Appendix: IKEv2 and Legacy VPNs

This module provides examples on how to configure IKEv2 on crypto map based configurations.

Note

Crypto maps are considered a legacy configuration construct. It is recommended that you migrate existing crypto map based setups to use tunnel protection and virtual interfaces.

- Example: Configuring Crypto-Map-Based IKEv2 Peers Using Preshared Key Authentication Method, on page 1
- Example: Configuring Crypto Map-Based IKEv2 Peers Using Certification Authentication Method, on page 4
- Example: Configuring Crypto Map- and sVTI-Based IKEv2 Peers, on page 8
- Example: Configuring IPsec Using sVTI-Based IKEv2 Peers, on page 10
- Example: Configuring IKEv2 on DMVPN Networks, on page 13

Example: Configuring Crypto-Map-Based IKEv2 Peers Using Preshared Key Authentication Method

The following example shows how to configure crypto-map-based IKEv2 peers using the preshared key authentication method between a static crypto-map IKEv2 initiator and a dynamic crypto-map IKEv2 responder. The initiator configuration is as follows:

```plaintext
crypto ikev2 proposal prop-1
  encryption aes-cbc-128
  integrity sha1
  group 14

crypto ikev2 policy pol-1
  match fvrf any
  proposal prop-1

crypto ikev2 keyring v2-kr1
  peer abc
  address 209.165.200.231 255.255.255.224
  pre-shared-key abc
```

!
crypto ikev2 profile prof
 match fvrf any
 match identity remote fqdn dmap-responder
 identity local fqdn dmap-initiator
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1
 !
 !
crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac
 !
crypto map cmap 1 ipsec-isakmp
 set peer 209.165.200.225
 set transform-set trans
 set ikev2-profile prof
 match address ikev2list
 !
interface Loopback0
 ip address 209.165.200.226 255.255.255.224
 !
interface Ethernet0/0
 ip address 209.165.200.227 255.255.255.224
 crypto map cmap
 !
ip route 209.165.200.229 255.255.255.224 209.165.200.225
 !
ip access-list extended ikev2list
 permit ip any any
 !

The responder configuration is as follows:

crypto ikev2 proposal prop-1
 encryption aes-cbc-128
 integrity sha1
 group 14
 !
crypto ikev2 policy pol-1
 match fvrf any
 proposal prop-1
 !
crypto ikev2 keyring v2-kr1
 peer abc
 address 209.165.200.228
 pre-shared-key abc
 !
!
crypto ikev2 profile prof
 match fvrf any
 match identity remote fqdn smap-initiator
 identity local fqdn dmap-responder
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1
 ivrf global
 !
!
crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac
 !
crypto dynamic-map dmap 1
 set transform-set trans
 set reverse-route tag 222
 set ikev2-profile prof

Appendix: IKEv2 and Legacy VPNs
match address ikev2list
!
crypto map cmap 1 ipsec-isakmp dynamic dmap
!
interface Loopback0
 ip address 209.165.200.230 255.255.255.224
!
interface Ethernet0/0
 ip address 209.165.200.231 255.255.255.224
 crypto map cmap
!
ip route 209.165.200.233 255.255.255.224 209.165.200.228
!
ip access-list extended ikev2list
 permit ip any any
!
To initiate the connection between the initiator and the responder, enter the following command at the initiator's CLI:

```
ping 209.165.200.230 source 209.165.200.226
```
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 209.165.200.230, timeout is 2 seconds:
Packet sent with a source address of 209.165.200.226
%IKEV2-5-SA_UP: SA UP
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms

To display the session details, enter the following `show` commands:

```
show crypto session
```

```
Crypto session current status
Interface: Ethernet0/0
Session status: UP-ACTIVE
Peer: 209.165.200.225 port 500
IKEv2 SA: local 209.165.200.228/500 remote 209.165.200.231/500 Active
IPSEC FLOW: permit ip 0.0.0.0/0.0.0.0 0.0.0.0/0.0.0.0 Active SAs: 2, origin: crypto map
```

```
show crypto ikev2 sa detail
```

