Per-Tunnel QoS Support for Multiple Policy Maps (MPOL)

The document explains the support for Per-Tunnel QoS configurations using port-channels (referred to as multiple policy maps (MPOL)) on the Cisco 4000 Series Integrated Services Routers and Cisco ASR 1000 Series Aggregation Routers.

- Prerequisites Per-Tunnel QoS Support for Multiple Policy Maps (MPOL), on page 1
- Information About Per-Tunnel QoS Support for Multiple Policy Maps (MPOL), on page 2
- How to Configure Per-Tunnel QoS Support for Multiple Policy Maps (MPOL), on page 3
- Additional References for Per-Tunnel QoS Support for Multiple Policy Maps (MPOL), on page 6

Prerequisites Per-Tunnel QoS Support for Multiple Policy Maps (MPOL)

The following command must be configured before Per-Tunnel QoS is applied on a port-channel interface as the tunnel source:

```
platform qos port-channel-aggregate port-channel-interface-number
```

If a port-channel is already configured, the above command will fail. This command must be defined *before* configuring the port-channel, else, the following error occurs:

```
Port-channel 1 has been configured with non-aggregate mode already, please use different interface number that port-channel interface hasn't been configured
```

If you encounter the above error you must delete the port-channel and reconfigure the port-channel by using this command.
Information About Per-Tunnel QoS Support for Multiple Policy Maps (MPOL)

Per-Tunnel QoS and Multiple Policy Maps (MPOL)

Per-Tunnel QoS offers the ability to police traffic in a hub-and-spoke environment on a per-spoke basis. Per-Tunnel QoS is configured on a hub router to ensure that the circuit bandwidth in the download direction at the spoke does not go beyond the circuit bandwidth. This is because the aggregate bandwidth on the hub router is significantly higher than the spoke.

However, there are various network designs or configurations that may be considered in the context of the Per-Tunnel QoS feature. One design, which is becoming more prevalent in today’s networks, is sourcing tunnels on these hub routers from port-channel main or subinterfaces.

Supported Configurations

The following table lists MPOL configurations and the releases in which the support is available:

<table>
<thead>
<tr>
<th>MPOL Configurations</th>
<th>On Cisco ASR 1000 Series</th>
<th>On Cisco 4000 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPOL with tunnel sourced from port-channel main interface</td>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>Cisco IOS XE Everest 16.6.1</td>
</tr>
<tr>
<td>MPOL with tunnel sourced from port-channel sub-interface</td>
<td>Cisco IOS XE 3.16.4S/Cisco IOS XE Everest 16.4.1</td>
<td>Cisco IOS XE Everest 16.6.1</td>
</tr>
<tr>
<td>MPOL with tunnels sourced from different port-channel sub-interfaces of the same port-channel main interface</td>
<td>Cisco IOS XE Denali 16.3.6/Cisco IOS XE Everest 16.6.3/Cisco IOS XE Fuji 16.8.1</td>
<td>Cisco IOS XE Everest 16.6.1</td>
</tr>
<tr>
<td>MPOL with two tunnels in different VRF’s sourced from the same port-channel sub-interface in a third VRF</td>
<td>Cisco IOS XE 3.16.4S/Cisco IOS XE Everest 16.4.1</td>
<td>Cisco IOS XE Everest 16.6.1</td>
</tr>
</tbody>
</table>

Components in MPOL

Before configuring MPOL, it is important to understand each component in reference to the broader solution thereby helping in understanding the supported and recommended configurations in each component.

Class Maps

Class maps segment traffic to match the Differentiated Services Code Point (DSCP) profile supported by the service provider. You mark traffic on ingress to any number of DSCP that are supported in your enterprise network. Alternatively, these markings could be available from a LAN device, which handles the marking for the site. However, on egress of the tunnel, the markings must be grouped into a set of DSCP supported by the class model defined by the ISP for the customer (4-class, 8-class, etc.).
Policy Maps

Child policy map provide a common queuing policy to each spoke. This policy map groups the DSCP into a smaller subset of classes and provide queuing definition as well as sets the tunnel DSCP for egress marking.

Per-Spoke Policy Maps

Policy maps are applied to each spoke based on NHRP group registration. These policy maps are defined according to the download speeds at the spokes. Typically, the policy maps may be grouped into a select number of values and a policy map exists for each value. It is within these values that a child policy map is nested to provide queuing in the context of the policed rate.

Traffic Shaping

A *Flat* policy map is used for shaping traffic that is applied on the parent WAN interface. This WAN interface acts as the tunnel source (in our case, a port-channel interface of some type). This shaper ensures that the egress shaped rate outbound from the hub router does not exceed the specified upload speed.

