Office Hub Configuration

```bash
crypto pki trustpoint VPN-GW
enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll
serial-number none
fqdn none
ip-address none
subject-name o=Home Office Inc,cn=Central VPN Gateway
revocation-check crl
```
Central Site Hub Router

Router# show crypto ca certificate
Certificate
Status: Available
Certificate Serial Number: 2F62BE140000000000CA0
Certificate Usage: General Purpose
Issuer:
 cn=Central Certificate Authority
 o=Home Office Inc
Subject:
 Name: Central VPN Gateway
 cn=Central VPN Gateway
 o=Home Office Inc
CRL Distribution Points:
 http://ca.home-office.com/CertEnroll/home-office.crl
Validity Date:
 start date: 00:43:26 GMT Sep 26 2003
 end date: 00:53:26 GMT Sep 26 2004
 renew date: 00:00:00 GMT Jan 1 1970
Associated Trustpoints: VPN-GW
CA Certificate
Status: Available
Certificate Serial Number: 1244325DE0369880465F977A18F61CA8
Certificate Usage: Signature
Issuer:
 cn=Central Certificate Authority
 o=Home Office Inc
Subject:
 cn=Central Certificate Authority
 o=Home Office Inc
CRL Distribution Points:
 http://ca.home-office.com/CertEnroll/home-office.crl
Validity Date:
 start date: 22:19:29 GMT Oct 31 2002
 end date: 22:27:27 GMT Oct 31 2017
Associated Trustpoints: VPN-GW

Trustpoint on the Branch Office Router

crypto pki trustpoint home-office
 enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll
 serial-number none
 fqdn none
 ip-address none
 subject-name o=Home Office Inc,cn=Branch 1
 revocation-check crl

A certificate map is entered on the branch office router.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
branch1(config)# crypto pki certificate map central-site 10
branch1(ca-certificate-map)#

The output from the show certificate command on the central site hub router shows that the certificate was issued by the following:

cn=Central Certificate Authority
 o=Home Office Inc
These two lines are combined into one line using a comma (,) to separate them, and the original lines are added as the first criteria for a match.

```
Router (ca-certificate-map)# issuer-name co cn=Central Certificate Authority, ou=Home Office Inc
```

The above line wrapped but should be shown on one line with the line above it.

The same combination is done for the subject name from the certificate on the central site router (note that the line that begins with “Name:” is not part of the subject name and must be ignored when creating the certificate map criteria). This is the subject name to be used in the certificate map.

```
subject-name eq cn=central vpn gateway, o=home office inc
```

Now the certificate map is added to the trustpoint that was configured earlier.

```
Router (ca-certificate-map)# subject-name eq cn=central vpn gateway, o=home office inc
```

The configuration is checked (most of configuration is not shown).

```
Router# write term
```

```
crypto pki trustpoint home-office
  enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll
  serial-number none
  fqdn none
  ip-address none
  subject-name o=Home Office Inc,cn=Branch 1
  revocation-check crl
  match certificate central-site skip revocation-check
```

```
crypto pki certificate map central-site 10
  issuer-name co cn = Central Certificate Authority, ou = Home Office Inc
  subject-name eq cn = central vpn gateway, o = home office inc
```

Note that the issuer-name and subject-name lines have been reformatted to make them consistent for later matching with the certificate of the peer.

If the branch office is checking the AAA, the trustpoint will have lines similar to the following:

```
crypto pki trustpoint home-office
  auth list allow_list
  auth user subj commonname
```

After the certificate map has been defined as was done above, the following command is added to the trustpoint to skip AAA checking for the central site hub.

```
match certificate central-site skip authorization-check
```
In both cases, the branch site router has to establish an IPSec tunnel to the central site to check CRLs or to contact the AAA server. However, without the `match certificate` command and `central-site skip authorization-check (argument and keyword)`, the branch office cannot establish the tunnel until it has checked the CRL or the AAA server. (The tunnel will not be established unless the `match certificate` command and `central-site skip authorization-check` argument and keyword are used.)

The `match certificate` command and `allow expired-certificate` keyword would be used at the central site if the router at a branch site had an expired certificate and it had to establish a tunnel to the central site to renew its certificate.

Trustpoint on the Central Site Router

crypto pki trustpoint VPN-GW
enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll
serial-number none
fqdn none
ip-address none
subject-name o=Home Office Inc,cn=Central VPN Gateway
revocation-check crl

Trustpoint on the Branch 1 Site Router

Router# show crypto ca certificate
Certificate
Status: Available
Certificate Serial Number: 2F62BE140000000000CA0
Certificate Usage: General Purpose
Issuer:
 cn=Central Certificate Authority
 o=Home Office Inc
Subject:
 Name: Branch 1 Site
 cn=Branch 1 Site
 o=Home Office Inc
CRL Distribution Points:
 http://ca.home-office.com/CertEnroll/home-office.crl
Validity Date:
 start date: 00:43:26 GMT Sep 26 2003
 end date: 00:53:26 GMT Oct 3 2003
 renew date: 00:00:00 GMT Jan 1 1970
Associated Trustpoints: home-office

CA Certificate
Status: Available
Certificate Serial Number: 1244325DE0369880465F977A18F61CA8
Certificate Usage: Signature
Issuer:
 cn=Central Certificate Authority
 o=Home Office Inc
Subject:
 cn=Central Certificate Authority
 o=Home Office Inc
CRL Distribution Points:
 http://ca.home-office.com/CertEnroll/home-office.crl
Validity Date:
 start date: 22:19:29 GMT Oct 31 2002
 end date: 22:27:27 GMT Oct 31 2017
Associated Trustpoints: home-office

A certificate map is entered on the central site router.
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router (config)# crypto pki certificate map branch1 10
Router (ca-certificate-map)# issuer-name co cn=Central Certificate Authority, ou=Home Office Inc
The above line wrapped but should be part of the line above it.
Router (ca-certificate-map)# subject-name eq cn=Brahcn 1 Site, o=home office inc
The certificate map is added to the trustpoint.

Router (ca-certificate-map)# crypto pki trustpoint VPN-GW
Router (ca-trustpoint)# match certificate branch1 allow expired-certificate
Router (ca-trustpoint)# exit
Router (config)# exit
The configuration should be checked (most of the configuration is not shown).

Router# write term
!many lines left out
crypto pki trustpoint VPN-GW
 enrollment url http://ca.home-office.com:80/certsrv/mscep/mscep.dll
 serial-number none
 fqdn none
 ip-address none
 subject-name o=Home Office Inc, cn=Central VPN Gateway
 revocation-check crl
 match certificate branch1 allow expired-certificate
!
!
crypto pki certificate map central-site 10
 issuer-name co cn = Central Certificate Authority, ou = Home Office Inc
 subject-name eq cn = central vpn gateway, o = home office inc
 ! many lines left out
The match certificate command and branch1 allow expired-certificate (argument and keyword) and the certificate map should be removed as soon as the branch router has a new certificate.

Configuring Certificate Authorization and Revocation Settings Examples

This section contains the following configuration examples that can be used when specifying a CRL cache control setting or certificate serial number session control:

Configuring CRL Cache Control

The following example shows how to disable CRL caching for all CRLs associated with the CA1 trustpoint:

crypto pki trustpoint CA1
 enrollment url http://CA1:80
 ip-address FastEthernet0/0
 crl query ldap://ldap_CA1
 revocation-check crl
 crl-cache none

The current CRL is still cached immediately after executing the example configuration shown above:

Router# show crypto pki crls

CRL Issuer Name:
When the current CRL expires, a new CRL is then downloaded to the router at the next update. The `crl-cache none` command takes effect and all CRLs for the trustpoint are no longer cached; caching is disabled. You can verify that no CRL is cached by executing the `show crypto pki crls` command. No output will be shown because there are no CRLs cached.

The following example shows how to configure the maximum lifetime of 2 minutes for all CRLs associated with the CA1 trustpoint:

```
crypto pki trustpoint CA1
  enrollment url http://CA1:80
  ip-address FastEthernet0/0
  crl query ldap://ldap_server
  revocation-check crl
  crl-cache delete-after 2
```

The current CRL is still cached immediately after executing the example configuration above for setting the maximum lifetime of a CRL:

```
Router# show crypto pki crls
```

```
CRL Issuer Name:
  cn-name Cert Manager,ou-pki,o-example.com,c-US
  LastUpdate: 18:57:42 GMT Nov 26 2005
  NextUpdate: 22:57:42 GMT Nov 26 2005
  Retrieved from CRL Distribution Point:
    ldap://ldap.example.com/CN-name Cert Manager,O-example.com
```

When the current CRL expires, a new CRL is downloaded to the router at the next update and the `crl-cache delete-after` command takes effect. This newly cached CRL and all subsequent CRLs will be deleted after a maximum lifetime of 2 minutes. You can verify that the CRL will be cached for 2 minutes by executing the `show crypto pki crls` command. Note that the NextUpdate time is 2 minutes after the LastUpdate time.

```
Router# show crypto pki crls
```

```
CRL Issuer Name:
  cn-name Cert Manager,ou-pki,o-example.com,c-US
  LastUpdate: 22:57:42 GMT Nov 26 2005
  NextUpdate: 22:59:42 GMT Nov 26 2005
  Retrieved from CRL Distribution Point:
    ldap://ldap.example.com/CN-name Cert Manager,O-example.com
```

Configuring Certificate Serial Number Session Control

The following example shows the configuration of certificate serial number session control using a certificate map for the CA1 trustpoint:

```
crypto pki trustpoint CA1
  enrollment url http://CA1
  chain-validation stop
  crl query ldap://ldap_server
```

```
Router# show crypto pki crls
```

```
CRL Issuer Name:
  cn-name Cert Manager,ou-pki,o-example.com,c-US
  LastUpdate: 22:57:42 GMT Nov 26 2005
  NextUpdate: 22:59:42 GMT Nov 26 2005
  Retrieved from CRL Distribution Point:
    ldap://ldap.example.com/CN-name Cert Manager,O-example.com
```
revocation-check crl
match certificate crl

crypto pki certificate map crl 10
serial-number co 279d

Note

If the *match-criteria* value is set to `eq` (equal) instead of `co` (contains), the serial number must match the certificate map serial number exactly, including any spaces.

The following example shows the configuration of certificate serial number session control using AAA attributes. In this case, all valid certificates will be accepted if the certificate does not have the serial number “4ACA.”

crypto pki trustpoint CA1
 enrollment url http://CA1
 ip-address FastEthernet0/0
 crl query ldap://ldap_CA1
 revocation-check crl
 aaa new-model
 aaa attribute list crl
 attribute-type aaa-cert-serial-not 4ACA

The server log shows that the certificate with the serial number “4ACA” was rejected. The certificate rejection is shown using exclamation points.

```
Dec 3 04:24:39.051: CRYPTO_PKI: Trust-Point CA1 picked up
Dec 3 04:24:39.051: CRYPTO_PKI: locked trustpoint CA1, refcount is 1
Dec 3 04:24:39.051: CRYPTO_PKI: unlocked trustpoint CA1, refcount is 0
Dec 3 04:24:39.051: CRYPTO_PKI: locked trustpoint CA1, refcount is 1
Dec 3 04:24:39.135: CRYPTO_PKI: validation path has 1 certs
Dec 3 04:24:39.135: CRYPTO_PKI: Found a issuer match
Dec 3 04:24:39.135: CRYPTO_PKI: Using CA1 to validate certificate
Dec 3 04:24:39.135: CRYPTO_PKI: Anticipate checking AAA list:'CRL'
Dec 3 04:24:39.135: CRYPTO_PKI AAA: checking AAA authorization (CRL, PKIAAA-L1, <all>)
Dec 3 04:24:39.135: CRYPTO_PKI AAA: pre-authorization chain validation status (0x4)
Dec 3 04:24:39.135: AAA/AUTHOR (0x21): Pick method list 'CRL'
Dec 3 04:24:39.175: CRYPTO_PKI AAA: reply attribute ("cert-application" = "all")
Dec 3 04:24:39.175: CRYPTO_PKI AAA: reply attribute ("cert-trustpoint" = "CA1")
Dec 3 04:24:39.175: CRYPTO_PKI AAA: reply attribute ("cert-serial-not" = "4ACA")
Dec 3 04:24:39.175: CRYPTO_PKI AAA: cert-serial doesn't match ("4ACA" != "4ACA")
Dec 3 04:24:39.175: CRYPTO_PKI AAA: post-authorization chain validation status (0x7)
Dec 3 04:24:39.175: CRYPTO_PKI: chain cert was anchored to trustpoint CA1, and chain validation result was: CRYPTO_PKI_CERT_NOT_AUTHORIZED
Dec 3 04:24:39.175: %CRYPTO-5-IKMP_INVAL_CERT: Certificate received from 192.0.2.43 is bad:
```
Configuring Certificate Chain Validation Examples

This section contains the following configuration examples that can be used to specify the level of certificate chain processing for your device certificates:

Configuring Certificate Chain Validation from Peer to Root CA

In the following configuration example, all of the certificates will be validated—the peer, SubCA11, SubCA1, and RootCA certificates.

crypto pki trustpoint RootCA
 enrollment terminal
 chain-validation stop
 revocation-check none
 rsakeypair RootCA
 crypto pki trustpoint SubCA1
 enrollment terminal
 chain-validation continue RootCA
 revocation-check none
 rsakeypair SubCA1
 crypto pki trustpoint SubCA11
 enrollment terminal
 chain-validation continue SubCA1
 revocation-check none
 rsakeypair SubCA11

Configuring Certificate Chain Validation from Peer to Subordinate CA

In the following configuration example, the following certificates will be validated—the peer and SubCA1 certificates.

crypto pki trustpoint RootCA
 enrollment terminal
 chain-validation stop
 revocation-check none
 rsakeypair RootCA
 crypto pki trustpoint SubCA1
 enrollment terminal
 chain-validation continue RootCA
 revocation-check none
 rsakeypair SubCA1
 crypto pki trustpoint SubCA11
 enrollment terminal
 chain-validation continue SubCA1
 revocation-check none
 rsakeypair SubCA11

Configuring Certificate Chain Validation Through a Gap

In the following configuration example, SubCA1 is not in the configured Cisco IOS hierarchy but is expected to have been supplied in the certificate chain presented by the peer.
If the peer supplies the SubCA1 certificate in the presented certificate chain, the following certificates will be validated—the peer, SubCA11, and SubCA1 certificates.

If the peer does not supply the SubCA1 certificate in the presented certificate chain, the chain validation will fail.

crypto pki trustpoint RootCA
 enrollment terminal
 chain-validation stop
 revocation-check none
 rsa-keypair RootCA

crypto pki trustpoint SubCA11
 enrollment terminal
 chain-validation continue RootCA
 revocation-check none
 rsa-keypair SubCA11

Additional References for Configuring Authorization and Revocation of Certificates in a PKI

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
| PKI commands | • Cisco IOS Security Command Reference Commands A to C
| | • Cisco IOS Security Command Reference Commands D to L
| | • Cisco IOS Security Command Reference Commands M to R
| | • Cisco IOS Security Command Reference Commands S to Z |
| Overview of PKI, including RSA keys, certificate enrollment, and CAs | “Cisco IOS PKI Overview: Understanding and Planning a PKI” module |
| RSA key generation and deployment | “Deploying RSA Keys Within a PKI” module |
| Certificate enrollment: supported methods, enrollment profiles, configuration tasks | “Configuring Certificate Enrollment for a PKI” module |
| Cisco IOS certificate server overview information and configuration tasks | “Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment” module |
| Recommended cryptographic algorithms | Next Generation Encryption |
Feature Information for Certificate Authorization and Revocation

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Cache Control Enhancements for Certification Revocation Lists | 12.4(9)T | This feature provides users the ability to disable CRL caching or to specify the maximum lifetime for which a CRL will be cached in router memory. It also provides functionality to configure certificate serial number session control. The following sections provide information about this feature:
 • What Is a CRL
 • Configuring Certificate Authorization and Revocation Settings
 • Configuring SCTP on the Active and Standby Certificate Servers
 The following commands were introduced or modified by this feature:
crl-cache delete-after, crl-cache none, crypto pki certificate map |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Certificate-Complete Chain Validation | 12.4(6)T | This feature provides users the ability to configure the level to which a certificate chain is processed on all certificates including subordinate CA certificates.

The following sections provide information about this feature:

- PKI Certificate Chain Validation
- Configuring Certificate Chain Validation
- Configuring Certificate Chain Validation Examples

The following command was introduced by this feature: `chain-validation` |
| Certificate Security Attribute-Based Access Control | 12.2(15)T | Under the IPsec protocol, CA interoperability permits Cisco IOS devices and a CA to communicate so that the Cisco IOS device can obtain and use digital certificates from the CA. Certificates contain several fields that are used to determine whether a device or user is authorized to perform a specified action. This feature adds fields to the certificate that allow specifying an ACL, creating a certificate-based ACL.

The following sections provide information about this feature:

- When to Use Certificate-Based ACLs for Authorization or Revocation
- Configuring Certificate Authorization and Revocation Settings

The following commands were introduced or modified by this feature: `crypto pki certificate map`, `crypto pki trustpoint match certificate` |
| CRL Pre-fetch with Tunable Timers | 15.4(3)M | The CRL Pre-fetch with Tunable Timers feature provides support for CRL auto download and CRL cache extension features.

The following sections provide information about this feature:

- CRL Auto Download and CRL Cache Extension
- Configuring CRL Autodownload

The following commands were introduced or modified: `crypto pki crl download schedule prepublish`, `crypto pki crl download schedule retries`, `crypto pki crl download schedule time`, `crypto pki crl download trustpoint`, `crypto pki crl download url`, `crypto pki crl refresh cache`, `show crypto pki crl download`, `show crypto pki timer` |
| OCSP - Server Certification from Alternate Hierarchy | 12.4(6)T | This feature provides users with the flexibility to specify multiple OCSP servers, either per client certificate or per group of client certificates, and provides the capability for OCSP server validation based on external CA certificates or self-signed certificates.

The following command was introduced by this feature: `match certificate override ocs` |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional OCSP Nonce 12.2(33)SR</td>
<td>This feature provides users with the ability to configure the sending of a nonce, or unique identifier for an OCSP request, during OCSP communications.</td>
<td></td>
</tr>
<tr>
<td>12.4(4)T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online Certificate Status Protocol (OCSP) 12.3(2)T</td>
<td>This feature allows users to enable OCSP instead of CRLs to check certificate status. Unlike CRLs, which provide only periodic certificate status, OCSP can provide timely information regarding the status of a certificate. The following commands were introduced by this feature: <code>ocsp url</code>, <code>revocation-check</code>.</td>
<td></td>
</tr>
<tr>
<td>PKI AAA Authorization Using the Entire Subject Name 12.3(11)T</td>
<td>This feature provides users with the ability to query the AAA server using the entire subject name from the certificate as a unique AAA username. The following command was modified by this feature: <code>authorization username</code>.</td>
<td></td>
</tr>
<tr>
<td>PKI High Availability 15.0(1)M</td>
<td>The following commands were introduced or modified: <code>crypto pki server</code>, <code>crypto pki server start</code>, <code>crypto pki server stop</code>, <code>crypto pki trustpoint</code>, <code>crypto key generate rsa</code>, <code>crypto key import pem</code>, <code>crypto key move rsa</code>, <code>show crypto key mypubkey rsa</code>.</td>
<td></td>
</tr>
<tr>
<td>PKI Integration with AAA Server 12.3(1)</td>
<td>This feature provides additional scalability for authorization by generating a AAA username from the certificate presented by the peer. A AAA server is queried to determine whether the certificate is authorized for use by the internal component. The authorization is indicated by a component-specified label that must be present in the AV pair for the user. The following commands were introduced by this feature: <code>authorization list</code>, <code>authorization username</code>.</td>
<td></td>
</tr>
<tr>
<td>PKI IPv6 Support for VPN Solutions 15.2(1)T</td>
<td>The <code>enrollment url (ca-trustpoint)</code> command was modified to specify an IPv6 address in the CA URL. The <code>ocsp url</code> command was modified to specify the IPv6 address in a URL for the OCSP server.</td>
<td></td>
</tr>
<tr>
<td>PKI: Query Multiple Servers During Certificate Revocation Check 12.3(7)T</td>
<td>This feature introduces the ability for Cisco IOS software to make multiple attempts to retrieve the CRL, allowing operations to continue when a particular server is not available. In addition, the ability to override the CDPs in a certificate with a manually configured CDP has been introduced. Manually overriding the CDPs in a certificate can be advantageous when a particular server is unavailable for an extended period of time. The certificate's CDPs can be replaced with a URL or directory specification without reissuing all of the certificates that contain the original CDP. The following command was introduced by this feature: <code>match certificate override cdp</code>.</td>
<td></td>
</tr>
</tbody>
</table>
This feature allows a certificate that meets specified criteria to be accepted regardless of the validity period of the certificate, or if the certificate meets the specified criteria, revocation checking does not have to be performed. Certificate ACLs are used to specify the criteria that the certificate must meet to be accepted or to avoid revocation checking. In addition, if AAA communication is protected by a certificate, this feature provides for the AAA checking of the certificate to be ignored.

The following command was modified by this feature: `match certificate`.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Certificate ACLs to Ignore Revocation Check and Expired Certificates</td>
<td>12.3(4)T</td>
<td>This feature allows a certificate that meets specified criteria to be accepted regardless of the validity period of the certificate, or if the certificate meets the specified criteria, revocation checking does not have to be performed. Certificate ACLs are used to specify the criteria that the certificate must meet to be accepted or to avoid revocation checking. In addition, if AAA communication is protected by a certificate, this feature provides for the AAA checking of the certificate to be ignored. The following command was modified by this feature: <code>match certificate</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 4

Configuring Certificate Enrollment for a PKI

This module describes the different methods available for certificate enrollment and how to set up each method for a participating PKI peer. Certificate enrollment, which is the process of obtaining a certificate from a certification authority (CA), occurs between the end host that requests the certificate and the CA. Each peer that participates in the public key infrastructure (PKI) must enroll with a CA.

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Finding Feature Information on page 79
Prerequisites for PKI Certificate Enrollment on page 79
Information About Certificate Enrollment for a PKI on page 80
How to Configure Certificate Enrollment for a PKI on page 84
Configuration Examples for PKI Certificate Enrollment Requests on page 107
Additional References on page 114
Feature Information for PKI Certificate Enrollment on page 115

Prerequisites for PKI Certificate Enrollment

Before configuring peers for certificate enrollment, you should have the following items:

- A generated Rivest, Shamir, and Adelman (RSA) key pair to enroll and a PKI in which to enroll.
- An authenticated CA.
• Familiarity with the module “Cisco IOS PKI Overview: Understanding and Planning a PKI.”

• Enable NTP on the device so that the PKI services such as auto enrollment and certificate rollover may function correctly.

Note

As of Cisco IOS Release 12.3(7)T, all commands that begin with “crypto ca” have been changed to begin with “crypto pki.” Although the router will still accept crypto ca commands, all output will be displayed crypto pki.

Information About Certificate Enrollment for a PKI

What Are CAs

A CA is an entity that issues digital certificates that other parties can use. It is an example of a trusted third party. CAs are characteristic of many PKI schemes.

A CA manages certificate requests and issues certificates to participating network devices. These services provide centralized key management for the participating devices to validate identities and to create digital certificates. Before any PKI operations can begin, the CA generates its own public key pair and creates a self-signed CA certificate; thereafter, the CA can sign certificate requests and begin peer enrollment for the PKI.

You can use the Cisco IOS certificate server or a CA provided by a third-party CA vendor.

Framework for Multiple CAs

A PKI can be set up in a hierarchical framework to support multiple CAs. At the top of the hierarchy is a root CA, which holds a self-signed certificate. The trust within the entire hierarchy is derived from the RSA key pair of the root CA. The subordinate CAs within the hierarchy can be enrolled with either the root CA or with another subordinate CA. Multiple tiers of CAs are configured by either the root CA or with another subordinate CA. Within a hierarchical PKI, all enrolled peers can validate the certificate of one another if the peers share a trusted root CA certificate or a common subordinate CA.

When to Use Multiple CAs

Multiple CAs provide users with added flexibility and reliability. For example, subordinate CAs can be placed in branch offices while the root CA is at the office headquarters. Also, different granting policies can be implemented per CA, so you can set up one CA to automatically grant certificate requests while another CA within the hierarchy requires each certificate request to be manually granted.

Scenarios in which at least a two-tier CA is recommended are as follows:

• Large and very active networks in which a large number of certificates are revoked and reissued. A multiple tier CA helps to control the size of the certificate revocation lists (CRLs).

• When online enrollment protocols are used, the root CA can be kept offline except to issue subordinate CA certificates. This scenario provides added security for the root CA.
Authentication of the CA

The certificate of the CA must be authenticated before the device will be issued its own certificate and before certificate enrollment can occur. Authentication of the CA typically occurs only when you initially configure PKI support at your router. To authenticate the CA, issue the `crypto pki authenticate` command, which authenticates the CA to your router by obtaining the self-signed certificate of the CA that contains the public key of the CA.

Authentication via the fingerprint Command

Cisco IOS Release 12.3(12) and later releases allow you to issue the `fingerprint` command to preenter a fingerprint that can be matched against the fingerprint of a CA certificate during authentication.

If a fingerprint is not preentered for a trustpoint, and if the authentication request is interactive, you must verify the fingerprint that is displayed during authentication of the CA certificate. If the authentication request is noninteractive, the certificate will be rejected without a preentered fingerprint.

Note

If the authentication request is made using the command-line interface (CLI), the request is an interactive request. If the authentication request is made using HTTP or another management tool, the request is a noninteractive request.

Note

The SCEP will proceed for authentication even if GetCACaps returns any http failure message. Before enrollment, SCEP will initiate GetCACaps fetch. Enrollment will become successful only if GetCACaps is successful.

Supported Certificate Enrollment Methods

Cisco IOS software supports the following methods to obtain a certificate from a CA:

- Simple Certificate Enrollment Protocol (SCEP)--A Cisco-developed enrollment protocol that uses HTTP to communicate with the CA or registration authority (RA). SCEP is the most commonly used method for sending and receiving requests and certificates.

 Note

 To take advantage of automated certificate and key rollover functionality, you must be running a CA that supports rollover and SCEP must be used as your client enrollment method. If you are running a Cisco IOS CA, you must be running Cisco IOS Release 12.4(2)T or a later release for rollover support.

 - PKCS12--The router imports certificates in PKCS12 format from an external server.
 - IOS File System (IFS)--The router uses any file system that is supported by Cisco IOS software (such as TFTP, FTP, flash, and NVRAM) to send a certificate request and to receive the issued certificate. Users may enable IFS certificate enrollment when their CA does not support SCEP.
Prior to Cisco IOS Release 12.3(4)T, only the TFTP filesystem was supported within IFS.

- Manual cut-and-paste--The router displays the certificate request on the console terminal, allowing the user to enter the issued certificate on the console terminal. A user may manually cut-and-paste certificate requests and certificates when there is no network connection between the router and CA.

- Enrollment profiles-- Enrollment profiles are primarily used for EST or terminal based enrollment. In case that the CA server does not support SCEP, the recommended methods for enrollment are EST based enrollment or terminal based enrollment.

- Self-signed certificate enrollment for a trustpoint--The secure HTTP (HTTPS) server generates a self-signed certificate that is to be used during the secure socket layer (SSL) handshake, establishing a secure connection between the HTTPS server and the client. The self-signed certificate is then saved in the router’s startup configuration (NVRAM). The saved, self-signed certificate can then be used for future SSL handshakes, eliminating the user intervention that was necessary to accept the certificate every time the router reloaded.

To take advantage of autoenrollment and autoreenrollment, do not use either TFTP or manual cut-and-paste enrollment as your enrollment method. Both TFTP and manual cut-and-paste enrollment methods are manual enrollment processes, requiring user input.

Cisco IOS Suite-B Support for Certificate Enrollment for a PKI

Suite-B requirements comprise of four user interface suites of cryptographic algorithms for use with IKE and IPSec that are described in RFC 4869. Each suite consists of an encryption algorithm, a digital signature algorithm, a key agreement algorithm, and a hash or message digest algorithm.

Suite-B adds the following support for the certificate enrollment for a PKI:

- Elliptic Curve Digital Signature Algorithm (ECDSA) (256-bit and 384-bit curves) is used for the signature operation within X.509 certificates.

- PKI support for validation of for X.509 certificates using ECDSA signatures.

- PKI support for generating certificate requests using ECDSA signatures and for importing the issued certificates into IOS.

See the Configuring Security for VPNs with IPsec feature module for more detailed information about Cisco IOS Suite-B support.

Registration Authorities

A Cisco IOS certificate server can be configured to run in RA mode. An RA offloads authentication and authorization responsibilities from a CA. When the RA receives a SCEP or manual enrollment request, the administrator can either reject or grant it on the basis of local policy. If the request is granted, it will be forwarded to the issuing CA, and the CA can be configured to automatically generate the certificate and return it to the RA. The client can later retrieve the granted certificate from the RA.
Automatic Certificate Enrollment

Automatic certificate enrollment allows the CA client to automatically request a certificate from its CA server. This automatic router request eliminates the need for operator intervention when the enrollment request is sent to the CA server. Automatic enrollment is performed on startup for any trustpoint CA that is configured and that does not have a valid client certificate. When the certificate expires, a new certificate is automatically requested.

Note

When automatic enrollment is configured, clients automatically request client certificates. The CA server performs its own authorization checks; if these checks include a policy to automatically issue certificates, all clients will automatically receive certificates, which is not very secure. Thus, automatic certificate enrollment should be combined with additional authentication and authorization mechanisms (such as Secure Device Provisioning (SDP), leveraging existing certificates, and one-time passwords).

Automated Client Certificate and Key Rollover

By default, the automatic certificate enrollment function requests a new client certificate and keys from the CS before the client’s current certificate expires. Certificate and key rollover allows the certificate renewal rollover request to be made before the certificate expires by retaining the current key and certificate until the new, or rollover, certificate is available. After a specified amount of time, the rollover certificate and keys will become the active certificate and keys. The expired certificate and keys are immediately deleted upon rollover and removed from the certificate chain and CRL.

The setup for automatic rollover is twofold: CA clients must be automatically enrolled and the client’s CAs must be automatically enrolled and have the auto-rollover command enabled. For more information on configuring your CA servers for automatic certificate rollover see the section “Automatic CA Certificate and Key Rollover” in the chapter “Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment” of the Public Key Infrastructure Configuration Guide.

An optional renewal percentage parameter can be used with the auto-enroll command to allow a new certificate to be requested when a specified percentage of the lifetime of the certificate has passed. For example, if the renewal percentage is configured as 90 and the certificate has a lifetime of one year, a new certificate is requested 36.5 days before the old certificate expires. In order for automatic rollover to occur, the renewal percentage must be less than 100. The specified percent value must not be less than 10. If a client certificate is issued for less than the configured validity period due to the impending expiration of the CA certificate, the rollover certificate will be issued for the balance of that period. A minimum of 10 percent of the configured validity period, with an absolute minimum of 3 minutes, is required to allow rollover enough time to function.

Tip

If CA autoenrollment is not enabled, you may manually initiate rollover on an existing client with the crypto pki enroll command if the expiration time of the current client certificate is equal to or greater than the expiration time of the corresponding CA certificate. The client will initiate the rollover process, which occurs only if the server is configured for automated rollover and has an available rollover server certificate.

Note

A key pair is also sent if configured by the auto-enroll re-generate command and keyword. It is recommended that a new key pair be issued for security reasons.
Certificate Enrollment Profiles

Certificate enrollment profiles allow users to specify certificate authentication, enrollment, and reenrollment parameters when prompted. The values for these parameters are referenced by two templates that make up the profile. One template contains parameters for the HTTP request that is sent to the CA server to obtain the certificate of the CA (also known as certificate authentication); the other template contains parameters for the HTTP request that is sent to the CA for certificate enrollment.

Configuring two templates enables users to specify different URLs or methods for certificate authentication and enrollment; for example, authentication (getting the certificate of the CA) can be performed via TFTP (using the `authentication url` command) and enrollment can be performed manually (using the `enrollment terminal` command).

Prior to Cisco IOS Release 12.3(11)T, certificate requests could be sent only in a PKCS10 format; however, an additional parameter was added to the profile, allowing users to specify the PKCS7 format for certificate renewal requests.

Note
A single enrollment profile can have up to three separate sections for each task--certificate authentication, enrollment, and reenrollment.

How to Configure Certificate Enrollment for a PKI

This section contains the following enrollment option procedures. If you configure enrollment or autoenrollment (the first task), you cannot configure manual certificate enrollment. Also, if you configure TFTP or manual cut-and-paste certificate enrollment, you cannot configure autoenrollment, autoreenrollment, an enrollment profile, nor can you utilize the automated CA certificate rollover capability.

Configuring Certificate Enrollment or Autoenrollment

Perform this task to configure certificate enrollment or autoenrollment for clients participating in your PKI.

Before you begin
Before configuring automatic certificate enrollment requests, you should ensure that all necessary enrollment information is configured.

Prerequisites for Enabling Automated Client Certificate and Key Rollover

CA client support for certificate rollover is automatically enabled when using autoenrollment. For automatic CA certificate rollover to run successfully, the following prerequisites are applicable:

* Your network devices must support shadow PKI.
* Your clients must be running Cisco IOS Release 12.4(2)T or a later release.
* The client’s CS must support automatic rollover. See the section “Automatic CA Certificate and Key Rollover” in the chapter “Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment” of the Public Key Infrastructure Configuration Guide for more information on CA server automatic rollover configuration.
Prerequisites for Specifying Autoenrollment Initial Key Generation Location

To specify the location of the autoenrollment initial key generation, you must be running Cisco IOS Release 12.4(11)T or a later release.

RSA Key Pair Restriction for Autoenrollment

Trustpoints configured to generate a new key pair using the `regenerate` command or the `regenerate` keyword of the `auto-enroll` command must not share key pairs with other trustpoints. To give each trustpoint its own key pair, use the `rsakeypair` command in ca-trustpoint configuration mode. Sharing key pairs among regenerating trustpoints is not supported and will cause loss of service on some of the trustpoints because of key and certificate mismatches.

Restrictions for Automated Client Certificate and Key Rollover

In order for clients to run automatic CA certificate rollover successfully, the following restrictions are applicable:

- SCEP must be used to support rollover. Any device that enrolls with the PKI using an alternative to SCEP as the certificate management protocol or mechanism (such as enrollment profiles, manual enrollment, or TFTP enrollment) will not be able to take advantage of the rollover functionality provided by SCEP.

- If the configuration cannot be saved to the startup configuration after a shadow certificate is generated, rollover will not occur.

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment [mode | retry period minutes | retry count number] url url [pem]
5. eckeypair label
6. subject-name [x.500-name]
7. vrf vrf-name
8. ip-address {ip-address | interface | none}
9. serial-number [none]
10. auto-enroll [percent] [regenerate]
11. usage method1 [method2 [method3]]
12. password string
13. rsakeypair key-label key-size encryption-key-size]
14. fingerprint ca-fingerprint
15. on devicename :
16. exit
17. crypto pki authenticate name
18. exit
19. copy system:running-config nvram:startup-config
20. show crypto pki certificates

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto pki trustpoint name</td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# crypto pki trustpoint mytp</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>enrollment [mode</td>
<td>retry period minutes</td>
</tr>
<tr>
<td></td>
<td>Example: Router(ca-trustpoint)# enrollment url http://cat.example.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note An enrollment method other than TFTP or manual cut-and-paste must be configured to support autoenrollment.

| Step 5 | eckeypair label | (Optional) Configures the trustpoint to use an Elliptic Curve (EC) key on which certificate requests are generated using ECDSA signatures. The label argument specifies |
Command or Action

<table>
<thead>
<tr>
<th>Step 6</th>
<th>subject-name [x.500-name]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(ca-trustpoint)# subject-name cat</code></td>
<td></td>
</tr>
<tr>
<td>(Optional) Specifies the requested subject name that will be used in the certificate request.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>• x.500-name --If it is not specified, the fully qualified domain name (FQDN), which is the default subject name, will be used.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>vrf vrf-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(ca-trustpoint)# vrf myvrf</code></td>
<td></td>
</tr>
<tr>
<td>(Optional) Specifies the VRF instance in the public key infrastructure (PKI) trustpoint to be used for enrollment, certificate revocation list (CRL) retrieval, and online certificate status protocol (OCSP) status.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 8 | **ip-address** {ip-address | interface | none} |
|--------|----------------|
| **Example:** |
| `Router(ca-trustpoint)# ip address 192.168.1.66` |
| (Optional) Includes the IP address of the specified interface in the certificate request. |
| **Note** |
| • Issue the *ip-address* argument to specify either an IPv4 or IPv6 address. |
| • Issue the *interface* argument to specify an interface on the router. |
| • Issue the *none* keyword if no IP address should be included. |

<table>
<thead>
<tr>
<th>Step 9</th>
<th>serial-number [none]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(ca-trustpoint)# serial-number</code></td>
<td></td>
</tr>
<tr>
<td>(Optional) Specifies the router serial number in the certificate request, unless the none keyword is issued.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>• Issue the none keyword to specify that a serial number will not be included in the certificate request.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>auto-enroll [percent] [regenerate]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(ca-trustpoint)# auto-enroll regenerate</code></td>
<td></td>
</tr>
<tr>
<td>(Optional) Enables autoenrollment, allowing the client to automatically request a rollover certificate from the CA.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>• If autoenrollment is not enabled, the client must be manually re-enrolled in your PKI upon certificate expiration.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• By default, only the Domain Name System (DNS) name of the router is included in the certificate.</td>
<td></td>
</tr>
<tr>
<td>• Use the <code>percent</code> argument to specify that a new certificate will be requested after the percentage of the lifetime of the current certificate is reached.</td>
<td></td>
</tr>
<tr>
<td>• Use the <code>regenerate</code> keyword to generate a new key for the certificate even if a named key already exists.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>If the key pair being rolled over is exportable, the new key pair will also be exportable. The following comment will appear in the trustpoint configuration to indicate whether the key pair is exportable: “! RSA key pair associated with trustpoint is exportable.”</td>
</tr>
<tr>
<td>Note</td>
<td>It is recommended that a new key pair be generated for security reasons.</td>
</tr>
</tbody>
</table>

Step 11

usage *method1 [method2 [method3]]*

(Optional) Specifies the intended use for the certificate.

- Available options are `ike`, `ssl-client`, and `ssl-server`; the default is `ike`.

Example:

Router(ca-trustpoint)# usage ssl-client

Step 12

password *string*

(Optional) Specifies the revocation password for the certificate.

- If this command is enabled, you will not be prompted for a password during enrollment for this trustpoint.

Note When SCEP is used, this password can be used to authorize the certificate request--often via a one-time password or similar mechanism.

Example:

Router(ca-trustpoint)# password string1

Step 13

rsakeypair *key-label key-size encryption-key-size]*

(Optional) Specifies which key pair to associate with the certificate.

- A key pair with the `key-label` argument will be generated during enrollment if it does not already exist or if the `auto-enroll regenerate` command was issued.

- Specify the `key-size` argument for generating the key, and specify the `encryption-key-size` argument to request separate encryption, signature keys, and certificates. The key-size and encryption-key-size must be the same size. Length of less than 2048 is not recommended.

Example:

Router(ca-trustpoint)# rsakeypair key-label 2048 2048
Configuring Certificate Enrollment or Autoenrollment

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 14</td>
<td>Purpose</td>
</tr>
<tr>
<td>fingerprint ca-fingerprint</td>
<td>Note If this command is not enabled, the FQDN key pair is used. (Optional) Specifies a fingerprint that can be matched against the fingerprint of a CA certificate during authentication. Note If the fingerprint is not provided and authentication of the CA certificate is interactive, the fingerprint will be displayed for verification.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>Purpose</td>
</tr>
<tr>
<td>on devicename :</td>
<td>(Optional) Specifies that RSA keys will be created on the specified device upon autoenrollment initial key generation. Note Devices that may be specified include NVRAM, local disks, and Universal Serial Bus (USB) tokens. USB tokens may be used as cryptographic devices in addition to a storage device. Using a USB token as a cryptographic device allows RSA operations such as key generation, signing, and authentication to be performed on the token.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>Purpose</td>
</tr>
<tr>
<td>exit</td>
<td>Exits ca-trustpoint configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>Purpose</td>
</tr>
<tr>
<td>crypto pki authenticate name</td>
<td>Retrieves the CA certificate and authenticates it. Check the certificate fingerprint if prompted. Note This command is optional if the CA certificate is already loaded into the configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td>Purpose</td>
</tr>
<tr>
<td>exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 19</td>
<td>Purpose</td>
</tr>
<tr>
<td>copy system:running-config nvram:startup-config</td>
<td>(Optional) Copies the running configuration to the NVRAM startup configuration. Note Autoenrollment will not update NVRAM if the running configuration has been modified but not written to NVRAM.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 20</td>
<td>Purpose</td>
</tr>
<tr>
<td>show crypto pki certificates</td>
<td>(Optional) Displays information about your certificates, including any rollover certificates.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Manual Certificate Enrollment

Manual certificate enrollment can be set up via TFTP or the manual cut-and-paste method. Both options can be used if your CA does not support SCEP or if a network connection between the router and CA is not possible. Perform one of the following tasks to set up manual certificate enrollment:

PEM-Formatted Files for Certificate Enrollment Request

Using PEM-formatted files for certificate requests can be helpful for customers who are using terminal or profile-based enrollment to request certificates from their CA server. Customers using PEM-formatted files can directly use existing certificates on their routers.

Restrictions for Manual Certificate Enrollment

SCEP Restriction

We do not recommend switching URLs if SCEP is used; that is, if the enrollment URL is “http://myca,” do not change the enrollment URL after getting the CA certificate and before enrolling the certificate. A user can switch between TFTP and manual cut-and-paste.

Key Regeneration Restriction

Do not regenerate the keys manually using the `crypto key generate` command; key regeneration will occur when the `crypto pki enroll` command is issued if the `regenerate` keyword is specified.

Configuring Cut-and-Paste Certificate Enrollment

Perform this task to configure cut-and-paste certificate enrollment. This task helps you to configure manual certificate enrollment via the cut-and-paste method for peers participating in your PKI.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki trustpoint name`
4. `enrollment terminal pem`
5. `fingerprint ca-fingerprint`
6. `exit`
7. `crypto pki authenticate name`
8. `crypto pki enroll name`
9. `crypto pki import name certificate`
10. `exit`
11. `show crypto pki certificates`
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> <code>enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>crypto pki trustpoint name</code></td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# <code>crypto pki trustpoint mytp</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>enrollment terminal pem</code></td>
<td>Specifies the manual cut-and-paste certificate enrollment method.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(ca-trustpoint)# <code>enrollment terminal pem</code></td>
<td>- The certificate request will be displayed on the console terminal so that it may be manually copied (or cut).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>pem</code> --Configures the trustpoint to generate PEM-formatted certificate requests to the console terminal.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>fingerprint ca-fingerprint</code></td>
<td>(Optional) Specifies a fingerprint that can be matched against the fingerprint of a CA certificate during authentication.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(ca-trustpoint)# <code>fingerprint 12EF53FA 355CD23E 12EF53FA 355CD23E</code></td>
<td>Note If the fingerprint is not provided, it will be displayed for verification.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>exit</code></td>
<td>Exits ca-trustpoint configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(ca-trustpoint)# <code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>crypto pki authenticate name</code></td>
<td>Retrieves the CA certificate and authenticates it.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# <code>crypto pki authenticate mytp</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>crypto pki enroll name</code></td>
<td>Generates certificate request and displays the request for copying and pasting into the certificate server.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# <code>crypto pki enroll mytp</code></td>
<td>- You are prompted for enrollment information, such as whether to include the router FQDN and IP address</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in the certificate request. You are also given the choice about displaying the certificate request to the console terminal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The base-64 encoded certificate with or without PEM headers as requested is displayed.</td>
<td></td>
</tr>
<tr>
<td>Step 9 crypto pki import name certificate</td>
<td>Imports a certificate manually at the console terminal (pasting).</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• The base-64 encoded certificate is accepted from the console terminal and inserted into the internal certificate database.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note You must enter this command twice if usage keys, a signature key, and an encryption key are used. The first time the command is entered, one of the certificates is pasted into the router. The second time the command is entered, the other certificate is pasted into the router. It does not matter which certificate is pasted first.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note Some CAs ignore the usage key information in the certificate request and issue general purpose usage certificates. If this applies to the certificate authority you are using, import the general purpose certificate. The router will not use one of the two key pairs generated.</td>
<td></td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Exits global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 11 show crypto pki certificates</td>
<td>(Optional) Displays information about your certificates, the certificates of the CA, and RA certificates.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring TFTP Certificate Enrollment

Perform this task to configure TFTP certificate enrollment. This task helps you to configure manual certificate enrollment using a TFTP server.

Before you begin

• You must know the correct URL to use if you are configuring certificate enrollment via TFTP.
• The router must be able to write a file to the TFTP server for the `crypto pki enroll` command.
• If you are using a file specification with the enrollment command, the file must contain the CA certificate either in binary format or be base-64 encoded.

• You must know if your CA ignores key usage information in a certificate request and issues only a general purpose usage certificate.

Caution
Some TFTP servers require that the file must exist on the server before it can be written. Most TFTP servers require files that can be written over. This requirement may pose a risk because any router or other device may write or overwrite the certificate request; thus, the replacement certificate request will not be used by the CA administrator, who must first check the enrollment request fingerprint before granting the certificate request.

SUMMARY STEPS
1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment [mode] [retry period minutes] [retry count number] url url pem
5. fingerprint ca-fingerprint
6. exit
7. crypto pki authenticate name
8. crypto pki enroll name
9. crypto pki import name certificate
10. exit
11. show crypto pki certificates

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto pki trustpoint name</td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint mytp</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>enrollment [mode] [retry period minutes] [retry count number] url url [pem]</td>
</tr>
</tbody>
</table>

Example:

Router(ca-trustpoint)# enrollment url tftp://certserver/file_specification

Note For TFTP enrollment, the URL must be configured as a TFTP URL, tftp://example_tftp_url.