<table>
<thead>
<tr>
<th>Tunnel-id</th>
<th>Local</th>
<th>Remote</th>
<th>fvrf/ivrf</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>209.165.200.228/500</td>
<td>209.165.200.231/500</td>
<td>(none)/(none)</td>
<td>READY</td>
</tr>
</tbody>
</table>


```
Life/Active Time: 86400/21 sec
CE id: 1002, Session-id: 2
Status Description: Negotiation done
Local spi: 687752902752A6FD Remote spi: C9DCCFC65493D14F
Local id: smap-initiator
Remote id: dmap-responder
Local req msg id: 2 Remote req msg id: 0
Local next msg id: 2 Remote next msg id: 0
Local req queued: 2 Remote req queued: 0
Local window: 5 Remote window: 5
DPD configured for 0 seconds, retry 0
NAT-T is not detected
```
Example: Configuring Crypto Map-Based IKEv2 Peers Using Certification Authentication Method

The following example shows how to configure crypto-map-based IKEv2 peers using the certificate authentication method between a static crypto-map IKEv2 initiator, a dynamic crypto-map IKEv2 responder, and a CA server. The initiator configuration is as follows:

```plaintext
crypto pki trustpoint ca-server
  enrollment url http://10.1.1.3:80
  revocation-check none
!
crypto pki certificate map cmap-1 1
  subject-name eq hostname = responder
!
!
crypto pki certificate chain ca-server
  certificate 02
    ... certificate content ...
  certificate ca 01
    ... certificate content ...
quit

crypto ikev2 proposal prop-1
  encryption aes-cbc-128
  integrity sha1
  group 14
!
crypto ikev2 policy pol-1
  match fvrf any
  proposal prop-1
```

Appendix: IKEv2 and Legacy VPNs

Example: Configuring Crypto Map-Based IKEv2 Peers Using Certification Authentication Method
crypto ikev2 profile prof
match fvrf any
match certificate cmap-1
identity local dn
authentication local rsa-sig
authentication remote pre-share
authentication remote rsa-sig
pki trustpoint ca-server

crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac

crypto map cmap 1 ipsec-isakmp
set peer 209.165.200.225
set transform-set trans
set ikev2-profile prof
match address ikev2list

interface Loopback0
ip address 209.165.200.226 255.255.255.224

interface Ethernet0/0
ip address 209.165.200.227 255.255.255.224
crypto map cmap

interface Ethernet1/0
ip address 209.165.200.228 255.255.255.224

ip route 209.165.200.229 255.255.255.224 209.265.200.231
ip access-list extended ikev2list
permit ip any any

The responder configuration is as follows:

crypto pki trustpoint ca-server
enrollment url http://10.1.1.3:80
revocation-check none

