THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2016 Cisco Systems, Inc. All rights reserved.
CONTENTS

Chapter 1
Read Me First 1

Chapter 2
Configuring SAF 3

- Finding Feature Information 3
- Prerequisites for Cisco SAF 3
- Restriction for Cisco SAF 4
- Information About Cisco SAF 4
 - Cisco SAF Overview 4
 - Cisco SAF Forwarder Overview 4
 - Cisco SAF Client Overview 5
 - External Cisco SAF Client using XMCP Overview 6
 - Cisco SAF Service Identifier Number Formats 7
 - Cisco SAF and Role of Domains in a Network 7
 - Cisco SAF Virtual Routers 8
 - Cisco SAF Neighbor Relationships 8
 - Benefits of Cisco SAF 8
How to Configure a Cisco SAF Forwarder 10

 - Enabling Cisco SAF 10
 - Configuring Interface-Specific Commands for Cisco SAF 11
 - Configuring Cisco SAF for Multi-Topology Networks 13
 - Configuring Static Neighbor Relationships for Cisco SAF 14
 - Configuring Stub Routing for Cisco SAF 16
 - Configuring Route Authentication for Cisco SAF 17
 - Configuring Logs for Neighbor Changes and Warnings 20
 - Configuring the Percentage of Link Bandwidth Used for Cisco SAF 22
 - Setting Metric Dampening Intervals for Cisco SAF Interfaces 23
 - Change-based Dampening Configuration 24
 - Interval-based Dampening Configuration 25
CHAPTER 3
Configuring Extensible Messaging Control Protocol 49
Finding Feature Information 49
Prerequisite for XMCP 50
Information About XMCP 50
How to Configure XMCP 50
Configuring a Basic XMCP Server 51
Configuring an Advanced XMCP Server 52
Displaying XMCP Client and Server Information 55
Configuration Example for XMCP 56
Example: Configuring an XMCP Server and Cisco SAF Forwarder 56
Additional References 56
Feature Information for XMCP 57
Additional References 78
Feature Information for Capabilities Manager 79
Read Me First

Important Information about Cisco IOS XE 16

Effective Cisco IOS XE Release 3.7.0E (for Catalyst Switching) and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

Note

The Feature Information table in the technology configuration guide mentions when a feature was introduced. It might or might not mention when other platforms were supported for that feature. To determine if a particular feature is supported on your platform, look at the technology configuration guides posted on your product landing page. When a technology configuration guide is displayed on your product landing page, it indicates that the feature is supported on that platform.
CHAPTER 2

Configuring SAF

- Finding Feature Information, page 3
- Prerequisites for Cisco SAF, page 3
- Restriction for Cisco SAF, page 4
- Information About Cisco SAF, page 4
- How to Configure a Cisco SAF Forwarder, page 10
- How to Configure a Cisco SAF External Client, page 31
- How to Display Cisco SAF Statistics, page 34
- How to Delete Information from a Cisco SAF Configuration, page 39
- Configuration Examples for Cisco SAF, page 40
- Additional References, page 44
- Feature Information for Cisco SAF, page 45

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Cisco SAF

- Before configuring Cisco SAF, you should understand the concepts in this guide.
- Before configuring neighbor relationships for Cisco SAF Forwarders located on separate LANs, ensure IP routing is configured between each Cisco SAF Forwarder.
Restriction for Cisco SAF

- Cisco SAF works independently of Cisco EIGRP routing.

Information About Cisco SAF

Cisco SAF Overview

Cisco SAF provides a framework that allows applications to discover the existence, location, and configuration of networked resources within networks. Cisco SAF allows a timely and reliable awareness of the services within networks, as applications advertise and discover services on networks. Service information distributes through a network of Cisco SAF cooperative nodes that assume specific functions to efficiently distribute knowledge of services and facilitate their discovery.

A non-SAF node is any node in a network that does not understand SAF. Non-SAF nodes are called “dark nets” and are required to traverse ISPs. Cisco SAF messages are IP-based and therefore are unaffected by dark nets.

These Cisco SAF cooperative network nodes are grouped into two major functional responsibilities:

- Cisco SAF Forwarder-- Distributes service information through the network and makes these services discoverable by clients in the network
- Cisco SAF Client --Services are advertised and can be discovered

An effective Cisco SAF network requires both roles to be configured.

This section provides the following information:

Cisco SAF Forwarder Overview

A Cisco SAF Forwarder receives services advertised by Cisco SAF Clients, distributes the services reliably through the network, and make services available for Cisco SAF Clients to use. A Cisco SAF Forwarder:

- Ensures reliable delivery of service advertisements
- Maintains knowledge of path redundancy
- Is scalable
- Minimizes the use of network bandwidth by using targeted multicast and unicast messages.

The Cisco SAF Forwarder can propagate service advertisements to other Cisco SAF Forwarders and can propagate across a LAN, campus network, WAN, or ISP.

A basic Cisco SAF Forwarder provides the relationship between Cisco SAF Clients and the framework. A Cisco SAF Forwarder is normally located at the edges or boundaries of a network. The Cisco SAF Forwarder receives service advertisements and stores a copy before forwarding the advertisement to its neighbor SAF nodes. The Client and forwarder relationship is to maintain the advertisement. If a Client removes a service or disconnects from the forwarder node, the node will inform the framework about the services that are no
longer available. When the forwarder node receives advertisements from other forwarder nodes, it will keep a copy of the entire advertisement (Header and opaque data) and forward to other SAF peers.