- An optional file specification filename may be included in the TFTP URL. If the file specification is not included, the FQDN will be used. If the file specification is included, the router will append the extension “.ca” to the specified filename.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fingerprint ca-fingerprint</td>
<td>(Optional) Specifies the fingerprint of the CA certificate received via an out-of-band method from the CA administrator.</td>
</tr>
</tbody>
</table>

Example:

Router(ca-trustpoint)# fingerprint 12EF53FA 355CD23E 12EF53FA 355CD23E

Note If the fingerprint is not provided, it will be displayed for verification.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits ca-trustpoint configuration mode and returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Router(ca-trustpoint)# exit

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>crypto pki authenticate name</td>
<td>Retrieves the CA certificate and authenticates it from the specified TFTP server.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# crypto pki authenticate mytp

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>crypto pki enroll name</td>
<td>Generates certificate request and writes the request out to the TFTP server.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# crypto pki enroll mytp

- You are prompted for enrollment information, such as whether to include the router FQDN and IP address in the certificate request. You are queried about whether to display the certificate request to the console terminal.

- The filename to be written is appended with the extension “.req”. For usage keys, a signature key and an encryption key, two requests are generated and sent. The usage key request filenames are appended with the extensions “-sign.req” and “-encr.req”, respectively.

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>crypto pki import name certificate</td>
<td>Imports a certificate via TFTP at the console terminal, which retrieves the granted certificate.</td>
</tr>
</tbody>
</table>

Example:
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Router(config)# crypto pki import mytp certificate` | • The router will attempt to retrieve the granted certificate via TFTP using the same filename used to send the request, except the extension is changed from “.req” to “.crt”. For usage key certificates, the extensions “-sign.crt” and “-encr.crt” are used.
• The router will parse the received files, verify the certificates, and insert the certificates into the internal certificate database on the router. |

Note: Some CAs ignore the usage key information in the certificate request and issue general purpose usage certificates. If your CA ignores the usage key information in the certificate request, only import the general purpose certificate. The router will not use one of the two key pairs generated.

Step 10 | exit | Exits global configuration mode.
Example:
`Router(config)# exit` |

Step 11 | `show crypto pki certificates` | (Optional) Displays information about your certificates, the certificates of the CA, and RA certificates.
Example:
`Router# show crypto pki certificates` |

Certifying a URL Link for Secure Communication with a Trend Micro Server

Perform this task to certify a link used in URL filtering that allows secure communication with a Trend Micro Server.

Note: Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

SUMMARY STEPS

1. enable
2. `clock set hh : mm : ss date month year`
3. `configure terminal`
4. `clock timezone zone hours-offset [minutes-offset]`
5. `ip http server`
6. `hostname name`
7. `ip domain-name name`
8. crypto key generate rsa general-keys modulus \textit{modulus-size}
9. crypto pki trustpoint \textit{name}
10. enrollment terminal
11. crypto ca authenticate \textit{name}
12. Copy the following block of text containing the base 64 encoded CA certificate and paste it at the prompt.
13. Enter \textit{yes} to accept this certificate.
14. serial-number
15. revocation-check none
16. end
17. \texttt{trm register}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>\textbf{Example:}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>clock set $hh : mm : ss date month year$</td>
<td>Sets the clock on the router.</td>
</tr>
<tr>
<td></td>
<td>\textbf{Example:}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# clock set 23:22:00 22 Dec 2009</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>\textbf{Example:}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>clock timezone zone hours-offset [minutes-offset]</td>
<td>Sets the time zone.</td>
</tr>
<tr>
<td></td>
<td>\textbf{Example:}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# clock timezone PST -08</td>
<td></td>
</tr>
</tbody>
</table>

* ...)
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Enables the HTTP server.</td>
</tr>
<tr>
<td>ip http server</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Configures the hostname of the router.</td>
</tr>
<tr>
<td>hostname name</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config)# hostname hostname1</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Defines the domain name for the router.</td>
</tr>
<tr>
<td>ip domain-name name</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config)# ip domain-name example.com</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Generates the crypto keys.</td>
</tr>
<tr>
<td>crypto key generate rsa general-keys modulus modulus-size</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config)# crypto key generate rsa general-keys modulus general</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The name for the general keys that are generated are based on the domain name that is configured in Step 7. For example, the keys will be called “example.com.”</td>
</tr>
<tr>
<td>Step 9</td>
<td>Declares the CA that your router should use and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>crypto pki trustpoint name</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint mytp</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Effective with Cisco IOS Release 12.3(8)T, the crypto pki trustpoint command replaced the crypto ca trustpoint command.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Specifies the manual cut-and-paste certificate enrollment method.</td>
</tr>
<tr>
<td>enrollment terminal</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(ca-trustpoint)# enrollment terminal</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Takes the name of the CA as the argument and authenticates it.</td>
</tr>
<tr>
<td>crypto ca authenticate name</td>
<td>Example:</td>
</tr>
</tbody>
</table>
Command or Action

```
Router(ca-trustpoint)# crypto ca authenticate mytp
```

Purpose

- The following command output displays:

```
Enter the base 64 encoded CA certificate.
End with a blank line or the word "quit" on a line by itself.
```

Step 12

Copy the following block of text containing the base 64 encoded CA certificate and paste it at the prompt.

```
MIIBIDCCChgAwIBAgIENd70zzANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQGEwJV
```

The following command output displays:

Certificate has the following attributes:

```
Fingerprint MD5: 67CB9DC0 13248A82 9BB129D83D91BECD4
```
Configuring a Persistent Self-Signed Certificate for Enrollment via SSL

This section contains the following tasks:

These tasks are optional because if you enable the HTTPS server, it generates a self-signed certificate automatically using default values.

Purpose Command or Action

Fingerprint SHA1: D23209AD 23D31423 2174E40D 7F9D6213 9786633A

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Enter yes to accept this certificate.</td>
<td>% Do you accept this certificate? [yes/no]: yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following command output displays:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trustpoint CA certificate accepted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% Certificate successfully imported</td>
</tr>
<tr>
<td>14</td>
<td>serial-number</td>
<td>Specifies the router serial number in the certificate request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>hostname1(ca-trustpoint)# serial-number</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>revocation-check none</td>
<td>Specifies that certificate checking is ignored.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>hostname1(ca-trustpoint)# revocation-check none</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>end</td>
<td>Exits ca-trustpoint configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>hostname1(ca-trustpoint)# end</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>trm register</td>
<td>Manually starts the Trend Micro Server registration process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>hostname1# trm register</td>
<td></td>
</tr>
</tbody>
</table>
Persistent Self-Signed Certificates Overview

The SSL protocol can be used to establish a secure connection between an HTTPS server and a client (web browser). During the SSL handshake, the client expects the SSL server’s certificate to be verifiable using a certificate the client already possesses.

If Cisco IOS software does not have a certificate that the HTTPS server can use, the server generates a self-signed certificate by calling a PKI application programming interface (API). When the client receives this self-signed certificate and is unable to verify it, intervention is needed. The client asks you if the certificate should be accepted and saved for future use. If you accept the certificate, the SSL handshake continues.

Future SSL handshakes between the same client and the server use the same certificate. However, if the router is reloaded, the self-signed certificate is lost. The HTTPS server must then create a new self-signed certificate. This new self-signed certificate does not match the previous certificate, so you are once again asked to accept it.

Requesting acceptance of the router’s certificate each time the router reloads may present an opportunity for an attacker to substitute an unauthorized certificate when you are being asked to accept the certificate. Persistent self-signed certificates overcome all these limitations by saving a certificate in the router’s startup configuration.

Restrictions

You can configure only one trustpoint for a persistent self-signed certificate.

Note

Do not change the IP domain name or the hostname of the router after creating the self-signed certificate. Changing either name triggers the regeneration of the self-signed certificate and overrides the configured trustpoint. WebVPN ties the SSL trustpoint name to the WebVPN gateway configuration. If a new self-signed certificate is triggered, then the new trustpoint name does not match the WebVPN configuration, causing the WebVPN connections to fail.

Configuring a Trustpoint and Specifying Self-Signed Certificate Parameters

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Perform the following task to configure a trustpoint and specify self-signed certificate parameters.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment selfsigned
5. subject-name [x.500-name]
6. rsakeypair key-label [key-size [encryption-key-size]]
7. crypto pki enroll name
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto pki trustpoint name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# crypto pki trustpoint local</td>
</tr>
<tr>
<td></td>
<td>Declares the CA that your router should use and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Note Effective with Cisco IOS Release 12.3(8)T, the crypto pki trustpoint command replaced the crypto ca trustpoint command.</td>
</tr>
<tr>
<td>Step 4</td>
<td>enrollment selfsigned</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(ca-trustpoint)# enrollment selfsigned</td>
</tr>
<tr>
<td></td>
<td>Specifies self-signed enrollment.</td>
</tr>
<tr>
<td>Step 5</td>
<td>subject-name [x.500-name]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(ca-trustpoint)# subject-name</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies the requested subject name to be used in the certificate request.</td>
</tr>
<tr>
<td></td>
<td>• If no value for the x-500-name argument is specified, the FQDN, which is the default subject name, is used.</td>
</tr>
<tr>
<td>Step 6</td>
<td>rsakeypair key-label [key-size [encryption-key-size]]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(ca-trustpoint)# rsakeypair examplekey 2048</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies which key pair to associate with the certificate.</td>
</tr>
<tr>
<td></td>
<td>• The value for the key-label argument will be generated during enrollment if it does not already exist or if the auto-enroll regenerate command was issued.</td>
</tr>
<tr>
<td></td>
<td>• Specify a value for the key-size argument for generating the key, and specify a value for the encryption-key-size argument to request separate encryption, signature keys, and certificates. The key-size and encryption-key-size must be the same size. Length of less than 2048 is no recommended.</td>
</tr>
<tr>
<td></td>
<td>Note If this command is not enabled, the FQDN key pair is used.</td>
</tr>
</tbody>
</table>
Enabling the HTTPS Server

Perform the following task to enable the HTTPS server.

Before you begin

To specify parameters, you must create a trustpoint and configure it. To use default values, delete any existing self-signed trustpoints. Deleting all self-signed trustpoints causes the HTTPS server to generate a persistent self-signed certificate using default values as soon as the server is enabled.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip http secure-server
4. end
5. copy system:running-config nvram: startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 crypto pki enroll name</td>
<td>Tells the router to generate the persistent self-signed certificate.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(ca-trustpoint)# crypto pki enroll local</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>(Optional) Exits ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter this command a second time to exit global configuration mode.</td>
</tr>
<tr>
<td>Router(ca-trustpoint)# end</td>
<td></td>
</tr>
<tr>
<td>Step 9 show crypto pki certificates [trustpoint-name[verbose]]</td>
<td>Displays information about your certificate, the certification authority certificate, and any registration authority certificates.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show crypto pki certificates local verbose</td>
</tr>
<tr>
<td>Step 10 show crypto pki trustpoints [status</td>
<td>label [status]]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show crypto pki trustpoints status</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal Example: Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 ip http secure-server Example: Router(config)# ip http secure-server</td>
<td>Enables the HTTPS web server. Note A key pair (modulus 1024) and a self-signed certificate are automatically generated.</td>
</tr>
<tr>
<td>Step 4 end Example: Router(config)# end</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Step 5 copy system:running-config nvram: startup-config Example: Router# copy system:running-config nvram: startup-config</td>
<td>Saves the self-signed certificate and the HTTPS server in enabled mode.</td>
</tr>
</tbody>
</table>

Configuring a Certificate Enrollment Profile for Enrollment or Reenrollment

Perform this task to configure a certificate enrollment profile for enrollment or reenrollment. This task helps you to configure an enrollment profile for certificate enrollment or reenrollment of a router with a Cisco IOS CA that is already enrolled with a third-party vendor CA.

Enable a router that is enrolled with a third-party vendor CA to use its existing certificate to enroll with the Cisco IOS certificate server so the enrollment request is automatically granted. To enable this functionality, you must issue the **enrollment credential** command. Also, you cannot configure manual certificate enrollment.

Before you begin

Perform the following tasks at the client router before configuring a certificate enrollment profile for the client router that is already enrolled with a third-party vendor CA so that the router can reenroll with a Cisco IOS certificate server:

- Defined a trustpoint that points to the third-party vendor CA.
- Authenticated and enrolled the client router with the third-party vendor CA.
SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment profile label
5. exit
6. crypto pki profile enrollment label
7. Do one of the following:
 • authentication url url
 • authentication terminal
8. authentication command
9. Do one of the following:
 • enrollment url url
 • enrollment terminal
10. enrollment credential label
11. enrollment command
12. parameter number {value value | prompt string}
13. exit
14. show crypto pki certificates

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure</td>
<td>En ters global configuration mode.</td>
</tr>
<tr>
<td>terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure</td>
<td></td>
</tr>
<tr>
<td>terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Step 3 crypto pki trustpoint name</td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto pki trustpoint Entrust</td>
<td></td>
</tr>
<tr>
<td>Step 4 enrollment profile label</td>
<td>Specifies that an enrollment profile is to be used for certificate authentication and enrollment.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# enrollment profile E</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-trustpoint)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 crypto pki profile enrollment label</td>
<td>Defines an enrollment profile and enters ca-profile-enroll configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• label --Name for the enrollment profile; the enrollment profile name must match the name specified in the enrollment profile command.</td>
</tr>
<tr>
<td>Router(config)# crypto pki profile enrollment E</td>
<td></td>
</tr>
<tr>
<td>Step 7 Do one of the following:</td>
<td>Specifies the URL of the CA server to which to send certificate authentication requests.</td>
</tr>
<tr>
<td>• authentication url url</td>
<td>• url --URL of the CA server to which your router should send authentication requests. If you are using HTTP, the URL should read “http://CA_name,” where CA_name is the host DNS name or IP address of the CA. If you are using TFTP, the URL should read “tftp://certserver/file_specification.” (If the URL does not include a file specification, the FQDN of the router will be used.)</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-profile-enroll)# authentication url</td>
<td></td>
</tr>
<tr>
<td>http://entrust:81</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-profile-enroll)# authentication terminal</td>
<td></td>
</tr>
<tr>
<td>Step 8 authentication command</td>
<td>Specifies manual cut-and-paste certificate authentication. (Optional) Specifies the HTTP command that is sent to the CA for authentication.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(ca-profile-enroll)# authentication command</td>
<td></td>
</tr>
<tr>
<td>Step 9 Do one of the following:</td>
<td>Specifies the URL of the CA server to which to send certificate enrollment requests via HTTP or TFTP. Specifies manual cut-and-paste certificate enrollment.</td>
</tr>
<tr>
<td>• enrollment url url</td>
<td></td>
</tr>
<tr>
<td>• enrollment terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Router(ca-profile-enroll)# enrollment url

`http://entrust:81/cda-cgi/clientcgi.exe`

Example:

Router(ca-profile-enroll)# enrollment terminal

Step 10 enrollment credential label

Example:

Router(ca-profile-enroll)# enrollment credential

Entrust

(Optional) Specifies the third-party vendor CA trustpoint that is to be enrolled with the Cisco IOS CA.

Note This command cannot be issued if manual certificate enrollment is being used.

Step 11 enrollment command

Example:

Router(ca-profile-enroll)# enrollment command

(Optional) Specifies the HTTP command that is sent to the CA for enrollment.

Step 12 parameter number value {value value | prompt string}

Example:

Router(ca-profile-enroll)# parameter 1 value aaaa-bbbb-cccc

(Optional) Specifies parameters for an enrollment profile.

- This command can be used multiple times to specify multiple values.

Step 13 exit

Example:

Router(ca-profile-enroll)# exit

(Optional) Exits ca-profile-enroll configuration mode.

- Enter this command a second time to exit global configuration mode.

Step 14 show crypto pki certificates

Example:

Router# show crypto pki certificates

(Optional) Displays information about your certificates, the certificates of the CA, and RA certificates.

What to Do Next

If you configured the router to reenroll with a Cisco IOS CA, you should configure the Cisco IOS certificate server to accept enrollment requests only from clients already enrolled with the specified third-party vendor CA trustpoint to take advantage of this functionality. For more information, see the module “Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment.”
Configuration Examples for PKI Certificate Enrollment Requests

Configuring Certificate Enrollment or Autoenrollment Example

The following example shows the configuration for the “mytp-A” certificate server and its associated trustpoint, where RSA keys generated by the initial autoenrollment for the trustpoint will be stored on a USB token, “usbbtoken0”:

```plaintext
crypto pki server mytp-A
  database level complete
  issuer-name CN=company, L=city, C=country
  grant auto

! Specifies that certificate requests will be granted automatically.
!
crypto pki trustpoint mytp-A
  revocation-check none
  rsakeypair myTP-A
  storage usbbtoken0:

! Specifies that keys will be stored on usbbtoken0:

  on usbbtoken0:

! Specifies that keys generated on initial auto enroll will be generated on and stored on ! usbbtoken0:
```

Configuring Autoenrollment Example

The following example shows how to configure the router to automatically enroll with a CA on startup, enabling automatic rollover, and how to specify all necessary enrollment information in the configuration:

```plaintext
crypto pki trustpoint trustpt1
  enrollment url http://trustpt1.example.com//
  subject-name OU=Spiral Dept., O=example.com
  ip-address ethernet-0
  serial-number none
  usage ike
  auto-enroll regenerate
  password password1
  rsa-key trustpt1 2048

! crypto pki certificate chain trustpt1
  certificate pki 0B

  30820293 3082023D A0030201 0202010B 300D0609 2A864886 F70D0101 04050030
  79310B30 09060355 04061302 5553310B 30090603 55040813 024343131 15301306
  0355040A 130C4369 73636F20 53797374 656D3120 301E0603 55040B13 17737562
  6F726420 746F206B 6168756C 756D3101 0405003C 4B003040
  24100883 0512A201 3B4243F7 378A9703 8AC5E3CE F77AF987 85A422C4
  15E947F6 70997393 70CF34D6 63A869BC 4347A81A 0551FC02 ABA6236D 01BF7DD2
  6C136AE7 3C6C3920 03010001 A381F630 81F3300B 0603551D 0F040403 02050203
  1C063035 1D110B45 30138211 706B92D5 3435622E 63697363 6F2E636F 6D301D06
  03551D0E 04160414 247D9558 169B9A21 23D289CC 2DD2A9A4 4F77C616 301F0603
  551D2304 18301680 14BD742C E8928819 1D551B91 63F6DB2 8847A6C 73308185
  0603551D 1F04E730 7C307AA0 3CA03AA4 38303631 0E300C06 0355040A 13054369
  73636F31 24302206 03550403 131B796E 692D7531 30204365 72746966 69636174
```

Public Key Infrastructure Configuration Guide, Cisco IOS Release 15MT
In this example, keys are neither regenerated nor rolled over.

Configuring Certificate Autoenrollment with Key Regeneration Example

The following example shows how to configure the router to automatically enroll with the CA named “trustme1” on startup and enable automatic rollover. The `regenerate` keyword is issued, so a new key will be generated for the certificate and reissued when the automatic rollover process is initiated. The renewal percentage is configured as 90 so if the certificate has a lifetime of one year, a new certificate is requested 36.5 days before the old certificate expires. The changes made to the running configuration are saved to the NVRAM startup configuration because autoenrollment will not update NVRAM if the running configuration has been modified but not written to NVRAM.

```plaintext
crypto pki trustpoint trustme1
enrollment url http://trustme1.example.com/
subject-name OU=Spiral Dept., O=example.com
ip-address ethernet0
serial-number none
auto-enroll 90 regenerate
password password1
rsakeypair trustme1 2048
exit
crypto pki authenticate trustme1
copy system:running-config nvram:startup-config
```

Configuring Cut-and-Paste Certificate Enrollment Example

The following example shows how to configure certificate enrollment using the manual cut-and-paste enrollment method:

```plaintext
Router(config)#
crypto pki trustpoint TP
Router(ca-trustpoint)#
enrollment terminal
Router(ca-trustpoint)#
crypto pki authenticate TP

Enter the base 64 encoded CA certificate.
End with a blank line or the word "quit" on a line by itself

```
```
Configuring Certificate Enrollment for a PKI

Configuring Cut-and-Paste Certificate Enrollment Example

---

```plaintext
1. Trustpoint CA certificate accepted.
2. Certificate successfully imported

Router(config)# crypto pki enroll TP

% Start certificate enrollment..

% The subject name in the certificate will be:

Router.example.com

% Include the router serial number in the subject name? [yes/no]: n
% Include an IP address in the subject name? [no]: n

Display Certificate Request to terminal? [yes/no]: y

Signature key certificate request -
Certificate Request follows:

Redisplay enrollment request? [yes/no]: !

Encryption key certificate request -
Certificate Request follows:

Redisplay enrollment request? [yes/no]: !

Router(config)# crypto pki import TP certificate

Enter the base 64 encoded certificate.
End with a blank line or the word "quit" on a line by itself
```
Router(config)#
crypto pki import TP cert

Enter the base64 encoded certificate. End with a blank line or the word "quit" on a line by itself

% Router Certificate successfully imported
You can verify that the certificate was successfully imported by issuing the show crypto pki certificates command:

Routen(config)# show crypto pki certificates
Certificate
Status: Available
Certificate Serial Number: 14DECE050000000000C48
Certificate Usage: Encryption
Issuer:
CN = TPCA-root
O = Company
C = US
Subject:
Name: Router.example.com
OID.1.2.840.113549.1.9.2 = Router.example.com
CRL Distribution Point:
http://tpca-root/CertEnroll/tpca-root.crl

Certificate
Status: Available
Certificate Serial Number: 14DECE050000000000C47
Certificate Usage: Signature

% Router Certificate successfully imported
Configuring Certificate Enrollment for a PKI

Configuring Manual Certificate Enrollment with Key Regeneration Example

The following example shows how to regenerate new keys with a manual certificate enrollment from the CA named “trustme2”:

crypto pki trustpoint trustme2
encryption url http://trustme2.example.com/
subject-name OU=Spiral Dept., O=example.com
ip-address ethernet0
serial-number none
regenerate
password password1
rsakeypair trustme2 2048
exit
crypto pki authenticate trustme2
crypto pki enroll trustme2

Creating and Verifying a Persistent Self-Signed Certificate Example

The following example shows how to declare and enroll a trustpoint named “local” and generate a self-signed certificate with an IP address:

crypto pki trustpoint local
enrollment selfsigned
end
configure terminal
A router can have only one self-signed certificate. If you attempt to enroll a trustpoint configured for a self-signed certificate and one already exists, you receive a notification and are asked if you want to replace it. If so, a new self-signed certificate is generated to replace the existing one.

**Enabling the HTTPS Server Example**

The following example shows how to enable the HTTPS server and generate a default trustpoint because one was not previously configured:

```
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
ip http secure-server
% Generating 1024 bit RSA keys ...[OK]
*Dec 21 19:14:15.421:%PKI-4-NOAUTOSAVE:Configuration was modified. Issue "write memory"
to save new certificate
Router(config)#
```

You need to save the configuration to NVRAM if you want to keep the self-signed certificate and have the HTTPS server enabled following router reloads.

The following message also appears:

```
*Dec 21 19:14:10.441:%SSH-5-ENABLED:SSH 1.99 has been enabled
```

**Note**

Creation of the key pair used with the self-signed certificate causes the Secure Shell (SSH) server to start. This behavior cannot be suppressed. You may want to modify your Access Control Lists (ACLs) to permit or deny SSH access to the router. You can use the `ip ssh rsa keypair-name unexisting-key-pair-name` command to disable the SSH server.

**Verifying the Self-Signed Certificate Configuration Example**

The following example displays information about the self-signed certificate that you just created:

```
Router# show crypto pki certificates
Router Self-Signed Certificate
 Status: Available
 Certificate Serial Number: 01
 Certificate Usage: General Purpose
 Issuer:
```
The number 3326000105 is the router’s serial number and varies depending on the router’s actual serial number.

The following example displays information about the key pair corresponding to the self-signed certificate:

```
Router# show crypto key mypubkey rsa
% Key pair was generated at: 19:14:10 GMT Dec 21 2004
Key name: TP-self-signed-3326000105
Usage: General Purpose Key
Key is not exportable.
Key Data:
30819F30 0D06092A 864886F7 0D010101 05000381 8D003081 89028181 00B88F70
6BC78B6D 6706CFF3 135C1D91 BF360292 CA44A032 5AC1A8FD 095E4865 F8C95A2B
BF1C2B7 E64A3804 9BBD7326 207BD456 19BAB78B D075E78E 00D560C B09289AE
6DEC8BB0 6672FB3A 5CDAEE92 9D4CF71 3B3CB269 214F6293 33F8A8AB 9486B0CF
2B941B8A 550999A7 2FEF12A5 6B7669A 2D88AB77 3B38B0E 3A23CB8C B7020031 0001
% Key pair was generated at: 19:14:13 GMT Dec 21 2004
Key name: TP-self-signed-3326000105.server
Usage: Encryption Key
Key is not exportable.
Key Data:
307C300D 0D06092A 864886F7 0D010101 05000381 8D003081 89028181 00B88F70
6BC78B6D 6706CFF3 135C1D91 BF360292 CA44A032 5AC1A8FD 095E4865 F8C95A2B
BF1C2B7 E64A3804 9BBD7326 207BD456 19BAB78B D075E78E 00D560C B09289AE
6DEC8BB0 6672FB3A 5CDAEE92 9D4CF71 3B3CB269 214F6293 33F8A8AB 9486B0CF
2B941B8A 550999A7 2FEF12A5 6B7669A 2D88AB77 3B38B0E 3A23CB8C B7020031 0001
```

The second key pair with the name TP-self-signed-3326000105.server is the SSH key pair and is generated when any key pair is created on the router and SSH starts up.

The following example displays information about the trustpoint named “local”:

```
Router# show crypto pki trustpoints
Trustpoint local:
 Subject Name:
 serialNumber=C63EBBE9+ipaddress=10.3.0.18+hostname=test.example.com
 Serial Number: 01
 Persistent self-signed certificate trust point
```

### Configuring Direct HTTP Enrollment Example

The following example show how to configure an enrollment profile for direct HTTP enrollment with a CA server:

```
crypto pki trustpoint Entrust
```
### Additional References

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB token RSA operations: Benefits of using USB tokens</td>
<td>“Storing PKI Credentials” module in the Cisco IOS Security Configuration Guide: Secure Connectivity</td>
</tr>
<tr>
<td>Overview of PKI, including RSA keys, certificate enrollment, and CAs</td>
<td>See the “Generating a Certificate Server RSA Key Pair” section, the “Configuring a Certificate Server Trustpoint” section, and related examples.</td>
</tr>
<tr>
<td>Secure Device Provisioning: functionality overview and configuration tasks</td>
<td>“Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI” module in the Cisco IOS Security Configuration Guide: Secure Connectivity</td>
</tr>
<tr>
<td>RSA key generation and deployment</td>
<td>“Deploying RSA Keys Within a PKI ” module in the Cisco IOS Security Configuration Guide: Secure Connectivity</td>
</tr>
<tr>
<td>Setting up and using a USB token</td>
<td>“Storing PKI Credentials ” module in the Cisco IOS Security Configuration Guide: Secure Connectivity</td>
</tr>
<tr>
<td>Cisco IOS security commands</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>Suite-B ESP transforms</td>
<td>Configuring Security for VPNs with IPsec feature module.</td>
</tr>
<tr>
<td>Suite-B SHA-2 family (HMAC variant) and Elliptic Curve (EC) key pair configuration</td>
<td>Configuring Internet Key Exchange for IPsec VPNs feature module.</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Suite-B Integrity algorithm type transform configuration.</td>
<td>Configuring Internet Key Exchange Version 2 (IKEv2) feature module.</td>
</tr>
<tr>
<td>Suite-B Elliptic Curve Digital Signature Algorithm (ECDSA) signature (ECDSA-sig) authentication method configuration for IKEv2.</td>
<td>Configuring Internet Key Exchange Version 2 (IKEv2) feature module.</td>
</tr>
<tr>
<td>Suite-B Elliptic curve Diffie-Hellman (ECDH) support for IPsec SA negotiation</td>
<td>Configuring Internet Key Exchange for IPsec VPNs and Configuring Internet Key Exchange Version 2 (IKEv2) feature modules.</td>
</tr>
<tr>
<td>Recommended cryptographic algorithms</td>
<td>Next Generation Encryption</td>
</tr>
</tbody>
</table>

**MIBs**

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

**Technical Assistance**

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

### Feature Information for PKI Certificate Enrollment

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.
### Table 4: Feature Information for PKI Certificate Enrollment

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS USB Token PKI Enhancements--Phase 2</td>
<td>12.4(11)T</td>
<td>This feature enhances USB token functionality by using the USB token as a cryptographic device. USB tokens may be used for RSA operations such as key generation, signing, and authentication.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong>: This document describes the use of utilizing USB tokens for RSA operations during initial autoenrollment for a trustpoint.</td>
</tr>
<tr>
<td>Certificate Authority Key Rollover</td>
<td>12.4(2)T</td>
<td>This feature introduces the ability for root CAs to roll over expiring CA certificates and keys and to have these changes propagate through the PKI network without manual intervention.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified by this feature: <code>auto-rollover</code>, <code>crypto pki certificate chain</code>, <code>crypto pki export pem</code>, <code>crypto pki server</code>, <code>crypto pki server info request</code>, <code>show crypto pki certificates</code>, <code>show crypto pki server</code>, <code>show crypto pki trustpoint</code>.</td>
</tr>
<tr>
<td>Certificate Autoenrollment</td>
<td>12.2(8)T</td>
<td>This feature introduces certificate autoenrollment, which allows the router to automatically request a certificate from the CA that is using the parameters in the configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced by this feature: <code>auto-enroll</code>, <code>rsakeypair</code>, <code>show crypto ca timers</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Certificate Enrollment Enhancements</td>
<td>12.2(8)T</td>
<td>This feature introduces five new crypto ca trustpoint commands that provide new options for certificate requests and allow users to specify fields in the configuration instead of having to go through prompts. The following commands were introduced by this feature: ip-address(ca-trustpoint), password(ca-trustpoint), serial-number, subject-name, usage.</td>
</tr>
<tr>
<td>Direct HTTP Enrollment with CA Servers</td>
<td>12.3(4)T</td>
<td>This feature allows users to configure an enrollment profile if their CA server does not support SCEP and they do not want to use an RA-mode CS. The enrollment profile allows users to send HTTP requests directly to the CA server instead of to an RA-mode CS. The following commands were introduced by this feature: authentication command, authentication terminal, authentication url, crypto ca profile enrollment, enrollment command, enrollment profile, enrollment terminal, enrollment url, parameter.</td>
</tr>
<tr>
<td>Import of RSA Key Pair and Certificates in PEM Format</td>
<td>12.3(4)T</td>
<td>This feature allows customers to issue certificate requests and receive issued certificates in PEM-formatted files. The following commands were modified by this feature: enrollment, enrollment terminal.</td>
</tr>
<tr>
<td>Key Rollover for Certificate Renewal</td>
<td>12.3(7)T</td>
<td>This feature allows the certificate renewal request to be made before the certificate expires and retains the old key and certificate until the new certificate is available. The following commands were introduced or modified by this feature: auto-enroll, regenerate.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>---------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Manual Certificate Enrollment (TFTP Cut-and-Paste)</td>
<td>12.2(13)T</td>
<td>This feature allows users to generate a certificate request and accept CA certificates and the router’s certificates via a TFTP server or manual cut-and-paste operations. The following commands were introduced or modified by this feature: <code>crypto ca import</code>, <code>enrollment</code>, <code>enrollment terminal</code>.</td>
</tr>
<tr>
<td>Multiple-Tier CA Hierarchy</td>
<td>12.2(15)T</td>
<td>This enhancement enables users to set up a PKI in a hierarchical framework to support multiple CAs. Within a hierarchical PKI, all enrolled peers can validate the certificate of one another as long as the peers share a trusted root CA certificate or a common subordinate CA. Note: This is a minor enhancement. Minor enhancements are not typically listed in Feature Navigator.</td>
</tr>
<tr>
<td>Persistent Self-Signed Certificates</td>
<td>12.2(33)SXH, 12.2(33)SRA, 12.3(14)T</td>
<td>This feature allows the HTTPS server to generate and save a self-signed certificate in the router startup configuration. Thus, future SSL handshakes between the client and the HTTPS server can use the same self-signed certificate without user intervention. The following commands were introduced or modified by this feature: <code>enrollment selfsigned</code>, <code>show crypto pki certificates</code>, <code>show crypto pki trustpoints</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------------------------------------------</td>
<td>----------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PKI Status</td>
<td>12.3(11)T</td>
<td>This enhancement adds the <code>status</code> keyword to the <code>show crypto pki trustpoints</code> command, which allows you to display the current status of the trustpoint.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> This is a minor enhancement. Minor enhancements are not typically listed in Feature Navigator.</td>
</tr>
<tr>
<td>Public Key Infrastructure (PKI) IPv6 Support for VPN Solutions</td>
<td>15.2(1)T</td>
<td>The <code>enrollment url (ca-trustpoint)</code> command was modified to allow the specification of an IPv6 address in the URL for the CA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <code>ip-address (ca-trustpoint)</code> command was modified to allow the specification of an IPv6 address that is included as “unstructuredAddress” in the certificate request.</td>
</tr>
<tr>
<td>Reenroll Using Existing Certificates</td>
<td>12.3(11)T</td>
<td>This feature allows users to reenroll a router with a Cisco IOS CA via existing certificates from a third-party vendor CA.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced by this feature: <code>enrollment credential, grant auto trustpoint</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Suite-B support in IOS SW crypto</td>
<td>15.1(2)T</td>
<td>Suite-B adds the following support for certificate enrollment for a PKI:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Elliptic Curve Digital Signature Algorithm (ECDSA) (256 bit and 384 bit curves) is used for the signature operation within X.509 certificates.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PKI support for validation of X.509 certificates using ECDSA signatures.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PKI support for generating certificate requests using ECDSA signatures and for importing the issued certificates into IOS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suite-B requirements comprise of four user interface suites of cryptographic algorithms for use with IKE and IPsec that are described in RFC 4869.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each suite consists of an encryption algorithm, a digital signature algorithm, a key agreement algorithm, and a hash or message digest algorithm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See the Configuring Security for VPNs with IPsec feature module for more detailed information about Cisco IOS Suite-B support.</td>
</tr>
<tr>
<td>Trustpoint CLI</td>
<td>12.2(8)T</td>
<td>This feature introduces the <code>crypto pki trustpoint</code> command, which adds support for trustpoint CAs.</td>
</tr>
</tbody>
</table>
CHAPTER 5

PKI Credentials Expiry Alerts

The PKI Credentials Expiry Alerts feature provides a warning mechanism in the form of an alert notification when a CA certificate is on the verge of expiry.

- Finding Feature Information, on page 121
- Restrictions for PKI Credentials Expiry Alerts, on page 121
- Information About PKI Alerts Notification, on page 122
- Additional References for PKI Credentials Expiry Alerts, on page 123
- Feature Information for PKI Credentials Expiry Alerts, on page 124

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for PKI Credentials Expiry Alerts

Alerts are not sent for the following certificates:

- Persistent or temporary self-signed certificates.
- Secure Unique Device Identifier (SUDI) certificates.
- Certificates that belong to a trustpool. Trustpools have their own expiry alerts mechanism.
- Trustpoint clones.
Information About PKI Alerts Notification

Overview of Alerts Notification

The Cisco IOS Certificate Authority (CA) server allows autoenrollment of certificates before a certificate expires to ensure the availability of certificates for applications during authentication. However, network outages, clock update problems, and overloaded CAs can impede certificate renewal, thereby resulting in subsystems going offline because no valid certificates can be used for authentication. The PKI Credentials Expiry Alerts feature provides a mechanism by which a CA client sends a notification to a syslog server when certificates are on the verge of expiry.

The notifications are sent at the following intervals:

- First notification—This is sent 60 days before the expiry of the certificate.
- Repeated notifications—After the first notification, subsequent notifications are sent every week until a week before the expiry of the certificate. In the last week, notifications are sent every day until the certificate expiry date.

The notifications are in a warning mode when the certificate is valid for more than a week. The notifications are in an alert mode when a certificate’s validity is less than a week. The notifications include the following information:

- Truspoint the certificate is associated with
- Certificate type
- Serial number of the certificate
- Certificate issuer name
- Number of days remaining for the certificate to expire
- Whether the certificate is enabled with autoenrollment
- Whether a shadow certificate is available for the corresponding certificate

Alert notifications are sent either via the syslog server or Simple Network Management Protocol (SNMP) traps. Notifications stop when a trustpoint is configured with autoenrollment and the corresponding shadow or rollover certificate is present, and the shadow or rollover certificate’s start time is either the same or earlier than the certificate’s end time.

This feature cannot be disabled and requires no additional configuration tasks. The show crypto pki timers command is enhanced to display the timer expiry information. The following is a sample output from the show crypto pki timers detail command that displays the timer when a certificate is about to expire. When this timer expires, a notification is sent to the syslog server.