crypto pki certificate map cmap-2 1
subject-name eq hostname = initiator

crypto pki certificate chain ca-server

Certificate 03
308201AF 30820118 A0030201 02020103 300D0609 2A864886 F70D0101 04050030
14311230 10060355 04031309 63612D73 65727665 72301E17 0D313030 33313031
32353231 325A170D 31310333 31303132 35323132 5A30A131 18301609 092A8648
86F70D01 09021609 524553S5 4F4E4445 52305C30 0D06092A 864886F7 0D010101
050034B8 00304802 4100517 EBBE64E1 B58CB014 07B3A6AF E6B95777 87486367
947181DA BC66847 B4A5073A 82121332 E787EA2D 3C433514 39033074 495E7C7
67A387A1 EBD24692 A76F0203 010001A3 4F304D30 0B06355 1DF0404 030205A0
301F0603 551D2304 18301609 02C66DFD D5FA4C8B 4D1D25F 8A37545S
91301D06 03551D0E 04160414 DFF2401C 53276D96 8F9ED8C0A 786CCA71 C9EA792B
300D0609 2A864886 F70D0101 A8100203 65034273 CB832A95 3DC6293
669E416C A1340543 20952BCC 1A450CBB 03AE011C 963AF523 5C5C5C5C 4F9B28A5
F243B161 4D0D723A FA428BB1 85DFF517 B4007067 43C27D8A 1F74ED3D 8D58F973
1F51535S E7E76C7 EC1C3C03 39457991 29AB090C 99E21B5B 60DCCB8 7808479
3EB3D46B B66C8C26 15311A7A B7A4ED97 32727C
quit
certificate ca 01
Example: Configuring Crypto Map-Based IKEv2 Peers Using Certification Authentication Method

```
30820201 3082016A A0030201 02020101 300D0609 2A864886 F70D0101 04050030
13911230 10060355 04031309 63612D73 65727657 23010E17 0D313030 33313031
32343933 385A170D 31333033 30393132 34393338 5A301431 12301006 03550403
13096361 2D736572 76657230 819F300D 06092A86 4886F70D 01010105 0035081D
0035081D 02818100 DA4ECE09 B998F670 598F32C1 7E9FA920 10217AC4 293B842E
7563EC11 B20F822 23077930 636C8293 00F6CFDD F6C9B0F5 8348BE58 6478F631
7D44152F 494AEBC A507FA68 408D6BB4 FAAB8A07A 2E7546A8 CA70F9A6 0F7F6824
554BD833 060D657D ADBF406C 69EEF449 7A4F9AFA 6F0852E7 05D6DCA1 D433191E
712868C2 A94E642B 02030100 01A36330 61300F06 03551D13 0101FF04 05303001
01FF30EE 0603551D 0F0D1FF 04040302 0186300F 0603551D 23041830 16801448
71D9002C 66DFD85F AC854D1D 25F23EA5 74559130 10060355 1D0E0416 04144871
D9002C66 DF85FAC B845D1D2 5FEA3574 5591300D 06062A86 4886F70D 01010405
00381818 00AFC368 A8917284 06B551CB 83BD4E38 9457A361 6CAAF416 3BB5F691
04215ACS EDB5C73D C0712CFB 8A6C90CF D6AB39C2 3BC2147F D35553D9 028B2155
802E50DB 48CE6D7 B3857447 89A1C733 D81EFE77 1115480F 70EDE2F2 F27E35A1
F3BB597C 7C8F717B FAAD79D3 0F469702 DE9190E4 B1B0808E 46A118EB 887CEAEB
DF29000E D2
quit
crypto ikev2 proposal prop-1
crypto ikev2 policy pol-1

crypto ikev2 profile prof
crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac

crypto dynamic-map dmap 1

crypto map cmap 1 ipsec-isakmp dynamic dmap

The CA server configuration is as follows:
crypto pki server ca-server
```

Appendix: IKEv2 and Legacy VPNs
grant auto
!
crypto pki trustpoint ca-server
 revocation-check crl
 rsakeypair ca-server
!
!
crypto pki certificate chain ca-server
certificate ca 01
30820201 3082016A A0030201 02020101 300D0609 2A864886 F70D0101 04050030
14311230 10060355 04031309 6312D73 65727665 72301E17 0D303930 33303831
36333335 395A170D 31323033 30373136 33333539 5A301431 12301006 03550403
13096361 2D736572 76657220 19F500D 06092A86 4886F70D 01010105 0003818D
00030818 02818100 99505098 EF4AP9B E23DEF66 2F3BBAA3 81C2DC5F D9B4040B
99FB6020 2243DC6B 8F24C84 A543D7DB DDB83018 2E36208C D0FD4015 EAF0DA69
C1B0302B 87CEC34B 8646593F 0185AF02 086A3F3F 5ESC3880 A992CD4A 79F13403
411CC61F 07CE84D9 0667CB2 FA0A899 5A3B6C87 7311F06 128465DA A45291F8
F8285C65 64785E7B 02030100 01A63300 61300F06 03551D13 0101FF0F 04050301
01FF300E 0603551D 0F0101FF 04040302 0186301F 0603551D 2301830 1680147B
D032BF87 B3F70F1A 597B7C1E 1B42E72 5CCD6030 1D060355 1D0E0416 041789D0
32BF87B3 F70F1A59 57BC1E1B 424E725C CD60300D 06092A86 488F70D 01010405
0003818D 003838FA 628804EF E9F69D9 3DE299C 29074B2C AE33563 8AF75976
78FB68D4 5E1F2B7 04936FDF 78A09432 5348849D F79E17E7 78B2339C 291355D0
506F0C35 99335012 84683BAC 050FD3C9 6E7B1D63 41ACC2BF 2B0243D2 BA2CC2CF
E379DEA0 A9C208AC 0BEB2D8 E6488815 EB12F1EO 19072D55 D5D11A49 739144D8
271AF42E ED
quit
!
interface Ethernet1/0
ip address 209.165.200.232 255.255.255.224
!
ip http server

To obtain the CA and device certificates, enter the crypto pki authenticate ca-server and crypto pki enroll ca-server commands. To initiate a connection between the initiator and the responder, enter the following command at the initiator's CLI:

ping 209.165.200.230 source 209.165.200.226

The output of the command is as follows:

