FlexVPN and Internet Key Exchange Version 2 Configuration Guide, Cisco IOS XE Release 3S

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
CONTENTS

CHAPTER 1

Introduction to FlexVPN 1

Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Remote Access 1
Configuring FlexVPN Server 2
Configuring FlexVPN Client 2
Configuring FlexVPN Spoke to Spoke 2
Configuring IKEv2 Load Balancer 2
Configuring IKEv2 Reconnect 2
Configuring MPLS over FlexVPN 2
Appendix: FlexVPN RADIUS Attributes 2
Appendix: IKEv2 and Legacy VPNs 2

CHAPTER 2

Configuring Internet Key Exchange Version 2 and FlexVPN Site-to-Site 3

Finding Feature Information 4
Prerequisites for Configuring Internet Key Exchange Version 2 4
Restrictions for Configuring Internet Key Exchange Version 2 4
Information About Internet Key Exchange Version 2 5
IKEv2 Supported Standards 5
Benefits of IKEv2 5
Internet Key Exchange Version 2 CLI Constructs 6
IKEv2 Proposal 6
IKEv2 Policy 7
IKEv2 Profile 7
IKEv2 Key Ring 7
IKEv2 Smart Defaults 7
IKEv2 Suite-B Support 9
AES-GCM Support 9
Auto Tunnel Mode Support in IKEv2 9
How to Configure Internet Key Exchange Version 2 10
Configuring Basic Internet Key Exchange Version 2 CLI Constructs 10
 Configuring the IKEv2 Keyring 10
 What to Do Next 12
 Configuring an IKEv2 Profile (Basic) 13
Configuring Advanced Internet Key Exchange Version 2 CLI Constructs 17
 Configuring Global IKEv2 Options 17
 Configuring IKEv2 Fragmentation 19
 Configuring IKEv2 Proposal 20
 What to Do Next 23
 Configuring IKEv2 Policies 23
Configuration Examples for Internet Key Exchange Version 2 26
 Configuration Examples for Basic Internet Key Exchange Version 2 CLI Constructs 26
 Example: Configuring the IKEv2 Key Ring 26
 Example: IKEv2 Key Ring with Multiple Peer Subblocks 26
 Example: IKEv2 Key Ring with Symmetric Preshared Keys Based on an IP Address 26
 Example: IKEv2 Key Ring with Asymmetric Preshared Keys Based on an IP Address 26
 Example: IKEv2 Key Ring with Asymmetric Preshared Keys Based on a Hostname 27
 Example: IKEv2 Key Ring with Symmetric Preshared Keys Based on an Identity 27
 Example: IKEv2 Key Ring with a Wildcard Key 27
 Example: Matching a Key Ring 28
 Example: Configuring the Profile 28
 Example: IKEv2 Profile Matched on Remote Identity 28
 Example: IKEv2 Profile Supporting Two Peers 28
 Example: Configuring FlexVPN Site-to-Site with Dynamic Routing Using Certificates and IKEv2 Smart Defaults 29
 Configuration Examples for Advanced Internet Key Exchange Version 2 CLI Constructs 30
 Example: Configuring the Proposal 30
 Example: IKEv2 Proposal with One Transform for Each Transform Type 30
 Example: IKEv2 Proposal with Multiple Transforms for Each Transform Type 30
 Example: IKEv2 Proposals on the Initiator and Responder 31
Example: Configuring the Policy 31
Example: IKEv2 Policy Matched on a VRF and Local Address 31
Example: IKEv2 Policy with Multiple Proposals That Match All Peers in a Global VRF 31
Example: IKEv2 Policy That Matches All Peers in Any VRF 32
Example: Matching a Policy 32

Where to Go Next 32
Additional References for Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site 32
Feature Information for Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site 34

CHAPTER 3 Configuring the FlexVPN Server 39
Finding Feature Information 39
Restrictions for the FlexVPN Server 40
Dual-Stack Tunnel Interface and VRF-Aware IPsec 40
Information About the FlexVPN Server 40
Peer Authentication Using EAP 40
IKEv2 Configuration Mode 42
IKEv2 Authorization 45
IKEv2 Authorization Policy 46
IKEv2 Name Mangler 46
IKEv2 Multi-SA 46
Supported RADIUS Attributes 46
Supported Remote Access Clients 49
Microsoft Windows 7 IKEv2 Client 49
Cisco IKEv2 AnyConnect Client 49
How to Configure the FlexVPN Server 50
Configuring the IKEv2 Profile for the FlexVPN Server 50
Configuring the IKEv2 Name Mangler 53
Configuring the IKEv2 Authorization Policy 55
Configuration Examples for the FlexVPN Server 60
Example: Configuring the FlexVPN Server 60
Example: Configuring the FlexVPN Server to Authenticate Peers Using EAP 60
Example: Configuring the FlexVPN Server for Group Authorization (External AAA) 61
CHAPTER 4 Configuring the FlexVPN Client 67
Finding Feature Information 67
Restrictions for the FlexVPN Client 68
 EAP as the Local Authentication Method 68
 Dual-Stack Tunnel Interface and VRF-Aware IPsec 68
Information About the FlexVPN Client 68
 IKEv2 FlexVPN Client 68
 Tunnel Activation 70
 Tracking-Based Tunnel Activation 70
 Backup Features 70
 Backup Gateways 71
 Reactivate Primary Peer 71
 Dial Backup (Primary or Backup Tunnels) 72
 Backup Group 72
 Dual FlexVPN Support 72
 Split DNS Support 73
 NAT 73
 Network List from the Server 73
 Default Route List from the Server 73
 How the FlexVPN Client learns about the Network List 73
 WINS NBNS and DOMAIN Name 74
 Event Tracing 74
 Extensible Authentication Protocol as a Local Authentication Method 74
How to Configure the FlexVPN Client 75
 Configuring the IKEv2 VPN Client Profile 75
 Configuring the Tunnel Interface 75
 Configuring the FlexVPN Client 77
 Configuring EAP as the Local Authentication Method 79
CHAPTER 5
Configuring FlexVPN Spoke to Spoke

- Finding Feature Information 83
- Prerequisites for FlexVPN Spoke to Spoke 83
- Information About FlexVPN Spoke to Spoke 84
 - FlexVPN and NHRP 84
 - NHRP Resolution Request and Reply in FlexVPN 85
- How to Configure FlexVPN Spoke to Spoke 86
 - Configuring the Virtual Tunnel Interface on the FlexVPN Server 86
 - Configuring NHRP Shortcuts on the FlexVPN Spoke 88
 - Configuring the Virtual Tunnel Interface on the FlexVPN Spoke 89
 - Verifying the FlexVPN Spoke Configuration 91
 - Troubleshooting Tips for FlexVPN Spoke Configuration 93
- Configuration Examples for FlexVPN Spoke to Spoke 95
 - Example: Configuring FlexVPN Spoke to Spoke with Static Routing 95
 - Example: Configuring FlexVPN Spoke to Spoke with Dynamic Routing using BGP 97
- Additional References for Configuring FlexVPN Spoke to Spoke 99
- Feature Information for Configuring FlexVPN Spoke to Spoke 100

CHAPTER 6
Configuring IKEv2 Load Balancer

- Finding Feature Information 103
- Prerequisites for IKEv2 Load Balancer 103
- Information About IKEv2 Load Balancer 104
 - Overview of IKEv2 Load Balancer 104
 - Benefits of IKEv2 Load Balancer 105
- IKEv2 Redirect Mechanism 106
 - Redirect During IKEv2 Initial Exchange (SA Initialization) 106
 - Redirect During IKE_AUTH Exchange (SA Authentication) 106
 - Compatibility and Interoperability 107
 - Handling Redirect Loops 107
Contents

IKEv2 Cluster Reconnect 107
How to Configure IKEv2 Load Balancer 108
Configuring the Server Cluster 108
 Configuring an HSRP Group for Load Balancing 108
 Configuring the Load Management Mechanism 110
 Activating the IKEv2 Redirect Mechanism on the Server 112
Activating the IKEv2 Redirect Mechanism on the Client 113
Configuration Examples for IKEv2 Load Balancer 113
 Example: Configuring an HSRP Group for Load Balancing 113
 Example: Configuring the Load Management Mechanism 114
 Example: Configuring the Redirect Mechanism 114
 Example: Configuring the Cluster Reconnect Key 114
Additional References 114
Feature Information for IKEv2 Load Balancer 116

CHAPTER 7 Configuring IKEv2 Fragmentation 117
Finding Feature Information 117
Information About Configuring IKEv2 Fragmentation 117
 IKEv2 Fragmentation 117
 Negotiation Between Peers 118
 Fragmentation Support for Older Releases 118
 Encryption, Decryption, and Retransmission of Fragments 119
 Fragmentation and Encryption 119
 Decryption and Defragmentation 120
 Retransmissions 120
 Enabling Fragmentation 120
 IPv6 Support 120
 How to Configure Configuring IKEv2 Fragmentation 121
 Configuring IKEv2 Fragmentation 121
 Configuration Examples for Configuring IKEv2 Fragmentation 122
 Example: IETF Fragmentation Enabled Displaying Configured MTU 122
 Example: IETF Standard Fragmentation Method Configured on the Initiator 122
 Example: IETF Standard Fragmentation Method not Configured on the Initiator 124
 Example: IPv6 Support for Fragmentation 124
 Additional References for Configuring IKEv2 Fragmentation 125
 CHAPTER 8
Configuring IKEv2 Reconnect 129
Finding Feature Information 129
Prerequisites for Configuring IKEv2 Reconnect 129
Restrictions for Configuring IKEv2 Reconnect 130
Information About Configured IKEv2 Reconnect 130
IKEv2 and Cisco AnyConnect Client Reconnect Feature 130
Message Exchanges Between Cisco IOS Gateway and Cisco AnyConnect Client 131
How to Configure IKEv2 Reconnect 131
Enabling IKEv2 Reconnect 131
Troubleshooting IKEv2 Reconnect Configuration 132
Configuration Examples for Configuring IKEv2 Reconnect 133
Example: Enabling IKEv2 Reconnect 133
Additional References for Configuring IKEv2 Reconnect 133
Feature Information for Configuring IKEv2 Reconnect 134

 CHAPTER 9
Configuring MPLS over FlexVPN 137
Finding Feature Information 137
Prerequisites for MPLS over FlexVPN 137
Information About Configuring MPLS over FlexVPN 138
MPLS and FlexVPN 138
Working of MPLS over FlexVPN 139
IVRF Support for FlexVPN 140
How to Configure MPLS over FlexVPN 141
Configuring MPLS over FlexVPN 141
Configuration Examples for Configuring MPLS over FlexVPN 142
Example: Configuring MPLS over FlexVPN 142
Additional References for Configuring MPLS over FlexVPN 148
Feature Information for Configuring MPLS over FlexVPN 149

 CHAPTER 10
Configuring IKEv2 Packet of Disconnect 151
Finding Feature Information 151
Information About IKEv2 Packet of Disconnect 151
Disconnect Request 151
Contents

CHAPTER 11 Configuring IKEv2 Change of Authorization Support 161
Finding Feature Information 161
Prerequisites for IKEv2 Change of Authorization Support 161
Restrictions for IKEv2 Change of Authorization Support 162
Information About IKEv2 Change of Authorization Support 162
RADIUS Change of Authorization 162
Working of Change of Authorization on IKEv2 162
Supported AV Pairs for IKEv2 Change of Authorization 162
How to Configure IKEv2 Change of Authorization Support 163
Configuring Change of Authorization on the FlexVPN Server 163
Verifying IKEv2 Change of Authorization Support on Cisco ASR 1000 Series Router 165
Configuration Examples for IKEv2 Change of Authorization Support 167
Example: Triggering a Change of Authorization 167
Additional References for IKEv2 Change of Authorization Support 167
Feature Information for IKEv2 Change of Authorization Support 168

CHAPTER 12 Configuring Aggregate Authentication 171
Finding Feature Information 171
Prerequisites for Configuring Aggregate Authentication 171
Information for Configuring Aggregate Authentication 172
Cisco AnyConnect and FlexVPN 172
How Aggregate Authentication Works 172
IKE Exchanges Using Cisco AnyConnect EAP 174
Dual-Factor Authentication Support with IKEv2 175
How to Configure Aggregate Authentication 175
Configuring the FlexVPN Server for Aggregate Authentication 175
Configuration Examples for Aggregate Authentication 177
Introduction to FlexVPN

Internet Key Exchange Version 2 (IKEv2), a next-generation key management protocol based on RFC 4306, is an enhancement of the IKE Protocol. IKEv2 is used for performing mutual authentication and establishing and maintaining security associations (SAs).

FlexVPN is Cisco's implementation of the IKEv2 standard featuring a unified paradigm and CLI that combines site to site, remote access, hub and spoke topologies and partial meshes (spoke to spoke direct). FlexVPN offers a simple but modular framework that extensively uses the tunnel interface paradigm while remaining compatible with legacy VPN implementations using crypto maps.

This guide contains the following modules:

- Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Remote Access, page 1
- Configuring FlexVPN Server, page 2
- Configuring FlexVPN Client, page 2
- Configuring FlexVPN Spoke to Spoke, page 2
- Configuring IKEv2 Load Balancer, page 2
- Configuring IKEv2 Reconnect, page 2
- Configuring MPLS over FlexVPN, page 2
- Appendix: FlexVPN RADIUS Attributes, page 2
- Appendix: IKEv2 and Legacy VPNs, page 2

Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Remote Access

This module describes IKEv2 CLI and is divided into basic and advanced sections.

The basic section introduces basic IKEv2 commands and describes IKEv2 smart defaults and the mandatory IKEv2 commands required for FlexVPN remote access. This module is a prerequisite for understanding subsequent chapters.
The advanced section describes global IKEv2 commands and how to override the default IKEv2 commands.

Configuring FlexVPN Server

This module describes FlexVPN server features, IKEv2 commands required to configure FlexVPN server, remote access clients and the supported RADIUS attributes.

Configuring FlexVPN Client

This module describes FlexVPN client features and the IKEv2 commands required for FlexVPN client.

Configuring FlexVPN Spoke to Spoke

This module describes the FlexVPN Spoke to Spoke feature and the IKEv2 commands required for FlexVPN Spoke to Spoke.

Configuring IKEv2 Load Balancer

This module describes the IKEv2 Load Balancer Support feature and the IKEv2 commands required to configure the IKEv2 Load Balancer.

Configuring IKEv2 Reconnect

Last Published Date: September 10, 2014

The IOS IKEv2 support for AutoReconnect feature of AnyConnect feature helps in reestablishing IKEv2 negotiation without user interaction with the Cisco AnyConnect client.

Configuring MPLS over FlexVPN

The MPLS over FlexVPN feature implements Multiprotocol Label Switching (MPLS) over a dynamically established IPsec tunnel thereby supporting duplicate address spaces.

Appendix: FlexVPN RADIUS Attributes

This module describes the RADIUS attributes supported by FlexVPN server.

Appendix: IKEv2 and Legacy VPNs

This module contains configuration examples on how to configure legacy VPNs such as crypto maps and DMVPN with Internet Key Exchange Version 2 (IKEv2).
CHAPTER 2

Configuring Internet Key Exchange Version 2 and FlexVPN Site-to-Site

Last Published Date: March 28, 2014

This module contains information about and instructions for configuring basic and advanced Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site. The tasks and configuration examples for IKEv2 in this module are divided as follows:

- Basic IKEv2—Provides information about basic IKEv2 commands, IKEv2 smart defaults, basic IKEv2 profile, and IKEv2 key ring.
- Advanced IKEv2—Provides information about global IKEv2 commands and how to override IKEv2 smart defaults.

Note: Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

- Finding Feature Information, page 4
- Prerequisites for Configuring Internet Key Exchange Version 2, page 4
- Restrictions for Configuring Internet Key Exchange Version 2, page 4
- Information About Internet Key Exchange Version 2, page 5
- How to Configure Internet Key Exchange Version 2, page 10
- Configuration Examples for Internet Key Exchange Version 2, page 26
- Where to Go Next, page 32
- Additional References for Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site, page 32
- Feature Information for Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site, page 34
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring Internet Key Exchange Version 2

You should be familiar with the concepts and tasks described in the "Configuring Security for VPNs with IPsec" module.

Restrictions for Configuring Internet Key Exchange Version 2

You cannot configure an option that is not supported on a specific platform. For example, in a security protocol, the capability of the hardware-crypto engine is important, and you cannot specify the Triple Data Encryption Standard (3DES) or the Advanced Encryption Standard (AES) type of encryption transform in a nonexportable image, or specify an encryption algorithm that a crypto engine does not support.

Note

IKEv2 is not supported on Integrated Service Routers (ISR) G1.

Scaling Limitations

The following table details the FlexVPN scaling limitations on Cisco ASR 1000 Series Aggregation Services Routers.

Table 1: FlexVPN Scaling Limitations

<table>
<thead>
<tr>
<th>Cisco ASR 1000 Series Aggregation Services Routers Platforms</th>
<th>Scaling Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-rack-unit (1RU) Cisco ASR 1001</td>
<td>4000 sessions</td>
</tr>
<tr>
<td>1-rack-unit-next generation (1RU-NG) Cisco ASR 1001</td>
<td>4000 sessions</td>
</tr>
<tr>
<td>Cisco ASR 1000 ESP5</td>
<td>4000 sessions</td>
</tr>
<tr>
<td>Cisco ASR 1000 ESP10</td>
<td>4000 sessions</td>
</tr>
<tr>
<td>Cisco ASR 1000 ESP20</td>
<td>10000 sessions</td>
</tr>
<tr>
<td>Cisco ASR 1000 ESP40</td>
<td>10000 sessions</td>
</tr>
</tbody>
</table>
Cisco ASR 1000 Series Aggregation Services Routers Platforms | Scaling Limitations
---|---
Cisco ASR 100 ESP100 | 10000 sessions
Cisco ASR 1000 ESP200 | 10000 sessions
Cisco ASR 1002-X | 10000 sessions

Information About Internet Key Exchange Version 2

IKEv2 Supported Standards

Note
Cisco no longer recommends using DES or MD5 (including HMAC variant); instead, you should use AES and SHA-256. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

The component technologies implemented in IKEv2 are as follows:

- AES-CBC—Advanced Encryption Standard-Cipher Block Chaining
- SHA (HMAC variant)—Secure Hash Algorithm
- Diffie-Hellman—a public-key cryptography protocol
- DES—Data Encryption Standard (No longer recommended)
- MD5 (HMAC variant)—Message digest algorithm 5 (No longer recommended)

For more information about supported standards and component technologies, see the “Supported Standards for Use with IKE” section in the “Configuring Internet Key Exchange for IPsec VPNs” module in the Internet Key Exchange for IPsec VPNs Configuration Guide.

Benefits of IKEv2

Dead Peer Detection and Network Address Translation-Traversal

Internet Key Exchange Version 2 (IKEv2) provides built-in support for Dead Peer Detection (DPD) and Network Address Translation-Traversal (NAT-T).
Certificate URLs
Certificates can be referenced through a URL and hash, instead of being sent within IKEv2 packets, to avoid fragmentation.

Denial of Service Attack Resilience
IKEv2 does not process a request until it determines the requester, which addresses to some extent the Denial of Service (DoS) problems in IKEv1, which can be spoofed into performing substantial cryptographic (expensive) processing from false locations.

EAP Support
IKEv2 allows the use of Extensible Authentication Protocol (EAP) for authentication.

Multiple Crypto Engines
If your network has both IPv4 and IPv6 traffic and you have multiple crypto engines, choose one of the following configuration options:

- One engine handles IPv4 traffic and the other engine handles IPv6 traffic.
- One engine handles both IPv4 and IPv6 traffic.

Reliability and State Management (Windowing)
IKEv2 uses sequence numbers and acknowledgments to provide reliability, and mandates some error-processing logistics and shared state management.

Internet Key Exchange Version 2 CLI Constructs

IKEv2 Proposal
An Internet Key Exchange Version 2 (IKEv2) proposal is a collection of transforms used in the negotiation of Internet Key Exchange (IKE) security associations (SAs) as part of the IKE_SA_INIT exchange. The transform types used in the negotiation are as follows:

- Encryption algorithm
- Integrity algorithm
- Pseudo-Random Function (PRF) algorithm
- Diffie-Hellman (DH) group

See the "IKEv2 Smart Defaults" section for information about the default IKEv2 proposal. See the "Configuring Advanced IKEv2 CLI Constructs" section for information about how to override the default IKEv2 proposal and to define new proposals.
IKEv2 Policy

An IKEv2 policy contains proposals that are used to negotiate the encryption, integrity, PRF algorithms, and DH group in the IKE_SA_INIT exchange. It can have match statements, which are used as selection criteria to select a policy during negotiation.

See the "IKEv2 Smart Defaults" section for information about the default IKEv2 policy. See the "Configuring Advanced IKEv2 CLI Constructs" section for information about how to override the default IKEv2 policy and to define new policies.

IKEv2 Profile

An IKEv2 profile is a repository of nonnegotiable parameters of the IKE SA, such as local or remote identities and authentication methods and services that are available to authenticated peers that match the profile. An IKEv2 profile must be attached to either a crypto map or an IPSec profile on the initiator. An IKEv2 profile is not mandatory on the responder.

IKEv2 Key Ring

An IKEv2 key ring is a repository of symmetric and asymmetric preshared keys and is independent of the IKEv1 key ring. The IKEv2 key ring is associated with an IKEv2 profile and hence supports a set of peers that match the IKEv2 profile. The IKEv2 key ring gets its VPN routing and forwarding (VRF) context from the associated IKEv2 profile.

IKEv2 Smart Defaults

The IKEv2 Smart Defaults feature minimizes the FlexVPN configuration by covering most of the use cases. IKEv2 smart defaults can be customized for specific use cases, though this is not recommended.

See the “Configuring Advanced IKEv2 CLI Constructs” section for information about how to modify the default IKEv2 constructs.

The following rules apply to the IKEv2 Smart Defaults feature:

1. A default configuration is displayed in the corresponding show command with default as a keyword and with no argument. For example, the show crypto ikev2 proposal default command displays the default IKEv2 proposal and the show crypto ikev2 proposal command displays the default IKEv2 proposal, along with any user-configured proposals.

2. A default configuration is displayed in the show running-config all command; it is not displayed in the show running-config command.

3. You can modify the default configuration, which is displayed in the show running-config all command.

4. A default configuration can be disabled using the no form of the command; for example, no crypto ikev2 proposal default. A disabled default configuration is not used in negotiation but the configuration is displayed in the show running-config command. A disabled default configuration loses any user modification and restores system-configured values.

5. A default configuration can be reenabled using the default form of the command, which restores system-configured values; for example, default crypto ikev2 proposal.
6 The default mode for the default transform set is transport; the default mode for all other transform sets is tunnel.

Note

Cisco no longer recommends using MD5 (including HMAC variant) and Diffie-Hellman (DH) groups 1, 2 and 5; instead, you should use SHA-256 and DH Groups 14 or higher. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

The following table lists the commands that are enabled with the IKEv2 Smart Defaults feature, along with the default values.

Table 2: IKEv2 Command Defaults

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>crypto ikev2 authorization policy</td>
<td>Device# show crypto ikev2 authorization policy default</td>
</tr>
<tr>
<td></td>
<td>IKEv2 Authorization policy: default</td>
</tr>
<tr>
<td></td>
<td>route set interface</td>
</tr>
<tr>
<td></td>
<td>route accept any tag: 1 distance: 2</td>
</tr>
<tr>
<td>crypto ikev2 proposal</td>
<td>Device# show crypto ikev2 proposal default</td>
</tr>
<tr>
<td></td>
<td>IKEv2 proposal: default</td>
</tr>
<tr>
<td></td>
<td>Encryption: AES-CBC-256 AES-CBC-192</td>
</tr>
<tr>
<td></td>
<td>AES-CBC-128</td>
</tr>
<tr>
<td></td>
<td>Integrity: SHA512 SHA384 SHA256 SHA96 MD596</td>
</tr>
<tr>
<td></td>
<td>PRF: SHA512 SHA384 SHA256 SHA1 MD5</td>
</tr>
<tr>
<td></td>
<td>DH Group: DH_GROUP_1536_MODP/Group 5</td>
</tr>
<tr>
<td></td>
<td>DH_GROUP_1024_MODP/Group 2</td>
</tr>
<tr>
<td>crypto ikev2 policy</td>
<td>Device# show crypto ikev2 policy default</td>
</tr>
<tr>
<td></td>
<td>IKEv2 policy: default</td>
</tr>
<tr>
<td></td>
<td>Match fvrf: any</td>
</tr>
<tr>
<td></td>
<td>Match address local: any</td>
</tr>
<tr>
<td></td>
<td>Proposal: default</td>
</tr>
<tr>
<td>crypto ipsec profile</td>
<td>Device# show crypto ipsec profile default</td>
</tr>
<tr>
<td></td>
<td>IPSEC profile default</td>
</tr>
<tr>
<td></td>
<td>Security association lifetime: 4608000 kilobytes/3600 seconds</td>
</tr>
<tr>
<td></td>
<td>Responder-Only (Y/N): N</td>
</tr>
<tr>
<td></td>
<td>PFS (Y/N): N</td>
</tr>
<tr>
<td></td>
<td>Transform sets={</td>
</tr>
<tr>
<td></td>
<td>default: { esp-aes esp-sha-hmac },</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td>crypto ipsec transform-set</td>
<td>Device# show crypto ipsec transform-set default</td>
</tr>
<tr>
<td></td>
<td>Transform set default: { esp-aes esp-sha-hmac }</td>
</tr>
<tr>
<td></td>
<td>will negotiate = { Tunnel, },</td>
</tr>
</tbody>
</table>
Before you can use the default IPsec profile, explicitly specify the `crypto ipsec profile` command on a tunnel interface using the `tunnel protection ipsec profile default` command.

IKEv2 Suite-B Support

IKEv2 is a set of cryptographic algorithms promulgated by the National Security Agency as part of its Cryptographic Modernization Program. Suite-B for Internet Key Exchange (IKE) and IPsec is defined in RFC 4869. The Suite-B components are as follows:

- Advanced Encryption Standard (AES) 128- and 256-bit keys configured in the IKEv2 proposal. For data traffic, AES should be used in Galois Counter Mode (GCM) that is configured in the IPsec transform set.
- Elliptic Curve Digital Signature Algorithm (ECDSA) configured in the IKEv2 profile.
- Secure Hashing Algorithm 2 (SHA-256 and SHA-384) configured in the IKEv2 proposal and IPsec transform set.

Suite-B requirements comprise four user-interface suites of cryptographic algorithms for use with IKE and IPsec. Each suite consists of an encryption algorithm, a digital-signature algorithm, a key-agreement algorithm, and a hash- or message-digest algorithm. See the "Configuring Security for VPNs with IPsec" feature module for detailed information about Cisco Suite-B support.

AES-GCM Support

An authenticated encryption algorithm provides a combined functionality of encryption and integrity. Such algorithms are called combined mode algorithms. The Support of AES-GCM as an IKEv2 Cipher on IOS feature provides the use of authenticated encryption algorithms for encrypted messages in IKEv2 protocol by adding the Advanced Encryption Standard in Galois/Counter Mode (AES-GCM). AES-GCM supports the key size of 128- and 256-bits—AES-GCM-128 and AES-GCM-256.

If AES-GCM is the only encryption algorithm, integrity algorithms cannot be added to the proposal.

Auto Tunnel Mode Support in IKEv2

When configuring a VPN headend in a multiple vendor scenario, you must be aware of the technical details of the peer or responder. For example, some devices may use IPsec tunnels while others may use generic routing encapsulation (GRE) or IPsec tunnel, and sometimes, a tunnel may be IPv4 or IPv6. In the last case, you must configure an Internet Key Exchange (IKE) profile and a virtual template.

The Tunnel Mode Auto Selection feature eases the configuration and spares you about knowing the responder’s details. This feature automatically applies the tunneling protocol (GRE or IPsec) and transport protocol (IPv4 or IPv6) on the virtual template as soon as the IKE profile creates the virtual access interface. This feature is useful on dual stack hubs aggregating multivendor remote access, such as Cisco AnyConnect VPN Client, Microsoft Windows7 Client, and so on.
The Tunnel Mode Auto Selection feature eases the configuration for a responder only. The tunnel must be statically configured for an initiator.

The Tunnel Mode Auto Selection feature can be activated using the `auto mode` keywords in the `virtual-template` command in the IKEv2 profile configuration.

How to Configure Internet Key Exchange Version 2

Configuring Basic Internet Key Exchange Version 2 CLI Constructs

To enable IKEv2 on a crypto interface, attach an Internet Key Exchange Version 2 (IKEv2) profile to the crypto map or IPsec profile applied to the interface. This step is optional on the IKEv2 responder.

The difference between IKEv1 and IKEv2 is that you need not enable IKEv1 on individual interfaces because IKEv1 is enabled globally on all interfaces on a device.

Perform the following tasks to manually configure basic IKEv2 constructs:

Configuring the IKEv2 Keyring

Perform this task to configure the IKEv2 key ring if the local or remote authentication method is a preshared key.

IKEv2 key ring keys must be configured in the peer configuration submode that defines a peer subblock. An IKEv2 key ring can have multiple peer subblocks. A peer subblock contains a single symmetric or asymmetric key pair for a peer or peer group identified by any combination of the hostname, identity, and IP address.

IKEv2 key rings are independent of IKEv1 key rings. The key differences are as follows:

- IKEv2 key rings support symmetric and asymmetric preshared keys.
- IKEv2 key rings do not support Rivest, Shamir, and Adleman (RSA) public keys.
- IKEv2 key rings are specified in the IKEv2 profile and are not looked up, unlike IKEv1, where keys are looked up on receipt of MM1 to negotiate the preshared key authentication method. The authentication method is not negotiated in IKEv2.
- IKEv2 key rings are not associated with VPN routing and forwarding (VRF) during configuration. The VRF of an IKEv2 key ring is the VRF of the IKEv2 profile that refers to the key ring.
- A single key ring can be specified in an IKEv2 profile, unlike an IKEv1 profile, which can specify multiple key rings.
- A single key ring can be specified in more than one IKEv2 profile, if the same keys are shared across peers matching different profiles.
- An IKEv2 key ring is structured as one or more peer subblocks.
On an IKEv2 initiator, the IKEv2 key ring key lookup is performed using the peer’s hostname or the address, in that order. On an IKEv2 responder, the key lookup is performed using the peer’s IKEv2 identity or the address, in that order.

Note
You cannot configure the same identity in more than one peer.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **crypto ikev2 keyring keyring-name**
4. **peer name**
5. **description line-of-description**
6. **hostname name**
7. **address {ipv4-address [mask] | ipv6-address prefix}**
8. **identity {address {ipv4-address | ipv6-address} | fqdn domain domain-name | email domain domain-name | key-id key-id}**
9. **pre-shared-key {local | remote} [0 | 6] line hex hexadecimal-string**
10. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>crypto ikev2 keyring keyring-name</td>
<td>Defines an IKEv2 key ring and enters IKEv2 key ring configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# crypto ikev2 keyring kyr1</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>peer name</td>
<td>Defines the peer or peer group and enters IKEv2 key ring peer configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ikev2-keyring)# peer peer1</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 5
description line-of-description

Example:
```
Device(config-ikev2-keyring-peer)# description this is the first peer
```

(Optional) Describes the peer or peer group.

Step 6
hostname name

Example:
```
Device(config-ikev2-keyring-peer)# hostname host1
```

Specifies the peer using a hostname.

Step 7
address {ipv4-address [mask] | ipv6-address prefix}

Example:
```
Device(config-ikev2-keyring-peer)# address 10.0.0.1 255.255.255.0
```

Specifies an IPv4 or IPv6 address or range for the peer.

Note This IP address is the IKE endpoint address and is independent of the identity address.

Step 8
identity {address {ipv4-address | ipv6-address} | fqdn domain domain-name | email domain domain-name | key-id key-id}

Example:
```
Device(config-ikev2-keyring-peer)# identity address 10.0.0.5
```

Identifies the IKEv2 peer through the following identities:
- E-mail
- Fully qualified domain name (FQDN)
- IPv4 or IPv6 address
- Key ID

Note The identity is available for key lookup on the IKEv2 responder only.

Step 9
pre-shared-key {local | remote} [0 | 6] line hex hexadecimal-string

Example:
```
Device(config-ikev2-keyring-peer)# pre-shared-key local key1
```

Specifies the preshared key for the peer.

Step 10
end

Example:
```
Device(config-ikev2-keyring-peer)# end
```

Exits IKEv2 key ring peer configuration mode and returns to privileged EXEC mode.

What to Do Next

After configuring the IKEv2 key ring, configure the IKEv2 profile. For more information, see the "Configuring IKEv2 Profile (Basic)" section.
Configuring an IKEv2 Profile (Basic)

Perform this task to configure the mandatory commands for an IKEv2 profile.

An IKEv2 profile is a repository of nonnegotiable parameters of the IKE security association (SA) (such as local or remote identities and authentication methods) and services available to authenticated peers that match the profile. An IKEv2 profile must be configured and associated with either a crypto map or an IPsec profile on the IKEv2 initiator. Use the `set ikev2-profile profile-name` command to associate a profile with a crypto map or an IPsec profile. To disassociate the profile, use the `no` form of the command.

The following rules apply to match statements:

- An IKEv2 profile must contain a match identity or a match certificate statement; otherwise, the profile is considered incomplete and is not used. An IKEv2 profile can have more than one match identity or match certificate statements.
- An IKEv2 profile must have a single match Front Door VPN routing and forwarding (FVRF) statement.
- When a profile is selected, multiple match statements of the same type are logically ORed, and multiple match statements of different types are logically ANDed.
- The match identity and match certificate statements are considered to be the same type of statements and are ORed.
- Configuration of overlapping profiles is considered a misconfiguration. In the case of multiple profile matches, no profile is selected.