```
Device# show crypto pki timers detail
PKI Timers
|290d 8:57:16.862
|290d 8:57:16.862 TRUSTPOOL
```
PKI Traps

PKI trap ease the monitoring and operations of a PKI deployment by retrieving certificate information of the devices in the network. The root device sends SNMP traps at regular intervals to the network management system (NMS) based on the threshold configured in the device. The traps are sent in the following scenarios:

- A new certificate is installed—An SNMP trap (new certificate notification) is sent to the SNMP server containing information about the certificate, such as, certificate serial number, certificate issuer name, certificate subject name, trustpoint name, certificate type, and certificate start and end date.

- A certificate is about to expire—An SNMP trap (certificate expiry notification) is sent to the SNMP server at regular intervals starting from 60 days to one week before the certificate’s end date. In the week leading up to the expiration of the certificate, the trap is sent everyday. The trap contains certificate information, such as, certificate serial number, certificate issuer name, trustpoint name, certificate type, and certificate’s remaining lifetime.

To enable PKI traps, use the `snmp-server enable traps pki` command.

---

**Note**

If the shadow or rollover certificate’s start time is later than the certificate’s end time, traps are sent stating that the shadow certificate is not yet valid. However, no traps are sent if a shadow certificate available for the same trustpoint, and the shadow certificate becomes active.

---

Additional References for PKI Credentials Expiry Alerts

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

### Table 5: Feature Information for PKI Credentials Expiry Alerts

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI Credentials Expiry Alerts</td>
<td>15.5(2)T</td>
<td>The PKI Credentials Expiry Alerts feature provides a warning mechanism in the form of an alert notification when a CA certificate is on the verge of expiry. The following command was modified: <code>show crypto pki timers</code>.</td>
</tr>
</tbody>
</table>

---

**Feature Information for PKI Credentials Expiry Alerts**

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

### Table 5: Feature Information for PKI Credentials Expiry Alerts

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI Credentials Expiry Alerts</td>
<td>15.5(2)T</td>
<td>The PKI Credentials Expiry Alerts feature provides a warning mechanism in the form of an alert notification when a CA certificate is on the verge of expiry. The following command was modified: <code>show crypto pki timers</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 6

Setting Up Secure Device Provisioning for Enrollment in a PKI

This module describes how to use Secure Device Provisioning (SDP) in a public key infrastructure (PKI). SDP is a web-based certificate enrollment interface that can be used to easily deploy PKI between two end devices, such as a Cisco IOS client and a Cisco IOS certificate server. The end devices may or may not be directly connected to the network at the time of deployment or provisioning. SDP provides a solution for users deploying a large number of peer devices (including certificates and configurations).

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

• Finding Feature Information, on page 125
• Prerequisites for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI, on page 126
• Information About Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI, on page 127
• How to Set Up Secure Device Provisioning (SDP) for Enrollment in a PKI, on page 151
• Configuration Examples for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI, on page 168
• Additional References, on page 178
• Feature Information for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI, on page 179

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI

Setting Up SDP for Enrollment in a PKI

Before you set up SDP, your environment should meet the following requirements:

• The petitioner device and the server must have IP connectivity between each other.
• The introducer must have a web browser that supports JavaScript.
• The introducer must have enable privileges on the client device.
• A Cisco IOS Release 12.3(8)T PKI-enabled image or a later image.

Setting Up SDP for Enrollment in a PKI Using USB Tokens

To leverage USB tokens to provision devices with SDP, your environment should meet the following requirements:

• Both the petitioner device and the server must have IP connectivity between each other.
• The introducer must have a web browser that supports JavaScript.
• The introducer must have enable privileges on the client device.
• The introducer must have access to a petitioner device.
• The introducer must have access to the USB token and PIN, if configured.
• A Cisco IOS Release 12.4(15)T PKI-enabled image or a later image.

Note

Cisco IOS Release 12.4(15)T or a later release provides the flexibility to move credentials stored on the USB token. However, the device used to configure the USB token may run any Cisco IOS Release 12.3(14)T PKI-enabled image or a later image.

Using SDP to Configure a Device for an Internet Connection Through a Service Provider

To leverage SDP to configure a device that is not connected to the Internet, your environment should meet the following requirements:

• The introducer must have a web browser that supports JavaScript.
• The introducer must have enable privileges on the client device.
• A Cisco router that supports a DHCP client and a PPPoE client and has a configured LAN or WAN interface.
• A Cisco IOS Release 12.4(20)T PKI-enabled image or a later image. If a previous Cisco IOS release is used on one of the devices, the SDP functionality defaults to the earlier Cisco IOS version.
Information About Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI

SDP Overview

SDP (also referred to as Trusted Transitive Introduction [TTI]) is a communication protocol that provides a bidirectional introduction between two end entities, such as a new network device and a Virtual Private Network (VPN). SDP involves the following three entities (see the figure below):

- **Introducer**—A mutually trusted device that introduces the petitioner to the registrar. The introducer can be a device user, such as a system administrator.
  
  - An introducer can be configured as an administrative introducer, which allows an administrator performing the introduction to supply the name for the device being introduced. The supplied device name is used as if it were the name of an introducer in the normal SDP mechanisms, preserving the existing functionality of the SDP configuration. For more information on function of the administrative introducer, see the section Authentication and Authorization Lists for an Administrative Introducer, on page 138.

- **Petitioner**—A client, or new device, to be introduced to the secure network.

- **Registrar**—A server that authorizes the petitioner. The registrar can be a certificate server.

As of Cisco IOS Release 12.4(20)T or a later release, the introducer can start the SDP process without establishing prior Internet connectivity on the petitioner. The use of the prep-connect phase and the connect phase provides the ability to configure a petitioner for Internet connectivity through a service provider. See the How SDP Works, on page 128 for more information on the prep-connect phase and the connect phase.

The registrar communicates directly with an external authentication, authorization, and accounting (AAA) server to verify petitioner credentials, permit or deny enrollment, and retrieve specific petitioner configuration information. The petitioner and registrar serve web pages to the introducer, the end user. The petitioner receives the bootstrap configuration from a remote management system through the introducer’s web browser.

SDP is implemented over a web browser with six possible phases—prep-connect (optional), connect, start (optional), welcome, introduction, and completion. Each phase is shown to the user through a web page. See the How SDP Works, on page 128 for more information on each phase.
How SDP Works

The following sections describe how SDP deploys PKI between two devices:

- SDP Prep-Connect Phase, on page 128
- SDP Connect Phase, on page 129
- SDP Start Phase, on page 131
- SDP Welcome Phase, on page 132
- SDP Introduction Phase, on page 133
- SDP Completion Phase, on page 134

The SDP process starts with one of three entry pages being loaded into the web browser by the introducer: the SDP prep-connect phase received from the administrator; the start phase loaded from the registrar; or the welcome phase loaded from the petitioner.

The sample figures show how to introduce the local device (the petitioner) to the secure domain of the registrar. The “introducer” is referred to as the end user.

SDP Prep-Connect Phase

The prep-connect page is optional. Without the prep-connect page, the petitioner must have IP connectivity established.

The administrator must configure the prep-connect template and send the prep-connect page to the introducer. See the Default Prep-Connect Template, on page 143 for more information.

The administrator must also obtain and communicate the username and password for the secure network to the introducer by a telephone call, an e-mail, a secure e-mail, a CD, or a USB token. The registrar may be configured to authenticate the introducer using an existing AAA infrastructure (for example, an existing username and password database that is part of the existing corporate domain). The SDP prep-connect phase supports a challenge password mechanism as is used by common AAA infrastructures. See the How SDP Uses an External AAA Database, on page 137 for more information.

After receiving the prep-connect page, the introducer must load the page onto the computer where the HTTP browser operates. The introducer then loads the prep-connect page into the HTTP browser as a local file and then the prep-connect page is displayed (see the figure below).

Figure 5: Sample SDP Prep-Connect Page

After the introducer clicks the Log onto Cisco Device button, the login dialog box is displayed (see the figure below). The introducer enters the factory default username (cisco) and password (cisco) of the Cisco device.
The introducer authenticates with the petitioner and then Internet connectivity is tested by attempting to access a known URL. Access to www.cisco.com (198.133.219.25) is tested by default. The administrator can modify the URL to be used for testing connectivity by modifying the default prep-connect template. For more information about modifying the default test URL and other fields that the administrator may configure for the prep-connect page, see the section Default Prep-Connect Template, on page 143.

**Note**

To mitigate the possibility that the prep-connect page could be modified to contain an IP address of an untrusted registrar or that a prep-connect page might be e-mailed from an untrusted source, use a secure method, such as secure e-mail, to send the prep-connect page.

If Internet connectivity is established either the start page or welcome page is displayed, depending on the prep-connect template setting as defined by the administrator. If Internet connectivity is not established, the connect page is displayed.

### SDP Connect Phase

The connect page is displayed only if the prep-connect page is used and there is no IP connectivity for the petitioner at the completion of the prep-connect phase. The connect page has three IP address assignment methods to allow flexibility for your Cisco IOS platform: Dynamic Host Configuration Protocol (DHCP), Point to Point Protocol over Ethernet (PPPoE), or static IP address assignment.

**Note**

SDP functionality is not used with the Cisco IOS configuration to establish Internet connectivity. SDP functionality includes a signature on the Cisco IOS configuration, guaranteeing that the values have not changed in transit.

### DHCP IP Address Assignment Method

If the introducer chooses DHCP, the default method, for the IP address assignment method option (see the figure below), clicking the Connect button causes the petitioner to be configured for Internet connectivity.
If the introducer chooses PPPoE, input fields for PPPoE username and password are displayed (see the figure below). The introducer must enter the username and password as supplied by the Internet service provider (ISP) and then click the Connect button, which causes petitioner to be configured for Internet connectivity.

**Static IP Address Assignment Method**

If the introducer chooses static, input fields for the IP address, netmask, and the default gateway are displayed (see the figure below). The introducer must enter the configuration values as supplied by the ISP and then click the Connect button, which causes petitioner to be configured for Internet connectivity.
After IP address configuration, Internet connectivity is tested again by attempting to access a known URL configured by the administrator in the prep-connect template (www.cisco.com by default). If Internet connectivity is now established either the start page or welcome page is displayed, depending on the prep-connect template setting as defined by the administrator. If Internet connectivity is not established, the introducer should verify the settings entered or contact their administrator.

SDP Start Phase

The start page is optional. Without the start page, during the SDP exchange, the user clicks the Next button on the welcome page and is sent to the registrar’s introduction page. Because the user has not previously connected to the registrar, he or she is required to log in to the registrar using available credentials (per the registrar configuration). Some browsers fail to reconnect to the registrar after the user has entered the login data. As of Cisco IOS Release 12.4(4)T, users may configure their browsers to begin the SDP exchange by contacting the registrar’s introduction URL through a start page. Thereafter, the registrar can direct the user to the welcome page, which is on the petitioner device. The SDP transaction continues through the welcome, introduction, and completion phases as described in this document.

To begin the SDP transaction from the registrar, the user must configure the browser through the template http start command; otherwise, the SDP transaction must begin from the welcome page on the petitioner. See the How Custom Templates Work with SDP, on page 138.

Before the welcome page is displayed, the user must direct his or her browser to the start page through the URL http://registrar/ezsdd/intro. A login dialog box is then displayed, and the end user can log into the registrar through a username and password supplied by the administrator to access the secure network (see the figure below).
Setting Up Secure Device Provisioning for Enrollment in a PKI

SDP Welcome Phase

Figure 10: Registrar Remote Login Dialog Box

After entering a valid username and password, the start page is displayed (see the figure below).

Figure 11: Sample SDP Start Page

The user must log into the petitioner through the URL http://10.10.10.1/ezsdd/welcome. The welcome phase begins when the user clicks the Next button on the start page.

SDP Welcome Phase

The local login dialog box is then displayed (see the figure below), and the end user can log into the local device through the factory default username (cisco) and password (cisco). The welcome page is then displayed.

Figure 12: Petitioner Local Login Dialog Box

After the password is successfully entered, the welcome web page is displayed (see the figure below), which is served by the petitioner.
After entering the URL of the registrar (for example, http://192.0.2.155/ezsdd/intro) and clicking the Next button on the welcome webpage, the SDP introduction phase begins and the introduction page, which is served by the registrar, is displayed.

**SDP Introduction Phase**

Before the introduction page is displayed, the end user must log into the registrar if the user has not already done so from the start page (see “SDP Start Phase, on page 131”), which utilizes the external AAA database.

With an external AAA database, the introducer can use an account on the database to perform the introduction without requiring knowledge of the enable password of the registrar. Without an external AAA database, the introducer may use the enable password of the registrar for authentication.

Using the enable password of the registrar exposes the password to end users; therefore, it is recommended that the enable password be used for administrative testing only.

The administrative introducer is identified by the HTTP authentication for the introduction page (or the start page), with the AAA database query returning administrative privilege for the user. If the introducer has administrator privilege, the device name is that which was entered in the administrative introduction page. If the introducer does not have administrative privileges, the device name is the introducer name. The existing device certificate is the current certificate on the petitioner, which may be the manufacturing identification certificate (MIC). This certificate may or may not exist. For more information on the function of the external AAA database, see the section “How SDP Uses an External AAA Database, on page 137.”

After the end user successfully enters his or her password, the introduction web page is displayed (see the figure below).

**Figure 14: Sample SDP Introduction Page**

![Sample SDP Introduction Page](image-url)
At this point, the registrar passes device information to the external management system to obtain a bootstrap configuration file. For more information on options available to identify a customized bootstrap configuration file, see the section Custom HTML Template Expansion Rules, on page 139.

After the end user clicks the Next button on the introduction page, the end user enters the completion phase and automatically returns to his or her local device.

**SDP Completion Phase**

Now that the end user has enrolled the petitioner with the registrar, the petitioner serves the completion page (see the figure below).

*Figure 15: Sample SDP Completion Page*

The SDP exchange is now complete. The petitioner has received configuration information from the registrar and should receive a certificate from the registrar shortly.

**SDP Leveraging USB Tokens**

SDP provides for highly scalable deployments and streamlines the deployment of an individual device or multiple devices. USB tokens provide for secure storage and configuration distribution.

As of Cisco IOS Release 12.4(15)T or a later release, USB tokens may be utilized to transfer PKI credentials using SDP to a remote device, and SDP may be used to configure the USB token. The USB token may then be used to provision a device at the same location, or the USB token may be transported to another location where it may be used to provision a remote device.

An example SDP deployment using a USB token to transfer PKI credentials is shown in the figure below. The required devices include the USB token and the SDP entities required to provision a device. These SDP entities are the introducer, the registrar, a petitioner at the local location, Petitioner A, and a petitioner at the remote location, Petitioner B. Optionally, a management server may be used.

---

*Note*

An optional configuration would be to configure one device as both the registrar and a petitioner, which may be beneficial when the USB token is transported to a remote location. The remote location would not require a separate petitioner device.
Prior to initiating an SDP introduction a USB token is inserted into the petitioner device. In the example configuration shown in the figure, the USB token would be inserted into Petitioner A. The petitioner may be configured to ignore any existing information on the USB token. As in regular SDP operations, for a scalable configuration of USB tokens, an initial template configuration has to be prepared and placed onto each SDP device with appropriate target configuration information.

Files used to provision a device are moved in the following sequence.

1. One petitioner, Petitioner A, is at the local location. Petitioner A engages directly with the SDP exchange to perform the initial configuration of the USB token. Files used to configure the USB token, binary files and template files, are retrieved from the registrar and moved to Petitioner A.

The URL for the binary file location is expanded on the registrar. Binary files are not processed through the template expansion functions. The template expansion occurs on the registrar for both the source URL and destination URL.

By default, binary files and template files are retrieved from and stored to NVRAM on the registrar and petitioner respectively. The binary file location on the registrar and the destination binary file location on Petitioner A may be specified with the binary file command. The template file location on the registrar and the destination template file location on Petitioner A may be specified with the template file command.

1. The Rivest, Shamir, and Adelman (RSA) keys and certificate chain information are moved from Petitioner A to the USB token.
2. The USB token is transported to the remote location where it is inserted into Petitioner B.

3. The configuration files on the USB token are used to provision the local device. Files from the USB token may be moved to a storage location on Petitioner B with the `crypto key move rsa` command.

**SDP Phases with a USB Token**

The same SDP phase concepts introduced in the “SDP Overview” section are used, with the following distinctions in the SDP welcome phase, the SDP introduction phase, and the SDP completion phase.

**SDP Welcome Phase with a USB Token**

The SDP welcome phase begins as usual, when an introduction is initiated by connecting to the welcome user interface. If there is an existing certificate on the USB token, it is used for signing the SDP exchange. Instead of a local RSA key pair, a new RSA key pair on the token is used.

---

**Note**

The RSA key pair generation may take a substantial length of time, anywhere from 5 to 10 minutes if the key is generated on the token. The length of time is dependent on hardware key generation routines available on the USB token. An informative web page is presented to the introducer, indicating that RSA key pair generation is occurring.

The new key pair generated by Petitioner A is added to the USB token without removing any existing RSA key pairs. SDP AV pairs indicate both that a token is being used and if there is any token secondary configuration information. If an optional management server is in use, the AV pair information is used to determine if any special configuration commands are needed.

**SDP Introduction Phase with a USB Token**

The SDP Introduction phase begins with AV pairs being transferred to the registrar. When the registrar detects USB token related AV pairs, the registrar, if previously configured, may prepare configuration information destined for the USB token. Currently configuration commands are sent as a specific configuration files that are subsequently merged with the running configuration.

The administrator can leverage normal SDP configuration commands to configure the USB token. USB token information that should be configured includes the certificate, the bootstrap configuration, and the PIN number configuration.

**SDP Completion Phase with a USB Token**

At the beginning of the completion phase, the introduction proceeds with AV pairs being transferred to the petitioner. The various files are stored in the specified file system locations and then the existing configuration file processing proceeds. This ordering allows the configuration to take advantage of the new files that have been transferred.

**Use of the Configured USB Token**

After the USB token is configured by Petitioner A, it is transported from its current location to the remote location, where the second petitioner, Petitioner B is located. The USB token is inserted into the target device, Petitioner B, which then inherits the USB token configuration and cryptographic material from the USB token. The end user at the remote location must have the PIN number on the USB token. The PIN number is either the default factory PIN or the PIN number the administrator configured during the introduction phase.
How SDP Uses an External AAA Database

The external AAA database is accessed twice during the SDP exchange. The first time the AAA database is accessed, the introducer is authenticated; that is, when the registrar receives an introduction request through the secure HTTP (HTTPS) server, the registrar does an AAA lookup based on the introducer’s username and password to authorize the request. The second time the AAA database is accessed, authorization information is obtained and applied to the configuration and certificates that are issued to the petitioner device; that is, the registrar checks the integrity of the request by verifying the request signature using the petitioner-signing certificate. The certificate subject name may be specified in the AAA database, and up to nine configuration template variables may be specified and expanded into the template configuration.

Use of a Self-Signed Certificate Versus a Certificate Issued by Another CA Server

By default, the SDP exchange results in only one certificate being issued to the petitioner device. Although just one certificate is issued, the introducer is not restricted from introducing multiple devices and thus obtaining multiple certificates. By specifying the subject name in the certificate that is issued, you can be assured that all certificates that are issued in this way are associated with the introducer. You can use PKI AAA integration to further restrict the use of these certificates. Additionally, the AAA database can be configured to accept only one authentication and authorization request per user.

Because the petitioner certificate is self-signed, it is just used to convey the public key of the petitioner. No verification or authorization check is performed on the certificate; thus, authorization is per-user based and no per-device information is used.

There are some scenarios when per-device authorization is preferred. Therefore, if the petitioner is able to use certificates issued by other certification authority (CA) servers for SDP transactions, the existing PKI can be used and authorization can be achieved over the certificate attributes.

Configuring the petitioner and the registrar for certificate-based authorization provides authorization of the specific device being deployed. Previously, introducer-to-petitioner device communication was secured only using physical security between the introducer and the petitioner device. SDP certificate-based authorization gives the registrar an opportunity to validate the current device identity before accepting the introduction.

Authentication and Authorization Lists for SDP

When you are configuring your SDP registrar, if you specify an authentication list and an authorization list, the registrar uses the specified lists for all introducer requests. The authentication list is used when authenticating the introducer (the AAA server checks for a valid account by looking at the username and password). The authorization list is used to receive the appropriate authorized fields for the certificate subject name and a list of template variables to be expanded into the Cisco IOS command-line interface (CLI) snippet that is sent back to the petitioner. The authentication and authorization lists are usually point to the same AAA server list, but it is possible to use a different database for authentication and authorization. (Storing files on different databases is not recommended.)

When a petitioner makes an introduction request, multiple queries are sent to the AAA list database on the RADIUS or TACACS+ server. The queries search for entries of the following form:

```
user password <userpassword>
cisco-avpair="ttt:subjectname=<subjectname>>"
cisco-avpair="ttt:iosconfig#<<value>>"
cisco-avpair="ttt:iosconfig#<<value>>"
cisco-avpair="ttt:iosconfig#<<value>>"
```
The existence of a valid AAA username record is enough to pass the authentication check. The “cisco-avpair=tti” information is necessary only for the authorization check.

If a subject name was received in the authorization response, the SDP registrar stores it in the enrollment database, and that “subjectname” overrides the subject name that is supplied in the subsequent certificate request (PKCS10) from the petitioner device.

The numbered “tti:iosconfig” values are expanded into the SDP Cisco IOS snippet that is sent to the petitioner. The configurations replace any numbered ($1 through $9) template variable. Because the default Cisco IOS snippet template does not include the variables $1 through $9, these variables are ignored unless you configure an external Cisco IOS snippet template. To specify an external configuration, use the `template config` command.

The template configuration location may include a variable “$n,” which is expanded to the name with which the user is logged in.

### Authentication and Authorization Lists for an Administrative Introducer

The SDP mechanisms assume a permanent relationship between the introducer and the device. As a result, the introducer username is used to define the device name.

In some SDP deployment scenarios, the introducer is an administrator doing the introduction for many devices. However, using the introducer (the administrator) name to define the device name results in multiple devices being incorrectly deployed with the same device name. Instead, an administrative introducer allows the administrator to specify the correct device name during the introduction.

More generally stated, the introducer username is used as the database record locator to determine all other information about the device including the Cisco IOS configuration template, various template variables (pulled from an AAA database and expanded into the template), and the appropriate subject name for PKI certificates issued to the device. For simplicity, this database record locator is called the user/device name.

The administrative introducer provides a device name. In that way, an administrator can provide the appropriate record locator when doing an introduction. For example, if an administrator is trying to introduce a device for username “user1,” the administrator introduces the device into the PKI network and provides user1 as the record locator after logging into the registrar using the administrator’s own credentials. The record locator, user1, becomes the device name. All other template and PKI certificate subject name information specific to the introduction is then provided by the user1 username records instead of by the administrator’s record.

The registrar device uses the supplied username information with a user introducer name. The username allows the existing mechanisms for determining a user’s authorization, template, and PKI certificate information to be supported without modification.

### How Custom Templates Work with SDP

You may use custom templates to streamline the SDP process.

- Custom templates allow you to complete the web pages with the required start information, so the introducer is no longer required to contact the registrar and can immediately begin the SDP transaction.
Custom templates allow customized deployment information to be displayed on the web pages, thereby tailoring the user experience.

An easy way to define a custom template is to modify the default template. Without custom templates, the introducer must contact the registrar for information to begin the SDP transaction. For a list of the default templates, see the section “Default Templates for SDP Transaction Web Pages, on page 142.”

It is recommended that only advanced SDP users configure custom templates because problems can result from modifying templates incorrectly before the templates are displayed in the introducer’s browser.

### Custom Template Variable Expansion

There are expansion variables in the templates that are replaced by the Cisco IOS SDP registrar or petitioner. These variables are expanded as follows:

- $$--“$”
- $a--attribute-value (AV) pairs
- $c--Trusted certificate
- $d--Dump AV pairs in browser
- $h--Hostname
- $k--Keylabel or “tti”
- $l--Trustpoint label = “tti”
- $n--HTTP client’s username
- $s--Default TTI key size
- $t--Trustpoint configuration
- $u--Completion URL
- $1 to $9--Variables retrieved from AAA server during user authentication

### Custom Template Variable Expansion Rules

Configuration and templates are used during an SDP exchange. Prior to use and after distribution, these templates are expanded using the following rules based in the SDP communication stage.

### Custom HTML Template Expansion Rules

HTML templates are expanded immediately before being served to the HTTP client. The HTTP templates are expanded as follows:

- $u--Completion url, which is be populated with the SDP completion URL (for example: http://10.10.10.1/ezsdd/completion ). This variable is used internally by SDP as the internal “wizard” state. It is expected that the SDP introduction page include something similar to the following text: “<FORM action="$u" method="post">” for normal wizard processing.
- $n--introducer name or the device name entered by the administrative introducer.
### URL Template Expansion Rules

- `$s--$`  
- `$h--Hostname`  
- `$a--All AV pairs with or without a specified template character are written in the following HTML form format. (Because these AV pairs are not “INPUT type=hidden,” they are directly displayed on the web page for debugging templates or the SDP process.)`

```html
<input type='hidden' name='attributestringhere' value='variablestringhere'>

```

All HTML templates should have this!

```text
$d = dump all av pairs in: attribute = value

```

### URL Template Expansion Rules

There are URLs for the configuration template source, the file template source, and the file destination. These variables are expanded when the registrar prepares the URL, just before retrieving the configuration or file. For the file destination, these variables are expanded just before the petitioner copies the file to the file destination.

- `$s--$`  
- `$h--Hostname`

### URL Template Expansion Rules for iPhone Deployment

The following template expansion variables are introduced for iPhone deployment:

- `$o - challenge password. This template character is expanded by the SDP registrar after it obtains the challenge password from the Simple Certificate Enrollment Protocol (SCEP) server, before the configuration profile is sent to the iPhone in the START phase.`

- `$i - unique device identifier (UDID) of the iPhone. This template character is expanded by the SDP registrar into the CN field of the Subject Name, before the configuration profile is sent to the iPhone in the INTRODUCTION phase.`

- `$p - subject name differentiator. This template character is expanded by the SDP registrar using the value configured through the CLI. See the Configuring the SDP Registrar to Deploy Apple iPhones, on page 159 for more information. This value can be used to differentiate the two certificates issued by the SCEP server to the iPhone, one in the COMPLETION phase and one in the VPN establishment phase. You determine part and field of the Subject Name into which this value goes.`

See the How SDP Deploys Apple iPhones in a PKI, on page 145 for more information.

### Custom Configuration and File Template Variable Expansion Rules

Custom configuration and file template variables are expanded both when the registrar prepares the configuration or file template and when the petitioner receives the configuration or file template.

**Custom Configuration and File Template Variable Expansion Rules at the Registrar**

When the registrar expands the configuration or file template, the following variables are used by the Cisco IOS CA. These variables are expanded before being sent through the SDP wizard.
Custom Configuration and File Template Variable Expansion Rules at the Petitioner

When the petitioner expands the configuration or file template, the following variables are expanded:

- $\text{--}$

Custom Configuration HTTP Template Variable Expansion Rules

Custom configuration HTTP templates provide flexibility for backend Common Gateway Interface (CGI) scripts and integration with external management systems. Template URLs run through the HTTP template expansions before registrar retrieves the bootstrap configuration from the external management system. The device name ($\text{n}$) is expanded into the URL and passed to the external management system so that a specific bootstrap configuration file can be located based on the device information.

---

You should only modify the HTML text that is displayed. The existing expansion variables, Javascript, and forms in the default templates should not be removed when customizing the templates. They are required for SDP to function properly.

The HTTP template expansion and \texttt{template config} command allow you to specify either of the following file types to obtain a customized bootstrap configuration file:

- A configuration file based on the device name (for example, template config http://myserver/$\text{n}$-config-file.conf)
- A CGI script based on the device name (for example, template config http://myserver/cgi-bin/mysdpcgi post)

As of Cisco IOS Release 12.4(6)T, the CGI support has been expanded so that the bootstrap configuration can be identified by not only the device name, but also the type, current Cisco IOS version information, and current configuration. This functionality expands the \texttt{template config} command with the \texttt{post} keyword, which tells the registrar to send this additional device information to the external management system through a CGI script with the HTTP or HTTPS protocol only.
TheregistrarpassesthedeviceinformationthroughAVpairs($a)totheexternalmanagementsystem.Using
theAVpairinformation,themanagementsystemidentifiestheappropriatebootstrapconfigurationfileandsends
itbacktotheregistrar.TheadditionalAVpairs thataresentwiththeexpandedCGIsupportfor
identificationofthecustomizedbootstrapconfigurationfileareshowninthetablebelow.

**Table 6: AV Pairs Sent During HTTP Post to External Management System**

<table>
<thead>
<tr>
<th>AV Pair</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTIFixSubjectName</td>
<td>AAA_AT_TTI_SUBJECTNAME (sent only if the realm authentication user is not the root user on the registrar)</td>
</tr>
<tr>
<td>TTIlosRunningConfig</td>
<td>Output of <code>show running-config brief</code></td>
</tr>
<tr>
<td>TTIKeyHash</td>
<td>Digest calculated over the device public key</td>
</tr>
<tr>
<td>TTIPrivilege</td>
<td>AAA_AT_TTI_PRIVILEGE--”admin” is sent if the user is an administrator, “user” is sent if the user is not an administrator (sent only if the realm authentication user is an administrator and the information is available from the AAA server)</td>
</tr>
<tr>
<td>TTISignature</td>
<td>Digest calculated over all AV pairs except UserDeviceName and TTISignCert</td>
</tr>
<tr>
<td>TTISignCert</td>
<td>Device current certificate (sent only if the device currently has a certificate)</td>
</tr>
<tr>
<td>TTITemplateName</td>
<td>AAA_AT_TTI_IOSCONFIG(1-9) (sent only if the realm authentication user is not the root user on the registrar)</td>
</tr>
<tr>
<td>TTIUserName</td>
<td>Device name</td>
</tr>
<tr>
<td>TTIVersion</td>
<td>TTI version of the registrar</td>
</tr>
<tr>
<td>UserDeviceName</td>
<td>Device name as entered by the administrative introducer (sent only if the realm authentication user is an administrator)</td>
</tr>
</tbody>
</table>

The registrar must be running Cisco IOS Release 12.4(6)T, the **template config** command must be issued with the **post** keyword, and the **url** argument must include either HTTP or HTTPS. No other protocol is supported for the expanded CGI template functionality (for example, FTP).

**Default Templates for SDP Transaction Web Pages**

The following default templates exist for each SDP transaction web page:

- Default Prep-Connect Template, on page 143
- Default Start Page Template, on page 144
- Default Welcome Page Template, on page 144
- Default Introduction Page Template, on page 145
- Default Admin-Introduction Page Template, on page 145
- Default Completion Page Template, on page 145
Default Prep-Connect Template

The prep-connect template may be modified by the administrator to contain values that are appropriate for their environment. The format of the prep-connect page may also be modified by the settings contained in the template.

Except for the registrar IP address, which the administrator must customize, the prep-connect template may be used as shown below.

```html
<html><head><title>SDP: Test Internet Connection</title></head>
<noscript>If you see this message, your browser is not running JavaScript,

which is required by Cisco Secure Device Provisioning.

If you cannot enable JavaScript, please contact your system administrator.

</noscript><body style="background-color: rgb(204, 255, 255);">
<div style="text-align: center;">
Secure Device Provisioning

Test Internet Connection
</div>
<form action="http://10.10.10.1/ezsdd/connect" method="post">
<input type="submit" value="Log onto Cisco Device">

Default username/password is cisco/cisco.

<input type="hidden" name="TTIAfterConnectURL" value="http://10.10.10.1/ezsdd/welcome">
<input type="hidden" name="TTIConnectTestURL" value="http://198.133.219.25">
<input type="hidden" name="TTIInsideAddr" value="10.10.10.1">
<input type="hidden" name="TTIlanport" value="Vlan1">
<input type="hidden" name="TTIwanport" value="FastEthernet4">
</form></body></html>
```

Hidden HTML Form Fields

The hidden HTML form fields communicate initial configuration information to the browser as set by the administrator and are not signed.

The term “hidden” refers to the fact that these HTML form fields are not displayed on the prep-connect page to reduce potential confusion to the introducer.

The administrator can set hidden HTML form fields in the prep-connect template as shown in the table below.

### Table 7: Administrator Defined AV Pairs Sent During Prep-Connect Phase

<table>
<thead>
<tr>
<th>AV Pair</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTIAfterConnectURL</td>
<td>The administrator may set the TTIAfterConnectURL field to either the welcome page URL or the start page URL. The welcome page URL is specified with the factory default petitioner IP address. The connect after URL may be any valid URL if SDP is not going to be used after establishing Internet connectivity.</td>
</tr>
<tr>
<td>TTIConnectTestURL</td>
<td>The administrator may set the TTIConnectTestURL field to a valid URL that should be accessible when Internet connectivity is established. The default prep-connect template value is <a href="http://www.cisco.com">www.cisco.com</a> (198.133.219.25).</td>
</tr>
</tbody>
</table>
### AV Pair Description

<table>
<thead>
<tr>
<th>AV Pair</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTIInsideAddr</td>
<td>The administrator may set the TTIInsideAddr field to the factory default IP address of the petitioner. For the Cisco 871 ISR, the IP address is 10.10.10.1.</td>
</tr>
<tr>
<td>TTIlanportx</td>
<td>The administrator may set the TTIlanportx field to the LAN interface name of the petitioner platform. This field is used to apply the Cisco IOS connect configuration. For the Cisco 871, the field value is “Vlan1.”</td>
</tr>
<tr>
<td>TTIwanport</td>
<td>The administrator may set the TTIwanport field to the WAN interface name of the petitioner. This field is used to apply the Cisco IOS connect configuration. For the Cisco 871, the field value is “FastEthernet4.”</td>
</tr>
</tbody>
</table>

**Note**

The connect template cannot be customized.
How SDP Deploys Apple iPhones in a PKI

With the introduction of the Cisco IOS 15.1(2)T and Apple iPhone OS 3.0 releases, Apple iPhones are supported on Cisco IOS network devices. Cisco IOS routers use the SDP registrar to deploy iPhones so that network applications can be accessed securely through an IPSec VPN, SCEP server, and PKI certificate deployment technologies.
The Apple iPhone combines the distribution of its XML-based “Configuration Profiles” with the initial deployment of certificates. SDP uses these initial certificates to authenticate access to enterprise applications and encrypt subsequent profile distribution. SDP uses this enrollment solution for distributing digital certificates to the iPhone.

**Figure 17: SDP Registrar Deployment of the iPhone in a PKI**

SDP Registrar Deployment Phases of the Apple iPhone in a PKI

The following sections describe each phase of the SDP registrar deployment of the iPhone in a PKI:

**Start SDP Deployment Phase**

The following steps describe the Start SDP deployment phase:

---

**Note**


**SUMMARY STEPS**

1. The iPhone user opens the Safari browser and types the start page HTTPS URL. For example, this HTTPS URL may be an internal corporate network address. The SDP registrar HTTPS page initiates the process.
2. The user starts authentication with the Cisco router, which acts as the SDP registrar by providing a username and password.
3. The SDP registrar contacts the SCEP server to obtain a challenge password.
4. The SDP registrar constructs a configuration profile in XML format that consists of the challenge password, SCEP server URL, and a request for iPhone attributes. The SCEP server URL is used to send the enrollment request and the iPhone device attributes are used by the iPhone to generate the RSA keys.
5. The iPhone user installs the configuration profile on the iPhone to complete the Start SDP phase.
DETAILED STEPS

Step 1  The iPhone user opens the Safari browser and types the start page HTTPS URL. For example, this HTTPS URL may be an internal corporate network address. The SDP registrar HTTPS page initiates the process.

Step 2  The user starts authentication with the Cisco router, which acts as the SDP registrar by providing a username and password.

Step 3  The SDP registrar contacts the SCEP server to obtain a challenge password.

Step 4  The SDP registrar constructs a configuration profile in XML format that consists of the challenge password, SCEP server URL, and a request for iPhone attributes. The SCEP server URL is used to send the enrollment request and the iPhone device attributes are used by the iPhone to generate the RSA keys.

The following example shows a configuration profile sent by the SDP registrar to the iPhone in the Start SDP deployment phase:

**Example:**

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Inc//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>PayloadContent</key>
 <dict>
 <key>URL</key>
 <string>https://profileserver.example.com/iphone</string>
 <key>DeviceAttributes</key>
 <array>
 <string>UDID</string>
 <string>IMEI</string>
 <string>ICCID</string>
 <string>VERSION</string>
 <string>PRODUCT</string>
 </array>
 <key>Challenge</key>
 <string>optional challenge</string>
 </dict>
</dict>
```

Step 5  The iPhone user installs the configuration profile on the iPhone to complete the Start SDP phase.

Welcome SDP Deployment Phase

The Welcome SDP deployment phase is not applicable for the iPhone because the Introducer (for example, Safari web browser) is run on the SDP petitioner (iPhone).

Introduction SDP Deployment Phase

The following steps describe the Introduction SDP deployment phase:

**Note**

SUMMARY STEPS

1. The iPhone triggers an HTTPS post containing the requested device attribute information and the challenge password as a configuration profile. The HTTPS post is directed to the HTTPS URL specified in the configuration profile obtained in the Start SDP deployment phase, which must be the Introduction SDP deployment phase URL. The post data is signed by the iPhone using an Apple-issued certificate (built-in identity) and this signature may be verified, the identity confirmed, and the device attributes checked.

2. The UDID sent by the iPhone is captured by the SDP registrar and included in the Subject Name. Going forward, the device attributes obtained by the SDP registrar are used to determine if this was exactly the type of device that would be accepted. For example, the network administrator would only let 3GS iPhones onto the network because they have hardware encrypted storage. The device attributes obtained would enable the SDP registrar to distinguish 3GS iPhones from 3G iPhones.

3. The SDP registrar responds by building a configuration profile that consists of the following: HTTP URL of the SCEP server, Subject Name (contains the UDID) that is sent in the enrollment request, key size, key type, key usage, and challenge password. If the START phase had been skipped, the SDP registrar would contact the SCEP server to obtain a challenge password. See the URL Template Expansion Rules for iPhone Deployment, on page 140 for more information about how the SDP registrar obtains the Subject Name and the challenge password.

DETAILED STEPS

Step 1 The iPhone triggers an HTTPS post containing the requested device attribute information and the challenge password as a configuration profile. The HTTPS post is directed to the HTTPS URL specified in the configuration profile obtained in the Start SDP deployment phase, which must be the Introduction SDP deployment phase URL. The post data is signed by the iPhone using an Apple-issued certificate (built-in identity) and this signature may be verified, the identity confirmed, and the device attributes checked.

Step 2 The UDID sent by the iPhone is captured by the SDP registrar and included in the Subject Name. Going forward, the device attributes obtained by the SDP registrar are used to determine if this was exactly the type of device that would be accepted. For example, the network administrator would only let 3GS iPhones onto the network because they have hardware encrypted storage. The device attributes obtained would enable the SDP registrar to distinguish 3GS iPhones from 3G iPhones.

The following example shows a configuration profile sent by the iPhone in the Introduction SDP deployment phase:

Example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>UDID</key>
 <string></string>
 <key>VERSION</key>
 <string>7A182</string>
 <key>MAC_ADDRESS_EN0</key>
 <string>00:00:00:00:00:00</string>
 <key>CHALLENGE</key>
 either:
 <string>String</string>
 or:
 <data>"base64 encoded data"</data>
 </dict>
</plist>
```
Step 3 The SDP registrar responds by building a configuration profile that consists of the following: HTTP URL of the SCEP server, Subject Name (contains the UDID) that is sent in the enrollment request, key size, key type, key usage, and challenge password. If the START phase had been skipped, the SDP registrar would contact the SCEP server to obtain a challenge password. See the URL Template Expansion Rules for iPhone Deployment, on page 140 for more information about how the SDP registrar obtains the Subject Name and the challenge password.

Note The SDP registrar supports the RSA key type only.

The following example shows a configuration profile sent by the SDP registrar in the Introduction SDP deployment phase:

Example:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Inc//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>PayloadContent</key>
 <dict>
 <key>URL</key>
 <string>https://iphone.vpn.apple.com/pkifoobar.exe</string>
 <key>Name</key>
 <string>instance_for_getcacert_call</string>
 <key>Subject</key>
 <array>
 <array>
 <array>
 <string>O</string>
 <string>Apple Inc.</string>
 </array>
 </array>
 <array>
 <array>
 <string>CN</string>
 <string>Foo</string>
 </array>
 </array>
 </array>
 <key>Challenge</key>
 <string>CHALLENGE</string>
 <key>Keysize</key>
 <integer>1024</integer>
 <key>KeyType</key>
 <string>RSA</string>
 <key>KeyUsage</key>
 <integer>5</integer>
 </dict>
 <key>Challenge</key>
 <array>
 <array>
 <array>
 <string>O</string>
 <string>Apple Inc.</string>
 </array>
 </array>
 <array>
 <array>
 <string>CN</string>
 <string>Foo</string>
 </array>
 </array>
 </array>
 <key>Challenge</key>
 <string>CHALLENGE</string>
 <key>Keysize</key>
 <integer>1024</integer>
 <key>KeyType</key>
 <string>RSA</string>
 <key>KeyUsage</key>
 <integer>5</integer>
</dict>
```
Post-Introduction SDP Deployment Phase

The following steps describe the Post-introduction SDP deployment phase.

Note


SUMMARY STEPS

1. The iPhone installs the configuration profile specification containing SCEP information obtained from the SDP registrar in the Introduction SDP deployment phase.
2. The iPhone generates the keys with the instructions in the profile specification and sends the enrollment request to the SCEP server whose HTTP URL is specified in the profile, along with the challenge password.
3. The SCEP server verifies the challenge password and issues the digital certificate to the iPhone.
4. The user can install this certificate on the iPhone and use the Cisco IPsec VPN to connect to the corporate network.

DETAILED STEPS

Step 1
The iPhone installs the configuration profile specification containing SCEP information obtained from the SDP registrar in the Introduction SDP deployment phase.

Step 2
The iPhone generates the keys with the instructions in the profile specification and sends the enrollment request to the SCEP server whose HTTP URL is specified in the profile, along with the challenge password.

Step 3
The SCEP server verifies the challenge password and issues the digital certificate to the iPhone.

Step 4
The user can install this certificate on the iPhone and use the Cisco IPsec VPN to connect to the corporate network.

Note
This certificate can also be used to download other enterprise settings, such as VPN settings, and Wi-Fi settings.

Second-Introduction SDP Deployment Phase

The following steps describe the Second-introduction SDP deployment phase.

Note

SUMMARY STEPS

1. The iPhone repeats the Introduction SDP deployment phase with the following exceptions:
2. The SDP registrar responds with a configuration profile that includes the general enterprise settings such as VPN settings, Wi-Fi settings, and email settings. and in addition includes SCEP settings for a second certificate to be used for establishing a VPN.

DETAILED STEPS

Step 1
The iPhone repeats the Introduction SDP deployment phase with the following exceptions:

- The iPhone does not include the challenge password as part of the post data.
- The iPhone signs the post data using the certificate obtained from the SCEP server in the Post-introduction SDP deployment phase.

Step 2
The SDP registrar responds with a configuration profile that includes the general enterprise settings such as VPN settings, Wi-Fi settings, and email settings. and in addition includes SCEP settings for a second certificate to be used for establishing a VPN.

Second Post-Introduction SDP Deployment Phase
The Second Post-introduction SDP phase is identical to the Post-introduction SDP deployment phase. The iPhone generates a certificate request based on the SCEP settings provided by the SDP registrar in the Second-introduction SDP deployment phase and enrolls with the SCEP server.

Completion SDP Deployment Phase
The Completion SDP deployment phase is not applicable for the iPhone because the Introducer (for example, the Safari web browser) is run on the SDP petitioner (iPhone).

How to Set Up Secure Device Provisioning (SDP) for Enrollment in a PKI

This section contains the following procedures that should be followed when setting up SDP for your PKI. You can configure the registrar according to only one of the registrar configuration tasks.

Enabling the SDP Petitioner
Perform this task to enable or disable the petitioner and associate a trustpoint with the SDP exchange. You can also use this task to configure the petitioner to use a certificate and the RSA keys associated with a specific trustpoint.
The petitioner is enabled by default on a Cisco device that contains a crypto image; thus, you have only to issue the `crypto provisioning petitioner` command if you have previously disabled the petitioner or if you want to use an existing trustpoint instead of the automatically generated trustpoint.

By default, the SDP petitioner device uses an existing certificate. If multiple certificates and one specific certificate exist, use this task to make a choice. However, this task is not necessary to enable the default behavior.

**Before you begin**
- The HTTP server must be enabled through the `ip http server` command. (The HTTP server is typically enabled by default in many default Cisco IOS configurations.)
- If you are configuring the petitioner to use a certificate and RSA keys, your SDP petitioner device must have an existing manufacturer’s certificate or a third-party certificate.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `crypto provisioning petitioner`
4. Do one of the following:
   - `trustpoint trustpoint-label`
5. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> crypto provisioning petitioner</td>
<td>Allows SDP petitioner device behavior to be modified and</td>
</tr>
<tr>
<td>Example:</td>
<td>enters tti-petitioner configuration mode.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto provisioning petitioner</td>
<td>Effective with Cisco IOS Release 12.3(14)T, the <code>crypto provisioning petitioner</code> command replaced the <code>crypto wui tti petitioner</code> command.</td>
</tr>
</tbody>
</table>
### Step 4

**Command or Action**

Do one of the following:

- `trustpoint trustpoint-label`

**Example:**

```
Router(tti-petitioner)# trustpoint mytrust
```

(Optional) Specifies the trustpoint that is to be associated with the SDP exchange between the petitioner and the registrar.

**Note**

If this command is not issued, the `trustpoint-label` argument is automatically labeled “tti.”

(Optional) Specifies the trustpoint and associated certificate that are used when signing all introduction data during the SDP exchange.

**Example:**

```
trustpoint signing
trustpoint-label
```

```
Router(tti-petitioner)# trustpoint signing mytrust
```

### Step 5

**Command or Action**

```
end
```

(Optional) Exits tti-petitioner configuration mode.

**Example:**

```
Router(tti-petitioner)# end
```

### Troubleshooting Tips

After the SDP exchange is complete, a new trustpoint-label named “tti” exists. The trustpoint is automatically enrolled with the certificate server (the registrar). To verify that the trustpoint is really there, use the `show running-config` command.

### What to Do Next

If you set up the petitioner to use a certificate and the RSA keys associated with the specified trustpoint, you should configure the registrar as shown in the task “Enabling the SDP Registrar for Certificate-Based Authorization.”

### Enabling the SDP Registrar and Adding AAA Lists to the Server

Perform this task to enable the registrar and associate a certificate server with the SDP exchange.

You can also use this task if you want to add an authentication list and an authorization list to the RADIUS or TACACS+ server.
Prerequisites

Before configuring a registrar, perform the following tasks:

- Enable the HTTP server or the HTTPS server.

**Note**

Before you enable an HTTPS server, you must disable the standard HTTP server if it is configured. Use the `no ip http server` command to disable an HTTP server. To enable an HTTPS server, you should issue the `ip http secure-server` command followed by the `ip http secure-trustpoint` command. The specified trustpoint is a registrar local trustpoint appropriate for HTTPS communication between the registrar and the user’s browser.

- Configure the Cisco IOS certificate server through the `crypto pki server` command.

If you are configuring AAA lists, you should complete the prerequisites required for the registrar in addition to completing the following tasks:

- Add user information to the AAA server database. To configure a RADIUS or TACACS+ AAA server, see the “Configuring RADIUS” and “Configuring TACACS+” chapters of the *Cisco IOS Security Configuration Guide*.

- Configure new AAA lists. To configure AAA lists, see the following chapters in the *Cisco IOS Security Configuration Guide*: “Configuring RADIUS,” “Configuring TACACS+,” “Configuring Authentication,” and “Configuring Authorization.”

Restrictions

**Cisco IOS CA Device Requirement**

During the SDP process, a Cisco IOS CA certificate is automatically issued to the peer device. If an SDP registrar is configured on a third-party vendor’s CA device, the SDP process does not work.

The template `config` Command

There are nine Cisco IOS configuration variables. If you require more configuration flexibility, the `template config` command can be used to reference a configuration template that is specific to the introducer. For more information on configuration flexibility, see the “Custom Configuration and File Template Variable Expansion Rules, on page 140” section.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto provisioning registrar`
4. `pki-server label`
5. `authentication list list-name`
6. `authorization list list-name`
7. `template username name password password`
8. `template config url [post]`
### Detailled Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.  
**Example:**
```
Router> enable
``` |
| **Step 2** | `configure terminal` | Enters global configuration mode.  
**Example:**
```
Router# configure terminal
``` |
| **Step 3** | `crypto provisioning registrar` | Configures a device to become a registrar for the SDP exchange and enters tti-registrar configuration mode.  
**Note** Effective with Cisco IOS Release 12.3(14)T, the `crypto provisioning registrar` command replaced the `crypto wui tti registrar` command.  
**Example:**
```
Router(config)# crypto provisioning registrar
``` |
| **Step 4** | `pki-server label` | Specifies the certificate server that is to be associated with the SDP exchange between the petitioner and the registrar.  
**Example:**
```
Router(tti-registrar)# pki-server mycs
``` |
| **Step 5** | `authentication list list-name` | (Optional) Authenticates the introducer in an SDP exchange.  
**Example:**
```
Router (tti-registrar)# authentication list authen-tac
``` |
| **Step 6** | `authorization list list-name` | (Optional) Receives the appropriate authorized fields for the certificate subject name and list of template variables to be expanded into the Cisco IOS CLI snippet that is sent back to the petitioner.  
**Example:**
```
Router (tti-registrar)# authorization list author-rad
``` |
| **Step 7** | `template username name password password` | (Optional) Establishes a username and password in which to access the configuration template on the file system.  
**Example:**
```
Router(tti-registrar)# template username ftpuser password ftppwd
``` |
| **Step 8** | `template config url [post]` | (Optional) Specifies a remote URL for the Cisco IOS CLI configuration template.  
**Example:**
```
Router(tti-registrar)# template config http://myserver/cgi-bin/mycgi post
```
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference a CGI script through either HTTP or HTTPS and identify the bootstrap configuration by not only the device name, but also by the type, current Cisco IOS version and current configuration.</td>
<td></td>
</tr>
</tbody>
</table>

The **post** keyword must be used for CGI support.

**Note** The registrar must be running Cisco IOS Release 12.4(6)T or later to utilize expanded CGI support. If the registrar is running an earlier version of Cisco IOS, the additional device identification information is ignored.

### Step 9

- **Example:**
  
  Router(tti-registrar)# end

  (Optional) Exits tti-registrar configuration mode.

---

### Examples

To help troubleshoot the SDP transaction, you can issue the **debug crypto provisioning** command, which displays output from the petitioner and registrar devices.

The following is output for the **debug crypto provisioning** command. The output from the petitioner and registrar devices are shown below.

**Petitioner device**

```
Nov 7 03:15:48.171: CRYPTO_PROVISIONING: received welcome get request.
Nov 7 03:15:48.279: CRYPTO_PROVISIONING: keyhash 'A506BE3B3C6F48A6EFCEB3D584AA9A'!
```

**Registrar device**

```
Nov 7 03:16:10.607: CRYPTO_PROVISIONING: received completion post request.
Nov 7 03:16:10.607: CRYPTO_PROVISIONING: received completion post request.
```

---

**Public Key Infrastructure Configuration Guide, Cisco IOS Release 15MT**

156
Enabling the SDP Registrar for Certificate-Based Authorization

Perform this task to enable the SDP registrar to verify the petitioner-signing certificate using either a specified trustpoint or any configured trustpoint and initiate authorization lookups using the introducer username and the certificate name field.

**Before you begin**

You must also configure the SDP petitioner to use a certificate and RSA keys associated with a specific trustpoint. To complete this task, use the trustpoint signing command as shown in the task “Enabling the SDP Petitioner.”

**Note**

Because RADIUS does not differentiate between authentication and authorization, you need to use the default password, cisco, for certificate authorization.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `crypto provisioning registrar`
4. `template file sourceURL destinationURL`
5. `binary file sourceURL destinationURL`
6. `authentication trustpoint {trustpoint-label|use-any }
7. `authorization {login | certificate | login certificate}`
8. `authorization username subjectname subjectname`
9. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>crypto provisioning registrar</td>
<td>Configures a device to become an SDP registrar and enters tti-registrar configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# crypto provisioning registrar</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>template file sourceURL destinationURL</td>
<td>(Optional) Specifies the source template file location on the registrar and the destination template file location on the petitioner.</td>
</tr>
<tr>
<td>Example: Router(tti-registrar)# template file <a href="http://myserver/registrar_file_r1">http://myserver/registrar_file_r1</a> <a href="http://myserver/petitioner_file_p1">http://myserver/petitioner_file_p1</a></td>
<td>This command is useful when using a USB token to provision a device. The template expansion occurs on the registrar for both the source URL and file content. The destination URL is expanded on the petitioner.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>binary file sourceURL destinationURL</td>
<td>(Optional) Specifies the binary file location on the registrar and the destination binary file location on the petitioner.</td>
</tr>
<tr>
<td>Example: Router(tti-registrar)# binary file <a href="http://myserver/registrar_file_a1">http://myserver/registrar_file_a1</a> <a href="http://myserver/petitioner_file_b1">http://myserver/petitioner_file_b1</a></td>
<td>This command is useful when using a USB token to provision a device. Both the source and destination URL are expanded on the registrar. Also, the destination URL and file content are expanded on the petitioner. Binary files are not processed through the template expansion functions.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>authentication trustpoint {trustpoint-label</td>
<td>use-any }</td>
</tr>
<tr>
<td>Example: Router(tti-registrar)# authentication trustpoint mytrust</td>
<td>• trustpoint-label --Specifies a specific trustpoint.</td>
</tr>
<tr>
<td></td>
<td>• use-any --Specifies any configured trustpoint.</td>
</tr>
<tr>
<td></td>
<td>If you do not use this command to specify a trustpoint, the existing petitioner certificate is not validated. (This functionality provides compatibility with self-signed petitioner certificates.)</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td>authorization {login</td>
<td>certificate</td>
</tr>
<tr>
<td>Example: Router(tti-registrar)# authorization login certificate</td>
<td>• Use the login keyword for authorization based on the introducer’s username.</td>
</tr>
<tr>
<td></td>
<td>• Use the certificate keyword for authorization based on the petitioner’s certificate.</td>
</tr>
<tr>
<td></td>
<td>• Use the login certificate keyword for authorization based on the introducer’s username and the petitioner’s certificate.</td>
</tr>
</tbody>
</table>
### Configuring the SDP Registrar to Deploy Apple iPhones

Perform this task to configure the SDP registrar to run HTTPS in order to deploy Apple iPhones on a corporate network.