You can configure a Cisco SAF Forwarder on a LAN to automatically allow dynamic discovery of services to all enabled interfaces, and at the same time, specify interfaces (static configuration) you want blocked to other interfaces attempting to discover their services.

The Cisco SAF Forwarder can send service metadata to its SAF neighbor nodes. Metadata is XML information, and service data is information that a server communicates to a client about itself. The service metadata does not propagate in mixed environments until such time that the version of EIGRP/SAF is upgraded.

You can configure a Cisco SAF Forwarder across a non-SAF node to automatically allow dynamic discovery of services. For example, Cisco SAF Forwarders join a common peer-group. You can also create static configurations (Unicast) between pairs of Cisco SAF Forwarders.

Note

Multicast routing is required to allow dynamic discovery of services.

Cisco SAF Client Overview

A Cisco SAF Client is a producer (advertises to the network) or consumer of services (requests a service from the network), or both. When a Cisco SAF Client sends a register message to a Cisco SAF Forwarder, it establishes a relationship with the Cisco SAF Forwarder. The Cisco SAF Forwarder uses this register message to obtain a unique handle that distinctly identifies this Cisco SAF Client from others connected to the same forwarder. Only after a Cisco SAF Client registers is it able to advertise (publish) to, or request (subscribe), services. The figure below shows a typical Cisco SAF network.

![Cisco SAF Network Diagram](image)

When advertising a service, a Cisco SAF Client publishes (sends) advertisements to the Cisco SAF Forwarder that contain information about the service it offers. Services are identified by a unique service ID, sub-service ID, and instance ID, and are described by service data. For more information on service identifiers, see "Cisco SAF Service Identifier Number Formats". The Cisco SAF Client can send multiple publish requests, each advertising a distinct service. The Cisco SAF Forwarder advertises all services published by the Cisco SAF Client. The Cisco SAF Client can update an existing service advertisement by sending a new publish request for the same service. The client can also generate an unpublish request, which removes one of its existing service advertisements.
When requesting a service, the Cisco SAFC Client sends a request notification of services using a subscribe request. The subscribe request contains a filter that describes the set of services in which the Cisco SAFC Client is interested. In response to this request, the Cisco SAFForwarder sends the current set of services that match the filter to the Cisco SAFC Client in a series of notify requests. As with a publish request, the Cisco SAFC Client can generate multiple subscribe requests, each with a different filter. The Cisco SAFC Client can also generate an unsubscribe request, which removes one of its existing subscriptions.

Cisco SAFC clients can be internal (existing within a Cisco SAFForwarder) or external (existing on a separate device and communicating with a Cisco SAFForwarder using the XMCP protocol). Internal Cisco SAFC clients include Capabilities Manager (see Configuring Capabilities Manager) and Cisco Unified Communications Manager Express (Cisco Unified CME). External Cisco SAFC clients using XMCP include Cisco Unified Communications Manager.

External Cisco SAFC Client using XMCP Overview

An external Cisco SAFC Client initiates a TCP connection to a Cisco SAFForwarder that has been configured as an XMCP server. Once the TCP connection is established, the client begins an XMCP session over this connection by sending an XMCP register message to the Cisco SAFForwarder.

An XMCP session uses a username and password for security.

- The username is included in requests from the XMCP client (Cisco SAFC Client) to the XMCP server (Cisco SAFForwarder).
- The password is a shared secret that is not sent in requests, but is used by the client to compute a message-integrity value that is appended to the request.

When an XMCP server receives a request, it locates the username attribute in that request and uses it to access its local copy of the password, and then computes its own message-integrity value for the request. If the computations match, then the passwords must match and the request is authenticated, permitting the XMCP client to act as a Cisco SAFC Client. If they do not match, the password is incorrect and the request will be rejected.

Once the XMCP session has been established successfully, the XMCP client may send XMCP publish, unpublish, subscribe, and unsubscribe requests. When the server receives and successfully authenticates these requests, it translates the requests into the equivalent Cisco SAFC Client requests and sends them to the Cisco SAFForwarder. Similarly, Cisco SAFC Client notify requests from the forwarder will be translated into XMCP notify requests and sent to the XMCP client.

Because an external Cisco SAFC Client may lose connectivity to the Cisco SAFForwarder in the event of a network outage, a Cisco SAFForwarder requires periodic verification regarding the liveliness of the Cisco SAFC Client to advertise its services into the Cisco SAF network. In XMCP, this is accomplished by exchanging a liveliness timer between the client and server at the time of registration. The XMCP client is responsible for ensuring that the interval between requests never exceeds this value. An XMCP client has no data (publish or subscribe) to send, so it generates a small keepalive message to refresh the timer on the server.

A Cisco SAFForwarder considers an external Cisco SAFC Client failed if it has not seen an XMCP request from the client in a time period equal to the liveliness timer. When a Cisco SAFForwarder detects that the Cisco SAFC Client has failed, it withdraws the services advertised on behalf of that Cisco SAFC Client from the network and removes any subscriptions that the Cisco SAFC Client had established. As an alternative to waiting for the liveliness timer to expire, a Cisco SAFC Client can be manually unregistered (sending an unregister request to terminate the XMCP session) to gracefully cause a Cisco SAFForwarder to withdraw all services and subscriptions.
Cisco SAF Service Identifier Number Formats

A service is any information that a Cisco SAF Client application wishes to advertise, that can then be used by other Cisco SAF Client applications. A service advertisement consists of service data. Service advertisements are propagated between forwarders using header data. Cisco SAF Clients that are interested in a service receive, and may inspect, service header and service data.