Use the `show crypto ikev2 profile profile-name` command to display the IKEv2 profile.
SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 profile profile-name
4. description line-of-description
5. aaa accounting {psk | cert | eap} list-name
6. authentication {local {rsa-sig | pre-share [key {0 | 6} password]} | ecdsa-sig | eap [gtc | md5 | ms-chapv2] [username username] [password {0 | 6} password]} | remote {eap [query-identity | timeout seconds] | rsa-sig | pre-share [key {0 | 6} password]} | ecdsa-sig}
7. dpd interval retry-interval {on-demand | periodic}
8. identity local {address {ipv4-address | ipv6-address} | dn | email email-string | fqdn fqdn-string | key-id opaque-string}
9. initial-contact force
10. ivrf name
11. keyring {local keyring-name | aaa list-name [name-mangler mangler-name | password password]}
12. lifetime seconds
13. match {address local {ipv4-address | ipv6-address | interface name} | certificate certificate-map | fvrf {fvrf-name | any} | identity remote address {ipv4-address [mask] | ipv6-address prefix} | {email [domain string] | fqdn [domain string]} {string | key-id opaque-string}
14. nat keepalive seconds
15. pki trustpoint trustpoint-label [sign | verify]
16. redirect gateway auth
17. virtual-template number mode auto
18. shutdown
19. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto ikev2 profile profile-name</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Defines an IKEv2 profile and enters IKEv2 profile configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Device(config)# crypto ikev2 profile profile1

<table>
<thead>
<tr>
<th>Step 4</th>
<th>description line-of-description</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) Describes the profile.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Device(config-ikev2-profile)# description This is an IKEv2 profile

| Step 5 | **aaa accounting** {psk | cert | eap} *list-name* | **Purpose** |
|--------|-------------------|-------------|
| | (Optional) Enables authentication, authorization, and accounting (AAA) accounting method lists for IPsec sessions. | |
| | **Note** If the psk, cert, or eap keyword is not specified, the AAA accounting method list is used irrespective of the peer authentication method. | |

Example:

Device(config-ikev2-profile)# aaa accounting eap list1

| Step 6 | **authentication** {local {rsa-sig | pre-share [key {0 | 6} password] | ecdsa-sig | eap [gtc | md5 | ms-chapv2] [username username] [password {0 | 6} password] | remote {eap [query-identity | timeout seconds] | rsa-sig | pre-share [key {0 | 6} password] | ecdsa-sig]}} | **Purpose** |
|--------|---|-------------|
| | Specifies the local or remote authentication method. | |
| | **Note** If the rsa-sig, pre-share, or ecdsa-sig method is not specified, the remote authentication method is used irrespective of the peer authentication method. | |
| | **Note** If the local authentication method is pre-shared, the default local identity is the IP address. If the local authentication method is RSA, the default local identity is the Distinguished Name. | |

Example:

Device(config-ikev2-profile)# authentication local ecdsa-sig

| Step 7 | **dpd interval retry-interval** {on-demand | periodic} | **Purpose** |
|--------|---|-------------|
| | (Optional) Configures Dead Peer Detection (DPD) globally for peers matching the profile. | |
| | **Note** DPD is disabled by default. | |

Example:

Device(config-ikev2-profile)# dpd 1000 250 periodic

| Step 8 | **identity local** {address {ipv4-address | ipv6-address} | dn | email email-string | fqdn fqdn-string | key-id opaque-string} | **Purpose** |
|--------|--|-------------|
| | (Optional) Specifies the local IKEv2 identity type. | |
| | **Note** If the local authentication method is a preshared key, the default local identity is the IP address. If the local authentication method is RSA, the default local identity is a Distinguished Name. | |

Example:

Device(config-ikev2-profile)# identity local email abc@example.com
<table>
<thead>
<tr>
<th>Step 9</th>
<th>initial-contact force</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-ikev2-profile)# initial-contact force</td>
<td>Enforces initial contact processing if the initial contact notification is not received in the IKE_AUTH exchange.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>ivrf name</th>
<th>(Optional) Specifies a user-defined VPN routing and forwarding (VRF) or global VRF if the IKEv2 profile is attached to a crypto map.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-ikev2-profile)# ivrf vrf1</td>
<td>- If the IKEv2 profile is used for tunnel protection, the Inside VRF (IVRF) for the tunnel interface should be configured on the tunnel interface.</td>
</tr>
<tr>
<td>Note</td>
<td>IVRF specifies the VRF for cleartext packets. The default value for IVRF is FVRF.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 11 | **keyring {local keyring-name | aaa list-name | name-mangler mangler-name | password password}** | Specifies the local or AAA-based key ring that must be used with the local and remote preshared key authentication method. |
|---------|---|---|
| **Example:** | Device(config-ikev2-profile)# keyring aaa keyring1 name-mangler mangler1 | - You can specify only one key ring. Local AAA is not supported for AAA-based preshared keys. |
| **Note** | Depending on your release, the local keyword and the name-mangler mangler-name keyword-argument pair should be used. |
| **Note** | When using AAA, the default password for a Radius access request is "cisco". You can use the password keyword within the keyring command to change the password. |

<table>
<thead>
<tr>
<th>Step 12</th>
<th>lifetime seconds</th>
<th>Specifies the lifetime, in seconds, for the IKEv2 SA.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-ikev2-profile)# lifetime 1000</td>
<td></td>
</tr>
</tbody>
</table>

| Step 13 | **match {address local {ipv4-address | ipv6-address | interface name} | certificate certificate-map | fvrf {fvrf-name | any} | identity identity | remote address {ipv4-address [mask]} | ipv6-address prefix} | [email [domain string]] | fqdn [domain string] | string | key-id opaque-string}** | Uses match statements to select an IKEv2 profile for a peer. |
|---------|---|---|
| **Example:** | Device(config-ikev2-profile)# match address local interface Ethernet 2/0 |

<table>
<thead>
<tr>
<th>Step 14</th>
<th>nat keepalive seconds</th>
<th>(Optional) Enables NAT keepalive and specifies the duration in seconds.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-ikev2-profile)# nat keepalive 500</td>
<td>- NAT is disabled by default.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>15</td>
<td>pki trustpoint trustpoint-label [sign</td>
<td>verify]</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-profile)# pki trustpoint tsp1 sign</td>
<td>Note: If the sign or verify keyword is not specified, the trustpoint is used for signing and verification. Note: In contrast to IKEv1, a trustpoint must be configured in an IKEv2 profile for certificate-based authentication to succeed. There is no fallback for globally configured trustpoints if this command is not present in the configuration. The trustpoint configuration applies to the IKEv2 initiator and responder.</td>
</tr>
<tr>
<td>16</td>
<td>redirect gateway auth</td>
<td>Enables the redirect mechanism on the gateway on SA authentication.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-profile)# redirect gateway auth</td>
<td>Note: The redirect mechanism is specific to the IKEv2 profiles.</td>
</tr>
<tr>
<td>17</td>
<td>virtual-template number mode auto</td>
<td>(Optional) Specifies the virtual template for cloning a virtual access interface (VAI).</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-profile)# virtual-template 1 mode auto</td>
<td>• mode auto—Enables the tunnel mode auto selection feature.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: For the IPsec Dynamic Virtual Tunnel Interface (DVTI), a virtual template must be specified in an IKEv2 profile, without which an IKEv2 session is not initiated.</td>
</tr>
<tr>
<td>18</td>
<td>shutdown</td>
<td>(Optional) Shuts down the IKEv2 profile.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-profile)# shutdown</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>end</td>
<td>Exits IKEv2 profile configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-profile)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Advanced Internet Key Exchange Version 2 CLI Constructs

This section describes the global IKEv2 CLI constructs and how to override the IKEv2 default CLI constructs. IKEv2 smart defaults support most use cases and hence, we recommend that you override the defaults only if they are required for specific use cases not covered by the defaults.

Perform the following tasks to configure advanced IKEv2 CLI constructs:

Configuring Global IKEv2 Options

Perform this task to configure global IKEv2 options that are independent of peers.
SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 certificate-cache number-of-certificates
4. crypto ikev2 cookie-challenge number
5. crypto ikev2 diagnose error number
6. crypto ikev2 dpd interval retry-interval {on-demand | periodic}
7. crypto ikev2 http-url cert
8. crypto ikev2 limit {max-in-negotiation-sa limit [incoming | outgoing] | max-sa limit}
9. crypto ikev2 nat keepalive interval
10. crypto ikev2 window size
11. crypto logging ikev2
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto ikev2 certificate-cache number-of-certificates</td>
<td>Defines the cache size for storing certificates fetched from HTTP URLs.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# crypto ikev2 certificate-cache 750</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>crypto ikev2 cookie-challenge number</td>
<td>Enables an IKEv2 cookie challenge only when the number of half-open security associations (SAs) exceeds the configured number.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# crypto ikev2 cookie-challenge 450</td>
<td>• Cookie challenge is disabled by default.</td>
</tr>
<tr>
<td>Step 5</td>
<td>crypto ikev2 diagnose error number</td>
<td>Enables IKEv2 error diagnostics and defines the number of entries in the exit path database.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# crypto ikev2 diagnose error 500</td>
<td>• IKEv2 error diagnostics is disabled by default.</td>
</tr>
<tr>
<td>Step 6</td>
<td>crypto ikev2 dpd interval retry-interval {on-demand</td>
<td>periodic}</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 7** crypto ikev2 http-url cert | Enables the HTTP CERT support.
 - HTTP CERT is disabled by default. |
| **Step 8** crypto ikev2 limit \{max-in-negotiation-sa limit \[incoming | outgoing\] | max-sa limit\} | Enables connection admission control (CAC).
 - Connection admission control is enabled by default. |
| **Step 9** crypto ikev2 nat keepalive interval | Enables the Network Address Translation (NAT) keepalive that prevents the deletion of NAT entries in the absence of any traffic when there is NAT between Internet Key Exchange (IKE) peers.
 - NAT keepalive is disabled by default. |
| **Step 10** crypto ikev2 window size | Allows multiple IKEv2 request-response pairs in transit.
 - The default window size is 5. |
| **Step 11** crypto logging ikev2 | Enables IKEv2 syslog messages.
 - IKEv2 syslog messages are disabled by default. |
| **Step 12** end | Exits global configuration mode and returns to privileged EXEC mode. |

Configuring IKEv2 Fragmentation

Perform this task to enable automatic fragmentation of large IKEv2 packets.
SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 fragmentation [mtu mtu-size]
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto ikev2 fragmentation [mtu mtu-size]</td>
<td>Configures IKEv2 fragmentation.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto ikev2 fragmentation mtu 100</td>
<td>The MTU range is from 68 to 1500 bytes. The default MTU size is 576 for IPv4 packets and 1280 bytes for IPv6 packets.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The MTU size refers to the IP or UDP encapsulated IKEv2 packets.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring IKEv2 Proposal

Refer to the "IKEv2 Smart Defaults" section for information on the default IKEv2 proposal.

Perform this task to override the default IKEv2 proposal or to manually configure the proposals if you do not want to use the default proposal.

An IKEv2 proposal is a set of transforms used in the negotiation of IKEv2 SA as part of the IKE_SA_INIT exchange. An IKEv2 proposal is regarded as complete only when it has at least an encryption algorithm, an integrity algorithm, and a Diffie-Hellman (DH) group configured. If no proposal is configured and attached to an IKEv2 policy, the default proposal in the default IKEv2 policy is used in negotiation.
Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Although the IKEv2 proposal is similar to the `crypto isakmp policy` command, the IKEv2 proposal differs as follows:

- An IKEv2 proposal allows configuring one or more transforms for each transform type.
- An IKEv2 proposal does not have any associated priority.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto ikev2 proposal name`
4. `encryption encryption-type...`
5. `integrity integrity-type...`
6. `group group-type...`
7. `prf prf-algorithm`
8. `end`
9. `show crypto ikev2 proposal [name | default]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto ikev2 proposal name</td>
<td>Overrides the default IKEv2 proposal, defines an IKEv2 proposal name, and enters IKEv2 proposal configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto ikev2 proposal proposal1</td>
<td></td>
</tr>
<tr>
<td>Step 4 encryption encryption-type...</td>
<td>Specifies one or more transforms of the encryption type, which are as follows:</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-proposal)# encryption aes-cbc-128 aes-cbc-192</td>
<td>• 3des (No longer recommended)</td>
</tr>
<tr>
<td></td>
<td>• aes-cbc-128</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• aes-cbc-192</td>
<td></td>
</tr>
<tr>
<td>• aes-cbc-256</td>
<td></td>
</tr>
<tr>
<td>• aes-gcm-128</td>
<td></td>
</tr>
<tr>
<td>• aes-gcm-256</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

`integrity integrity-type...`

Example:
```
Device(config-ikev2-proposal)#
```
```
integrity sha1
```

Specifies one or more transforms of the integrity algorithm type, which are as follows:

- The `md5` keyword specifies MD5 (HMAC variant) as the hash algorithm. (No longer recommended)
- The `sha1` keyword specifies SHA-1 (HMAC variant) as the hash algorithm.
- The `sha256` keyword specifies SHA-2 family 256-bit (HMAC variant) as the hash algorithm.
- The `sha384` keyword specifies SHA-2 family 384-bit (HMAC variant) as the hash algorithm.
- The `sha512` keyword specifies SHA-2 family 512-bit (HMAC variant) as the hash algorithm.

Note An integrity algorithm type cannot be specified if you specify Advanced Encryption Standard (AES) in Galois/Counter Mode (AES GCM) as the encryption type.

Step 6

`group group-type...`

Example:
```
Device(config-ikev2-proposal)#
```
```
group 14
```

Specifies the Diffie-Hellman (DH) group identifier.

- The default DH group identifiers are group 2 and 5 in the IKEv2 proposal.
 - 1—768-bit DH (No longer recommended).
 - 2—1024-bit DH (No longer recommended).
 - 5—1536-bit DH (No longer recommended).
 - 14—Specifies the 2048-bit DH group.
 - 15—Specifies the 3072-bit DH group.
 - 16—Specifies the 4096-bit DH group.
 - 19—Specifies the 256-bit elliptic curve DH (ECDH) group.
 - 20—Specifies the 384-bit ECDH group.
 - 24—Specifies the 2048-bit DH group.

The group chosen must be strong enough (have enough bits) to protect the IPsec keys during negotiation. A generally accepted guideline recommends the use of a 2048-bit group after 2013 (until 2030). Either group 14 or group 24 can be selected to meet this guideline. Even if a longer-lived security method is needed,
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>prf prf-algorithm</td>
<td>Specifies one or more of the Pseudo-Random Function (PRF) algorithm, which are as follows:</td>
</tr>
</tbody>
</table>
| Example: Device(config-ikev2-proposal)# prf sha256 sha512 | - md5
- sha1
- sha256
- sha384
- sha512 |
| Note | This step is mandatory if the encryption type is AES-GCM—**aes-gmc-128** or **aes-gmc-256**. If the encryption algorithm is not AES-GCM, the PRF algorithm is the same as the specified integrity algorithm. However, you can specify a PRF algorithm, if required. | |
| Step 8 | end |
| Example: Device(config-ikev2-proposal)# end | Exits IKEv2 proposal configuration mode and returns to privileged EXEC mode. |
| Step 9 | show crypto ikev2 proposal [name | default] |
| Example: Device# show crypto ikev2 proposal default | (Optional) Displays the IKEv2 proposal. |

What to Do Next

After you create the IKEv2 proposal, attach it to a policy so that the proposal is picked for negotiation. For information about completing this task, see the "Configuring IKEv2 Policy" section.

Configuring IKEv2 Policies

See the "IKEv2 Smart Defaults" section for information about the default IKEv2 policy.

Perform this task to override the default IKEv2 policy or to manually configure the policies if you do not want to use the default policy.

An IKEv2 policy must contain at least one proposal to be considered as complete and can have match statements, which are used as selection criteria to select a policy for negotiation. During the initial exchange, the local address (IPv4 or IPv6) and the Front Door VRF (FVRF) of the negotiating SA are matched with the policy and the proposal is selected.
The following rules apply to the match statements:

- An IKEv2 policy without any match statements will match all peers in the global FVRF.
- An IKEv2 policy can have only one match FVRF statement.
- An IKEv2 policy can have one or more match address local statements.
- When a policy is selected, multiple match statements of the same type are logically ORed and match statements of different types are logically ANDed.
- There is no precedence between match statements of different types.
- Configuration of overlapping policies is considered a misconfiguration. In the case of multiple, possible policy matches, the first policy is selected.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 policy *name*
4. proposal *name*
5. match fvrf \{fvrf-name \| any\}
6. match address local \{ipv4-address \| ipv6-address\}
7. end
8. show crypto ikev2 policy [policy-name | default]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device#> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto ikev2 policy name</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# crypto ikev2 policy policy1</td>
</tr>
<tr>
<td></td>
<td>Overrides the default IKEv2 policy, defines an IKEv2 policy name, and enters IKEv2 policy configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>proposal name</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ikev2-policy)# proposal proposal1</td>
</tr>
<tr>
<td></td>
<td>Specifies the proposals that must be used with the policy.</td>
</tr>
<tr>
<td></td>
<td>• The proposals are prioritized in the order of listing.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 5** match fvrf {fvrf-name | any} | **Note** You must specify at least one proposal. You can specify additional proposals with each proposal in a separate statement. **(Optional)** Matches the policy based on a user-configured FVRF or any FVRF.
 - The default is global FVRF.
 Note The `match fvrf any` command must be explicitly configured in order to match any VRF. The FVRF specifies the VRF in which the IKEv2 packets are negotiated. |
| **Step 6** match address local {ipv4-address | ipv6-address} | **(Optional)** Matches the policy based on the local IPv4 or IPv6 address.
 - The default matches all the addresses in the configured FVRF. |
| **Step 7** end | **Example:**
 Device(config-ikev2-policy)# end | Exits IKEv2 policy configuration mode and returns to privileged EXEC mode. |
| **Step 8** show crypto ikev2 policy [policy-name | default] | **(Optional)** Displays the IKEv2 policy. |
| **Example:**
 Device# show crypto ikev2 policy policy1 | |
Configuration Examples for Internet Key Exchange Version 2

Configuration Examples for Basic Internet Key Exchange Version 2 CLI Constructs

Example: Configuring the IKEv2 Key Ring

Example: IKEv2 Key Ring with Multiple Peer Subblocks
The following example shows how to configure an Internet Key Exchange Version 2 (IKEv2) key ring with multiple peer subblocks:

```
crypto ikev2 keyring keyring-1
peer peer1
  description peer1
  address 209.165.200.225 255.255.255.224
  pre-shared-key key-1
peer peer2
  description peer2
  hostname peer1.example.com
  pre-shared-key key-2
peer peer3
  description peer3
  hostname peer3.example.com
  identity key-id abc
  address 209.165.200.228 255.255.255.224
  pre-shared-key key-3
```

Example: IKEv2 Key Ring with Symmetric Preshared Keys Based on an IP Address
The following example shows how to configure an IKEv2 key ring with symmetric preshared keys based on an IP address. The following is the initiator’s key ring:

```
crypto ikev2 keyring keyring-1
peer peer1
  description peer1
  address 209.165.200.225 255.255.255.224
  pre-shared-key key1
```

The following is the responder’s key ring:

```
crypto ikev2 keyring keyring-1
peer peer2
  description peer2
  address 209.165.200.228 255.255.255.224
  pre-shared-key key1
```

Example: IKEv2 Key Ring with Asymmetric Preshared Keys Based on an IP Address
The following example shows how to configure an IKEv2 key ring with asymmetric preshared keys based on an IP address. The following is the initiator’s key ring:

```
crypto ikev2 keyring keyring-1
```

Example: IKEv2 Key Ring with Asymmetric Preshared Keys Based on a Hostname

The following example shows how to configure an IKEv2 key ring with asymmetric preshared keys based on the hostname. The following is the initiator’s key ring:

```plaintext
crypto ikev2 keyring keyring-1
peer host1
description host1 in example domain
hostname host1.example.com
pre-shared-key local key1
pre-shared-key remote key2
```

The following is the responder’s keyring:

```plaintext
crypto ikev2 keyring keyring-1
peer host2
description host2 in abc domain
hostname host2.example.com
pre-shared-key local key2
pre-shared-key remote key1
```

Example: IKEv2 Key Ring with Symmetric Preshared Keys Based on an Identity

The following example shows how to configure an IKEv2 key ring with symmetric preshared keys based on an identity:

```plaintext
crypto ikev2 keyring keyring-4
peer abc
description example domain
identity fqdn example.com
pre-shared-key abc-key-1
```

```plaintext
crypto ikev2 keyring keyring-4
peer user1
description user1 in example domain
identity email user1@example.com
pre-shared-key abc-key-2
```

```plaintext
crypto ikev2 keyring keyring-4
peer user1-remote
description user1 example remote users
identity key-id example
pre-shared-key example-key-3
```

Example: IKEv2 Key Ring with a Wildcard Key

The following example shows how to configure an IKEv2 key ring with a wildcard key:

```plaintext
crypto ikev2 keyring keyring-1
peer cisco
description example domain
address 0.0.0.0 0.0.0.0
pre-shared-key example-key
```

The following is the responder’s keyring:

```plaintext
crypto ikev2 keyring keyring-1
peer peer2
description peer2 with asymmetric keys
address 209.165.200.228 255.255.255.224
pre-shared-key local key2
pre-shared-key remote key1
```
Example: Matching a Key Ring

The following example shows how a key ring is matched:

```plaintext
crypto ikev2 keyring keyring-1
peer cisco
description example.com
address 0.0.0.0 0.0.0.0
pre-shared-key xyz-key
peer peer1
description abc.example.com
address 10.0.0.0 255.255.0.0
pre-shared-key abc-key
peer host1
description host1@abc.example.com
address 10.0.0.1
pre-shared-key host1-example-key
```

In the example shown, the key lookup for peer 10.0.0.1 first matches the wildcard key example-key, then the prefix key example-key, and finally the host key host1-example-key. The best match host1-example-key is used.

```plaintext
crypto ikev2 keyring keyring-2
peer host1
description host1 in abc.example.com sub-domain
address 10.0.0.1
pre-shared-key host1-example-key
peer host2
description example domain
address 0.0.0.0 0.0.0.0
pre-shared-key example-key
```

In the example shown, the key lookup for peer 10.0.0.1 would first match the host key host1-abc-key. Because this is a specific match, no further lookup is performed.

Example: Configuring the Profile

Example: IKEv2 Profile Matched on Remote Identity

The following profile supports peers that identify themselves using fully qualified domain name (FQDN) example.com and authenticate with the RSA signature using trustpoint-remote. The local node authenticates itself with a preshared key using keyring-1.

```plaintext
crypto ikev2 profile profile2
match identity remote fqdn example.com
identity local email router2@example.com
authentication local pre-share
authentication remote rsa-sig
keyring keyring-1
pki trustpoint trustpoint-remote verify
lifetime 300
dpd 5 10 on-demand
virtual-template 1
```

Example: IKEv2 Profile Supporting Two Peers

The following example shows how to configure an IKEv2 profile supporting two peers that use different authentication methods:

```plaintext
crypto ikev2 profile profile2
match identity remote email user1@example.com
```
match identity remote email user2@example.com
identity local email router2@cisco.com
authentication local rsa-sig
authentication remote pre-share
authentication remote rsa-sig
keyring keyring-1
pki trustpoint trustpoint-local sign
pki trustpoint trustpoint-remote verify
lifetime 300
dpd 5 10 on-demand
virtual-template 1

Example: Configuring FlexVPN Site-to-Site with Dynamic Routing Using Certificates and IKEv2 Smart Defaults

The following examples show a site-to-site connection between a branch device (initiator, using a static virtual tunnel interface [sVTI]) and a central device (responder, using a dynamic virtual tunnel interface [dVTI]) with dynamic routing over the tunnel. The example uses IKEv2 smart defaults, and the authentication is performed using certificates (RSA signatures).

Note

A RSA modulus size of 2048 is recommended.

The peers use the FQDN as their IKEv2 identity, and the IKEv2 profile on the responder matches the domain in the identity FQDN.

The configuration on the initiator (branch device) is as follows:

hostname branch
ip domain name cisco.com
!
crypto ikev2 profile branch-to-central
match identity remote fqdn central.cisco.com
identity local fqdn branch.cisco.com
authentication local rsa-sig
authentication remote rsa-sig
pki trustpoint CA
!
crypto ipsec profile svti
set ikev2-profile branch-to-central
!
interface Tunnel0
ip address 172.16.0.101 255.255.255.0
tunnel source Ethernet0/0
tunnel mode ipsec ipv4
tunnel destination 10.0.0.100
tunnel protection ipsec profile svti
!
interface Ethernet0/0
ip address 10.0.0.101 255.255.255.0
!
interface Ethernet1/0
ip address 192.168.101.1 255.255.255.0
!
routing rip
version 2
passive-interface Ethernet1/0
network 172.16.0.0
network 192.168.101.0
no auto-summary

The configuration on the responder (central router) is as follows:

hostname central
ip domain name cisco.com
!
crypto ikev2 profile central-to-branch
 match identity remote fqdn domain cisco.com
 identity local fqdn central.cisco.com
 authentication local rsa-sig
 authentication remote rsa-sig
 pki trustpoint CA
 virtual-template 1
 interface Loopback0
 ip address 172.16.0.100 255.255.255.0
 interface Ethernet0/0
 ip address 10.0.0.100 255.255.255.0
 interface Ethernet1/0
 ip address 192.168.100.1 255.255.255.0
 interface Virtual-Template1 type tunnel
 ip unnumbered Loopback0
 tunnel source Ethernet0/0
 tunnel mode ipsec ipv4
 tunnel protection ipsec profile default
 router rip
 version 2
 passive-interface Ethernet1/0
 network 172.16.0.0
 network 192.168.100.0
 no auto-summary

Configuration Examples for Advanced Internet Key Exchange Version 2 CLI Constructs

Example: Configuring the Proposal

Example: IKEv2 Proposal with One Transform for Each Transform Type

This example shows how to configure an IKEv2 proposal with one transform for each transform type:

```plaintext
crypto ikev2 proposal proposal-1
 encryption aes-cbc-128
 integrity sha1
 group 14
```

Example: IKEv2 Proposal with Multiple Transforms for Each Transform Type

This example shows how to configure an IKEv2 proposal with multiple transforms for each transform type:

```plaintext
crypto ikev2 proposal proposal-2
 encryption aes-cbc-128 aes-cbc-192
 integrity sha1
 group 14
```
Cisco no longer recommends using 3DES, MD5 (including HMAC variant), and Diffie-Hellman (DH) groups 1, 2 and 5; instead, you should use AES, SHA-256 and DH Groups 14 or higher. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

The IKEv2 proposal proposal-2 shown translates to the following prioritized list of transform combinations:

- aes-cbc-128, sha1, 14
- aes-cbc-192, sha1, 14

Example: IKEv2 Proposals on the Initiator andResponder

The following example shows how to configure IKEv2 proposals on the initiator and the responder. The proposal on the initiator is as follows:

```batch
crypto ikev2 proposal proposal-1
  encryption aes-cbc-192 aes-cbc-128
  integrity sha-256 sha1
  group 14 24
```

The proposal on the responder is as follows:

```batch
crypto ikev2 proposal proposal-2
  encryption aes-cbc-128 aes-cbc-192
  integrity sha1 sha-256
  group 24 14
```

The selected proposal will be as follows:

```batch
encryption aes-cbc-128
integrity sha1
group 14
```

In the proposals shown for the initiator and responder, the initiator and responder have conflicting preferences. In this case, the initiator is preferred over the responder.

Example: Configuring the Policy

Example: IKEv2 Policy Matched on a VRF and Local Address

The following example shows how an IKEv2 policy is matched based on a VRF and local address:

```batch
crypto ikev2 policy policy2
  match vrf vrf1
  match local address 10.0.0.1
  proposal proposal-1
```

Example: IKEv2 Policy with Multiple Proposals That Match All Peers in a Global VRF

The following example shows how an IKEv2 policy with multiple proposals matches the peers in a global VRF:

```batch
crypto ikev2 policy policy2
```
Example: IKEv2 Policy That Matches All Peers in Any VRF

The following example shows how an IKEv2 policy matches the peers in any VRF:

```
crypto ikev2 policy policy2
   match vrf any
   proposal proposal-1
```

Example: Matching a Policy

Do not configure overlapping policies. If there are multiple possible policy matches, the best match is used, as shown in the following example:

```
crypto ikev2 policy policy1
   match fvrf fvrf1
crypto ikev2 policy policy2
   match fvrf fvrf1
   match local address 10.0.0.1
```

The proposal with FVRF as fvrf1 and the local peer as 10.0.0.1 matches policy1 and policy2, but policy2 is selected because it is the best match.

Where to Go Next

After configuring IKEv2, proceed to configure IPsec VPNs. For more information, see the "Configuring Security for VPNs with IPsec" module.

Additional References for Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
</tbody>
</table>
Related Topic

<table>
<thead>
<tr>
<th>Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPsec configuration</td>
<td>Configuring Security for VPNs with IPsec</td>
</tr>
<tr>
<td>Suite-B ESP transforms</td>
<td>Configuring Security for VPNs with IPsec</td>
</tr>
<tr>
<td>Suite-B SHA-2 family (HMAC variant) and elliptic curve (EC) key pair configuration</td>
<td>Configuring Internet Key Exchange for IPsec VPNs</td>
</tr>
<tr>
<td>Suite-B elliptic curve Diffie-Hellman (ECDH) support for IPsec SA negotiation</td>
<td>Configuring Internet Key Exchange for IPsec VPNs</td>
</tr>
<tr>
<td>Suite-B support for certificate enrollment for a PKI</td>
<td>Configuring Certificate Enrollment for a PKI</td>
</tr>
<tr>
<td>Supported standards for use with IKE</td>
<td>Internet Key Exchange for IPsec VPNs Configuration Guide</td>
</tr>
<tr>
<td>Recommended cryptographic algorithms</td>
<td>Next Generation Encryption</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4306</td>
<td>Internet Key Exchange (IKEv2) Protocol</td>
</tr>
<tr>
<td>RFC 4869</td>
<td>Suite B Cryptographic Suites for IPsec</td>
</tr>
<tr>
<td>RFC 5685</td>
<td>Redirect Mechanism for the Internet Key Exchange Protocol Version 2 (IKEv2)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR1K FlexVPN Scaling Enhancement</td>
<td>Cisco IOS XE Release 3.12S</td>
<td>The ASR1K FlexVPN Scaling Enhancement feature enhances the session scaling in FlexVPN. The following command was modified: crypto ikev2 limit.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>IKEv2 Site to Site</td>
<td>Cisco IOS XE Release 3.3S</td>
<td>IKEv2 is a component of IP Security (IPsec) and is used for performing mutual authentication and establishing and maintaining security associations (SAs). The following commands were introduced or modified: aaa accounting (IKEv2 profile), address (IKEv2 keyring), authentication (IKEv2 profile), crypto ikev2 keyring, crypto ikev2 policy, crypto ikev2 profile, crypto ikev2 proposal, description (IKEv2 keyring), dpd, encryption (IKEv2 proposal), hostname (IKEv2 keyring), group (IKEv2 proposal), identity (IKEv2 keyring), identity local, integrity (IKEv2 proposal), ivrf, keyring, lifetime (IKEv2 profile), match (IKEv2 profile), nat, peer, pki trustpoint, pre-shared-key (IKEv2 keyring), proposal, virtual-template (IKEv2 profile), clear crypto ikev2 sa, clear crypto ikev2 stat, clear crypto session, clear crypto ikev2 sa, debug crypto ikev2, show crypto ikev2 diagnose error, show crypto ikev2 policy, show crypto ikev2 profile, show crypto ikev2 proposal, show crypto ikev2 sa, show crypto ikev2 session, show crypto ikev2 stats, show crypto session, show crypto socket.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>IPv6 Support for IPsec and IKEv2</td>
<td>Cisco IOS XE Release 3.12S</td>
<td>This feature allows IPv6 addresses to be added to IPsec and IKEv2 protocols. The following commands were introduced or modified: address (IKEv2 keyring), identity (IKEv2 keyring), identity local, match (IKEv2 policy), match (IKEv2 profile), show crypto ikev2 session, show crypto ikev2 sa, show crypto ikev2 profile, show crypto ikev2 policy, debug crypto condition, clear crypto ikev2 sa.</td>
</tr>
<tr>
<td>Suite-B Support in IOS SW Crypto</td>
<td>Cisco IOS XE Release 3.7S</td>
<td>Suite-B adds support for the SHA-2 family (HMAC variant) hash algorithm used to authenticate packet data and verify the integrity verification mechanisms for the IKEv2 proposal configuration. HMAC is a variant that provides an additional level of hashing. Suite-B also allows the Elliptic Curve Digital Signature Algorithm (ECDSA) signature (ECDSA-sig), as defined in RFC 4754, to be the authentication method for IKEv2. Suite-B requirements comprise of four user interface suites of cryptographic algorithms for use with IKE and IPsec that are described in RFC 4869. Each suite is consists of an encryption algorithm, a digital signature algorithm, a key agreement algorithm, and a hash or message digest algorithm. See the Configuring Security for VPNs with IPsec module for more information about Cisco IOS Suite-B support. The following commands were introduced or modified: authentication, group, identity (IKEv2 profile), integrity, match (IKEv2 profile).</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Support of AES-GCM as an IKEv2 Cipher on IOS</td>
<td>Cisco IOS XE Release 3.12S</td>
<td>The AES-GCM Support on IKEv2 feature describes the use of authenticated encryption algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) protocol by adding the Advanced Encryption Standard (AES) in Galois/Counter Mode (AES-GCM). The following commands were introduced or modified: <code>encryption (IKEv2 proposal)</code>, <code>prf</code>, <code>show crypto ikev2 proposal</code>.</td>
</tr>
<tr>
<td>Tunnel Mode Auto Selection</td>
<td>Cisco IOS XE Release 3.12S</td>
<td>The Tunnel Mode Auto Selection feature eases the configuration and spares you about knowing the responder’s details. This feature automatically applies the tunneling protocol (GRE or IPsec) and transport protocol (IPv4 or IPv6) on the virtual template as soon as the IKE profile creates the virtual access interface. The following commands were introduced or modified: <code>virtual-template (IKEv2 profile)</code>, <code>show crypto ikev2 profile</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 3

Configuring the FlexVPN Server

This module describes FlexVPN server features, IKEv2 commands required to configure the FlexVPN server, remote access clients, and the supported RADIUS attributes.

Security threats, as well as cryptographic technologies to help protect against such threats, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

• Finding Feature Information, page 39
• Restrictions for the FlexVPN Server, page 40
• Information About the FlexVPN Server, page 40
• How to Configure the FlexVPN Server, page 50
• Configuration Examples for the FlexVPN Server, page 60
• Additional References for Configuring the FlexVPN Server, page 64
• Feature Information for Configuring the FlexVPN Server, page 65

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Restrictions for the FlexVPN Server

Dual-Stack Tunnel Interface and VRF-Aware IPsec

When configuring a dual-stack tunnel interface in a VPN routing and forwarding (VRF)-aware IPsec scenario, you cannot use the `ip vrf forwarding` command to configure an Inside VPN routing and forwarding (IVRF) instance because this is not a valid configuration. Use the `vrf forwarding vrf-name` command to define the IVRF of the tunnel interface, where the `vrf-name` argument is defined using the `vrf definition` command with IPv4 and IPv6 address families inside the definition.

Information About the FlexVPN Server

Peer Authentication Using EAP

The FlexVPN server supports peer authentication using the Extensible Authentication protocol (EAP) and acts as a pass-through authenticator relaying EAP messages between the client and the backend EAP server. The backend EAP server is typically a RADIUS server that supports EAP authentication.

Note

While a FlexVPN client authenticates the FlexVPN client using EAP, the FlexVPN server must authenticate the FlexVPN server by using certificates.

The FlexVPN server is configured to authenticate FlexVPN clients that use EAP by configuring the `authentication remote eap` command in IKEv2 profile configuration mode. FlexVPN clients authenticate using EAP by skipping the AUTH payload in the IKE_AUTH request.

If the `query-identity` keyword is configured, the FlexVPN server queries the EAP identity from the client; otherwise, the FlexVPN client’s IKEv2 identity is used as the EAP identity. However, if the `query-identity` keyword is not configured and the FlexVPN client’s IKEv2 identity is an IPv4 or IPv6 address, the session is terminated because IP addresses cannot be used as the EAP identity.

The FlexVPN server starts the EAP authentication by passing the FlexVPN client’s EAP identity to the EAP server; the FlexVPN server then relays EAP messages between the remote access (RA) client and the EAP server until the authentication is complete. If the authentication succeeds, the EAP server is expected to return the authenticated EAP identity to the FlexVPN server in the EAP success message.

After EAP authentication, the EAP identity used for the IKEv2 configuration is obtained from the following sources in the given order:

- The EAP identity provided by the EAP server with the EAP success message.
- The EAP identity queried from the client when the `query-identity` keyword is configured.
- The FlexVPN client IKEv2 identity used as the EAP identity.
The figure below shows IKEv2 exchange for EAP authentication without the `query-identity` keyword.

Figure 1: IKEv2 Exchange Without the query-identity Keyword

<table>
<thead>
<tr>
<th>IKEv2 RA client</th>
<th>IKEv2 RA server</th>
<th>RADIUS-EAP server</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SAIi, KEi, Ni</td>
<td>HDR, SAr1, KEr, Nr, [CERTREQ]</td>
<td></td>
</tr>
<tr>
<td>HDR, SK {IDi, [CERTREQ], [IDr]}; SAI2, TSi, TSi</td>
<td>RADIUS Access-Request/EAP-Message/EAP-Response (EAP-ID(IKEv2-ID))</td>
<td>RADIUS Access-Challenge/EAP-Message/EAP-Request (EAP-method)</td>
</tr>
<tr>
<td>HDR, SK {EAP[EAP-Response(EAP-method)]}</td>
<td>HDR, SK {IDr, [CERT,] AUTH, EAP(EAP-Request(EAP-method))}</td>
<td>HDR, SK {EAP(success)}</td>
</tr>
<tr>
<td>HDR, SK {AUTH}</td>
<td>HDR, SK {AUTH, SAr2, TSi, TSr}</td>
<td></td>
</tr>
</tbody>
</table>

FlexVPN and Internet Key Exchange Version 2 Configuration Guide, Cisco IOS XE Release 3S
The figure below shows the IKEv2 exchange for EAP authentication with the `query-identity` keyword.

Figure 2: IKEv2 Exchange with the query-identity Keyword

<table>
<thead>
<tr>
<th>IKEv2 RA client</th>
<th>IKEv2 RA server</th>
<th>RADIUS-EAP server</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SA1, KE1, Ni</td>
<td>HDR, SA1, KE1, Nr, [CERTREQ]</td>
<td>HDR, SK [IDr, [CERT,] AUTH, EAP (EAP-request (Identity))}</td>
</tr>
<tr>
<td>HDR, SK [IDr, [CERT,] AUTH, EAP (EAP-response (Identity))]</td>
<td>RADIUS Access-Request/EAP-Message/EAP-Response(EAP-ID)</td>
<td>HDR, SK [IDr, [CERT,] AUTH, EAP(EAP-request(EAP-method))}</td>
</tr>
<tr>
<td>HDR, SK [EAP(EAP-Response).Euler] (Identity))</td>
<td>RADIUS Access-Challenge/EAP-Message/EAP-Response(EAP-method)</td>
<td>HDR, SK (EAP (success))</td>
</tr>
<tr>
<td>HDR, SK (AUTH)</td>
<td>HDR, SK (AUTH, SA2, TSi, TSr)</td>
<td></td>
</tr>
</tbody>
</table>

IKEv2 Configuration Mode

IKEv2 configuration mode allows IKE peers to exchange configuration information such as IP addresses and routes. The configuration information is obtained from IKEv2 authorization. Both pull and push models are supported. The pull model involves the exchange of configuration requests and replies; the push model involves the exchange of configuration sets and acknowledgements.