#### Before you begin

Ensure that the SDP Registrar is enabled to run HTTPS. See the Enabling the SDP Registrar and Adding AAA Lists to the Server section for more information.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip http secure-server`
4. `crypto provisioning registrar`
5. `url-profile start profile-name`
6. `url-profile intro profile-name`
7. `match url url`
8. `match authentication trustpoint trustpoint-name`
9. `match certificate certificate-map`
10. `mime-type mime-type`
11. `template location location`
12. `template variable p value`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>crypto provisioning registrar</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>url-profile start profile-name</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>url-profile intro profile-name</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>match url url</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>match authentication trustpoint trustpoint-name</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>match certificate certificate-map</code></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>mime-type mime-type</code></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><code>template location location</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>template variable p value</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>ip http secure-server</code></td>
<td>Enables the HTTPS web server.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# ip http secure-server</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>crypto provisioning registrar</code></td>
<td>Configures a device to become a registrar for the SDP exchange and enters tti-registrar configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# crypto provisioning registrar</code></td>
<td><strong>Note</strong> Effective with Cisco IOS Release 12.3(14)T, the <code>crypto provisioning registrar</code> command replaced the <code>crypto wui tti registrar</code> command.</td>
</tr>
<tr>
<td>5</td>
<td><code>url-profile start profile-name</code></td>
<td>Specifies the <code>start</code> keyword to indicate that a URL profile is to be associated with the Start SDP deployment phase. The <code>profile-name</code> argument specifies the name of a unique URL profile.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(tti-registrar)# url-profile start START</code></td>
<td><strong>Note</strong> Both the Introduction SDP deployment phase and the Start SDP deployment phase can use different profiles or use the same URL profile.</td>
</tr>
<tr>
<td>6</td>
<td><code>url-profile intro profile-name</code></td>
<td>Specifies the <code>intro</code> keyword to indicate that a URL profile is to be associated with the Introduction SDP deployment phase. The <code>profile-name</code> argument specifies the name of a unique URL profile.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(tti-registrar)# url-profile intro INTRO</code></td>
<td><strong>Note</strong> Both the Introduction SDP deployment phase and the Start SDP deployment phase can use different profiles or use the same URL profile.</td>
</tr>
<tr>
<td>7</td>
<td><code>match url url</code></td>
<td>Specifies the URL to be associated with the URL profile.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(tti-registrar)# match url /sdp/intro</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>match authentication trustpoint trustpoint-name</code></td>
<td>(Optional) Specifies the trustpoint name that should be used to authenticate the peer’s certificate. If the trustpoint name is not specified, then the trustpoint configured using the <code>authentication trustpoint command</code> in tti-registrar configuration mode is used to authenticate the peer’s certificate. See the Enabling the SDP Registrar for Certificate-Based Authorization section for more information.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(tti-registrar)# match authentication trustpoint apple-tp</code></td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

- **Step 9**
  - match certificate *certificate-map*
  - Example:
    
    Router(tti-registrar)# match certificate cat 10

  *(Optional)* Specifies the name of the certificate map used to authorize the peer’s certificate.

- **Step 10**
  - mime-type *mime-type*
  - Example:
    
    Router(tti-registrar)# mime-type application/x-apple-aspen-config

  Specifies the Multipurpose Internet Mail Extensions (MIME) type that the SDP registrar should use to respond to a request received through this URL profile.

- **Step 11**
  - template location *location*
  - Example:
    
    Router(tti-registrar)# template location flash:intro.mobileconfig

  Specifies the location of the template that the SDP Registrar should use while responding to a request received through this URL profile.

- **Step 12**
  - template variable p *value*
  - Example:
    
    Router(tti-registrar)# template variable p iphone-vpn

  *(Optional)* Specifies the value that goes into the Organizational Unit (OU) field of the subject name in the trustpoint certificate to be issued by the SDP Registrar. See this field in the certificate presented in the Apple CA Server Trustpoint Certificate Configuration Example section below.

### Apple CA Server Trustpoint Certificate Configuration

The SDP Registrar must verify the signature generated from the iPhone’s trustpoint certificate in order to trust the Apple CA server certificate. The iPhone signs its messages using the trustpoint certificate, which is issued by Apple’s CA server during the Introduction SDP deployment phase.

The following example shows how to configure certificate enrollment using the manual cut-and-paste enrollment method of the Apple CA certificate:

```
Note
See also the “How to Configure Certificate Enrollment for a PKI” section in the Configuring Certificate Enrollment for a PKI feature module for more detailed information about configuring a trustpoint certificate.
```

### SUMMARY STEPS

1. The **crypto pki trustpoint** command is entered in global configuration mode to declare the trustpoint and a given name and enters ca-trustpoint configuration mode:

2. The **enrollment terminal** command is entered to specify manual cut-and-paste certificate enrollment

3. The **crypto pki authenticate** command retrieves the CA certificate and authenticates it from the specified TFTP server.

4. Copy the following block of text containing the base 64 encoded Apple CA trust certificate and paste it at the prompt.

5. The **exit** command is used to exit ca-trustpoint configuration mode and enter global configuration mode.
6. The **crypto provisioning registrar** command is entered in global configuration mode to specify the router to become a registrar for the SDP exchange and enters tti-registrar configuration mode.

7. The **url-profile** command with the **intro** keyword is entered in tti-registrar configuration mode to specify the unique URL profile name that is associated with the Introduction SDP deployment phase.

8. The **match authentication trustpoint** command is entered in tti-registrar configuration mode to specify the trustpoint name that should be used to authenticate the peer’s certificate.

DETAILED STEPS

**Step 1**

The **crypto pki trustpoint** command is entered in global configuration mode to declare the trustpoint name and enters ca-trustpoint configuration mode:

**Example:**

```
Router(config)# crypto pki trustpoint apple-tp
```

**Step 2**

The **enrollment terminal** command is entered to specify manual cut-and-paste certificate enrollment

**Example:**

```
Router(ca-trustpoint)# enrollment terminal
```

**Step 3**

The **crypto pki authenticate** command retrieves the CA certificate and authenticates it from the specified TFTP server.

**Example:**

```
Router(ca-trustpoint)# crypto pki authenticate apple-tp
```

**Step 4**

Copy the following block of text containing the base 64 encoded Apple CA trust certificate and paste it at the prompt.

**Example:**

```
I Bag Attributes
localKeyID: 7C 29 15 12 19 CF F6 15 2B 5B 27 3D A7 9A 98 14 36 06
subject=/C=US/O=Apple Inc./OU=Apple iPhone/CN=Apple iPhone Device CA
issuer=/C=US/O=Apple Inc./OU=Apple Certification Authority/CN=Apple iPhone Certification Authority
-----BEGIN CERTIFICATE-----
MIIDaTCCAlGgAwIBAgIBATANBgkqhkiG9w0BAQUFADB5MQswCQYDVQQGEwJVUzET
MBEGA1UEChMKQXBwbGwgSW5jLjEmMCQGA1UECxMdQXBwbGwiMBIGA1UEAxMBCXBw
bGwiMBEGA1UECgwQSW5jLjEmMCQGA1UEBxQMCXBwbGwiMTAw岳wDQYJKoZIhvcNAQ
EBAQDAWgCAYGhg BiEAo8AgJBBgEBGyUApSg7wMwIEwKCIzAQAwggUGMIIBIjANBgkqh
kiG9w0BAQUFADB5MQswCQYDVQQGEwJVUzETMBEGA1UEChMKQXBwbGwgSW5jLjEmMC
QGA1UECxMdQXBwbGwiMBIGA1UEAxMBCXBwbGwiMBEGA1UECgwQSW5jLjEmMCQGA1UE
BxQMCXBwbGwiMTAw岳wDQYJKoZIhvcNAQEBAQDAWgCAYGhg BiEAo8AgJBBgEBGyUApS
```
Step 5  The exit command is used to exit ca-trustpoint configuration mode and enter global configuration mode.

Example:

Router(ca-trustpoint)# exit

Step 6  The crypto provisioning registrar command is entered in global configuration mode to specify the router to become a registrar for the SDP exchange and enters tti-registrar configuration mode.

Example:

Router(config)# crypto provisioning registrar

Step 7  The url-profile command with the intro keyword is entered in tti-registrar configuration mode to specify the unique URL profile name that is associated with the Introduction SDP deployment phase.

Example:

Router(tti-registrar)# url-profile intro INTRO

Step 8  The match authentication trustpoint command is entered in tti-registrar configuration mode to specify the trustpoint name that should be used to authenticate the peer’s certificate.

Example:

Router(tti-registrar)# match authentication trustpoint apple-tp

The SDP Registrar can now use the Apple CA trustpoint certificate called “apple-tp” for verifying the signature of the iphone.

Configuring an Administrative Introducer

Perform the following task to configure an administrative introducer using administrator authentication and authorization lists.

Before you begin

The administrative introducer must have enable privileges on the client device and administrator privileges on the server.

Note

When using RADIUS, a user/device that needs to be introduced by the administrative introducer must always use cisco as its own password. TACACS+ does not have this limitation; a user/device can have any password and be introduced by the administrative introducer.

SUMMARY STEPS

1. enable
2. configure terminal
3. `crypto provisioning registrar`
4. `administrator authentication list list-name`
5. `administrator authorization list list-name`
6. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.  
Example:  
Router> enable  
- Enter your password if prompted. |
| Step 2 | `configure terminal` | Enters global configuration mode. |
Example:  
Router# configure terminal |
| Step 3 | `crypto provisioning registrar` | Configures a device to become an SDP registrar and enters tti-registrar configuration mode. |
Example:  
Router(config)# crypto provisioning registrar |
| Step 4 | `administrator authentication list list-name` | Configures the AAA list used to authenticate an administrator during an introduction. |
Example:  
Router(tti-registrar)# administrator authentication list authen-tac |
| Step 5 | `administrator authorization list list-name` | Configures the AAA list used to obtain authorization information for an administrator during an introduction. Information that can be obtained includes the certificate subject name and/or the list of template variables to be expanded into the Cisco IOS CLI snippet that is sent back to the petitioner. |
Example:  
Router(tti-registrar)# administrator authorization list author-tac |
| Step 6 | `end` | (Optional) Exits tti-registrar configuration mode. |
Example:  
Router(tti-registrar)# end |

### Example

The following example from the `show running-config` command allows you to verify that an administrative introducer using administrator authentication and authorization lists have been created:

```
Router# show running-config
Building configuration...
Current configuration : 2700 bytes
!
Last configuration change at 01:22:26 GMT Fri Feb 4 2005
!
version 12.4
no service pad
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname router
!
boot-start-marker
boot-end-marker
!
memory-size iomem 5
enable secret 5 1tpBS$PXnBDTIDXfX5pWa//1JX20
enable password lab
!
aaa new-model
!
!
aaa session-id common
!
resource manager
!
clock timezone GMT 0
ip subnet-zero
no ip routing
!
no ip dhcp use vrf connected
!
no ip cef
no ip domain lookup
ip domain name company.com
ip host router 10.3.0.6
ip host router.company.com 10.3.0.6
no ip ips deny-action ips-interface
!
no ftp-server write-enable
!
crypto pki server mycs
!
crypto pki trustpoint mycs
 revocation-check crl
 rsakeypair mycs
!
crypto pki trustpoint tti
 revocation-check crl
 rsakeypair tti
!
crypto pki trustpoint mic
 enrollment url http://router:80
 revocation-check crl
!
crypto pki trustpoint cat
 revocation-check crl
!
!
crypto pki certificate map cat 10
Configuring Custom Templates

Perform this task to create and configure custom templates.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto provisioning registrar
4. template http start URL
5. template http welcome URL
6. template http introduction URL
7. template http admin-introduction URL
8. template http completion URL
9. template http error URL
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto provisioning registrar</td>
<td>Configures a device to become an SDP registrar and enters tti-registrar configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# crypto provisioning registrar</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Step 4</td>
<td>template http start</td>
</tr>
<tr>
<td></td>
<td>URL</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(tti-registrar)# template http start tftp://registrar.company.com/start.html</code></td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 5</td>
<td>template http welcome</td>
</tr>
<tr>
<td></td>
<td>URL</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(tti-registrar)# template http welcome tftp://registrar.company.com/welcome.html</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>template http introduction</td>
</tr>
<tr>
<td></td>
<td>URL</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(tti-registrar)# template http introduction tftp://registrar.company.com/intro.html</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>template http admin-introduction</td>
</tr>
<tr>
<td></td>
<td>URL</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(tti-registrar)# template http admin-introduction tftp://registrar.company.com/admin-intro.html</code></td>
</tr>
<tr>
<td>Step 8</td>
<td>template http completion</td>
</tr>
<tr>
<td></td>
<td>URL</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(tti-registrar)# template http completion tftp://registrar.company.com/completion.html</code></td>
</tr>
<tr>
<td>Step 9</td>
<td>template http error</td>
</tr>
<tr>
<td></td>
<td>URL</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(tti-registrar)# template http error tftp://registrar.company.com/error.html</code></td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(tti-registrar)# end</code></td>
</tr>
</tbody>
</table>
Example

The following example shows the use of custom start, introduction, and completion templates:

```
template http start tftp://registrar.company.com/start.html

template http introduction tftp://registrar.company.com/intro.html

template http completion tftp://registrar.company.com/completion.html
```

Configuration Examples for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI

Verifying the SDP Registrar Example

The following sample output from the `show running-config` command verifies that the certificate server “cs1” was configured and associated with the SDP exchange between the registrar and petitioner:

```
Router# show running-config
Building configuration...
Current configuration : 5902 bytes
!
! Last configuration change at 09:34:44 GMT Sat Jan 31 2004
!
version 12.3
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
!
hostname pki-36a
!
boot-start-marker
boot-end-marker
!
logging buffered 32768 debugging
no logging console
enable secret 5 $1$b3jz$CKquLGjFIE3AdXA2/Rl9./
enable password lab
!
clock timezone GMT 0
no aaa new-model
ip subnet-zero
!
!
! ip cef
ip domain name company.com
ip host maca-root
ip host yni-u10
ip host pki-36a 10.23.2.131
ip host pki-36a.company.com 10.23.2.131
!
!
crypto pki server cs1
issuer-name CN=company,L=city,C=US
hash sha1
```
Setting Up Secure Device Provisioning for Enrollment in a PKI

Verifying the SDP Registrar Example

Public Key Infrastructure Configuration Guide, Cisco IOS Release 15MT

169
Verifying the SDP Registrar Example

727BF668 EB004341 02030100 01A36330 61300F06 03551D13 0101FF04 05300301 01FF300E 0603551D 0F0101FF 04040302 0186301D 0603551D 0E041604 141DA8B1 71652961 3F7D69F0 02903AC3 2BADB137 C6301F06 03551D23 04183016 80141DA8 B1716529 613F7D69 F002903A C32BADB1 37CE300D 06092A86 4886F70D 01010405 0005818B 00855895 A1041169 3D754EB2 E6FEC293 5BF0A80B E424AA2F A3F59765 3463AAD1 55E71F0F B5D1A35B 9EA79DAC DDB40721 1344C01E 015BAB73 1E148E03 9DD01431 A5E2887B 4AEC8EF4 48ACDB66 A6F7CA58 8A4199BB F8A437A02; F25064E7 112805D3 074A154F 650D09B9 8FA19347 E0359EAD 4181D9ED 0C667C10 FA7BCFB0 FB quit !
crypto provisioning registrar
 pki-server cs1
!
!
crypto isakmp policy 1
 hash sha
!
!
crypto ipsec transform-set test_transformset esp-aes
!
crypto map test_cryptomap 10 ipsec-isakmp
 set peer 10.23.1.10
 set security-association lifetime seconds 1800
 set transform-set test_transformset
 match address 170
!
!
interface Loopback0
 ip address 10.23.2.131 255.255.255.255
 no ip route-cache cef
 no ip route-cache
 no ip mroute-cache
!
interface FastEthernet0/0
 ip address 10.23.2.2 255.255.255.192
 no ip route-cache cef
 no ip route-cache
 no ip mroute-cache
duplex auto
speed auto
crypto map test_cryptomap
!
interface FastEthernet1/0
 no ip address
 shutdown
duplex auto
speed auto
ip default-gateway 10.23.2.62
ip http server
no ip http secure-server
ip classless
ip route 0.0.0.0 0.0.0.0 10.23.2.62
!
!
access-list 170 permit ip host 10.23.2.2 host 10.23.1.10
dialer-list 1 protocol ip permit
!
control-plane
!
line con 0
 exec-timeout 0 0
speed 115200
line aux 0
line vty 0 4
 password lab
 login
 !
end

Verifying the SDP Petitioner Example

After the SDP exchange is complete, the petitioner automatically enrolls with the registrar and obtains a certificate. The following sample output through the `show running-config` command shows the automatically generated configuration, which verifies that the trustpoint is really there:

```
Router# show running-config  
Building configuration...  
Current configuration : 4650 bytes  
!  
! Last configuration change at 09:34:53 GMT Sat Jan 31 2004  
!  
version 12.3  
service timestamps debug datetime msec  
service timestamps log datetime msec  
no service password-encryption  
!  
hostname pki-36b  
!  
boot-start-marker  
boot-end-marker  
!  
logging buffered 32768 debugging  
no logging console  
enable secret 5 $1$JYgw$060JXXgI6dELRPu9J3gb.  
enable password lab  
!  
clock timezone GMT 0  
no aaa new-model  
ip subnet-zero  
!  
!  
ip cef  
ip domain name company.com  
ip host msca-root  
ip host yni-u10  
ip host pki-36a 10.23.2.131  
ip host pki-36a.company.com 10.23.2.131  
!  
!  
crypto pki trustpoint tti  
enrollment url http://pki-36a.company.com:80  
revocation-check crl  
rsakeypair tti 1024  
auto-enroll 70  
!  
!  
crypto pki certificate chain tti  
certificate 02  
0000302012;02020102 300D0609 2A864886 F70D0101 04050030
```
Setting Up Secure Device Provisioning for Enrollment in a PKI
Verifying the SDP Petitioner Example

34310B30 09060355 04061302 55533114 30120603 55040713 0B205361 6E746120
4372757A 310F300D 06035504 03130620 696F7363 73301E17 0D303430 31333130
39333333 385A170D 30363031 33303039 33333338 5A302231 20301E06 092A8648
86F70D01 09021611 706B692D 3336622E 63697363 6F2E636F 6D30819F 300D0609
2A864886 F70D0101 01050003 818D0030 81890281 8100E383 35584B6C 24751E2C
F4088F06 C00BFECE 84CFF8EB 50D52044 03D14A2B 91E5A260 7D07ED24 DB599D27
432065D9 0E459248 D7CDC15D 654E2AF6 BA27D79C 23850306 3E96C508 F311D333
76FDDC9C A810F75C FCD10F1B 9A142F0C 338B6DB3 346D3F24 97A4B15D 0A9504E7
1F6CB769 85E9F52B FE907AAF 63D54D66 1A715A20 D7DB0203 010001A3 30302E30
0B060355 1D0F0404 030205A0 301F0603 551D2304 18301680 141DA8B1 71652961
3F7D69F0 02903AC3 2BADB137 C6300D06 092A8648 86F70D01 01040500 03818100
C5E2DA0E 4312BCF8 0396014F E18B3EE9 6C970BB7 B8FAFC61 EF849568 D546F73F
67D2A73C 156202DC 7404A394 D6124DAF 6BACB8CF 96C3141D 109C5B0E 46F4F827
022474ED 8B59D654 F04E31A2 C9AA1152 75A0C455 FD7EEEF5 A505A648 863EE9E6
C361D9BD E12BBB36 16B729DF 823AD5CC 404CCE48 A4379CDC 67FF6362 0601B950
quit
certificate ca 01
30820241 308201AA A0030201 02020101 300D0609 2A864886 F70D0101 04050030
34310B30 09060355 04061302 55533114 30120603 55040713 0B205361 6E746120
4372757A 310F300D 06035504 03130620 696F7363 73301E17 0D303430 31333130
39333132 315A170D 30373031 33303039 33313231 5A303431 0B300906 03550406
13025553 31143012 06035504 07130B20 53616E74 61204372 757A310F 300D0603
55040313 0620696F 73637330 819F300D 06092A86 4886F70D 01010105 0003818D
00308189 02818100 FC0695AF 181CE90A 1B34B348 BA957178 680C8B51 07802AC3
BF77B9C6 CB45092E 3C22292D C7D5FFC1 899185A1 FD8F37D5 C44FC206 6D1FA581
E2264C83 1CC7453E 548C89C6 F3CD25BC 9BFFE7C5 E6653A06 62133950 78BED51B
49128428 AB237F80 83A530EA 6F896193 F2134B54 D181F059 348AA84B 21EE6D80
727BF668 EB004341 02030100 01A36330 61300F06 03551D13 0101FF04 05300301
01FF300E 0603551D 0F0101FF 04040302 0186301D 0603551D 0E041604 141DA8B1
71652961 3F7D69F0 02903AC3 2BADB137 C6301F06 03551D23 04183016 80141DA8
B1716529 613F7D69 F002903A C32BADB1 37C6300D 06092A86 4886F70D 01010405
00038181 00885895 A0141169 3D754EB2 E6FEC293 5BF0A80B E424AA2F A3F59765
3463AAD1 55E71F0F B5D1A35B 9EA79DAC DDB40721 1344C01E 015BAB73 1E148E03
9DD01431 A5E2887B 4AEC8EF4 48ACDB66 A6F9401E 8F7CA588 8A4199BB F8A437A0
F25064E7 112805D3 074A154F 650D09B9 8FA19347 ED359EAD 4181D9ED 0C667C10
8A7BCFB0 FB
quit
!
no crypto engine accelerator
!
!
crypto isakmp policy 1
hash sha
!
!
crypto ipsec transform-set test_transformset esp-aes
!
crypto map test_cryptomap 10 ipsec-isakmp
set peer 10.23.2.2
set security-association lifetime seconds 1800
set transform-set test_transformset
match address 170
!
!
interface Ethernet0/0
ip address 10.23.1.10 255.255.255.192
no ip route-cache cef
no ip route-cache
no ip mroute-cache
half-duplex
crypto map test_cryptomap
!
interface Ethernet0/1
no ip address

Public Key Infrastructure Configuration Guide, Cisco IOS Release 15MT
172


shutdown
half-duplex
!
interface Ethernet0/2
 no ip address
 shutdown
 half-duplex
!
interface Ethernet0/3
 no ip address
 shutdown
 half-duplex
!
interface Serial1/0
 no ip address
 shutdown
 serial restart-delay 0
!
interface Serial1/1
 no ip address
 shutdown
 serial restart-delay 0
!
interface Serial1/2
 no ip address
 shutdown
 serial restart-delay 0
!
interface Serial1/3
 no ip address
 shutdown
 serial restart-delay 0
!
ip default-gateway 10.23.1.62
ip http server
no ip http secure-server
ip classless
ip route 0.0.0.0 0.0.0.0 10.23.1.62
!
access-list 170 permit ip host 10.23.1.10 host 10.23.2.2
dialer-list 1 protocol ip permit
!
control-plane
!
line con 0
 exec-timeout 0 0
 speed 115200
line aux 0
line vty 0 4
 password lab
 login
!
end

Adding AAA Lists to a RADIUS or TACACS+ Server Examples

This section contains the following configuration examples:
TACACS+ AAA Server Database Example

In the following example, user information has been added to a TACACS+ AAA database. The username is “user1.” The password is “cisco.” Two Cisco IOS configuration template variables are configured for “user1”: iosconfig1 and iosconfig2. The variables replace $1 and $2 in the configuration template file. The subject name “CN=user1, O=company, C=US” is also configured. This subject name replaces the subject name field in the subsequent enrollment request (PKCS10) that is received from the petitioner device.

user = user1
password = clear “pswd”
service=tti

set subjectname="CN=user1, O=company, C=US"
set iosconfig1="ntp server 10.3.0.1"
set iosconfig2="hostname user1-vpn"

RADIUS AAA Server Database Example

User information has been added to the RADIUS AAA server database in the following example. The username is “user1.” The password is “cisco.” Two Cisco IOS configuration template variables are configured for “user1”: iosconfig1 and iosconfig2. The variables replace $1 and $2 in the configuration template file. The subject name “CN=user1, O=company, C=US” is also configured. This subject name replaces the subject name field in the subsequent enrollment request (PKCS10) that is received from the petitioner device.

user = user1
password = clear “pswd”
radius=company
reply_attributes=9,1="tti:subjectname=CN=user1, O=company, C=US"

9,1="tti:iosconfig1=ntp server 10.3.0.5"
9,1="tti:iosconfig2=hostname user1-vpn"

AAA List on a TACACS+ and a RADIUS AAA Server Example

The following is a configuration example showing that AAA authentication has been configured on a TACACS+ server and that AAA authorization has been configured on a RADIUS server.

Authentication and authorization usually point to the same server.

```
Router(config)# tacacs-server host 10.0.0.48 key cisco
Router(config)# aaa authentication login authen-tac group tacacs+
Router(config)# radius-server host 10.0.1.49 key cisco
Router(config)# aaa authorization network author-rad group radius
```

Using a Configuration Template File Example

You can use a different configuration template file on the basis of the introducer name. For example, if you have multiple template files for different users, each with the username in the filename, configure the following under the registrar:

```
Using a Configuration Template File Example

You can use a different configuration template file on the basis of the introducer name. For example, if you have multiple template files for different users, each with the username in the filename, configure the following under the registrar:

```
```
Router(config)# crypto provisioning registrar
Router (tti-registrar)# pki-server cs1
Router (tti-registrar)# template config tftp://server/config-$n.txt

In this example, the default configuration file shown in the section “Default Template for the Configuration File, on page 145” is used because the template config command does not reference a CGI script.

CGI Script Example

The following example would execute a CGI script named “mysdpcgi”:

Router(config)# crypto provisioning registrar
Router (tti-registrar)# pki-server cs1
Router (tti-registrar)# template config tftp://server/cgi-bin/mysdpcgi post

The following is an example CGI script, named “mysdpcgi”, that would be executed with the example template config command above:

```perl
#!/usr/bin/perl -w
for debugging use the -debug form
use CGI (-debug);
use CGI;
base64 decoding is being used.
use MIME::Base64;
The following has been commented out, but left for your information.
#
Reading everything that has been received from stdin and writing it to the debug log to
see what has been sent from the registrar.
#
Remember to reset the STDIN pointer so that the normal CGI processing can get the input.
#
print STDERR "mysdpcgi.cgi dump of stdin:\n";
if($ENV{'REQUEST_METHOD'} eq "GET"){
$input_data = $ENV{'QUERY_STRING'};
}
else {
$data_length = $ENV{'CONTENT_LENGTH'};
$bytes_read = read(STDIN, $input_data, $data_length);
}
print STDERR $input_data,":\n";
exit;

$query = new CGI;
my %av_table;
A basic configuration file is being sent back, therefore it is being indicated as plain
text in the command below.
print $query->header ("text/plain");
print "\n";
For testing, parameters can be passed in so that the test applications can
see what has been received.
#
print STDERR "The following are the raw AV pairs mysdpcgi.cgi received:\n";
for each $key ($query->param) {
print STDERR "$key is: \n";
$value = $query->param($key);
print STDERR "$key, $value;
print STDERR "\n";
}
The post process AV pairs are identical to those in Cisco IOS and may be used to produce
AV pair specific configurations as needed.
```

Public Key Infrastructure Configuration Guide, Cisco IOS Release 15MT
while ( ($a, $v) = each(%av_table) ) {
  if ($a eq "TTIIosRunningConfig") {
    $search = "hostname ";
    $begin = index($v, $search) + length($search);
    $end = index($v, "\n", $begin);
    $hostname = substr($v, $begin, $end - $begin);
  }
  if ($a eq "TTIIosVersion") {
    $search = "Version ";
    $begin = index($v, $search) + length($search);
    $end = index($v, "\(", $begin);
    $version = substr($v, $begin, $end - $begin);
  }
}
print <<END_CONFIG;
! Config auto-generated by sdp.cgi
! This is for SDP testing only and is not a real config
!
\$$t
!
\$$c

cry pki trust Version-$version-$hostname
! NOTE: The last line of the config must be 'end' with a blank line after the end
# statement.
END_CONFIG;

sub postprocessavpairs {
  @attributes = @_;  
  # Combine any AV pairs that were split apart
  $n = 0;  # element index counter
  while (@attributes[$n]) {
    # see if we are at the start of a set
    if (@attributes[$n] =~ m/_0/) {
      # determine base attribute name
      $a = (split /_0/, @attributes[$n])[0];
      # set initial (partial) value
      $v = $query->param(@attributes[$n]);

      # loop and pull the rest of the matching
      # attribute's values into $v (would be
      # faster if we stop at first non-match)
      $c = $n+1;
      while (@attributes[$c]) {
        if (@attributes[$c] =~ m/$a/) {
          $v = $v.$query->param(@attributes[$c]);
        }
        $c++;
      }

      # store in the av hash table
      $av_table{$a} = $v;
    }
} else {
    # store in hash table if not part of a set
    if ($attributes[$n] !~ m/_\d/) {
        $av_table{$attributes[$n]} = $query->param($attributes[$n]);
    }
}
$n++;
# de-base64 decode all AV pairs except userdevicename
while ( ($a, $v) = each(%av_table) ) {
    if ($a ne "userdevicename") {
        $av_table{$a} = decode_base64($av_table{$a});
    }
    return %av_table;
}

Note
A CGI script cannot be executed without using the post keyword with the template config command in Cisco IOS Release 12.4(6)T or a later release.

Configuring the Petitioner and Registrar for Certificate-Based Authentication Example

The following examples shows how to configure a petitioner to use the certificate issued by the trustpoint named mytrust:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# crypto provisioning petitioner

Router(tti-petitioner)# trustpoint signing mytrust

Router(tti-petitioner)# end

The following example shows how to configure a registrar to verify the petitioner-signing certificate and to perform authorization lookups:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# crypto provisioning registrar

Router(tti-registrar)# authentication trustpoint mytrust

Router(tti-registrar)# authorization login certificate

Router(tti-registrar)# authorization username subjectname all

Router(tti-registrar)# end
Configuring an Administrative Introducer Using Authentication and Authorization Lists Example

The following example shows how to configure an administrative introducer with the authentication list “authen-tac” and the authorization list “author-tac”:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# crypto provisioning registrar
Router(tti-registrar)# administrator
   authentication list authen-tac
Router(tti-registrar)# administrator
   authorization list author-tac
Router(tti-registrar)# end

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Certificate enrollment</td>
<td>“ Configuring Certificate Enrollment for a PKI ” module</td>
</tr>
<tr>
<td>Certificate server configuration</td>
<td>“Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment ” module</td>
</tr>
<tr>
<td>PKI AAA integration concepts and configuration tasks</td>
<td>“Configuration Revocation and Authorization of Certificates in a PKI ” module</td>
</tr>
<tr>
<td>PKI commands: complete command syntax, command mode, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>USB token configuration</td>
<td>“ Storing PKI Credentials ” chapter in the Cisco IOS Security Configuration Guide: Secure Connectivity</td>
</tr>
<tr>
<td>For other 12.4T features about using SDP and USB tokens to deploy PKI credentials, see the Feature Information Table.</td>
<td></td>
</tr>
<tr>
<td>Integrating the iPhone, iPod touch, and iPad with enterprise systems</td>
<td>Apple iPhone Enterprise Deployment Guide</td>
</tr>
<tr>
<td>Recommended cryptographic algorithms</td>
<td>Next Generation Encryption</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
| None. | To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:  
http://www.cisco.com/go/mibs |

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 8: Feature Information for SDP in a PKI

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure Device Provisioning (SDP) Connect Template</td>
<td>12.4(20)T</td>
<td>This feature provides the ability to configure a device for Internet connectivity through a service provider.</td>
</tr>
</tbody>
</table>
| USB Token and Secure Device Provisioning (SDP) Integration | 12.4(15)T | This feature provides the ability to provision remote devices using a USB token as a mechanism to transfer credentials from one network device to a remote device through SDP.  
The following commands were introduced: binary file, crypto key move rsa, template file. |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDP Expanded Template CGI Support</td>
<td>12.4(6)T</td>
<td>This feature allows users to configure the SDP registrar to send a bootstrap configuration to the SDP petitioner based on not only the device name, but also its current Cisco IOS version and current configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following command was modified by this feature: <code>template config</code>.</td>
</tr>
<tr>
<td>Secure Device Provisioning (SDP) Start Page</td>
<td>12.4(4)T</td>
<td>This feature allows users to configure their browsers to begin the TTI transaction by contacting the registrar’s introduction URL through a start page. Thus, users no longer have to begin the TTI transaction from the welcome page on the petitioner.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced by this feature: <code>template http admin-introduction, template http completion, template http error, template http introduction, template http start, template http welcome</code>.</td>
</tr>
<tr>
<td>Administrative Secure Device Provisioning Introducer</td>
<td>12.3(14)T</td>
<td>This feature allows you to act as an administrative introducer to introduce a device into a PKI network and then provide a username as the device name for the record locator in the AAA database.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced by this feature: <code>administrator authentication list, administrator authorization list</code>.</td>
</tr>
<tr>
<td>Easy Secure Device Deployment</td>
<td>12.3(8)T</td>
<td>This feature introduces support for SDP, which offers a web-based enrollment interface that enables network administrators to deploy new devices in large networks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: <code>crypto wui tti petitioner, crypto wui tti registrar, pki-server, template config, template username, trustpoint (tti-petitioner)</code>.</td>
</tr>
<tr>
<td>Easy Secure Device Deployment AAA Integration</td>
<td>12.3(8)T</td>
<td>This feature integrates an external AAA database, allowing the SDP introducer to be authenticated against a AAA database instead of having to use the enable password of the local Cisco certificate server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: <code>authentication list (tti-registrar), authorization list (tti-registrar), debug crypto wui template config, template username</code>.</td>
</tr>
<tr>
<td>Secure Device Provisioning (SDP) Certificate-Based Authorization</td>
<td>12.3(14)T</td>
<td>This feature allows certificates issued by other authority (CA) servers to be used for SDP introductions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced by this feature: <code>administrator authentication list, administrator authorization list</code>.</td>
</tr>
</tbody>
</table>
With the introduction of the Cisco IOS 15.1(2)T and Apple iPhone OS 3.0 releases, Apple iPhones are supported on Cisco IOS network devices. Cisco IOS routers use the SDP registrar to deploy iPhones so that network applications can be accessed securely through an IPSec VPN, SCEP server, and PKI certificate deployment technologies.

The following commands were introduced by this feature: `match authentication trustpoint`, `match certificate`, `match url`, `mime-type`, `template location`, `template variable p`, `url-profile`.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone SDP</td>
<td>15.1(2)T</td>
<td>With the introduction of the Cisco IOS 15.1(2)T and Apple iPhone OS 3.0 releases, Apple iPhones are supported on Cisco IOS network devices. Cisco IOS routers use the SDP registrar to deploy iPhones so that network applications can be accessed securely through an IPSec VPN, SCEP server, and PKI certificate deployment technologies. The following commands were introduced by this feature: <code>match authentication trustpoint</code>, <code>match certificate</code>, <code>match url</code>, <code>mime-type</code>, <code>template location</code>, <code>template variable p</code>, <code>url-profile</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 7

Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment

This module describes how to set up and manage a Cisco IOS certificate server for public key infrastructure (PKI) deployment. A certificate server embeds a simple certificate server, with limited certification authority (CA) functionality, into the Cisco software. Thus, the following benefits are provided to the user:

- Easier PKI deployment by defining default behavior. The user interface is simpler because default behaviors are predefined. That is, you can leverage the scaling advantages of PKI without all of the certificate extensions that a CA provides, thereby allowing you to easily enable a basic PKI-secured network.

- Direct integration with Cisco software.

Note
Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

- Finding Feature Information, on page 183
- Prerequisites for Configuring a Cisco IOS Certificate Server, on page 184
- Restrictions for Configuring a Cisco IOS Certificate Server, on page 184
- Information About Cisco IOS Certificate Servers, on page 185
- How to Set Up and Deploy a Cisco IOS Certificate Server, on page 192
- Configuration Examples for Using a Certificate Server, on page 220
- Where to Go Next, on page 231
- Additional References for Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment, on page 231
- Feature Information for Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment, on page 232

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring a Cisco IOS Certificate Server

Planning Your PKI Before Configuring the Certificate Server

Before configuring a Cisco IOS certificate server, it is important that you have planned for and chosen appropriate values for the settings you intend to use within your PKI (such as certificate lifetimes and certificate revocation list (CRL) lifetimes). After the settings have been configured in the certificate server and certificates have been granted, settings cannot be changed without having to reconfigure the certificate server and reenrolling the peers. For information on certificate server default settings and recommended settings, see section “Certificate Server Default Values and Recommended Values.”

Enabling an HTTP Server

The certificate server supports Simple Certificate Enrollment Protocol (SCEP) over HTTP. The HTTP server must be enabled on the router for the certificate server to use SCEP. (To enable the HTTP server, use the `ip http server` command.) The certificate server automatically enables or disables SCEP services after the HTTP server is enabled or disabled. If the HTTP server is not enabled, only manual PKCS10 enrollment is supported.

Note

To take advantage of automatic CA certificate and key pair rollover functionality for all types of certificate servers, SCEP must be used as the enrollment method.

Configuring Reliable Time Services

Time services must be running on the router because the certificate server must have reliable time knowledge. If a hardware clock is unavailable, the certificate server depends on manually configured clock settings, such as Network Time Protocol (NTP). If there is not a hardware clock or the clock is invalid, the following message is displayed at bootup:

```
% Time has not been set. Cannot start the Certificate server.
```

After the clock has been set, the certificate server automatically switches to running status.

For information on manually configuring clock settings, see the module Setting Time and Calendar Services in the Basic System Management Configuration Guide, Cisco IOS Release 15M&T.

Restrictions for Configuring a Cisco IOS Certificate Server

The certificate server does not provide a mechanism for modifying the certificate request that is received from the client; that is, the certificate that is issued from the certificate server matches the requested certificate without modifications. If a specific certificate policy, such as name constraints, must be issued, the policy must be reflected in the certificate request.
Information About Cisco IOS Certificate Servers

RSA Key Pair and Certificate of the Certificate Server

The certificate server automatically generates a 1024-bit Rivest, Shamir, and Adelman (RSA) key pair. You must manually generate an RSA key pair if you prefer a different key pair modulus. For information on completing this task, see the section “Generating a Certificate Server RSA Key Pair.”

Note

The recommended modulus for a certificate server RSA key pair is 2048 bits.

The certificate server uses a regular Cisco IOS RSA key pair as its CA key. This key pair must have the same name as the certificate server. If you do not generate the key pair before the certificate server is created on the router, a general-purpose key pair is automatically generated during the configuration of the certificate server.

The CA certificate and CA key can be backed up automatically one time after they are generated by the certificate server. As a result, it is not necessary to generate an exportable CA key for backup purposes.

What to Do with Automatically Generated Key Pairs

If the key pair is automatically generated, it is not marked as exportable. Thus, you must manually generate the key pair as exportable if you want to back up the CA key. For information on how to complete this task, see the section “Generating a Certificate Server RSA Key Pair.”

How the CA Certificate and CA Key Are Automatically Archived

At initial certificate server setup, you can enable the CA certificate and the CA key to be automatically archived so that they may be restored later if either the original copy or the original configuration is lost.

When the certificate server is turned on the first time, the CA certificate and CA key is generated. If automatic archive is also enabled, the CA certificate and the CA key is exported (archived) to the server database. The archive can be in PKCS12 or privacy-enhanced mail (PEM) format.

Note

This CA key backup file is extremely important and should be moved immediately to another secured place.

- This archiving action occurs only one time. Only the CA key that is (1) manually generated and marked exportable or (2) automatically generated by the certificate server is archived (this key is marked nonexportable).

- Autoarchiving does not occur if you generate the CA key manually and mark it “nonexportable.”

- In addition to the CA certificate and CA key archive file, you should also regularly back up the serial number file (.ser) and the CRL file (.crl). The serial file and the CRL file are both critical for CA operation if you need to restore your certificate server.
• It is not possible to manually backup a server that uses nonexportable RSA keys or manually generated, nonexportable RSA keys. Although automatically generated RSA keys are marked as nonexportable, they are automatically archived once.

Certificate Server Database

The Cisco IOS certificate server stores files for its own use and may publish files for other processes to use. Critical files generated by the certificate server that are needed for its ongoing operation are stored to only one location per file type for its exclusive use. The certificate server reads from and writes to these files. The critical certificate server files are the serial number file (.ser) and the CRL storage location file (.crl). Files that the certificate server writes to, but does not read from again, may be published and available for use by other processes. An example of a file that may be published is the issued certificates file (.crt).

Performance of your certificate server may be affected by the following factors, which should be considered when you choose storage options and publication options for your certificate server files.

• The storage or publish locations you choose may affect your certificate server performance. Reading from a network location takes more time than reading directly from a router’s local storage device.

• The number of files you choose to store or publish to a specific location may affect your certificate server performance. The local Cisco IOS file system may not always be suitable for a large number of files.

• The file types you choose to store or publish may affect your certificate server performance. Certain files, such as the .crl files, can become very large.

Note

It is recommended that you store .ser and .crl files to your local Cisco IOS file system and publish your .crt files to a remote file system.

Certificate Server Database File Storage

The certificate server allows the flexibility to store different critical file types to different storage locations depending on the database level set (see the database level command for more information). When choosing storage locations, consider the file security needed and server performance. For instance, serial number files and archive files (.p12 or .pem) might have greater security restrictions than the issued certificates file storage location (.crt) or the name file storage location (.cnm).

The table below shows the critical certificate server file types by file extension that may be stored to a specific location.

Table 9: Certificate Server Storage Critical File Types

<table>
<thead>
<tr>
<th>File Extension</th>
<th>File Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>.ser</td>
<td>The main certificate server database file.</td>
</tr>
<tr>
<td>.crl</td>
<td>The CRL storage location.</td>
</tr>
<tr>
<td>.crt</td>
<td>The issued certificates storage location.</td>
</tr>
<tr>
<td>.cnm</td>
<td>The certificate name and expiration file storage location.</td>
</tr>
</tbody>
</table>
Cisco IOS certificate server files may be stored to three levels of specificity:

- Default location, NVRAM
- Specified primary storage location for all critical files
- Specified storage location for specific critical file(s).

A more specific storage location setting overrides a more general storage location setting. For instance, if you have not specified any certificate server file storage locations, all certificate server files are stored to NVRAM. If you specify a storage location for the name file, only the name file is stored there; all other files continue to be stored to NVRAM. If you then specify a primary location, all files except the name file is now stored to this location, instead of NVRAM.

**Note**

You may specify either .p12 or .pem; you cannot specify both types of archive files.

### Certificate Server Database File Publication

A publish file is a copy of the original file and is available for other processes to use or for your use. If the certificate server fails to publish a file, it does cause the server to shut down. You may specify one publish location for the issued certificates file and name file and multiple publish locations for the CRL file. See the table below for files types available for publication. You may publish files regardless of the database level that is set.

**Table 10: Certificate Server Publish File Types**

<table>
<thead>
<tr>
<th>File Extension</th>
<th>File Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>.crl</td>
<td>The CRL publish location.</td>
</tr>
<tr>
<td>.crt</td>
<td>The issued certificates publish location.</td>
</tr>
<tr>
<td>.cnm</td>
<td>The certificate name and expiration file publish location.</td>
</tr>
</tbody>
</table>

### Trustpoint of the Certificate Server

If the certificate server also has an automatically generated trustpoint of the same name, then the trustpoint stores the certificate of the certificate server. After the router detects that a trustpoint is being used to store the certificate of the certificate server, the trustpoint is locked so that it cannot be modified.

Before configuring the certificate server you can perform the following:

- Manually create and set up this trustpoint (using the `crypto pki trustpoint` command), which allows you to specify an alternative RSA key pair (using the `rsakeypair` command).
- Specify that the initial autoenrollment key pair is generated on a specific device, such as a configured and available USB token, using the on command.

**Note**
The automatically generated trustpoint and the certificate server certificate are not available for the certificate server device identity. Thus, any command-line interface (CLI) (such as the ip http secure-trustpoint command) that is used to specify the CA trustpoint to obtain certificates and authenticate the connecting client’s certificate must point to an additional trustpoint configured on the certificate server device.

If the server is a root certificate server, it uses the RSA key pairs and several other attributes to generate a self-signed certificate. The associated CA certificate has the following key usage extensions—Digital Signature, Certificate Sign, and CRL Sign.

After the CA certificate is generated, attributes can be changed only if the certificate server is destroyed.

**Note**
A certificate server trustpoint must not be automatically enrolled using the auto-enroll command. Initial enrollment of the certificate server must be initiated manually and ongoing automatic rollover functionality may be configured with the auto-rollover command.

### Certificate Revocation Lists (CRLs)

By default, CRLs are issued once every 168 hours (1 calendar week). To specify a value other than the default value for issuing the CRL, execute the lifetime crl command. After the CRL is issued, it is written to the specified database location as ca-label.crl, where ca-label is the name of the certificate server.

CRLs can be distributed through SCEP, which is the default method, or a CRL distribution point (CDP), if configured and available. If you set up a CDP, use the cdp-url command to specify the CDP location. If the cdp-url command is not specified, the CDP certificate extension is not included in the certificates that are issued by the certificate server. If the CDP location is not specified, Cisco IOS PKI clients automatically request a CRL from the certificate server with a SCEP GetCRL message. The CA then returns the CRL in a SCEP CertRep message to the client. Because all SCEP messages are enveloped and signed PKCS#7 data, the SCEP retrieval of the CRL from the certificate server is costly and not highly scalable. In very large networks, an HTTP CDP provides better scalability and is recommended if you have many peer devices that check CRLs. You may specify the CDP location by a simple HTTP URL string for example,

```
cdp-url http://my-cdp.company.com/filename.crl
```

The certificate server supports only one CDP; thus, all certificates that are issued include the same CDP.

If you have PKI clients that are not running Cisco IOS software and that do not support a SCEP GetCRL request and wish to use a CDP you may set up an external server to distribute CRLs and configure the CDP to point to that server. Or, you can specify a non-SCEP request for the retrieval of the CRL from the certificate server by specifying the cdp-url command with the URL in the following format where cs-addr is the location of the certificate server:

```
cdp-url http://cs-addr/cgi-bin/pkiclient.exe?operation=GetCRL
```
If your Cisco IOS CA is also configured as your HTTP CDP server, specify your CDP with the `cdp-url` http://cs-addr/cgi-bin/pkiclient.exe?operation=GetCRL command syntax.

It is the responsibility of the network administrator to ensure that the CRL is available from the location that is specified through the `cdp-url` command.

In order to force the parser to retain the embedded question mark within the specified location, enter Ctrl-v prior to the question mark. If this action is not taken, CRL retrieval through HTTP returns an error message.

The CDP location may be changed after the certificate server is running through the `cdp-url` command. New certificates contain the updated CDP location, but existing certificates are not reissued with the newly specified CDP location. When a new CRL is issued, the certificate server uses its current cached CRL to generate a new CRL. (When the certificate server is rebooted, it reloads the current CRL from the database.) A new CRL cannot be issued unless the current CRL has expired. After the current CRL expires, a new CRL is issued only after a certificate is revoked from the CLI.