A service identifier number uniquely identifies the service on a network. The following example shows the format of a service identifier number:

service:sub-service:instance.instance.instance.instance

The service identifier is a 16-bit decimal identifier for the major service being advertised. A major service refers to a specific technology area, such as Cisco Unified Communications (UC). Service identifiers are assigned by Cisco to various customers requiring an SAF client.

The following example shows the service ID values for IP Everywhere and Cisco Unified Communications:

Cisco Defined Numbers

| SAF_SERVICE_ID_IPE | 100 | IP Everywhere |
| SAF_SERVICE_ID_UC | 101 | Unified Communications |

The sub-service identifier is a 16-bit decimal identifier for the minor service being advertised. A sub-service (also referred to as a minor service) refers to the type of service within a technology. For example, within UC:

- Sub-service 1 is TDM gateway.
- Sub-service 2 is hosted-DN.
- Instance identifies a specific service advertisement for this kind of service. For example, service identifier 101:1:abcd.1234.ef.678 could be an advertisement of a UC (service 101) TDM gateway (sub-service 1) announced by the Communications Manager cluster in a certain location (instance abcd.1234.ef.678).

The instance identifier is a unique 128-bit number that identifies the specific service advertised.

Client teams define the use of sub-service and instance values for their applications. Clients must ensure instance uniqueness within a Cisco SAF domain.

Cisco SAF and Role of Domains in a Network

As the variety and number of network services grows, providing timely and reliable awareness of these services starts to play a more significant role in increasing productivity and efficiency. One of the biggest challenges in propagating service availability awareness over a WAN is one of scalability. As networks grow, the services offered by the devices on these networks increases. Protocols responsible for the service advertisement need to scale to handle this increased load. These protocols also need to react to rapid changes efficiently and propagate the new information in a timely manner.

Cisco SAF is designed to be a scalable solution for enterprise service locations and is capable of spanning LAN and WAN internet segments. As an enterprise solution, you can configure Cisco SAF to use domains to scale for very large networks. Just as Cisco Enhanced Interior Gateway Routing Protocol (EIGRP) defines the concept of an autonomous system in which routes can be searched for in a hierarchical manner, Cisco SAF employs the similar concept of a domain and sub-domains.

Cisco SAF provides a dynamic peer discovery and service advertisement propagation technique known as IP multicast. IP multicast requires the cooperation of IP Cisco SAF Forwarders (the devices that connect IP subnets together to form intranets). IP multicasting, however, may not be completely implemented across
some intranets. In the absence of IP multicasting, Cisco SAF operates within the configured subnet, or within the groups of subnets over which IP multicast is supported.

Cisco SAF Forwarders offer two primary types of administrative domains (AD); a domain and a subdomain. A domain and a subdomain function the same with one notable exception; subdomains do not form unique neighbor relationships, but instead rely on a single peering.

Ideally, a network would only require a single domain to use for advertising all services. However, due to scaling and policy issues, some networks require the creation of multiple domains. The recommendation is to use a single domain. Consider using multiple domains when:

- More than 30,000 services are registered in a single domain
- Logical grouping of services is needed to restrict propagation of services

Closed groups are needed to prevent users from browsing services they are not allowed to access.

Service redistribution allows different domains to exchange service information. Services may need to be bound to specific areas of the network, or the number of services in a given network may need to be limited. If you cannot use a single domain, service advertisement redistribution might be the solution.

Each domain on a network is separated into an administrative domain (AD). All Cisco SAF Forwarders in the same AD (running the same domain) have complete knowledge of the entire AS. A Cisco Forwarder that connects two (or more) administrative domains is known as a border Forwarder. A border Forwarder advertises service information from one AS to another AS. Proper design should also be considered if multiple border Forwarders are used to avoid loops (information learned from one AD being sent back to the same AD).

Cisco SAF Virtual Routers

Cisco EIGRP Service-Family Support extends the named configuration to allow configuration of multiple instances, which operate independently. The addition of a Virtual Router ID (VRID) to the base Cisco EIGRP packet encoding allows for multiple instances.

As each virtual router is created, a VRID is assigned to the top level router and shared with the address families and service families that are configured under it.

Cisco SAF Neighbor Relationships

Cisco SAF Forwarders can operate in networks that do not have routers that support the Cisco SAF Forwarder protocol. These networks are referred to as “dark nets.” There are two methods for configuring Cisco SAF Forwarders over IP networks that do not support Cisco SAF (IP clouds); unicast Cisco SAF neighbors and multicast Cisco SAF neighbors.

You can use a unicast configuration to provide a reliable point-to-point adjacency with neighbors. As the number of Cisco SAF Forwarders increases, you can use multicast to provide an efficient transport between multiple Cisco SAF neighbors. A single IP multicast group address can be used for multiple Cisco SAF neighbors to exchange SAF information in a peer-group.

Benefits of Cisco SAF

Traditionally, to locate services on a network, network applications must be configured with the hostname and the network address of the desired service or must use an overlay mechanism such as DNS. Existing
protocols that support service advertisement provide periodic-based announcements of resource utilization. These network services are typically LAN-based.