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 209.165.200.230, timeout is 2 seconds:
Packet sent with a source address of 209.165.200.226
%IKEV2-5-SA_UP: SA UP
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms

Enter the following show commands in the responder's CLI to display the session details:

show crypto session
Crypto session current status
Interface: Ethernet0/0
Session status: UP-ACTIVE
Peer: 1.1.1.1 port 500
IKEv2 SA: local 209.165.200.231/500 remote 209.165.200.227/500 Active
IPSEC FLOW: permit ip 0.0.0.0/0.0.0.0 host 209.165.200.226
Active SAs: 2, origin: dynamic crypto map
Example: Configuring Crypto Map- and dVTI-Based IKEv2 Peers

The following example shows how to configure crypto map and dVTI-based IKEv2 peers using the preshared key authentication method between a static crypto map IKEv2 initiator and a dVTI-based IKEv2 responder. The initiator configuration is as follows:

crypto ikev2 proposal prop-1
 encryption aes-cbc-128
 integrity sha1
 group 14

crypto ikev2 policy pol-1
 match fvrf any
 proposal prop-1

crypto ikev2 keyring v2-kr1
 peer abc
 address 0.0.0.0 0.0.0.0
 pre-shared-key abc

crypto ikev2 profile prof
 match fvrf any
 match identity remote address 0.0.0.0
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1

crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac

crypto map cmap 1 ipsec-isakmp
 set peer 206.165.200.235
 set transform-set trans
 set ikev2-profile prof
 match address ikev2list

interface Loopback0
 ip address 206.165.200.226 255.255.255.224

interface Ethernet0/0
 ip address 206.165.200.227 255.255.255.224

show crypto ikev2 all detailed
Tunnel-id Local Remote fvrf/ivrf Status
1 209.165.200.231/500 209.165.200.227/500 (none)/(none) READY
 Life/Active Time: 86400/846 sec
 CE id: 1001, Session-id: 1
 Status Description: Negotiation done
 Local spi: F79756E978ED41C7 Remote spi: 188FB9A119516D34
 Local id: hostname=RESPONDER
 Remote id: hostname=INITIATOR
 Local req msg id: 0 Remote req msg id: 2
 Local next msg id: 0 Remote next msg id: 2
 Local req queued: 0 Remote req queued: 2
 Local window: 5 Remote window: 5
 DPD configured for 0 seconds, retry 0
 NAT-T is not detected

Appendix: IKEv2 and Legacy VPNs

Example: Configuring Crypto Map- and dVTI-Based IKEv2 Peers
crypto map cmap
!
ip route 206.165.200.229 255.255.255.224 206.165.200.235
!
ip access-list extended ikev2list
 permit ip host 206.165.200.227 host 206.165.200.235
 permit ip 206.165.200.233 255.255.255.224 206.165.200.229 255.255.255.224

The responder configuration is as follows:

crypto ikev2 proposal prop-1
 encryption aes-cbc-128
 integrity sha1
 group 14
!
crypto ikev2 policy pol-1
 match fvrf any
 proposal prop-1
!
crypto ikev2 keyring v2-kr1
 peer cisco
 address 0.0.0.0 0.0.0.0
 pre-shared-key cisco
!
!
crypto ikev2 profile prof
 match fvrf any
 match identity remote address 0.0.0.0
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1
 virtual-template 1
!
crypto ipsec transform-set set esp-aes-cbc-128 esp-sha-hmac
!
crypto ipsec profile vi
 set transform-set set
 set ikev2-profile prof
!
interface Loopback0
 ip address 206.165.200.230 255.255.255.224
!
interface Ethernet0/0
 ip address 206.165.200.235 255.255.255.224
!
interface Virtual-Template1 type tunnel
 ip unnumbered Ethernet0/0
 ip mtu 1000
 tunnel source Ethernet0/0
 tunnel mode ipsec ipv4
 tunnel protection ipsec profile vi
!