**Certificate Server Error Conditions**

At startup, the certificate server checks the current configuration before issuing any certificates. It reports the last known error conditions through the `show crypto pki server` command output. Example errors can include any of the following conditions:

- Storage inaccessible
- Waiting for HTTP server
- Waiting for time setting

If the certificate server experiences a critical failure at any time, such as failing to publish a CRL, the certificate server automatically enters a disabled state. This state allows the network administrator to fix the condition; thereafter, the certificate server returns to the previous normal state.

**Certificate Enrollment Using a Certificate Server**

A certificate enrollment request functions as follows:

- The certificate server receives the enrollment request from an end user, and the following actions occur:
  - A request entry is created in the enrollment request database with the initial state. (See the table below for a complete list of certificate enrollment request states.)
  - The certificate server refers to the CLI configuration (or the default behavior any time a parameter is not specified) to determine the authorization of the request. Thereafter, the state of the enrollment request is updated in the enrollment request database.

- At each SCEP query for a response, the certificate server examines the current request and performs one of the following actions:
  - Responds to the end user with a “pending” or “denied” state.
  - Generates and signs the appropriate certificate and stores the certificate in the enrollment request database.

If the connection of the client has closed, the certificate server waits for the client to request another certificate.
All enrollment requests transition through the certificate enrollment states that are defined in the table below. To see current enrollment requests, use the `crypto pki server request pkcs10` command.

### Table 11: Certificate Enrollment Request State Descriptions

<table>
<thead>
<tr>
<th>Certificate Enrollment State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authorized</td>
<td>The certificate server has authorized the request.</td>
</tr>
<tr>
<td>denied</td>
<td>The certificate server has denied the request for policy reasons.</td>
</tr>
<tr>
<td>granted</td>
<td>The CA core has generated the appropriate certificate for the certificate request.</td>
</tr>
<tr>
<td>initial</td>
<td>The request has been created by the SCEP server.</td>
</tr>
<tr>
<td>malformed</td>
<td>The certificate server has determined that the request is invalid for cryptographic reasons.</td>
</tr>
<tr>
<td>pending</td>
<td>The enrollment request must be manually accepted by the network administrator.</td>
</tr>
</tbody>
</table>

### SCEP Enrollment

All SCEP requests are treated as new certificate enrollment requests, even if the request specifies a duplicate subject name or public key pair as a previous certificate request.

### Types of CA Servers Subordinate and Registration Authorities (RAs)

CA servers have the flexibility to be configured as a subordinate certificate server or an RA-mode certificate server.

**Why Configure a Subordinate CA?**

A subordinate certificate server provides all the same features as a root certificate server. The root RSA key pairs are extremely important in a PKI hierarchy, and it is often advantageous to keep them offline or archived. To support this requirement, PKI hierarchies allow for subordinate CAs that have been signed by the root authority. In this way, the root authority can be kept offline (except to issue occasional CRL updates), and the subordinate CA can be used during normal operation.

**Why Configure an RA-Mode Certificate Server?**

A Cisco IOS certificate server can be configured to run in RA mode. An RA offloads authentication and authorization responsibilities from a CA. When the RA receives a SCEP or manual enrollment request, the administrator can either reject or grant it on the basis of local policy. If the request is granted, it is forwarded to the issuing CA, and the CA automatically generates the certificate and return it to the RA. The client can later retrieve the granted certificate from the RA.

An RA is the authority charged with recording or verifying some or all of the data required for the CA to issue certificates. In many cases the CA undertakes all of the RA functions itself, but where a CA operates over a wide geographical area or when there is security concern over exposing the CA to direct network access, it may be administratively advisable to delegate some of the tasks to an RA and leave the CA to concentrate on its primary tasks of signing certificates and CRLs.
CA Server Compatibility

The CA server compatibility allows the IOS CA server in RA mode to interoperate with more than one type of CA server. For more information, see “Configuring a Certificate Server to Run in RA Mode.”

Automatic CA Certificate and Key Rollover

CAs--root CAs, subordinate CAs, and RA-mode CAs--like their clients, have certificates and key pairs with expiration dates that need to be reissued when the current certificate and key pair are about to expire. When a root CA’s certificate and key pair are expiring it must generate a self-signed rollover certificate and key pair. If a subordinate CA or an RA-mode CA’s certificate and key pair are expiring, it requests a rollover certificate and key pair from its superior CA, obtaining the superior CA’s new self-signed rollover certificates at the same time. The CA must distribute the new CA rollover certificate and keys too all its peers. This process, called rollover, allows for continuous operation of the network while the CAs and their clients are switching from an expiring CA certificate and key pair to a new CA certificate and key pair.

Rollover relies on the PKI infrastructure requirements of trust relationships and synchronized clocks. The PKI trust relationships allow (1) the new CA certificate to be authenticated, and (2) the rollover to be accomplished automatically without the loss of security. Synchronized clocks allow the rollover to be coordinated throughout your network.

Automatic CA Certificate Rollover How It Works

The CA server must have rollover configured. All levels of CAs must be automatically enrolled and have auto-rollover enabled. CA clients support rollover automatically when automatically enrolled. For more information about clients and automatic rollover, see the section “Automatic Certificate Enrollment” in the chapter “Configuring Certificate Enrollment for a PKI”.

After CAs have rollover enabled and their clients are automatically enrolled, there are three stages to the automatic CA certificate rollover process.

Stage One: Active CA Certificate and Key Pair Only

In stage one, there is an active CA certificate and key pair only.

Stage Two: Rollover CA Certificate and Key Pair Generation and Distribution

In stage two, the rollover CA certificate and key pair are generated and distributed. The superior CA generates a rollover certificate and key pair. After the CA successfully saves its active configuration, the CA is ready to respond to client requests for the rollover certificate and key pair. When the superior CA receives a request for the new CA certificate and key pair from a client, the CA responds by sending the new rollover CA certificate and key pair to the requesting client. The clients store the rollover CA certificate and key pair.

Note

When a CA generates its rollover certificate and key pair, it must be able to save its active configuration. If the current configuration has been altered, saving of the rollover certificate and key pair does not happen automatically. In this case, the administrator must save the configuration manually or rollover information is lost.
Stage Three: Rollover CA Certificate and Key Pair Become the Active CA Certificate and Key Pair

In stage three, the rollover CA certificate and key pair become the active CA certificate and key pair. All devices that have stored a valid rollover CA certificate rename the rollover certificate to the active certificate and the once-active certificate and key pair are deleted.

After the CA certificate rollover, you may observe the following deviation from usual certificate lifetime and renewal time:

- The lifetime of the certificates issued during rollover is lower than the preconfigured value.
- In specific conditions, the renew time may be inferior to the configured percentage of the actual lifetime. The difference observed can be of up to 20% in cases where the certificate lifetime is less than one hour.

These differences are normal, and result from jitter (random time fluctuation) introduced by the algorithm on the Certificate server. This task is performed to avoid the hosts participating to the PKI synchronize their enrollment timer, which could result in congestion on the Certificate Server.

---

**Note**
The lifetime fluctuations that occur do not affect proper functioning of the PKI, since the differences always result in a shorter lifetime, thus remaining within maximum configured lifetime for certificates.

---

Support for Specifying a Cryptographic Hash Function

Secure Hash Algorithm (SHA) support allows a user to specify a cryptographic hash function for Cisco IOS XE certificate servers and clients. The cryptographic hash functions that can be specified are Message Digest algorithm 5 (MD5), SHA-1, SHA-256, SHA-384, or SHA-512.

---

**Note**
Cisco no longer recommends using MD5; instead, you should use SHA-256 where supported. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

---

See the “Configuring a Subordinate Certificate Server” task for more information on specifying the `hash` (ca-trustpoint) and `hash` (cs-server) commands that are used to implement this feature.

---

How to Set Up and Deploy a Cisco IOS Certificate Server

Generating a Certificate Server RSA Key Pair

Perform this task to manually generate an RSA key pair for the certificate server. Manually generating a certificate server RSA key pair allows you to specify the type of key pair you want to generate, to create an exportable key pair for backup purposes, to specify the key pair storage location, or to specify the key generation location.
You may want to create an exportable certificate server key pair for backup, or archive purposes. If this task is not performed, the certificate server automatically generates a key pair, which is not marked as exportable.

If your device has a USB token configured and available, the USB token can be used as cryptographic device in addition to a storage device. Using a USB token as a cryptographic device allows RSA operations such as key generation, signing, and authentication of credentials to be performed on a USB token. The private key never leaves the USB token and is not exportable. The public key is exportable. For titles of specific documents about configuring a USB token and making it available to use as a cryptographic device, see the “Related Documents” section.

It is recommended that the private key be kept in a secure location and that you regularly archive the certificate server database.

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. crypto key generate rsa [general-keys | usage-keys | signature | encryption] [label key-label] [exportable] [modulus modulus-size] [storage devicename:] [on devicename:]
4. crypto key export rsa key-label pem {terminal | url url} {3des | des} passphrase
5. crypto key import rsa key-label pem [usage-keys | signature | encryption] {terminal | url url} [exportable] [on devicename:] passphrase
6. exit
7. show crypto key mypubkey rsa

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>crypto key generate rsa [general-keys</td>
<td>usage-keys</td>
</tr>
</tbody>
</table>
### Generating a Certificate Server RSA Key Pair

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `[modulus modulus-size] [storage devicename:] [on devicename:]` | • The `storage` keyword specifies the key storage location.  
• When specifying a label name by specifying the `key-label` argument, you must use the same name for the label that you plan to use for the certificate server (through the `crypto pki server cs-label` command). If a `key-label` argument is not specified, the default value, which is the fully qualified domain name (FQDN) of the router, is used. |
| **Example:** Device(config)# crypto key generate rsa label mycs exportable modulus 2048 | If the exportable RSA key pair is manually generated after the CA certificate has been generated, and before issuing the `no shutdown` command, then use the `crypto ca export pkcs12` command to export a PKCS12 file that contains the certificate server certificate and the private key.  
• By default, the modulus size of a CA RSA key is 1024 bits. The recommended modulus for a CA RSA key is 2048 bits. The range for a modulus size of a CA RSA key is from 350 to 4096 bits.  
• The `on` keyword specifies that the RSA key pair is created on the specified device, including a Universal Serial Bus (USB) token, local disk, or NVRAM. The name of the device is followed by a colon (:).  
**Note** Keys created on a USB token must be 2048 bits or less. |
| **Step 4** `crypto key export rsa key-label pem {terminal | url url} {3des | des} passphrase` | (Optional) Exports the generated RSA key pair. Allows you to export the generated keys. |
| **Example:** Device(config)# crypto key export rsa mycs pem url nvram: 3des PASSWORD | |
| **Step 5** `crypto key import rsa key-label pem [usage-keys | signature | encryption] {terminal | url url} [exportable] [on devicename:] passphrase` | (Optional) Imports RSA key pair.  
To create the imported keys on a USB token, use the `on` keyword and specify the appropriate device location.  
If you exported the RSA keys using the `exportable` keyword and you want to change the RSA key pair to nonexportable, import the key back to the certificate server without the `exportable` keyword. The key cannot be exported again. |
<p>| <strong>Example:</strong> Device(config)# crypto key import rsa mycs2 pem url nvram:mycs2 PASSWORD | |
| <strong>Step 6</strong> <code>exit</code> | Exits global configuration. |
| <strong>Example:</strong> Device(config)# exit | |</p>
<table>
<thead>
<tr>
<th><strong>Command or Action</strong></th>
<th><strong>Purpose</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 7</strong> show crypto key mypubkey rsa</td>
<td>Displays the RSA public keys of your router.</td>
</tr>
<tr>
<td><strong>Example:</strong> show crypto key mypubkey rsa</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

The following example generates a general usage 1024-bit RSA key pair on a USB token with the label “ms2” with crypto engine debugging messages shown:

```
Device(config)# crypto key generate rsa on usbtoken0 label ms2 modulus 2048
The name for the keys will be: ms2
% The key modulus size is 2048 bits
% Generating 2048 bit RSA keys, keys will be on-token, non-exportable...
Jan 7 02:41:40.895: crypto_engine: Generate public/private keypair [OK]
Jan 7 02:44:09.623: crypto_engine: Create signature
Jan 7 02:44:10.467: crypto_engine: Verify signature
Jan 7 02:44:10.467: CryptoEngine0: CRYPTO_RSA_CREATE_PUBKEY(hw)(ipsec)
Jan 7 02:44:10.467: CryptoEngine0: CRYPTO_RSA_PUB_DECRYPT(hw)(ipsec)
```

Now, the on-token keys labeled “ms2” may be used for enrollment.

The following example shows the successful import of an encryption key to a configured and available USB tokens:

```
Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Device(config)# crypto key import rsa encryption on usbtoken0 url nvram:e password
% Importing public Encryption key or certificate PEM file...
filename [e-encr.pub]?
Reading file from nvram:e-encr.pub
% Importing private Encryption key PEM file...
Source filename [e-encr.prv]?
Reading file from nvram:e-encr.prv
% Key pair import succeeded.
```

**Configuring Certificate Servers**

**Prerequisites for Automatic CA Certificate Rollover**

When configuring a certificate server, for automatic CA certificate rollover to run successfully, the following prerequisites are applicable for your CA servers:

- Your CA server must be enabled and fully configured with a reliable time of day, an available key pair, a self-signed, valid CA certificate associated with the key pair, a CRL, an accessible storage device, and an active HTTP/SCEP server.
- CA clients must have successfully completed automatic enrollment and have autoenrollment enabled with the same certificate server.
Restrictions for Automatic CA Certificate Rollover

When configuring a certificate server, in order for automatic CA certificate rollover to run successfully, the following restrictions are applicable:

- SCEP must be used to support rollover. Any device that enrolls with the PKI using an alternative to SCEP as the certificate management protocol or mechanism (such as enrollment profiles, manual enrollment, or TFTP enrollment) is not able to take advantage of the rollover functionality provided by SCEP.

- If you have automatic archive configured on your network and the archive fails, rollover does not occur because the certificate server does not enter the rollover state, and the rollover certificate and key pair is not automatically saved.

Configuring a Certificate Server

Perform this task to configure a Cisco IOS certificate server and enable automatic rollover.

**SUMMARY STEPS**

1. *enable*
2. *configure terminal*
3. *ip http server*
4. *crypto pki server cs-label*
5. *no shutdown*
6. *auto-rollover [time-period]*

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><em>enable</em></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><em>Device&gt; enable</em></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><em>configure terminal</em></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><em>Device# configure terminal</em></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><em>ip http server</em></td>
<td>Enables the HTTP server on your system.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><em>Device(config)# ip http server</em></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action | Purpose | Examples
--- | --- | ---
**Step 4** | crypto pki server *cs-label* | Defines a label for the certificate server and enters certificate server configuration mode.  
**Note** If you manually generated an RSA key pair, the *cs-label* argument must match the name of the key pair.  

**Example:**  
Device(config)# crypto pki server server-pki

**Step 5** | no shutdown | (Optional) Enables the certificate server.  
**Note** Only use this command at this point if you want to use the preconfigured default functionality. That is, do not issue this command just yet if you plan to change any of the default settings as shown in the task “Configuring Certificate Server Functionality.”

**Example:**  
Device(cs-server)# no shutdown

**Step 6** | auto-rollover [time-period] | (Optional) Enables the automated CA certificate rollover functionality.  
* time-period—default is 30 days.

**Example:**  
Device(cs-server)# auto-rollover 90

---

**Examples**

The following example shows how to configure the certificate server “ms2” where ms2 is the label of a 2048-bit RSA key pair:

Device(config)# crypto pki server ms2  
Device(cs-server)# no shutdown  
% Once you start the server, you can no longer change some of  
% the configuration.  
Are you sure you want to do this? [yes/no]: yes  
% Certificate Server enabled.  
Device(cs-server)# end  
!  
Device# show crypto pki server ms2  
Certificate Server ms2:  
status: enabled, configured  
CA cert fingerprint: 5A856122 4051347F 55E8C246 866D0AC3  
Granting mode is: manual  
Last certificate issued serial number: 0x1  
Current storage dir: nvram:  
Database Level: Complete - all issued certs written as <serialnum>.cer

The following example shows how to enable automated CA certificate rollover on the server ms2 with the auto-rollover command. The show crypto pki server command shows that the automatic rollover has been configured on the server mycs with an overlap period of 25 days.

Device(config)# crypto pki server ms2  
Device(cs-server)# auto-rollover 25  
Device(cs-server)# no shutdown
Configuring a Subordinate Certificate Server

Perform this task to configure a subordinate certificate server to grant all or certain SCEP or manual certificate requests and to enable automatic rollover.

Note

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Before you begin

- The root certificate server should be a Cisco IOS XE certificate server.
- For a subordinate certificate authority (CA), enrollment to the root CA or upstream CA is possible only through SCEP. The upstream CA must be online for the enrollment to the upstream CA to complete. Manual enrollment of subordinate CA to the root CA or upstream CA is not possible.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment [mode] [retry period minutes] [retry count number] url url [pem]
5. hash {md5 | sha1 | sha256 | sha384 | sha512}
6. exit
7. crypto pki server cs-label
8. issuer name DN-string
9. mode sub-cs
10. auto-rollover [time-period]
11. grant auto rollover {ca-cert | ra-cert}
12. hash {md5 | sha1 | sha256 | sha384 | sha512}
13. no shutdown
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device&gt; enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode.</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>crypto pki trustpoint name</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# crypto pki trustpoint sub</td>
</tr>
<tr>
<td>Declares the trustpoint that your subordinate certificate server should use and enters ca-trustpoint configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>enrollment [mode] [retry period minutes] [retry count number] url [url [pem]]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(ca-trustpoint)# enrollment url <a href="http://caserver.myexample.com">http://caserver.myexample.com</a></td>
</tr>
<tr>
<td>Specifies the following enrollment parameters of the CA:</td>
<td></td>
</tr>
<tr>
<td>- (Optional) The <strong>mode</strong> keyword specifies the registration authority (RA) mode, if your CA system provides an RA. By default, RA mode is disabled.</td>
<td></td>
</tr>
<tr>
<td>- (Optional) The <strong>retry period</strong> keyword and <strong>minutes</strong> argument specifies the period, in minutes, in which the router waits before sending the CA another certificate request. Valid values are from 1 to 60. The default is 1.</td>
<td></td>
</tr>
<tr>
<td>- (Optional) The <strong>retry count</strong> keyword and <strong>number</strong> argument specifies the number of times a router will resend a certificate request when it does not receive a response from the previous request. Valid values are from 1 to 100. The default is 10.</td>
<td></td>
</tr>
<tr>
<td>- The <strong>url</strong> argument is the URL of the CA to which your router should send certificate requests.</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>An IPv6 address can be added to the http: enrollment method. For example: http://[ipv6-address]:80. The IPv6 address must be enclosed in brackets in the URL. See the enrollment url (ca-trustpoint) command page for more information on the other enrollment methods that can be used.</td>
</tr>
<tr>
<td>- (Optional) The <strong>pem</strong> keyword adds privacy-enhanced mail (PEM) boundaries to the certificate request.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>hash {md5</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(ca-trustpoint)# hash sha384</td>
</tr>
<tr>
<td>(Optional) Specifies the hash function for the signature that the Cisco IOS XE client uses to sign its self-signed certificates. The Cisco IOS XE client uses the MD5 hash function.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>exit</strong></td>
<td>cryptographic hash function for self-signed certificates by default.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Any of the following command algorithm keyword options can be specified to over-ride the default setting for the trustpoint. This setting then becomes the default cryptographic hash algorithm function for self-signed certificates by default.</td>
</tr>
<tr>
<td>exit</td>
<td>• <strong>md5</strong> — Specifies that MD5, the default hash function, is used. (No longer recommended).</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>• <strong>sha1</strong> — Specifies that the SHA-1 hash function is used as the default hash algorithm for RSA keys. (No longer recommended).</td>
</tr>
<tr>
<td>crypto pki server</td>
<td>• <strong>sha256</strong> — Specifies that the SHA-256 hash function is used as the hash algorithm for Elliptic Curve (EC) 256 bit keys.</td>
</tr>
<tr>
<td>cs-label</td>
<td>• <strong>sha384</strong> — Specifies that the SHA-384 hash function is used as the hash algorithm for EC 384 bit keys.</td>
</tr>
<tr>
<td></td>
<td>• <strong>sha512</strong> — Specifies that the SHA-512 hash function is used as the hash algorithm for EC 512 bit keys.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Exits ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td>issuer name</td>
<td>Enables a Cisco IOS XE certificate server and enters cs-server configuration mode.</td>
</tr>
<tr>
<td>DN-string</td>
<td>Note The subordinate server must have the same name as the trustpoint that was created in Step 3 above.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>(Optional) Specifies the DN as the CA issuer name for the certificate server.</td>
</tr>
<tr>
<td>mode sub-cs</td>
<td>Places the PKI server into sub-certificate server mode.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>• Sub CA and CA relationship is supported only when all the devices on the network are of Cisco IOS XE device type. Hence a Cisco IOS XE sub CA cannot enroll to a third party CA server.</td>
</tr>
<tr>
<td>auto-rollover</td>
<td>(Optional) Enables the automated CA certificate rollover functionality.</td>
</tr>
</tbody>
</table>

**Example:**

Step 6

Device(ca-trustpoint)# exit

Step 7

Device(config)# crypto pki server sub

Step 8

Device(cs-server)# issuer-name CN=sub CA, O=Cisco, C=us

Step 9

Device(cs-server)# mode sub-cs

Step 10

Device(cs-server)# auto-rollover [time-period]
### Command or Action

<table>
<thead>
<tr>
<th>Command/Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(cs-server)# auto-rollover 90</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>(Optional) Automatically grants reenrollment requests for subordinate CAs and RA-mode CAs without operator intervention.</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td></td>
</tr>
<tr>
<td>• time-period --default is 30 days.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(cs-server)# grant auto rollover {ca-cert</td>
<td>ra-cert}</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>(Optional) Sets the hash function for the signature that the Cisco IOS XE certificate authority (CA) uses to sign all of the certificates issued by the server.</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td></td>
</tr>
<tr>
<td>• md5 — Specifies that MD5, the default hash function, is used. (No longer recommended).</td>
<td></td>
</tr>
<tr>
<td>• sha1 — Specifies that the SHA-1 hash function is used. (No longer recommended).</td>
<td></td>
</tr>
<tr>
<td>• sha256 — Specifies that the SHA-256 hash function is used.</td>
<td></td>
</tr>
<tr>
<td>• sha384 — Specifies that the SHA-384 hash function is used.</td>
<td></td>
</tr>
<tr>
<td>• sha512 — Specifies that the SHA-512 hash function is used.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(cs-server)# hash sha384</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td>Enables or reenables the certificate server.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(cs-server)# no shutdown</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td></td>
</tr>
<tr>
<td>If this is the first time that a subordinate certificate server is enabled and enrolled, the certificate request must be manually granted.</td>
<td></td>
</tr>
</tbody>
</table>

### Examples

If the certificate server fails to enable or if the certificate server has trouble handling the request that has been configured, you can use the **debug crypto pki server** command to troubleshoot your configuration as shown in the following below (Clock Not Set and Trustpoint Not Configured). Here, "ms2" refers to the label of a 2048-bit RSA key pair.

Router# debug crypto pki server
Clock Not Set

Router(config)# crypto pki server ms2
Router(cs-server)# mode sub-cs
Router(cs-server)# no shutdown
%Some server settings cannot be changed after CA certificate generation.
% Please enter a passphrase to protect the private key % or type Return to exit
Password:
*Jan 6 20:57:37.667: CRYPTO_CS: enter FSM: input state initial, input signal no shut
Re-enter password:
*Jan 6 20:57:45.303: CRYPTO_CS: starting enabling checks
*Jan 6 20:57:45.303: CRYPTO_CS: key 'sub' does not exist; generated automatically[OK]
% Time has not been set. Cannot start the Certificate server

Trustpoint Not Configured

Router(config)# crypto pki server ms2
Router(cs-server)# mode sub-cs
Router(cs-server)# no shutdown
%Some server settings cannot be changed after CA certificate generation.
% Please enter a passphrase to protect the private key % or type Return to exit
Password:
Jan 6 21:00:15.961: CRYPTO_CS: enter FSM: input state initial, input signal no shut.
Jan 6 21:03:34.309: CRYPTO_CS: enter FSM: input state initial, input signal time set.
Jan 6 21:03:34.313: CRYPTO_CS: exit FSM: new state initial.
Jan 6 21:03:34.313: CRYPTO_CS: cs config has been unlocked
Re-enter password:
Jan 6 21:03:44.413: CRYPTO_CS: starting enabling checks
Jan 6 21:03:44.413: CRYPTO_CS: associated trust point 'sub' does not exist; generated automatically
Jan 6 21:03:44.417: CRYPTO_CS: key 'sub' does not exist; generated automatically[OK]
Jan 6 21:04:03.993: CRYPTO_CS: nvram filesystem
Jan 6 21:04:04.077: CRYPTO_CS: serial number 0x1 written.
You must specify an enrollment URL for this CA before you can authenticate it.
% Failed to authenticate the Certificate Authority

If the certificate server fails to obtain its signing certificate from the root certificate server, you can use the debug crypto pki transactions command to troubleshoot your configuration as shown in the following example:

Router# debug crypto pki transactions
Jan 6 21:07:00.311: CRYPTO_CS: enter FSM: input state initial, input signal time set
Jan 6 21:07:00.311: CRYPTO_CS: exit FSM: new state initial
Jan 6 21:07:00.311: CRYPTO_CS: cs config has been unlocked no sh
%Some server settings cannot be changed after CA certificate generation.
% Please enter a passphrase to protect the private key % or type Return to exit
Password:
Jan 6 21:07:03.535: CRYPTO_CS: enter FSM: input state initial, input signal no shut
Re-enter password:
Jan 6 21:07:10.619: CRYPTO_CS: starting enabling checks
Jan 6 21:07:10.619: CRYPTO_CS: key 'sub' does not exist; generated automatically[OK]
Jan 6 21:07:20.535: %SSH-5-ENABLED: SSH 1.99 has been enabled
Jan 6 21:07:25.991: CRYPTO_CS: serial number 0x1 written.
Jan 6 21:07:27.863: CRYPTO_CS: authenticating the CA 'sub'
Jan 6 21:07:27.867: CRYPTO_PKI: Sending CA Certificate Request:
GET /cgi-bin/pkiclient.exe?operation=GetCACert&message=sub HTTP/1.0
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Cisco PKI)
Jan 6 21:07:27.871: CRYPTO_PKI: can not resolve server name/IP address
Jan 6 21:07:27.871: CRYPTO_PKI: Using unresolved IP Address 192.0.2.6 Certificate has the
following attributes:
  Fingerprint MD5: 328ACC02 52B25DB8 22F8F104 B6055B5B
  Fingerprint SHA1: 02FD799D DD40C7A8 61DC53AB 1B89A3EA 2A729EE2
% Do you accept this certificate? [yes/no]:
Jan 6 21:07:30.879: CRYPTO_PKI: http connection opened
Jan 6 21:07:30.903: CRYPTO_PKI: HTTP response header:
  HTTP/1.1 200 OK
Date: Thu, 06 Jan 2005 21:07:30 GMT
Server: server-IOS
Content-Type: application/x-x509-ca-cert
Expires: Thu, 06 Jan 2005 21:07:30 GMT
Last-Modified: Thu, 06 Jan 2005 21:07:30 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
Accept-Ranges: none

Content-Type indicates we have received a CA certificate.
Jan 6 21:07:30.907: CRYPTO_PKI: transaction GetCACert completed
Jan 6 21:07:30.907: CRYPTO_PKI: CA certificate received.
Jan 6 21:07:30.907: CRYPTO_PKI: CA certificate received.
Jan 6 21:07:30.927: CRYPTO_PKI: crypto_pki_authenticate_tp_cert()
Jan 6 21:07:30.927: CRYPTO_PKI: trustpoint sub authentication status = 0 y Trustpoint CA
certificate accepted.%
% Certificate request sent to Certificate Authority
% Enrollment in progress...
Router (cs-server)#
Jan 6 21:07:51.772: CRYPTO_CA: certificate not found
Jan 6 21:07:51.772: CRYPTO_CA: certificate not found
Jan 6 21:07:52.460: CRYPTO_CS: Publishing 213 bytes to crl file nvram:sub.crl
Jan 6 21:07:54.352: CRYPTO_CS: exit FSM: new state check failed
Jan 6 21:07:54.352: CRYPTO_CS: cs config has been locked
Jan 6 21:07:54.356: CRYPTO_PKI: transaction PKCSReq completed
Jan 6 21:07:54.356: CRYPTO_PKI: status:
  EC188F65 64356C80
  0C7BE187 0DFC884D D32CAA75
Jan 6 21:07:56.508: CRYPTO_PKI: can not resolve server name/IP address
Jan 6 21:07:56.508: CRYPTO_PKI: Using unresolved IP Address 192.0.2.6
Jan 6 21:07:59.136: CRYPTO_PKI: Received msg of 776 bytes
Jan 6 21:07:59.136: CRYPTO_PKI: HTTP response header:
  HTTP/1.1 200 OK
Date: Thu, 06 Jan 2005 21:07:57 GMT
Server: server-IOS
Content-Type: application/x-pki-message
Expires: Thu, 06 Jan 2005 21:07:57 GMT
Last-Modified: Thu, 06 Jan 2005 21:07:57 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
Accept-Ranges: none
Jan 6 21:07:59.324: The PKCS #7 message has 1 verified signers.
Jan 6 21:07:59.328: signing cert: issuer-cn=root1
Jan 6 21:07:59.324: Signed Attributes:
Jan 6 21:08:00.788: CRYPTO_PKI: can not resolve server name/IP address
Jan 6 21:08:00.788: CRYPTO_PKI: Using unresolved IP Address 192.0.2.6
Jan 6 21:08:00.796: CRYPTO_PKI: http connection opened
Jan 6 21:08:11.804: CRYPTO_PKI: received msg of 776 bytes
Jan 6 21:08:11.804: CRYPTO_PKI: HTTP response header: HTTP/1.1 200 OK
Date: Thu, 06 Jan 2005 21:08:01 GMT
Server: server-IOS
Content-Type: application/x-pki-message
Expires: Thu, 06 Jan 2005 21:08:01 GMT
Last-Modified: Thu, 06 Jan 2005 21:08:01 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
Accept-Ranges: none

Jan 6 21:08:11.992: The PKCS #7 message has 1 verified signers.
Jan 6 21:08:11.992: signing cert: issuer-cn=root1
Jan 6 21:08:11.996: Signed Attributes:
Jan 6 21:08:21.996: CRYPTO_PKI: All sockets are closed for trustpoint sub.
Jan 6 21:08:31.996: CRYPTO_PKI: All sockets are closed for trustpoint sub.
Jan 6 21:08:41.996: CRYPTO_PKI: All sockets are closed for trustpoint sub.
Jan 6 21:08:51.996: CRYPTO_PKI: All sockets are closed for trustpoint sub.
Jan 6 21:09:11.996: CRYPTO_PKI: resend GetCertInitial, 1
Jan 6 21:09:11.996: CRYPTO_PKI: All sockets are closed for trustpoint sub.
Jan 6 21:09:11.996: CRYPTO_PKI: resend GetCertInitial for session: 0
Jan 6 21:09:11.996: CRYPTO_PKI: can not resolve server name/IP address
Jan 6 21:09:11.996: CRYPTO_PKI: Using unresolved IP Address 192.0.2.6
Jan 6 21:09:12.024: CRYPTO_PKI: http connection opened% Exporting Certificate Server signing certificate and keys...
Jan 6 21:09:14.784: CRYPTO_PKI: received msg of 1611 bytes
Jan 6 21:09:14.784: CRYPTO_PKI: HTTP response header:
HTTP/1.1 200 OK
Date: Thu, 06 Jan 2005 21:09:13 GMT
Server: server-IOS
Content-Type: application/x-pki-message
Expires: Thu, 06 Jan 2005 21:09:13 GMT
Last-Modified: Thu, 06 Jan 2005 21:09:13 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
Accept-Ranges: none

Jan 6 21:09:14.972: The PKCS #7 message has 1 verified signers.
Jan 6 21:09:14.972: signing cert: issuer-cn=root1
Jan 6 21:09:14.972: Signed Attributes:
Jan 6 21:09:14.976: CRYPTO_PKI: status = 100: certificate is granted
Jan 6 21:09:15.668: The PKCS #7 message contains 1 certs and 0 crls.
Jan 6 21:09:15.688: Newly-issued Router Cert: issuer-cn=root serial=2
Jan 6 21:09:15.688: start date: 21:08:03 GMT Jan 6 2005
Jan 6 21:09:15.688: end date: 21:08:03 GMT Jan 6 2006
Jan 6 21:09:15.692: Received router cert from CA
Jan 6 21:09:15.740: CRYPTO_CA: certificate not found
Jan 6 21:09:15.744: CRYPTO_PKI: All enrollment requests completed for trustpoint sub.
Jan 6 21:09:15.744: %PKI-6-CERTRET: Certificate received from Certificate Authority
Jan 6 21:09:15.744: CRYPTO_PKI: All enrollment requests completed for trustpoint sub.
Jan 6 21:09:15.744: CRYPTO_PKI: All enrollment requests completed for trustpoint sub.
Jan 6 21:09:15.748: CRYPTO_CS: enter FSM: input state check failed, input signal cert configured
Jan 6 21:09:15.748: CRYPTO_CS: starting enabling checks
Jan 6 21:09:15.748: CRYPTO_CS: nvrav filesystem
Jan 6 21:09:15.820: CRYPTO_CS: old router cert flag 0x8
Jan 6 21:09:15.820: CRYPTO_CS: new router cert flag 0x44
Jan 6 21:09:18.432: CRYPTO_CS: DB version 1
Jan 6 21:09:18.432: CRYPTO_CS: last issued serial number is 0x1
Jan 6 21:09:18.532: CRYPTO_CS: SCEP server started
Jan 6 21:09:18.532: CRYPTO_CS: exit FSM: new state enabled
Jan 6 21:09:18.536: CRYPTO_CS: cs config has been locked
Jan 6 21:09:18.536: CRYPTO_PKI: All enrollment requests completed for trustpoint sub.
If the certificate server fails to enable or if the certificate server has trouble handling the request that has been configured, you can use the `debug crypto pki server` command to troubleshoot the progress of an enrollment. This command can also be used to debug the root CA (turn it on at the root CA).

### Configuring a Certificate Server to Run in RA Mode

The Cisco IOS certificate server can act as an RA for a Cisco IOS CA or another third party CA. Read the details in Step 8 for more information about the `transparent` keyword option if a third-party CA is used.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki trustpoint name`
4. `enrollment url url`
5. `subject-name x.500-name`
6. `exit`
7. `crypto pki server cs-label`
8. `mode ra [transparent]`
9. `auto-rollover [time-period]`
10. `grant auto rollover {ca-cert | ra-cert}`
11. `no shutdown`
12. `no shutdown`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.  
**Example:** Device> enable  
*Enter your password if prompted.* |
| **Step 2** | `configure terminal` | Enters global configuration mode.  
**Example:** Device# configure terminal |
| **Step 3** | `crypto pki trustpoint name` | Declares the trustpoint that your RA mode certificate server should use and enters ca-trustpoint configuration mode.  
**Example:** Device(config)# crypto pki trustpoint ra-server |
| **Step 4** | `enrollment url url` | Specifies the enrollment URL of the issuing CA certificate server (root certificate server).  
**Example:** Device(ca-trustpoint)# enrollment url http://ca-server.company.com |
| **Step 5** | `subject-name x.500-name` | Specifies the subject name the RA uses.  
**Example:** |
### Command or Action

- **Device(ca-trustpoint)# subject-name cn=ioscs RA**

  **Purpose**
  Include “cn=ioscs RA” or “ou=ioscs RA” in the subject name so that the issuing CA certificate server can recognize the RA (see Step 7 below).

**Note**

- **Step 6**
  **exit**
  **Example:**
  Device(ca-trustpoint)# exit

  **Purpose**
  Exits ca-trustpoint configuration mode.

**Step 7**
- **crypto pki server cs-label**
  **Example:**
  Device(config)# crypto pki server ra-server

  **Purpose**
  Enables a Cisco IOS certificate server and enters cs-server configuration mode.

  **Note**
  The certificate server must have the same name as the trustpoint that was created in Step 3 above.

**Step 8**
- **mode ra [transparent]**
  **Example:**
  Device(cs-server)# mode ra

  **Purpose**
  Places the PKI server into RA certificate server mode.

  **Note**
  Use the transparent keyword to allow the CA server in RA mode to interoperate with more than one type of CA server. When the transparent keyword is used, the original PKCS#10 enrollment message is not re-signed and is forwarded unchanged. This enrollment message makes the IOS RA certificate server work with CA servers like the Microsoft CA server.

**Step 9**
- **auto-rollover [time-period]**
  **Example:**
  Device(cs-server)# auto-rollover 90

  **Purpose**
  (Optional) Enables the automatic CA certificate rollover functionality.

  - **time-period** --default is 30 days.

**Step 10**
- **grant auto rollover {ca-cert | ra-cert}**
  **Example:**
  Device(cs-server)# grant auto rollover ra-cert

  **Purpose**
  (Optional) Automatically grants reenrollment requests for subordinate CAs and RA-mode CAs without operator intervention.

  - **ca-cert** --Specifies that the subordinate CA rollover certificate is automatically granted.
  - **ra-cert** --Specifies that the RA-mode CA rollover certificate is automatically granted.

  If this is the first time that a subordinate certificate server is enabled and enrolled, the certificate request must be manually granted.

**Step 11**
- **no shutdown**
  **Example:**

  **Purpose**
  Enables the certificate server.
Purpose

Command or Action  
Device(cs-server)# no shutdown

Note  
After this command is issued, the RA automatically enrolls with the root certificate server. After the RA certificate has been successfully received, you must issue the no shutdown command again, which reenables the certificate server.

Step 12  
no shutdown

Example:  
Device(cs-server)# no shutdown

Reenables the certificate server.

---

**Configuring the Root Certificate Server to Delegate Enrollment Tasks to the RA Mode Certificate Server**

Perform the following steps on the router that is running the issuing certificate server; that is, configure the root certificate server that is delegating enrollment tasks to the RA mode certificate server.

**Note**  
Granting enrollment requests for an RA is essentially the same process as granting enrollment requests for client devices—except that enrollment requests for an RA are displayed in the section “RA certificate requests” of the command output for the `crypto pki server info-requests` command.

**SUMMARY STEPS**

1. enable
2. crypto pki server cs-label info requests
3. crypto pki server cs-label grant req-id
4. configure terminal
5. crypto pki server cs-label
6. grant ra-auto

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>crypto pki server cs-label info requests</td>
<td>Displays the outstanding RA certificate request.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# crypto pki server root-server info requests</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>crypto pki server cs-label grant req-id</td>
<td>Grants the pending RA certificate request.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Device# crypto pki server root-server grant 9</td>
<td>Because the issuing certificate server delegates the enrollment request verification task to the RA, you must pay extra attention to the RA certificate request before granting it.</td>
</tr>
</tbody>
</table>

**Step 4**

Configure terminal

**Example:**

Device# configure terminal

Enters global configuration mode.

**Step 5**

crypto pki server cs-label

**Example:**

Device(config)# crypto pki server root-server

Enables a Cisco IOS certificate server and enters cs-server configuration mode.

**Step 6**

grant ra-auto

**Example:**

Device(cs-server)# grant ra-auto

(Optional) Specifies that all enrollment requests from an RA are to be granted automatically.

**Note**

For the grant ra-auto command to work, you have to include “cn=ioscs RA” or “ou=ioscs RA” in the subject name of the RA certificate. (See Step 2 above.)

---

**What to Do Next**

After you have configured a certificate server, you can use the preconfigured default values or specify values through the CLI for the functionality of the certificate server. If you choose to specify values other than the defaults, see the following section, “Configuring Certificate Server Functionality.”

**Configuring Certificate Server Functionality**

After you have enabled a certificate server and are in certificate server configuration mode, use any of the steps in this task to configure basic certificate server functionality values other than the default values.

**Certificate Server Default Values and Recommended Values**

The default values for a certificate server are intended to address a relatively small network (of about ten devices). For example, the database settings are minimal (through the database level minimal command) and the certificate server handles all CRL requests through SCEP. For larger networks, it is recommended that you use either the database setting “names” or “complete” (as described in the database level command) for possible audit and revocation purposes. Depending on the CRL checking policy, you should also use an external CDP in a larger network.

**Certificate Server File Storage and Publication Locations**

You have the flexibility to store file types to different storage and publication locations.

**SUMMARY STEPS**

1. **database url root-url**
2. `database url {cnm | crl | crt | p12 | pem | ser} root-url`
3. `database url {cnm | crl | crt} publish root-url`
4. `database level {minimal | names | complete}`
5. `database username username [password [encr-type password]]`
6. `database archive {pkecs12 | pem} [password encr-type password]`
7. `issuer-name DN-string`
8. `lifetime {ca-certificate | certificate} time`
9. `lifetime crl time`
10. `lifetime enrollment-request time`
11. `cdp-url url`
12. `no shutdown`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Specifies the primary location where database entries for the certificate server are written. If this command is not specified, all database entries are written to NVRAM.</td>
</tr>
<tr>
<td><code>database url root-url</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>Device(cs-server)# database url tftp://cert-svr-db.company.com</code></td>
<td></td>
</tr>
</tbody>
</table>
| **Step 2** | Specifies certificate server critical file storage location by file type.  

*Note* If this command is not specified, all critical files are stored to the primary location if specified. If the primary location is not specified, all critical files are stored to NVRAM. |
| `database url {cnm | crl | crt | p12 | pem | ser} root-url` |  |
| Example: `Device(cs-server)# database url ser nvram:` |  |
| **Step 3** | Specifies certificate server publish location by file type.  

*Note* If this command is not specified, all publish files are stored to the primary location if specified. If the primary location is not specified, all publish files are stored to NVRAM. |
| `database url {cnm | crl | crt} publish root-url` |  |
| Example: `Device(cs-server)# database url crl publish tftp://csdb_specific_crl_files.company.com` |  |
| **Step 4** | Controls what type of data is stored in the certificate enrollment database.  
- **minimal** --Enough information is stored only to continue issuing new certificates without conflict; the default value.  
- **names** --In addition to the information given in the minimal level, the serial number and subject name of each certificate.  
- **complete** --In addition to the information given in the minimal and names levels, each issued certificate is written to the database. |
<p>| <code>database level {minimal | names | complete}</code> |  |
| Example: <code>Device(cs-server)# database level complete</code> |  |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong> database username <em>username</em> [password <em>password</em> [encr-type <em>encr-type</em>]]</td>
<td>The complete keyword produces a large amount of information; if it is issued, you should also specify an external TFTP server in which to store the data through the database url command.</td>
</tr>
<tr>
<td>Example: Device(cs-server)# database username user password PASSWORD</td>
<td>(Optional) Sets a username and password when a user is required to access a primary certificate enrollment database storage location.</td>
</tr>
<tr>
<td><strong>Step 6</strong> database archive {pkcs12</td>
<td>pem} [password <em>password</em> [encr-type <em>encr-type</em>]]</td>
</tr>
<tr>
<td>Example: Device(cs-server)# database archive pem</td>
<td>• The password is optional. If it is not configured, you are prompted for the password when the server is turned on for the first time.</td>
</tr>
<tr>
<td><strong>Step 7</strong> issuer-name <em>DN-string</em></td>
<td>(Optional) Sets the CA issuer name to the specified distinguished name (<em>DN-string</em>). The default value is as follows: <strong>issuer-name cn=cs-label</strong>.</td>
</tr>
<tr>
<td>Example: Device(cs-server)# issuer-name my-server</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> lifetime {ca-certificate</td>
<td>certificate} <em>time</em></td>
</tr>
<tr>
<td>Example: Device(cs-server)# lifetime certificate 888</td>
<td>Valid values range from 1 day to 1825 days. The default CA certificate lifetime is 3 years; the default certificate lifetime is 1 year. The maximum certificate lifetime is 1 month less than the lifetime of the CA certificate.</td>
</tr>
<tr>
<td><strong>Step 9</strong> lifetime crl <em>time</em></td>
<td>(Optional) Defines the lifetime, in hours, of the CRL that is used by the certificate server.</td>
</tr>
<tr>
<td>Example: Device(cs-server)# lifetime crl 333</td>
<td>Maximum lifetime value is 336 hours (2 weeks). The default value is 168 hours (1 week).</td>
</tr>
<tr>
<td><strong>Step 10</strong> lifetime enrollment-request <em>time</em></td>
<td>(Optional) Specifies how long an enrollment request should stay in the enrollment database before being removed.</td>
</tr>
<tr>
<td>Example: Device(cs-server)# lifetime enrollment-request 888</td>
<td>Maximum lifetime is 1000 hours.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 11</strong></td>
<td>(Optional) Defines the CDP location to be used in the certificates that are issued by the certificate server.</td>
</tr>
<tr>
<td>cdp-url url</td>
<td>• The URL must be an HTTP URL.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>If you have PKI clients that are not running Cisco IOS software and that do not support a SCEP GetCRL request, use the following URL format:</td>
</tr>
<tr>
<td></td>
<td>Or, if your Cisco IOS certificate server is also configured as your CDP, use the following URL format:</td>
</tr>
<tr>
<td></td>
<td><a href="http://cs-addr/cgi-bin/pkiclient.exe?operation=GetCRL">http://cs-addr/cgi-bin/pkiclient.exe?operation=GetCRL</a></td>
</tr>
<tr>
<td></td>
<td>where cs-addr is the location of the certificate server.</td>
</tr>
<tr>
<td></td>
<td>In order to force the parser to retain the embedded question mark within the specified location, enter Ctrl-v prior to the question mark. If this action is not taken, CRL retrieval through HTTP returns an error message.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Although this command is optional, it is strongly recommended for any deployment scenario.</td>
</tr>
</tbody>
</table>

### Step 12

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>no shutdown</td>
<td>Enables the certificate server.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>You should issue this command only after you have completely configured your certificate server.</td>
</tr>
<tr>
<td>Device(cs-server)# no shutdown</td>
<td></td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to configure a CDP location where the PKI clients do not support SCEP GetCRL requests:

Device(config)# crypto pki server aaa
Device(cs-server)# database level minimum
Device(cs-server)# database url tftp://10.1.1.1/username1/
Device(cs-server)# issuer-name CN=aaa
Device(cs-server)# cdp-url http://server.company.com/certEnroll/aaa.crl

After a certificate server has been enabled on a router, the `show crypto pki server` command displays the following output:

Device# show crypto pki server

Certificate Server status: enabled, configured
Granting mode is: manual
Last certificate issued serial number: 0x1
CA certificate expiration timer: 19:31:15 PST Nov 17 2006
Current storage dir: nvram:
Database Level: Minimum - no cert data written to storage
Working with Automatic CA Certificate Rollover

Starting Automated CA Certificate Rollover Immediately

Use this task to initiate the automated CA certificate rollover process immediately on your root CA server.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `crypto pki server cs-label rollover [cancel]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto pki server cs-label rollover [cancel]</td>
<td>Immediately starts the CA certificate rollover process by generating a shadow CA certificate.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# crypto pki server mycs rollover</td>
<td>To delete the CA certificate rollover certificate and keys, use the cancel keyword.</td>
</tr>
</tbody>
</table>

Requesting a Certificate Server Client Rollover Certificate

Use this task to request a certificate server client’s rollover certificate.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `crypto pki server cs-label rollover request pkcs10 terminal`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment

Exporting a CA Rollover Certificate

Use this task to export a CA rollover certificate.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. crypto pki export trustpoint pem {terminal | url url} [rollover]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>crypto pki export trustpoint pem {terminal</td>
<td>url url} [rollover]</td>
</tr>
</tbody>
</table>

Example

The following example shows a rollover certificate request being inputted into the server:

```
Device# crypto pki server mycs rollover request pkcs10 terminal
% Enter Base64 encoded or PEM formatted PKCS10 enrollment request. % End with a blank line or "quit" on a line by itself.
-----BEGIN CERTIFICATE REQUEST-----
MIIBUTCBwIBADASMRADgYDVQQDEwdOZXdSb290MIGfMA0GCSqGSIb3DQEBAQUA
A4GNADCBiQkgDQHEe1ERSa320zgLQQk+31hV/R2HpyYQ/iM6uT1jkJf5iy0UPR
wF/X16yUNmg+ObiG9W9uASF0nxzw+f07d2X2yh1Pakfyc2wbP27C/aqJNOW9uPf
sBxEc40Xe0d5Fmh0YKOSAShfYKOflnYQR2Kmm2x/33QGol5QyRvjeWQIDQAB
coAwDQYJKoZIhvcNAQEEBQADgYEAeM90r4d79X6xhD0qjuYJXfBCovv4FNyFejr
aBS/y6CnNYYySF8UBUohXYIGTw4I4+saj6i8gYfoFUW1/L82djS18TLrUr6wcOA
RqfAfps7HW1e4cizofjAUU+C71NcobCAsF1o6g2nIEjgQ/2yfK90?ab3SCJZBfe
eW3tyCo=
-----END CERTIFICATE REQUEST-----
```
Maintaining Verifying and Troubleshooting the Certificate Server Certificates and the CA

Managing the Enrollment Request Database

SCEP supports two client authentication mechanisms—manual and preshared key. Manual enrollment requires the administrator at the CA server to specifically authorize the enrollment requests; enrollment using preshared keys allows the administrator to preauthorize enrollment requests by generating a one-time password (OTP).