The following table describes the conditions when the initiator and the responder send different configuration payload types:
Table 4: Configuration Payload Types

<table>
<thead>
<tr>
<th>Configuration Payload Type</th>
<th>Sent By...</th>
<th>When...</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFG_REQUEST</td>
<td>Initiator</td>
<td>The initiator is the FlexVPN client or if the config-exchange request command is enabled in the IKEv2 profile.</td>
</tr>
<tr>
<td>CFG_REPLY</td>
<td>Responder</td>
<td>The responder receives the CFG_REQUEST.</td>
</tr>
</tbody>
</table>
| CFG_SET | Initiator and responder | Initiator—The config-exchange set send command is enabled in the IKEv2 profile.
 Responder—The CFG_REQUEST is not received, the configuration data is available, and the config-exchange set send command is enabled in the IKEv2 profile.
| CFG_ACK | Initiator and responder | Initiator—The config-exchange set accept command is enabled in the IKEv2 profile.
 Responder—The config-exchange set accept command is enabled in the IKEv2 profile. |

Note

The commands to send configuration requests and configuration set payloads are enabled by default.

Depending on your release, the IKEv2 initiator can trigger a configuration mode when the initiator is a FlexVPN client, or any static tunnel interface initiating IKEv2 can trigger configuration mode by enabling the config-mode command in the IKEv2 profile.

The IKEv2 FlexVPN server supports the following standard IPv4 configuration attributes:

- INTERNAL_IP4_ADDRESS
- INTERNAL_IP4_NETMASK
- INTERNAL_IP4_DNS
- INTERNAL_IP4_NBNS
- INTERNAL_IP4_SUBNET

The IKEv2 FlexVPN server supports the following standard IPv6 configuration attributes:

- INTERNAL_IP6_ADDRESS
- INTERNAL_IP6_DNS
- INTERNAL_IP6_SUBNET
IPv6 configuration attributes are only supported by the Microsoft Windows IKEv2 client.

The INTERNAL_IP4_SUBNET and INTERNAL_IP6_SUBNET configuration attributes, controlled by the
route set and aaa attribute list commands in the IKEv2 authorization policy, are not supported when you
configure a static virtual tunnel interface (SVTI)-to-SVTI tunnel. In such cases, static routing or dynamic
routing must be used instead of the IKEv2-based route exchange.

The IKEv2 FlexVPN server supports the following standard common configuration attribute:

- APPLICATION_VERSION

Note This attribute is only sent for Cisco Anyconnect and FlexVPN clients.

The IKEv2 FlexVPN server supports the following Cisco Unity configuration attributes:

- MODECFG_BANNER
- MODECFG_DEFDOMAIN
- MODECFG_SPLITDNS_NAME
- MODECFG_BACKUPSERVERS
- MODECFG_PFS
- MODECFG_SMARTCARD_REMOVAL_DISCONNECT

Note The Cisco Unity attributes are sent only for Cisco Anyconnect and FlexVPN clients.

The IKEv2 FlexVPN server supports the following Cisco FlexVPN configuration attributes:

- MODECFG_CONFIG_URL
- MODECFG_CONFIG_VERSION

Note The Cisco FlexVPN attributes are sent only for Cisco FlexVPN clients.

The INTERNAL_IP4_ADDRESS attribute value is derived from the following sources in the given order:

- The Framed-IP-Address attribute received in AAA user authorization.
- The local IP address pool.
- The DHCP server.

The DHCP server, if configured, allocates addresses only if the local IP address pool is not configured.
However, if an error occurs when allocating IP addresses from the local pool, the next address source DHCP
server is not used for allocating the addresses.

The value for INTERNAL_IP4_NETMASK attribute is derived as follows:
If the IP address is obtained from the DHCP server, the netmask is also obtained from the DHCP server.

If the IP address is obtained from either the Framed-IP-Address attribute in AAA user authorization or the local IP address pool, the netmask is derived from the IPv4 netmask attribute received in the user or group authorization. If the netmask is not available, the INTERNAL_IP4_NETMASK attribute is not included in the configuration reply. If the netmask is available, the INTERNAL_IP4_NETMASK attribute is included only if the INTERNAL_IP4_ADDRESS attribute is included in the configuration reply.

An IPv4 address is allocated and included in the reply only if the client requests an address. If the client requests multiple IPv4 addresses, only one IPv4 address is sent in the reply. If available, the remaining attributes are included in the reply even though the client does not request them. If the client requests an IPv4 address and the FlexVPN server is unable to assign an address, an INTERNAL_ADDRESS_FAILURE message is returned to the client.

IKEv2 Authorization

IKEv2 authorization provides a policy for an authenticated session by using the AAA. The policy can be defined locally or on the RADIUS server, and contains local and/or remote attributes. The username for authorization can either be derived from the peer identity using the `name-mangler` keyword or be directly specified in the command. IKEv2 authorization is mandatory only if the peer requests an IP address via configuration mode.

IKEv2 authorization types are as follows:

- **User authorization**—Use the `aaa authorization user` command in the IKEv2 profile to enable user authorization. User authorization is based on the user-specific portion of the peer IKE identity such as fqdn-hostname. The attributes from user authorization are called user attributes.

- **Group authorization**—Use the `aaa authorization group` command in the IKEv2 profile to enable group authorization. Group authorization is based on the generic portion of the peer IKE identity such as fqdn-domain. The attributes from group authorization are called group attributes.

- **Implicit user authorization**—Use the `aaa authorization user cached` command in the IKEv2 profile to enable implicit user authorization. Implicit authorization is performed as part of EAP authentication or when obtaining the AAA preshared key. The attributes from implicit user authorization are called cached attributes.

Note

Depending on your release, the `aaa authorization user cached` command may or may not be available. Explicit user authorization is performed only when implicit user authorization does not return any attributes or does not have the Framed-IP-Address attribute.

Merging and Overriding Attributes

Attributes from different sources are merged before they are used. The precedence of merging attributes is as follows:

- When merging duplicate attributes, the source of the attribute has a higher precedence.

- When merging user and cached attributes, user attributes have higher precedence.
When merging merged-user-attributes and group attributes, merged-user attributes have a higher precedence, by default. However, this precedence can be reversed using the `aaa author group override` command.

IKEv2 Authorization Policy

An IKEv2 authorization policy defines the local authorization policy and contains local and/or remote attributes. Local attributes, such as VPN routing and forwarding (VRF) and the QOS policy, are applied locally. Remote attributes, such as routes, are pushed to the peer via the configuration mode. Use the `crypto ikev2 authorization policy` command to define the local policy. The IKEv2 authorization policy is referred from the IKEv2 profile via the `aaa authorization` command.

IKEv2 Name Mangler

The IKEv2 name mangler is used to derive the username for IKEv2 authorization and obtain the AAA preshared key from the peer IKE identity.

IKEv2 Multi-SA

The IKEv2 Multi-SA feature allows an IKEv2 Dynamic Virtual Tunnel Interface (DVTI) session on the IKEv2 responder to support multiple IPsec Security Associations (SA). The maximum number of IPsec SAs per DVTI session is either obtained from AAA authorization or configured on the IPsec profile. The value from AAA has a higher priority. Any change to the `max-flow-limit` argument in the IPsec profile is not applied to the current session but is applied to subsequent sessions. The IKEv2 Multi-SA feature makes the configuration of the IKEv2 profile in the IPsec profile optional. This optional configuration allows IPsec DVTI sessions using the same virtual template to have different IKEv2 profiles, thus saving the number of virtual template configurations.

Note

The IKEv2 Multi-SA feature allows multiple IPsec SAs that have non-any-any proxies. However, when the IPsec SA proxies are any-any, a single IPsec SA is allowed.

For more information, see the “Multi-SA Support for Dynamic Virtual Tunnel Interfaces for IKEv2” module in the *Security for VPNs with IPsec Configuration Guide*.

Supported RADIUS Attributes

The following tables list the RADIUS attributes supported by the IKEv2 FlexVPN server:

- The Scope field defines the direction of the attribute and the usage on the FlexVPN server or client.
 - Inbound—FlexVPN server to RADIUS
 - Outbound—RADIUS to the FlexVPN server
 - Local—Used locally by the FlexVPN server
 - Remote—Pushed to the client by the FlexVPN server
• The "Local configuration" field specifies the IKEv2 authorization policy command that is used to configure the attribute locally on the FlexVPN server.

• Cisco AV Pair is a Cisco Vendor Specific Attribute (VSA) with vendor-id 9 and vendor-type 1. The VSAs are encapsulated in the Radius IETF attribute 26 Vendor-Specific. The Cisco AV pair is specified as a string of format "protocol:attribute=value".

Example:
cisco-avpair = "ipsec:ipv6-addr-pool=v6-pool"

Table 5: Inbound and Bidirectional IETF RADIUS Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Name</td>
<td>Inbound and outbound (bidirectional)</td>
</tr>
<tr>
<td>User-Password</td>
<td>Inbound</td>
</tr>
<tr>
<td>Calling-Station-Id</td>
<td>Inbound</td>
</tr>
<tr>
<td>Service-Type</td>
<td>Inbound</td>
</tr>
<tr>
<td>EAP-Message</td>
<td>Bidirectional</td>
</tr>
<tr>
<td>Message-Authenticator</td>
<td>Bidirectional</td>
</tr>
</tbody>
</table>

Table 6: Outbound IETF and Cisco AV Pair RADIUS Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Scope</th>
<th>Local configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Type</td>
<td>IETF</td>
<td>Local</td>
<td>N/A</td>
</tr>
<tr>
<td>Tunnel-Medium-Type</td>
<td>IETF</td>
<td>Local</td>
<td>N/A</td>
</tr>
<tr>
<td>Tunnel-Password</td>
<td>IETF</td>
<td>Local</td>
<td>N/A</td>
</tr>
<tr>
<td>ipsec:ikev2-password-local</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>N/A</td>
</tr>
<tr>
<td>ipsec:ikev2-password-remote</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>N/A</td>
</tr>
<tr>
<td>ipsec:addr-pool</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>pool</td>
</tr>
<tr>
<td>ipsec:group-dhcp-server</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>dhcp server</td>
</tr>
<tr>
<td>ipsec:dhcp-giaddr</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>dhcp giaddr</td>
</tr>
<tr>
<td>ipsec:dhcp-timeout</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>dhcp timeout</td>
</tr>
<tr>
<td>ipsec:ipv6-addr-pool</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>ipv6 pool</td>
</tr>
</tbody>
</table>
Supported RADIUS Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Scope</th>
<th>Local configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipsec:route-set=interface</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>route set interface</td>
</tr>
<tr>
<td>ipsec:route-set=prefix</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>N/A</td>
</tr>
<tr>
<td>ipsec:route-accept</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>route accept any</td>
</tr>
<tr>
<td>ip:interface-config</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>aaa attribute list</td>
</tr>
<tr>
<td>ipsec:ipsec-flow-limit</td>
<td>Cisco AV Pair</td>
<td>Local</td>
<td>ipsec flow-limit</td>
</tr>
<tr>
<td>Framed-IP-Address</td>
<td>IETF</td>
<td>Remote</td>
<td>N/A</td>
</tr>
<tr>
<td>Framed-IP-Netmask</td>
<td>IETF</td>
<td>Remote</td>
<td>netmask</td>
</tr>
<tr>
<td>ipsec:dns-servers</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>DNS</td>
</tr>
<tr>
<td>ipsec:wins-servers</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>wins</td>
</tr>
<tr>
<td>ipsec:route-set=access-list</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>route set access-list</td>
</tr>
<tr>
<td>ipsec:addrv6</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>n/a</td>
</tr>
<tr>
<td>ipsec:prefix-len</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>n/a</td>
</tr>
<tr>
<td>ipsec:ipv6-dns-servers-addr</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>ipv6 dns</td>
</tr>
<tr>
<td>ipsec:route-set=access-list ipv6</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>route set access-list ipv6</td>
</tr>
<tr>
<td>ipsec:banner</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>banner</td>
</tr>
<tr>
<td>ipsec:default-domain</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>def-domain</td>
</tr>
<tr>
<td>ipsec:split-dns</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>split-dns</td>
</tr>
<tr>
<td>ipsec:ipsec-backup-gateway</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>backup-gateway</td>
</tr>
<tr>
<td>ipsec:pfs</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>pfs</td>
</tr>
<tr>
<td>ipsec:include-local-lan</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>include-local-lan</td>
</tr>
<tr>
<td>ipsec:smartcard-removal_disconnect</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>smartcard-removal-disconnect</td>
</tr>
<tr>
<td>ipsec:configuration-url</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>configuration url</td>
</tr>
<tr>
<td>ipsec:configuration-version</td>
<td>Cisco AV Pair</td>
<td>Remote</td>
<td>configuration version</td>
</tr>
</tbody>
</table>
Supported Remote Access Clients

The FlexVPN server interoperates with the Microsoft Windows 7 IKEv2 client, Cisco IKEv2 AnyConnect client, and Cisco FlexVPN client.

Microsoft Windows 7 IKEv2 Client

The Microsoft Windows 7 IKEv2 client sends an IP address as the Internet Key Exchange (IKE) identity that prevents the Cisco IKEv2 FlexVPN server from segregating remote users based on the IKE identity. To allow the Windows 7 IKEv2 client to send the email address (user@domain) as the IKE identity, apply the hotfix documented in KB975488 (http://support.microsoft.com/kb/975488) on Microsoft Windows 7 and specify the email address string in either the Username field when prompted or the CommonName field in the certificate depending on the authentication method.

For certificate-based authentication, the FlexVPN server and Microsoft Windows 7 client certificates must have an Extended Key Usage (EKU) field as follows:

- For the client certificate, EKU field = client authentication certificate.
- For the server certificate, EKU field = server authentication certificate
- The certificates can be obtained from the Microsoft Certificate Server or the IOS CA server.

For EAP authentication, the Microsoft Windows 7 IKEv2 client expects an EAP identity request before any other EAP requests. Ensure that you configure the query-identity keyword in the IKEv2 profile on the IKEv2 FlexVPN server to send an EAP identity request to the client.

Cisco IKEv2 AnyConnect Client

For certificate-based authentication, the FlexVPN server and the AnyConnect client certificates must have an Extended Key Usage (EKU) field as follows:

- For the client certificate, EKU field = client authentication certificate
- For the server certificate, EKU field = server authentication certificate

If the FlexVPN server authenticates to AnyConnect client using certificates, a SubjectAltName extension is required in the FlexVPN server certificate that contains the server’s IP address or fully qualified domain name (FQDN). Additionally, HTTP certified URLs must be disabled on the FlexVPN server using the no crypto ikev2 http-url cert command.

The following example displays the XML tags specific to EAP-MD5 authentication of IKEv2 sessions in the AnyConnect client profile:

```
<PrimaryProtocol>IPsec
  <StandardAuthenticationOnly>true
  <AuthMethodDuringIKENegotiation>
    EAP-MD5
  </AuthMethodDuringIKENegotiation>
  <IKEIdentity>DEPT24</IKEIdentity>
</StandardAuthenticationOnly>
</PrimaryProtocol>
```

For more information, refer to AnyConnect client 3.0 documentation at this link: http://www.cisco.com/en/US/docs/security/vpn_client/anyconnect/anyconnect30/release/notes/anyconnect30rn.html#wp1268255.
How to Configure the FlexVPN Server

Configuring the IKEv2 Profile for the FlexVPN Server

This task describes the IKEv2 profile commands required for configuring the FlexVPN server in addition to the basic IKEv2 profile commands. Refer to the "Configuring IKEv2 Profile (Basic)" task in the Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site feature module for information about configuring the basic IKEv2 profile.

Perform this task to configure the IKEv2 profile for the FlexVPN Server:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto ikev2 profile profile-name`
4. `aaa authentication eap list-name`
5. `authentication {local {rsa-sig | pre-share [key 0 6] password] | ecdsa-sig | eap [gtc md5] ms-chapv2} [username username] [password 0 6 password] | remote {eap [query-identity | timeout seconds] | rsa-sig | pre-share [key 0 6 password] | ecdsa-sig} }
6. Execute both or one of the following:
 - `aaa authorization user {eap | psk} {list aaa-listname [aaa-username | name-mangler mangler-name]}
 - `aaa authorization user cert list aaa-listname {aaa-username | name-mangler mangler-name}`
7. Execute both or one of the following:
 - `aaa authorization group [override] {eap | psk} list aaa-listname [aaa-username | name-mangler mangler-name]`
 - `aaa authorization group [override] cert list aaa-listname {aaa-username | name-mangler mangler-name} `
8. `config-exchange {request | set {accept | send}}`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto ikev2 profile profile-name</td>
<td>Defines an IKEv2 profile name and enters IKEv2 profile configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto ikev2 profile profile1</td>
<td></td>
</tr>
<tr>
<td>Step 4 aaa authentication eap list-name</td>
<td>(Optional) Specifies AAA authentication list for EAP authentication when implementing the IKEv2 remote access server.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-profile)# aaa authentication eap list1</td>
<td></td>
</tr>
<tr>
<td>Step 5 authentication {local</td>
<td>rsa-sig</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-profile)# authentication local ecdsa-sig</td>
<td></td>
</tr>
<tr>
<td>Step 6 Execute both or one of the following:</td>
<td>Specifies the AAA method list and username for user authorization.</td>
</tr>
<tr>
<td>* aaa authorization user {eap</td>
<td>psk} {cached</td>
</tr>
<tr>
<td>* aaa authorization user cert list aaa-listname {aaa-username</td>
<td>name-mangler mangler-name}</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-profile)# aaa authorization user eap cached</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Example:** Device(config-ikev2-profile)# aaa authorization user cert list list1 name-mangler mangler1 | **name-mangler**—Specifies the name mangler that derives the AAA authorization username from the peer identity.
mangler-name—Name mangler to be used. |
| **Note** | • For *psk* and *eap* authentication methods, specifying the *aaa-username* argument or the *name-mangler* keyword is optional and if not specified, the peer identity is used as the username.
• For *psk* and *eap* authentication methods, you can simultaneously configure two variants for user authorization with the *cached* and *list* keyword respectively.
• Specifying the *aaa-username* argument or the *name-mangler* keyword is mandatory for *cert* authentication, as the peer identity of type distinguished name (DN) cannot be used. |
| **Step 7** Execute both or one of the following:
• *aaa authorization group [override] {eap | psk} list aaa-listname [aaa-username | name-mangler mangler-name]*
• *aaa authorization group [override] cert list aaa-listname {aaa-username | name-mangler mangler-name}* | Specifies the AAA method list and username for group authorization.
group—Specifies group authorization.
override—(Optional) Specifies that attributes from group authorization should take precedence while merging attributes. By default, user attributes take precedence.
cert—Specifies that peers must be authenticated using certificates.
eap—Specifies that peers must be authenticated using EAP.
psk—Specifies that peers must be authenticated using preshared keys.
aaa-listname—AAA method list name.
aaa-username—Username that must be used in the AAA authorization request.
name-mangler—Specifies the name mangler that derives the AAA authorization username from the peer identity.
mangler-name—Name mangler to be used. |
| **Note** | • For *psk* and *eap* authentication methods, specifying the *aaa-username* argument or the *name-mangler* keyword is optional and if not specified, the peer identity is used as the username.
• For *psk* and *eap* authentication methods, you can simultaneously configure two variants for user authorization with the *cached* and *list* keyword respectively.
• Specifying the *aaa-username* argument or the *name-mangler* keyword is mandatory for *cert* authentication, as the peer identity of type distinguished name (DN) cannot be used. |
Configuring the IKEv2 Name Mangler

Perform this task to specify the IKEv2 name mangler, which is used to derive a name for authorization requests and obtain AAA preshared keys. The name is derived from specified portions of different forms of remote IKE identities or the EAP identity. The name mangler specified here is referred to in the IKEv2 profile.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 name-mangler mangler-name
4. dn {common-name | country | domain | locality | organization | organization-unit | state}
5. eap {all | dn {common-name | country | domain | locality | organization | organization-unit | state} | prefix | suffix {delimiter {. | @ | \}}}
6. email {all | domain | username}
7. fqdn {all | domain | hostname}
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Purpose

Step 2

`configure terminal`

Enters global configuration mode.

Example:

Device# configure terminal

Step 3

`crypto ikev2 name-mangler mangler-name`

Defines a name mangler and enters IKEv2 name mangler configuration mode.

Example:

Device(config)# crypto ikev2 name-mangler mangler1

Step 4

```
dn {common-name | country | domain | locality | organization | organization-unit | state}
```

Derives the name from any of the following fields in the remote identity of type DN (distinguished name).

- `common-name`
- `country`
- `domain`
- `locality`
- `organization`
- `organization-unit`
- `state`

Example:

Device(config-ikev2-name-mangler)# dn state

Step 5

```
eap {all | dn {common-name | country | domain | locality | organization | organization-unit | state} | prefix | suffix {delimiter {. | @ | \}}}
```

Derives the name from the remote identity of type EAP (Extensible Authentication Protocol).

- `all`—Derives the name from the entire EAP identity.
- `dn`—Derives the name from any of the following fields in the remote EAP identity of type DN:
 - `common-name`
 - `country`
 - `domain`
 - `locality`
 - `organization`
 - `organization-unit`
 - `state`
- `prefix`—Derives the name from the prefix in the EAP identity.
- `suffix`—Derives the name from the suffix in the EAP identity.
- `delimiter` `{. | @ | \}`— Specifies the delimiter in the EAP identity that separates the prefix and the suffix.

Example:

Device(config-ikev2-name-mangler)# eap prefix delimiter @
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>email {all</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-name-mangler)# email username</td>
<td>Derives the name from the remote identity of type e-mail.</td>
</tr>
<tr>
<td></td>
<td>• all—Derives the name from the entire remote IKE identity of type e-mail.</td>
</tr>
<tr>
<td></td>
<td>• domain—Derives the name from the domain part of the remote IKE identity.</td>
</tr>
<tr>
<td></td>
<td>• username—Derives the name from the username part of the remote IKE identity.</td>
</tr>
<tr>
<td>Step 7</td>
<td>fqdn {all</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-name-mangler)# fqdn domain</td>
<td>Derives the name from the remote identity of type FQDN (Fully Qualified Domain Name).</td>
</tr>
<tr>
<td></td>
<td>• all—Derives the name from the entire remote IKE identity of type FQDN.</td>
</tr>
<tr>
<td></td>
<td>• domain—Derives the name from the domain part of the remote IKE identity.</td>
</tr>
<tr>
<td></td>
<td>• hostname—Derives the name from the hostname part of the remote IKE identity.</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-name-mangler)# end</td>
<td>Exits IKEv2 name mangler configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Configuring the IKEv2 Authorization Policy

Perform this task to configure the IKEv2 authorization policy.
SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 authorization policy policy-name
4. aaa attribute list list-name
5. backup-gateway string
6. banner banner-text
7. configuration url url
8. configuration version version
9. def-domain domain-name
10. dhcp {giaddr ip-address | server {ip-address | hostname} | timeout seconds}
11. [ipv6] dns primary-server [secondary-server]
12. include-local-lan
13. ipsec flow-limit number
14. netmask mask
15. pfs
16. [ipv6] pool name
17. route set {interface interface | access-list {access-list-name | access-list-number | expanded-access-list-number | ipv6 access-list-name}}
18. route accept any [tag value] [distance value]
19. route set remote {ipv4 ip-address mask | ipv6 ip-address/mask}
20. smartcard-removal-disconnect
21. split-dns string
22. session-lifetime seconds
23. route set access-list {acl-number | [ipv6] acl-name}
24. wins primary-server [secondary-server]
25. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td>crypto ikev2 authorization policy policy-name</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# crypto ikev2 authorization policy policy1</td>
</tr>
<tr>
<td>4</td>
<td>aaa attribute list list-name</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-author-policy)# aaa attribute list list1</td>
</tr>
<tr>
<td>5</td>
<td>backup-gateway string</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-author-policy)# backup-gateway gateway1</td>
</tr>
<tr>
<td>6</td>
<td>banner banner-text</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-author-policy)# banner This is IKEv2</td>
</tr>
<tr>
<td>7</td>
<td>configuration url url</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-author-policy)# configuration url http://www.cisco.com</td>
</tr>
<tr>
<td>8</td>
<td>configuration version version</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-author-policy)# configuration version 2.4</td>
</tr>
<tr>
<td>9</td>
<td>def-domain domain-name</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-author-policy)# def-domain cisco</td>
</tr>
<tr>
<td>10</td>
<td>dhcp {giaddr ip-address</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ikev2-author-policy)# dhcp giaddr 192.0.2.1</td>
</tr>
</tbody>
</table>

- **giaddr ip-address**—Specifies the gateway IP address (giaddr).
- **server {ip-address | hostname}**—Specifies the IP address or hostname of the DHCP server. The hostname is resolved during configuration.
- **timeout seconds**—Specifies the wait time in seconds for the response from the DHCP server.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 11 <code>[ipv6] dns primary-server [secondary-server]</code></td>
<td>Specifies the IP addresses of primary and secondary Domain Name Service (DNS) servers that are sent to the client in the configuration reply.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-author-policy)# dns 198.51.100.1 198.51.100.100</td>
<td></td>
</tr>
<tr>
<td>Step 12 include-local-lan</td>
<td>Includes local LAN. This parameter is sent to the client via the nonstandard Cisco Unity configuration attribute.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-author-policy)# include-local-lan</td>
<td></td>
</tr>
<tr>
<td>Step 13 ipsec flow-limit number</td>
<td>Specifies the maximum number of IPsec SAs that an IKEv2 dVTI session on the IKEv2 responder can have. The range is from 0 to 50000. By default, the command is disabled, and there is no limit on the number of IPsec flows per dVTI session. A value of 0 will not allow any IPsec SAs.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-author-policy)# ipsec flow-limit 12500</td>
<td></td>
</tr>
<tr>
<td>Step 14 netmask mask</td>
<td>Specifies the netmask of the subnet from which the IP address is assigned to the client.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-author-policy)# netmask 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 15 pfs</td>
<td>Enables Password Forward Secrecy (PFS). This parameter is sent to the client via the nonstandard Cisco Unity configuration attribute. This parameter specifies whether the client should use PFS.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-author-policy)# pfs</td>
<td></td>
</tr>
<tr>
<td>Step 16 <code>[ipv6] pool name</code></td>
<td>Defines a local IP address pool for assigning IP addresses to the remote access client.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-author-policy)# pool abc</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The local IP address pool must already be defined using the <code>ip local pool</code> command.</td>
</tr>
</tbody>
</table>
| Step 17 | route set \{interface interface \| access-list \{access-list-name \| access-list-number \| expanded-access-list-number \| ipv6 access-list-name\}\} | Purpose | Specifies the route set parameters to the peer via configuration mode and allows running routing protocols such as Border Gateway Protocol (BGP) over VPN.
- **interface**—Specifies the route interface.
- **access-list**—Specifies the route access list.
- **access-list-name**—Access list name.
- **access-list-number**—Standard access list number.
- **expanded-access-list-number**—Expanded access list number.
- **ipv6**—Specifies an IPv6 access list. |
| Step 18 | route accept any \[tag value\] \[distance value\] | Filter the routes received from the peer and specify the tag and metric values to install these routes.
- **any**—Accepts all routes received from the peer.
- **tag value**—(Optional) Specifies the tag ID for the static routes added by IKEv2. The range is from 1 to 497777.
- **distance value**—(Optional) Specifies the distance for the static routes added by IKEv2. The range is from 1 to 255. |
| Step 19 | route set remote \{ipv4 ip-address mask \| ipv6 ip-address/mask\} | Configures IP addresses of inside networks. |
| Step 20 | smartcard-removal-disconnect | Enables smartcard removal disconnect. This parameter is sent to the client via the nonstandard Cisco Unity configuration attribute. This parameter specifies that the client should terminate the session when the smart card is removed. |
| Step 21 | split-dns string | Allows you to specify up to ten split domain names. This parameter is sent to the client via the nonstandard Cisco Unity configuration attribute. This parameter specifies the domain names that the client should use for private networks. |
| Step 22 | session-lifetime seconds | Specifies the IKEv2 session lifetime.
- **seconds**—The range is from 120 to 25920000, which converts to two minutes to 300 days. |
<p>| Step 23 | route set access-list {acl-number | [ipv6] acl-name} | Specifies the subnets that are pushed to the remote peer via configuration mode. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| Device(config-ikev2-client-config-group)# route set access-list 110 | • *acl-number*—Access list number (ACL). The ACL number can only be specified for an IPv4 ACL.
• *ipv6*—(Optional) Specifies an IPv6 access control list (ACL). To specify an IPv4 attribute, execute the command without this keyword.
• *acl-name*—Access list name. |

Step 24

Example:

Device(config-ikev2-author-policy)# wins primary-server [secondary-server]

Specifies the internal Windows Internet Naming Service (WINS) server addresses that are sent to the client in the configuration reply.

• *primary-server*—IP address of the primary WINS server.
• *secondary-server*—(Optional) IP address of the secondary WINS server.

Note

You can only specify standard, simple access lists for IPv4 addresses.

Step 25

Example:

Device(config-ikev2-author-policy)# end

Exits IKEv2 authorization policy configuration mode and returns to privileged EXEC mode.

Configuration Examples for the FlexVPN Server

Example: Configuring the FlexVPN Server

Example: Configuring the FlexVPN Server to Authenticate Peers Using EAP

This example shows how to configure the FlexVPN server to authenticate peers using EAP.

```
aaa new-model
!
aaa group server radius eap-server
   server 192.168.2.1
!
aaa authentication login eap-list group eap-server
!
crypto pki trustpoint trustpoint1
   enrollment url http://192.168.3.1:80
   revocation-check crl
!
crypto ikev2 profile ikev2-profile1
   match identity remote address 0.0.0.0
   authentication local rsa-sig
   authentication remote eap query-identity
   pki trustpoint trustpoint1
```
aaa authentication eap eap-list
 virtual-template 1
! crypto ipsec transform-set transform1 esp-aes esp-sha-hmac
! crypto ipsec profile ipsec-profile1
 set transform-set transform1
 set ikev2-profile ikev2-profile1
! interface Ethernet0/0
 ip address 192.168.1.1 255.255.255.0
! interface Virtual-Template1 type tunnel
 ip unnumbered Ethernet0/0
 tunnel mode ipsec ipv4
 tunnel protection ipsec profile ipsec-profile1
! radius-server host 192.168.2.1 key key1
!

Example: Configuring the FlexVPN Server for Group Authorization (External AAA)

The following example shows how to configure the FlexVPN server for group authentication through an external AAA, which would be the RADIUS or TACACS server.

aaa new-model
!
 aaa group server radius cisco-acs
 server 192.168.2.2
! aaa authorization network group-author-list group cisco-acs
! crypto pki trustpoint trustpoint1
 enrollment url http://192.168.3.1:80
 revocation-check crl
! crypto pki certificate map certmap1 1
 subject-name co cisco
! crypto ikev2 name-mangler group-author-mangler
dn domain
! crypto ikev2 profile ikev2-profile1
 match certificate certmap1
 authentication local rsa-sig
 authentication remote rsa-sig
 pki trustpoint trustpoint1
 aaa authorization group cert list group-author-list name-mangler group-author-mangler
 virtual-template 1
! crypto ipsec transform-set transform1 esp-aes esp-sha-hmac
! crypto ipsec profile ipsec-profile1
 set transform-set transform1
 set ikev2-profile ikev2-profile1
! interface Ethernet0/0
 ip address 192.168.1.1 255.255.255.0
! interface Virtual-Template1 type tunnel
 ip unnumbered Ethernet0/0
 tunnel mode ipsec ipv4
 tunnel protection ipsec profile ipsec-profile1
! radius-server host 192.168.2.2 key key2
!
Example: Configuring the FlexVPN Server for Group Authorization (Local AAA)

The following example shows how to configure the FlexVPN server for group authorization through the local AAA using the IKEv2 authorization policy. The authorization policy specifies standard IPv4 and IPv6 attributes, and Cisco Unity, and FlexVPN attributes to be sent to the client through configuration mode. The authorization policy also specifies per user attributes through `aaa attribute list` command for local use.

```plaintext
aaa new-model
!
aaa authorization network local-group-author-list local
!
aaa attribute list attr-list1
attribute type interface-config "ip mtu 1100"
attribute type interface-config "tunnel key 10"
!
crypto pki trustpoint trustpoint1
  enrollment url http://192.168.3.1:80
  revocation-check crl
!
crypto pki certificate map certmap1 1
  subject-name co cisco
!
crypto ikev2 authorization policy author-policy1
  pool pool1
  dhcp server 192.168.4.1
  dhcp timeout 10
  dhcp giaddr 192.168.1.1
  dns 10.1.1.1 10.1.1.2
  route set access-list acl1
  wins 192.168.1.2 192.168.1.3
  netmask 255.0.0.0
  banner "FlexVPN server"
  configuration url http://www.abc.com
  configuration version 10
  def-domain abc.com
  split-dns dns1
  split-dns dns2
  split-dns dns3
  backup-gateway gw1
  backup-gateway gw2
  backup-gateway gw3
  smartcard-removal-disconnect
  include-local-lan
  pfs
!
```

```plaintext
aaa attribute list attr-list1

crypto ikev2 profile ikev2-profile1
  match certificate certmap1
  authentication local rsa-sig
  authentication remote rsa-sig
  pki trustpoint trustpoint1
  aaa authorization group cert list local-group-author-list author-policy1
  virtual-template 1

crypto ipsec transform-set transform1 esp-aes esp-sha-hmac
!
```

```plaintext
crypto ipsec profile ipsec-profile1
  set transform-set trans transform1
  set ikev2-profile ikev2-profile1

interface Ethernet0/0
  ip address 192.168.1.1 255.255.255.0
!
interface Virtual-Templatet1 type tunnel
  ip unnumbered Ethernet0/0
  tunnel mode ipsec ipv4
  tunnel protection ipsec profile ipsec-profile1
```
Example: Configuring the FlexVPN Server for User Authorization

The following example shows how to configure the FlexVPN server for user authentication.

```plaintext
aaa new-model
!
aaa group server radius cisco-accts
  server 192.168.2.2
!
aaa authorization network user-author-list group cisco-accts
!
crypto pki trustpoint trustpoint1
  enrollment url http://192.168.3.1:80
  revocation-check crl
!
crypto pki certificate map certmap1 1
  subject-name cn cisco
!
crypto ikev2 name-mangler user-author-mangler
  dn common-name
!
crypto ikev2 profile ikev2-profile1
  match certificate certmap1
  authentication local rsa-sig
  authentication remote rsa-sig
  pki trustpoint trustpoint1
  aaa authorization user cert list user-author-list name-mangler user-author-mangler
  virtual-template 1
!
crypto ipsec transform-set transform1 esp-aes esp-sha-hmac
!
crypto ipsec profile ipsec-profile1
  set transform-set trans transform1
  set ikev2-profile ikev2-profile1
!
interface Ethernet0/0
  ip address 192.168.1.1 255.255.255.0
!
interface Virtual-Template1 type tunnel
  ip unnumbered Ethernet0/0
  tunnel mode ipsec ipv4
  tunnel protection ipsec profile ipsec-profile1
!
radius-server host 192.168.2.2 key key2
!
```

Example: Configuring the FlexVPN Server for IPv6 Session with IPv6 Configuration Attributes

The following example shows how to configure the FlexVPN server for an IPv6 dynamic Virtual Tunnel Interfaces (dVTI) session. The example uses local AAA group authorization using the IKEv2 authorization policy. The IPv6 configuration attributes are configured under the IKEv2 authorization policy.

```plaintext
aaa new-model
!
  aaa authorization network local-group-author-list local
!
crypto pki trustpoint trustpoint1
  enrollment url http://192.168.3.1:80
```
revocation-check crl
! crypto pki certificate map certmap1 1
 subject-name co cisco
! crypto ikev2 authorization policy author-policy1
 ipv6 pool v6-pool
 ipv6 dns 2001:DB8:1::11 2001:DB8:1::12
 ipv6 subnet-acl v6-acl
! crypto ikev2 profile ikev2-profile1
 match certificate certmap1
 authentication local rsa-sig
 authentication remote rsa-sig
 pki trustpoint trustpoint1
 aaa authorization group cert list local-group-author-list author-policy1
 virtual-template 1
! crypto ipsec transform-set transform1 esp-aes esp-sha-hmac
! crypto ipsec profile ipsec-profile1
 set transform-set trans transform1
 set ikev2-profile ikev2-profile1
! interface Ethernet0/0
 ipv6 address 2001:DB8:1::1/32
! interface Virtual-Template1 type tunnel
 ipv6 unnumbered Ethernet0/0
 tunnel mode ipsec ipv6
 tunnel protection ipsec profile ipsec-profile1
! ipv6 local pool v6-pool 2001:DB8:1::10/32 48
! ipv6 access-list v6-acl
 permit ipv6 host 2001:DB8:1::20 any
 permit ipv6 host 2001:DB8:1::30 any
!