The figure below shows a Cisco Unified Communications Manager network requiring a traditional configuration methodology.

Cisco SAF provides a framework that allows networking applications to automatically discover the existence, location, and configuration of networked services within networks. This automated discovery of services replaces the manual entry of complex configurations such as dial plans, that often require repetitive configuration changes. Cisco SAF also allows applications to advertise and discover their services. Cisco SAF allows you to create a configuration once, and then have it propagate to all devices that require the information.

The figure below shows a Cisco Unified Communications Manager network using Cisco SAF.
You can configure a Cisco SAF Client either on the same router as the Cisco SAF Forwarder or on an external router.

How to Configure a Cisco SAF Forwarder

Enabling Cisco SAF

To enable Cisco SAF and create a Cisco SAF service-discovery process, use the following commands:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp virtual-instance-name`
4. `service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`
5. `exit-service-family`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>router eigrp virtual-instance-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router eigrp saf</td>
</tr>
<tr>
<td></td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>service-family [ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# service-family ipv4 autonomous-system 4453</td>
</tr>
<tr>
<td></td>
<td>Enables a Cisco SAF service family for the specified autonomous system on the router.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit-service-family</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router-sf)# exit-service-family</td>
</tr>
<tr>
<td></td>
<td>Exits service-family configuration mode.</td>
</tr>
</tbody>
</table>

Configuring Interface-Specific Commands for Cisco SAF

Cisco SAF provides an inheritance precedence for interface-specific commands. Configurations made in sf-interface configuration mode have priority over specific sf-interface and factory default configurations. To configure interface-specific commands under the service-family for Cisco SAF, use the following commands:
SUMMARY STEPS

1. enable
2. configure terminal
3. router eigrp virtual-instance-name
4. service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number
5. sf-interface interface-name interface-number
6. sf-interface
7. exit-sf-interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>router eigrp virtual-instance-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router eigrp saf</td>
</tr>
<tr>
<td></td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>service-family {ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# service-family ipv4 autonomous-system 4453</td>
</tr>
<tr>
<td></td>
<td>Creates a Cisco SAF service family for the specified autonomous system on the router, which is enabled by default.</td>
</tr>
<tr>
<td>Step 5</td>
<td>sf-interface interface-name interface-number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router-sf)# sf-interface ethernet 0/0</td>
</tr>
<tr>
<td></td>
<td>Enables service-family interface configuration mode for the specified interface on the router.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 6 | sf-interface

Example:
```
Router(config-router-sf-interface)# sf-interface
hello-interval 10
```
Enter the appropriate *interface* commands required for your configuration.

Step 7 | exit-sf-interface

Example:
```
Router(config-router-sf-interface)#
exit-sf-interface
```
Exits service-family interface configuration mode.

Configuring Cisco SAF for Multi-Topology Networks

Use the following configuration to register clients and publish or subscribe services into a named topology. If you configure a second topology using an existing topology name, but with a different ID, it will replace the existing topology, rather than create two IDs for the same topology.

To configure Cisco SAF for multi-topology networks, use the following commands:

SUMMARY STEPS

1. enable
2. configure terminal
3. router eigrp virtual-instance-name
4. service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number
5. topology base
6. exit-sf-topology

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable

Example:
```
Router> enable
```
Enables privileged EXEC mode.

- Enter your password if prompted.
Configuring Static Neighbor Relationships for Cisco SAF

Use the following commands to configure static neighbor adjacencies between Cisco SAF Forwarders.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>router eigrp virtual-instance-name</td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# router eigrp saf</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-router)# service-family ipv4 autonomous-system 4453</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>topology base</td>
<td>Enables service-family interface topology configuration mode and creates a topology base for the specified interface on the router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-router-sf)# topology base</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>exit-sf-topology</td>
<td>Exits service-family interface topology configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-router-sf-topology)# exit-sf-topology</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. router eigrp virtual-instance-name
4. service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number
5. neighbor {ip-address {interface-type interface-number} | description word | maximum-service} | maximum-service number [threshold-value] [dampened | reset-time | restart interval | restart-count | warning-only]}
6. exit-service-family

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
* Enter your password if prompted. |
| **Example:** Router> enable | | | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal | |
| **Step 3** router eigrp virtual-instance-name | Enables an EIGRP virtual instance in global configuration mode. |
| **Example:** Router(config)# router eigrp saf | |
| **Step 4** service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number | Enables a Cisco SAF service family for the specified autonomous system on the router. |
| **Example:** Router(config-router)# service-family ipv4 autonomous-system 4453 | |
| **Step 5** neighbor {ip-address {interface-type interface-number} | description word | maximum-service} | Enables a Cisco SAF neighbor relationship for the specified interface on the router. |
| **Example:** Router(config-router-sf)# neighbor 10.10.10.1 Ethernet 0/0 | |
Configuring Stub Routing for Cisco SAF

You can configure a Cisco SAF Forwarder as a stub router. For complete information on Cisco EIGRP stub routing, refer to the Configuring EIGRP module in the *Cisco IOS IP Routing: EIGRP Configuration Guide*.