Use any of the optional steps within this task to help manage the enrollment request database by performing functions such as specifying enrollment processing parameters that are to be used by SCEP and by controlling the run-time behavior or the certificate server.

Summary Steps

1. enable
2. crypto pki server cs-label grant {all | req-id}
3. crypto pki server cs-label reject {all | req-id}
4. crypto pki server cs-label password generate minutes
5. crypto pki server cs-label revoke certificate-serial-number
6. crypto pki server cs-label request pkcs10 {url | terminal} [base64 | pem]
7. show crypto pki server cs-label crl
8. show crypto pki server cs-label requests

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>crypto pki server cs-label grant {all</td>
<td>req-id}</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# crypto pki server mycs grant all</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto pki server cs-label reject {all</td>
<td>req-id}</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# crypto pki server mycs reject all</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>crypto pki server cs-label password generate minutes</td>
<td>Generates a OTP for SCEP requests.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Device# crypto pki server mycs password generate 75</td>
<td>• <em>minutes</em> --Length of time, in minutes, that the password is valid. Valid values range from 1 to 1440 minutes. The default is 60 minutes.</td>
<td></td>
</tr>
</tbody>
</table>

**Note** Only one OTP is valid at a time; if a second OTP is generated, the previous OTP is no longer valid.

**Step 5**

| crypto pki server cs-label revoke certificate-serial-number | Reverses a certificate on the basis of its serial number. |

**Example:**

Device# crypto pki server mycs revoke 3

| crypto pki server cs-label request pkcs10 {url | terminal} [base64] pem | Manually adds either a base64-encoded or PEM-formatted PKCS10 certificate enrollment request to the request database.  

After the certificate is granted, it is displayed on the console terminal using base64 encoding. |

**Example:**

Device# crypto pki server mycs request pkcs10 terminal pem

| show crypto pki server cs-label crl | Displays information regarding the status of the current CRL. |

**Example:**

Device# show crypto pki server mycs crl

| show crypto pki server cs-label requests | Displays all outstanding certificate enrollment requests. |

**Example:**

Device# show crypto pki server mycs requests

### Removing Requests from the Enrollment Request Database

After the certificate server receives an enrollment request, the server can leave the request in a pending state, reject it, or grant it. The request stays in the enrollment request database for 1 week until the client polls the certificate server for the result of the request. If the client exits and never polls the certificate server, you can remove either individual requests or all requests from the database.
Use this task to remove requests from the database and allow the server to be returned to a clean slate with respect to the keys and transaction IDs. Also, you can use this task to help troubleshoot a SCEP client that may not be behaving properly.

SUMMARY STEPS

1. enable
2. crypto pki server cs-label remove {all | req-id}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  Example:  
  Device> enable |
| **Step 2** crypto pki server cs-label remove {all | req-id} | Removes enrollment requests from the enrollment request database.  
  Example:  
  Device# crypto pki server mycs remove 15 |

Deleting a Certificate Server

Users can delete a certificate server from the PKI configuration if they no longer want it on the configuration. Typically, a subordinate certificate server or an RA is being deleted. However, users may delete a root certificate server if they are moving it to another device through the archived RSA keys.

Perform this task to delete a certificate server from your PKI configuration.

Note

When a certificate server is deleted, the associated trustpoint and key are also deleted.

SUMMARY STEPS

1. enable
2. configure terminal
3. no crypto pki server cs-label

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  Example:  
  Device> enable |
| **Step 2** configure terminal | Enters global configuration mode.  
  Example:  
  Device# configure terminal |
Verifying and Troubleshooting Certificate Server and CA Status

Use any of the following optional steps to verify the status of the certificate server or the CA.

**SUMMARY STEPS**

1. **enable**
2. **debug crypto pki server**
3. **dir filesystem :**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> debug crypto pki server</td>
<td>Enables debugging for a crypto PKI certificate server.</td>
</tr>
<tr>
<td>Example: Device# debug crypto pki server</td>
<td>• This command can be used for monitoring the progress of an enrollment and for troubleshooting if the certificate server fails to respond or if the certificate server has trouble handling the request that has been configured.</td>
</tr>
<tr>
<td><strong>Step 3</strong> dir filesystem :</td>
<td>Displays a list of files on a file system.</td>
</tr>
<tr>
<td>Example: Device# dir slot0:</td>
<td>• This command can be used to verify the certificate server autoarchived file if the database url command was entered to point to a local file system. You should be able to at least see “cs-label.ser” and “cs-label.crl” files in the database.</td>
</tr>
</tbody>
</table>

**Verifying CA Certificate Information**

To obtain information relating to the CA certificates including the certificate server rollover process, rollover certificates, and timers, you may use any of the following commands.

**Note**

These commands are not exclusive to shadow certificate information. If no shadow certificate exists, the following commands display the active certificate information.
SUMMARY STEPS

1. crypto pki certificate chain
2. crypto pki server info requests
3. show crypto pki certificates
4. show crypto pki server
5. show crypto pki trustpoints

DETAILED STEPS

Step 1  crypto pki certificate chain

Example:

Device(config)# crypto pki certificate chain mica

certificate 06
Certificate ca 01
! This is the peer’s shadow PKI certificate.
certificate rollover 0b
! This is the CA shadow PKI certificate
certificate rollover ca 0a

Displays the certificate chain details and to distinguish the current active certificate from the rollover certificate in the certificate chain. The following example shows a certificate chain with an active CA certificate and a shadow, or rollover, certificate:

Step 2  crypto pki server info requests

Example:

Device# crypto pki server myca info requests

Enrollment Request Database:
RA certificate requests:
ReqID  State  Fingerprint  SubjectName
--------------------------------------------------------------
RA rollover certificate requests:
ReqID  State  Fingerprint  SubjectName
--------------------------------------------------------------
Router certificates requests:
ReqID  State  Fingerprint  SubjectName
--------------------------------------------------------------
1 pending  A426AF07FE3A4BB69062E0E47198E5BF hostname=client
Router rollover certificates requests:
ReqID  State  Fingerprint  SubjectName
--------------------------------------------------------------
2 pending  B69062E0E47198E5BFA426AF07FE3A4B hostname=client

Displays all outstanding certificate enrollment requests. The following example shows the output for shadow PKI certificate information requests:

Step 3  show crypto pki certificates

Example:

Device# show crypto pki certificates

Certificate
  Subject Name
  Name: myrouter.example.com
IP Address: 192.0.2.1
Serial Number: 04806682
Status: Pending
Key Usage: General Purpose
Fingerprint: 428125BD A3419600 3F6C7831 6CD8FA95 00000000

CA Certificate
Status: Available
Certificate Serial Number: 3051DF7123BEE31B8341DFE4B3A338E5F
Key Usage: Not Set

Displays information about the certificate, the certification authority certificate, shadow certificates, and any registration authority certificates. The following example displays the certificate of the router and the certificate of the CA. There is no shadow certificate available. A single, general-purpose RSA key pair was previously generated, and a certificate was requested but not received for that key pair. Note that the certificate status of the router shows “Pending.” After the router receives its certificate from the CA, the Status field changes to “Available” in the `show` output.

**Step 4**

show crypto pki server

**Example:**

Device# show crypto pki server

Certificate Server routercs:
  Status: enabled, configured
  Issuer name: CN=walnutcs
  CA cert fingerprint: 800F5944 74337E5B C2DF6C52 9A7B1BDB
  Granting mode is: auto
  Last certificate issued serial number: 0x7
  CRL NextUpdate timer: 21:50:56 GMT Mar 5 2004
  Current storage dir: nvram:
  Database Level: Minimum - no cert data written to storage
  Rollover status: available for rollover
  Rollover CA cert fingerprint: 6AAF5944 74227A5B 23DF3E52 9A7F1FEF
  Rollover CA certificate expiration timer: 22:10:29 GMT Jan 29 2017

Displays the current state and configuration of the certificate server. The following example shows that the certificate server “routercs” has rollover configured. The CA auto-rollover time has occurred and the rollover, or shadow, PKI certificate is available. The status shows the rollover certificate fingerprint and rollover CA certificate expiration timer information.

**Step 5**

show crypto pki trustpoints

**Example:**

Device# show crypto pki trustpoints

Trustpoint vpn:
  Subject Name:
  cn=Cisco SSL CA
  o=Cisco Systems
  Serial Number: 0FFE8D6C1B6F6D9DEA7875875E4C695
  Certificate configured.
  Rollover certificate configured.
  Enrollment Protocol:
  SCEPv1, PKI Rollover

Displays the trustpoints that are configured in the device. The following output shows that a shadow CA certificate is available and shows the SCEP capabilities reported during the last enrollment operation:
Configuration Examples for Using a Certificate Server

Example: Configuring Specific Storage and Publication Locations

The following example shows the configuration of a minimal local file system, so that the certificate server can respond quickly to certificate requests. The .ser and .crl files are stored on the local Cisco IOS system for fast access, and a copy of all of the .crt files are published to a remote location for long-term logging.

```
crypto pki server myserver
 ! Pick your database level.
 database level minimum
 ! Specify a location for the .crt files that is different than the default local
 ! Cisco IOS file system.
 database url crt publish http://url username user1 password secret
```

---

**Note**

Free space on the local file system should be monitored, in case the .crl file becomes too large.

The following example shows the configuration of a primary storage location for critical files, a specific storage location for the critical file serial number file, the main certificate server database file, and a password protected file publication location for the CRL file:

```
Device(config)# crypto pki server mycs
Device(cs-server)# database url ftp://cs-db.company.com

! Server database url was changed. You need to move the
! existing database to the new location.
! Device(cs-server)# database url ser nvram:
Device(cs-server)# database url crl publish ftp://crl.company.com username myname password mypassword
Device(cs-server)# end
```

The following output displays the specified primary storage location and critical file storage locations specified:

```
Device# show

Certificate Server mycs:
 Status: disabled
 Server's configuration is unlocked (enter "no shut" to lock it)
 Issuer name: CN=mycs
 CA cert fingerprint: -Not found-
 Granting mode is: manual
 Last certificate issued serial number: 0x0
 CA certificate expiration timer: 00:00:00 GMT Jan 1 1970
 CRL not present.
 Current primary storage dir: ftp://cs-db.company.com
 Current storage dir for .ser files: nvram:
 Database Level: Minimum - no cert data written to storage
```

The following output displays all storage and publication locations. The serial number file (.ser) is stored in NVRAM.
Example: Removing Enrollment Requests from the Enrollment Request Database

The following examples show both the enrollment requests that are currently in the enrollment request database and the result after one of the enrollment requests has been removed from the database.

Example: Enrollment Request Currently in the Enrollment Request Database

The following example shows that the `crypto pki server info requests` command has been used to display the enrollment requests that are currently in the Enrollment Request Database:

Device# crypto pki server myserver info requests

<table>
<thead>
<tr>
<th>ReqID</th>
<th>State</th>
<th>Fingerprint</th>
<th>SubjectName</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>pending</td>
<td>1B07F3021DAAB0F19F35DA25D01D8567</td>
<td>hostname-host1.company.com</td>
</tr>
<tr>
<td>1</td>
<td>denied</td>
<td>5322459D2DC70H3F8EF3D03A795CF636</td>
<td>hostname-host2.company.com</td>
</tr>
</tbody>
</table>

Example: crypto pki server remove Command Used to Remove One Enrollment Request

The following example shows that the `crypto pki server remove` command has been used to remove Enrollment Request 1:

Device# crypto pki server myserver remove 1

Example: Enrollment Request Database After the Removal of One Enrollment Request

The following example shows the result of the removal of Enrollment Request 1 from the Enrollment Request Database:

Device# crypto pki server mycs info requests

<table>
<thead>
<tr>
<th>ReqID</th>
<th>State</th>
<th>Fingerprint</th>
<th>SubjectName</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>pending</td>
<td>1B07F3021DAAB0F19F35DA25D01D8567</td>
<td>hostname-host1.company.com</td>
</tr>
</tbody>
</table>
Example: Autoarchiving the Certificate Server Root Keys

The following output configurations and examples show what you might see if the `database archive` command has not been configured (that is, configured using the default value); if the `database archive` command has been configured to set the CA certificate and CA key archive format as PEM, without configuring a password; and if the `database archive` command has been configured to set the CA certificate and CA key archive format as PKCS12, with a password configured. The last example is sample content of a PEM-formatted archive file. The following example, “ms2” refers to the label of a 2048-bit key pair.

Example: `database archive` Command Not Configured

```
Device(config)# crypto pki server ms2
Device(cs-server)# no shutdown
% Ready to generate the CA certificate.
% Some server settings cannot be changed after CA certificate generation.
Are you sure you want to do this? [yes/no]: y
% Exporting Certificate Server signing certificate and keys...
% Please enter a passphrase to protect the private key.
Password:
% Certificate Server enabled.
```

Device(cs-server)# end
Device# dir nvram:
Directory of nvram:/
125 -rw- 1693 <no date> startup-config
126 ---- 5 <no date> private-config
 1 -rw- 32 <no date> myserver.ser
 2 -rw- 214 <no date> myserver.crl
! Note the next line, which indicates PKCS12 format.
 3 -rw- 1499 <no date> myserver.p12

Example: `database archive` Command and pem Keyword Configured

```
Device(config)# crypto pki server ms2
Device(cs-server)# database archive pem
Device(cs-server)# no shutdown
% Ready to generate the CA certificate.
% Some server settings cannot be changed after CA certificate generation.
Are you sure you want to do this? [yes/no]: y
% Exporting Certificate Server signing certificate and keys...
% Please enter a passphrase to protect the private key.
Password:
% Certificate Server enabled.
```
Example: Autoarchiving the Certificate Server Root Keys

When the password is entered, it is encrypted. However, it is recommended that you remove the password from the configuration after the archive has finished.

Example: database archive Command and pkcs12 Keyword (and Password) Configured

When the password is entered, it is encrypted. However, it is recommended that you remove the password from the configuration after the archive has finished.

Example: PEM-Formatted Archive

The following sample output shows that autoarchiving has been configured in PEM file format. The archive consists of the CA certificate and the CA private key. To restore the certificate server using the backup, you would have to import the PEM-formatted CA certificate and CA key individually.

In addition to the CA certificate and CA key archive files, you should also back up the serial file (.ser) and the CRL file (.crl) regularly. The serial file and the CRL file are both critical for CA operation if you need to restore your certificate server.

Example: PEM-Formatted Archive

The following sample output shows that autoarchiving has been configured in PEM file format. The archive consists of the CA certificate and the CA private key. To restore the certificate server using the backup, you would have to import the PEM-formatted CA certificate and CA key individually.

In addition to the CA certificate and CA key archive files, you should also back up the serial file (.ser) and the CRL file (.crl) regularly. The serial file and the CRL file are both critical for CA operation if you need to restore your certificate server.
Example: Restoring a Certificate Server from Certificate Server Backup Files

The following example shows that restoration is from a PKCS12 archive and that the database URL is NVRAM (the default).

```
Device# copy tftp://192.0.2.71/backups.ser nvram:mycs.ser

Destination filename [mycs.ser]? 32 bytes copied in 1.320 secs (24 bytes/sec)
```

```
Device# copy tftp://192.0.2.71/backups.crl nvram:mycs.crl

Destination filename [mycs.crl]? 214 bytes copied in 1.324 secs (162 bytes/sec)
```

```
Device# configure terminal
Device(config)# crypto pki import mycs pkcs12 tftp://192.0.2.71/mycs.p12 cisco123

Source filename [mycs.p12]?

CRYPTO_PKI: Imported PKCS12 file successfully.
```

```
Device(config)# crypto pki server mycs

! fill in any certificate server configuration here

Device(config)# no shutdown

Device# show crypto pki server

Certificate Server enabled.
Device# show crypto pki

Certificate Server:
```
Certificate Server mycs:

Status: enabled
Server's current state: enabled
Issuer name: CN=mycs
CA cert fingerprint: 34885330 B13EAD45 196DA461 B43E813F
Granting mode is: manual
Last certificate issued serial number: 0x1
CA certificate expiration date: 01:49:13 GMT Aug 28 2007
CRL NextUpdate date: 01:49:16 GMT Sep 4 2004
Current storage dir: nvram:
Database Level: Minimum - no cert data written to storage

The following examples show that restoration is from a PEM archive and that the database URL is flash:

Device# copy tftp://192.0.2.71/backup.ser flash:mycs.ser
Destination filename [mycs.ser]?
32 bytes copied in 1.331 secs (24 bytes/sec)

Router# copy tftp://192.0.2.71/backup.crl flash:mycs.crl
Destination filename [mycs.crl]?
214 bytes copied in 1.324 secs (162 bytes/sec)

Device# configure terminal

! Because CA cert has Digital Signature usage, you need to import using the "usage-keys" keyword

Device(config)# crypto ca import mycs pem usage-keys terminal cisco123
% Enter PEM-formatted CA certificate.
% End with a blank line or "quit" on a line by itself.

-----BEGIN CERTIFICATE-----
MIIB9zCCAWCgAwIBAgIBATANBgkqhkiG9w0BAQQQFADApmQoWcYDVQQEwRteWNz
MB4XDTA0MkwJMIxMDI1NloXDTA3MDkMjIxMDI1NlwZENMAsGAIUEAxMEBi1j
czCBmzANBgkqhkiG9w0BAQAQQFADApmQoWcYDVQQEwRteWNz
K7ZjJauUotTMYVQQxZmMwU5/s9jEe5FV2YonrG8q9m6c6l3k9nIRPCfoc62L
GpahBbMNbgmdo10iPHtnR12pENZDTlZACgByPjY4VuncC36ewLqQnYepp
8szEU7APfT3/TsU5S1AteACCAeAAAAjMESEwDyYDR0TAQ9/BAUu82W2EB/aA0BnMVQ8BD
AF58BAMCaYYw6WYyYV60j9BBgwPoAueEEQwQKQ1dm9/wLYKBNr1zxdaTtwQYDvR0O
BBYEFhGAEMGcXgkMZrvXves2A5u5Cu8c88WgMA0GCSqGSM4s0D0wvCcA8gBYhbv12C
mh+svxK8RjAFzkt8tu9e5KwqD0KpXp25QRUNsGrl9nKTPdN9Rt3p0OA/KochIf
enIyigv+HDQ3FVnzn9V983e605jAvpxc17R01BbFnhqvYVWhxAxdjH0cU7/XerCo
+bdPcUc/eCi2uzE/BF/5XZ8xv2d3BN
-----END CERTIFICATE-----

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED

-----END RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: DES-EDE-CBC,5053DCB2C4B04612A

1ClnfPSyqonzo2P2N7Zi0exzTy6nDeP5yPjxB5bqV29iuY8Apb67t1JCUC7YrsEB/
NBT7K76DcEgF1Plycu4Et171Qm90Q2qA0QQhCOLxRo09WrINVH+b450/s7nffzKvB
p2TYdpzwoqJ8cmR941eY0mzanBt6h6ayOudil1z53gbsCnFSEwzst1xwW1MrKFaZ
/fTy6l0uHZGFz13BDj4r5gBecEwcoPp741dhO+kD40c99egG88YekBc8ZZOQVhXLM
10dCOa6e9P915z6Gz6zYFvONK6grTB0989hjN23079jJzS0Nz8HNtXzRJyAu
1560y/4ivcSNUKR6e1jQq4mBvw6cS0s1LbgzBPWvHM6qX6qJzR92b7wZKX/RHuiD
RTjNMBkKqAzveBzA1120aAUXRStjFXgy3ZUbc+cM6z5ATWn2yjFDT6KrhqC
4/WHM-WYy80VZVgKSs0kCaL8aaAC9TULYvBtfl6nWC2yfPLwK1XbSYTeX5CZ
3m1dCdfmF7086X0kJSHP84V0c6s5ZMzVixX0AXU4dS1l99y1v6P9pcYHrLOyQP
PQign51515Fw90aLafgCt8RbmC0ChQgHy9lUFA1u0b1O3+yu7aLagLpM9N6E1JR
bjRhlUXiTFTY7C4M3m/02w6fvmVQNSumJMIy08L66ULB30lz1A0GZ1ZkxaES5Lg0P
qq2AENmFmCPOuhYSV2h0mm1WjUw+eredf/IM17sL9ERaqCv0ZDiAnXBDl
4QkJkTrwaCrcyVFp8rV1O7/puyVU1pA7+k7w+FSTZwUV08muvUEqDw==
-----END RSA PRIVATE KEY-----
quit
% Enter PEM-formatted SIGNATURE certificate.
% End with a blank line or "quit" on a line by itself.
! Paste the CA cert from .pem archive again.
-----BEGIN CERTIFICATE-----
MIIB9zCCWAwIBAgIeBqBTAANBgkqhkiG9w0BAQQAFAQFjMQswCwYDVQQDEEJvY1BT
MB4XDTE0MDkwMjIxMDI1N1owDzENMAAGA1UEAxMkZHlJczBhczANBgkqhkiG9w0BAQ
FAAQFjMQswCwYDVQQDEEJvY1BTMB4XDTE0MDkwMjIxMDI1N1owDzENMAAGA1UEAxMk
ZHIJczBhczANBgkqhkiG9w0BAQFAAQQFjMQswCwYDVQQDEEJvY1BTMB4XDTE0MDkwM
jIxMDI1N1owDzENMAAGA1UEAxMkZHlJczBhczANBgkqhkiG9w0BAQFAAQQFjMQswCwY
DVQQDEEJvY1BTMB4XDTE0MDkwMjIxMDI1N1owDzENMAAGA1UEAxMkZHlJczBhczANB
-----END CERTIFICATE-----

% Enter PEM-formatted encrypted private ENCRYPTION key.
% End with "quit" on a line by itself.
! Because the CA cert only has Digital Signature usage, skip the encryption part.
quit
% PEM files import succeeded.
Device(config)# crypto pki server mycs
Device(cs-server)#
Device(cs-server)# database url flash:

! Fill in any certificate server configuration here.
Device(cs-server)#

% Certificate Server enabled.
Device(cs-server)# end

Device# show crypto pki server

Certificate Server mycs:
Status: enabled
Server's current state: enabled
Issuer name: CN=mycs
CA cert fingerprint: F04C2B75 E0243FBC 19806219 B1D77412
Granting mode is: manual
Last certificate issued serial number: 0x2
CA certificate expiration time: 21:02:55 GMT Sep 2 2007
CRL NextUpdate time: 21:02:58 GMT Sep 9 2004
Current storage dir: flash:
Database Level: Minimum - no cert data written to storage

Example: Subordinate Certificate Server

The following configuration and output is typical of what you might see after configuring a subordinate certificate server. Please be aware that “ms2” refers to a 2048-bit RSA key that was generated in an earlier step.

Device(config)# crypto pki trustpoint sub
Device(ca-trustpoint)# enrollment url http://192.0.2.6
Device(ca-trustpoint)# rsa keypair ms2 2048
Device(ca-trustpoint)# exit
Device(config)# crypto pki server sub
Device(cs-server)# mode sub-cs
Device(cs-server)# no shutdown

%Some server settings cannot be changed after CA certificate generation.
% Please enter a passphrase to protect the private key
% or type Return to exit
Password:
Jan 6 22:32:22.698: CRYPTO_CS: enter FSM: input state initial, input signal no shut
Re-enter password:
Jan 6 22:32:30.302: CRYPTO_CS: starting enabling checks
Jan 6 22:32:30.306: CRYPTO_CS: key 'sub' does not exist; generated automatically [OK]
Jan 6 22:32:39.810: %SSH-5-ENABLED: SSH 1.99 has been enabled
Certificate has the following attributes:
  Fingerprint MD5: 328ACC02 52B25DB8 22F8F104 B6055B5B
  Fingerprint SHA1: 02FD799D DD40C7A8 61DC53AB 1B89A3EA 2A729EE2
% Do you accept this certificate? [yes/no]:
Jan 6 22:32:44.830: CRYPTO_CS: nvram filesystem
Jan 6 22:32:44.922: CRYPTO_CS: serial number 0x1 written.
Jan 6 22:32:46.798: CRYPTO_CS: authenticating the CA 'sub'
Trustpoint CA certificate accepted.%
% Certificate request sent to Certificate Authority
% Enrollment in progress...
Router (cs-server)#
Jan 6 22:33:32.450: CRYPTO_CS: enrolling the server's trustpoint 'sub'
Jan 6 22:33:32.454: CRYPTO_CS: exit FSM: new state check failed
Jan 6 22:33:33.118: CRYPTO_PKI: Certificate Request Fingerprint SHA1: 70787C76 ACD7E67F 7D2C8B23 9CB10E7 718E84B1
% Exporting Certificate Server signing certificate and keys...
Jan 6 22:34:53.839: %PKI-6-CERTRET: Certificate received from Certificate Authority
Jan 6 22:34:53.843: CRYPTO_CS: enter FSM: input state check failed, input signal cert configured
Jan 6 22:34:53.843: CRYPTO_CS: starting enabling checks
Jan 6 22:34:53.843: CRYPTO_CS: nvram filesystem
Jan 6 22:34:53.907: CRYPTO_CS: old router cert flag 0x4
Jan 6 22:34:53.907: CRYPTO_CS: new router cert flag 0x44
Jan 6 22:34:56.511: CRYPTO_CS: DB version
Jan 6 22:34:56.511: CRYPTO_CS: last issued serial number is 0x1
Jan 6 22:34:56.551: CRYPTO_CS: Read 213 bytes from crl file sub.crl.
Jan 6 22:34:56.603: CRYPTO_CS: SCEP server started
Jan 6 22:34:56.603: CRYPTO_CS: exit FSM: new state enabled
Jan 6 22:34:56.603: CRYPTO_CS: cs config has been locked
Jan 6 22:35:02.359: CRYPTO_CS: enter FSM: input state enabled, input signal time set
Jan 6 22:35:02.359: CRYPTO_CS: exit FSM: new state enabled
Jan 6 22:35:02.359: CRYPTO_CS: cs config has been locked

Example: Root Certificate Server Differentiation

When issuing certificates, the root certificate server (or parent subordinate certificate server) differentiates the certificate request from “Sub CA,” “RA,” and peer requests, as shown in the following sample output:

Device# crypto pki server server1 info req

Enrollment Request Database:

RA certificate requests:

<table>
<thead>
<tr>
<th>ReqID</th>
<th>State</th>
<th>Fingerprint</th>
<th>SubjectName</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subordinate CS certificate requests:

<table>
<thead>
<tr>
<th>ReqID</th>
<th>State</th>
<th>Fingerprint</th>
<th>SubjectName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pending</td>
<td>CB9977A8A73B146D3221749999B0F66</td>
<td>hostname=host-subcs.company.com</td>
</tr>
</tbody>
</table>

RA certificate requests:
Example: Show Output for a Subordinate Certificate Server

The following show crypto pki server command output indicates that a subordinate certificate server has been configured:

Device# show crypto pki server

Certificate Server sub:
Status: enabled
Server's configuration is locked (enter "shut" to unlock it)
Issuer name: CN=sub
CA cert fingerprint: 11B586EE 3B354F33 14A25DDD 7BD39187
Server configured in subordinate server mode
Upper CA cert fingerprint: 328ACC02 52B25DB8 22F8F104 B6055B5B
Granting mode is: manual
Last certificate issued serial number: 0x1
CRL NextUpdate timer: 22:33:29 GMT Jan 13 2005
Current storage dir: nvram:
Database Level: Minimum - no cert data written to storage

Example: RA Mode Certificate Server

The following output is typical of what you might see after having configured an RA mode certificate server:

Device-ra(config)# crypto pki trustpoint myra
Device-ra(ca-trustpoint)# enrollment url http://192.0.2.17
  ! Include "cn-ioscs RA" or "ou-ioscs RA" in the subject-name.
Device-ra(ca-trustpoint)# subject-name cn=myra, ou=ioscs RA, o=company, c=us
Device-ra(ca-trustpoint)# exit
Device-ra(config)# crypto pki server myra
Device-ra(cs-server)# mode ra
Device-ra(cs-server)# no shutdown

% Generating 1024 bit RSA keys ...[OK]
Certificate has the following attributes:
Fingerprint MD5: 32661452 0DDA3CE5 8723B469 09AB9E85
Fingerprint SHA1: 9785BBCD 6C67D27C C950E8D0 718C7A14 C0FE9C38
% Do you accept this certificate? [yes/no]: yes
Trustpoint CA certificate accepted.
% Ready to request the CA certificate.
%Some server settings cannot be changed after the CA certificate has been requested.
Are you sure you want to do this? [yes/no]: yes

% Start certificate enrollment ..
% Create a challenge password. You will need to verbally provide this
% password to the CA administrator in order to revoke your certificate.
% For security reasons your password will not be saved in the configuration.
% Please make a note of it.
Password:
Re-enter password:
% The subject name in the certificate will include: cn=myra, ou-ioscs RA, o=company, c=us
% The subject name in the certificate will include: Router-ra.company.com
% Include the router serial number in the subject name? [yes/no]: no
% Include an IP address in the subject name? [no]: no
Request certificate from CA? [yes/no]: yes
% Certificate request sent to Certificate Authority
% The certificate request fingerprint will be displayed.
% The 'show crypto pki certificate' command will also show the fingerprint.
% Enrollment in progress...
Device-ra (cs-server)#

Sep 15 22:32:40.197: CRYPTO_PKI: Certificate Request Fingerprint MD5: 82B41A76 AF4EC87D AAF093CD
Sep 15 22:32:40.201: CRYPTO_PKI: Certificate Request Fingerprint SHA1: 897CDF40 C6563EAA
0FED05F7 0115FD3A 4FFC5231
Sep 15 22:34:00.366: %PKI-6-CERTRET: Certificate received from Certificate Authority

Device-ra(cs-server)# end
Device-ra# show crypto pki server

Certificate Server myra:
  Status: enabled
  Issuer name: CN=myra
  CA cert fingerprint: 32661452 0DDA3CE5 8723B469 09AB9E85
  ! Note that the certificate server is running in RA mode
  Server configured in RA mode
  RA cert fingerprint: C65F5724 0E63B3CC BE7AE016 BE0D34FE
  Granting mode is: manual
  Current storage dir: nvram:
  Database Level: Minimum - no cert data written to storage

The following output shows the enrollment request database of the issuing certificate server after the RA has been enabled:

Note

The RA certificate request is recognized by the issuing certificate server because "ou=ioscs RA" is listed in the subject name.

Device-ca# crypto pki server mycs info request

Enrollment Request Database:
Subordinate CA certificate requests:
ReqID State Fingerprint SubjectName
--------------------------------------------------------------
! The request is identified as RA certificate request.
RA certificate requests:
ReqID State Fingerprint SubjectName
--------------------------------------------------------------
12 pending 88F547A407FAOC90F97CDE8900A30CB0
hostname=Router-ra.company.com, cn=myra, ou=ioscs RA, o=company, c=us
Router certificates requests:
ReqID State Fingerprint SubjectName
--------------------------------------------------------------

! Issue the RA certificate.
Device-ca# crypto pki server mycs grant 12

The following output shows that the issuing certificate server is configured to issue a certificate automatically if the request comes from an RA:

Device-ca(config)# crypto pki server mycs
Device-ca(cs-server)# grant ra-auto

% This will cause all certificate requests already authorized by known RAs to be automatically
Are you sure you want to do this? [yes/no]: yes

Router-ca (cs-server)# end

Device-ca# show crypto pki server

Certificate Server mycs:
  Status: enabled
  Server's current state: enabled
  Issuer name: CN=mycs
  CA cert fingerprint: 32661452 0DDB3C5 8723B469 09AB9E85
  ! Note that the certificate server will issue certificate for requests from the RA.
  Granting mode is: auto for RA-authorized requests, manual otherwise
  Last certificate issued serial number: 0x2
  Current storage dir: nvram:
    Database Level: Minimum - no cert data written to storage

The following example shows the configuration of “myra”, an RA server, configured to support automatic rollover from “myca”, the CA. After the RA server is configured, automatic granting of certificate reenrollment requests is enabled:

crypto pki trustpoint myra
enrollment url http://myca
subject-name ou-iosca RA
rsakeypair myra
crypto pki server myra
mode ra
auto-rollover
crypto pki server mycs
grant auto rollover ra-cert
auto-rollover 25

Example: Enabling CA Certificate Rollover to Start Immediately

The following example shows how to enable automated CA certificate rollover on the server mycs with the crypto pki server command. The show crypto pki server command then shows the current state of the mycs server and that the rollover certificate is currently available for rollover.

Device(config)# crypto pki server mycs rollover

Jun 20 23:51:21.211:%PKI-4-NOSHADOWAUTOSAVE:Configuration was modified. Issue "write memory" to save new IOS CA certificate!
The config has not been automatically saved because the config has been changed.
Device# show crypto pki server

Certificate Server mycs:
  Status:enabled
  Server's configuration is locked (enter "shut" to unlock it)
  Issuer name:CN=mycs
  CA cert fingerprint:E7A5FABA 5D7AA26C F2A9F7B3 03CE229A
  Granting mode is:manual
  Last certificate issued serial number:0x2
  CA certificate expiration timer:00:49:26 PDT Jun 20 2008
  CRL NextUpdate timer:00:49:29 PDT Jun 28 2005
  Current storage dir:nvram:
    Database Level:Minimum - no cert data written to storage
    Rollover status:available for rollover
    ! Rollover certificate is available for rollover.
    Rollover CA certificate fingerprint:9BD7A443 00A6DD74 E4D9ED5F B7931BE0
Where to Go Next

After the certificate server is successfully running, you can either begin enrolling clients through manual mechanisms (as explained in the module “Configuring Certificate Enrollment for a PKI”) or begin configuring SDP, which is a web-based enrollment interface, (as explained in the module “Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI.”)

Additional References for Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>PKI and security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
<tr>
<td>USB Token RSA Operations: Using the RSA keys on a USB token for initial autoenrollment</td>
<td>Configuring Certificate Enrollment for a PKI</td>
</tr>
<tr>
<td>USB Token RSA Operations: Benefits of using USB tokens</td>
<td>Storing PKI Credentials</td>
</tr>
<tr>
<td>Certificate server client certificate enrollment, autoenrollment, and automatic rollover</td>
<td>Configuring Certificate Enrollment for a PKI</td>
</tr>
<tr>
<td>Setting up and logging into a USB token</td>
<td>Storing PKI Credentials</td>
</tr>
<tr>
<td>Web-based certificate enrollment</td>
<td>Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI</td>
</tr>
<tr>
<td>RSA keys in PEM formatted files</td>
<td>Deploying RSA Keys Within a PKI</td>
</tr>
<tr>
<td>Choosing a certificate revocation mechanism</td>
<td>Configuring Authorization and Revocation of Certificates in a PKI</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

### Feature Information for Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

#### Table 12: Feature Information for Configuring and Managing a Cisco IOS Certificate Server for PKI Deployment

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS USB Token PKI Enhancements—Phase 2</td>
<td>12.4(11)T</td>
<td>This feature enhances USB token functionality by using the USB token as a cryptographic device. USB tokens may be used for RSA operations such as key generation, signing, and authentication. <strong>Note</strong> This document covers the use of using USB tokens for RSA operations during certificate server configuration.</td>
</tr>
<tr>
<td>IOS Certificate Server (CS) Split Database</td>
<td>12.4(4)T</td>
<td>This feature allows the user to set storage locations and publish locations for specific certificate server file types. The following command was modified: <code>database url</code></td>
</tr>
<tr>
<td>Subordinate/RA Mode IOS Certificate Server (CS) Rollover</td>
<td>12.4(4)T</td>
<td>This feature expands on Certificate Authority (CA) Key Rollover introduced in 12.4(2)T to allow CA certificate rollover for subordinate CAs and RA-mode CAs. This functionality allows the rollover expiring CA certificates and keys and to have these changes propagate through the PKI network without manual intervention. The following command was modified: <code>grant auto rollover</code></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>----------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Certificate Authority (CA) Key Rollover</td>
<td>12.4(2)T</td>
<td>This feature introduces the ability for root or subordinate CAs to roll over expiring CA certificates and keys and to have these changes propagate through the PKI network without manual intervention. The following commands were introduced or modified: <code>auto-rollover</code>, <code>crypto pki certificate chain</code>, <code>crypto pki export pem</code>, <code>crypto pki server info request</code>, <code>crypto pki server</code>, <code>show crypto pki certificates</code>, <code>show crypto pki server</code>, and <code>show crypto pki trustpoint</code></td>
</tr>
<tr>
<td>Cisco IOS Certificate Server</td>
<td>12.3(8)T</td>
<td>This feature introduces support for the Cisco IOS certificate server, which offers users a CA that is directly integrated with Cisco software to more easily deploy basic PKI networks. The following commands were introduced or modified: <code>auto-rollover</code>, <code>crypto key generate rsa</code>, <code>crypto pki certificate chain</code>, <code>crypto pki export pem</code>, <code>crypto pki server info request</code>, <code>crypto pki server</code>, <code>database archive</code>, <code>database url</code>, <code>enrollment url (ca-trustpoint)</code>, <code>grant auto rollover</code>, <code>grant ra-auto</code>, <code>lifetime enrollment-requests</code>, <code>mode ra</code>, <code>show crypto pki certificates</code>, <code>show crypto pki server</code>, and <code>show crypto pki trustpoint</code></td>
</tr>
<tr>
<td>The Certificate Server Auto Archive Enhancement</td>
<td>12.3(11)T</td>
<td>This enhancement enables the CA certificate and CA key to be backed up automatically just once after they are generated by the certificate server. As a result, it is not necessary to generate an exportable CA key if CA backup is desirable. The following commands were introduced or modified: <code>crypto pki server remote</code>, <code>database archive</code></td>
</tr>
<tr>
<td>The Certificate Server Registration Authority (RA) Mode enhancement</td>
<td>12.3(7)T</td>
<td>A certificate server can be configured to run in RA mode. The following commands were introduced by this feature: <code>grant ra-auto</code>, <code>lifetime enrollment-requests</code></td>
</tr>
<tr>
<td>PKI Status 1</td>
<td>12.3(11)T</td>
<td>This enhancement provides a quick snapshot of current trustpoint status. The following command was modified: <code>show crypto pki trustpoints</code></td>
</tr>
<tr>
<td>Subordinate Certificate Server 1</td>
<td>12.3(14)T</td>
<td>This enhancement allows you to configure a subordinate certificate server to grant all or certain SCEP or manual certificate requests. The following command was introduced: <code>mode sub-cs</code></td>
</tr>
<tr>
<td>RSA 4096-bit Key Generation in Software Crypto Engine Support</td>
<td>15.1(1)T</td>
<td>The range value for the <code>modulus</code> keyword value for the <code>crypto key generate rsa</code> command is extended from 360 to 2048 bits to 360 to 4096 bits.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td>----------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>IOS PKI Server RA Mode Support for Non-IOS CA Servers</td>
<td>15.1(2)T</td>
<td>This enhancement allows the IOS CA server in RA mode to interoperate with more than one type of CA server. The <code>transparent</code> keyword was added to the <code>mode ra</code> command to allow the CA server in RA mode to interoperate with more than one type of CA server.</td>
</tr>
<tr>
<td>Public Key Infrastructure (PKI) IPv6 Support for VPN Solutions</td>
<td>15.2(1)T</td>
<td>The <code>enrollment url (ca-trustpoint)</code> command was modified to allow the specification of an IPv6 address in the URL for the CA.</td>
</tr>
</tbody>
</table>

1 This is a minor enhancement. Minor enhancements are not typically listed in Feature Navigator.
Storing PKI Credentials

Public key infrastructure (PKI) credentials, such as Rivest, Shamir, and Adelman (RSA) keys and certificates can be stored in a specific location on the router, such as NVRAM and flash memory or on a USB eTtoken 64 KB smart card. USB tokens provide secure configuration distribution, RSA operations such as on-token key generation, signing, and authentication, and the storage of Virtual Private Network (VPN) credentials for deployment.

- Finding Feature Information, on page 235
- Prerequisites for Storing PKI Credentials, on page 235
- Restrictions for Storing PKI Credentials, on page 236
- Information About Storing PKI Credentials, on page 236
- How to Configure PKI Storage, on page 239
- Configuration Examples for PKI Storage, on page 253
- Additional References, on page 255
- Feature Information for Storing PKI Credentials, on page 256

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Storing PKI Credentials

Prerequisites for Specifying a Local Certificate Storage Location

Before you can specify the local certificate storage location, your system should meet the following requirements:

- A Cisco IOS Release 12.4(2)T PKI-enabled image or a later image
- A platform that supports storing PKI credentials as separate files
Prerequisites for Specifying USB Token Storage for PKI Credentials

Before you can use a USB token, your system should meet the following requirements:

- A Cisco 871 router, Cisco 1800 series, Cisco 2800 series, a Cisco 3800 series router, or a Cisco 7200VXR NPE-G2 platform
- At least a Cisco IOS Release 12.3(14)T image running on any of the supported platforms
- A Cisco supported USB token (SafeNet/Aladdin eToken PRO 32 KB or 64 KB)
- A k9 image

Restrictions for Storing PKI Credentials

Restrictions for Specifying a Local Certificate Storage Location

When storing certificates to a local storage location, the following restrictions are applicable:

- Only local file systems may be used. An error message will be displayed if a remote file system is selected, and the command will not take effect.
- A subdirectory may be specified if supported by the local file system. NVRAM does not support subdirectories.

Restrictions for Specifying USB Token Storage

When using a USB token to store PKI data, the following restrictions are applicable:

- USB token support requires a 3DES (k9) Cisco IOS software image, which provides secure file storage.
- You cannot boot an image from a USB token. (However, you can boot a configuration from a USB token.)
- USB hubs are currently not supported. Thus, the number of supported devices is limited to the number of available USB ports.

Information About Storing PKI Credentials

Storing Certificates to a Local Storage Location

Certificates are stored to NVRAM by default; however, some routers do not have the required amount of NVRAM to successfully store certificates.

All Cisco platforms support NVRAM and flash local storage. Depending on your platform, you may have other supported local storage options including bootflash, slot, disk, USB flash, or USB token.
During runtime, you can specify what active local storage device you would like to use to store certificates.

**PKI Credentials and USB Tokens**

To use a secure USB token on your router, you should understand the following concepts:

**How a USB Token Works**

A smart card is a small plastic card, containing a microprocessor and memory that allows you to store and process data. A USB token is a smart card with a USB interface. The token can securely store any type of file within its available storage space (32 KB). Configuration files that are stored on the USB token can be encrypted and accessed only via a user PIN. The device does not load the configuration file unless the proper PIN has been configured for secure deployment of device configuration files.

After you plug the USB token into the device, you must log into the USB token; thereafter, you can change default settings, such as the user PIN (default: 1234567890) and the allowed number of failed login attempts (default: 15 attempts) before future logins are refused. For more information on accessing and configuring the USB token, see the section “Logging Into and Setting Up the USB Token.”

After you have successfully logged into the USB token, you can copy files from the device on to the USB token via the ```copy``` command. USB token RSA keys and associated IPsec tunnels remain available until the device is reloaded. To specify the length of time before the keys are removed and the IPsec tunnels are torn down, issue the ```crypto pki token removal timeout``` command. The default timeout is zero, which causes the RSA keys to be removed automatically after the eToken is removed from the device. The default appears in the running configuration as:

```plaintext
crypto pki token default removal timeout 0
```

The table below highlights the capabilities of the USB token.