Additional References for Configuring the FlexVPN Server

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
<tr>
<td>IPSec configuration</td>
<td>Configuring Security for VPNS with IPsec</td>
</tr>
</tbody>
</table>

Configuring Security for VPNS with IPsec

- Cisco IOS Security Command Reference Commands A to C
- Cisco IOS Security Command Reference Commands D to L
- Cisco IOS Security Command Reference Commands M to R
- Cisco IOS Security Command Reference Commands S to Z
Feature Information for Configuring the FlexVPN Server

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 7: Feature Information for Configuring the FlexVPN Server

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEv2 headend support for remote access clients</td>
<td>Cisco IOS XE Release 3.5S</td>
<td>This feature provides IKEv2 support for Anyconnect 3.0, FlexVPN hardware client, and multi SA support for VTI. The following commands were introduced or modified: aaa attribute list, backup-gateway, banner, config-mode set, configuration url, configuration version, def-domain, dhcp, dns, include-local-lan, max flow limit, pfs, pool, route accept, route set interface, smartcard-removal-disconnect, split-dns, subnet-acl.</td>
</tr>
</tbody>
</table>
CHAPTER 4

Configuring the FlexVPN Client

This module describes the FlexVPN client features and the Internet Key Exchange Version 2 (IKEv2) commands required to configure the FlexVPN client.

Security threats, as well as the cryptographic technologies to help protect against them, are constantly changing. For more information about the latest Cisco cryptographic recommendations, see the Next Generation Encryption (NGE) white paper.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Restrictions for the FlexVPN Client

EAP as the Local Authentication Method

• Extensible Authentication Protocol (EAP) as the local authentication method, is supported only on the IKEv2 initiator, and as the remote authentication, is supported only on the IKEv2 responder.

• If EAP is specified as the local authentication method, the remote authentication method must be certificate based.

• If the **authentication remote eap query-identity** command is not configured on the FlexVPN server, the client cannot have an IPv4 or IPv6 address as the local identity because these IP addresses cannot be used as the username for the EAP authentication method.

Dual-Stack Tunnel Interface and VRF-Aware IPsec

When configuring a dual-stack tunnel interface in a VPN routing and forwarding (VRF)-aware IPsec scenario, you cannot use the `ip vrf forwarding` command to configure an Inside VPN routing and forwarding (IVRF) instance because this is not a valid configuration. Use the `vrf forwarding vrf-name` command to define the IVRF of the tunnel interface, where the `vrf-name` argument is defined using the `vrf definition` command with IPv4 and IPv6 address families inside the definition.

Information About the FlexVPN Client

IKEv2 FlexVPN Client

The IKEv2 FlexVPN Client feature establishes a secure IPsec VPN tunnel between a FlexVPN client and a FlexVPN server. The IKEv2 FlexVPN Client feature provides the following benefits:

• Unified tunnel infrastructure

• IPv4/IPv6 proxy support over IPv4/IPv6 transport

• Backward compatibility with some features supported by EasyVPN

• Flexibility for running dynamic routing protocols
Each FlexVPN client is associated with a unique tunnel interface, which implies that the IPsec security association (SA) retrieved by the specific FlexVPN client is bound to the tunnel interface. The figure below shows the association between the FlexVPN client and the tunnel interface.

Figure 3: Association of the FlexVPN Client and the Tunnel Interface

The sequence of operation is as follows:

- **Routing**—The FlexVPN server pushes the network list as part of the mode configuration response. The client adds routes on the tunnel interface to these networks. As part of the configuration mode set, the client sends the routes to its network. The IP address is configured on the tunnel interface so that the server can add routes to the client-side network.

- **NAT**—Network Address Translation (NAT) rules must be configured explicitly using route maps. If the rules match, the hosts behind the FlexVPN client are translated to the tunnel IP address. This IP address can be obtained as one of the attributes pushed during mode configuration by the FlexVPN server.

- **Encapsulation and encryption**—Generic routing encapsulation (GRE) and IPsec encapsulation modes are supported. GRE supports both IPv4 and IPv6 traffic. The traffic that reaches the tunnel interface is
encapsulated by the GRE header, followed by IPsec protection. The encrypted traffic is then routed to the outgoing interface.

The features supported by the FlexVPN client are described in the following sections:

Tunnel Activation

The FlexVPN client can be connected automatically or manually through user intervention. The FlexVPN client connects automatically to the tunnel when the FlexVPN configuration is complete. If the tunnel times out or fails, the tunnel automatically reconnects and retries the connection indefinitely. To configure an automatic tunnel connection, use the `connect` command with the `auto` keyword in the IKEv2 FlexVPN profile.

In a manual connection, the FlexVPN client waits for user intervention to execute a command before establishing a connection. When the client times out or fails to connect, subsequent connections require user intervention. To configure a manual connection, use the `crypto ikev2 client flexvpn connect` command with the `flexvpn-name` argument in privileged EXEC mode. To terminate the connection, use the `clear crypto ikev2 client flexvpn connect` command with the `flexvpn-name` argument.

Tracking-Based Tunnel Activation

The Tracking-Based Tunnel Activation feature is mainly used in backup scenarios. The FlexVPN client registers with the tracking system to obtain notifications for change in the state of an object. This notification prompts the client to perform an appropriate action for tunnel activation. The `track` keyword in the `connect` command informs the tracking process that the client is interested in tracking an object, which is identified by an object number. The tracking process, in turn, informs the client when the state of the objects changes.

If the `track` keyword in the `connect` command is set to activate the tunnel when the object goes up, the client triggers the connection upon receiving the notification that the object is in the UP state. If the `track` keyword in the `connect` command is set to activate the tunnel when the object goes down, the client triggers the connection upon receiving the notification that the object is in the DOWN state.

Backup Features

A FlexVPN client can connect to various peers or servers in a predetermined order. The list of peers is called the gateway list or backup gateway list and is built using the following lists:

- Static backup gateway list or static list
- Downloaded backup gateway list or downloaded list

The static backup gateway list is configured in the FlexVPN profile by providing a list of peers with a sequence number. The downloaded backup gateway list is downloaded dynamically and is obtained during the mode configuration response. The downloaded list complements the static gateway list to build the backup gateway list. The downloaded list is inserted after the peer from which the list is downloaded.

If an existing connection with a peer from the gateway list goes down, the client tries to establish a connection with the next peer in the gateway list. If a downloaded list is available and connection with a static peer fails, the client tries to connect, in sequence, with the peers from the downloaded list. If the client fails to establish a connection with all the peers in the downloaded list, the client tries to connect to the next peer in the static list, and the downloaded list is deleted.
Backup Gateways

Use the `peer` command to add a peer to the backup gateway list. To remove the backup gateway list, use the `no peer` command.

Peers are ordered by preference; the lower the sequence number, the higher the preference.

If a connection is established with a new peer and the peer is not a part of the downloaded list, the peer adds the downloaded list to the backup gateway list, and the existing backup gateway list is replaced with the new list.

You can configure a static peer and attach it to a track object. A peer is a “possible peer” if the track object of the peer is in the UP state.

Note

Peers that are not attached to a track object, including peers in the downloaded list, are classified as "possible peers" because these peers are always in the UP state.

The peer selection process works as follows: when a connection is established, the gateway list is looked up and the first possible peer is selected. A peer is selected according to the following rule: a static peer can be associated with the track object with a desired status (UP or DOWN). If the status of the track object matches the configured status, the peer is said to be a “possible peer.”

Note

If the peer is identified by either a Domain Name Service (DNS) name or a fully qualified domain name (FQDN), the name is resolved dynamically.

The peer selection process is followed by the selection of a new peer or when the existing criteria fail, which happens in the following scenarios:

- The active peer stops responding to liveness checks.
- The DNS resolution of the peer name fails.
- The IKE negotiation with the peer fails.
- The peer is no longer a “possible peer” (its corresponding track object goes DOWN).

Note

When you configure multiple FlexVPN peers on a FlexVPN client and when you clear the IKEv2 SA on the primary peer, the clearance will trigger a new peer selection on the client.

Reactivate Primary Peer

The Reactivate Primary Peer feature ensures that the highest-priority peer is always connected. If the track object of the highest-priority peer matches the object status, the existing connection with the lower-priority peer is disconnected, and the connection to the higher-priority peer is established. Use the `peer reactivate` command to enable this feature.
A track object must be associated with statically configured peers.

Dial Backup (Primary or Backup Tunnels)

The FlexVPN client registers with the tracking system to get notifications about the change in the state of the object. The `connect track` command is used to inform the tracking process that the client is interested in tracking an object, which is identified by the object number. The tracking process, in turn, informs the client when the state of this objects changes. This notification prompts the client to take further action to bring up or bring down the primary or backup connections when the state of the tracked object is UP or DOWN.

The Dial Backup feature can be configured as follows:

- When both primary and backup tunnels are FlexVPN tunnels,
 - Any one tunnel is active at a time.
 - Both client profiles are configured using the `connect track` command, referencing the same track object.
 - If the primary tunnel tracks the status when the object is UP, the secondary tunnel tracks the status of the object when the object is DOWN.

- When one tunnel is the FlexVPN tunnel,
 - The remaining tunnels can be on any secured connection.
 - The primary connection is not FlexVPN, and the backup connection is FlexVPN.
 - The client profile is configured using the `connect track` command with an object, which traces the ability to reach the primary peer through the primary outgoing interface.

Backup Group

The Backup Group feature allows the FlexVPN client to omit a peer when a FlexVPN client that belongs to a group has established a session with the same peer. When a FlexVPN client belonging to a group initiates a connection with a peer, the FlexVPN client validates if another FlexVPN client in the same group has established a session with the same peer. If a connection exists, the FlexVPN client omits this peer and validates the next peer in the sequence. Use the `backup group` command with the `group-number` argument to configure the backup group.

Dual FlexVPN Support

The Dual FlexVPN Support feature provides the ability to configure two FlexVPN tunnels that share the same inside and outside interfaces. The two FlexVPN tunnels use route injections to direct appropriate traffic through the corresponding tunnel interface. When the tunnel is up, the tunnel "learns" the network list from the server. If the server forwards a network list, FlexVPN installs specific routes to the destination networks in its routing table, directing the traffic to these networks out of the tunnel interface.
Only one FlexVPN connection can be established with a default route through the tunnel interface.

Split DNS Support

The Split DNS functionality enables the FlexVPN client to act as a Domain Name System (DNS) proxy. During FlexVPN negotiations, the DNS list is downloaded during mode configuration. This list is configured as a DNS view list on the inside interfaces associated with the FlexVPN profile. The view list is used to match requests based on the domain names with the DNS query and then forward the match requests to the DNS server. Other DNS queries are used to match the default view (global DNS configuration) and are forwarded to the ISP DNS.

If no inside interfaces are mentioned in the FlexVPN client profile, the DNS view is applied to all interfaces except the tunnel interface and the tunnel source interfaces of all configured profiles. When the DNS query request reaches the inside interface, the matching DNS view is obtained, and the request is forwarded to the DNS IP address.

NAT

The Network Address Translation (NAT) feature in FlexVPN enables traffic to be translated to an IP address based on the interface to which the traffic is routed. If a packet is received on one interface that is configured with the `ip nat inside` command and is being sent out another interface that is configured with the `ip nat outside` command, the packet is translated to the IP address configured on the second interface.

Network List from the Server

Routes for enterprise traffic are dynamically installed by a client through the tunnel interface. The traffic takes the default route via the outgoing physical interface. The enterprise traffic is translated to the tunnel IP address, and the Internet traffic is translated to the external outgoing interface IP address.

Default Route List from the Server

A default route must be configured on the device with the higher sequence number via the tunnel interface. The tunnel interface is configured with the `ip nat outside` command, and the IP address of the tunnel interface is assigned by the IP address sent by the client. The enterprise traffic from inside interfaces is translated to the sent address. NAT is achieved by configuring NAT rules with the help of route maps. The route maps define rules based on the outgoing interface, by which the globally configured NAT rules are applied based on routing.

IPv4 traffic going out the tunnel interface is translated to the sent IPv4 address.

If NAT is not required, NAT rules associated with the tunnel interface must not be configured.

How the FlexVPN Client learns about the Network List

The FlexVPN client learns about the list of networks behind a peer in one of the following ways:
• **Mode configuration push**—The FlexVPN server sends the list of network attributes as a configuration mode parameter to the client. The FlexVPN client installs the routes to these networks through the tunnel interface that has the highest metric. The client also communicates its networks to the server in the mode configuration set or acknowledgment (SET/ACK) exchange so that the server can add those routes via the virtual access interface.

• **Running routing protocols**—The FlexVPN client and server run routing protocols over the tunnel interface to establish network routes, which allows the client and the server the flexibility to add or remove networks without disconnecting the existing session. The tunnel addresses are communicated during mode configuration to establish routes with peers.

WINS NBNS and DOMAIN Name

The FlexVPN server pushes the domain name, Windows Internet Naming Service (WINS), or NetBios Name Server (NBNS) attributes during mode configuration. These attributes are dynamically updated to the DHCP server that runs on the FlexVPN client.

Event Tracing

The Event Tracing feature is used for debugging purposes. Events posted to the FlexVPN client are logged, and the information is used for debugging. Event tracing is a combination of a fast mechanism that logs a few bytes of trace information in a buffer area and a display mechanism that extracts and decodes the debug data. The FlexVPN client maintains its buffer and can be enabled during normal operation.

Extensible Authentication Protocol as a Local Authentication Method

The FlexVPN client supports EAP as a local authentication method. Supported EAP authentication methods are Microsoft Challenge Handshake Authentication Protocol Version 2 (MSCHAPv2), message digest algorithm 5 (MD5), and Generic Token Card (GTC). The EAP authentication process is as follows:

- Use the **authentication local eap** command in IKEv2 profile configuration mode to authenticate the FlexVPN client by using EAP.
- After the FlexVPN client receives the IKE_AUTH response from the peer, enter the **crypto eap credentials** command.
- If the EAP-Identity Request is received in the IKE_AUTH response, the EAP username and password must be specified.
- If an EAP-Identity Request is not received in the IKE_AUTH response, only the password is specified because the local IKEv2 identity is used as the username.

Note

EAP as the local authentication method must be used with the FlexVPN client, but EAP can also be used with FlexVPN site-to-site on the IKEv2 initiator. If the EAP server initially proposes an unsupported authentication method, the FlexVPN EAP initiator responds with an EAP Negative Acknowledgment (NAK) packet, requesting EAP-MSCHAPv2, EAP-MD5, or EAP-GTC as the desired authentication method. The FlexVPN EAP responder selects one of the authentication methods.
How to Configure the FlexVPN Client

Configuring the IKEv2 VPN Client Profile

This task describes the IKEv2 commands required for configuring the FlexVPN client and the basic IKEv2 commands. Refer to the “Configuring Basic Internet Key Exchange Version 2 CLI Constructs” task in the Configuring Internet Key Exchange Version 2 (IKEv2) and FlexVPN Site-to-Site module for information about configuring the basic IKEv2 profile.

Note

When you enter a typo in authorization list under ikev2 profile, it automatically goes back to the default list.

Refer to the “How to Configure the FlexVPN Client” section for information about configuring an IKEv2 profile for the FlexVPN server.

Configuring the Tunnel Interface

Perform this task to configure the tunnel interface that is referred to by the FlexVPN client.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface tunnel number
4. ip address {ipv4-address | negotiated}
5. tunnel mode gre ip
6. tunnel mode ipsec ipv4
7. tunnel source {ip-address | interface | dynamic}
8. tunnel destination dynamic
9. tunnel protection ipsec-profile profile-name
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Step 1 enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Device> enable</td>
</tr>
<tr>
<td>Command or Action</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Step 2</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Step 3</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Step 4</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Step 5</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Step 6</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Step 7</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Step 8</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Step 9</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Step 10</td>
</tr>
<tr>
<td>Example:</td>
</tr>
</tbody>
</table>
Configuring the FlexVPN Client

Use the `monitor event-trace flexVPN` command to enable event tracing.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto ikev2 client flexVPN client-name`
4. `peer sequence {ipv4-address | ipv6-address | fqdn fqdn-name [dynamic | ipv6]} [track track-number [up | down]]`
5. `connect {manual | auto | track track-number [up | down]}`
6. `client inside interface-type interface-number`
7. `client connect tunnel interface-number`
8. `source sequence-number interface-type interface-number track track-number`
9. `peer reactivate`
10. `backup group {group-number | default}`
11. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>configure terminal</th>
<th>Enters global configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>crypto ikev2 client flexVPN client-name</th>
<th>Defines an IKEv2 FlexVPN client profile and enters IKEv2 FlexVPN client profile configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config)# crypto ikev2 client flexVPN client1</td>
<td></td>
</tr>
</tbody>
</table>

| Step 4 | peer sequence {ipv4-address | ipv6-address | fqdn fqdn-name [dynamic | ipv6]} [track track-number [up | down]] | Defines a static peer using an IP address or hostname. |
|---------|---|---|
| Example:| Device(config-ikev2-flexvpn)# peer 1 10.0.0.1 |

| Step 5 | connect {manual | auto | track track-number [up | down]} | Connects the FlexVPN tunnel. |
|---------|---|---------|

FlexVPN and Internet Key Exchange Version 2 Configuration Guide, Cisco IOS XE Release 3S
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Device(config-ikev2-flexvpn)# connect track 10 up</td>
<td>Any change to this command terminates the active session.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>Step 6 client inside interface-type interface-number</td>
<td>(Optional) Specifies the inside interface.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-flexvpn)# client inside GigabitEthernet 0/1</td>
<td>- You can specify more than one inside interface in a FlexVPN client profile. The inside interfaces can be shared across FlexVPN client profiles.</td>
</tr>
<tr>
<td>Note</td>
<td>Any change to this command terminates the active session.</td>
</tr>
<tr>
<td>Step 7 client connect tunnel interface-number</td>
<td>Assigns the tunnel interface created in the “Configuring the Tunnel Interface” task to the FlexVPN client.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-flexvpn)# client connect tunnel 1</td>
<td>- You can configure only one tunnel interface for a FlexVPN client profile.</td>
</tr>
<tr>
<td>Note</td>
<td>Any change to this command terminates the active session.</td>
</tr>
<tr>
<td>Step 8 source sequence-number interface-type interface-number track track-number</td>
<td>Adds sequence numbers to the tunnel source address.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-flexvpn)# source 1 GigabitEthernet 0/1 track 11</td>
<td>- The tunnel source address has the lowest sequence number for which the track object number is in UP state.</td>
</tr>
<tr>
<td>Note</td>
<td>Any change to this command terminates the active session.</td>
</tr>
<tr>
<td>Step 9 peer reactivate</td>
<td>Enables the reactivate primary peer feature.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-flexvpn)# peer reactivate</td>
<td></td>
</tr>
<tr>
<td>Step 10 backup group {group-number</td>
<td>default}</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-flexvpn)# backup group default</td>
<td>- By default, all clients belong to backup group 0.</td>
</tr>
<tr>
<td>Note</td>
<td>Any change to this command terminates the active session.</td>
</tr>
<tr>
<td>Step 11 end</td>
<td>Exits IKEv2 FlexVPN client profile configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-flexvpn)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring EAP as the Local Authentication Method

Perform this task to configure Extensible Authentication Protocol (EAP) as the local authentication method on the FlexVPN client.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 profile profile-name
4. authentication local eap
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto ikev2 profile profile-name</td>
<td>Defines an IKEv2 profile and enters IKEv2 profile configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto ikev2 profile profile1</td>
<td></td>
</tr>
<tr>
<td>Step 4 authentication local eap</td>
<td>Specifies EAP as the local authentication method.</td>
</tr>
<tr>
<td>Note: This command is supported only on the IKEv2 initiator.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-ikev2-profile)# authentication local eap</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits IKEv2 profile configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-profile)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for the FlexVPN Client

Example: Configuring the IKEv2 FlexVPN Client Profile

The following example shows how to configure the IKEv2 FlexVPN client profile:

```plaintext
crypto ikev2 client flexvpn flex
peer 1 10.0.0.1
    connect manual
    client connect Tunnel0

crypto ikev2 authorization policy flex
    subnet-acl 199
    route set interface
    route accept any

crypto ikev2 keyring key
    peer dvti
    address 0.0.0.0 0.0.0.0
    pre-shared-key cisco

crypto ikev2 profile prof
    match identity remote address 10.0.0.1 255.0.0.0
    authentication local pre-share
    authentication remote pre-share
    keyring key
    aaa authorization group psk list local-group-author-list flex
    config-mode set

crypto ipsec transform-set trans esp-aes

crypto ipsec profile ipsecprof
    set transform-set trans
    set pfs group2
    set ikev2-profile prof

interface Tunnel0
    ip address negotiated
    tunnel source Ethernet0/0
    tunnel destination dynamic
    tunnel mode ipsec ipv4
    tunnel protection ipsec-profile ipsecprof

interface Ethernet0/0
    ip address 172.16.0.1 255.240.0.0
    ip virtual-reassembly in

ip route 0.0.0.0 0.0.0.0 2.2.2.2
access-list 199 permit ip 10.20.20.20 0.0.0.255 any
access-list 199 permit ip 10.30.30.30 0.0.0.255 any
```

Example: Configuring EAP as a Local Authentication Method

The following example shows how to configure EAP as a local authentication method:

crypto ikev2 profile profile1
 authentication remote rsa-sig
 authentication local eap

When the session is brought up, a prompt appears to enter the EAP credentials, as follows:

```
Enter the command "crypto eap credentials profile1"
Device# crypto eap credentials profile1
```
Enter the Username for profile profile1: cisco
Enter the password for username cisco

Additional References for Configuring the FlexVPN Client

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
<tr>
<td>IPsec configuration</td>
<td>Configuring Security for VPNs with IPsec</td>
</tr>
<tr>
<td>Recommended cryptographic algorithms</td>
<td>Next Generation Encryption</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Configuring the FlexVPN Client

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 8: Feature Information for Configuring FlexVPN Client

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEv2 Remote Access Hardware Client</td>
<td>Cisco IOS XE Release 3.7S</td>
<td>The IKEv2 Remote Access Hardware Client feature provides support for remote access connectivity and the extensions necessary to support diverse solutions such as mobility, NAT traversal, reliability, and enhanced denial of service (DoS) attack resilience. The following commands were introduced or modified: backup group, client connect tunnel, client inside, connect, crypto ikev2 client flexvpn, interface, ip address, peer, peer reactivate, source tunnel destination, tunnel mode, tunnel protection, tunnel source.</td>
</tr>
<tr>
<td>IPv6 Remote Access for IPsec VPN</td>
<td>Cisco IOS XE Release 3.8S</td>
<td>The IPv6 Remote Access for IPsec VPN feature provides IPv6 support and support for EAP as the local authentication method for the IKEv2 FlexVPN client. The following commands were modified: authentication (IKEv2 profile), peer.</td>
</tr>
</tbody>
</table>
Configuring FlexVPN Spoke to Spoke

Last Published Date: March 28, 2014
The FlexVPN Spoke to Spoke feature enables a FlexVPN client to establish a direct crypto tunnel with another FlexVPN client leveraging virtual tunnel interfaces (VTI), Internet Key Exchange Version 2 (IKEv2), and Next Hop Resolution Protocol (NHRP) to build spoke-to-spoke connections.

- Finding Feature Information, page 83
- Prerequisites for FlexVPN Spoke to Spoke, page 83
- Information About FlexVPN Spoke to Spoke, page 84
- How to Configure FlexVPN Spoke to Spoke, page 86
- Configuration Examples for FlexVPN Spoke to Spoke, page 95
- Additional References for Configuring FlexVPN Spoke to Spoke, page 99
- Feature Information for FlexVPN Spoke to Spoke, page 100

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for FlexVPN Spoke to Spoke
IKEv2, the FlexVPN server, and the FlexVPN spoke must be configured.
Information About FlexVPN Spoke to Spoke

FlexVPN and NHRP

FlexVPN is Cisco’s implementation of the IKEv2 standard featuring a unified paradigm and CLI that combines site to site, remote access, hub and spoke topologies and partial meshes (spoke to spoke direct). FlexVPN offers a simple but modular framework that extensively uses the tunnel interface paradigm while remaining compatible with legacy VPN implementations using the crypto maps.

The FlexVPN server provides the server side functionality of FlexVPN. The FlexVPN client establishes a secure IPsec VPN tunnel between a FlexVPN client and another FlexVPN server.

NHRP is an Address Resolution Protocol (ARP)-like protocol that alleviates nonbroadcast multiaccess (NBMA) network problems. With NHRP, NHRP entities attached to an NBMA network dynamically learn the NBMA address of the other entities that are part of that network, allowing these entities to directly communicate without requiring traffic to use an intermediate hop.

The FlexVPN Spoke to Spoke feature integrates NHRP and FlexVPN client (spoke) to establish a direct crypto channel with another client in an existing FlexVPN network. The connections are built using virtual tunnel interfaces (VTI), IKEv2 and NHRP, where NHRP is used for resolving the FlexVPN clients in the network.

The following is recommended in FlexVPN:

- Routing entries are not exchanged between spokes.
- Different profiles are used for the spokes and the config-exchange command is not configured for the spokes.

The FlexVPN IPv6 Direct Spoke to Spoke feature supports the use of IPv6 addresses for FlexVPN spokes. The support for IPv6 addresses provides support for IPv6 over IPv4, IPv4 over IPv6, and IPv6 over IPv6 transports.

The Multiple FlexVPN Spokes Behind a Single NAT Device feature supports multiple spokes behind a Network Address Translation (NAT) device on FlexVPN.
NHRP Resolution Request and Reply in FlexVPN

The following diagram illustrates the NHRP resolution request and reply in FlexVPN.

Figure 4: NHRP Resolution Request and Reply

Due to bidirectional traffic, similar events occur in both directions at Spoke1, Spoke2, and hub. For clarity, events from Host1 to Host2 are discussed. Assume that there is a network N1 (192.168.1.0/24) behind Spoke1 and another network N2 (192.168.2.0/24) behind Spoke2. The network between the two spokes is matched through an access control list (ACL). This is because ACLs are applied on the IKEv2 policies on both spokes. The network along with its prefix information from both the spokes is conveyed to the hub via IKEv2 information payload exchanges. This causes a route addition in the routing table by IKEv2 at the hub as follows:

* 192.168.1.0/24—Connected via virtual access interface 1
* 192.168.2.0/24—Connected via virtual access interface 2

The hub will push a summarized route via IKEv2 to both spokes, and the spokes will install the route in their routing table as follows:

* 192.168.0.0/16—next hop <tunnel address of the hub> - interface Tunnel 1

Note

The routing protocol can also add the route to the routing table.
Assuming that traffic moves from N1 to N2, the traffic flow is as follows:

1. Host1 sends traffic destined to Host2. The traffic reaches the LAN interface of spoke1, looks up the route, hits the summarized route, and routes the packet to interface tunnel 1.

2. When the traffic reaches the hub’s virtual access interface1, the traffic looks up the route table for a route entry for N2, either directly connected over virtual access interface 2 or via a point-to-point tunnel interface.

3. The traffic from Host1 to Host2 traverses the hub through virtual access interface1 and virtual access interface2. The hub determines that ingress and the egress interfaces (virtual access interface1 and virtual access interface2) belong to same NHRP network (network D configured on both the interfaces). The hub sends out an NHRP redirect message to spoke1 on virtual access interface1.

4. On receiving the redirect, Spoke1 initiates a resolution request for Host2 over the point-to-point tunnel interface (the same interface over which it received the redirect). The resolution request traverses the routed path (Spoke1-hub-spoke2). On receiving the resolution request, Spoke2 determines that it is the exit point and needs to respond to the resolution request.

5. Spoke2 receives the resolution request on the tunnel interface and retrieves the virtual template number from the tunnel interface. The virtual template number is used to create the virtual access interface to start a crypto channel and establishes IKEv2 and IPsec security associations (SAs). Once the crypto SAs between the two spokes are up, Spoke2 installs the necessary NHRP cache entries for Spoke1 and its network under the newly created virtual access interface and sends out the resolution reply over the virtual access interface.

6. After receiving the resolution request over the virtual access interface, Spoke1 installs the necessary cache entries for Spoke2 and its network. Spoke1 also deletes the temporary cache entry pointing to the hub to resolve the network under tunnel interface1.

7. NHRP adds shortcut routes as next-hop override (NHO) or H route. For more information on shortcut switching, refer to Shortcut Switching Enhancements for NHRP in DMVPN Networks.

How to Configure FlexVPN Spoke to Spoke

Configuring the Virtual Tunnel Interface on the FlexVPN Server

Before You Begin
The FlexVPN server and client must be configured.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface virtual-template *number* type tunnel
4. ip unnumbered loopback *number*
5. Do one of the following:
 - ip nhrp network-id *number*
 - ipv6 nhrp network-id *number*
6. ip nhrp redirect [timeout *seconds*]
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface virtual-template number type tunnel</td>
<td>Creates a virtual template interface that can be configured and applied dynamically to create virtual access interfaces.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# interface virtual-template 1 type tunnel</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ip unnumbered loopback number</td>
<td>Assigns the IP address of an existing interface (usually a loopback interface) to the virtual tunnel interface.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# ip unnumbered loopback 0</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ip nhrp network-id number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ipv6 nhrp network-id number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# ip nhrp network-id 1</td>
<td>Enables NHRP on the interface.</td>
</tr>
</tbody>
</table>
Configuring NHRP Shortcuts on the FlexVPN Spoke

Perform this task to configure NHRP shortcuts on the tunnel interface on the FlexVPN spoke.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface tunnel *number*
4. Do one of the following:
 - `ip nhrp shortcut virtual-template-number`
 - `ipv6 nhrp shortcut virtual-template-number`
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 3</th>
<th>interface tunnel number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config)# interface tunnel 1</td>
</tr>
</tbody>
</table>

Purpose: Configures the FlexVPN client interface and enters interface configuration mode.

Step 4

Do one of the following:
- **ip nhrp shortcut virtual-template-number**
- **ipv6 nhrp shortcut virtual-template-number**

Example:
Device(config-if)# ip nhrp shortcut 1
Device(config-if)# ipv6 nhrp shortcut 1

Purpose: Enables NHRP shortcuts on the FlexVPN client tunnel interface. This is necessary to establish spoke-to-spoke tunnels. The virtual-template number specified in this configuration and the virtual-template number specified in the Configuring the Virtual Tunnel Interface on the FlexVPN Spoke task must be the same.

Step 5

exit

Example:
Device(config-if)# exit

Purpose: Exits interface configuration mode and returns to global configuration mode.

Configuring the Virtual Tunnel Interface on the FlexVPN Spoke

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface virtual-template number type tunnel**
4. **ip unnumbered tunnel number**
5. **Do one of the following:**
 - **ip nhrp network-id number**
 - **ipv6 nhrp network-id number**
6. **Do one of the following:**
 - **ip nhrp shortcut virtual-template-number**
 - **ipv6 nhrp shortcut virtual-template-number**
7. **ip nhrp redirect [timeout seconds]**
8. **exit**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates a virtual template interface that can be configured and applied dynamically to create virtual access interfaces.</td>
</tr>
<tr>
<td>interface virtual-template number type tunnel</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface virtual-template 1 type tunnel</td>
</tr>
<tr>
<td>Step 4</td>
<td>Assigns the IPv4 address of the FlexVPN tunnel interface to the virtual tunnel interface.</td>
</tr>
<tr>
<td>ip unnumbered tunnel number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# ip unnumbered tunnel 1</td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables NHRP on the interface.</td>
</tr>
<tr>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• ip nhrp network-id number</td>
<td></td>
</tr>
<tr>
<td>• ipv6 nhrp network-id number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# ip nhrp network-id 1</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# ipv6 nhrp network-id 1</td>
</tr>
<tr>
<td>Step 6</td>
<td>Enables NHRP shortcut switching on an interface.</td>
</tr>
<tr>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• ip nhrp shortcut virtual-template-number</td>
<td></td>
</tr>
<tr>
<td>• ipv6 nhrp shortcut virtual-template-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# ip nhrp shortcut 1</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# ipv6 nhrp shortcut 1</td>
</tr>
<tr>
<td>Note</td>
<td>The current virtual template number must be specified. The virtual template number must be same as configured on the FlexVPN client tunnel interface.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 7 | ip nhrp redirect [timeout seconds] Enables NHRP redirects on the virtual tunnel interface. This is useful when networks move from one spoke to another.

--- | ---
Example:
Device(config-if)# ip nhrp redirect

--- | ---
Step 8 | exit Exits interface configuration mode and returns to global configuration mode.

--- | ---
Example:
Device(config-if)# exit

--- | ---

Verifying the FlexVPN Spoke Configuration

Use the following commands to verify the FlexVPN spoke configuration.

SUMMARY STEPS

1. show crypto ikev2 client flexvpn
2. show ipv6 route
3. show ipv6 nhrp

DETAILED STEPS

Step 1

show crypto ikev2 client flexvpn

Example:
Device# show crypto ikev2 client flexvpn

Profile : flexblk
Current state:ACTIVE
Peer : 4001::2000:1
Source : Ethernet0/0
ivrf : IP DEFAULT
fvrf : IP DEFAULT
Backup group: None
Tunnel interface : Tunnel0

Displays the FlexVPN connection status between the FlexVPN server and client.

Step 2

show ipv6 route

Example:
Device# show ipv6 route

IPv6 Routing Table - default - 15 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
B - BGP, HA - Home Agent, MR - Mobile Router, R - RIP
Step 3

show ipv6 nhrp

Example:

Device# show ipv6 nhrp

3001::1/128 via 3001::1
 Virtual-Access1 created 00:01:52, expire 01:58:14
 Type: dynamic, Flags: router implicit rib nho
 NBMA address: 172.17.1.9
 (Claimed NBMA address: 172.16.2.1)

5001::4000::1/128 via 3001::1
 Virtual-Access1 created 00:00:56, expire 01:59:03
 Type: dynamic, Flags: router implicit rib nho
 NBMA address: 172.17.1.9
 (Claimed NBMA address: 172.16.2.1)

5001::5000::1/128 via 3001::2
 Virtual-Access1 created 00:01:52, expire 01:58:14
 Type: dynamic, Flags: router unique local
 NBMA address: 172.17.2.10

Example:

Device# show ipv6 nhrp

3001::1/128 via 3001::1
 Virtual-Access1 created 00:01:52, expire 01:58:14
 Type: dynamic, Flags: router implicit rib nho
 NBMA address: 172.17.1.9
 (Claimed NBMA address: 172.16.2.1)
Troubleshooting Tips for FlexVPN Spoke Configuration

Here are few tips for troubleshooting FlexVPN spoke configuration:

1. Verify the connection between the spokes.
2. Check the configuration on the client (spoke) and the server.
3. Check the reachability of the remote hosts behind the spokes.
4. Verify the routing protocol configuration that is used to advertise the routes.
5. Verify that IKEv2 and IPsec are configured properly.
6. Verify the NHRP shortcut configuration on the spoke and the redirect configuration on the server (hub).