To create an Cisco SAF stub router, use the following commands:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp` `virtual-instance-name`
4. `service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system number`
5. `eigrp stub` `[receive-only | connected]`
6. `exit-service-family`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 router eigrp <code>virtual-instance-name</code></td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router eigrp saf</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables a Cisco SAF service family for the specified autonomous system on the router.</td>
</tr>
<tr>
<td>service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# service-family ipv4 autonomous-system 4453</td>
</tr>
<tr>
<td>Step 5</td>
<td>Configures a stub router for Cisco SAF.</td>
</tr>
<tr>
<td>eigrp stub [receive-only</td>
<td>connected]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router-sf)# eigrp stub connected</td>
</tr>
<tr>
<td>Step 6</td>
<td>Exits service-family configuration mode.</td>
</tr>
<tr>
<td>exit-service-family</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router-sf)# exit-service-family</td>
</tr>
</tbody>
</table>

Configuring Route Authentication for Cisco SAF

Cisco SAF route authentication provides Message Digest 5 (MD5) authentication of routing updates from the routing protocol. The MD5 keyed digest in each packet prevents the introduction of unauthorized or false routing messages from unapproved sources. To configure route authentication for Cisco SAF, use the following commands:
SUMMARY STEPS

1. enable
2. configure terminal
3. router eigrp virtual-instance-name
4. service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number
5. sf-interface interface-name interface-number
6. authentication key-chain name-of-chain
7. authentication mode {hmac-sha-256 {0 | 7} password | md5}
8. exit-sf-interface
9. exit-service-family
10. exit
11. key-chain name-of-chain
12. key key-id
13. key-string text
14. accept-lifetime start-time [local {duration seconds | end-time | infinite}]
15. send-lifetime start-time [local {duration seconds | end-time | infinite}]
16. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>router eigrp virtual-instance-name</td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# router eigrp saf</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-router)# service-family ipv4 autonomous-system 4453</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td><code>sf-interface interface-name interface-number</code></td>
<td>Enables IPv4 service-family interface configuration mode for the specified interface on the router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-router-sf)# sf-interface ethernet 0/0</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>authentication key-chain name-of-chain</code></td>
<td>Specifies an authentication key chain for EIGRP.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-router-sf-interface)# authentication key-chain example</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>`authentication mode {hmac-sha-256 {0</td>
<td>7} password</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-router-sf-interface)# authentication mode md5</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>exit-sf-interface</code></td>
<td>Exits service-family interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-router-sf-interface)# exit-sf-interface</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>exit-service-family</code></td>
<td>Exits service-family configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-router-sf)# exit-service-family</code></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>exit</code></td>
<td>Exits router configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-router)# exit</code></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><code>key-chain name-of-chain</code></td>
<td>Defines an authentication key chain needed to enable authentication for routing protocols and enters key-chain configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# key-chain example</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>key key-id</code></td>
<td>Identifies an authentication string for a key.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-keychain)# key example</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 13** | key-string *text*
| Example: | Specifies the authentication string for a key. |
| Router(config-keychain-key)# key-string example | |
| **Step 14** | accept-lifetime *start-time* [local {duration seconds | end-time | infinite}]
| Example: | Set the time period during that the authentication key in a key chain is received as valid. |
| Router(config-router-sf-interface)# accept-lifetime example | |
| **Step 15** | send-lifetime *start-time* [local {duration seconds | end-time | infinite}]
| Example: | Configures a time period during that an authentication key on a key chain is valid to be sent. |
| Router(config-router-sf-interface)# send-lifetime example | |
| **Step 16** | exit
| Example: | Exits service-family interface configuration mode. |
| Router(config-router-sf-interface)# exit | |

Configuring Logs for Neighbor Changes and Warnings

By default, the system logs neighbor adjacency changes to help you monitor the stability of the routing system and detect problems. If you disabled logging of such changes and want to reenable logging, use the following commands:

SUMMARY STEPS

1. enable
2. configure terminal
3. router eigrp *virtual-instance-name*
4. service-family {ipv4 | ipv6} [vrf *vrf-name*] autonomous-system *autonomous-system-number*
5. eigrp log-neighbor-changes
6. eigrp log-neighbor-warnings *seconds*
7. exit-service-family
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router eigrp virtual-instance-name</td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# router eigrp saf</td>
<td></td>
</tr>
<tr>
<td>Step 4 service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number</td>
</tr>
<tr>
<td>Example: Router(config-router)# service-family ipv4 autonomous-system 4453</td>
<td></td>
</tr>
<tr>
<td>Step 5 eigrp log-neighbor-changes</td>
<td>Enables the logging of changes in EIGRP service-family neighbor adjacencies.</td>
</tr>
<tr>
<td>Example: Router(config-router-sf)# eigrp log-neighbor-changes</td>
<td></td>
</tr>
<tr>
<td>Step 6 eigrp log-neighbor-warnings seconds</td>
<td>Enables the logging of changes in service-family warning messages.</td>
</tr>
<tr>
<td>Example: Router(config-router-sf)# eigrp log-neighbor-warnings 60</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit-service-family</td>
<td>Exits service-family configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-router)# exit-service-family</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Percentage of Link Bandwidth Used for Cisco SAF