**Table 13: Functionality Highlights for USB Tokens**

<table>
<thead>
<tr>
<th>Function</th>
<th>USB Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
<td>Used to securely store and transfer digital certificates, preshared keys, and device configurations from the USB token to the device.</td>
</tr>
<tr>
<td>Storage Size</td>
<td>32 KB or 64 KB</td>
</tr>
<tr>
<td>File Types</td>
<td>• Typically used to store digital certificates, preshared keys, and device configurations for IPsec VPNs.</td>
</tr>
<tr>
<td></td>
<td>• USB tokens cannot store Cisco IOS images.</td>
</tr>
<tr>
<td>Security</td>
<td>• Files can be encrypted and accessed only with a user PIN.</td>
</tr>
<tr>
<td></td>
<td>• Files can also be stored in a nonsecure format.</td>
</tr>
<tr>
<td>Boot Configurations</td>
<td>• The device can use the configuration stored in the USB token during boot time.</td>
</tr>
<tr>
<td></td>
<td>• The device can use the secondary configuration stored in the USB token during boot time. (A secondary configuration allows users to load their IPsec configuration.)</td>
</tr>
</tbody>
</table>
How RSA Keys are Used with a USB Token

- RSA keys are loaded after the USB token is successfully logged into the router.
- By default, newly generated RSA keys are stored on the most recently inserted USB token. Regenerated keys should be stored in the same location where the original RSA key was generated.

Benefits of USB Tokens

USB token support on a Cisco router provides the following application benefits:

Removable Credentials: Provide or Store VPN Credentials on an External Device for Deployment

A USB token can use smart card technology to store a digital certificate and configuration for IPsec VPN deployment. This ability enhances the capability of the router to generate RSA public keys to authenticate at least one IPsec tunnel. (Because a router can initiate multiple IPsec tunnels, the USB token can contain several certificates, as appropriate.)

Storing VPN credentials on an external device reduces the threat of compromising secure data.

PIN Configuration for Secure File Deployment

A USB token can store a configuration file that can be used for enabling encryption on the router via a user-configured PIN. (That is, no digital certificates, preshared keys, or VPNs are used.)

Touchless or Low Touch Configuration

The USB token can provide remote software configuration and provisioning with little or no human interaction. Configuration is set up as an automated process. That is, the USB token can store a bootstrap configuration that the router can use to boot from after the USB token has been inserted into the router. The bootstrap configuration connects the router to a TFTP server, which contains a configuration that completely configures the router.

RSA Operations

A USB token may be used as a cryptographic device in addition to a storage device. Using a USB token as a cryptographic device allows RSA operations such as key generation, signing, and authentication to be performed on the token.

General-purpose, special-usage, encryption, or signature RSA key pairs with a modulus of 2048 bits or less may be generated from credentials located on your token storage device. Private keys are not distributed and remain on the token by default, however you may configure the private key storage location.

Keys that reside on a USB token are saved to persistent token storage when they are generated. Key deletion will remove the keys stored on the token from persistent storage immediately. (Keys that do not reside on a token are saved to or deleted from non-token storage locations when the write memory or a similar command is issued.)

Remote Device Configuration and Provisioning in a Secure Device Provisioning (SDP) Environment

SDP may be used to configure a USB token. The configured USB token may be transported to provision a device at a remote location. That is, a USB token may be used to transfer cryptographic information from one network device to another remote network device providing a solution for a staged USB token deployment.

For information about using USB tokens with SDP, see document titles in the “Additional References” section.
# How to Configure PKI Storage

## Specifying a Local Storage Location for Certificates

### SUMMARY STEPS

1. enable
2. configure terminal
3. `crypto pki certificate storage location-name`
4. exit
5. `copy source-url destination-url`
6. `show crypto pki certificates storage`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>crypto pki certificate storage location-name</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the local storage location for certificates.</td>
</tr>
<tr>
<td>Device(config)# crypto pki certificate storage flash:/certs</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Device(config)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>copy source-url destination-url</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Saves the running configuration to the startup configuration.</td>
</tr>
<tr>
<td>Device# copy system:running-config nvram:startup-config</td>
<td><strong>Note</strong> Settings will only take effect when the running configuration is saved to the startup configuration.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>show crypto pki certificates storage</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Displays the current setting for the PKI certificate storage location.</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# show crypto pki certificates storage</td>
<td></td>
</tr>
</tbody>
</table>

### Example

The following is sample output from the `show crypto pki certificates storage` command, which shows that the certificates are stored in the certs subdirectory of disk0:

```
Device# show crypto pki certificates storage
Certificates will be stored in disk0:/certs/
```

---

## Setting Up and Using USB Tokens on Cisco Devices

### Storing the Configuration on a USB Token

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `boot config usbtoken[0-9]:filename`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>· Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** | Enters global configuration mode. |
| `configure terminal` | |
| Example: | |
| Device# configure terminal | |

| **Step 3** | Specifies that the startup configuration file is stored in a secure USB token. |
| `boot config usbtoken[0-9]:filename` | |
| Example: | |
| Device(config)# boot config usbtoken0:file | |

### Logging Into and Setting Up the USB Token

#### Configuring the Device for Automatic Login

The automatic login allows the device to completely come back up without any user or operator intervention. The PIN is stored in the private NVRAM, so it is not visible in the startup or running configuration.
A hand-generated startup configuration can contain the automatic login command for deployment purposes, but the `copy system:running-config nvram: startup-config` command must be issued to put the hand-generated configuration in the private configuration.

Perform this task to configure the automatic login on the device

Either the manual or automatic login is required.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki token token-name user-pin [pin]`
4. `exit`
5. `show usbtokento-9:filename`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode, which allows you to configure automatic USB token login.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>crypto pki token token-name user-pin [pin]</code></td>
<td>Configures the device to log in to the token automatically, using the specified PIN at device startup or when the USB token is inserted into a USB slot.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# crypto pki token usbtokento0 user-pin 1234</td>
<td>The PIN is encrypted and stored in NVRAM.</td>
</tr>
<tr>
<td><strong>Note</strong> You will be asked to enter your passphrase.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>exit</code></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> <code>show usbtokento-9:filename</code></td>
<td>(Optional) Verifies whether the USB token has been logged on to the device.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# show usbtokento0:usbfile</td>
<td></td>
</tr>
</tbody>
</table>
Example

Configuring the Device for Manual Login

Unlike automatic login, manual login requires that the user know the actual USB token PIN.

---

**Note**

Either the manual or automatic login is required.

Manual login can be used when storing a PIN on the device is not desirable. Manual login may also be suitable for some initial deployment or hardware replacement scenarios for which the device is obtained from the local supplier or drop-shipped to the remote site. Manual login can be executed with or without privileges, and it creates files and RSA keys on the USB token available to the Cisco IOS software. If a secondary configuration file is configured, it is executed only with the privileges of the user who is performing the login. Thus, if you want to use manual login and set up the secondary configuration on the USB token to perform anything useful, you need to enable privileges.

Manual login can also be used in recovery scenarios for which the device configuration has been lost. If the scenario contains a remote site that normally connects to the core network with a VPN, the loss of the configuration and RSA keys requires out-of-band services that the USB token can provide. The USB token can contain a boot configuration, a secondary configuration, or both, and RSA keys to authenticate the connection.

**SUMMARY STEPS**

1. `enable`
2. `crypto pki token token-name [admin] login [pin]`
3. `show usbtoken 0-9: filename`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td><code>Device&gt;</code> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>crypto pki token token-name [admin] login [pin]</code></td>
<td>Manually logs into the USB token.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Device# crypto pki token usbtoken0 admin login 5678</code></td>
<td>If the <code>admin</code> keyword is not specified initially you can re-enter the <code>crypto pki token</code> command again with this keyword option.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>show usbtoken 0-9:filename</code></td>
<td>(Optional) Verifies whether the USB token has been logged on to the device.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>Device# show usbtoken0:usbfile</code></td>
<td></td>
</tr>
</tbody>
</table>
What to Do Next

After you have logged into the USB token, it is available for use.

• To further configure the USB token, see the “Configuring the USB Token” section.

• To perform USB token administrative tasks, such as changing the user PIN, copying files from the router to the USB token set key storage location, and changing USB tokens, see the “Setting Administrative Functions on the USB Token” section.

Configuring the USB Token

After you have set up automatic login, you may perform this task to further configure the USB token.

PINs and Passphrases

For additional PIN security with automatic login, you may encrypt your PIN stored in NVRAM and set up a passphrase for your USB token. Establishing a passphrase allows you to keep your PIN secure; another user needs only to know the passphrase, not the PIN.

When the USB token is inserted into the device, the passphrase is needed to decrypt the PIN. Once the PIN is decrypted, the device can then use the PIN to log in to the USB token.

Note

The user needs a privilege level of 1 to log in.

Unlocking and Locking the USB Token

The USB token itself can be locked (encrypted) or unlocked (decrypted).

Unlocking the USB token allows it to be used. Once unlocked, Cisco IOS software treats the token as if it were automatically logged in. Any keys on the USB token are loaded, and if a secondary configuration file is on the token, it is executed with full user privileges (privilege level 15) independent of the privilege level of the logged-in user.

Locking the token, unlike logging out of the token, deletes any RSA keys loaded from the token and runs the secondary unconfiguration file, if configured.

Secondary Configuration and Unconfiguration Files

Configuration files that exist on a USB token are called secondary configuration files. If you create and configure a secondary configuration file, it is executed after the token is logged in. The existence of a secondary configuration file is determined by the presence of a secondary configuration file option in the Cisco IOS configuration stored in NVRAM. When the token is removed or logged out and the removal timer expires, a separate secondary unconfiguration file is processed to remove all secondary configuration elements from the running configuration. Secondary configuration and secondary unconfiguration files are executed at privilege level 15 and are not dependent on the level of the user logged in.

SUMMARY STEPS

1. `enable`
2. `crypto pki token token-name unlock [pin]`
3. `configure terminal`
4. `crypto pki token token-name encrypted-user-pin [write]`
5. `crypto pki token token-name secondary unconfig file`

6. `exit`

7. `crypto pki token token-name lock [pin]`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.  
  * Enter your password if prompted. |
| | Example: `Device> enable` | |
| **Step 2** | `crypto pki token token-name unlock [pin]` | (Optional) Allows the token to be used if the USB token has been locked.  
  Once unlocked, Cisco IOS software treats the token as if it has been automatically logged in. Any keys on the token are loaded and if a secondary configuration file exists, it is executed. |
| | Example: `Device# crypto pki token mytoken unlock mypin` | |
| **Step 3** | `configure terminal` | Enters global configuration mode. |
| | Example: `Device# configure terminal` | |
| **Step 4** | `crypto pki token token-name encrypted-user-pin [write]` | (Optional) Encrypts the stored PIN in NVRAM. |
| | Example: `Device(config)# crypto pki token mytoken encrypted-user-pin write` | |
| **Step 5** | `crypto pki token token-name secondary unconfig file` | (Optional) Specifies the secondary configuration file and its location. |
| | Example: `Device(config)# crypto pki token mytoken secondary unconfig configs/myunconfigfile.cfg` | |
| **Step 6** | `exit` | Enters privileged EXEC mode. |
| | Example: `Device(config)# exit` | |
| **Step 7** | `crypto pki token token-name lock [pin]` | (Optional) Deletes any RSA keys loaded from the token and runs the secondary unconfiguration file, if it exists. |
| | Example: `Device# crypto pki token mytoken lock mypin` | |
Examples

The following example shows both the configuration and encryption of a user PIN and then the device reloading and the user PIN being unlocked:

! Configuring the user PIN

Enter configuration commands, one per line. End with CNTL/Z.

Device(config)# crypto pki token usbtokento0: userpin

Enter password: mypassword

! Encrypt the user PIN

Device(config)# crypto pki token usbtokento0: encrypted-user-pin

Enter passphrase: mypassphrase

Device(config)# exit

Device#

Sep 20 21:51:38.076: %SYS-5-CONFIG_I: Configured from console by console

Device# show running config

crypto pki token usbtokento0 user-pin *encrypted*

! Reloading the router.

Device> enable

Password:

! Decrypting the user pin.

Device# crypto pki token usbtokento0: unlock

Token eToken is usbtokento0

Enter passphrase: mypassphrase

Token login to usbtokento0(eToken) successful

Device#

Sep 20 22:31:13.128: %CRYPTO-6-TOKENLOGIN: Cryptographic Token eToken

Login Successful

The following example shows how a secondary unconfiguration file might be used to remove secondary configuration elements from the running configuration. For example, a secondary configuration file might be used to set up a PKI trustpoint. A corresponding unconfiguration file, named mysecondaryunconfigfile.cfg, might contain this command line:

no crypto pki trustpoint token-tp

If the token were removed and the following commands executed, the trustpoint and associated certificates would be removed from the device’s running configuration:
Device# configure terminal
Device(config)# no crypto pki token mytoken secondary unconfig mysecondaryunconfigfile.cfg

What to Do Next

After you have logged into and configured the USB token, it is available for use. If you want to perform USB token administrative tasks, such as changing the user PIN, copying files from the router to the USB token set key storage location, and changing USB tokens, see the “Setting Administrative Functions on the USB Token” section.

Setting Administrative Functions on the USB Token

Perform this task to change default settings, such as the user PIN, the maximum number of failed attempts on the USB token, or the credential storage location.

SUMMARY STEPS

1. enable
2. crypto pki token token-name admin | change-pin [pin]
3. crypto pki token token-name device-name: label token-label
4. configure terminal
5. crypto key storage device-name:
6. crypto key generate rsa [general-keys | usage-keys | signature | encryption] [label key-label] [exportable] [modulus modulus-size] [storage device-name:] [redundancy] [on device-name]:
7. crypto key move rsa keylabel [non-exportable] [on | storage] location
8. crypto pki token {token-name | default} removal-timeout [seconds]
9. crypto pki token {token-name | default} max-retries [number]
10. exit
11. copy usbflash[0-9]:filename destination-url
12. show usbstoken[0-9]:filename
13. crypto pki token token-name logout

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>crypto pki token token-name admin</th>
<th>change-pin [pin]</th>
<th>(Optional) Changes the user PIN number on the USB token.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device# crypto pki token usbstoken0 admin change-pin</td>
<td>• If the PIN is not changed, the default PIN 1234567890 is used.</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

After the PIN has been changed, you must reset the login failure count to zero (via the `crypto pki token max-retries` command). The maximum number of allowable login failures is set (by default) to 15.

**Note**
(Optional) Sets or changes the name of the USB token.

- The value of the `token-label` argument may be up to 31 alphanumeric characters in length including dashes and underscores.

**Tip**
This command is useful when configuring multiple USB tokens for automatic login, secondary configuration files, or other token specific settings.

**Step 3**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>crypto pki token token-name device-name: label token-label</code></td>
<td>(Optional) Sets or changes the name of the USB token.</td>
</tr>
</tbody>
</table>

**Example:**

Device# crypto pki token mytoken usb0: label newlabel

**Step 4**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

Device# configure terminal

**Step 5**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>crypto key storage device-name:</code></td>
<td>(Optional) Sets the default RSA key storage location for newly created keys.</td>
</tr>
</tbody>
</table>

**Note**
Regardless of configuration settings, existing keys are stored on the device from where they were originally loaded.

**Example:**

Device(config)# crypto key storage usbtoken0:

**Step 6**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`crypto key generate rsa [general-keys</td>
<td>usage-keys</td>
</tr>
</tbody>
</table>

**Example:**

Device(config)# crypto key generate rsa label tokenkey1 storage usbtoken0:

**Note**
If the exportable RSA key pair is manually generated after the CA certificate has been generated, and before issuing the `no shutdown` command, then use the `crypto ca export pkcs12` command to export a PKCS12 file that contains the certificate server certificate and the private key.

- By default, the modulus size of a CA key is 1024 bits. The recommended modulus for a CA key is 2048 bits.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 7</strong> crypto key move rsa keylabel {non-exportable</td>
<td>[on</td>
</tr>
<tr>
<td><strong>Step 8</strong> crypto pki token {token-name</td>
<td>default} removal timeout [seconds]</td>
</tr>
<tr>
<td><strong>Step 9</strong> crypto pki token {token-name</td>
<td>default} max-retries [number]</td>
</tr>
<tr>
<td><strong>Step 10</strong> exit</td>
<td>(Optional) Moves existing Cisco IOS credentials from the current storage location to the specified storage location.</td>
</tr>
<tr>
<td></td>
<td>By default, the RSA key pair remains stored on the current device.</td>
</tr>
<tr>
<td></td>
<td>Generating the key on the device and moving it to the token takes less than a minute. Generating a key on the token, using the <strong>on</strong> keyword could take five to ten minutes, and is dependent on hardware key generation routines available on the USB token.</td>
</tr>
<tr>
<td></td>
<td>When an existing RSA key pair is generated in Cisco IOS, stored on a USB token, and used for an enrollment, it may be necessary to move those existing RSA key pairs to an alternate location for permanent storage.</td>
</tr>
<tr>
<td></td>
<td>This command is useful when using SDP with USB tokens to deploy credentials.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Sets the time interval, in seconds, that the device waits before removing the RSA keys that are stored in the USB token after the USB token has been removed from the device.</td>
</tr>
<tr>
<td></td>
<td>If this command is not issued, all RSA keys and IPsec tunnels associated with the USB token are torn down immediately after the USB token is removed from the device.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Sets the maximum number of consecutive failed login attempts allowed before access to the USB token is denied.</td>
</tr>
<tr>
<td></td>
<td>- By default, the value is set at 15.</td>
</tr>
<tr>
<td></td>
<td>Exits global configuration mode.</td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

**Copies files from USB token to the device.**

**Step 11**

```
Step 11 copy usbflash[0-9]:filename destination-url
Example:
Device# copy usbflash0:file1 nvram:
```

Purpose: Copies files from USB token to the device.

- **destination-url**—See the copy command page documentation for a list of supported options.

**Step 12**

```
Step 12 show usbtoken[0-9]:filename
Example:
Device# show usbtoken:usbfile
```

(Optional) Displays information about the USB token. You can use this command to verify whether the USB token has been logged in to the device.

**Step 13**

```
Step 13 crypto pki token token-name logout
Example:
Device# crypto pki token usbtoken0 logout
```

Logs the device out of the USB token.

**Note** If you want to save any data to the USB token, you must log back into the token.

---

### Troubleshooting USB Tokens

This section contains descriptions of the following Cisco IOS commands that can be used to help troubleshoot possible problems that may arise while using a USB token:

#### Troubleshooting the USB Port Connection

Use the `show file systems` command to determine whether the router recognizes that there is a USB module plugged into a USB port. The USB module should appear on the list of file systems. If the module does not appear on the list, it can indicate any of the following problems:

- A connection problem with the USB module.
- The Cisco IOS image running on the router does not support a USB module.
- A hardware problem with the USB module itself.

Sample output from the `show file systems` command showing a USB token appears below. The USB module listing appears in the last line of the examples.

```
Device# show file systems
File Systems:
 File Systems:
 Size(b) Free(b) Type Flags Prefixes
 - - opaque rw archive:
 - - opaque rw system:
 - - opaque rw null:
 - - network rw tftp:
 * 129880064 69414912 disk rw flash:
 491512 486395 nvram rw nvram:
 - - opaque w0 syslog:
 - - opaque rw xmodem:
 - - opaque rw ymodem:
 - - network rw rcp:
 - - network rw pram:
 - - network rw ftp:
 - - network rw http:
 - - network rw scp:
```
Determining if a USB Token is Supported by Cisco

Use the `show usb device` command to determine if a USB token is supported by Cisco. The following output from this command indicates whether or not the module is supported is bold in the sample output below:

```
Router# show usb device
Host Controller:1
Address:0x11
Device Configured:YES
Device Supported:YES
Description:eToken Pro 4254
Manufacturer:AKS
Version:1.0
Serial Number:
Device Handle:0x1010000
USB Version Compliance:1.0
Class Code:0xFF
Subclass Code:0x0
Protocol:0x0
Vendor ID:0x529
Product ID:0x514
Max. Packet Size of Endpoint Zero:8
Number of Configurations:1
Speed:Low
Selected Configuration:1
Selected Interface:0
Configuration:
 Number:1
 Number of Interfaces:1
 Description:
 Attributes:None
 Max Power:60 mA
Interface:
 Number:0
 Description:
 Class Code:255
 Subclass:0
 Protocol:0
 Number of Endpoints:0
```

Determining USB Token Device Problems

Use the `show usb controllers` command to determine if there is a hardware problem with a USB flash module. If the `show usb controllers` command displays an error, the error indicates a hardware problem in the USB module.

You can also use the `show usb controllers` command to verify that copy operations onto a USB flash module are occurring successfully. Issuing the `show usb controllers` command after performing a file copy should display successful data transfers.

The following sample output for the `show usb controllers` command displays a working USB flash module:

```
Router# show usb controllers
Name:1362HCD
Controller ID:1
```
Controller Specific Information:
Revision:0x11
Control:0x80
Command Status:0x0
Hardware Interrupt Status:0x24
Hardware Interrupt Enable:0x80000040
Hardware Interrupt Disable:0x80000040
Frame Interval:0x27782EDF
Frame Remaining:0x13C1
Frame Number:0x0DA4C
LSThreshold:0x628
RhDescriptorA:0x19000202
RhDescriptorB:0x0
RhStatus:0x0
RhPort1Status:0x100103
RhPort2Status:0x100303
Hardware Configuration:0x3029
DMA Configuration:0x0
Transfer Counter:0x1
Interrupt:0x9
Interrupt Enable:0x196
Chip ID:0x3630
Buffer Status:0x0
Direct Address Length:0x80A00
ATL Buffer Size:0x600
ATL Buffer Port:0x0
ATL Block Size:0x100
ATL PTD Skip Map:0xFFFFFFFF
ATL PTD Last:0x20
ATL Current Active PTD:0x0
ATL Threshold Count:0x1
ATL Threshold Timeout:0xFF
Int Level:1
Transfer Completion Codes:
Success :920 CRC :0
Bit Stuff :0 Stall :0
No Response :0 Overrun :0
Underrun :0 Other :0
Buffer Overrun :0 Buffer Underrun :0
Transfer Errors:
Canceled Transfers :2 Control Timeout :0
Transfer Failures:
Interrupt Transfer :0 Bulk Transfer :0
Isochronous Transfer :0 Control Transfer:0
Transfer Successes:
Interrupt Transfer :0 Bulk Transfer :26
Isochronous Transfer :0 Control Transfer:894
USBD Failures:
Enumeration Failures :0 No Class Driver Found:0
Power Budget Exceeded:0
USB MSCD SCSI Class Driver Counters:
Good Status Failures :3 Command Fail :0
Good Status Timed out:0 Device not Found:0
Device Never Opened :0 Drive Init Fail :0
Illegal App Handle :0 Bad API Command :0
Invalid Unit Number :0 Invalid Argument:0
Application Overflow :0 Device in use :0
Control Pipe Stall :0 Malloc Error :0
Device Stalled :0 Bad Command Code:0
Device Detached :0 Unknown Error :0
Invalid Logic Unit Num:0
USB Aladdin Token Driver Counters:
Token Inserted :1 Token Removed :0
Send Insert Msg Fail :0 Response Txns :434
Displaying USB Token Information

Use the `dir` command with the `filesystem` keyword option `usbtokendev:9` to display all files, directories, and their permission strings on the USB token.

The following sample output displays directory information for the USB token:

Device# `dir usbtokendev:`
Directory of usbtokendev:/
  2 drwx 64 Dec 22 2032 05:23:40 +00:00 1000
  5 drwx 4096 Dec 22 2032 05:23:40 +00:00 1001
  8 d--- 0 Dec 22 2032 05:23:40 +00:00 1002
 10 d--- 512 Dec 22 2032 05:23:42 +00:00 1003
 12 d--- 0 Dec 22 2032 05:23:42 +00:00 5000
 13 d--- 0 Dec 22 2032 05:23:42 +00:00 6000
 14 d--- 0 Dec 22 2032 05:23:42 +00:00 7000
 15 ---- 940 Jun 27 1992 12:50:42 +00:00 mystartup-config
 16 ---- 1423 Jun 27 1992 12:51:14 +00:00 myrunning-config
32768 bytes total (858 bytes free)

The following sample output displays directory information for all devices to which the device is aware:

Device# `dir all-filesystems`
Directory of archive:/
No files in directory
No space information available
Directory of system:/
  2 drwx 0 <no date> its
 115 dr-x 0 <no date> lib
 144 dr-x 0 <no date> memory
  1 -rw- 1906 <no date> running-config
 114 dr-x 0 <no date> vfiles
No space information available
Directory of flash:/
  1 -rw- 30125020 Dec 22 2032 03:06:04 +00:00 c3825-entservicesk9-mz.123-14.T
129880064 bytes total (99753984 bytes free)
Directory of nvram:
  476 -rw- 1947 <no date> startup-config
  477 ---- 46 <no date> private-config
  478 -rw- 1947 <no date> underlying-config
  1 -rw- 0 <no date> ifindex-table
  2 ---- 4 <no date> rf_cold_starts
  3 ---- 14 <no date> persistent-data
491512 bytes total (486395 bytes free)
Directory of usbf lash0:/
  1 -rw- 30125020 Dec 22 2032 05:31:32 +00:00 c3825-entservicesk9-mz.123-14.T
63158272 bytes total (33033216 bytes free)
Configuration Examples for PKI Storage

Example: Storing Certificates to a Specific Local Storage Location

The following configuration example shows how to store certificates to the certs subdirectory. The certs subdirectory does not exist and is automatically created.

```
Router# dir nvram:
 114 -rw- 4687 <no date> startup-config
115 ---- 5545 <no date> private-config
116 -rw- 4687 <no date> underlying-config
 1 ---- 34 <no date> persistent-data
 3 -rw- 707 <no date> ioscaroot#7401CA.cer
 9 -rw- 863 <no date> msca-root#826E.cer
 10 -rw- 759 <no date> msca-root#1BA8CA.cer
 11 -rw- 863 <no date> msca-root#75B8.cer
 24 -rw- 1149 <no date> storagename#6500CA.cer
 26 -rw- 863 <no date> maca-root#83EE.cer
129016 bytes total (92108 bytes free)
```

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# crypto pki certificate storage disk0:/certs
Requested directory does not exist -- created
Certificates will be stored in disk0:/certs/
Router(config)# end
```

```
Router# write
*May 27 02:09:00:%SYS-5-CONFIG_I:Configured from console by consolemem
Building configuration...
[OK]
```

```
Router# directory disk0:/certs
Directory of disk0:/certs/
 14 -rw- 707 May 27 2005 02:09:02 +00:00 ioscaroot#7401CA.cer
15 -rw- 863 May 27 2005 02:09:02 +00:00 msca-root#826E.cer
16 -rw- 759 May 27 2005 02:09:02 +00:00 msca-root#1BA8CA.cer
17 -rw- 863 May 27 2005 02:09:02 +00:00 msca-root#75B8.cer
18 -rw- 1149 May 27 2005 02:09:02 +00:00 storagename#6500CA.cer
19 -rw- 863 May 27 2005 02:09:02 +00:00 maca-root#83EE.cer
47894528 bytes total (20934656 bytes free)
! The certificate files are now on disk0:/certs:
```

Example: Logging Into a USB Token and Saving RSA Keys to the USB Token

The following configuration example shows how to log in to the USB token, generate RSA keys, and store the RSA keys on the USB token:
Example: Logging Into a USB Token and Saving RSA Keys to the USB Token

! Configure the router to automatically log into the eToken
configure terminal
  crypto pki token default user-pin 0 1234567890
! Generate RSA keys and enroll certificates with the CA.
crypto pki trustpoint IOSCA
  enrollment url http://10.23.2.2
  exit
crypto ca authenticate IOSCA
Certificate has the following attributes:
  Fingerprint MD5:23272BD4 37E3D9A4 236F7E1A F534444E
  Fingerprint SHA1:D1B4D9F8 D603249A 793B3CAF 8342E1FE 3934EB7A
% Do you accept this certificate? [yes/no]:yes
Trustpoint CA certificate accepted.
crypto pki enroll
crypto pki enroll IOSCA
% Start certificate enrollment ..
% Create a challenge password. You will need to verbally provide this password to the CA Administrator in order to revoke your certificate.
% For security reasons your password will not be saved in the configuration.
% Please make a note of it.
Password:
Re-enter password:
% The subject name in the certificate will include:c2851-27.cisco.com
% Include the router serial number in the subject name? [yes/no]:no
% Include an IP address in the subject name? [no]:no
Request certificate from CA? [yes/no]:yes
% Certificate request sent to Certificate Authority
% The 'show crypto ca certificate IOSCA verbose' command will show the fingerprint.
  %Jan 13 06:47:19.413:CRYPTO_PKI: Certificate Request Fingerprint MD5:E6DDAB1B
  0E30EFE6 54529DB8 DA787DBA
  %Jan 13 06:47:19.413:CRYPTO_PKI: Certificate Request Fingerprint SHA1:3B0F33B
  7767C2A10 3935042B C4B6CB3D 61039251
  %Jan 13 06:47:21.021:%PKI-6-CERTRET:Certificate received from Certificate Authority
  ! Issue the write memory command, which will automatically save the RSA keys to the eToken
  ! instead of private NVRAM.
Router# write memory
Building configuration...
[OK]
*Jan 13 06:47:29.481:%CRYPTO-6-TOKENSTOREKEY:Key c2851-27.cisco.com stored on
Cryptographic Token eToken Successfully

The following sample output from the show crypto key mypubkey rsa command displays stored credentials after they are successfully loaded from the USB token. Credentials that are stored on the USB token are in the protected area. When storing the credentials on the USB token, the files are stored in a directory called /keystore. However, the key files are hidden from the command-line interface (CLI).

Router#
show crypto key mypubkey rsa
% Key pair was generated at:06:37:26 UTC Jan 13 2005
Key name:c2851-27.cisco.com
Usage:General Purpose Key
Key is not exportable.
Key Data: 305C300D 06092A86 4886F70D 01010105 00034B00 30480241 00E3C644 43AA7DDD 732E0F4E 3CA0CDAB 387ABF05 EB8F22F2 2431F1AE 5D51FEE3 FCD4A9C4 7FBD3603 7C977854 BEE999BF 7FC93021 7F46ABF8 A4BA2ED6 172D3D09 B5020301 0001
% Key pair was generated at:06:37:27 UTC Jan 13 2005
Key name:c2851-27.cisco.com.server
Usage:Encryption Key
Key is not exportable.
Key Data:
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecting the USB modules to the router</td>
<td>Cisco Access Router USB Flash Module and USB eToken Hardware Installation Guide</td>
</tr>
<tr>
<td>eToken and USB flash data sheet</td>
<td>USB eToken and USB Flash Features Support</td>
</tr>
<tr>
<td>RSA keys</td>
<td>Deploying RSA Keys Within a PKI</td>
</tr>
<tr>
<td>File management (loading, copying, and rebooting files)</td>
<td>Cisco Configuration Fundamentals Configuration Guide on Cisco.com</td>
</tr>
<tr>
<td>USB Token RSA Operations: Using USB tokens for RSA operations upon initial autoenrollment</td>
<td>See the “Configuring Certificate Enrollment or Autoenrollment” section of the “Configuring Certificate Enrollment for a PKI” feature document.</td>
</tr>
<tr>
<td>SDP setup, configuration and use with USB tokens</td>
<td>See the feature information section for the feature names on using SDP and USB tokens to deploy PKI credentials in the “Setting Up Secure Device Provisioning (SDP) for Enrollment in a PKI” feature document.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Feature Information for Storing PKI Credentials

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 14: Feature Information for Storing PKI Credentials

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate -- Storage Location Specification</td>
<td>12.2(33)SXH, 12.2(33)SRA, 12.4(2)T</td>
<td>This feature allows you to specify the storage location of local certificates for platforms that support storing certificates as separate files. All Cisco platforms support NVRAM, which is the default location, and flash local storage. Depending on your platform, you may have other supported local storage options including bootflash, slot, disk, USB flash, or USB token. The following commands were introduced by this feature: <code>crypto pki certificate storage</code>, <code>show crypto pki certificates storage</code></td>
</tr>
<tr>
<td>Cisco IOS USB Token PKI Enhancements -- Phase 2</td>
<td>12.4(11)T</td>
<td>This feature enhances USB token functionality by using the USB token as a cryptographic device. USB tokens may be used for RSA operations such as key generation, signing, and authentication. This document introduces the benefits of using USB tokens and the keys on the token for RSA operations.</td>
</tr>
<tr>
<td>RSA 4096-bit Key Generation in Software Crypto Engine Support</td>
<td>15.1(1)T</td>
<td>The range value for the <code>modulus</code> keyword value for the <code>crypto key generate rsa</code> command is extended from 360 to 2048 bits to 360 to 4096 bits.</td>
</tr>
<tr>
<td>USB Storage</td>
<td>12.3(14)T, 12.4(11)T</td>
<td>This feature enables certain models of Cisco routers to support USB tokens. USB tokens provide secure configuration distribution and allow users to VPN credentials for deployment. Cisco IOS Release 12.4(11)T introduced support for USB Storage on NPE-G2. The following commands were introduced or modified by this feature: <code>copy</code>, <code>crypto pki token change-pin</code>, <code>crypto pki token login</code>, <code>crypto pki token logout</code>, <code>crypto pki token max-retries</code>, <code>crypto pki token removal timeout</code>, <code>crypto pki token secondary config</code>, <code>crypto pki token user-pin</code>, <code>debug usb driver</code>, <code>dir</code>, <code>show usb controllers</code>, <code>show usb device</code>, <code>show usb driver</code>, <code>show usbtoken</code></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>---------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| USB Storage PKI Enhancements                    | 12.4(4)T, 12.4(11)T | This feature enhances the USB token PIN security for automatic login and increases the flexibility of USB token configuration and the RSA key storage.  
The following commands were introduced or modified by this feature: `crypto key storage`, `crypto pki generate rsa`, `crypto pki token encrypted-user-pin`, `crypto pki token label`, `crypto pki token lock`, `crypto pki token secondary unconfig`, `crypto pki token unlock` |
| USB Token and Secure Device Provisioning (SDP) Integration | 12.4(15)T    | This feature provides the ability to provision remote devices with USB tokens using SDP.  
The following commands were introduced by this feature: `binary file`, `crypto key move rsa`, `template file`.  
This document introduces the benefits of using USB tokens and SDP for a deployment solution. |
Chapter 9

Source Interface Selection for Outgoing Traffic with Certificate Authority

The Source Interface Selection for Outgoing Traffic with Certificate Authority feature allows the IP address of an interface to be specified and used as the source address for all outgoing TCP connections associated with that trustpoint when a designated trustpoint has been configured.

- Finding Feature Information, on page 259
- Information About Source Interface Selection for Outgoing Traffic with Certificate Authority, on page 260
- How to Configure Source Interface Selection for Outgoing Traffic with Certificate Authority, on page 260
- Configuration Examples for Source Interface Selection for Outgoing Traffic with Certificate Authority, on page 263
- Additional References, on page 264
- Feature Information for Source Interface Selection for Outgoing Traffic with Certificate Authority, on page 265
- Glossary, on page 265

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About Source Interface Selection for Outgoing Traffic with Certificate Authority

Certificates That Identify an Entity

Certificates can be used to identify an entity. A trusted server, known as the certification authority (CA), issues the certificate to the entity after determining the identity of the entity. A router that is running Cisco IOS software obtains its certificate by making a network connection to the CA. Using the Simple Certificate Enrollment Protocol (SCEP), the router transmits its certificate request to the CA and receives the granted certificate. The router obtains the certificate of the CA in the same manner using SCEP. When validating a certificate from a remote device, the router may again contact the CA or a Lightweight Directory Access Protocol (LDAP) or HTTP server to determine whether the certificate of the remote device has been revoked. (This process is known as checking the certificate revocation list [CRL].)

In some configurations, the router may make the outgoing TCP connection using an interface that does not have a valid or IP address that can be routed. The user must specify that the address of a different interface be used as the source IP address for the outgoing connection. Cable modems are a specific example of this requirement because the outgoing cable interface (the RF interface) usually does not have an IP address that can be routed. However, the user interface (usually Ethernet) does have a valid IP address.

Source Interface for Outgoing TCP Connections Associated with a Trustpoint

The crypto ca trustpoint command is used to specify a trustpoint. The source interface command is used along with the crypto ca trustpoint command to specify the address of the interface that is to be used as the source address for all outgoing TCP connections associated with that trustpoint.

**Note**

If the interface address is not specified using the source interface command, the address of the outgoing interface is used.

How to Configure Source Interface Selection for Outgoing Traffic with Certificate Authority

Configuring the Interface for All Outgoing TCP Connections Associated with a Trustpoint

Perform this task to configure the interface that you want to use as the source address for all outgoing TCP connections associated with a trustpoint.

**SUMMARY STEPS**

1. enable
2. `configure terminal`
3. `crypto ca trustpoint name`
4. `enrollment [mode] [retry period minutes] [retry count number] url url [pem]`
5. `source interface interface-address`
6. `interface type slot / port`
7. `description string`
8. `ip address ip-address mask`
9. `interface type slot/port`
10. `description string`
11. `ip address ip-address mask`
12. `crypto map map-name`

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.  
| Example: | | • Enter your password if prompted.  
| | Router> enable | |
| Step 2 | `configure terminal` | Enters global configuration mode. |
| Example: | | |
| | Router# configure terminal | |
| Step 3 | `crypto ca trustpoint name` | Declares the Certificate Authority (CA) that your router should use and enters ca-trustpoint configuration mode. |
| Example: | | |
| | Router (config)# crypto ca trustpoint ms-ca | |
| Step 4 | `enrollment [mode] [retry period minutes] [retry count number] url url [pem]` | Specifies the following enrollment parameters of the CA:  
| Example: | | • (Optional) The `mode` keyword specifies the registration authority (RA) mode, if your CA system provides an RA. By default, RA mode is disabled.  
| | Router (ca-trustpoint)# enrollment url http://caserver.myexample.com  
| | - or-  
| | Router (ca-trustpoint)# enrollment url http://[2001:DB8:1:1::1]:80 | • (Optional) The `retry period` keyword and `minutes` argument specifies the period, in minutes, in which the router waits before sending the CA another certificate request. Valid values are from 1 to 60. The default is 1.  
| | | • (Optional) The `retry count` keyword and `number` argument specifies the number of times a router will resend a certificate request when it does not receive a response from the previous request. Valid values are from 1 to 100. The default is 10.  
| | | • The `url` argument is the URL of the CA to which your router should send certificate requests. |
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td><code>source interface interface-address</code></td>
<td>Interface to be used as the source address for all outgoing TCP connections associated with that trustpoint.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (ca-trustpoint)# <code>interface ethernet 0</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>interface type slot / port</code></td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (ca-trustpoint)# <code>interface ethernet 1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><code>description string</code></td>
<td>Adds a description to an interface configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (config-if)# <code>description inside interface</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><code>ip address ip-address mask</code></td>
<td>Sets a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (config-if)# <code>ip address 10.1.1.1 255.255.255.0</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><code>interface type slot/port</code></td>
<td>Configures an interface type.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (config-if)# <code>interface ethernet1/0</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><code>description string</code></td>
<td>Adds a description to an interface configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (config-if)# <code>description outside interface 10.1.1.205 255.255.255.0</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><code>ip address ip-address mask</code></td>
<td>Sets a primary or secondary IP address for an interface.</td>
</tr>
</tbody>
</table>

### Purpose

| Note | With the introduction of Cisco IOS Release 15.2(1)T, an IPv6 address can be added to the `http: enrolment` method. For example: `http://[ipv6-address]:80`. The IPv6 address must be enclosed in brackets in the URL. See the `enrollment url (ca-trustpoint)` command page for more information on the other enrollment methods that can be used. |

- (Optional) The `pem` keyword adds privacy-enhanced mail (PEM) boundaries to the certificate request.
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router (config-if)# ip address 10.2.2.205 255.255.255.0</td>
<td>Applies a previously defined crypto map set to an interface.</td>
</tr>
</tbody>
</table>

### Step 12

**crypto map map-name**

**Example:**

Router (config-if)# crypto map mymap

### Troubleshooting Tips

Ensure that the interface specified in the command has a valid address. Attempt to ping the router using the address of the specified interface from another device (possibly the HTTP or LDAP server that is serving the CRL). You can do the same thing by using a traceroute to the router from the external device.

You can also test connectivity between the router and the CA or LDAP server by using Cisco IOS command-line interface (CLI). Enter the `ping` command and respond to the prompts. If you answer “yes” to the “Extended commands [n]:” prompt, you can specify the source address or interface.

In addition, you can use Cisco IOS CLI to input a `traceroute` command. If you enter the `traceroute ip` command (in EXEC mode), you are prompted for the destination and source address. You should specify the CA or LDAP server as the destination and the address of the interface that you specified in the “source interface” as the source address.

### Configuration Examples for Source Interface Selection for Outgoing Traffic with Certificate Authority

**Source Interface Selection for Outgoing Traffic with Certificate Authority Example**

In the following example, the router is located in a branch office. The router uses IP Security (IPSec) to communicate with the main office. Ethernet 1 is the “outside” interface that connects to the Internet Service Provider (ISP). Ethernet 0 is the interface connected to the LAN of the branch office. To access the CA server located in the main office, the router must send its IP datagrams out interface Ethernet 1 (address 10.2.2.205) using the IPSec tunnel. Address 10.2.2.205 is assigned by the ISP. Address 10.2.2.205 is not a part of the branch office or main office.

The CA cannot access any address outside the company because of a firewall. The CA sees a message coming from 10.2.2.205 and cannot respond (that is, the CA does not know that the router is located in a branch office at address 10.1.1.1, which it is able to reach).

Adding the `source interface` command tells the router to use address 10.1.1.1 as the source address of the IP datagram that it sends to the CA. The CA is able to respond to 10.1.1.1.

This scenario is configured using the `source interface` command and the interface addresses as described above.