<table>
<thead>
<tr>
<th>Problem</th>
<th>Troubleshooting Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoke to hub connection is not created.</td>
<td>A connection may not be created due to the absence of virtual access interfaces created at the hub.</td>
</tr>
<tr>
<td></td>
<td>• Check the connectivity between the hub and spoke.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>show crypto session</code> command to check the state of security associations (SAs) on the hub and spoke.</td>
</tr>
<tr>
<td></td>
<td>• If SAs are active (as displayed in the <code>show crypto session</code> command), verify the output of the <code>show crypto ikev2 client flexvpn</code> command on the state of FlexVPN on the spoke.</td>
</tr>
<tr>
<td>Problem</td>
<td>Troubleshooting Tips</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Spoke to spoke tunnel is not created.</td>
<td>Traffic must flow from spoke to spoke via the hub to initiate a spoke to spoke tunnel.</td>
</tr>
<tr>
<td></td>
<td>• Verify the hub configuration to check if NHRP redirect is enabled.</td>
</tr>
<tr>
<td></td>
<td>• Verify the spoke configuration to check if NHRP shortcut is enabled.</td>
</tr>
<tr>
<td></td>
<td>• Verify the configuration in the FlexVPN server (hub) by using the <code>show ip [ipv6] nhrp traffic</code> command to check whether the hub has sent a traffic indirection to the spoke.</td>
</tr>
<tr>
<td></td>
<td>• Verify the spokes have received the traffic and sent a resolution request by using either the <code>show ip [ipv6] nhrp traffic</code> command.</td>
</tr>
<tr>
<td></td>
<td>• Verify the presence of NHRP cache entries for remote host and spoke on either spoke by using the <code>show ip [ipv6] nhrp</code> command.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>show ip [ipv6] nhrp traffic</code> command on the remote spoke to verify that the resolution request is received.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>show crypto ikev2 sa</code> command and the <code>show crypto session</code> command to verify that the spoke has received the resolution request and initiated a crypto session.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>show ip [ipv6] interface brief</code> command to check if the virtual-access interface is present on both spokes.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>show ip [ipv6] nhrp traffic</code> command on the spokes to verify that the resolution reply has been sent, and received by the peer on the virtual-access interface.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>show ip [ipv6] nhrp</code> command to verify that the complete NHRP cache entries are present for the remote host and on all the spokes.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>show ip [ipv6] route</code> command to check for the presence of H routes and/or next-hop-override (NHO) routes.</td>
</tr>
</tbody>
</table>
Configuration Examples for FlexVPN Spoke to Spoke

Example: Configuring FlexVPN Spoke to Spoke with Static Routing

The following example shows how to configure FlexVPN spoke to spoke with IKE-propagated static routing on the FlexVPN server and the FlexVPN client. The following is the configuration on the FlexVPN server:

```plaintext
hostname hub
!
crypto ikev2 authorization policy default
   pool flex-pool
def-domain cisco.com
   route set interface
   route set access-list flex-route
!
crypto ikev2 profile default
   match identity remote fqdn domain cisco.com
   identity local fqdn hub.cisco.com
   authentication local rsa-sig
   authentication remote rsa-sig
   pki trustpoint CA
   aaa authorization group cert list default default
   virtual-template 1
!
crypto ipsec profile default
   set ikev2-profile default
!
interface Loopback0
   ip address 172.16.1.1 255.255.255.255
!
interface Ethernet0/0
   ip address 10.0.0.100 255.255.255.0
!
interface Virtual-Template1 type tunnel
   ip unnumbered Loopback0
   ip nhrp network-id 1
   ip nhrp redirect
tunnel protection ipsec profile default
!
ip local pool flex-pool 172.16.0.1 172.16.0.254
!
ip access-list standard flex-route
   permit any
```

The following is the configuration on the first FlexVPN client:

```plaintext
hostname spoke1
!
crypto ikev2 authorization policy default
   route set interface
   route set access-list flex-route
!
crypto ikev2 profile default
   match identity remote fqdn domain cisco.com
   identity local fqdn spoke1.cisco.com
   authentication local rsa-sig
   authentication remote rsa-sig
   pki trustpoint CA
   aaa authorization group cert list default default
   virtual-template 1
!
crypto ipsec profile default
   set ikev2-profile default
!
interface Tunnel0
   ip address negotiated
```
Example: Configuring FlexVPN Spoke to Spoke with Static Routing

```
ip nhrp network-id 1
ip nhrp shortcut virtual-template 1
ip nhrp redirect
tunnel source Ethernet0/0
tunnel destination 10.0.0.100
tunnel protection ipsec profile default
!
interface Ethernet0/0
  ip address 10.0.0.110 255.255.255.0
!
interface Ethernet1/0
  ip address 192.168.110.1 255.255.255.0
!
interface Virtual-Template1 type tunnel
  ip unnumbered Tunnel0
  ip nhrp network-id 1
  ip nhrp shortcut virtual-template 1
  ip nhrp redirect
tunnel protection ipsec profile default
!
ip access-list standard flex-route
  permit 192.168.110.0 0.0.0.255

The following is the configuration on the second FlexVPN client:

hostname spoke2
!
crypto ikev2 authorization policy default
  route set interface
  route set access-list flex-route
!
crypto ikev2 profile default
  match identity remote fqdn domain cisco.com
  identity local fqdn spoke2.cisco.com
  authentication local rsa-sig
  authentication remote rsa-sig
  pki trustpoint CA
  aaa authorization group cert list default default
    virtual-template 1
!
crypto ipsec profile default
  set ikev2-profile default
!
interface Tunnel0
  ip address negotiated
  ip nhrp network-id 1
  ip nhrp shortcut virtual-template 1
  ip nhrp redirect
tunnel source Ethernet0/0
tunnel destination 10.0.0.100
tunnel protection ipsec profile default
!
interface Ethernet0/0
  ip address 10.0.0.120 255.255.255.0
!
interface Ethernet1/0
  ip address 192.168.120.1 255.255.255.0
!
interface Virtual-Template1 type tunnel
  ip unnumbered Tunnel0
  ip nhrp network-id 1
  ip nhrp shortcut virtual-template 1
  ip nhrp redirect
tunnel protection ipsec profile default
!
ip access-list standard flex-route
  permit 192.168.120.0 0.0.0.255
```
Example: Configuring FlexVPN Spoke to Spoke with Dynamic Routing using BGP

The following example shows how to configure FlexVPN spoke to spoke with dynamic routing, using BGP on the FlexVPN server (with dynamic neighbor discovery) and the FlexVPN client. The following is the configuration on the FlexVPN server:

```
hostname hub
!
crypto ikev2 authorization policy default
    pool flex-pool
def-domain cisco.com
route set interface
!
crypto ikev2 profile default
    match identity remote fqdn domain cisco.com
    identity local fqdn hub.cisco.com
    authentication local rsa-sig
    authentication remote rsa-sig
    pki trustpoint CA
    aaa authorization group cert list default default
    virtual-template 1
!
crypto ipsec profile default
    set ikev2-profile default
!
interface Loopback0
    ip address 172.16.1.1 255.255.255.255
!
interface Ethernet0/0
    ip address 10.0.0.100 255.255.255.0
!
interface Virtual-Template1 type tunnel
    ip unnumbered Loopback0
    ip nhrp network-id 1
    ip nhrp redirect
    tunnel protection ipsec profile default
!
ip local pool flex-pool 172.16.0.1 172.16.0.254
!
routet bgp 65100
    bgp router-id 10.0.0.100
    bgp log-neighbor-changes
    bgp listen range 172.16.0.0/24 peer-group spokes
    neighbor spokes peer-group
    neighbor spokes remote-as 65100
    neighbor spokes transport connection-mode passive
    neighbor spokes update-source Loopback0
!
    address-family ipv4
        neighbor spokes activate
        neighbor spokes default-originate
        neighbor spokes prefix-list no-default in
        exit-address-family
!
ip prefix-list no-default seq 5 deny 0.0.0.0/0
ip prefix-list no-default seq 10 permit 0.0.0.0/0 le 32
```

The following is the configuration on the first FlexVPN client:

```
hostname spoke1
!
crypto ikev2 authorization policy default
route set interface
!
crypto ikev2 profile default
match identity remote fqdn domain cisco.com
    identity local fqdn spoke1.cisco.com
```
The following is the configuration on the second FlexVPN client:

```
hostname spoke2
!
crypto ikev2 authorization policy default
  route set interface
  route set access-list flex-route
!
crypto ikev2 profile default
  match identity remote fqdn domain cisco.com
  identity local fqdn spoke2.cisco.com
  authentication local rsa-sig
  authentication remote rsa-sig
  pki trustpoint CA
  aaa authorization group cert list default default
  virtual-template 1
!
crypto ipsec profile default
  set ikev2-profile default
  interface Tunnel0
    ip address negotiated
    ip nhrp network-id 1
    ip nhrp shortcut virtual-template 1
    ip nhrp redirect
    tunnel source Ethernet0/0
    tunnel destination 10.0.0.100
    tunnel protection ipsec profile default
!
interface Ethernet0/0
  ip address 10.0.0.110 255.255.255.0
!
interface Ethernet1/0
  ip address 192.168.110.1 255.255.255.0
!
interface Virtual-Template1 type tunnel
  ip unnumbered Tunnel0
  ip nhrp network-id 1
  ip nhrp shortcut virtual-template 1
  ip nhrp redirect
  tunnel protection ipsec profile default
!
router bgp 65100
  bgp router-id 10.0.0.110
  bgp log-neighbor-changes
  neighbor hubs peer-group
  neighbor hubs remote-as 65100
  neighbor hubs update-source Tunnel0
  neighbor 172.16.1.1 peer-group hubs
  address-family ipv4
    network 192.168.110.0
    neighbor 172.16.1.1 activate
  exit-address-family
```

Example: Configuring FlexVPN Spoke to Spoke with Dynamic Routing using BGP
interface Ethernet0/0
 ip address 10.0.0.120 255.255.255.0
!
interface Ethernet1/0
 ip address 192.168.120.1 255.255.255.0
!
interface Virtual-Template1 type tunnel
 ip unnumbered Tunnel0
 ip nhrp network-id 1
 ip nhrp shortcut virtual-template 1
 ip nhrp redirect
 tunnel protection ipsec profile default
!
router bgp 65100
 bgp router-id 10.0.0.120
 bgp log-neighbor-changes
 neighbor hubs peer-group
 neighbor hubs remote-as 65100
 neighbor hubs update-source Tunnel0
 neighbor 172.16.1.1 peer-group hubs
!
 address-family ipv4
 network 192.168.120.0
 neighbor 172.16.1.1 activate
 exit-address-family

Additional References for Configuring FlexVPN Spoke to Spoke

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
| Security commands | • Cisco IOS Security Command Reference Commands A to C
 • Cisco IOS Security Command Reference Commands D to L
 • Cisco IOS Security Command Reference Commands M to R
 • Cisco IOS Security Command Reference Commands S to Z |
| Shortcut Switching Enhancements | Shortcut Switching Enhancements for NHRP in DMVPN Networks |
Feature Information for FlexVPN Spoke to Spoke

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 9: Feature Information for FlexVPN Spoke to Spoke

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| FlexVPN Spoke to Spoke | Cisco IOS XE Release 3.9S | The FlexVPN Spoke to Spoke feature enables a FlexVPN client to establish a direct crypto channel with another FlexVPN client. The feature leverages VTIs, IKEv2, and NHRP to build spoke to spoke connections. In Cisco IOS Release 15.2(2)T, this feature was introduced. The following sections provide information about this feature:
 - Information About FlexVPN Spoke to Spoke
 - How to Configure FlexVPN Spoke to Spoke
 The following commands were introduced or modified: ip unnumbered loopback0, tunnel source, tunnel mode gre ip, nhrp network-id, ip nhrp redirect, ip nhrp shortcut. |
| FlexVPN IPv6 Direct Spoke to Spoke | Cisco IOS XE Release 3.11S | The FlexVPN IPv6 Direct Spoke to Spoke feature supports the use of IPv6 addresses for FlexVPN spokes. The support for IPv6 addresses provides support for IPv6 over IPv4, IPv4 over IPv6, and IPv6 over IPv6 transports. The following sections provide information about this feature:
 - Information About FlexVPN Spoke to Spoke
 - How to Configure FlexVPN Spoke to Spoke
 The following commands were introduced or modified: ipv6 nhrp shortcut. |
Feature Information for FlexVPN Spoke to Spoke

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Multiple FlexVPN Spokes Behind a Single NAT Device | Cisco IOS XE Release 3.12S| The Multiple FlexVPN Spokes Behind a Single NAT Device feature supports multiple spokes behind a Network Address Translation (NAT) device on FlexVPN.
No commands were introduced or modified for this feature. |
Configuring IKEv2 Load Balancer

The IKEv2 Load Balancer feature provides support for enabling clusters of FlexVPN gateways and distributes incoming Internet Key Exchange Version 2 (IKEv2) connection requests among FlexVPN gateways. This feature redirects the incoming FlexVPN or AnyConnect client requests to the least loaded FlexVPN gateway based on the system and crypto load factors.

- Finding Feature Information, page 103
- Prerequisites for IKEv2 Load Balancer, page 103
- Information About IKEv2 Load Balancer, page 104
- How to Configure IKEv2 Load Balancer, page 108
- Configuration Examples for IKEv2 Load Balancer, page 113
- Additional References, page 114
- Feature Information for IKEv2 Load Balancer, page 116

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for IKEv2 Load Balancer

- For the server-side configuration, the Hot Standby Router Protocol (HSRP) and FlexVPN server (IKEv2 profile) must be configured.
- For the client-side configuration, the FlexVPN client must be configured.
Information About IKEv2 Load Balancer

Overview of IKEv2 Load Balancer

The IKEv2 Load Balancer Support feature provides a Cluster Load Balancing (CLB) solution by redirecting requests from remote access clients to the Least Loaded Gateway (LLG) in the Hot Standby Router Protocol (HSRP) group or cluster. An HSRP cluster is a group of gateways or FlexVPN servers in a LAN or in an enterprise network. The CLB solution works with the Internet Key Exchange Version 2 (IKEv2) redirect mechanism defined in RFC 5685 by redirecting requests to the LLG in the HSRP cluster.

The figure below shows the working of the IKEv2 cluster load balancing solution.

Figure 5: IKEv2 Cluster Load Balancing Solution

1. An active HSRP gateway is elected as a "master" in the HSRP group and takes ownership of the Virtual IP address (VIP) for the group. The master maintains a list of gateways in the cluster, keeps track of the load on each gateway, and redirects the FlexVPN client requests to the LLG.

2. The remaining gateways, termed as "slaves," send load updates to the master at periodic intervals.

3. When an IKEv2 client connects to the HSRP VIP, the request first reaches the master, which in turn, redirects the request to the LLG in the cluster.

The components of the CLB solution are as follows:

- HSRP
- CLB master
- CLB slave
- CLB communication
- IKEv2 redirects mechanism
Hot Standby Router Protocol

Hot Standby Router Protocol (HSRP) is used to elect the HSRP master or Active Router (AR). For HSRP to elect a designated device, you must configure the VIP for one device in the group. This address is learned by other devices in the group. The IP address that is assigned to the master is used as the VIP for the group. The HSRP active router (also called CLB master) receives the IKEv2 requests and redirects these requests to the LLG in the cluster. The redirection is performed at the IKEv2 protocol level thereby achieving the following:

- All requests from the FlexVPN client reach the HSRP master as the VIP is configured on the FlexVPN clients. The configuration of FlexVPN clients is minimized because the FlexVPN clients must only know the VIP of the HSRP cluster.

- The CLB master is run on the same gateway as the HSRP master, thereby maintaining the load information of all CLB slaves. The CLB master enables effective redirection of requests and avoids multiple redirects and loops.

CLB Master

A CLB master runs on the HSRP master or Active Router (AR). The master receives updates from CLB slaves and sorts them based on their load condition to calculate the least loaded gateway (LLG). The master sends the IP address of the LLG to IKEv2 (on the FlexVPN server). The IP address is sent to the initiator (FlexVPN client), which initiates an IKEv2 session with the LLG. The master redirects incoming IKEv2 client connections towards the LLG. For more information, see section "IKEv2 Redirect Mechanism, on page 106."

Benefits of IKEv2 Load Balancer

- The IKEv2 Load Balancer Support feature is easy to configure and cost-effective.

- A FlexVPN client need not know the IP addresses of all gateways in the cluster. The client need only know the virtual IP address of the cluster.

- The entire crypto session is redirected to a node in the cluster.
IKEv2 Redirect Mechanism

The IKEv2 redirect mechanism enables a VPN gateway to redirect a FlexVPN client request to another VPN gateway based on load conditions and maintenance requirements.

The IKEv2 redirect mechanism is performed on security association (SA) initialization (IKE_SA_INIT) and on SA authentication (IKE_AUTH).

Redirect During IKEv2 Initial Exchange (SA Initialization)

A FlexVPN client, or an AnyConnect client indicates support for Internet Key Exchange Version 2 (IKEv2) redirect mechanism by including a REDIRECT_SUPPORTED notification message in the initial IKE_SA_INIT request. Use the `crypto ikev2 redirect client` command to enable the redirect mechanism on a client. Use the `crypto ikev2 redirect gateway init` command to enable redirect at IKE_SA_INIT on the gateway.

To redirect an IKEv2 request to another new gateway, the gateway that receives the IKE_SA_INIT request selects the IP address or the fully qualified domain name (FQDN) of the new gateway (in this case, the LLG) with help of the crypto load balancer (CLB) module. The gateway replies with an IKE_SA_INIT response that contains a REDIRECT notification message. The notification includes information such as the new gateway and the nonce value from the payload in the IKE_SA_INIT request. When a client receives the IKE_SA_INIT response, it verifies the nonce value sent in the IKE_SA_INIT request and the gateway information provided in the redirect notification, and confirms whether the redirect notification is as per the configuration.

\[\text{Note}\]

If the nonce value does not match, the client discards the response and waits for another response, thereby preventing denial of service (DoS) attacks on the initiator. DoS attacks could be caused by an attacker injecting incorrect redirect payloads in IKE_SA_INIT responses.

In the IKE_SA_INIT exchange with the new gateway, the client message contains the REDIRECTED_FROM notification payload. The REDIRECTED_FROM notification payload consists of the IP address of the original VPN gateway that redirected the client. The IKEv2 exchange then proceeds as it would have proceeded with the original gateway.

\[\text{Note}\]

The client may be redirected again by the new gateway if the new gateway also cannot serve the client. The client does not include the REDIRECT_SUPPORTED payload again in the IKE_SA_INIT exchange with the new gateway after the redirect. The presence of the REDIRECTED_FROM notification payload in the IKE_SA_INIT exchange with the new gateway indicates to the new gateway that the client supports the IKEv2 redirects mechanism.

Redirect During IKE_AUTH Exchange (SA Authentication)

A thorough security analysis shows that redirect during IKE_AUTH is neither more nor less secure than redirect during IKE_INIT. However, for performance and scalability reasons, we recommend redirect during IKE_INIT. Use the `crypto ikev2 redirect gateway auth` command to enable the redirect mechanism on the gateway. Use the `redirect gateway auth` command to enable redirect on authentication for selected IKEv2 profiles.
In this method, the client authorization payload is verified before sending the redirect notification payload. A client also verifies the gateway authorization payload before acting on the redirect notification. As the authorization payload is exchanged and successfully verified, the IKEv2 security association (SA) is validated successfully and the INITIAL_CONTACT is processed to decide on redirecting the request. If there is a redirect, the gateway creates the IKE SA and sends the IKE_AUTH response with the redirect notification. A child SA is not created in this method. The IKE_AUTH does not contain a payload pertaining to a child SA. When the client receives the IKE_AUTH response, the client verifies the gateway authentication payload and deletes the IKEv2 SA with the gateway by sending a delete notification. The client acts on the redirect notification payload to establish connection with the new gateway. The client does not wait for an acknowledgment for the delete notification before establishing a connection with the new gateway. If the IKE_AUTH exchange involves the Extensible Authentication Protocol (EAP) authentication, the gateway has the choice of sending the redirect payload in the first or last IKE_AUTH response. The EAP authentication is included in the first IKE_AUTH response because it is not necessary to provide credentials for each redirect.

Compatibility and Interoperability

The IKEv2 redirect mechanism is based on RFC 5685. The gateway (IKEv2 responder) is compatible with clients (IKEv2 initiator) that implement the standard. Similarly, the client (initiator) implementation must be compatible with third party servers (responder) implementing the standard. The load management mechanism is Cisco proprietary and is only supported on Cisco IOS devices.

Handling Redirect Loops

A client request could be redirected multiple times in a sequence because of either an incorrect configuration or a denial of service (DoS) attack. In some cases, a client could enter a loop with two or more gateways redirecting the client to the other gateway thereby denying service to the client. To prevent this, a client can be configured, using the `crypto ikev2 redirect client` command with the `max-redirects number` keyword argument pair, to not accept more than a specific number of redirects for a particular IKEv2 security association (SA) setup.

IKEv2 Cluster Reconnect

The IKEv2 cluster reconnect allows Cisco AnyConnect client to reconnect to any server in the cluster. The `crypto ikev2 reconnect key` is introduced on the server to encrypt the opaque data pushed to the client. During failure detection, the client does reconnect with new or existing server without having to prompt for authentication credentials again.

There are only two key index values, 1 and 2 and at any point in time, any one of the keys configured using this will be active. The Cisco IOS server will be able to decrypt the reconnect data as long as the reconnect key is configured using the reconnect key CLI on the IOS server. This is true even if the key is only the back-up key.

Note

This feature is available on Cisco IOS devices configured to work as Cisco AnyConnect server. The AnyConnect client software version that supports this feature are 4.2 and future releases. This feature is applicable for new deployments only. Once this feature is enabled on the Cisco IOS server, older releases of Cisco AnyConnect clients will not be supported.
How to Configure IKEv2 Load Balancer

Configuring the Server Cluster

Configuring an HSRP Group for Load Balancing

Perform this task to configure a single Hot Standby Router Protocol (HSRP) group for a cluster. Hot Standby Router Protocol (HSRP) is used to elect the HSRP master or Active Router (AR). For HSRP to elect a designated device, you must configure the VIP for one device in the group. This address is learned by other devices in the group. The IP address that is assigned to the master is used as the VIP for the group. The HSRP active router (also called CLB master) receives the IKEv2 requests and redirects these requests to the LLG in the cluster. The redirection is performed at the IKEv2 protocol level thereby achieving the following:

- All requests from the FlexVPN client reach the HSRP master as the VIP is configured on the FlexVPN clients. The configuration of FlexVPN clients is minimized because the FlexVPN clients must only know the VIP of the HSRP cluster.
- The CLB master is run on the same gateway as the HSRP master, thereby maintaining the load information of all CLB slaves. The CLB master enables effective redirection of requests and avoids multiple redirects and loops.

Note

This task describes the minimum commands required to configure an HSRP group for load balancing.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip address ip-address mask [secondary]
5. standby [group-number] priority priority
6. standby group-name
7. exit
8. Repeat Steps 3 to 7 to configure an HSRP group for another cluster.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config)# interface GigabitEthernet 0/0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4 ip address ip-address mask [secondary]</td>
<td>Specifies a primary or secondary IP address for an interface.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# ip address 10.0.0.1 255.255.255.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5 standby [group-number] priority priority</td>
<td>Configures the HSRP priority.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# standby 1 priority 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 standby group-name</td>
<td>Specifies the name of the HSRP standby group.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# standby group1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8 Repeat Steps 3 to 7 to configure an HSRP group for another cluster.</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Load Management Mechanism

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 cluster
4. holdtime milliseconds
5. master {overload-limit percent | weight {crypto-load weight-number | system-load weight-number}}
6. port port-number
7. slave {hello milliseconds | max-session number | priority number | update milliseconds}
8. standby-group group-name
9. shutdown
10. exit
11. crypto ikev2 reconnect key key index active name
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto ikev2 cluster</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# crypto ikev2 cluster</td>
</tr>
<tr>
<td></td>
<td>Defines an IKEv2 cluster policy and enters IKEv2 cluster configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>holdtime milliseconds</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ikev2-cluster)# holdtime 10000</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies the time, in milliseconds, to receive messages from a peer.</td>
</tr>
<tr>
<td></td>
<td>• If no messages are received within the configured time, the peer is declared “dead.”</td>
</tr>
<tr>
<td>Step 5</td>
<td>master {overload-limit percent</td>
</tr>
<tr>
<td></td>
<td>Specifies settings for the master in the HSRP cluster.</td>
</tr>
<tr>
<td></td>
<td>• overload-limit percent—The threshold load of the cluster. The load limit to decide when a device is busy and to ignore it when redirecting it for requests.</td>
</tr>
</tbody>
</table>
Configuring IKEv2 Load Balancer

Command or Action

- **Example:**
  ```
  Device(config-ikev2-cluster)# master
  weight crypto-load 10
  ```

 - **weight**—Specifies the weight of a load attribute. Range: 0 to 100. Default: 100.
 - **crypto-load weight-number**—The IKE and IPsec security association (SA) load.
 - **system-load weight-number**—The system and memory load.

- **Step 6**
  ```
  port port-number
  ```

 (Optional) Specifies the cluster master listen port.

 - **Example:**
    ```
    Device(config-ikev2-cluster)# port 2000
    ```

- **Step 7**
  ```
  slave {hello milliseconds | max-session number | priority number | update milliseconds}
  ```

 Specifies settings for slave gateways in the HSRP group.

 - **hello milliseconds**—The hello interval, in milliseconds, for a slave gateway.
 - **max-session number**—The maximum number of SAs allowed on a slave. This keyword is mandatory and cannot be skipped.
 - **priority number**—The slave priority.
 - **update milliseconds**—The interval, in milliseconds, between two update messages for a slave gateway.

- **Step 8**
  ```
  standby-group group-name
  ```

 Defines the HSRP group containing the slaves.

 - **group-name**—The group name is derived from the `group-name` argument specified in the `standby name` command.

- **Step 9**
  ```
  shutdown
  ```

 (Optional) Disables the IKEv2 cluster policy.

 - **Example:**
    ```
    Device(config-ikev2-cluster)# shutdown
    ```

- **Step 10**
  ```
  exit
  ```

 Exits IKEv2 cluster configuration mode and returns to global configuration mode.

 - **Example:**
    ```
    Device(config-ikev2-cluster)# exit
    ```

- **Step 11**
  ```
  crypto ikev2 reconnect key index active name
  ```

 Enables the IKEv2 opaque data support for session reconnect.

 - **Note**
 The ikev2 cluster reconnect feature is enabled for encryption only when the active keyword is present in the `ikev2 reconnect key active key-name key-string`. The active keyword is mandatory to enable the cluster reconnect feature. If you use the `ikev2 reconnect key key-name key-string` command without the active keyword in the command, the headend will only be able to decrypt.
Activating the IKEv2 Redirect Mechanism on the Server

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto ikev2 redirect gateway init`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device> enable</code></td>
<td>· Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto ikev2 redirect gateway init</td>
<td>Enables the IKEv2 redirect mechanism on the gateway during SA initiation.</td>
</tr>
<tr>
<td>Example: <code>Device(config)# crypto ikev2 redirect gateway init</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Activating the IKEv2 Redirect Mechanism on the Client

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto ikev2 redirect client [max-redirects number]`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables the IKEv2 redirect mechanism on the FlexVPN client.</td>
</tr>
<tr>
<td><code>crypto ikev2 redirect client [max-redirects number]</code></td>
<td>Enables the IKEv2 redirect mechanism on the FlexVPN client.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# crypto ikev2 redirect client max-redirects 15</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for IKEv2 Load Balancer

Example: Configuring an HSRP Group for Load Balancing

The following example shows RouterA configured as the active router for an Hot Standby Router Protocol (HSRP) group with a priority of 110. The default priority level is 100. This HSRP group is assigned the group name of group1. The group name is referred in the cluster policy.

```
Device(config)# hostname RouterA
Device(config)# interface GigabitEthernet 0/0/0
```

FlexVPN and Internet Key Exchange Version 2 Configuration Guide, Cisco IOS XE Release 3S
Example: Configuring the Load Management Mechanism

The following example shows how to configure the load management mechanism in IKEv2:

```
Device> enable
Device# configure terminal
Device(config)# crypto ikev2 cluster
Device(config-ikev2-cluster)# holdtime 10000
Device(config-ikev2-cluster)# master crypto-load 10
Device(config-ikev2-cluster)# port 2000
Device(config-ikev2-cluster)# slave priority 90
Device(config-ikev2-cluster)# standby-group group1
Device(config-ikev2-cluster)# shutdown
Device(config-ikev2-cluster)# end
```

Example: Configuring the Redirect Mechanism

The following example shows how to enable the redirect mechanism on a client and during initiation on a gateway:

```
Device> enable
Device# configure terminal
Device(config)# crypto ikev2 redirect client
Device(config)# crypto ikev2 redirect gateway init
Device(config)# end
```

Example: Configuring the Cluster Reconnect Key

The following example shows how to enable the reconnect key on a server:

```
Device> enable
Device# configure terminal
Device(config)# crypto ikev2 reconnect key 1 active key
Device(config)# crypto ikev2 reconnect key 2 test
Device(config)# end
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Master Command List, All Releases</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
<tr>
<td>HSRP configuration</td>
<td>Configuring HSRP</td>
</tr>
<tr>
<td>HSRP commands</td>
<td>Cisco IOS First Hop Redundancy Protocols Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 5685</td>
<td>Redirect Mechanism for the Internet Key Exchange Protocol Version 2 (IKEv2)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for IKEv2 Load Balancer

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 10: Feature Information for IKEv2 Load Balancer

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEv2 fast convergence with cluster reconnect for Anyconnect</td>
<td>Cisco IOS XE Release 3.17S</td>
<td>The IKEv2 fast convergence with cluster reconnect for Anyconnect feature enables the Cisco AnyConnect client to reconnect to any server in the cluster. The following command was introduced or modified: <code>crypto ikev2 reconnect key</code></td>
</tr>
<tr>
<td>IKEv2 Load Balancer Support</td>
<td>Cisco IOS XE Release 3.8S</td>
<td>The IKEv2 Load Balancer Support feature distributes incoming IKEv2 requests from FlexVPN clients among IKEv2 FlexVPN servers or gateways by redirecting requests to the least loaded gateway. The following commands were introduced or modified: <code>crypto ikev2 cluster</code>, <code>crypto ikev2 redirect</code>, <code>holdtime</code>, <code>master (IKEv2)</code>, <code>port (IKEv2)</code>, <code>redirect gateway</code>, <code>slave (IKEv2)</code>, <code>standby-group</code>, <code>show crypto ikev2 cluster</code>, <code>show crypto ikev2 sa</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 7

Configuring IKEv2 Fragmentation

The IKE Fragmentation adhering to RFC feature implements fragmentation of Internet Key Exchange Version 2 (IKEv2) packets as proposed in the IETF draft-ietf-ipsecme-ikev2-fragmentation-10 document.

- Finding Feature Information, page 117
- Information About Configuring IKEv2 Fragmentation, page 117
- How to Configure Configuring IKEv2 Fragmentation, page 121
- Configuration Examples for Configuring IKEv2 Fragmentation, page 122
- Additional References for Configuring IKEv2 Fragmentation, page 125
- Feature Information for Configuring IKEv2 Fragmentation, page 126

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring IKEv2 Fragmentation

IKEv2 Fragmentation

The Internet Key Exchange Version 2 (IKEv2) fragmentation protocol splits large IKEv2 message into a set of smaller ones, called IKE Fragment Messages. The IKEv2 fragmentation methodology, implemented on Cisco IOS software through the IKEv2 Remote Access Headend feature, is a Cisco proprietary method, which restricts interoperability with non-Cisco peers. The fragmentation is performed only on an encrypted IKEv2 packet, and hence, a peer cannot decrypt or authenticate the message until the peer receives all fragments. The IKE Fragmentation adhering to RFC feature implements the IETF
Negotiation Between Peers

Effective with the IKE Fragmentation adhering to RFC feature, the support for the IETF standard fragmentation method is added the IKE_SA_INIT message as a notify payload, while Cisco proprietary Fragmentation method continues to be indicated using the Vendor ID payload in the same IKE_SA_INIT message. When fragmentation is enabled, support for both methodologies is displayed as appropriate in the `show crypto ikev2 sa detail` command. The maximum transmission unit (MTU) is configured locally and is not negotiated or exchanged along with the messages. After the INIT exchange, the peers in a network configured with either methodology are aware of the authentication method that must be used and whether the AUTH message can be fragmented.

The following is a sample output from device when debug is enabled showing capability negotiation in INIT request message.

```
Exchange type: IKE_SA_INIT, flags: INITIATOR Message id: 0, length: 524
Payload contents:
SA Next payload: KE, reserved: 0x0, length: 144
... Security protocol id: IKE, spi size: 0, type: NAT_DETECTION_DESTINATION_IP
NOTIFY(IKEV2_FRAGMENTATION_SUPPORTED) Next payload: VID, reserved: 0x0, length: 8
Security protocol id: Unknown - 0, spi size: 0, type: IKEV2_FRAGMENTATION_SUPPORTED
VID Next payload: NONE, reserved: 0x0, length: 20
```

In the above output, the INIT request contains the initiator’s message to a responder indicating support for both IETF standard fragmentation method and Cisco proprietary fragmentation method through the IKEV2_FRAGMENTATION_SUPPORTED and VID values in the message.

The following is a sample output from device when debug is enabled showing capability negotiation in INIT response message.

```
Exchange type: IKE_SA_INIT, flags: INITIATOR Message id: 0, length: 524
Payload contents:
SA Next payload: KE, reserved: 0x0, length: 144
last proposal: 0x0, reserved: 0x0, length: 140
... NOTIFY(IKEV2_FRAGMENTATION_SUPPORTED) Next payload: VID, reserved: 0x0, length: 8
Security protocol id: Unknown - 0, spi size: 0, type: IKEV2_FRAGMENTATION_SUPPORTED <-------- Response, supporting both
VID Next payload: NONE, reserved: 0x0, length: 20 <-------- Response, supporting both
```

In the above output, the response request contains the responder’s message to the initiator indicating support for both IETF standard fragmentation method and Cisco proprietary fragmentation method through the IKEV2_FRAGMENTATION_SUPPORTED and VID values in the message.

Fragmentation Support for Older Releases

To ensure fragmentation support for older releases having Cisco proprietary fragmentation method, IKEv2 continues to use the Vendor ID along with the IKEv2 notification payload type for the IETF standard fragmentation method. If both fragmentation methods are supported, IKEv2 prefers the IETF standard fragmentation method.

The following table indicates how the fragmentation type is determined based on the capability of peers. CISCO refers to Cisco proprietary fragmentation method and STD refers to the IETF standard fragmentation method.
Encryption, Decryption, and Retransmission of Fragments

Fragmentation and Encryption

A packet is fragmented either based on the maximum transmission unit (MTU) value specified in the `crypto ikev2 fragmentation` command or the default MTU value. IKE messages that only contain the encrypted payload are fragmented. A new payload type—Encrypted and Authenticated Fragment—in the announcement message indicates the fragment number out of the total fragments. This payload is annotated as SKF and the value is 53.

Before the outgoing packet is encrypted, the packet length is checked. The security association established is also verified if the SA is enabled with the IETF standard fragmentation method. The following is a sample output from device displaying the transmission of fragmented packets.