To initiate a connection between the initiator and the responder, enter the following command at the initiator's CLI:

ping 206.165.200.230 source 206.165.200.226
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 206.165.200.230, timeout is 2 seconds:
Packet sent with a source address of 206.165.200.226
%IKEV2-5-OSAL_INITIATE_TUNNEL: Received request to establish an IPsec tunnel; local traffic
IKEV2-SA_UP: SA UP
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms

Enter the following `show` command in an Easy VPN server to display the session details:

```
show crypto session
Crypto session current status
Interface: Virtual-Access2
Session status: UP-ACTIVE
Peer: 206.165.200.227 port 500
IKEv2 SA: local 206.165.200.235/500 remote 206.165.200.227/500 Active
IPSEC FLOW: permit ip 206.165.200.229/255.255.255.224 206.165.200.233/255.255.255.224
Active SAs: 2, origin: crypto map
```

```
show crypto ikev2 sa detail
Tunnel-id Local Remote fvrf/ivrf Status
 1 206.165.200.235/500 206.165.200.227/500 (none)/(none) READY
Life/Active Time: 86400/8 sec
CE id: 1001, Session-id: 1
Status Description: Negotiation done
Local spi: 305F610F57428834 Remote spi: D9D183B5689AEDCD
Local req mag id: 0 Remote req mag id: 2
Local next mag id: 0 Remote next mag id: 2
Local req queued: 0 Remote req queued: 2
Local window: 5 Remote window: 5
DPD configured for 0 seconds, retry 0
NAT-T is not detected
```

```
show crypto route
VPN Routing Table: Shows RRI and VTI created routes
Codes: RRI - Reverse-Route, VTI- Virtual Tunnel Interface
S - Static Map ACLs
Routes created in table GLOBAL DEFAULT
206.165.200.233/255.255.255.224 [1/0] via 206.165.200.227 tag 0
  on Virtual-Access2 RRI
```

Example: Configuring IPsec Using sVTI-Based IKEv2 Peers

The following example shows how to configure IPsec using the preshared key authentication method between an sVTI IKEv2 initiator and an sVTI IKEv2 responder. The initiator configuration is as follows:

```
crypto ikev2 proposal prop-1
  encryption aes-cbc-128
  integrity sha1
  group 14
!
crypto ikev2 policy pol-1
  match fvrf any
  proposal prop-1
!
crypto ikev2 keyring v2-kr1
  peer abc
  address 209.165.200.225
  pre-shared-key abc
```
crypto ikev2 profile prof
 match fvrf any
 match identity remote address 209.165.200.231 255.255.255.224
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1
!

crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac
!
crypto ipsec profile ipsecprof
 set transform-set trans
 set ikev2-profile prof
!

interface Loopback0
 ip address 209.165.200.226 255.255.255.224
!

interface Tunnel0
 ip address 10.0.0.1 255.255.255.0
 tunnel source 209.165.200.231
 tunnel mode ipsec ipv4
 tunnel destination 209.165.200.225
 tunnel protection ipsec profile ipsecprof
!
interface Ethernet0/0
 ip address 209.165.200.231 255.255.255.224
!
 ip route 209.165.200.229 255.255.255.224 Tunnel0
!

The responder configuration is as follows:

crypto ikev2 proposal prop-1
 encryption aes-cbc-128
 integrity sha1
 group 14
!
crypto ikev2 policy pol-1
 match fvrf any
 proposal prop-1
!
crypto ikev2 keyring v2-kr1
 peer abc
 address 209.165.200.231
 pre-shared-key abc
!
!
crypto ikev2 profile prof
 match fvrf any
 match identity remote address 209.165.200.231 255.255.255.224
 authentication local pre-share
 authentication remote pre-share
 keyring v2-kr1
!

crypto ipsec transform-set trans esp-aes-cbc-128 esp-sha-hmac
!
crypto ipsec profile ipsecprof
 set transform-set trans
 set ikev2-profile prof
!
crypto map cmap 1 ipsec-isakmp dynamic dmap
!
interface Loopback0
 ip address 209.165.200.230 255.255.255.224
!
interface Tunnel0
 ip address 10.0.0.2 255.255.255.0
 tunnel source 209.165.200.225
 tunnel mode ipsec ipv4
 tunnel destination 209.165.200.231
 tunnel protection ipsec profile ipsecprof
!
interface Ethernet0/0
 ip address 209.165.200.231 255.255.255.224
!
ip route 209.165.200.233 255.255.255.224 Tunnel0

With sVTI on IKEv2 peers, the session is initiated only when the sVTI interfaces are enabled. In other words, network traffic is not required to initiate the session. To verify the traffic between the initiator and the responder, enter the following command at the initiator's CLI:

```
ping 209.165.200.230 source 209.165.200.226
```