How to Configure Per-Tunnel QoS Support for Multiple Policy Maps (MPOL)

Setting Up MPOL Components

Configuring Policy Maps

```
policy-map WAN
  class INTERACTIVE-VIDEO
    bandwidth remaining percent 30
    random-detect dscp-based
    set dscp tunnel af41
  class STREAMING-VIDEO
    bandwidth remaining percent 10
    random-detect dscp-based
    set dscp tunnel af31
  class NET-CTRL
    bandwidth remaining percent 5
    set dscp tunnel cs6
  class CALL-SIGNALING
    bandwidth remaining percent 4
    set dscp tunnel af21
  class CRITICAL-DATA
    bandwidth remaining percent 25
    random-detect dscp-based
    set dscp tunnel af21
  class SCAVENGER
    bandwidth remaining percent 1
    set dscp tunnel af11
  class VOICE
    priority level 1
    police cir percent 10
    set dscp tunnel ef
  class class-default
```
Applying Policy Maps to Spoke

```
policy-map RS-GROUP-300MBPS-POLICY
class class-default
  shape average 300000000
  bandwidth remaining ratio 300
  service-policy WAN
```

Applying Shaping

```
policy-map TRANSPORT-1-SHAPE-ONLY
  class class-default
  shape average 600000000
```

Enabling MPOL

The recommended configuration order for enabling MPOL is as follows:

1. Define the routers to use QoS on the port-channel interface that will be configured
2. Define policy shaper.
3. Define the port-channel interface and subinterface and apply the policy shaper.
4. Define class maps to match the ingress traffic or DSCP for egress marking.
5. Define the child policy map for queuing definition and setting the tunnel DSCP.
6. Define the per-spoke policy maps to shape traffic on each spoke based on NHRP group registration and nest the child policy map in each spoke.
7. Apply the per-spoke policy-maps to the tunnel interfaces and define the tunnel source to be the port-channel main or subinterface.

```
platform qos port-channel-aggregate <#>
policy-map TRANSPORT-1-SHAPE-ONLY
  class class-default
  shape average 600000000
  interface Port-channel1
  interface Port-channel1.10
  ... service-policy output TRANSPORT-1-SHAPE-ONLY
  interface Tunnel100
  nhrp map group SPOKE-10MBPS service-policy output SPOKE-POLICE-10MBPS
  ... tunnel source Port-channel1.10
```

Verifying MPOL Configuration

After configuring MPOL, use the following commands to verify that the NHRP group is attached to the respective peer and to display the active policy:

- show dmvpn detail
- show policy-map
Router# show dmvpn detail

Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete
N - NATed, L - Local, X - No Socket
T1 - Route Installed, T2 - Nexthop-override
C - CTS Capable, I2 - Temporary
Ent --> Number of NHRP entries with same NBMA peer
NHS Status: E --> Expecting Replies, R --> Responding, W --> Waiting
UpDn Time --> Up or Down Time for a Tunnel

==
Interface Tunnel10 is up/up, Addr. is 172.17.10.1, VRF ""
Tunnel Src./Dest. addr: 192.168.10.1/MGRE, Tunnel VRF "IWAN-TRANSPORT-MPLS"
Protocol/Transport: "multi-GRE/IP", Protect "IWAN-TRANSPORT-MPLS"
Interface State Control: Disabled
nhrp event-publisher : Disabled
Type:Hub, Total NBMA Peers (v4/v6): 2

Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb Target Network
----- --------------- --------------- ----- -------- ----- -----------------
1 192.168.10.3 172.17.10.3 UP 00:00:08 D 172.17.10.3/32

NHRP group: RS-GROUP-30MBPS
Output QoS service-policy applied: RS-GROUP-30MBPS-POLICY

Router# show policy-map multipoint tunnel 10

Interface Tunnel10 <--> 192.168.10.3
Service-policy output: RS-GROUP-30MBPS-POLICY
Class-map: class-default (match-any)
 122 packets, 14444 bytes
 30 second offered rate 1000 bps, drop rate 0000 bps
 Match: any
 Queueing
 queue limit 124 packets
 (queue depth/total drops/no-buffer drops) 0/0/0
 (pkts output/bytes output) 117/21166
 shape (average) cir 30000000, bc 120000, be 120000
 target shape rate 30000000
 bandwidth remaining ratio 300
Service-policy : WAN
Class-map: INTERACTIVE-VIDEO (match-all)
 0 packets, 0 bytes
 30 second offered rate 0000 bps, drop rate 0000 bps
 Match: dscp af41 (34)
 Queueing
 queue limit 124 packets
 (queue depth/total drops/no-buffer drops) 0/0/0
 (pkts output/bytes output) 0/0
 bandwidth remaining 30%
 Exp-weight-constant: 4 (1/16)
 Mean queue depth: 0 packets
 dscp Transmitted Random drop Tail drop Minimum
 Maximum Mark pkts/bytes pkts/bytes pkts/bytes thresh
 thresh prob
QoS Set
dscp tunnel af41
Marker statistics: Disabled
Additional References for Per-Tunnel QoS Support for Multiple Policy Maps (MPOL)

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Security commands</td>
<td>• Cisco IOS Security Command Reference Commands A to C</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands D to L</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands M to R</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Security Command Reference Commands S to Z</td>
</tr>
<tr>
<td>Per-Tunnel QoS</td>
<td>Per-Tunnel QoS for DMVPN</td>
</tr>
<tr>
<td>Cisco Intelligent WAN Deployment Guide</td>
<td>Cisco Validated Design Intelligent WAN Deployment Guide</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td></td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies. Access to most tools on the Cisco</td>
<td></td>
</tr>
<tr>
<td>Support and Documentation website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>