```
  Exchange type: INFORMATIONAL, flags: INITIATOR Message id: 1, length: 244
  Payload contents:
  SKF Next payload: COOP, reserved: 0x90, length: 216
  SKF Fragment number: 1 OF Total Fragments: 3
  Exchange type: INFORMATIONAL, flags: INITIATOR Message id: 1, length: 244
  Payload contents:
  SKF Next payload: COOP, reserved: 0x90, length: 216
  SKF Fragment number: 2 OF Total Fragments: 3
  Exchange type: INFORMATIONAL, flags: INITIATOR Message id: 1, length: 244
  Payload contents:
  SKF Next payload: COOP, reserved: 0x90, length: 216
  SKF Fragment number: 3 OF Total Fragments: 3
```

The line “SKF Next payload: COOP, reserved: 0x90, length: 216” and “SKF Fragment number: 1 OF Total Fragments: 3” indicate that the message is a Cooperative key server announcement (ANN) packet fragmented into three fragments.
Decryption and Defragmentation

When incoming fragments are received on a responder, each fragment is decrypted and stored temporarily. During defragmentation (assembling the fragments to the original pack), duplicate fragments, fragment numbers outside of total fragment number, and fragments having an entirely different fragment number are dropped. The fragments are added in ascending order of fragment number and not according to the received order. This way, packet assembly is faster. However, out of order fragments are allowed and processed. Each fragment is verified to ensure that all fragments that pertain to a message are received. If all fragments are received, the packet is assembled from the fragments and processed as a newly received message. An acknowledgment (ACK) message is sent when the original packet is assembled, and not for each fragment.

Retransmissions

IKEv2 retransmissions happen as prompted by IKEv2 retransmission timers. The fragments once constructed and sent out for the first time, are held in a list, ready to be resent when the retransmission timers are triggered. When a retransmitted request is received, IKEv2 resends the response. The response is resent when the first fragment (#1) retransmission is received. The remaining fragment numbers are ignored, thereby allowing faster processing of the response.

Enabling Fragmentation

Use the `crypto ikev2 fragmentation` command to globally enable fragmentation per security association (SA). Fragmentation is enabled on SA when both peers indicate support for fragmentation after INIT exchange on each peers, to be used for IKE_AUTH exchange.

Note

This command was introduced through IKEv2 Remote Access Headend feature and has not changed.

You can specify the maximum transmission unit (MTU), in bytes, using the `mtu mtu-size` keyword-argument pair. The MTU size refers to the IP or UDP encapsulated IKEv2 packets. The MTU range is from 68 to 1500 bytes. The default MTU size is 576 for IPv4 packets and 1280 bytes for IPv6 packets.

Effective with the IKE Fragmentation adhering to RFC feature, the `crypto ikev2 fragmentation` command:

- Affects future SAs only and does not affect the existing, old SAs.
- Supports Cisco proprietary fragmentation method and the IETF standard fragmentation method.

The `show crypto ikev2 sa detail` command displays the following information:

- The fragmentation method enabled on the peer. If the enabled fragmentation method is IETF standard fragmentation, the output displays the MTU, which is in use.
- Whether fragmentation is enabled on both peers or enabled on the local peer only.

IPv6 Support

The IKE Fragmentation adhering to RFC feature adds support for fragmenting IPv6 packets in IPv6 IKE endpoints when the IETF standard fragmentation method is used. The default MTU value is 1280 bytes and
is used when the MTU is not specified in the `crypto ikev2 fragmentation` command. The MTU used in fragmentation is displayed in the output of the `show crypto ikev2 sa detail` command.

How to Configure Configuring IKEv2 Fragmentation

Configuring IKEv2 Fragmentation
Perform this task to enable automatic fragmentation of large IKEv2 packets.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto ikev2 fragmentation [mtu mtu-size]`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enablen</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>crypto ikev2 fragmentation [mtu mtu-size]</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# crypto ikev2 fragmentation mtu 100</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# end</td>
</tr>
</tbody>
</table>

Note The MTU size refers to the IP or UDP encapsulated IKEv2 packets.
Configuration Examples for Configuring IKEv2 Fragmentation

Example: IETF Fragmentation Enabled Displaying Configured MTU

The following is a sample output stating IETF standard fragmentation method is enabled. This statement is displayed when the responder supports IETF standard fragmentation method also. The output also displays the MTU in use.

Device# show crypto ikev2 sa detail

IPv4 Crypto IKEv2 SA

Tunnel-id Local Remote fvrf/ivrf Status
1 10.0.8.3/848 10.0.9.4/848 none/none IN-NEG
Encr: Unknown - 0, PRF: Unknown - 0, Hash: None, DH Grp:0, Auth sign: Unknown - 0, Auth verify: Unknown - 0
Life/Active Time: 86400/0 sec
CE id: 0, Session-id: 0
Status Description: Initiator waiting for INIT response
Local spi: 2CD1B5D57C0854 Remote spi: 0000000000000000
Local id: 10.0.8.3
Remote id: 0
Local req msg id: 0 Remote req msg id: 0
Local next msg id: 1 Remote next msg id: 0
Local req queued: 0 Remote req queued: 0
Local window: 1 Remote window: 1
DPD configured for 0 seconds, retry 0
IETF Std Fragmentation enabled.
IETF Std Fragmentation MTU in use: 272 bytes.
Extended Authentication not configured.
NAT-T is not detected
Cisco Trust Security SGT is disabled
Initiator of SA : Yes

IPv6 Crypto IKEv2 SA

Example: IETF Standard Fragmentation Method Configured on the Initiator

The following is a sample output displaying IETF standard fragmentation method configured on the initiator, and the responder supports Cisco proprietary fragmentation method.

Device# show crypto ikev2 sa detail

IPv4 Crypto IKEv2 SA

Tunnel-id Local Remote fvrf/ivrf Status
1 10.0.8.3/848 10.0.9.4/848 none/none READY
Life/Active Time: 86400/59 sec
CE id: 1001, Session-id: 1
Status Description: Negotiation done
Local spi: 8435219051DB9E3 Remote spi: 52A8BB38988B5CF
Local id: 10.0.8.3
Remote id: 10.0.9.4
Local req msg id: 4 Remote req msg id: 0
Local next msg id: 4 Remote next msg id: 0
Local req queued: 4 Remote req queued: 0
Local window: 5 Remote window: 5
DPD configured for 0 seconds, retry 0
IETF Std Fragmentation configured.
Extended Authentication not configured.
NAT-T is not detected
Cisco Trust Security SGT is disabled
Initiator of SA : Yes

IPv6 Crypto IKEv2 SA

The following is a sample output displaying the responder's configuration. Note that the output displays Cisco proprietary fragmentation method as configured, not enabled.

Device# show crypto ikev2 sa detail

IPv4 Crypto IKEv2 SA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0.9.4/848 10.0.8.3/848 none/none READY</td>
<td>AES-CBC</td>
<td>256</td>
<td>SHA512</td>
<td>SHA512</td>
<td>5</td>
<td>PSK</td>
<td>PSK</td>
<td>86400/52 sec</td>
<td>1001</td>
<td>1</td>
<td>Negotiation done</td>
<td>84350219051DB9E3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local id: 10.0.9.4</td>
<td>Remote id: 10.0.8.3</td>
<td>Local req msg id: 0</td>
<td>Remote req msg id: 4</td>
<td>Local next msg id: 0</td>
<td>Remote next msg id: 4</td>
<td>Local req queued: 0</td>
<td>Remote req queued: 4</td>
<td>Local window: 5</td>
<td>Remote window: 5</td>
<td>DPD configured for 0 seconds, retry 0</td>
<td>Interrupted Encryption not configured.</td>
<td>NAT-T is not detected</td>
<td>Cisco Trust Security SGT is disabled</td>
</tr>
</tbody>
</table>

IPv6 Crypto IKEv2 SA

The following example displays that the initiator supports IETF standard fragmentation method, whereas the responder does not support fragmentation. Note that the output states IETF standard fragmentation method is configured and not enabled.

Device# show crypto ikev2 sa detail

IPv4 Crypto IKEv2 SA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.0.9.4/848 10.0.8.3/848 none/none READY</td>
<td>AES-CBC</td>
<td>256</td>
<td>SHA512</td>
<td>SHA512</td>
<td>5</td>
<td>PSK</td>
<td>PSK</td>
<td>86400/44 sec</td>
<td>1004</td>
<td>2</td>
<td>Negotiation done</td>
<td>146E1CFA68008A92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local id: 10.0.9.4</td>
<td>Remote id: 10.0.9.4</td>
<td>Local req msg id: 4</td>
<td>Remote req msg id: 0</td>
<td>Local next msg id: 4</td>
<td>Remote next msg id: 0</td>
<td>Local req queued: 4</td>
<td>Remote req queued: 0</td>
<td>Local window: 5</td>
<td>Remote window: 5</td>
<td>DPD configured for 0 seconds, retry 0</td>
<td>Interrupted Encryption not configured.</td>
<td>NAT-T is not detected</td>
<td>Cisco Trust Security SGT is disabled</td>
</tr>
</tbody>
</table>

The following is a sample output displaying the responder's configuration. Note the statement "Fragmentation not configured."

Device# show crypto ikev2 sa detail

IPv4 Crypto IKEv2 SA
Example: IETF Standard Fragmentation Method not Configured on the Initiator

The following is a sample output displaying no fragmentation method configured on the initiator.

```
Device# show crypto ikev2 sa detail

IPv4 Crypto IKEv2 SA

Tunnel-id Local Remote fvrf/ivrf Status
2 10.0.8.3/848 10.0.9.4/848 none/none DELETE
Life/Active Time: 86400/28 sec
CE id: 1001, Session-id: 1
Status Description: Deleting IKE SA
Local spi: 1A375C00C1D157CF Remote spi: DB50F1BC58814FFA
Local id: 10.0.8.3 Remote id: 10.0.9.4
Local req msg id: 2 Remote req msg id: 4
Local next msg id: 4 Remote next msg id: 5
Local req queued: 2 Remote req queued: 4
Local window: 5 Remote window: 5
DPD configured for 0 seconds, retry 0
Fragmentation not configured.
Extended Authentication not configured.
NAT-T is not detected
Cisco Trust Security SGT is disabled
Initiator of SA : No

IPv6 Crypto IKEv2 SA
```

Example: IPv6 Support for Fragmentation

This following example shows fragmentation on FlexVPN endpoints—hub and spoke. The following configuration pertains to the hub, which is configured with a maximum transmission unit (MTU) of 1300 for fragmenting the packets.

```
Device# show crypto ikev2 sa detail

IPv4 Crypto IKEv2 SA

IPv6 Crypto IKEv2 SA

Tunnel-id fvrf/ivrf Status
1 none/none READY
Local 4001::2000:3/500 Remote 4001::2000:1/500
Life/Active Time: 86400/64 sec
```
Additional References for Configuring IKEv2 Fragmentation

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
Feature Information for Configuring IKEv2 Fragmentation

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 11: Feature Information for Configuring IKEv2 Fragmentation

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEv2 Fragmentation adhering to RFC</td>
<td>Cisco IOS XE Release 3.15S</td>
<td>The IKE Fragmentation adhering to RFC feature implements fragmentation of Internet Key Exchange Version 2 (IKEv2) packets as proposed in the IETF draft-ietf-ipsecme-ikev2-fragmentation-10 document. The following command was modified: show crypto ikev2 sa.</td>
</tr>
</tbody>
</table>
Configuring IKEv2 Reconnect

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring IKEv2 Reconnect

• You must enable the BypassDownloader function in the AnyConnectLocalPolicy file by setting the <BypassDownloader> value to true. If your device does not support SSL, the BypassDownloader function will not work. You must disable the function manually by setting the <BypassDownloader> value to false, else the connection will fail.
Restrictions for Configuring IKEv2 Reconnect

- The preshared key authorization method cannot be configured on the Internet Key Exchange Version 2 (IKEv2) profile. This is because the IOS IKEv2 support for AutoReconnect feature of AnyConnect feature uses the preshared key authorization method and configuring the preshared key on the same IKEv2 profile may lead to confusion.

- The following commands cannot be configured on the IKEv2 profile: `authentication local pre-share`, `authentication remote pre-share`, `keyring`, `aaa authorization group psk`, and `aaa authorization user psk`.

Information About Configured IKEv2 Reconnect

IKEv2 and Cisco AnyConnect Client Reconnect Feature

The Auto Reconnect feature in the Cisco AnyConnect client helps the Cisco AnyConnect VPN client to remember the session for a period of time and to resume the connection after establishing the secure channel. As the Cisco AnyConnect Client is extensively used with Internet Key Exchange Version 2 (IKEv2), IKEv2 extends the Auto Reconnect feature support on Cisco IOS software through the IOS IKEv2 support for Auto Reconnect feature of AnyConnect feature.

Auto Reconnect in the Cisco AnyConnect client occurs in the following scenarios:

- The intermediate network is down. The Cisco AnyConnect client tries to resume the session when it is up.
- The Cisco AnyConnect client device switches between networks. This results in source IP or port change, which brings down the existing security association (SA) and, hence, the Cisco AnyConnect client tries to resume the SA using the Auto Reconnect feature.
- The Cisco AnyConnect client device tries to resume SA after returning from sleep or hibernate mode.

Advantages of Using the Auto Reconnect Feature

- The copy attributes used in the original session are reused without querying the authentication, authorization, and accounting (AAA) server.
- The Cisco IOS gateway does not have to contact the RADIUS server for reconnecting to the client.
- No user interaction for authentication or authorization is needed during resuming the session.
- The authentication method is the preshared key when reconnecting a session. This authentication method is quick compared to other authentication methods (that include Rivest, Shamir, and Adelman (RSA) signature authentication method, Elliptic Curve Digital Signature Algorithm (ECDSA) signature (ECDSA-sig) authentication method, and Extensible Authentication Protocol (EAP) authentication method). The preshared key authentication method helps in resuming a session on the IOS software with minimal resources.
- The unused security associations (SAs) are removed thereby freeing the crypto resources.
Auto Reconnect and DPD

Dead Peer Detection (DPD) is configured to confirm the availability of a peer send by sending queries to a peer. If there are no responses from the peer, the security association created for that peer is deleted. You need not configure DPD in a reconnect profile if DPD configured on the FlexVPN server because in both configuration scenarios, the purpose is the same. However, if the feature is enabled, DPD is queued as on demand DPD in IKEv2, which also stores the platform specific handle when deleting the SA.

Message Exchanges Between Cisco IOS Gateway and Cisco AnyConnect Client

The Cisco AnyConnect client contacts the Cisco IOS gateway to establish a security association (SA). During authorization or AUTH exchange (CFGMODE_REQ payload of IKE_AUTH request), IKEv2 checks if the IOS IKEv2 support for the Auto Reconnect feature of AnyConnect feature is enabled in the IKEv2 profile using the reconnect command, selects the IKEv2 policy of the chosen IKEv2 profile, and sends the session ID and the session token attributes to the Cisco AnyConnect client in CFGMODE_REPLY payload of the IKE_AUTH response. The authorization method is the preshared key between the client and Cisco IOS software for the SA.

IKEv2 periodically sends dead peer detection (DPD) messages to the Cisco AnyConnect client to validate if the client is active. The Cisco AnyConnect client responds to the DPD messages, which the Cisco IOS gateway understands as an active client and creates a security association (SA) with the client. However, if the client does not reconnect within 30 minutes, which is the default reconnect timeout period, the Cisco IOS gateway assumes that the client is inactive and deletes the SA for that client. The Cisco AnyConnect client needs to start a fresh connection.

Use the show crypto ikev2 stats reconnect command to view the connection statistics and the clear crypto ikev2 session and clear crypto ikev2 sa reconnect commands to delete the SA with the client.

How to Configure IKEv2 Reconnect

Enabling IKEv2 Reconnect

Perform this task to enable the IOS IKEv2 support for AutoReconnect feature of AnyConnect feature.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto ikev2 profile profile-name
4. reconnect [timeout seconds]
5. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enable <code>enable</code> to enter privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Use <code>configure terminal</code> to enter global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Use <code>crypto ikev2 profile profile-name</code> to define an IKEv2 profile.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# crypto ikev2 profile profile1</td>
</tr>
<tr>
<td>Step 4</td>
<td>Use <code>reconnect [timeout seconds]</code> to enable the Auto Reconnect feature.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ikev2-profile)# reconnect timeout 900</td>
</tr>
<tr>
<td>Step 5</td>
<td>Use <code>end</code> to exit IKEv2 profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ikev2-profile)# end</td>
</tr>
</tbody>
</table>

Troubleshooting IKEv2 Reconnect Configuration

Use the following commands to verify or clear the IOS IKEv2 support for AutoReconnect feature of AnyConnect feature configuration.

SUMMARY STEPS

1. enable
2. show crypto ikev2 stats reconnect
3. clear crypto ikev2 stats reconnect

DETAILED STEPS

Step 1

Use `enable` to enter privileged EXEC mode.

- Enter your password if prompted.
Example:
Device> enable

Step 2

show crypto ikev2 stats reconnect
Displays the reconnect statistics.

Example:
Device# show crypto ikev2 stats reconnect
Total incoming reconnect connection: 10
Success reconnect connection: 10
Failed reconnect connection: 0
Reconnect capable active session count: 4
Reconnect capable inactive session count: 6

Step 3

clear crypto ikev2 stats reconnect
Clears the reconnect statistics.

Example:
Device# clear crypto ikev2 stats reconnect
Total incoming reconnect connection: 0
Success reconnect connection: 0
Failed reconnect connection: 0
Reconnect capable active session count: 4
Reconnect capable inactive session count: 6

Configuration Examples for Configuring IKEv2 Reconnect

Example: Enabling IKEv2 Reconnect

The following example shows how to enable the IOS IKEv2 support for AutoReconnect feature of AnyConnect feature.

Device> enable
device# configure terminal
device(config)# crypto ikev2 profile profile1
device(config-ikev2-profile)# reconnect timeout 600
device(config-ikev2-profile)# end

Additional References for Configuring IKEv2 Reconnect

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
Feature Information for Configuring IKEv2 Reconnect

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 12: Feature Information for Configuring IKEv2 Reconnect

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOS IKEv2 support for AutoReconnect feature of AnyConnect</td>
<td>Cisco IOS XE Release 3.11S</td>
<td>The IOS IKEv2 support for AutoReconnect feature of AnyConnect feature helps in reestablishing IKEv2 negotiation without user interaction with the Cisco AnyConnect client. The following commands were introduced or modified: <code>clear crypto ikev2 stats</code>, <code>reconnect</code>, <code>show crypto ikev2 stats</code>.</td>
</tr>
</tbody>
</table>
Configuring MPLS over FlexVPN

Last Published Date: March 28, 2014

The MPLS over FlexVPN feature implements Multiprotocol Label Switching (MPLS) over a dynamically established IPsec tunnel thereby supporting duplicate address spaces.

- Finding Feature Information, page 137
- Prerequisites for MPLS over FlexVPN, page 137
- Information About Configuring MPLS over FlexVPN, page 138
- How to Configure MPLS over FlexVPN, page 141
- Configuration Examples for Configuring MPLS over FlexVPN, page 142
- Additional References for Configuring MPLS over FlexVPN, page 148
- Feature Information for Configuring MPLS over FlexVPN, page 149

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS over FlexVPN

- Internet Key Exchange Version 2 (IKEv2) and IPsec must be configured.
- MPLS must be configured.
- NHRP redirect must be configured.
Information About Configuring MPLS over FlexVPN

MPLS and FlexVPN

Network domains having overlapping addressing spaces use VPN routing and forwarding (VRF) to segregate traffic so that data intended for one domain does not enter another domain. Data security between the provider-edge (PE) devices is achieved by defining an tunnel interface with IPsec protection for every VRF. This ensures that traffic from every domain passes over the corresponding IPsec tunnel. However as the number of domains and nodes grow in a network, this may not be scalable because every protected domain requires a separate IPsec tunnel and an interface.

Multiprotocol Label Switching (MPLS) provides the ability to assign labels per VRF or per prefix, which identifies the correct VRF into which data needs to be routed to. This can be achieved with just a single MPLS-aware interface having IPsec protection and a single IPsec tunnel between the PEs.

The MPLS over FlexVPN feature provides a solution to achieve communication between overlapping addresses in customer networks when a remote customer network needs to be discovered dynamically using Next Hop Resolution Protocol (NHRP) and at the same time secure the data traffic between the PE devices using IPsec. This solution can be used by customers who have deployed MPLS network and want to extend their MPLS network to a newly configured network (determined dynamically) in a different region over the Internet in a secure way.

The components of the MPLS over FlexVPN solution are as follows:

- **IPsec**—Secures the data traffic between the spoke and the hub and between the spokes after the remote spoke is discovered dynamically.

- **Internet Key Exchange Version 2 (IKEv2)**—Adds static routes to the peer’s tunnel overlay address as a directly connected route. This route results in adding an implicit null label to the Label Information Base (LIB) for the peer’s tunnel overlay address.

 Note

 IKEv2 is used instead of LDP because LDP involves establishing TCP channel with every LDP neighbor. Enabling LDP keeps the spoke-to-spoke channel active due to the LDP hello traffic thereby never bringing down the spoke-to-spoke channel. Therefore, the `mpls ip` command must never be executed on the tunnel interface or virtual template when configuring the MPLS over FlexVPN feature.

- **NHRP**—Used to resolve the remote overlay address and dynamically discover the transport end point needed to establish a secure tunnel. If a multipoint generic routing encapsulation (GRE) interface is used, the tunnel end point database stores the mapping between the overlay and corresponding nonbroadcast multiaccess (NBMA) address.

- **MPLS**—Enables MPLS tag switching for data packets. By default, Label Distribution Protocol (LDP) is not enabled and is not enabled between the spokes because LDP keepalive will try to keep the spoke-spoke tunnel up and is not desired in the absence of data traffic.

- **MPLS Forwarding Infrastructure (MFI)**—Allocates and releases labels by the applications; NHRP is an application that call MFI for label management.

- **Multiprotocol BGP (MP-BGP)**—Distributes overlay labels for the network on different VRFs.
Working of MPLS over FlexVPN

The following figure along with description explains the working of MPLS over FlexVPN solution:

Figure 6: Spoke to Hub to Spoke Topology

The MPLS over FlexVPN solution has the following assumptions:

- Multiprotocol BGP (MP-BGP) allows distributing labels per VPN routing and forwarding (VRF) or per prefix.
- Label 10 is assigned to VRF A for packets that arrive from hub to spoke A.
- Label 20 is assigned to VRF A for packets that arrive from the hub to spoke B.
- Label 30 is assigned to VRF A on the hub for packets that arrive from spoke A to the hub.
- Label 40 is assigned to VRF B on the hub for packets that arrive from spoke B to the hub.

IKEv2 and IPsec security associations are established from each spoke to the hub. IKEv2 installs implicit null label values for the spoke’s overlay address that is received in the mode config reply and mode config set.

Note

Implicit null label is installed since the spoke and hub are always next-hop to each other in the overlay space.
2 MP-BGP exchanges the label per VRF or label per prefix with all the VRFs.
3 After the labels and routes have been exchanged, data forwarding begins. When the first data packet destined for 192.168.2.1 arrives on spoke A on VRF A, it is forwarded to the hub. The packet is label encapsulated using generic routing encapsulation (GRE), only containing the overlay label, and encrypted.
4 The data packet is decrypted when it reaches the hub on the physical (virtual access) interface or the tunnel interface which is 172.17.0.1 and 10.0.0.1 respectively. The overlay label is looked up in the hub, the packet is encapsulated using GRE, encrypted and sent to spoke B.
5 An NHRP redirect packet is sent from the hub to spoke A. As label 30 identifies the VRF on which the data packet arrived, the VRF information is conveyed to NHRP.
6 NHRP processes the redirect packet and triggers an NHRP resolution request. An NHRP mapping entry is created and VRF A is associated for the prefix that needs to be resolved.
7 The resolution request is sent to the hub, which looks up its overlay label and sends the resolution request to the appropriate destination, which in this case is Spoke B.
8 NHRP resolution request arrives on Spoke B and creates a virtual access interface or an multipoint GRE (mGRE) interface on Spoke B.
9 An IKEv2 and IPsec session is initiated from Spoke B to Spoke A resulting in the creation of a virtual access interface or mGRE interface on Spoke A. NHRP adds the route for IP address of Spoke A tunnel via the newly created virtual access interface.
10 NHRP resolution reply from Spoke B carries the label value that may be used by Spoke A for sending data over the spoke-to-spoke tunnel. Therefore, NHRP allocates a label from the MPLS forwarding instance (MFI) and sends this label information to Spoke A to be used for the spoke-to-spoke tunnel.

Note
MFI tracks the labels. If a label is already allocated and assigned to MP-BGP for a particular VRF, the label is returned to NHRP. MFI tracks the number of applications using this a particular label and returns the label back to pool only when all the applications have released the label.

11 NHRP resolution reply also contains an implicit null label for the IP address of the virtual access interface or mGRE interface on Spoke B. In this example, the reply would be 192.168.2.0/24, label 40, 10.0.0.12, 172.16.2.1, [implicit-NULL].
12 NHRP resolution reply is received at the virtual access interface or mGRE interface on Spoke A. The NHRP request ID present in reply packet is matched with the request ID of the request that was initially sent by Spoke B to know the VRF for which the request was sent. NHRP cache is looked up to find the NHRP entry and the entry is termed "Complete". NHRP inserts a route into the VRF routing table with the label information.
13 Routes and labels are setup between Spoke A and Spoke B. Data is now label encapsulated and encrypted over the spoke-to-spoke dynamically established tunnel between Spoke A and Spoke B.

IVRF Support for FlexVPN

The Inside VPN Routing and Forwarding (IVRF) support for FlexVPN provides the capability of performing the following NHRP routing operations in the IVRF configured on the tunnel interface:

- Sending NHRP resolution request after performing the route lookup.
- Forwarding of NHRP resolution request on the hub.
- Creating an H route or next-hop override (NHO) in the IVRF when creating a shortcut tunnel
- Deleting the H route or NHO from the IVRF when the shortcut tunnel is deleted
How to Configure MPLS over FlexVPN

Configuring MPLS over FlexVPN

Perform this task to configure MPLS over FlexVPN.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface tunnel number
4. mpls nhrp
5. end
6. show mpls forwarding-table

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface tunnel number</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface tunnel 1</td>
</tr>
<tr>
<td></td>
<td>Configures the FlexVPN client interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>mpls nhrp</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# mpls nhrp</td>
</tr>
<tr>
<td></td>
<td>Enables MPLS tag switching without enabling Label Distribution Protocol (LDP).</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# end</td>
</tr>
<tr>
<td></td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show mpls forwarding-table</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# show mpls forwarding-table</td>
</tr>
<tr>
<td></td>
<td>Displays information about the Multiprotocol Label Switching (MPLS) Label Forwarding Information Base (LFIB).</td>
</tr>
</tbody>
</table>
Configuration Examples for Configuring MPLS over FlexVPN

Example: Configuring MPLS over FlexVPN

The following example shows how to transport multiple customer VRFs on FlexVPN leveraging MPLS functionality. The following is the configuration on spoke 1.

```
hostname R3-Spoke1
boot-start-marker
boot-end-marker
!
!
vrf definition cust1
rd 1:1
route-target export 1:1
route-target import 1:1
!
address-family ipv4
exit-address-family
!
vrf definition cust2
rd 2:2
route-target export 2:2
route-target import 2:2
!
address-family ipv4
exit-address-family
!
clock timezone CET 1 0
!
no ip domain lookup
ip domain name cisco.com
ip cef
no ipv6 cef
mpls ldp loop-detection
!
crypto pki trustpoint CA
enrollment url http://172.16.1.1:80
password
fingerprint E0AFEFD7F08070BAB33C8297C97E6457
subject-name cn=R3-spoke.cisco.com,OU=FLEX,O=Cisco
revocation-check crl none
!
crypto pki certificate map mymap 10
subject-name co ou = flex
!
crypto pki certificate chain CA
certificate 03
certificate ca 01
crypto ikev2 authorization policy default
route set interface
!
crypto ikev2 profile default
match certificate mymap
identity local fqdn R3-Spoke.cisco.com
authentication local rsa-sig
authentication remote rsa-sig
pki trustpoint CA
dpd 60 2 on-demand
aaa authorization group cert list default default
!
```
crypto ipsec profile default
set ikev2-profile default

interface Tunnel0
ip address negotiated
mpls bgp forwarding
tunnel source Ethernet0/0
tunnel destination 172.16.0.1
tunnel protection ipsec profile default

interface Ethernet0/0
description WAN
ip address 172.16.1.103 255.255.255.0

interface Ethernet0/1
description LAN
no ip address
no ip unreachables

interface Ethernet0/1.10
encapsulation dot1Q 10
vrf forwarding cust1
ip address 192.168.113.1 255.255.255.0

interface Ethernet0/1.20
encapsulation dot1Q 20
vrf forwarding cust2
ip address 192.168.123.1 255.255.255.0

router bgp 100
bgp log-neighbor-changes
neighbor 10.0.0.1 remote-as 10
neighbor 10.0.0.1 ebgp-multihop 255
neighbor 10.0.0.1 update-source Tunnel0

address-family ipv4
neighbor 10.0.0.1 activate
exit-address-family

address-family vpnv4
neighbor 10.0.0.1 activate
neighbor 10.0.0.1 send-community both
exit-address-family

address-family ipv4 vrf cust1
redistribute connected
exit-address-family

address-family ipv4 vrf cust2
redistribute connected
exit-address-family

ip route 10.0.0.1 255.255.255.255 Tunnel0 name workaround
ip route 172.16.0.1 255.255.255.255 172.16.1.1 name FlexHUB

The following is spoke 2 configuration.

hostname R4-Spoke

vrf definition cust1
rd 1:1
route-target export 1:1
route-target import 1:1

address-family ipv4
exit-address-family
vrf definition cust2
 rd 2:2
 route-target export 2:2
 route-target import 2:2
!
 address-family ipv4
 exit-address-family
!
clock timezone CET 1 0
!
no ip domain lookup
ip domain name cisco.com
ip cef
no ipv6 cef
!
crypto pki token default removal timeout 0
!
crypto pki trustpoint CA
 enrollment url http://172.16.1.1:80
 password
 fingerprint E0AFEFD7F08070BAA33C8297C97E6457
 subject-name cn=R4-Spoke.cisco.com,OU=Flex,O=Cisco
 revocation-check crl none
!
crypto pki certificate map mymap 10
 subject-name co ou = flex
!
crypto pki certificate chain CA
 certificate 04
 certificate ca 01
!
crypto ikev2 authorization policy default
 route set interface
!
crypto ikev2 profile default
 match certificate mymap
 identity local fqdn R4.cisco.com
 authentication local rsa-sig
 authentication remote rsa-sig
 pki trustpoint CA
 dpd 60 2 on-demand
 authorization group cert list default default
 virtual-template 1
!
crypto ipsec profile default
 set ikev2-profile default
!
interface Loopback100
 vrf forwarding cust1
 ip address 192.168.114.1 255.255.255.0
!
interface Loopback101
 vrf forwarding cust2
 ip address 192.168.124.1 255.255.255.0
!
interface Tunnel0
 ip address negotiated
 mpls bgp forwarding
 tunnel source Ethernet0/0
 tunnel destination 172.16.0.1
 tunnel protection ipsec profile default
!
interface Ethernet0/0
 description WAN
 ip address 172.16.1.104 255.255.255.0
!
interface Ethernet0/1
 description LAN
 ip address 192.168.104.1 255.255.255.0
!
routerr bgp 100
 bgp log-neighbor-changes
 neighbor 10.0.0.1 remote-as 10
neighbor 10.0.0.1 ebgp-multihop 255
neighbor 10.0.0.1 update-source Tunnel0
!
address-family ipv4
 neighbor 10.0.0.1 activate
exit-address-family
!
address-family vpnv4
 neighbor 10.0.0.1 activate
 neighbor 10.0.0.1 send-community both
exit-address-family
!
address-family ipv4 vrf cust1
 redistribute connected
exit-address-family
!
address-family ipv4 vrf cust2
 redistribute connected
exit-address-family
!
ip route 10.0.0.1 255.255.255.255 Tunnel0
ip route 172.16.0.1 255.255.255.255 172.16.1.1 name FlexHUB

The following is the hub configuration.

hostname R1-HUB
aaa new-model

! aaa authorization network default local
!
! clock timezone CET 1 0
!
ip vrf cust1
 rd 1:1
 route-target export 1:1
 route-target import 1:1
!
ip vrf cust2
 rd 2:2
 route-target export 2:2
 route-target import 2:2
!
no ip domain lookup
ip domain name cisco.com
ip cef
no ipv6 cef
!
multilink bundle-name authenticated
mpls ldp loop-detection
!
crypto pki trustpoint CA
 enrollment url http://172.16.0.2:80
 password
def-domain cisco.com
crypto ikev2 profile default
match identity remote fqdn domain cisco.com
identity local dn
authentication local rsa-sig
authentication remote rsa-sig
pki trustpoint CA
dpd 60 2 on-demand
aaa authorization group cert list default default
virtual-template 1

crypto ipsec profile default
set ikev2-profile default

interface Loopback0
description VT source interface
ip address 10.0.0.1 255.255.255.255

interface Ethernet0/0
description WAN
ip address 172.16.0.1 255.255.255.252

interface Ethernet0/1
description LAN
ip address 192.168.100.1 255.255.255.0

interface Ethernet0/2
ip vrf forwarding cust1
ip address 192.168.110.1 255.255.255.0

interface Ethernet0/3
ip vrf forwarding cust2
ip address 192.168.111.1 255.255.255.0

interface Virtual-Template1 type tunnel
ip unnumbered Loopback0
ip nhp network-id 1
ip nhp redirect
mpls bgp forwarding
tunnel protection ipsec profile default

router bgp 10
bgp log-neighbor-changes
bgp listen range 0.0.0.0/0 peer-group mpls
bgp listen limit 5000
neighbor mpls peer-group
neighbor mpls remote-as 100
neighbor mpls transport connection-mode passive
neighbor mpls update-source Loopback0

address-family ipv4
redistribute static route-map global
neighbor mpls activate
neighbor mpls next-hop-self
exit-address-family

address-family vpnv4
neighbor mpls activate
neighbor mpls send-community both
exit-address-family

address-family ipv4 vrf cust1
redistribute connected
redistribute static route-map cust1
default-information originate
exit-address-family
!
address-family ipv4 vrf cust2
redistribute connected
redistribute static route-map cust2
default-information originate
exit-address-family
!
ip local pool mypool 10.1.1.1 10.1.1.254
!
ip forward-protocol nd
!
no ip http server
no ip http secure-server
ip route 0.0.0.0 0.0.0.0 172.16.0.2 name route_to_internet
ip route vrf cust1 0.0.0.0 0.0.0.0 Null0 tag 666 name default_originate
ip route vrf cust2 0.0.0.0 0.0.0.0 Null0 tag 667 name default_originate
!
routemap cust1 permit 10
match tag 666
!
routemap cust2 permit 10
match tag 667

The following is sample output from the spoke.

Device# show ip cef vrf cust1 192.168.110.1

192.168.110.0/24, epoch 0, flags rib defined all labels, RIB(B), refcount 5, per-destination sharing

sources: RIB
feature space:
IPRM: 0x00018000
LFD: 192.168.110.0/24 0 local labels
contains path extension list
ifnums: (none)
path EF36CA28, path list EF36DEB4, share 1/1, type recursive, for IPv4, flags
must-be-labelled
MPLS short path extensions: MOI flags = 0x0 label 19
recursive via 10.0.0.1[IPv4:Default] label 19, fib F0C5926C, 1 terminal fib, v4:Default:10.0.0.1/32
path EF36CBE8, path list EF36DF4, share 1/1, type attached host, for IPv4
MPLS short path extensions: MOI flags = 0x1 label implicit-null
attached to Tunnel0, adjacency IP midchain out of Tunnel0 F0481718
output chain: label 19 label implicit-null TAG midchain out of Tunnel0 F0481A0 IP adj
go out of Ethernet0/0, addr 172.16.1.1 F0481848

The following is sample output from the hub.

Device# show ip cef vrf cust1 192.168.113.1

192.168.113.0/24, epoch 0, flags rib defined all labels, RIB(B), refcount 5, per-destination sharing

sources: RIB, LTE
feature space:
IPRM: 0x00018000
LFD: 192.168.113.0/24 1 local label
local label info: other/25
contains path extension list
disposition chain 0xF1E1D9B0
label switch chain 0xF1E1D9B0
ifnums: (none)
path F16ECA28, path list F16EDF4, share 1/1, type recursive, for IPv4, flags
must-be-labelled
MPLS short path extensions: MOI flags = 0x0 label 16
recursive via 10.1.1.3[IPv4:Default] label 16, f0c06e8, 1 terminal fib, v4:Default:10.1.1.3/32
path f16ee0, path list f16ee0c, share 1/1, type attached host, for IPv4
MPLS short path extensions: MOI flags = 0x1 label implicit-null
attached to Virtual-Access1, adjacency IP midchain out of Virtual-Access1 F04F35D8
output chain: label 16 label implicit-null TAG midchain out of Virtual-Access1 F1E1DF60
IP adj out of Ethernet0/0, addr 172.16.0.2 F04F3708
R1-HUB#sh bgp vpnv4 all
BGP table version is 49, local router ID is 10.0.0.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
r RIB-failure, S Stale, m multipath, b backup-path, x best-external, f
RT-Filter, a additional-path
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>192.168.110.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>192.168.113.0</td>
<td>10.1.1.3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>?</td>
</tr>
<tr>
<td>192.168.114.0</td>
<td>10.1.1.4</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 1:1 (default for vrf cust1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>192.168.111.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>192.168.123.0</td>
<td>10.1.1.3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>?</td>
</tr>
<tr>
<td>192.168.124.0</td>
<td>10.1.1.4</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>?</td>
</tr>
<tr>
<td>Route Distinguisher: 2:2 (default for vrf cust2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>192.168.111.0</td>
<td>0.0.0.0</td>
<td>0</td>
<td>32768</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>192.168.123.0</td>
<td>10.1.1.3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>?</td>
</tr>
<tr>
<td>192.168.124.0</td>
<td>10.1.1.4</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>?</td>
</tr>
</tbody>
</table>

BGP routing table entry for 1:1:192.168.113.0/24, version 48
Paths: (1 available, best #1, table cust1)
Advertised to update-groups: 3
 Refresh Epoch 1
 10.1.1.3 from *10.1.1.3 (172.16.1.103)
 Origin incomplete, metric 0, localpref 100, valid, external, best
 Extended Community: RT:1:1
 mpls labels in/out 25/16
BGP routing table entry for 2:2:0.0.0.0/0, version 8
Paths: (1 available, best #1, table cust2)
Advertised to update-groups: 3
 Refresh Epoch 1
 Local
 0.0.0.0 from 0.0.0.0 (10.0.0.1)
 Origin incomplete, metric 0, localpref 100, weight 32768, valid, sourced, best
 Extended Community: RT:2:2
 mpls labels in/out 20/aggregate(cust2)

Additional References for Configuring MPLS over FlexVPN

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
<tr>
<td>Recommended cryptographic algorithms</td>
<td>Next Generation Encryption</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 5586</td>
<td>MPLS Generic Associated Channel</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Configuring MPLS over FlexVPN

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 13: Feature Information for Configuring MPLS over FlexVPN

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS over FlexVPN</td>
<td>Cisco IOS XE Release 3.11S</td>
<td>The MPLS over FlexVPN feature implements Multiprotocol Label Switching (MPLS) over a dynamically established IPsec tunnel thereby supporting duplicate address spaces. The following commands were introduced or modified: clear ip nhrp, clear ipv6 nhrp, mpls nhrp, show dmvpn, show ip nhrp, show ipv6 nhrp.</td>
</tr>
</tbody>
</table>
Configuring IKEv2 Packet of Disconnect

The IKEv2 Remote Access Change of Authorization (CoA)—Packet of Disconnect feature terminates an active crypto IKEv2 session on Cisco supported devices.

- Finding Feature Information, page 151
- Information About IKEv2 Packet of Disconnect, page 151
- How to Configure IKEv2 Packet of Disconnect, page 152
- Configuration Examples for IKEv2 Packet of Disconnect, page 154
- Additional References for IKEv2 Packet of Disconnect, page 157
- Feature Information for IKEv2 Packet of Disconnect, page 158

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About IKEv2 Packet of Disconnect

Disconnect Request

The Packet of Disconnect (POD) is a RADIUS disconnect_request packet and is intended to be used in situations where the authenticating agent server wants to disconnect a crypto session.

When the POD is Needed

The Packet of Disconnect is required in the following situations:
Enforce reauthentication—As a network administrator, you might want to terminate a user on FlexVPN server to forcefully reauthenticate if a session is connected for a very long duration.

Apply a new policy—As a network administrator, you may want to terminate an active crypto session and apply the new policy on the session when the client reconnects.

Free resources—A session may need to be terminated to free resources and exit rekey.

IKEv2 Packet of Disconnect

The IKEv2 Remote Access Change of Authorization (CoA)—Packet of Disconnect feature uses the RADIUS Packet of Disconnect (POD) feature to delete a crypto session. The crypto session is deleted to update VPN users to the new user or group policy on the AAA server.

1. AAA passes the attribute key-value pair list, provided by the RADIUS server, to IKEv2.
2. IKEv2 parses the list and locates the Audit-Session-ID, a Cisco AV pair, as a key and validates the pair value.
3. IKEv2 searches the session and deletes the specific session.
4. IKEv2 notifies AAA and AAA notifies the RADIUS server.
5. The session pertaining to the Audit-Session-ID is deleted.

Parameters in IKEv2 Packet of Disconnect

RFC 3576 specifies the following POD codes that are supported for IKEv2 Packet of Disconnect:

- 40 - Disconnect-Request
- 41 - Disconnect-ACK
- 42 - Disconnect-NAK

The Disconnect-ACK code indicates that a session existed for an audit-session-ID and that the session, pertaining to an audit-session-ID was terminated successfully. The Disconnect-NACK code indicates that there are no session corresponding to the audit-session-ID. No reply message is sent to the gateway.

How to Configure IKEv2 Packet of Disconnect

Configuring AAA on the FlexVPN Server

There is no IKEv2-specific configuration required on the FlexVPN server for the IKEv2 Remote Access Change of Authorization (CoA)—Packet of Disconnect feature. You only need to configure authentication, authorization, and accounting (AAA) on the FlexVPN server. For additional information on AAA configuration, see Authentication Authorization and Accounting Configuration Guide, Cisco IOS XE Release 3S.
SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
4. aaa server radius dynamic-author
5. client {hostname | ip-address} [server-key string | vrf vrf-id]
6. port number
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 aaa new-model</td>
<td>Enables AAA globally.</td>
</tr>
<tr>
<td>Example: Device(config)# aaa new-model</td>
<td></td>
</tr>
<tr>
<td>Step 4 aaa server radius dynamic-author</td>
<td>Sets up the local AAA server for the dynamic authorization service and enters dynamic authorization local server configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• In this mode, the RADIUS application commands are configured.</td>
</tr>
<tr>
<td>Step 5 client {hostname</td>
<td>ip-address} [server-key string</td>
</tr>
<tr>
<td>Example: Device(config-locsvr-da-radius)# client 192.168.0.5 server-key cisco</td>
<td>• Use the server-key keyword and string argument to configure the server key at the client level.</td>
</tr>
<tr>
<td>Note</td>
<td>Configuring the server key at the client level overrides the server key configured at the global level.</td>
</tr>
<tr>
<td>Step 6 port number</td>
<td>Configures the UDP port.</td>
</tr>
<tr>
<td>Example: Device(config-locsvr-da-radius)# port 1812</td>
<td></td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Exits dynamic authorization local server configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-locsvr-da-radius)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for IKEv2 Packet of Disconnect

Example: Terminating an IKEv2 Session

The following is a sample output from the `show aaa sessions` command. This command must be executed to identify the IKEv2 session that needs to be terminated.