By default, packets consume a maximum of 50 percent of the link bandwidth, as configured with the `bandwidth interface` configuration command. You may want to change the value if a different level of link utilization is required or if the configured bandwidth does not match the actual link bandwidth (it may have been configured to influence route metric calculations). Use the following commands to configure the percentage of link bandwidth used for Cisco SAF.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp virtual-instance-name`
4. `service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`
5. `sf-interface interface-name interface-number`
6. `bandwidth-percent maximum-bandwidth-percentage`
7. `exit-sf-interface`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 router eigrp virtual-instance-name</td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router eigrp saf</td>
</tr>
<tr>
<td>Step 4 service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# service-family ipv4 autonomous-system 4453</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>sf-interface interface-name interface-number</td>
<td>Enables service-family interface configuration mode for the specified interface on the router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-router-sf)# sf-interface ethernet0/0</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>bandwidth-percent maximum-bandwidth-percentage</td>
<td>Configures the maximum percentage of bandwidth used by the link for Cisco SAF.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-router-sf-interface)# bandwidth-percent 75</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>exit-sf-interface</td>
<td>Exits service-family interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-router-sf-interface)# exit-sf-interface</td>
<td></td>
</tr>
</tbody>
</table>

Setting Metric Dampening Intervals for Cisco SAF Interfaces

Because metric components can be changed rapidly, the frequency of the changes can have an impact on the network. Frequent changes require that prefixes learned though the SAF interface be updated and sent to all adjacencies. This update can result in further updates and in a worst-case scenario, cause network-wide churn. To prevent such effects, metrics can be dampened or thresholds set so that any change that does not exceed the dampening threshold is ignored.

Network changes that cause an immediate update include any change in a metric that results in the router selecting a new nexthop or a down interface or router.

Dampening the metric changes can be configured based on a change or on a time interval.

If the dampening method is:

- Change-based, changes in routes learned though a specific interface or in the metrics for a specific interface will not be advertised to adjacencies until the *computed* metric changes from the last advertised value are significant enough to cause an update to be sent.

- Interval-based, changes in routes learned though a specific interface or in the metrics for a specific interface will not be advertised to adjacencies until the *specified* interval is met or unless the change results in a new route path selection. When the timer expires, routes that have outstanding changes to report are sent. If a route changes and the final metric of the route matches the last updated metric, no updated routes are sent.

Refer to the following sections for information on configuring change-based and interval-based metric dampening parameters.
Change-based Dampening Configuration

Use the following commands to set the maximum change-based dampening percentage for Cisco SAF interfaces.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp virtual-instance-name`
4. `service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`
5. `sf-interface interface-name interface-number`
6. `dampening-change [change-percentage]`
7. `exit-sf-interface`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>router eigrp virtual-instance-name</code></td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# router eigrp saf</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>`service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`</td>
</tr>
<tr>
<td>Example: <code>Router(config-router)# service-family ipv4 autonomous-system 4453</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>sf-interface interface-name interface-number</code></td>
<td>Enables service-family interface configuration mode for the specified interface on the router.</td>
</tr>
<tr>
<td>Example: <code>Router(config-router-sf)# sf-interface ethernet0/0</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td>Purpose</td>
</tr>
<tr>
<td>dampening-change [change-percentage]</td>
<td>Configures the percentage of change in a route learned through an EIGRP service-family interface that causes an update to be advertised to adjacent peers.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router-sf-interface)# dampening-change 50</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Example:</td>
</tr>
<tr>
<td>exit-sf-interface</td>
<td>Exits service-family interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router-sf-interface)# exit-sf-interface</td>
<td></td>
</tr>
</tbody>
</table>

Interval-based Dampening Configuration

Use the following commands to configure the interval-based dampening for Cisco SAF interfaces. The value you configure sets the interval when updates occur for topology changes that affect Cisco SAF interfaces and peers.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp virtual-instance-name`
4. `service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`
5. `sf-interface interface-name interface-number`
6. `dampening-interval [interval]`
7. `exit-sf-interface`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configuration terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configuration terminal</td>
<td></td>
</tr>
</tbody>
</table>
Configuring SAF

Adjusting the Interval Between Hello Packets and the Hold Time

Routing devices periodically send hello packets to each other to dynamically learn of other routers on their directly attached networks. This information is used to discover neighbors and to learn when neighbors become unreachable or inoperative.

By default, hello packets are sent every 5 seconds. The exception is on low-speed, nonbroadcast multiaccess (NBMA) media on which the default hello interval is 60 seconds. Low speed is considered to be a rate of T1 or slower as specified in the `bandwidth interface` configuration command. The default hello interval remains at 5 seconds for high-speed NBMA networks. Note that for the purposes of Frame Relay and Switched Multimegabit Data Service (SMDS), networks may or may not be considered to be NBMA. These networks are considered NBMA if the interface has not been configured to use physical multicasting; otherwise they are not considered NBMA.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>router eigrp virtual-instance-name</code></td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router eigrp saf</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>`service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# service-family ipv4 autonomous-system 4453</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>sf-interface interface-name interface-number</code></td>
<td>Enables service-family interface configuration mode for the specified interface on the router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router-sf)# sf-interface ethernet0/0</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>dampening-interval [interval]</code></td>
<td>Sets the EIGRP interval-based dampening interval.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router-sf-interface)# dampening-interval 30</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>exit-sf-interface</code></td>
<td>Exits service-family interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router-sf-interface)# exit-sf-interface</td>
<td></td>
</tr>
</tbody>
</table>
The hold time is advertised in hello packets and indicates to neighbors the length of time they should consider the sender valid. The default hold time is three times the hello interval, or 15 seconds. For slow-speed NBMA networks, the default hold time is 180 seconds. On congested and large networks, the default hold time might not be sufficient time for all routers to receive hello packets from their neighbors. In this case, you may want to increase the hold time. Do not adjust the hold time without advising your technical support personnel. To change the hold time on a specific interface for a particular routing process designated by the autonomous system number, use the **hold time** command.