```
crypto ca trustpoint ms-ca
```
enrollment url http://ms-ca:80/certsrv/mscep/mscep.dll
source interface ethernet 0

```plaintext
interface ethernet 0
description inside interface
ip address 10.1.1.1 255.255.255.0
```

```plaintext
interface ethernet 1
description outside interface
ip address 10.2.2.205 255.255.255.0
crypto map main-office
```

### Additional References

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Configuring IPSec and certification authority</td>
<td>Security for VPNs with IPsec</td>
</tr>
<tr>
<td>IPSec and certification authority commands</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
</tbody>
</table>

#### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locatort found at the following URL:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

#### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Feature Information for Source Interface Selection for Outgoing Traffic with Certificate Authority

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 15: Feature Information for Source Interface Selection for Outgoing Traffic with Certificate Authority

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Source Interface Selection for Outgoing Traffic with Certificate Authority | 12.2(15)T | This feature allows the IP address of an interface to be specified and used as the source address for all outgoing TCP connections associated with that trustpoint when a designated trustpoint has been configured. This feature was introduced in Cisco IOS Release 12.2(15)T. The following command was introduced or modified: `source interface`.
| PKI IPv6 Support for VPN Solutions                | 15.2(1)T | The `enrollment url (ca-trustpoint)` command was modified to specify an IPv6 address in the CA URL. |

Glossary

authenticate--To prove the identity of an entity using the certificate of an identity and a secret that the identity poses (usually the private key corresponding to the public key in the certificate).

CA --Certificate Authority. A CA is an entity that issues digital certificates (especially X.509 certificates) and vouches for the binding between the data items in a certificate.

CA authentication --The user manually approves a certificate from a root CA. Usually a fingerprint of the certificate is presented to the user, and the user is asked to accept the certificate based on the fingerprint. The certificate of a root CA is signed by itself (self-signed) so that it cannot be automatically authenticated using the normal certificate verification process.

CRL --certificate revocation list. A CRL is a data structure that enumerates digital certificates that have been invalidated by their issuer prior to when they were scheduled to expire.

enrollment --A router receives its certificate through the enrollment process. The router generates a request for a certificate in a specific format (known as PKCS #10). The request is transmitted to a CA, which grants the request and generates a certificate encoded in the same format as the request. The router receives the granted certificate and stores it in an internal database for use during normal operations.

certificate--A data structure defined in International Organization for Standardization (ISO) standard X.509 to associate an entity (machine or human) with the public key of that entity. The certificate contains specific fields, including the name of the entity. The certificate is normally issued by a CA on
behalf of the entity. In this case the router acts as its own CA. Common fields within a certificate include the distinguished name (DN) of the entity, the DN of the authority issuing the certificate, and the public key of the entity.

**LDAP** --Lightweight Directory Access Protocol. A LDAP is a protocol that provides access for management and browser applications that provide read-and-write interactive access to the X.500 directory.
CHAPTER 10

IOS PKI Performance Monitoring and Optimization

The IOS Performance Monitoring and Optimization feature provides a way to identify the performance within the Public Key Infrastructure (PKI) subsystem and debug and analyze PKI performance related issues.

- Finding Feature Information, on page 267
- Information About IOS PKI Performance Monitoring and Optimization, on page 267
- How to Configure IOS PKI Performance Monitoring and Optimization, on page 268
- Configuration Examples for IOS PKI Performance Monitoring and Optimization, on page 269
- Additional References, on page 271
- Feature Information for IOS PKI Performance Monitoring and Optimization, on page 272

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About IOS PKI Performance Monitoring and Optimization

When PKI applications are deployed in an environment that scales, they can sometimes create challenging problems that are difficult to debug and identify. Traditional use of debug commands may be less effective in this operating environment. However, the IOS PKI Performance Monitoring and Optimization feature provides an efficient way to gather data and report PKI operations to identify performance related issues.

The IOS PKI Performance Monitoring and Optimization feature enables you to collect the following types of PKI performance data:

- Time to validate entire certificate chain.
• Time to verify each certificate.
• Time to check revocation status for each certificate.
• Time to fetch certificate revocation list (CRL) database for each fetch location.
• Time to fetch Simple Certificate Enrollment Protocol (SCEP) method capabilities to retrieve the CRL.
• Time to process each CRL.
• Time to process the Online Certificate Status Protocol (OCSP) response. OCSP is a certificate revocation mechanism.
• Time to fetch Authentication, Authorization, and Accounting (AAA).
• CRL size.
• Validation result.
• Validation Bypass (pubkey cached).
• Method used to fetch a CRL.
• PKI session identifier.
• Crypto engine used (hardware, software, etoken).

How to Configure IOS PKI Performance Monitoring and Optimization

Use this task to start, stop and verify IOS PKI performance monitoring and optimization data.

SUMMARY STEPS

1. enable
2. crypto pki benchmark start limit [wrap]
3. crypto pki benchmark stop
4. show crypto pki benchmarks [ failures ]
5. clear crypto pki benchmarks

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 crypto pki benchmark start limit [wrap]</td>
<td>Enables PKI benchmarking.</td>
</tr>
<tr>
<td>Example:</td>
<td>The limit argument states the number of records from 0 to 9990 that can be stored for the benchmarking session. A</td>
</tr>
</tbody>
</table>

How to Configure IOS PKI Performance Monitoring and Optimization

Use this task to start, stop and verify IOS PKI performance monitoring and optimization data.

SUMMARY STEPS

1. enable
2. crypto pki benchmark start limit [wrap]
3. crypto pki benchmark stop
4. show crypto pki benchmarks [ failures ]
5. clear crypto pki benchmarks

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 crypto pki benchmark start limit [wrap]</td>
<td>Enables PKI benchmarking.</td>
</tr>
<tr>
<td>Example:</td>
<td>The limit argument states the number of records from 0 to 9990 that can be stored for the benchmarking session. A</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# crypto pki benchmark start 20 wrap</td>
<td>limit of 0 indicates an unlimited number of records can be stored. (Optional) The <code>wrap</code> keyword specifies a continuous flow of records. Once the maximum number of records is gathered, they are released and a new set of records is generated. If the <code>wrap</code> keyword is not specified, then benchmarking stops once the limit for the maximum number of records has been reached.</td>
</tr>
</tbody>
</table>

**Step 3**

**crypto pki benchmark stop**

**Example:**

Router# crypto pki benchmark stop

Terminates PKI benchmarking data collection.

**Step 4**

**show crypto pki benchmarks | failures |**

**Example:**

Router# show crypto pki benchmarks

Displays the PKI benchmarking data that was collected. (Optional) Select the `failures` keyword to only display validation failures.

**Step 5**

**clear crypto pki benchmarks**

**Example:**

Router# clear crypto pki benchmarks

Clears the PKI benchmarking data and all memory used is released.

---

**Configuration Examples for IOS PKI Performance Monitoring and Optimization**

**Example Displaying All PKI Benchmarking Data**

The following example displays `show crypto pki benchmarks` command output of all PKI benchmarking data:

```
Router# show crypto pki benchmarks
Session Descriptor: 10008
Validation Start: 22:58:45.704 GMT Tue Oct 13 2009
Validation Duration: 14 ms
Pubkey Bypass: no
Validation Result: Success
Certificates To Validate: 1
Revocation for certificate 1
 Cert Index: 0
 Start: 22:58:45.714 GMT Tue Oct 13 2009
 Duration: 3 ms
 SCEP Capabilities: Skipped
Session Descriptor: 10007
Validation Start: 22:54:38.969 GMT Tue Oct 13 2009
Validation Duration: 14 ms
```
Example Displaying All PKI Benchmarking Data
Example Displaying Only Failures in PKI Benchmarking Data

The following example displays `show crypto pki benchmark failures` command output of failure in PKI benchmarking data:

```
Router# show crypto pki benchmark failures
Session Descriptor: 10001
Validation Duration: 57 ms
Pubkey Bypass: no
Validation Result: Failed
Certificates To Validate: 1
Revocation for certificate 1
Cert Index: 0
 Duration: 49 ms
CRL Fetch - HTTP Duration: 37 ms
SCEP Capabilities Duration: 11 ms
```

Example Displaying a Section Filter in PKI Benchmarking Data

The following example displays `show crypto pki benchmark` command output of a section filter in PKI benchmarking data:

```
Router# show crypto pki benchmark | section Revocation
Revocation Check for Certificate 1 of 1
 Duration: 714 ms
Revocation Check for Certificate 1 of 1
 Duration: 6 ms
```

Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td><a href="#">Cisco IOS Master Commands List, All Releases</a></td>
</tr>
<tr>
<td>Security commands</td>
<td><a href="#">Cisco IOS Security Command Reference</a></td>
</tr>
<tr>
<td>PKI information</td>
<td><a href="#">Cisco IOS Security Configuration Guide: Secure Connectivity, Release 15.1</a></td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td></td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical</td>
<td></td>
</tr>
<tr>
<td>issues with Cisco products and technologies. Access to most tools on the</td>
<td></td>
</tr>
<tr>
<td>Cisco Support and Documentation website requires a Cisco.com user ID and</td>
<td></td>
</tr>
<tr>
<td>password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for IOS PKI Performance Monitoring and Optimization

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 16: Feature Information for IOS PKI Performance Monitoring and Optimization

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS PKI Performance Monitoring and Optimization</td>
<td>15.1(3)T</td>
<td>The IOS Performance Monitoring and Optimization feature provides a way to characterize the performance within the Public Key Infrastructure (PKI) subsystem and debug and analyze PKI performance related issues. This feature was introduced in Cisco IOS Release 15.1(3)T. The following commands were introduced or modified: crypto pki benchmark, show crypto pki benchmarks, clear crypto pki benchmarks.</td>
</tr>
</tbody>
</table>
CHAPTER 11

PKI Trustpool Management

The PKI Trustpool Management feature is used to authenticate sessions, such as HTTPS, that occur between devices by using commonly recognized trusted agents called certificate authorities (CAs).

Trustpool certificates are well-known CA certificates with which you can establish trust. IOS PKI has both built-in CAs and also has an option to download trustpool bundle. Built-in CA certificates are used to verify PKCS7 signature of downloaded trustpool bundle. You can download the trustpool bundle if signature verification fails. You can delete Built-in trustpool certificates. Trustpool certificates are used by applications such as SSLVPN, PnP, Smart License, MacSec and so on.

This feature, which is enabled by default, is used to create a scheme to provision, store, and manage a pool of certificates from known CAs in a way similar to the services a browser provides for securing sessions.

Note

Effective with Cisco IOS XE Denali 16.3, the way PKI Trustpools are managed have changed. If you are planning to upgrade to this release, please review the changes to the feature captured below as part of PKI Trustpool Enhancements section.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for PKI Trustpool Management

The use of certificates requires that a crypto subsystem is included in the Cisco IOS software image.

Restrictions for PKI Trustpool Management

Device certificates that use CA certificates cannot be enrolled in a PKI trustpool.

Information About PKI Trustpool Management

CA Certificate Storage in a PKI Trustpool

The router uses a built-in CA certificate bundle that is contained in a special certificate store called a PKI trustpool, which is updated automatically from Cisco. This PKI trustpool is known by Cisco and other vendors. A CA certificate bundle can be in the following formats:

- X.509 certificates in Distinguished Encoding Rules (DER) binary format enveloped within a public-key cryptographic message syntax standard 7 (pkcs7), which is used to sign and encrypt messages under a PKI. An X.509 certificate is a PKI and Privilege Management Infrastructure (PMI) standard that specifies, among other things, standard formats for public key certificates, certificate revocation lists, attribute certificates, and a certification path validation algorithm.

- A file containing concatenated X.509 certificates in Privacy Enhanced Mail (PEM) format with PEM headers.

Note

Flash can also be used as the storage location for the bundles instead of NVRAM.

PKI Trustpool Updating

The PKI trustpool is treated as a single entity that needs to be updated when the following conditions occur:

- A certificate in the PKI trustpool is due to expire or has been reissued.

- The published CA certificate bundle contains additional trusted certificates that are needed by a given application.

- The configuration has been corrupted.

Note

A built-in certificate in the PKI trustpool cannot be physically replaced. However, a built-in certificate is rendered inactive after an update if its X.509 subject-name attribute matches the certificate in the CA certificate bundle.
The PKI trustpool can be updated automatically or manually. The PKI trustpool may be used by certificate validation depending upon the application using it. See the "Manually Updating Certificates in the PKI Trustpool" and "Configuring Optional PKI Trustpool Policy Parameters" sections for more information.

**Note**

During auto-update all the existing downloaded trustpool certificates must be deleted.

The PKI trustpool timer matches the CA certificate with the earliest expiration time. If the timer is running and a bundle location is not configured and not explicitly disabled, syslog warnings are issued to alert the administrator that the PKI trustpool policy option is not set.

Automatic PKI trustpool updates use the configured URL.

When the PKI trustpool expires, the policy is read, the bundle is loaded, and the PKI trustpool is replaced. If the automatic PKI trustpool update encounters problems when initiating, then the following schedule is used to initiate the update until the download is successful: 20 days, 15 days, 10 days, 5 days, 4 days, 3 days, 2 days, 1 day, and then once every hour.

### CA Handling in Both PKI Trustpool and Trustpoint

There may be circumstances where a CA resides in both PKI trustpool and trustpoint; for example, a trustpoint uses a CA and a CA bundle is downloaded later with the same CA inside. In this scenario, the CA in the trustpoint and the policy of this trustpoint is considered before the CA in the PKI trustpool or PKI trustpool policy to ensure that any current behavior is not altered when the PKI Trustpool Management feature is implemented on the router.

### PKI Trustpool Enhancements

In releases earlier than Cisco IOS XE Denali 16.3, the trustpool consists of built-in certificates deployed with every Cisco box and downloaded CA certificates from published bundles. The downloaded certificates are saved in NVRAM, by default. The certificates from the downloaded trustpool bundle would be extracted and stored in the running configuration which was inefficient and utilized too much space.

From Cisco IOS XE Denali 16.3, the PKI trustpool enhancements stores the bundles in the same downloaded bundle format as one file in the storage location (default is NVRAM) instead of individual certificates like in the previous releases. This helps in saving storage memory as the file is in compressed format. Also, the certificates are not displayed individually in the running configuration. On every reboot the bundles are read from the storage location and individual certificates are installed in the database.

This feature removes the current downloaded certificates from the running configuration. The `crypto pki certificate pool` will not have the DER format certificates because these certificates are incompatible with the old NVRAM file and the new images. During upgrade, the trustpool certificates in DER format are lost and the bundles must be reinstalled again in the storage. This is indicated by a syslog during reboot in case of old NVRAM files. The `show crypto pki trustpool` command indicates that the configuration has been removed. Before you upgrade, use the `show crypto pki trustpool` command to verify that the certificates are available.

The following steps must be followed before upgrading to Cisco IOS XE Denali 16.3:

- Remove the downloaded trustpool certificates using the `crypto pki trustpool clean` command
- Use the `write memory` command
• Reboot the device
• Download the trustpool bundles using the `crypto pki trustpool import url` command

If you are using trustpool certificates to log into SSH, then you need to follow additional steps to transfer that specific certificate from bundle to a trustpoint. See *Example: Using PKI Trustpool for SSH Connection During Upgrade* for more information.

# How to Configure PKI Trustpool Management

## Manually Updating Certificates in the PKI Trustpool

The PKI Trustpool Management feature is enabled by default and uses the built-in CA certificate bundle in the PKI trustpool, which receives automatic updates from Cisco. Perform this task to manually update certificates in the PKI trustpool if they are not current, are corrupt, or if certain certificates need to be updated.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki trustpool import clean [terminal | url url]`
4. `crypto pki trustpool import {terminal} {url url | ca-bundle} {vrf vrf-name | source interface interface-name}`
5. `exit`
6. `show crypto pki trustpool`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>(Optional) Manually removes all downloaded PKI CA certificates.</td>
</tr>
<tr>
<td>`crypto pki trustpool import clean [terminal</td>
<td>url url]`</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# crypto pki trustpool import clean</td>
<td>• The <code>terminal</code> keyword removes the existing CA certificate bundle terminal setting.</td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The <strong>url</strong> keyword and <strong>url</strong> argument removes the existing URL file system setting.</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 4**  
```bash  
crypto pki trustpool import {terminal} {url url | ca-bundle} {vrf vrf-name | source interface interface-name}
```  
**Example:**  
Device(config)# crypto pki trustpool import url http://www.cisco.com/security/pki/trs/ios.p7b  
| Manually imports (downloads) the CA certificate bundle into the PKI trustpool to update or replace the existing CA certificate bundle.  
• The **terminal** keyword specifies the importation of a CA certificate bundle through the terminal (cut-and-paste) in PEM format.  
• The **url** keyword with the **url** argument specifies the importation of a CA certificate bundle through a URL. This URL can be through a variety of URL file systems such as HTTP. See the **PKI Trustpool Updating** section for more information. In CA bundle, you can use the **crypto pki trustpool import** command to pass the traffic through global VRF. Also, the traffic will not divert through a VRF, when you configure the **crypto pki trustpool policy** command specifying the VRF and source interface. |                                                                                                                                          |
| **Step 5**  
```bash  
exit
```  
**Example:**  
Device(config)# exit  
| Exits global configuration mode.                                                                                                                                                                                                 |
| **Step 6**  
```bash  
show crypto pki trustpool
```  
**Example:**  
Device(config)# show crypto pki trustpool  
| Displays the PKI trustpool certificates of the router in a verbose format.                                                                                                                                                        |

---

**Configuring Optional PKI Trustpool Policy Parameters**

**SUMMARY STEPS**

1. enable  
2. configure terminal  
3. crypto pki trustpool policy  
4. cabundle url {url | none}  
5. chain-validation  
6. crl {cache {delete-after {minutes | none} | query url}  
7. default command-name  
8. match certificate certificate-map-name [allow expired-certificate | override {cdp directory ldap-location | ocs {number url url | trustpool name number url url} | sia number url} | skip [revocation-check | authorization-check]]  
9. ocs {disable nonce | url url}
10. `revocation-check method1 [method2 [method3]]`

11. `source interface name number`

12. `storage location`

13. `vrf vrf-name`

14. `show`

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable <strong>Example:</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal <strong>Example:</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong> crypto pki trustpool policy <strong>Example:</strong></td>
<td>Enters ca-trustpool configuration mode where commands can be accessed</td>
</tr>
<tr>
<td></td>
<td>to configure CA PKI trustpool policy parameters. The trustpool policy</td>
</tr>
<tr>
<td></td>
<td>only affects the crl retrieval process and has no effect on trustpool</td>
</tr>
<tr>
<td></td>
<td>import process.</td>
</tr>
<tr>
<td></td>
<td>Device(config)# crypto pki trustpool policy</td>
</tr>
<tr>
<td></td>
<td>Device(ca-trustpool)#</td>
</tr>
<tr>
<td><strong>Step 4</strong> cabundle url `{url</td>
<td>none}` <strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>certificate bundle is downloaded.</td>
</tr>
<tr>
<td></td>
<td>• The <code>url</code> argument is the URL of the CA certificate bundle.</td>
</tr>
<tr>
<td></td>
<td>• The <code>none</code> keyword specifies that autoupdates of the PKI trustpool</td>
</tr>
<tr>
<td></td>
<td>CA are not permitted.</td>
</tr>
<tr>
<td></td>
<td>Device(ca-trustpool)# cabundle url</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/security/pki/crl/crca2048.crl">http://www.cisco.com/security/pki/crl/crca2048.crl</a></td>
</tr>
<tr>
<td><strong>Step 5</strong> chain-validation <strong>Example:</strong></td>
<td>Enables chain validation from the peer's certificate to the root CA</td>
</tr>
<tr>
<td></td>
<td>certificate in the PKI trustpool. The default has validation stopping at</td>
</tr>
<tr>
<td></td>
<td>the peer certificate's issuer.</td>
</tr>
<tr>
<td></td>
<td>Device(ca-trustpool)# chain-validation</td>
</tr>
<tr>
<td><strong>Step 6</strong> crl `{cache {delete-after {minutes</td>
<td>none}</td>
</tr>
<tr>
<td></td>
<td>options for the PKI trustpool.</td>
</tr>
<tr>
<td></td>
<td>• The <code>cache</code> keyword specifies CRL cache options.</td>
</tr>
<tr>
<td></td>
<td>• The <code>delete-after</code> keyword removes the CRL from the cache after a</td>
</tr>
<tr>
<td></td>
<td>timeout.</td>
</tr>
<tr>
<td></td>
<td>• The <code>minutes</code> argument is the number of minutes from 1 to 43,200 to</td>
</tr>
<tr>
<td></td>
<td>wait before deleting the CRL from the cache.</td>
</tr>
<tr>
<td></td>
<td>Device(ca-trustpool)# crl query</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/security/pki/crl/crca2048.crl">http://www.cisco.com/security/pki/crl/crca2048.crl</a></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>none</strong></td>
<td>The <code>none</code> keyword specifies that CRLs are not cached.</td>
</tr>
<tr>
<td><strong>query</strong></td>
<td>The <code>query</code> keyword with the <code>url</code> argument specifies the URL published by the CA server to query the CRL.</td>
</tr>
</tbody>
</table>

**Step 7**

**default command-name**

**Example:**

```
Device(ca-trustpool)# default crl query http://www.cisco.com/security/pki/crl/crca2048.crl
```

Resets the value of a ca-trustpool configuration subcommand to its default.

- The `command-name` argument is the ca-trustpool configuration mode command with its applicable keywords.

**Step 8**

**match certificate certificate-map-name [allow expired-certificate | override {cdp directory ldap-location | ocp {number url url} | trustpool name number url url} | sia number url] | skip [revocation-check | authorization-check]]**

**Example:**

```
match certificate mycert override ocp 1 url http://ocspts.identrust.com
```

Enables the use of certificate maps for the PKI trustpool.

- The `certificate-map-name` argument matches the certificate map name.
- The optional `allow expired-certificate` keyword ignores expired certificates.

**Note**

If this keyword is not configured, the router does not ignore expired certificates.

- The `override` keyword overrides the online certificate status protocol (OCSP) or SubjectInfoAccess (SIA) attribute fields in a certificate that is in the PKI trustpool.
- The `cdp` keyword overrides the certificate distribution point (CDP) in a certificate.
- The `directory` keyword and `ldap-location` specifies the CDP in either the http: or ldap: URL, or LDAP directory to override in the certificate.
- The `ocsp` keyword and `number` argument and `url` keyword and `url` argument specifies the OCSP sequence number from 0 to 10000 and URL to override in the certificate.
- The `trustpool` keyword and `name` and `number` arguments with the `url` keyword and `url` argument override the PKI trustpool for verifying the OCSP certificate by specifying the PKI trustpool name, sequence number, and URL.
- The `sia` keyword and `number` and `url` arguments override the SIA URL in a certificate by specifying the SIA sequence number and URL.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 9</strong> ocsp {disable-nonce</td>
<td>url url}</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(ca-trustpool)# ocsp url <a href="http://ocspts.identrust.com">http://ocspts.identrust.com</a></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> revocation-check method1 [method2 [method3]]</td>
<td>Disables revocation checking when the PKI trustpool policy is being used. The method argument is used by the router to check the revocation status of the certificate. Available keywords are as follows:</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(ca-trustpool)# revocation-check ocsp crl none</td>
<td></td>
</tr>
</tbody>
</table>

- The optional **skip revocation-check** keyword combination allows the PKI trustpool to enforce certificate revocation lists (CRLs) except for specific certificates.

  **Note** If this keyword combination is not configured, then the PKI trustpool enforces CRLs for all certificates.

- The optional **skip authorization-check** keyword combination skips the authentication, authorization, and accounting (AAA) check of a certificate when public key infrastructure (PKI) integration with an AAA server is configured.

  **Note** If this keyword combination is not configured, and PKI integration with an AAA server is configured, then the AAA checking of a certificate is done.

- The optional **skip revocation-check** keyword combination allows the PKI trustpool to enforce certificate revocation lists (CRLs) except for specific certificates.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 11</strong> source interface name number</td>
<td>Specifies the source interface to be used for CRL retrieval, OCSP status, or the downloading of a CA certificate bundle for the PKI trustpool.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• The name and number arguments are for the interface type and number used as the source address for the PKI trustpool.</td>
</tr>
<tr>
<td>Device(ca-trustpool)# source interface tunnel 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> storage location</td>
<td>Specifies a file system location where PKI trustpool certificates are stored on the router.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• The location is the file system location where the PKI trustpool certificates are stored. The types of file system locations are disk0:, disk1:, nvram:, unix:, or a named file system.</td>
</tr>
<tr>
<td>Device(ca-trustpool)# storage storage disk0:crca2048.crl</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> vrf vrf-name</td>
<td>Specifies the VPN routing and forwarding (VRF) instance to be used for enrolment, CRL retrieval, and OCSP status.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(ca-trustpool)# vrf myvrf</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> show</td>
<td>Displays the PKI trustpool policy of the router.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(ca-trustpool)# show</td>
<td></td>
</tr>
</tbody>
</table>

```
Chain validation will stop at the first CA certificate in the pool
Trustpool CA certificates will expire 12:58:31 PST Apr 5 2012
Trustpool policy revocation order: crl
Certificate matching is disabled
Policy Overrides:
```

---

**Configuration examples for PKI Trustpool Management**

**Example: Configuring PKI Trustpool Management**

The following `show crypto pki trustpool` command output displays the certificates in PKI trustpool:
The following `show crypto pki trustpool verbose` command output displays the certificates in PKI trustpool:

```
Device# show crypto pki trustpool verbose

CA Certificate
Status: Available
Version: 3
Certificate Serial Number (hex): 01
Certificate Usage: Signature
Issuer:
 cn=Licensing Root - DEV
 o=Cisco
Subject:
 cn=Licensing Root - DEV
 o=Cisco
Validity Date:
 start date: 03:25:43 IST Apr 25 2013
 end date: 03:25:43 IST Apr 25 2033
Subject Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (2048 bit)
Signature Algorithm: SHA256 with RSA Encryption
Fingerprint MD5: 432CBFA0 32D2983A 8A56A319 FD28C6F9
Fingerprint SHA1: 6341FCAF 19CE9FEE 961D92A5 D47390B5 2DD6D94D
X509v3 extensions:
 X509v3 Key Usage: 60000000
 Key Cert Sign
 X509v3 Subject Key ID: 43214521 B5FB217A 1A4D1BB7 0236E664 CBEC8B65
```
Example: Using PKI Trustpool for SSH Connection During Upgrade

Before upgrading to Cisco IOS XE Denali 16.3, copy the certificate from trustpool to a new trustpoint.

```
Device # show run | sec pool
crypto pki trustpool policy
revocation-check none
source interface GigabitEthernet0/0/0
crypto pki certificate pool
```
Example: Using PKI Trustpool for SSH Connection During Upgrade

PKI Trustpool Management

Paste the certificate in config mode by creating a new trustpoint.

Device(config)# cry pki trust abc
Device(ca-trustpoint)# cry pki cert chain abc
Device(config-cert-chain)# certificate ca 01

Enter the certificate in hexadecimal representation

Device(config-pki-hexmode)# 308204FA 308202E2 A0030201 02020101 300D0609 2A864886 F70D0101 0C050030
Device(config-pki-hexmode)# 0E310C30 0A060355 04031303 61626330 1E170D31 36303730 35303435 61626330
Device(config-pki-hexmode)# 82022230 0D06092A 864886F7 0D010101 05003082 020F0030 820D0A02 82020100
Device(config-pki-hexmode)# C78AA144 8EC1D18A 4EECC3E8 81450CC7 A859E584 5C1EA888 820270DA8
Device(config-pki-hexmode)# 33327D93 E1F6CED7 32BB4FCF 693F60E0 37000225 40F6F9C5 0462C4AD
Device(config-pki-hexmode)# ED779180 D6C75E1B FBE97D42 E2A7B35D DDC18C4D 4CCDE401 68F67A6D
Device(config-pki-hexmode)# 904EE49F 40820640 C6E0B072 510BC40E A083F6C E8DF5128 EFB35F4B 31B5C16
Device(config-pki-hexmode)# 217652FF AFC30EBF 593CB19C 56C0E793 2814D504 0E079E0C 8E9E856A 820270DA8
Device(config-pki-hexmode)# F2376994 A0A040C1 7BC1E88F CF80F218 9C48B4D9 A0148216 79827BD1
Device(config-pki-hexmode)# B71898C 2722E89A 3392A2C4 22A22625 2BC1E16F 95B2FC15 207CCA49 378AD3A6
Device(config-pki-hexmode)# 0C574974 DFA21665 8AD8A0E5 81ED8068 81688997 FF05118C 93A59CA0 7FD594F6
Device(config-pki-hexmode)# 855CF974 D71898C 2722E89A 3392A2C4 22A22625 2BC1E16F 95B2FC15 207CCA49 378AD3A6
Device(config-pki-hexmode)# 0C574974 DFA21665 8AD8A0E5 81ED8068 81688997 FF05118C 93A59CA0 7FD594F6
Device(config-pki-hexmode)# B71898C 2722E89A 3392A2C4 22A22625 2BC1E16F 95B2FC15 207CCA49 378AD3A6
Device(config-pki-hexmode)# E2E8CB4C 91BD574D 57B5E18A 7F9CE755 624CA2A4 1AEFCC3 7D1BB20B 1CC79024
Device(config-pki-hexmode)# CD2FBC4D 46E1B7A 6ED88F05 6FD88E91 5121E59E B5E952A4 6E2D1388 10075706
Device(config-pki-hexmode)# 7D6FA999B 3F799F94 F39B9B5D 0C7CD5BC 40738775 5D9856AC 5AB363D 811BA440
Device(config-pki-hexmode)# 41A1E9F 3524F01 1994300A A4B85B75 01486CA0 4C4B3175 820838B6 2BFE1D2A
Device(config-pki-hexmode)# 4AC0D573 7784FACF A6877D68 5D730D04 DC8D942B DE3FC9FE 4C1FF715 2A7A55A
Device(config-pki-hexmode)# 02030100 01A36330 61300F06 03551D13 0101FF04 05300301 01FF300E 0603551D
Device(config-pki-hexmode)# 0F0101FF 04040302 0186301F 0603551D 23041830 168014CA 195EDBF1 51753A92
Device(config-pki-hexmode)# 71342CA8 36DDABA8 63A93130 1D060355 1D060355 1D0E0416 0414CA19 5EDBF151 753A9271
Device(config-pki-hexmode)# 342CA836 DDABA963 A931300D 06092A86 4886F70D 0101C05 00038202 0100553B
Device(config-pki-hexmode)# FB77A482 C447C480 BEB2D0F0 63C82441 3CBDC198 B5D5B1AB DF17C4E2
98AEAF2F
Device(config-pki-hexmode)# CD570939 BCC116E0 33CFF471 E91EE308 8B29B5BD 11DFAC9F A3AC3135
8BE81B22
Device(config-pki-hexmode)# ED205587 5DE04654 A051CC14 CA8D2A6E 81F924DA 001BB1C4 7F85F177
4E75D8EA
Device(config-pki-hexmode)# 797CCAEF 1502492D 17627CD1 E39E295B 44C55884 8E6DF6F8 2129B222
18E3187D
Device(config-pki-hexmode)# AB97B4A7 6F838E75 A8908566 AD9E6687 35B150DE 0C8C1B37 6F17FDAC
7A3C53A4
Device(config-pki-hexmode)# 434F5CF3 6EE71957 E65EC5D2 7685B05B A9D8C0D3 2DB8F97E E6B37E11
C9E26F4F
Device(config-pki-hexmode)# 4E75D8EA 8BE81B22 3A949340 0F9DF2E1 A7CA5364 44416002 03A01F0C
29C09B3D
Device(config-pki-hexmode)# B50A4071 AC4D2234 4E55C5D4 0FD9C308 63F2A8D4 24D34613 B73EA1B
B407DS6F
Device(config-pki-hexmode)# 90EEF5C7 AE61C0D8 13FB493D 0E1C8F9B 1D2D6DEA 458CDE18 8753FF14
F8C75213
Device(config-pki-hexmode)# 35557FC3 50405056 D9790AF0 EAC21646 2BD9AF88D 79C05434 45F21248
0BB72191
Device(config-pki-hexmode)# 74D951DD 9D23997E 1134611E 837137E6 C40C6946 74A40A87 08470E87
E0F6D924
Device(config-pki-hexmode)# A69A98A8 5AA2B9B3 B7468883 94A7230D EE3C6E9A 4A348351 FC40C16D
6FDC91EC
Device(config-pki-hexmode)# CEFF580B F7826DD1 1D1007DB 17CA3298 8C510826 D2712E04 EB666909
30B10658
Device(config-pki-hexmode)# 5391A5BA 80B7E981 B41AAEB9 CE4A5236 20E30AE7 01D5FDB3 60F5C5505
0F8C96DC
Device(config-pki-hexmode)# 8F5CF569 5D90C1FB F5679221 B78226C0 5F11C379 9EBA283C 45A209F7
132BDA2
Device(config-pki-hexmode)# EAF4751B 290A1CAC C3E7978B 760FB05A 185991FE 4884FA1A D3EED7C
153
Device(config-pki-hexmode)# 3B quit

Now you can upgrade to Cisco IOS XE Denali 16.3. The certificate from trustpool would disappear but would still stay in trustpoint. Install the certificate in trustpool after the upgrade.

### Additional References for PKI Trustpool Management

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
Feature Information for PKI Trustpool Management

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
The PKI Trustpool Management feature is used to authenticate sessions, such as HTTPS, that occur between devices by using commonly recognized trusted agents called certificate authorities (CAs).

The following commands were introduced or modified: `cabundle url`, `chain-validation (ca-trustpool)`, `crypto pki trustpool import`, `crypto pki trustpool policy`, `crl`, `default (ca-trustpool)`, `match certificate (ca-trustpool)`, `ocsp`, `show (ca-trustpool)`, `show crypto pki trustpool`, `source interface (ca-trustpool)`, `storage`, `vrf (ca-trustpool)`, `show crypto pki trustpool built-in`, `crypto pki trustpool import clean ca-bundle`. 

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI Trustpool Management</td>
<td>15.2(2)T, 15.1(1)SY, 15.5(2)S</td>
<td>The PKI Trustpool Management feature is used to authenticate sessions, such as HTTPS, that occur between devices by using commonly recognized trusted agents called certificate authorities (CAs). The following commands were introduced or modified: <code>cabundle url</code>, <code>chain-validation (ca-trustpool)</code>, <code>crypto pki trustpool import</code>, <code>crypto pki trustpool policy</code>, <code>crl</code>, <code>default (ca-trustpool)</code>, <code>match certificate (ca-trustpool)</code>, <code>ocsp</code>, <code>show (ca-trustpool)</code>, <code>show crypto pki trustpool</code>, <code>source interface (ca-trustpool)</code>, <code>storage</code>, <code>vrf (ca-trustpool)</code>, <code>show crypto pki trustpool built-in</code>, <code>crypto pki trustpool import clean ca-bundle</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 12

PKI Split VRF in Trustpoint

The PKI Split VRF in Trustpoint feature allows you to configure a VPN Routing and Forwarding (VRF) for certificate enrollment and revocation.

- Finding Feature Information, on page 289
- Information About PKI Split VRF in Trustpoint, on page 289
- How to Configure PKI Split VRF in Trustpoint, on page 290
- Configuration Examples for PKI Split VRF in Trustpoint, on page 291
- Additional References for PKI Split VRF in Trustpoint, on page 291
- Feature Information for PKI Split VRF in Trustpoint, on page 292

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About PKI Split VRF in Trustpoint

Overview of PKI Split VRF in Trustpoint

The PKI Split VRF in Trustpoint feature allows you to configure VPN Routing and Forwarding (VRF) for certificate enrollment and for certificate revocation list (CRL) checking. The VRF is configured in the enrollment profile using the enrollment url command under the crypto pki profile enrollment command to attach the enrollment profile to a trustpoint. You can configure the same VRF for enrollment and CRL or configure different VRFs. Based on the configuration (enrollment or revocation), the corresponding VRF is selected and Simple Certificate Enrollment Protocol (SCEP) request is sent via the respective VRF.

To configure enrollment and CRL via different routing paths, you must configure the enrollment url command using the crypto pki profile enrollment command. This configured VRF acts as an enrollment VRF and the enrollment request goes via that VRF. However, the CRL uses the global VRF configured in the trustpoint using the
If no VRF is configured in the `enrollment url` command, the enrollment takes global enrollment that is configured in the `crypto pki trustpoint` command.

How to Configure PKI Split VRF in Trustpoint

Configuring the Split VRF

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `crypto pki profile enrollment label`
4. `enrollment url url [vrf vrf-name]`
5. `exit`
6. `show crypto pki profile`
7. `show crypto pki trustpoint`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device&gt; enable</code></td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2**        | Enters global configuration mode. |
| `configure terminal` | |
| **Example:**      | |
| `Device# configure terminal` | |

| **Step 3**        | Defines an enrollment profile and enters ca-profile-enroll configuration mode. |
| `crypto pki profile enrollment label` | • `label`—Name for the enrollment profile; the enrollment profile name must match the name specified in the `enrollment profile` command. |
| **Example:**      | |
| `Device(config)# crypto pki profile enrollment pki_profile` | |

| **Step 4**        | Specifies the URL and the VPN Routing and Forwarding (VRF) of the CA server to which to send certificate enrollment requests via HTTP or TFTP. |
| `enrollment url url [vrf vrf-name]` | |
| **Example:**      | |
| `Device(ca-profile-enroll)# enrollment url http://entrust:81/cda-cgi/clientcgi.exe vrf vrf1` | |

| **Step 5**        | Exits ca-profile-enroll configuration mode. |
| `exit`            | • Enter this command a second time to exit global configuration mode. |
| **Example:**      | |
| `Device(ca-profile-enroll)# exit` | |

| **Step 6**        | (Optional) Displays information about PKI profile. |
| `show crypto pki profile` | |
| **Example:**      | |
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# show crypto pki profile</td>
<td></td>
</tr>
</tbody>
</table>

#### Step 7

**Example:**

`Device# show crypto pki profile`

(Optional) Displays information about PKI trustpoints.

### Configuration Examples for PKI Split VRF in Trustpoint

#### Example: Configuring the PKI Split VRF in Trustpoint

**Enrollment and Certificate Revocation List Via Same VRF**

The following example shows how to configure the enrollment and certificate revocation list (CRL) via the same VRF:

```
crypto pki trustpoint trustpoint1
 enrollment url http://10.10.10.10:80
 vrf vrf1
 revocation-check crl
```

**Enrollment and Certificate Revocation List Via Different VRF**

The following example shows how to configure the enrollment and certificate revocation list (CRL) via different VRF:

```
crypto pki profile enrollment pki_profile
 enrollment url http://10.10.10.10:80 vrf vrf2

crypto pki trustpoint trustpoint1
 enrollment profile pki_profile
 vrf vrf1
 revocation-check crl
```

### Additional References for PKI Split VRF in Trustpoint

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for PKI Split VRF in Trustpoint

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 18: Feature Information for PKI Split VRF in Trustpoint

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI Split VRF in Trustpoint</td>
<td>15.4(1)T</td>
<td>The PKI Split VRF in Trustpoint feature allows you to configure a VPN Routing and Forwarding (VRF) for certificate enrollment and revocation. The following commands were introduced or modified: enrollmenturl (ca-profile-enroll).</td>
</tr>
</tbody>
</table>
EST Client Support

The EST Client Support feature allows you to enable EST (Enrolment Over Secure Transport) for all trustpoints while using SSL or TLS to secure transport.

- Finding Feature Information, on page 293
- Prerequisites for EST Client Support, on page 293
- Restrictions for EST Client Support, on page 293
- Information About EST Client Support, on page 294
- How to Configure EST Client Support, on page 294
- Configuration Examples for EST Client Support, on page 295
- Additional References for EST Client Support, on page 296
- Feature Information for EST Client Support, on page 297

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for EST Client Support

- The `ip http authentication fore-close` command must be enabled.
- Only RSA certificate will be used for TLS authentication.

Restrictions for EST Client Support

- Only TLS 1.0 is supported on the EST client.
- Certificate Attribute request is not supported.
Information About EST Client Support

Overview of EST Client Support

The EST Client Support feature allows you to use Enrollment over Secure Transport (EST) as a certificate management protocol for provisioning certificates. With the existing SCEP enrollment integrated within the PKI component, the addition of EST will introduce a new component that will use SSL or TLS to secure the transport. PKI will store all certificates.

To enable EST support, the EST client is required to authenticate the server during TLS connection establishment. For this authentication, the TLS server may require the client's credentials.

How to Configure EST Client Support

Configuring a Trustpoint to Use EST

Perform this task to configure a trustpoint to use EST (Enrolment Over Secure Transport) by enabling the user to use the enrollment profile.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki profile enrollment label
4. method-est
5. enrollment url url [vrf name]
6. enrollment credential label
7. exit
8. show crypto pki profile
9. show crypto pki trustpoint

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| Device# configure terminal | **Device# configure terminal**

**Step 3**

**crypto pki profile enrollment**  
**Example:**

Device(config)# crypto pki profile enrollment pki_profile

**Purpose:** Defines an enrollment profile and enters ca-profile-enroll configuration mode.  
- **label**—Name for the enrollment profile; the enrollment profile name must match the name specified in the **enrollment profile** command.

**Step 4**

**method-est**  
**Example:**

Device(ca-profile-enroll)# method-est

**Purpose:** Enables enrollment profile to select usage of EST.

**Step 5**

**enrollment url**  
**Example:**

Device(ca-profile-enroll)# enrollment url http://entrust:81/cda-cgi/clientcgi.exe vrf vrf1

**Purpose:** Specifies that an enrollment profile is to be used for certificate authentication and enrollment.

**Step 6**

**enrollment credential**  
**Example:**

Device(ca-profile-enroll)# enrollment credential test_label

**Purpose:** Provides the server trustpoint credentials currently available in the profile for TLS client authentication.

**Step 7**

**exit**  
**Example:**

Device(ca-profile-enroll)# exit

**Purpose:** Exits ca-profile-enroll configuration mode.

**Step 8**

**show crypto pki profile**  
**Example:**

Device# show crypto pki profile

(Optional) Displays information about PKI profile.

**Step 9**

**show crypto pki trustpoint**  
**Example:**

Device# show crypto pki trustpoint

(Optional) Displays information about PKI trustpoints.

---

**Configuration Examples for EST Client Support**

**Example: Configuring a Trustpoint to Use EST**

The following example shows how to configure a trustpoint to use Enrollment over Secure Transport (EST):

```
crypto pki profile enrollment pki_profile
method-est
```
Additional References for EST Client Support

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 7030</td>
<td>Enrollment over Secure Transport</td>
</tr>
<tr>
<td>RFC 2818</td>
<td>HTTP Over TLS</td>
</tr>
<tr>
<td>RFC 6125</td>
<td>Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)</td>
</tr>
<tr>
<td>RFC 2510</td>
<td>Internet X.509 Public Key Infrastructure Certificate Management Protocols</td>
</tr>
<tr>
<td>RFC 4210</td>
<td>Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Feature Information for EST Client Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| EST Client Support | 15.5(1)T | The EST Client Support feature allows you to enable EST (Enrolment Over Secure Transport) for all trustpoints while using SSL or TLS to secure transport.  
The following command was introduced: method-est |
OCSP Response Stapling

The OCSP Response Stapling feature allows you to check the validity of a peer's user or device credentials contained in a digital certificate using Online Certificate Status Protocol (OCSP).

- Finding Feature Information, on page 299
- Information About OCSP Response Stapling, on page 299
- How to Configure OCSP Response Stapling, on page 300
- Additional References for OCSP Response Stapling, on page 304
- Feature Information for OCSP Response Stapling, on page 305

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About OCSP Response Stapling

Overview of OCSP Response Stapling

Online Certificate Status Protocol (OCSP) is a method to check certificate revocation when a peer has to retrieve this revocation information and then validate it to check the certificate revocation status. In this method, the certification revocation status is limited by the peer's ability to reach an OCSP responder through the cloud or by the certificate sender's performance in retrieving the certificate revocation-information.

OCSP response stapling supports a new method to fetch the OCSP response for a device’s own certificates. This feature allows the device to obtain its own certificate revocation information by contacting the OCSP server and then sending this result along with its certificates directly to the peer. As a result, the peer does not require to contact the OCSP responder.
## How to Configure OCSP Response Stapling

### Configuring PKI Client to Request EKU Attribute

Perform this task to configure OCSP (Online Certificate Status Protocol) response stapling.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto pki trustpoint name`
4. `ocsp url url`
5. `eku request attribute`
6. `match eku attribute`
7. `revocation-check method1 [method2 [method3]]`
8. `exit`
9. `exit`
10. `show crypto pki counters`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode. 1. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>crypto pki trustpoint name</code></td>
<td>Declares the trustpoint and a given name and enters ca-trustpoint configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# crypto pki trustpoint msca</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>ocsp url url</code></td>
<td>The <code>url</code> argument specifies the URL of an OCSP server so that the trustpoint can check the certificate status. This URL overrides the URL of the OCSP server (if one exists) in the Authority Info Access (AIA) extension of the certificate. All certificates associated with a configured trustpoint are checked by the OCSP server. The URL can be a hostname, IPv4 address, or an IPv6 address. Note: Make sure that the OCSP request <code>url</code> is configured with the <code>ocsp url url</code> command and not with an http-proxy server.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(ca-trustpoint)# ocsp url <a href="http://ocsp-server">http://ocsp-server</a></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(ca-trustpoint)# ocsp url <a href="http://10.10.10.1:80">http://10.10.10.1:80</a></td>
<td></td>
</tr>
</tbody>
</table>
## Configuring PKI Client to Request EKU Attribute

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(ca-trustpoint)# ocsp url http://[2001DB8:1::2]:80</td>
<td>Requests to include specified eku attribute in the certificate. This request, when configured on the PKI client, will be sent to the CA server during enrollment.</td>
</tr>
</tbody>
</table>

### Step 5

**eku request** attribute

**Example:**

Device(ca-trustpoint)# eku request ssh-client

The attribute argument can be one of the following:

- client-auth
- code-signing
- email-protection
- ipsec-end-system
- ipsec-tunnel
- ipsec-user
- ocsp-signing
- server-auth
- time-stamping
- ssh-server
- ssh-client

### Step 6

**match eku** attribute

**Example:**

Device(ca-trustpoint)# match eku client-auth

Allows PKI to validate a peer certificate only if the specified attribute is present in the certificate else validation fails.

The attribute argument can be one of the following:

- client-auth
- code-signing
- email-protection
- ipsec-end-system
- ipsec-tunnel
- ipsec-user
- ocsp-signing
- server-auth
- time-stamping
- ssh-server
- ssh-client
### Command or Action

**Step 7**

```bash
revocation-check method1 [method2 [method3]]
```

**Example:**

```bash
Device(ca-trustpoint)# revocation-check ocsp none
```

**Purpose**

(Optional) Checks the revocation status of a certificate.

- **crl** -- Certificate checking is performed by a CRL. This is the default option.
- **none** -- Certificate checking is ignored.
- **ocsp** -- Certificate checking is performed by an OCSP server.

If a second and third method are specified, each method will be used only if the previous method returns an error, such as a server being down.

**Step 8**

```bash
exit
```

**Example:**

```bash
Device(ca-trustpoint)# exit
```

**Purpose**

Exits ca-trustpoint configuration mode and returns to global configuration mode.

**Step 9**

```bash
exit
```

**Example:**

```bash
Device(config)# exit
```

**Purpose**

Returns to privileged EXEC mode.

**Step 10**

```bash
show crypto pki counters
```

**Example:**

```bash
Device# show crypto pki counters
```

**Purpose**

(Optional) Displays the PKI counters of the device.

---

## Configuring PKI Server to Include EKU Attributes

Perform this task to configure OCSP (Online Certificate Status Protocol) response stapling.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip http server`
4. `crypto pki server cs-label`
5. `eku request attribute`
6. `exit`
7. `exit`
8. `show crypto pki counters`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td>1. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip http server</td>
<td>Enables the HTTP server on your system.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# ip http server</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> crypto pki server <strong>cs-label</strong></td>
<td>Defines a label for the certificate server and enters certificate server configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# crypto pki server server-pki</td>
<td><strong>Note</strong> If you manually generated an RSA key pair, the <em>cs-label</em> argument must match the name of the key pair.</td>
</tr>
<tr>
<td><strong>Step 5</strong> eku request <strong>attribute</strong></td>
<td>Requests to include specified eku <strong>attribute</strong> in the certificate.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(cs-server)# eku request ssh-server</td>
<td>The <strong>attribute</strong> argument can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>• client-auth</td>
</tr>
<tr>
<td></td>
<td>• code-signing</td>
</tr>
<tr>
<td></td>
<td>• email-protection</td>
</tr>
<tr>
<td></td>
<td>• ipsec-end-system</td>
</tr>
<tr>
<td></td>
<td>• ipsec-tunnel</td>
</tr>
<tr>
<td></td>
<td>• ipsec-user</td>
</tr>
<tr>
<td></td>
<td>• ocsp-signing</td>
</tr>
<tr>
<td></td>
<td>• server-auth</td>
</tr>
<tr>
<td></td>
<td>• time-stamping</td>
</tr>
<tr>
<td></td>
<td>• ssh-server</td>
</tr>
<tr>
<td></td>
<td>• ssh-client</td>
</tr>
<tr>
<td><strong>Step 6</strong> exit</td>
<td>Exits cs-server configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(cs-server)# exit</td>
<td></td>
</tr>
</tbody>
</table>
### Example

The following is sample output from the `show crypto pki counters`.

```
Device# show crypto pki counters

PKI Sessions Started: 0
PKI Sessions Ended: 0
PKI Sessions Active: 0
Successful Validations: 0
Failed Validations: 0
Bypassed Validations: 0
Pending Validations: 0
CRLs checked: 0
CRL - fetch attempts: 0
CRL - failed attempts: 0
CRL - rejected busy fetching: 0
OCSP - fetch requests: 0
OCSP - received responses: 0
OCSP - failed attempts: 0
OCSP - staple requests: 0
AAA authorizations: 0
```

### Additional References for OCSP Response stapling

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Master Command List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2560</td>
<td>X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP</td>
</tr>
<tr>
<td>RFC 4806</td>
<td>Online Certificate Status Protocol (OCSP) Extensions to IKEv2</td>
</tr>
<tr>
<td>RFC 5280</td>
<td>Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile</td>
</tr>
<tr>
<td>RFC 6187</td>
<td>X.509v3 Certificates for Secure Shell Authentication</td>
</tr>
<tr>
<td>RFC 6066</td>
<td>Transport Layer Security (TLS) Extensions: Extension Definitions</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/support">http://www.cisco.com/support</a></td>
</tr>
</tbody>
</table>

Feature Information for OCSP Response Stapling

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.
Table 20: Feature Information for OCSP Response Stapling

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCSP Response Stapling</td>
<td>15.5(1)T</td>
<td>This feature allows you to check the validity of a peer’s user or device credentials contained in a digital certificate using Online Certificate Status Protocol (OCSP).</td>
</tr>
</tbody>
</table>