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 209.165.200.230, timeout is 2 seconds:
Packet sent with a source address of 209.165.200.226
%IKEV2-5-OSAL_INITIATE_TUNNEL: Received request to establish an IPsec tunnel; local traffic
remote traffic selector = Address Range: 209.165.200.230-209.165.200.23 Protocol: 1 Port
Range: 0-65535
%IKEV2-5-SA_UP: SA UP
.
Success rate is 80 percent (4/5), round-trip min/avg/max = 8/11/12 ms

Enter the following `show` command in the initiator's CLI to display the session details:

```
show crypto session
```

Crypto session current status
Interface: Ethernet0/0
Session status: UP-ACTIVE
Peer: 209.165.200.225 port 500
IKEv2 SA: local 209.165.200.231/500 remote 209.165.200.225/500 Active
IPSEC FLOW: permit ip 0.0.0.0/0.0.0.0 0.0.0.0/0.0.0.0
Active SAs: 2, origin: crypto map

```
show crypto ikev2 sa detailed
```

<table>
<thead>
<tr>
<th>Tunnel-id</th>
<th>Local</th>
<th>Remote</th>
<th>fvrf/ivrf</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>209.165.200.231/500</td>
<td>209.165.200.225/500</td>
<td>(none)/(none)</td>
<td>READY</td>
</tr>
</tbody>
</table>

Life/Active Time: 86400/21 sec
CE id: 1002, Session-id: 2
Status Description: Negotiation done
Local spi: 687752902752A6FD Remote spi: C9DCCFC65493D14F
Local id: smap-initiator Remote id: dmap-responder
Local req mag id: 2 Remote req mag id: 0
Local next mag id: 2 Remote next mag id: 0
Local req queued: 2 Remote req queued: 0
Local window: 5 Remote window: 5
DPD configured for 0 seconds, retry 0
NAT-T is not detected
Example: Configuring IKEv2 on DMVPN Networks

DMVPN uses a tunnel protection CLI that is identical between IKEv1 and IKEv2. The IPsec profile applied on a DMVPN tunnel only refers to an IKEv2 profile. The DMVPN Hub configuration is as follows:

```plaintext
crypto ikev2 keyring cisco-ikev2-keyring
pair dmvpn-node
description symmetric pre-shared key for the hub/spoke
address 0.0.0.0 0.0.0.0
pre-shared-key cisco123
crypto ikev2 profile cisco-ikev2-profile
keyring cisco-ikev2-keyring
authentication pre-shared
match local address 0.0.0.0
crypto ipsec profile cisco-ipsec-ikev2
set transform-set cisco-ts
set ikev2-profile cisco-ikev2-profile

interface Tunnel 0
description This is the Legacy IKEV1 facing tunnel on the hub
ip address 1.1.1.99 255.255.255.0
no ip redirects
ip nhrp map multicast dynamic
ip nhrp network-id 99
ip nhrp redirect
no ip split-horizon eigrp 1
tunnel source Ethernet0/0
tunnel mode gre multipoint
tunnel protection ipsec profile cisco-ipsec

interface Tunnel1
description This would be the new IKEv2 facing tunnel on the hub
ip address 2.2.2.99 255.255.255.0
no ip redirects
ip nhrp map multicast dynamic
ip nhrp network-id 100
no ip split-horizon eigrp 1
tunnel source Ethernet0/1
tunnel mode gre multipoint
tunnel protection ipsec profile cisco-ipsec-ikev2
```

The IKEv2 configuration is as follows:

```plaintext
crypto ikev2 profile cisco-ikev2-profile
keyring cisco-ikev2-keyring
authentication pre-shared
match local address 0.0.0.0
crypto ipsec profile cisco-ipsec-ikev2
set transform-set cisco-ts
set ikev2-profile cisco-ikev2-profile
interface Tunnel1
ip address 2.2.2.11 255.255.255.0
no ip redirects
ip nhrp map 2.2.2.99 22.22.22.99
ip nhrp map multicast 22.22.22.99
ip nhrp network-id 100 ? Keep this same for all IKEv2 spokes for clarity
ip nhrp nhs 2.2.2.99 ? This points to the hub’s IKEv2 facing interface
tunnel source Ethernet0/1
tunnel mode gre multipoint
tunnel protection ipsec profile cisco-ipsec-ikev2
```
Example: Configuring IKEv2 on DMVPN Networks