You can adjust the interval between hello packets and the hold time. To change the interval between hello packets and the hold time, use the following commands in interface configuration mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. router eigrp virtual-instance-name
4. service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number
5. sf-interface interface-name interface-number
6. hello-interval seconds
7. hold-time seconds
8. exit-sf-interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router eigrp virtual-instance-name</td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# router eigrp saf</td>
<td></td>
</tr>
<tr>
<td>Step 4 service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number</td>
</tr>
<tr>
<td>Example: Router(config-router)# service-family ipv4 autonomous-system 4453</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 5

sf-interface *interface-name interface-number*

Purpose

Enables service-family interface configuration mode for the specified interface on the router.

Example:

Router(config-router-sf)# sf-interface ethernet0/0

Step 6

hello-interval *seconds*

Purpose

Configures a time period for an EIGRP service-family process.

Example:

Router(config-router-sf-interface)# hello-interval 50

Step 7

hold-time *seconds*

Purpose

Configures a time period for an EIGRP service-family routing process designated by an autonomous system number.

Example:

Router(config-router-sf-interface)# hello-interval 50

Step 8

exit-sf-interface

Purpose

Exits service-family interface configuration mode.

Example:

Router(config-router-sf-interface)# exit-sf-interface

Disabling Split Horizon

When split horizon is enabled on an interface, it blocks route information (such as update and query packets) from being advertised by a router out of any interface from which that information originates. Controlling update and query packets in this manner reduces the possibility of routing loops.

This behavior usually optimizes communications among multiple routing devices, particularly when links are broken. However, with nonbroadcast networks (such as Frame Relay and SMDS), situations can arise for which this behavior is less than ideal. For these situations, including networks in which you have Cisco SAF configured, you may want to disable split horizon.

By default, split horizon is enabled on all interfaces. To disable split horizon, use the `no split-horizon` command in interface configuration mode.
SUMMARY STEPS

1. enable
2. configure terminal
3. router eigrp *virtual-instance-name*
4. service-family *(ipv4 | ipv6)* *(vrf vrf-name)* autonomous-system * autonomous-system-number*
5. sf-interface *interface-name* interface-number
6. no split-horizon
7. exit-sf-interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| Example: Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal |
| **Step 3** router eigrp *virtual-instance-name* | Enables an EIGRP virtual instance in global configuration mode. |
| Example: Router(config)# router eigrp saf |
| **Step 4** service-family *(ipv4 | ipv6)* *(vrf vrf-name)* autonomous-system * autonomous-system-number* | Enables a Cisco SAF service family for the specified autonomous system on the router. |
| Example: Router(config-router)# service-family ipv4 autonomous-system 4453 |
| **Step 5** sf-interface *interface-name* interface-number | Enables service-family interface configuration mode for the specified interface on the router. |
| Example: Router(config-router-sf)# sf-interface ethernet0/0 |
| **Step 6** no split-horizon | Disables split-horizon. |
| Example: Router(config-router-sf-interface)# no split-horizon |
Setting Metric Maximum Hops

Maximum hops limits the number of hops a service can propagate to advertise its service. The default number of maximum hops is 100.

To limit the number of hops used to advertise a service, use the following commands:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp virtual-instance-name`
4. `service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`
5. `sf-interface interface-name interface-number`
6. `metric maximum-hops`
7. `exit-sf-interface`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>router eigrp virtual-instance-name</code></td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# router eigrp saf</code></td>
<td></td>
</tr>
</tbody>
</table>
How to Configure a Cisco SAF External Client

This section describes the tasks to configure a Cisco SAF External Client.

Cisco SAF Clients connect to the Cisco SAF network in one of two ways:

- Reside on the same router as a Cisco SAF Forwarder, in which case the Cisco SAF Client uses an internal API to connect to a Cisco SAF Forwarder. See the "Configuring Capabilities Manager" section for more information.

- Is external to a Cisco SAF Forwarder. In this configuration, the SAF Client is referred to as a Cisco SAF External Client, and it requires a protocol interface for connecting to the Cisco SAF Forwarder.

Prerequisites

Before configuring:

- Cisco SAF Clients, you should understand the concepts in the Cisco SAF Client Overview.
Neighbor relationships for Cisco SAF External Clients located on separate LANs, ensure that you have IP routing configured between each Cisco External Client.

Configuring a Cisco SAF External Client

To configure a Cisco SAF External Client, use the following commands:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp virtual-instance-name`
4. `service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`
5. `topology base`
6. `external-client client-label`
7. `exit-sf-topology`
8. `exit-service-family`
9. `exit`
10. `service-family external-client listen {ipv4 | ipv6} tcp_port_number`
11. `external-client client-label basename`
12. `username user-name`
13. `password password-name`
14. `keepalive number`
15. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td><code>router eigrp virtual-instance-name</code></td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# router eigrp saf</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Step 4 service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number</td>
</tr>
<tr>
<td>Example: router(config-router)# service-family ipv4 autonomous-system 4453</td>
<td></td>
</tr>
<tr>
<td>Step 5 topology base</td>
<td>Enables service-family interface topology configuration mode for the specified interface on the router.</td>
</tr>
<tr>
<td>Example: router(config-router-sf)# topology base</td>
<td></td>
</tr>
<tr>
<td>Step 6 external-client client-label</td>
<td>Configures a Cisco SAF External Client with the specified Client label.</td>
</tr>
<tr>
<td>Example: router(config-router-topology)# external-client example</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 7** exit-sf-topology | Exits service-family topology configuration mode.ahasasdasasdasdasdasdasdasdasdasdasdasdasdasdasadasd
Command or Action