```
Device# show aaa sessions
Total sessions since last reload: 32
Session Id: 3
  Unique Id: 14
  User Name: *not available*
  IP Address: 0.0.0.0
  Idle Time: 0
  CT Call Handle: 0
Session Id: 30
  Unique Id: 41
  User Name: pskuser2.g1.engdt.com
  IP Address: 0.0.0.0
  Idle Time: 0
  CT Call Handle: 0
Session Id: 32
  Unique Id: 43
  User Name: pskuser4.g2.engdt.com
  IP Address: 0.0.0.0
  Idle Time: 0
  CT Call Handle: 0
```

In the above output, ID 41 and 43 pertain to IKEv2 sessions. Optionally, you can run the `show aaa user` command to view detailed information about the session.

```
Device# show aaa user 41
Unique id 41 is currently in use.
No data for type 0
No data for type EXEC
No data for type CONN
NET: Username=(n/a)
  Session Id=0000001E Unique Id=00000029
  Start Sent=0 Stop Only=N
  stop_has_been_sent=N
  Method List=0
  Attribute list:
    7FBD9783CCF0 0 00000001 session-id(408) 4 30(1E)
    7FBD9783CD30 0 00000001 start_time(418) 4 Nov 04 2014 00:20:23

--------
No data for type CMD
No data for type SYSTEM
No data for type VRRS
No data for type RM CALL
No data for type RM VPDN
No data for type AUTH PROXY
No data for type DOT1X
No data for type CALL
No data for type VPDN-TUNNEL
No data for type VPDN-TUNNEL-LINK
IPSEC-TUNNEL: Username=pskuser2.g1.engdt.com
  Session Id=0000001E Unique Id=00000029
  Start Sent=1 Stop Only=N
  stop_has_been_sent=N
  Method List=7FBDA6E05A68 : Name = accnt_prof
```
Attribute list:
7FBD9783CCF0 0 00000001 session-id(408) 4 30(1E)
7FBD9783CD30 0 00000001 start_time(418) 4 Nov 04 2014 00:20:23
7FBD9783CD0 0 00000002 formatted-clid(37) 13 192.168.202.2
7FBD9783CDB0 0 0000008A audit-session-id(819) 37 L2L433010102001202104020001
7FBD9783CDF0 0 00000081 isakmp-phase1-id(737) 21 pskuser2.gl.engdt.com
7FBD9783BF80 0 00000002 isakmp-initator-ip(738) 4 192.168.202.2

No data for type MCAST
No data for type RESOURCE
No data for type SSG
No data for type IDENTITY
No data for type ConnectedApps

Accounting:
log=0x400018041
Events recorded :
CALL START
ATTR REPLACE
INTERIM START
INTERIM STOP
IPSEC TNL UP

update method(s) :
NONE

update interval = 0
Outstanding Stop Records : 0

Dynamic attribute list:
7FBD9783BF80 0 00000001 connect-progress(75) 4 No Progress
7FBD9783BC0 0 00000001 pre-session-time(334) 4 0(0)
7FBD9783CD00 0 00000001 elapsed_time(414) 4 341(155)
7FBD9783C040 0 00000001 bytes_in(146) 4 0(0)
7FBD9783C080 0 00000001 bytes_out(311) 4 0(0)
7FBD9783DFF0 0 00000001 pre-bytes-in(330) 4 0(0)
7FBD9783CD30 0 00000001 pre-bytes-out(331) 4 0(0)
7FBD9783CD70 0 00000001 paks_in(147) 4 0(0)
7FBD9783CD00 0 00000001 paks_out(312) 4 0(0)
7FBD9783CD80 0 00000001 pre-paks-in(332) 4 0(0)
7FBD9783CDA0 0 00000001 pre-paks-out(333) 4 0(0)

Debg: No data available
Radi: No data available

Interface:
TTY Num = -1
Stop Received = 0

Byte/Packet Counts till Call Start:
Start Bytes In = 0 Start Bytes Out = 0
Start Paks In = 0 Start Paks Out = 0

Byte/Packet Counts till Service Up:
Pre Bytes In = 0 Pre Bytes Out = 0
Pre Paks In = 0 Pre Paks Out = 0

Cumulative Byte/Packet Counts :
Bytes In = 0 Bytes Out = 0
Paks In = 0 Paks Out = 0

StartTime = 00:20:23 IST Nov 4 2014
AuthenTime = 00:20:23 IST Nov 4 2014
Component = VPN IPSEC
Authen: service=NONE type=NONE method=NONE
Kerb: No data available
Meth: No data available
Preauth: No Preauth data.

General:
Unique Id = 00000002
Session Id = 0000001E
Session Server Key = 1771D693
Attribute List:
PerU: No data available
Service Profile: No Service Profile data.
Unkn: No data available
Unkn: No data available
Note the audit-session-id in the above output, which is L2L433010101ZO2L4C0A8CA02ZH119404ZP37. The following sample output is displayed on the FlexVPN server on starting an accounting session with a RADIUS server.

Nov 4 00:26:49.908 IST: RADIUS/ENCODE: Best Local IP-Address 192.168.202.1 for Radius-Server 9.45.15.144
Nov 4 00:26:49.908 IST: RADIUS(0000002C): Send Accounting-Request to 9.45.15.144:1813 id 1646/231, len 288
Nov 4 00:26:49.908 IST: RADIUS: authenticator 29 63 0C 79 C1 5E F2 0E - F3 CA 36 DD A3 55 C1 DE
Nov 4 00:26:49.908 IST: RADIUS: Acct-Session-Id [44] 10 "000000021"
Nov 4 00:26:49.908 IST: RADIUS: Calling-Station-Id [31] 15 "192.168.202.2"
Nov 4 00:26:49.908 IST: RADIUS: Vendor, Cisco [26] 64
Nov 4 00:26:49.908 IST: RADIUS: Cisco AvPair [1] 58
"audit-session-id=L2L433010101ZO2L4C0A8CA02ZH11941194ZN3B"
Nov 4 00:26:49.908 IST: RADIUS: Vendor, Cisco [26] 46
Nov 4 00:26:49.908 IST: RADIUS: Cisco AvPair [1] 40
"isakmp-phase1-id=pskuser1.g1.engdt.com"
Nov 4 00:26:49.908 IST: RADIUS: Vendor, Cisco [26] 40
Nov 4 00:26:49.908 IST: RADIUS: Cisco AvPair [1] 34
"isakmp-initiator-ip=192.168.202.2"
Nov 4 00:26:49.908 IST: RADIUS: Vendor, Cisco [26] 36
Nov 4 00:26:49.908 IST: RADIUS: Cisco AvPair [1] 30 "connect-progress=No Progress"
Nov 4 00:26:49.908 IST: RADIUS: User-Name [1] 23 "pskuser1.g1.engdt.com"
Nov 4 00:26:49.908 IST: RADIUS: Vendor, Cisco [26] 36
Nov 4 00:26:49.908 IST: RADIUS: Cisco AvPair [1] 34 "connect-progress=No Progress"
Nov 4 00:26:49.908 IST: RADIUS: Acct-Status-Type [40] 6 Start [1]
Nov 4 00:26:49.908 IST: RADIUS: home-hl-prefix [151] 10 "D33648D8"
Nov 4 00:26:49.908 IST: RADIUS: Acct-Delay-Time [41] 6 0
Nov 4 00:26:49.908 IST: RADIUS(0000002C): Sending a IPv4 Radius Packet

The following output is displayed on the FlexVPN server when disconnecting a session for a specific audit-session-id. The terminate session request is sent to the RADIUS server via a RADIUS client. In this example, the session for the audit-session-ID, which is L2L433010101ZO2L4C0A8CA02ZH119404ZP37 is terminated and, hence, not visible in the output.

Nov 4 00:32:29.004 IST: RADIUS: POD received from id 216 9.45.15.144:50567, POD Request, len 84
Nov 4 00:32:29.004 IST: RADIUS: POD received from id 216 9.45.15.144:50567, POD request queued
Nov 4 00:32:29.004 IST: +++ POD Attribute List ++++
Nov 4 00:32:29.004 IST: 7FBD9783D3A8 0 00000089 audit-session-id(819) 39 L2L433010101ZO2L4C0A8CA02ZH11941194ZN3B
Nov 4 00:32:29.004 IST: POD: Sending ACK from port 1812 to 9.45.15.144/50567

Example: Terminating an IKEv2 Session
The following output is displayed when there is no valid session for the specific audit-session-ID. This happens if there is no session pertaining to the specific audit-session-id when the session is terminated already. Note the NACK message that is sent back to the FlexVPN server

Additional References for IKEv2 Packet of Disconnect

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
Feature Information for IKEv2 Packet of Disconnect

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 14: Feature Information for IKEv2 Packet of Disconnect

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKEv2 Remote Access Change of Authorization (CoA)—Packet of Disconnect</td>
<td>Cisco IOS XE Release 3.14S</td>
<td>The IKEv2 Remote Access Change of Authorization (CoA)—Packet of Disconnect feature terminates an active crypto IKEv2 session on Cisco supported devices. No commands were introduced by this feature.</td>
</tr>
</tbody>
</table>
Configuring IKEv2 Change of Authorization Support

The FlexVPN - IKEv2 CoA for QoS and ACL feature supports RADIUS Change of Authorization (CoA) on an active IKEv2 crypto session.

- Finding Feature Information, page 161
- Prerequisites for IKEv2 Change of Authorization Support, page 161
- Restrictions for IKEv2 Change of Authorization Support, page 162
- Information About IKEv2 Change of Authorization Support, page 162
- How to Configure IKEv2 Change of Authorization Support, page 163
- Configuration Examples for IKEv2 Change of Authorization Support, page 167
- Additional References for IKEv2 Change of Authorization Support, page 167
- Feature Information for IKEv2 Change of Authorization Support, page 168

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for IKEv2 Change of Authorization Support

- IKEv2 must be registered as a component, via a registry entry, on Cisco AAA component.
Restrictions for IKEv2 Change of Authorization Support

- This feature supports change of authorization (CoA) packets received from RADIUS-based AAA server only.

Information About IKEv2 Change of Authorization Support

RADIUS Change of Authorization

The RADIUS Change of Authorization (CoA) provides a mechanism to change the attributes of an authentication, authorization, and accounting (AAA) session after it is authenticated. When a policy changes for a user or user group in AAA, administrators can send the RADIUS CoA packets from the AAA server such as a Cisco Secure Access Control Server (ACS) to reinitialize authentication and apply the new policy.

A standard RADIUS interface is typically used in a pulled model, in which the request originates from a device attached to a network and the response is sent from the queried servers. Cisco software supports the RADIUS CoA request defined in RFC 5176 that is used in a pushed model, in which the request originates from the external server to the device attached to the network, and enables the dynamic reconfiguring of sessions from external authentication, authorization, and accounting (AAA) or policy servers.

For more information on RADIUS CoA, see Authentication, Authorization, and Accounting Configuration Guide, Cisco IOS Release 15M&T or Authentication, Authorization, and Accounting Configuration Guide, Cisco IOS XE Release 3S.

Working of Change of Authorization on IKEv2

The FlexVPN - IKEv2 CoA for QoS and ACL feature allows to change attributes of an active IKEv2 crypto session to apply a new authorization attributes. The Cisco AAA component receives a Change of Authorization (CoA) packet from a AAA server and checks if the received CoA packet is meant for any of the components registered with it. If a component sees that the CoA packet is meant for itself, it processes it further. Based on the fields in the CoA packet, if the packet is relevant for a given component, such as IKEv2, the packet is consumed by that component. AAA will not forward the packet to the next component in the list.

In case of this feature, after IKEv2 receives a CoA packet, IKEv2 verifies the CoA packet for the Cisco (AV) pairs. IKEv2 identifies the session based on the audit-session-id which is already stored in the RADIUS server. If the CoA packet contains attributes not supported by IKEv2, IKEv2 discards the packet and sends a CoA-NACK to AAA component.

Supported AV Pairs for IKEv2 Change of Authorization

The FlexVPN - IKEv2 CoA for QoS and ACL feature supports the following Cisco AV pairs:

- ip:interface-config
- ip:sub-policy-In
- ip:sub-policy-Out
How to Configure IKEv2 Change of Authorization Support

Configuring Change of Authorization on the FlexVPN Server

There is no IKEv2-specific configuration required for this feature on the FlexVPN server for the IKEv2 Change of Authorization (CoA) Support feature. You only need to configure the RADIUS Change of Authorization on the FlexVPN server. For more information on AAA configuration, see the “RADIUS Change of Authorization” feature module in the Authentication, Authorization, and Accounting Configuration Guide, Cisco IOS Release 15M&T.

SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
4. aaa server radius dynamic-author
5. client {ip-address | name [vrf vrf-name]} server-key [0 | 7] string
6. port port-number
7. auth-type {any | all | session-key}
8. ignore session-key
9. ignore server-key
10. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>3</td>
<td>aaa new-model</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# aaa new-model</td>
</tr>
<tr>
<td>4</td>
<td>aaa server radius dynamic-author</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# aaa server radius dynamic-author</td>
</tr>
<tr>
<td>5</td>
<td>client {ip-address</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-locsvr-da-radius)# client 10.0.0.1</td>
</tr>
<tr>
<td>6</td>
<td>port port-number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-locsvr-da-radius)# port 3799</td>
</tr>
<tr>
<td>7</td>
<td>auth-type {any</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-locsvr-da-radius)# auth-type all</td>
</tr>
<tr>
<td>8</td>
<td>ignore session-key</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-locsvr-da-radius)# ignore session-key</td>
</tr>
<tr>
<td>9</td>
<td>ignore server-key</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-locsvr-da-radius)# ignore server-key</td>
</tr>
<tr>
<td>10</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-locsvr-da-radius)# exit</td>
</tr>
</tbody>
</table>
Verifying IKEv2 Change of Authorization Support on Cisco ASR 1000 Series Router

Use the following show commands to view the success of change of authorization (CoA) on Cisco ASR 1000 Series Aggregation Services Routers.

SUMMARY STEPS

1. `enable`
2. `show platform hardware qfp active feature qos all output all`
3. `show platform hardware qfp active feature qos all input all`

DETAILED STEPS

Step 1 enable

Example:

Device> enable
Enables privileged EXEC mode.

- Enter your password if prompted.

Step 2 show platform hardware qfp active feature qos all output all

Example:

Device# show platform hardware qfp active feature qos all output all

Interface: Virtual-Access1, QFP if_h: 14, Num Targets: 1
Target: Out, Num UIDBs: 1
UIDB #: 0
Hierarchy level: 0, Num matching iftgts: 1
Policy name: aaa-out-policy, Policy id: 9679472
Parent Class Idx: 0, Parent Class ID: 0
IF Tgt#: 0, ifh: 14, member_ifh: 0, link_idx: 0
PSQD specifics:
Target Index: 0, Num Classes: 1
Class index: 0, Class object id: 1593, Match index: 0
Class name: class-default, Policy name: aaa-out-policy
psqd[0-3]: 0x00000000 0x00000000 0x00000001 0x00000000
ISQD specifics:
Target Index: 0, Num Classes: 1
Class index: 0, Class object id: 1593
Class name: class-default, Policy name: aaa-out-policy
isqd[0-3]: 0x88e78ec0 0x00000000 0x00000000 0x00000000
(cache) isqd[0-3]: 0x88e78ec0 0x00000000 0x00000000 0x00000000
Police specifics:
Target Index: 0, Num Classes: 1
Class index: 0, Class object id: 1593
Class name: class-default, Policy name: aaa-out-policy
Policer id: 0x20000002
hw_policer[0-3]: 0x4000047e 0x00163ac8 0x00000000 0x00000000
cache hw_policer[0-3]: 0x4000047e 0x00163ac8 0x00000000 0x00000000
conform stats (paks/ocetets): 0x0000000000000000, : 0x0000000000000000
exceed stats (paks/ocetets): 0x0000000000000000, : 0x0000000000000000
violate stats (paks/ocetets): 0x0000000000000000, : 0x0000000000000000
police_info: 0x00000000
(cache) police_info: 0x00000000
Queue specifics:
- Target Index: 0, Num Classes: 1
 - Class index: 0, Class object id: 1593
 - Class name: class-default, Policy name: aaa-out-policy
 - No queue configured

Schedule specifics:
- Target Index: 0, Num Classes: 1
 - Class index: 0, Class object id: 1593
 - Class name: class-default, Policy name: aaa-out-policy
 - No schedule info (no queue configured)

Displaysextra information if CoA was successful.

Step 3
show platform hardware qfp active feature qos all input all

Example:
Device# show platform hardware qfp active feature qos all input all

Interface: Virtual-Access1, QFP if_h: 14, Num Targets: 1
UDDB #: 0
Hierarchy level: 0, Num matching iftgts: 1
Policy name: aaa-in-policy, Policy id: 980784
Parent Class Idx: 0, Parent Class ID: 0
IF Tgt#: 0, ifh: 14, member_ifh: 0, link_idx: 0

PSQD specifics:
- Target Index: 0, Num Classes: 1
 - Class index: 0, Class object id: 1593, Match index: 0
 - Class name: class-default, Policy name: aaa-in-policy
 - psdq[0-3]: 0x00000000 0x00000000 0x00000001 0x00000000

ISQD specifics:
- Target Index: 0, Num Classes: 1
 - Class index: 0, Class object id: 1593
 - Class name: class-default, Policy name: aaa-in-policy
 - isqd[0-3]: 0x88d49748 0x00000001 0x00000000 0x00000000
 - (cache) isqd[0-3]: 0x88d49748 0x00000001 0x00000000 0x00000000

Police specifics:
- Target Index: 0, Num Classes: 1
 - Class index: 0, Class object id: 1593
 - Class name: class-default, Policy name: aaa-in-policy
 - Policier id: 0x20000003
 - hw_policer[0-3]: 0x10000140 0x00113a29 0x00000000 0x00000000
 - cache hw_policer[0-3]: 0x10000140 0x00113a29 0x00000000 0x00000000
 - conform stats (paks/octets): 0x0000000000000000, : 0x0000000000000000
 - exceed stats (paks/octets): 0x0000000000000000, : 0x0000000000000000
 - violate stats (paks/octets): 0x0000000000000000, : 0x0000000000000000
 - police_info: 0x00000000
 - cache police_info: 0x00000000

Queue specifics:
- Target Index: 0, Num Classes: 1
 - Class index: 0, Class object id: 1593
 - Class name: class-default, Policy name: aaa-in-policy
 - No queue configured

Schedule specifics:
- Target Index: 0, Num Classes: 1
 - Class index: 0, Class object id: 1593
 - Class name: class-default, Policy name: aaa-in-policy
 - No schedule info (no queue configured)

Displays the feature status.
Configuration Examples for IKEv2 Change of Authorization Support

Example: Triggering a Change of Authorization

The following sample output is displayed when an administrator triggers a change of authorization (CoA). The session is identified based on the audit-session-id, a dynamic string, which is an encoded form of 6 tuple information of a session with peer.

IKEv2 receives a change of authorization (CoA) packet from a RADIUS server. The session is identified based on audit-session-id.

```
*Oct  6 23:38:55.251: RADIUS: authenticator BD 97 5E BA B2 EB C1 C5 - 1A 14 51 3D C8 66 3F
"audit-session-id=L2L44D010102ZO2L44D010101ZI1F401F4ZO2"
"ip:interface-config-service-policy input pol"
"ip:sub-qos-policy-out=2M-IN"
"ip:sub-qos-policy-in=aaa-pol"
"ip:interface-config-service-policy output 2M"
```

```
++++++ CoA Attribute List ++++++
  421C9694 0 00000089 audit-session-id(819) 37
  L2L44D010102ZO2L44D010101ZI1F401F4ZO2
  421C9584 0 00000081 interface-config(222) 24 service-policy input pol
  421C95B8 0 00000081 sub-qos-policy-out(422) 5 2M-IN
  421C95EC 0 00000081 sub-qos-policy-in(421) 7 aaa-pol
  421C9620 0 00000081 interface-config(222) 24 service-policy output 2M
```

```
*Oct  6 23:38:55.251: COA: Message Authenticator missing or failed decode
*Oct  6 23:38:55.251: +++ CoA Attribute List ++++
*Oct  6 23:38:55.251: 421C9694 0 00000089 audit-session-id(819) 37
L2L44D010102ZO2L44D010101ZI1F401F4ZO2
*Oct  6 23:38:55.251: 421C9584 0 00000081 interface-config(222) 24 service-policy input pol
*Oct  6 23:38:55.251: 421C95B8 0 00000081 sub-qos-policy-out(422) 5 2M-IN
*Oct  6 23:38:55.251: 421C95EC 0 00000081 sub-qos-policy-in(421) 7 aaa-pol
*Oct  6 23:38:55.251: 421C9620 0 00000081 interface-config(222) 24 service-policy output 2M
*Oct  6 23:38:55.251:
```

Additional References for IKEv2 Change of Authorization Support

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>

FlexVPN and Internet Key Exchange Version 2 Configuration Guide, Cisco IOS XE Release 3S
Feature Information for IKEv2 Change of Authorization Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 15: Feature Information for IKEv2 Change of Authorization Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>FlexVPN - IKEv2 CoA for QoS and ACL</td>
<td>Cisco IOS XE Release 3.15S</td>
<td>The FlexVPN - IKEv2 CoA for QoS and ACL feature supports RADIUS Change of Authorization (CoA) on an active IKEv2 crypto session. No commands were modified or updated by this feature.</td>
</tr>
</tbody>
</table>
Configuring Aggregate Authentication

The FlexVPN RA - Aggregate Auth Support for AnyConnect feature implements aggregate authentication method by extending support for Cisco AnyConnect client that uses the proprietary AnyConnect EAP authentication method to establish a secure tunnel over the Internet between Cisco AnyConnect client and FlexVPN server.

- Finding Feature Information, page 171
- Prerequisites for Configuring Aggregate Authentication, page 171
- Information for Configuring Aggregate Authentication, page 172
- How to Configure Aggregate Authentication, page 175
- Configuration Examples for Aggregate Authentication, page 177
- Additional References for Configuring Aggregate Authentication, page 178
- Feature Information for Configuring Aggregate Authentication, page 178

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring Aggregate Authentication

- You must enable the BypassDownloader function in the AnyConnectLocalPolicy file by setting the <BypassDownloader> value to true. If your device does not support SSL, the BypassDownloader function will not work. You must disable the function manually by setting the <BypassDownloader> value to false, else the connection will fail.
Information for Configuring Aggregate Authentication

Cisco AnyConnect and FlexVPN

To establish a VPN connection, the VPN client must obtain user credentials using authentication methods such as, extensible authentication protocol (EAP), Extended Authentication (XAUTH), etc. and forward the user credentials to a hub, which contacts an access control server. The access control server sends an external database or active directory (AD) to validate the credentials.

FlexVPN server (as a hub) works with Cisco Secure Access Control Server to validate user credentials to establish VPN connections. However, Cisco AnyConnect uses EAP to obtain user credentials and does not support XAUTH. On the other hand, Cisco Secure Access Control Server does not support EAP-MD5 with external database (in this case AD). This leads to a scenario where either Cisco Secure Access Control Server must support EAP-MD5 or FlexVPN must authenticate the information from Cisco AnyConnect separately and connect separately with Cisco Secure Access Control Server. FlexVPN can use the Aggregate Authentication method to authentication information from Cisco AnyConnect. Implementing aggregate authentication method on FlexVPN server would provide a window to add more feature support on Cisco IOS software.

The FlexVPN RA - Aggregate Auth Support for AnyConnect feature implements aggregate authentication method by extending support for Cisco AnyConnect client that uses the proprietary AnyConnect EAP authentication method to establish a secure tunnel over the Internet using Cisco AnyConnect and FlexVPN server. This is a server-specific feature and works with Cisco AnyConnect.

How Aggregate Authentication Works

Internet Key Exchange Version 2 supports Cisco AnyConnect that uses the proprietary AnyConnect EAP authentication method by implementing basic aggregate authentication where authentication is performed via
authentication, authorization, and accounting (AAA) using the remote RADIUS server. The following is an example of a network topology explains aggregate authentication implementation on Cisco IOS software.

Figure 7: FlexVPN Server Connected to RADIUS Server

In this diagram:

- Cisco Secure Access Control Server acts as a RADIUS server for authorization.
- The credentials are stored in Microsoft Active Directory, which acts as the active directory for authentication.

Note

Microsoft Active Directory is referred for example purpose only. It does not matter where the credentials are stored.

- Cisco device acts as FlexVPN server.
- Windows 7 PC acts as Cisco AnyConnect client.

1. To initiate a VPN connection, Cisco AnyConnect client verifies a FlexVPN server using certifications.
2. After verifying the certificates, Cisco AnyConnect client sends Cisco AnyConnect EAP loaded message to FlexVPN server.
3. When FlexVPN server receives Cisco AnyConnect EAP loaded message from Cisco AnyConnect, FlexVPN server downloads the message and strips the message of EAP.
4. FlexVPN establishes a connection with RADIUS server for authorization and Microsoft Active Directory (AD) for authentication, and forwards the stripped message to verify the credentials provided by Cisco AnyConnect client.
5. When the credentials are verified and approved by RADIUS server and Microsoft Active Directory (AD), an appropriate reply is sent to FlexVPN server, which in turn replies to Cisco AnyConnect and a VPN connection is established.
IKE Exchanges Using Cisco AnyConnect EAP

Authentication in IKE using AnyConnect EAP is a variation of the standards EAP model as described in RFC 3748. When using AnyConnect EAP the public configuration or authentication XML is transported via EAP payloads. The following figure illustrates the typical message flow used by Cisco AnyConnect.

Figure 8: IKE Exchanges using AnyConnect EAP

1. Cisco AnyConnect client initiates IKE connection to FlexVPN server. The client sends vendor ID payloads to indicate support for Cisco AnyConnect EAP in addition to the typical IKE payloads. The client identifies itself as a Cisco product by including the Cisco copyright vendor ID.
2. The server gateway sends vendor ID payloads to indicate fragmentation and AnyConnect EAP support and identifies itself as a Cisco product by including the Cisco copyright vendor ID.
3. The configuration payload requests the tunnel configuration. The client indicates its desire to use Cisco AnyConnect EAP authentication by omitting the AUTH Payload from this message.
4. The Aggregate Authentication and Configuration protocol is carried over EAP
5. FlexVPN server sends a EAP success message.
6. Cisco AnyConnect client sends the AUTH payload.
7. FlexVPN server sends the AUTH payload and the tunnel configuration attributes that Cisco AnyConnect client requested.
Dual-Factor Authentication Support with IKEv2

The aggregate authentication implementation on Cisco IOS software can be extended for dual-factor authentication. Double authentication can be done by introducing new AnyConnect EAP exchange during Aggregate Authentication which exchange and validate the device certificate information. This mechanism of authenticating 'device' as well as 'user' is called 'Double Authentication'.

Note
AnyConnect EAP is AnyConnect client specific authentication method and does not apply to any other client.

How to Configure Aggregate Authentication

Configuring the FlexVPN Server for Aggregate Authentication

Perform this task to configure aggregate authentication on the FlexVPN server.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `crypto ikev2 profile profile-name`
4. `aaa accounting anyconnect-eap list-name`
5. `match identity remote key-id opaque-string`
6. `authentication remote anyconnect-eap aggregate [cert-request]`
7. `authentication local rsa-sig`
8. `pki trustpoint trustpoint-label`
9. `aaa authentication anyconnect-eap list-name`
10. `aaa authorization group anyconnect-eap list aaa-listname name-mangler mangler-name`
11. `aaa authorization user anyconnect-eap cached`
12. `aaa authorization user anyconnect-eap list aaa-listname name-mangler mangler-name`
13. `end`
14. `show crypto ikev2 session detailed`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Aggregate Authentication

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 crypto ikev2 profile profile-name</td>
<td>Defines an IKEv2 profile name and enters IKEv2 profile configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# crypto ikev2 profile profile1</td>
<td></td>
</tr>
<tr>
<td>Step 4 aaa accounting anyconnect-eap list-name</td>
<td>Enables authentication, authorization, and accounting (AAA) accounting method lists when the IKEv2 remote authentication method is AnyConnect EAP.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-profile)# aaa accounting anyconnect-eap list1</td>
<td></td>
</tr>
<tr>
<td>Step 5 match identity remote key-id opaque-string</td>
<td>Matches a profile based on the identity of the type remote key ID.</td>
</tr>
<tr>
<td>Example: Device(config-ikev2-profile)# match identity remote key-id aggauth_user3@abc.com</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 6** authentication remote anyconnect-eap aggregate [cert-request] | Specifies aggregate authentication for Cisco AnyConnect EAP.
 - *cert-request* - requests certificate from Cisco AnyConnect client for double authentication. |
| **Example:** Device(config-ikev2-profile)# authentication remote anyconnect-eap aggregate cert-request |
| **Step 7** authentication local rsa-sig | Specifies Rivest, Shamir, and Adelman (RSA) signature as the local authentication method. |
| **Example:** Device(config-ikev2-profile)# authentication local rsa-sig |
| **Step 8** pki trustpoint *trustpoint-label* | Specifies Public Key Infrastructure (PKI) trustpoints for use with the RSA signature authentication method. |
| **Example:** Device(config-ikev2-profile)# pki trustpoint CA1 |
| **Step 9** aaa authentication anyconnect-eap *list-name* | Specifies authentication, authorization, and accounting (AAA) authentication list for Cisco AnyConnect EAP authentication.
 - *anyconnect-eap*—Specifies AAA AnyConnect EAP authentication.
 - *list-name*—The AAA authentication list name. |
<p>| Example: Device(config-ikev2-profile)# aaa authentication anyconnect-eap list1 |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 10** | **aaa authorization group anyconnect-eap list**
| | **aaa-listname name-mangler mangler-name** | Specifies the AAA authorization for each group policy when the remote authentication method is AnyConnect EAP and derives the name mangler. |
| **Example:** | Device(config-ikev2-profile)# aaa authorization group anyconnect-eap list list1 name-mangler mangler1 |
| **Step 11** | **aaa authorization user anyconnect-eap cached** | Specifies the AAA authorization for each user policy when the remote authentication method is AnyConnect EAP and uses cached attributes from the AnyConnect EAP authentication. |
| **Example:** | Device(config-ikev2-profile)# aaa authorization user anyconnect-eap cached |
| **Step 12** | **aaa authorization user anyconnect-eap list**
| | **aaa-listname name-mangler mangler-name** | Specifies the AAA method list for the remote authentication method and derives the name mangler. |
| **Example:** | Device(config-ikev2-profile)# aaa authorization user anyconnect-eap list list1 name-mangler mangler1 |
| **Step 13** | **end** | Exits IKEv2 profile configuration mode and returns to privileged EXEC mode. |
| **Example:** | Device(config-ikev2-profile)# end |
| **Step 14** | **show crypto ikev2 session detailed** | Displays the status of active Internet Key Exchange Version 2 (IKEv2) sessions. |
| **Example:** | Device# show crypto ikev2 session detailed |

Configuration Examples for Aggregate Authentication

Example: Configuring Aggregate Authentication

The following example shows how to configure aggregate authentication on the FlexVPN server to enable the establishment of a secure tunnel between Cisco AnyConnect Client and FlexVPN server.

```
Device> enable
Device# configure terminal
Device(config)# crypto ikev2 profile profile1
Device(config-ikev2-profile)# aaa accounting anyconnect-eap list1
Device(config-ikev2-profile)# match identity remote key-id aggauth_user1@example.com
Device(config-ikev2-profile)# authentication remote anyconnect-eap aggregate cert-request
Device(config-ikev2-profile)# authentication local rsa-sig
Device(config-ikev2-profile)# pki trustpoint CA1
Device(config-ikev2-profile)# aaa authentication anyconnect-eap list1
Device(config-ikev2-profile)# aaa authorization group anyconnect-eap list list1 name-mangler mangler1
Device(config-ikev2-profile)# aaa authorization user anyconnect-eap cached
Device(config-ikev2-profile)# aaa authorization user anyconnect-eap list list1 name-mangler
```
Additional References for Configuring Aggregate Authentication

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Configuring Aggregate Authentication

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 16: Feature Information for Configuring Aggregate Authentication

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-Factor Authentication support with IKEv2</td>
<td>Cisco IOS XE Release 3.17S</td>
<td>Dual-Factor Authentication support with IKEv2 supports certificate request from Cisco AnyConnect client for double authentication. The following command was modified: <code>authentication (IKEv2 profile)</code>.</td>
</tr>
<tr>
<td>FlexVPN RA - Aggregate Auth Support for AnyConnect</td>
<td>Cisco IOS XE Release 3.15S</td>
<td>The FlexVPN RA - Aggregate Auth Support for AnyConnect feature implements aggregate authentication method by extending support for Cisco AnyConnect client that uses the proprietary AnyConnect EAP authentication method to establish a secure tunnel over the Internet between Cisco AnyConnect client and FlexVPN server. The following commands were introduced or modified: <code>aaa accounting (IKEv2 profile)</code>, <code>aaa authentication (IKEv2 profile)</code>, <code>aaa authorization (IKEv2 profile)</code>, <code>authentication (IKEv2 profile)</code>, <code>show crypto ikev2 profile</code>, <code>show crypto ikev2 session</code>.</td>
</tr>
</tbody>
</table>
Appendix: FlexVPN RADIUS Attributes

This chapter describes the RADIUS attributes supported by FlexVPN server.

- FlexVPN RADIUS Attributes, page 181

FlexVPN RADIUS Attributes

The following are the RADIUS attributes categories used by FlexVPN Server:

- Inbound and bidirectional IETF RADIUS attributes
- Outbound Local
- Outbound Remote

Note

For inbound attributes sent by the FlexVPN server to RADIUS that are not listed below, the value is set by the AAA system.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>User-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>IETF</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>1</td>
</tr>
</tbody>
</table>
This attribute is sent by the FlexVPN server to Radius and is derived as follows:

- AAA based preshared keys—Peer IKEv2 identity
- EAP authentication—Peer EAP identity
- User or group authorization—Output of the name mangler or the string specified in the IKEv2 profile authorization commands
- Accounting—Peer EAP identity or IKEv2 identity

This attribute may also be received from Radius in Access-Accept after successful EAP authentication and specifies the authenticated peer EAP identity.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>User-Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>IETF</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>2</td>
</tr>
</tbody>
</table>
| Description | This attribute is sent by the FlexVPN server to Radius and is derived as follows:
| |
| | • AAA based preshared keys—“cisco”
| | • User/group authorization—“cisco” |

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Calling-Station-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>IETF</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>31</td>
</tr>
</tbody>
</table>
This attribute is sent by FlexVPN server to RADIUS and is derived as follows:

- AAA based pre-shared keys—IKEv2 initiator address
- EAP authentication—IKEv2 initiator address
- User/group authorization—IKEv2 initiator address

<table>
<thead>
<tr>
<th>Description</th>
<th>Service-Type Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>Service-Type</td>
</tr>
<tr>
<td>Type</td>
<td>IETF</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>6</td>
</tr>
<tr>
<td>Description</td>
<td>This attribute is used by FlexVPN server for EAP authentication and the value of this attribute is set to 'Login'.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>EAP-Message Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>EAP-Message</td>
</tr>
<tr>
<td>Type</td>
<td>IETF</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>79</td>
</tr>
<tr>
<td>Description</td>
<td>This attribute is used by FlexVPN server for EAP authentication to relay EAP packets between EAP server and the Remote Access Client.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Message-Authenticator Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
<td>Message-Authenticator</td>
</tr>
<tr>
<td>Type</td>
<td>IETF</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>80</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>
This attribute is sent by FlexVPN server for EAP authentication. The value for this attribute is set by AAA subsystem.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Framed-Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>IETF</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>88</td>
</tr>
<tr>
<td>Local config</td>
<td>pool name</td>
</tr>
<tr>
<td>Radius config</td>
<td>Framed-Pool="pool-name"</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the name of IPv4 address pool that is used by FlexVPN server to allocate the IPv4 address to assign to the client. The allocated address is pushed to client via IKEv2 standard config attribute INTERNAL_IP4_ADDRESS.</td>
</tr>
</tbody>
</table>

Specifies the IPv4 DHCP server that is used by FlexVPN server to lease IPv4 address to assign to the client. The leased address is pushed to client via IKEv2 standard config attribute INTERNAL_IP4_ADDRESS.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:group-dhcp-server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>dhcp server {ipaddr</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec: group-dhcp-server=ipaddr"</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the IPv4 DHCP server that is used by FlexVPN server to lease IPv4 address to assign to the client. The leased address is pushed to client via IKEv2 standard config attribute INTERNAL_IP4_ADDRESS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:dhcp-giaddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>IPaddr</td>
</tr>
<tr>
<td>Local config</td>
<td>dhcp giaddr ipaddr</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the IPv4 address assigned to the client via DHCP.</td>
</tr>
</tbody>
</table>
Radius config

cisco-avpair="psec: dhcp-giaddr=ipaddr"

Description
Specifies the IPv4 DHCP gateway IP address that is used by FlexVPN server to contact the DCHP server.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:dhcp-timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>Integer</td>
</tr>
</tbody>
</table>

Local config
dhcp timeout *seconds*

Radius config
cisco-avpair="ipsec:dhcp-timeout=seconds"

Description
Specifies the time to wait for response from IPv4 DHCP server that is used by FlexVPN server to timeout response from the DHCP server.

Attribute
ipsec:ipv6-addr-pool

Type
Cisco AV Pair

Format
String

Local config
ipv6 *pool name*

Radius config
cisco-avpair="ipsec:ipv6-addr-pool=pool-name"

Description
Specifies the name of IPv6 address pool used by FlexVPN server to allocate the IPv6 address to assign to the client. The allocated address is pushed to the client via IKEv2 standard config attribute INTERNAL_IP6_ADDRESS.

Attribute
ipsec:route-set=prefix

Type
Cisco AV Pair

Format
String

Local config
N/A

Radius config
cisco-avpair="ipsec:route-set=prefix prefix/length"
ipsec:route-set=prefix 192.168.1.0/24

Example

```
ipsec:route-set=prefix 192.168.1.0/24
```

Description

Specifies a subnet protected by FlexVPN server. This is pushed to the client via IKEv2 standard configuration attribute INTERNAL_IP4_SUBNET.

Note This AV pair was introduced in Cisco IOS Release 15.2(2)T.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:route-set=interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>route set interface</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:route-set=interface"</td>
</tr>
</tbody>
</table>

Description

This attribute is used locally and enables sending of VPN interface IP address to the peer via IKEv2 standard config attribute INTERNAL_IP4_SUBNET. This allows running routing protocols such as BGP over VPN.

Note In Cisco IOS Release 15.2(2)T, this AV pair replaced the "ipsec:route-set-interface" AV pair.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:route-accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>route accept any [tag tag-id] [distance distance]</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:route-accept=any [tag:tag] [distance:distance]"</td>
</tr>
</tbody>
</table>

Example

```
ipsec:route-accept=any tag=100
```
This attribute is used locally and specifies the filter for the subnets received from the peer via IKEv2 standard config attribute INTERNAL_IP4_SUBNET. The attribute also specifies the tag and distance for the routes added by IKEv2 for the filtered subnets.

Note In Cisco IOS Release 15.2(2)T, the AV pair "ipsec:route-accept=any" replaced "ipsec:route-accept=accept acl: any" and the AV pair "ipsec:route-accept=none" replaced "ipsec:route-accept=deny".

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:ipsec-flow-limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>Integer</td>
</tr>
<tr>
<td>Local config</td>
<td>ipsec flow-limit limit</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:ipsec-flow-limit=limit"</td>
</tr>
<tr>
<td>Description</td>
<td>This attribute is used by FlexVPN server and specifies the maximum number of IPsec SAs that an IPSec dVTI session can have. There is no limit by default. This parameter is similar to the crypto ipsec profile and set security-policy limit commands.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ip:interface-config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>aaa attribute list list attribute type interface-config string</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ip:interface-config=interface cmd string"</td>
</tr>
<tr>
<td>Example</td>
<td>ip:interface-config=ip vrf forwarding red</td>
</tr>
</tbody>
</table>
This attribute is used locally and specifies an interface configuration mode command string that is applied on the virtual access interface for the session. For local configuration, the IKEv2 authorization policy points to an AAA attribute list that must have interface-config attribute.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Type</td>
<td>This attribute specifies the tunnel type (ESP, AH, GRE, etc.) and is received when FlexVPN server fetches preshared key for the session from RADIUS server.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Tunnel-Medium-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>This attribute specifies the tunnel transport type (IPv4, IPv6, etc.) and is received when FlexVPN server fetches preshared key for the session from the RADIUS server.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Tunnel-Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format</td>
<td>Integer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute ID</th>
<th>64</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Tunnel-Type=type</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attribute ID</th>
<th>65,</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Tunnel-Medium-Type=type</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attribute ID</th>
<th>69</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Tunnel-Password=type</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attribute ID</th>
<th>69</th>
</tr>
</thead>
</table>
Tunnel-Password=string

Description
This attribute specifies the symmetric preshared key and is received when FlexVPN server fetches preshared key for the session from RADIUS server.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipsec:ikev2-password-local</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>String</td>
<td>Cisco-avpair="ipsec:ikev2-password-local=string"</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>8</td>
</tr>
<tr>
<td>Radius config</td>
<td>Framed-IP-Address=ipaddr</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies IPv4 address assigned to the client. This is pushed to the client via IKEv2 standard configuration attribute INTERNAL_IP4_ADDRESS.</td>
</tr>
</tbody>
</table>
Framed-IP-Netmask

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Framed-IP-Netmask</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>IETF</td>
</tr>
<tr>
<td>Format</td>
<td>IPaddr</td>
</tr>
<tr>
<td>Attribute ID</td>
<td>9</td>
</tr>
<tr>
<td>Local config</td>
<td>netmask</td>
</tr>
<tr>
<td>Radius config</td>
<td>Framed-IP-Netmask=mask</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the subnet mask of the IPv4 address assigned to the client. This is pushed to client via IKEv2 standard configuration attribute INTERNAL_IP4_NETMASK.</td>
</tr>
</tbody>
</table>

ipsec:dns-servers

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:dns-servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>dns primary [secondary]</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:dns-servers=primary secondary"</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the primary and secondary IPv4 DNS servers for the client. This is pushed to the client via IKEv2 standard config attribute INTERNAL_IP4_DNS.</td>
</tr>
</tbody>
</table>

ipsec:wins-servers

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:wins-servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>wins primary [secondary]</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:wins-servers=primary secondary"</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the primary and secondary IPv4 WINS servers for the client. This is pushed to the client via IKEv2 standard configuration attribute INTERNAL_IP4_NBNS.</td>
</tr>
</tbody>
</table>
ipsec:route-set=access-list Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:route-set=access-list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>route set access-list {acl-name</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:route-set=access-list {acl-name</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the IPv4 subnets protected by FlexVPN server. This is pushed to the client via IKEv2 standard configuration attribute INTERNAL_IP4_SUBNET. Note In Cisco IOS Release 15.2(2)T, this AV pair replaced the "ipsec:inacl" AV pair.</td>
</tr>
</tbody>
</table>

ipsec:addrv6 Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:addrv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:addrv6=ipv6-addr"</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the IPv6 address assigned to the client. This is pushed to client via IKEv2 standard configuration attribute INTERNAL_IP6_ADDRESS in the first 16 bytes.</td>
</tr>
</tbody>
</table>

ipsec:prefix-len Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:prefix-len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>Integer</td>
</tr>
<tr>
<td>Local config</td>
<td>N/A</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:prefix-len=value"</td>
</tr>
<tr>
<td>Example</td>
<td>ipsec:prefix-len=24</td>
</tr>
</tbody>
</table>
SpecifiestheprefixlengthoftheIPv6address assignedtotheclient.

Specifies the prefix length of the IPv6 address assigned to the client. This is pushed to client via IKEv2 standard configuration attribute INTERNAL_IP6_ADDRESS in the last (17th) byte.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipsec:ipv6-dns-servers-addr</td>
<td>Specifies the primary and secondary IPv6 DNS servers for the client. This is pushed to the client via IKEv2 standard configuration attribute INTERNAL_IP6_DNS.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipsec:route-set=access-list ipv6</td>
<td>Specifies IPv6 subnets protected by the FlexVPN server. This is pushed to the client via IKEv2 standard configuration attribute INTERNAL_IP6_SUBNET.</td>
</tr>
</tbody>
</table>

Note In Cisco IOS Release 15.2(2)T, this AV pair replaced the "ipsec:ipv6-subnet-acl" AV pair.

ipsec:banner

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipsec:banner</td>
<td></td>
</tr>
</tbody>
</table>

| Type | Cisco AV Pair |
| Format | String |

| Local config | route set access-list ipv6 acl-name |
| Radius config | cisco-avpair="ipsec:route-set=access-list ipv6 acl-name" |

<table>
<thead>
<tr>
<th>Ciscov999v91000 Type</th>
<th>StringFormat</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip0v6 dns primary [secondary]</td>
<td></td>
</tr>
<tr>
<td>cisco-avpair="ipsec:ipv6-dns-servers-addr=ipaddr1 *ipaddr2"</td>
<td></td>
</tr>
</tbody>
</table>
Appendix: FlexVPN RADIUS Attributes

FlexVPN RADIUS Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:default-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>def-domain name</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:default-domain=name"</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the default domain. This is pushed to the client via Cisco Unity attribute MODECFG_DEFDOMAIN.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:split-dns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>split-dns name</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:split-dns=name"</td>
</tr>
<tr>
<td>Description</td>
<td>Specifies the split DNS name. This is pushed to the client via Cisco Unity attribute MODECFG_SPLITDNS_NAME. You can configure up to 10 split DNS names.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:ipsec-backup-gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>backup-gateway name</td>
</tr>
</tbody>
</table>
Radius config

```
cisco-avpair="ipsec:ipsec-backup-gateway=name"
```

Description
Specifies the backup gateway. This is pushed to the client via Cisco Unity attribute MODECFG_BACKUPSERVERS. You can configure up to 10 backup gateways.

Attribute
ipsec:pfs

Type
Cisco AV Pair

Format
Integer

Local config
pfs

Radius config

```
cisco-avpair="ipsec:pfs=value"
```

Description
Specifies IPsec PFS (Perfect Forward Secrecy) enable/disable. This is pushed to the client via Cisco Unity attribute MODECFG_PFS. The value must be 0 to disable and 1 to enable.

Attribute
ipsec:include-local-lan

Type
Cisco AV Pair

Format
Integer

Local config
include-local-lan

Radius config

```
cisco-avpair="ipsec:include-local-lan=value"
```

Description
Enables or disables include local LAN. This is pushed to the client via Cisco Unity attribute MODECFG_INCLUDE_LOCAL_LAN. The value must be 0 to disable and 1 to enable.

Attribute
ipsec:smartcard-removal-disconnect

Type
Cisco AV Pair

Format
Integer

Local config
smartcard-removal-disconnect
Radius config

Attribute
cisco-avpair="ipsec:smartcard-removal-disconnect =value"

Description
Enables or disables smartcard removal disconnect. This is pushed to the client via Cisco Unity attribute MODECFG_SMARTCARD_REMOVAL_DISCONNECT. The value must be 0 to disable and 1 to enable.

Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:configuration-url</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>String</td>
</tr>
<tr>
<td>Local config</td>
<td>configuration url url</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:configuration-url=url"</td>
</tr>
</tbody>
</table>

Description
Specifies the URL for configuration download. This is pushed to the client via Cisco FlexVPN attribute MODECFG_CONFIG_URL.

Attribute

<table>
<thead>
<tr>
<th>Attribute</th>
<th>ipsec:configuration-version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cisco AV Pair</td>
</tr>
<tr>
<td>Format</td>
<td>Integer</td>
</tr>
<tr>
<td>Local config</td>
<td>configuration version version</td>
</tr>
<tr>
<td>Radius config</td>
<td>cisco-avpair="ipsec:configuration-version=version"</td>
</tr>
</tbody>
</table>

Description
Specifies the version of the configuration to download. This is pushed to the client via Cisco FlexVPN attribute MODECFG_CONFIG_VERSION.
Appendix: IKEv2 and Legacy VPNs

This module provides examples on how to configure IKEv2 on crypto map based configurations.

Note

Crypto maps are considered a legacy configuration construct. It is recommended that you migrate existing crypto map based setups to use tunnel protection and virtual interfaces.

Example: Configuring Crypto-Map-Based IKEv2 Peers Using Preshared Key Authentication Method, page 197

Example: Configuring Crypto Map-Based IKEv2 Peers Using Certification Authentication Method, page 199

Example: Configuring Crypto Map- and dVTI-Based IKEv2 Peers, page 203

Example: Configuring IPsec Using sVTI-Based IKEv2 Peers, page 205

Example: Configuring IKEv2 on DMVPN Networks, page 207

Example: Configuring Crypto-Map-Based IKEv2 Peers Using Preshared Key Authentication Method

The following example shows how to configure crypto-map-based IKEv2 peers using the preshared key authentication method between a static crypto-map IKEv2 initiator and a dynamic crypto-map IKEv2 responder. The initiator configuration is as follows:

crypto ikev2 proposal prop-1
 encryption aes-cbc-128
 integrity sha1
 group 14
! crypto ikev2 policy pol-1
 match fvrf any
 proposal prop-1
! crypto ikev2 keyring v2-kr1
 peer abc
 address 209.165.200.231 255.255.255.224
 pre-shared-key abc

FlexVPN and Internet Key Exchange Version 2 Configuration Guide, Cisco IOS XE Release 3S
crypto ikev2 profile prof
 match fvrf any
 match identity remote fqdn dmap-responder
 identity local fqdn smap-initiator
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1
!
crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac
!
crypto map cmap 1 ipsec-isakmp
 set peer 209.165.200.225
 set transform-set trans
 set ikev2-profile prof
 match address ikev2list
!
interface Loopback0
 ip address 209.165.200.226 255.255.255.224
!
interface Ethernet0/0
 ip address 209.165.200.227 255.255.255.224
!
crypto map cmap
!
interface Loopback0
 ip address 209.165.200.226 255.255.255.224
!
ip route 209.165.200.229 255.255.255.224 209.165.200.225
!
ip access-list extended ikev2list
 permit ip any any
!
The responder configuration is as follows:

crypto ikev2 proposal prop-1
 encryption aes-cbc-128
 integrity sha1
 group 14
!
crypto ikev2 policy pol-1
 match fvrf any
 proposal prop-1
!
crypto ikev2 keyring v2-kr1
 peer abc
 address 209.165.200.228
 pre-shared-key abc
!
!
crypto ikev2 profile prof
 match fvrf any
 match identity remote fqdn dmap-responder
 identity local fqdn smap-initiator
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1
 ivrf global
!
crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac
!
crypto dynamic-map dmap 1
 set transform-set trans
 set reverse-route tag 222
 set ikev2-profile prof
 match address ikev2list
!
crypto map cmap 1 ipsec-isakmp dynamic dmap
!
interface Loopback0
 ip address 209.165.200.230 255.255.255.224
interface Ethernet0/0
ip address 209.165.200.231 255.255.255.224
crypto map cmap
!
ip route 209.165.200.233 255.255.255.224 209.165.200.228
!
ip access-list extended ikev2list
 permit ip any any
!
To initiate the connection between the initiator and the responder, enter the following command at the initiator's CLI:

ping 209.165.200.230 source 209.165.200.226
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 209.165.200.230, timeout is 2 seconds:
Packet sent with a source address of 209.165.200.226
%IKEV2-5-OSAL_INITIATE_TUNNEL: Received request to establish an IPsec tunnel; local traffic
 Range: 0-65535
%IKEV2-5-SA_UP: SA UP

Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms
To display the session details, enter the following show commands:

show crypto session
Crypto session current status
Interface: Ethernet0/0
Session status: UP-ACTIVE
Peer: 209.165.200.225 port 500
IKEv2 SA: local 209.165.200.228/500 remote 209.165.200.231/500 Active
IPSEC FLOW: permit ip 0.0.0.0/0.0.0.0 0.0.0.0/0.0.0.0
 Active SAs: 2, origin: crypto map

show crypto ikev2 sa detail
Tunnel-id Local Remote fvrf/ivrf Status
1 209.165.200.228/500 209.165.200.231/500 (none)/(none) READY
 Life/Active Time: 86400/21 sec
 CE id: 1002, Session-id: 2
 Status Description: Negotiation done
 Local spi: 68775202752A6FD Remote spi: C9DCCFC65493D14F
 Local id: smap-initiator
 Remote id: dmap-responder
 Local req msg id: 2 Remote req msg id: 0
 Local next msg id: 2 Remote next msg id: 0
 Local req queued: 2 Remote req queued: 0
 Local window: 5 Remote window: 5
 DPD configured for 0 seconds, retry 0
 NAT-T is not detected

Example: Configuring Crypto Map-Based IKEv2 Peers Using Certification Authentication Method

The following example shows how to configure crypto-map-based IKEv2 peers using the certificate authentication method between a static crypto-map IKEv2 initiator, a dynamic crypto-map IKEv2 responder, and a CA server. The initiator configuration is as follows:

crypto pki trustpoint ca-server
 enrollment url http://10.1.1.3:80
 revocation-check none
!
crypto pki certificate map cmap-1
 subject-name eq hostname = responder

crypto pki certificate chain ca-server

308201AF 30820118 A0030201 02020102 300D0609 2A864886 F70D0101 04050030
31131230 10060355 04031309 63612D73 65727665 72301B17 0D313003 33313031
32531313 355A170D 31313033 31303132 35313235 5A301A31 18306031 092A8648
31131230 10060355 04031309 63612D73 65727665 72301B17 0D313003 33313031
32531313 355A170D 31313033 31303132 35313235 5A301A31 18306031 092A8648

quit

certificate ca 01

308201AF 30820118 A0030201 02020102 300D0609 2A864886 F70D0101 04050030
31131230 10060355 04031309 63612D73 65727665 72301B17 0D313003 33313031
32531313 355A170D 31313033 31303132 35313235 5A301A31 18306031 092A8648
31131230 10060355 04031309 63612D73 65727665 72301B17 0D313003 33313031
32531313 355A170D 31313033 31303132 35313235 5A301A31 18306031 092A8648

quit

crypto ikev2 proposal prop-1
 encryption aes-cbc-128
 integrity sha1

crypto ikev2 policy pol-1
 match vpnv4 any
 proposal prop-1

quit

crypto ikev2 profile prof
 match vpnv4 any
 match certificate cmap-1
 identity local dn
 authentication local rsa-sig
 authentication remote pre-share
 authentication remote rsa-sig
 pki trustpoint ca-server

quit

crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac

quit

crypto map cmap 1 ipsec-ikev2map
 set peer 209.165.200.225
 set transform-set trans
 set ikev2-profile prof
 match address ikev2list

quit

interface Loopback0
 ip address 209.165.200.226 255.255.255.224

quit

interface Ethernet0/0
 ip address 209.165.200.227 255.255.255.224

quit

crypto map cmap
interface Ethernet1/0
ip address 209.165.200.228 255.255.255.224
ip route 209.165.200.229 255.255.255.224 209.265.200.231
ip access-list extended ikev2list
permit ip any any

The responder configuration is as follows:

crypto pki trustpoint ca-server
enrollment url http://10.1.1.3:80
revocation-check none

crypto pki certificate map cmap-2 1
subject-name eq hostname = initiator

crypto pki certificate chain ca-server

certificate ca 01

certificate ca 01

Appendix: IKEv2 and Legacy VPNs
Example: Configuring Crypto Map-Based IKEv2 Peers Using Certification Authentication Method
The CA server configuration is as follows:

crypto pki server ca-server
 grant auto
! crypto pki trustpoint ca-server
 revocation-check crl
 rsakeypair ca-server
! crypto pki certificate chain ca-server
 certificate ca 01
 08020201 0802016A A0030201 02020101 300D0609 2A864886 F70D0101 04050030
 1431120 10050355 04031309 63612073 65276665 72301817 03030930 33030831
 36333335 395A170D 31323033 30373136 33333539 5A301431 12301006 03550403
 13096361 2D736572 76657330 819F300D 06092A86 4886F70D 01010105 0003181D
 00030819 02811800 99750598 EF4AF8B4 823DEF66 2F3BBAA3 81C2DC5F D9B4040B
 9F9B6420 2243C06B 9F9F2C84 A543D7DB D0B83018 2E36208C D0FD4015 EAF0DA69
 C8B30328 87C3C4DB 8664593F 0185A042 0B86A3F3 5B5C9380 A92BD4A4 79F19403
 411CC61F 07CEB4D9 0E967CB2 FAB0A899 5A3B6EC7 73111F06 128465DA A45291F8
 F828C5DC 657487E7 02030100 01A36330 61300F06 03551D13 0101FF04 05300301
 01FF3000 0603551D 0F0101FF 04040302 0186301F 0603551D 23041830 16B0178B
 D032BF7B 037F01FA 05997BCE 08B4E472 5CCD6030 10060355 01D08416 04147BD0
 3F0BB7B3 F70F1A59 7B7C1E1B 42E4725C CD60300D 06092A86 4886F70D 01010040
 00030819 02811800 99750598 EF4AF8B4 823DEF66 2F3BBAA3 81C2DC5F D9B4040B
 9F9B6420 2243C06B 9F9F2C84 A543D7DB D0B83018 2E36208C D0FD4015 EAF0DA69
 C8B30328 87C3C4DB 8664593F 0185A042 0B86A3F3 5B5C9380 A92BD4A4 79F19403
 411CC61F 07CEB4D9 0E967CB2 FAB0A899 5A3B6EC7 73111F06 128465DA A45291F8
 F828C5DC 657487E7 02030100 01A36330 61300F06 03551D13 0101FF04 05300301
 01FF3000 0603551D 0F0101FF 04040302 0186301F 0603551D 23041830 16B0178B
 ip address 209.165.200.230 255.255.255.224
 quit
interface Ethernet1/0
 ip address 209.165.200.232 255.255.255.224
 ip route 209.165.200.233 255.255.255.224 209.165.200.228
 ip access-list extended ikev2list
 permit ip host 209.165.200.231 host 209.165.200.228

To obtain the CA and device certificates, enter the `crypto pki authenticate ca-server` and `crypto pki enroll ca-server` commands. To initiate a connection between the initiator and the responder, enter the following command at the initiator's CLI:

```
ping 209.165.200.230 source 209.165.200.226
```

The output of the command is as follows:

```
Type escape sequence to abort.
```
Sending 5, 100-byte ICMP Echos to 209.165.200.230, timeout is 2 seconds:
Packets sent with a source address of 209.165.200.226
%IKEV2-5-OSAL_INITIATE_TUNNEL: Received request to establish an IPsec tunnel; local traffic
Range: 0-65535
%IKEV2-5-SA_UP: SA UP
!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms
Enter the following `show` commands in the responder's CLI to display the session details:

```
show crypto session
Crypto session current status
Interface: Ethernet0/0
Session status: UP-ACTIVE
Peer: 1.1.1.1 port 500
IKEv2 SA: local 209.165.200.231/500 remote 209.165.200.227/500 Active
IPSEC FLOW: permit ip 0.0.0.0/0.0.0.0 host 209.165.200.226
Active SAs: 2, origin: dynamic crypto map
show crypto ikev2 sa detailed
```

```
Tunnel-id Local Remote fvrf/ivrf Status
1 209.165.200.231/500 209.165.200.227/500 (none)/(none) READY
Life/Active Time: 86400/846 sec
CE id: 1001, Session-id: 1
Status Description: Negotiation done
Local spi: F79756E978ED41C7 Remote spi: 188FB9A119516D34
Local id: hostname=RESPONDER
Remote id: hostname=INITIATOR
Local req msg id: 0 Remote req msg id: 2
Local next msg id: 0 Remote next msg id: 2
Local req queued: 0 Remote req queued: 2
Local window: 5 Remote window: 5
DPD configured for 0 seconds, retry 0
NAT-T is not detected
```

Example: Configuring Crypto Map- and dVTI-Based IKEv2 Peers

The following example shows how to configure crypto map-and dVTI-based IKEv2 peers using the preshared key authentication method between a static crypto map IKEv2 initiator and a dVTI-based IKEv2 responder. The initiator configuration is as follows:

```
crypto ikev2 proposal prop-1
  encryption aes-cbc-128
  integrity sha1
  group 14
!
crypto ikev2 policy pol-1
  match fvrf any
  proposal prop-1
!
crypto ikev2 keyring v2-kr1
  peer abc
  address 0.0.0.0 0.0.0.0
  pre-shared-key abc
  !
!
crypto ikev2 profile prof
  match fvrf any
  match identity remote address 0.0.0.0
  authentication local pre-share
  authentication remote pre-share
  keyring v2-kr1
!
crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac
```
crypto map cmap 1 ipsec-isakmp
set peer 206.165.200.235
set transform-set trans
set ikev2-profile prof
match address ikev2list

interface Loopback0
ip address 206.165.200.226 255.255.255.224

interface Ethernet0/0
ip address 206.165.200.227 255.255.255.224
crypto map cmap
ip route 206.165.200.229 255.255.255.224 206.165.200.235
ip access-list extended ikev2list
permmit ip host 206.165.200.227 host 206.165.200.235
permmit ip 206.165.200.233 255.255.255.224 206.165.200.229 255.255.255.224

The responder configuration is as follows:

crypto ikev2 proposal prop-1
 encryption aes-cbc-128
 integrity sha1
 group 14

crypto ikev2 policy pol-1
 match fvrf any
 proposal prop-1

crypto ikev2 keyring v2-kr1
 peer cisco
 address 0.0.0.0 0.0.0.0
 pre-shared-key cisco

crypto ikev2 profile prof
 match fvrf any
 match identity remote address 0.0.0.0
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1
 virtual-template 1

crypto ipsec transform-set set esp-aes-cbc-128 esp-sha-hmac

crypto ipsec profile vi
 set transform-set set
 set ikev2-profile prof

interface Loopback0
 ip address 206.165.200.230 255.255.255.224

interface Ethernet0/0
 ip address 206.165.200.235 255.255.255.224

interface Virtual-Template1 type tunnel
 ip unnumbered Ethernet0/0
 ip mtu 1000
 tunnel source Ethernet0/0
 tunnel mode ipsec ipv4
 tunnel protection ipsec profile vi

To initiate a connection between the initiator and the responder, enter the following command at the initiator's CLI:

ping 206.165.200.230 source 206.165.200.226
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 206.165.200.230, timeout is 2 seconds:
Packet sent with a source address of 206.165.200.226
%IKEV2-5-OSAL_INITIATE_TUNNEL: Received request to establish an IPsec tunnel; local traffic
Range: 0-65535
%IKEV2-5-SA_UP: SA UP
!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms
Enter the following show command in an Easy VPN server to display the session details:

```
show crypto session
Crypto session current status
Interface: Virtual-Access2
Session status: UP-ACTIVE
Peer: 206.165.200.227 port 500
IKEv2 SA: local 206.165.200.235/500 remote 206.165.200.227/500 Active
IPSEC FLOW: permit ip 206.165.200.229/255.255.255.224 206.165.200.233/255.255.255.224
Active SAs: 2, origin: crypto map
```

```
show crypto ikev2 sa detail
```

```
Tunnel-id Local Remote fvrf/ivrf Status
1 206.165.200.235/500 206.165.200.227/500 (none)/(none) READY
```

```
Life/Active Time: 86400/8 sec
CE id: 1001, Session-id: 1
Status Description: Negotiation done
Local spi: 305F610F57428834 Remote spi: D9D183B5689AEDCD
Local id: 206.165.200.235
Remote id: 206.165.200.227
Local req msg id: 0 Remote req msg id: 2
Local next msg id: 0 Remote next msg id: 2
Local req queued: 0 Remote req queued: 2
Local window: 5 Remote window: 5
DPD configured for 0 seconds, retry 0
NAT-T is not detected
```

```
show crypto route
```

```
VPN Routing Table: Shows RRI and VTI created routes
Codes: RRI - Reverse-Route, VTI- Virtual Tunnel Interface
S - Static Map ACLs
Routes created in table GLOBAL DEFAULT
```

Example: Configuring IPsec Using sVTI-Based IKEv2 Peers

The following example shows how to configure IPsec using the preshared key authentication method between
an sVTI IKEv2 initiator and an sVTI IKEv2 responder. The initiator configuration is as follows:

```
crypto ikev2 proposal prop-1
  encryption aes-cbc-128
  integrity sha1
  group 14
!
crypto ikev2 policy pol-1
  match fvrf any
  proposal prop-1
!
crypto ikev2 keyring v2-kr1
  peer abc
    address 209.165.200.225
    pre-shared-key abc
!
!
crypto ikev2 profile prof
  match fvrf any
  match identity remote address 209.165.200.231 255.255.255.224
```
Example: Configuring IPsec Using sVTI-Based IKEv2 Peers

```
authentication local pre-share
authentication remote pre-share
keyring v2-kr1
!
crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac

crypto ipsec profile ipsecprof
  set transform-set trans
  set ikev2-profile prof
!
interface Loopback0
  ip address 209.165.200.226 255.255.255.224
!
interface Tunnel0
  ip address 10.0.0.1 255.255.255.0
  tunnel source 209.165.200.231
  tunnel mode ipsec ipv4
  tunnel destination 209.165.200.225
  tunnel protection ipsec profile ipsecprof
!
interface Ethernet0/0
  ip address 209.165.200.231 255.255.255.224
!
ip route 209.165.200.229 255.255.255.224 Tunnel0
!
The responder configuration is as follows:

crypto ikev2 proposal prop-1
  encryption aes-cbc-128
  integrity sha1
  group 14
!
crypto ikev2 policy pol-1
  match fvrf any
  proposal prop-1
!
crypto ikev2 keyring v2-kr1
  peer abc
    address 209.165.200.231
    pre-shared-key abc
!

crypto ikev2 profile prof
  match fvrf any
  match identity remote address 209.165.200.231 255.255.255.224
  authentication local pre-share
  authentication remote pre-share
  keyring v2-kr1
!
crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac

crypto ipsec profile ipsecprof
  set transform-set trans
  set ikev2-profile prof
!
crypto map cmap 1 ipsec-isakmp dynamic dmap
!
interface Loopback0
  ip address 209.165.200.230 255.255.255.224
!
interface Tunnel0
  ip address 10.0.0.2 255.255.255.0
  tunnel source 209.165.200.225
  tunnel mode ipsec ipv4
  tunnel destination 209.165.200.231
  tunnel protection ipsec profile ipsecprof
!
interface Ethernet0/0
  ip address 209.165.200.231 255.255.255.224
```
ip route 209.165.200.233 255.255.255.224 Tunnel0
With sVTI on IKEv2 peers, the session is initiated only when the sVTI interfaces are enabled. In other words, network traffic is not required to initiate the session. To verify the traffic between the initiator and the responder, enter the following command at the initiator's CLI:

```
ping 209.165.200.230 source 209.165.200.226
```

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 209.165.200.230, timeout is 2 seconds:
Packet sent with a source address of 209.165.200.226
%IKEV2-5-SA_UP: SA UP

Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms

Enter the following show command in the initiator's CLI to display the session details:

```
show crypto session
```
no ip redirects
ip nhrp map multicast dynamic
ip nhrp network-id 99
ip nhrp redirect
no ip split-horizon eigrp 1
tunnel source Ethernet0/0
tunnel mode gre multipoint
tunnel protection ipsec profile cisco-ipsec

interface Tunnel1
description This would be the new IKEv2 facing tunnel on the hub
ip address 2.2.2.99 255.255.255.0
no ip redirects
ip nhrp map multicast dynamic
ip nhrp network-id 100
no ip split-horizon eigrp 1
tunnel source Ethernet0/1
tunnel mode gre multipoint
tunnel protection ipsec profile cisco-ipsec-ikev2

The IKEv2 configuration is as follows:

crypto ikev2 profile cisco-ikev2-profile
keyring cisco-ikev2-keyring
authentication pre-shared
match local address 0.0.0.0
crypto ipsec profile cisco-ipsec-ikev2-profile
set transform-set cisco-ts
set ikev2-profile cisco-ikev2-profile
interface Tunnel1
ip address 2.2.2.11 255.255.255.0
no ip redirects
ip nhrp map 2.2.2.99 22.22.22.99
ip nhrp network-id 100
ip nhrp network-id 100
ip nhrp nhs 2.2.2.99
This points to the hub's IKEv2 facing interface
tunnel source Ethernet0/1
tunnel mode gre multipoint
tunnel protection ipsec profile cisco-ipsec-ikev2