Step 11
Purpose
external-client client-label basename
Configures a Cisco SAF External Client with the specified client label and optionally, a basename.
Specifying the *basename* keyword allows SAF external clients to use a naming convention based on the client-label. The naming convention takes the form of *client-label [@[1-1024]]* where you can specify a maximum of 1024 SAF external clients. For example, if the **external-client** command specifies a client label of *example*, then the basename for a SAF external client would be *example@1*. Another SAF external client would be *example@2*, and so on up to a maximum of 1024 basenames (*@1024*).

Example:
Router(config-external-client)# external-client example basename

Step 12
Purpose
username user-name
Enables external-client label configuration mode and configures a Cisco SAF External Client with the specified username.

Example:
Router(config-external-client)# username example

Step 13
Purpose
password password-name
Configures a password for a Cisco SAF External Client. The minimum password length is 11 characters.

Example:
Router(config-external-client-mode)# password examplepass

Step 14
Purpose
keepalive number
(Optional) Specifies the keepalive timer for the Cisco SAF External Client. The keepalive value is in milliseconds (msecs). The default is 9600 msecs.

Example:
Router(config-external-client-mode)# keepalive 360000

Step 15
Purpose
exit
Exits external-client label configuration mode.

Example:
Router(config-external-client-mode)# exit

How to Display Cisco SAF Statistics

To display Cisco SAF statistics, use the following commands in privileged EXEC mode.
SUMMARY STEPS

1. `show service-routing xmcp clients [ip_address | handle] [detail]`
2. `show service-routing xmcp server`
3. `show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number accounting`
4. `show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number clients [detail]`
5. `show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number events [starting-event-number ending-event-number]`
6. `show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number interfaces [interface-type interface-number] [detail]`
7. `show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number subscriptions`
8. `show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number timers`
9. `show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number summary`
10. `show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number zero successors`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>show service-routing xmcp clients [ip_address</td>
<td>handle] [detail]</td>
</tr>
</tbody>
</table>

Example:

Router> show service-routing clients detail

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays information about connected XMCP clients.</td>
<td>show service-routing xmcp clients [ip_address</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 2</th>
<th>show service-routing xmcp server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router> show service-routing xmcp server</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Displays information about clients, external clients, or subscriptions configured for Cisco SAF.</td>
</tr>
</tbody>
</table>

| Step 3 | show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number accounting |
| --- | --- |
| **Example:** | Router# show eigrp service-family ipv4 4453 accounting |
| **Purpose:** | Displays accounting information about Cisco SAF. |

| Step 4 | show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number clients [detail] |
| --- | --- |
| **Example:** | Router# show eigrp service-family ipv4 4453 clients |
| **Purpose:** | Displays information about Cisco SAF Clients. |

| Step 5 | show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number events [starting-event-number ending-event-number] |
| --- | --- |
| **Example:** | Router# show eigrp service-family ipv4 4453 events |
| **Purpose:** | Displays information about Cisco SAF events. |

| Step 6 | show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number interfaces [interface-type interface-number] [detail] |
| --- | --- |
| **Example:** | Router# show eigrp service-family ipv4 4453 interfaces |
| **Purpose:** | Displays information about Cisco SAF interfaces. |

| Step 7 | show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number subscriptions |
| --- | --- |
| **Example:** | Router# show eigrp service-family ipv4 4453 subscriptions |
| **Purpose:** | Displays information about Cisco SAF subscriptions. |

<p>| Step 8 | show eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number timers |
| --- | --- |
| Example: | Router# show eigrp service-family ipv4 4453 timers |
| Purpose: | Displays information about Cisco SAF timers. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 9**
*show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number summary*
Example:
Router# show eigrp service-family ipv4 4453 summary
| Displays summary information about Cisco SAF. |
| **Step 10**
*show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number zero successors*
Example:
Router# show eigrp service-family ipv4 4453 zero successors
| Displays information about Cisco SAF zero successors. |
| **Step 11**
*show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology*
Example:
Router# show eigrp service-family ipv4 4453 topology
| Displays information about the Cisco SAF topology table. |
| **Step 12**
*show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology active*
Example:
Router# show eigrp service-family ipv4 4453 topology active
| Displays only active entries for a Cisco SAF topology table. |
| **Step 13**
*show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology all-links*
Example:
Router# show eigrp service-family ipv4 4453 topology all-links
| Displays all active link entries for a Cisco SAF topology table. |
| **Step 14**
*show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology base service-instance-number | clients [detail]*
Example:
Router# show eigrp service-family ipv4 4453 topology base clients
| Displays all active link entries for a Cisco SAF topology base. |
| **Step 15**
*show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology [detail-links]*
Example:
Router# show eigrp service-family ipv4 4453 topology detail-links
<p>| Displays information about Cisco SAF. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 16** | Displays information about Cisco SAF.
show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology events [starting-event-number ending-event-number]
Example:
Router# show eigrp service-family ipv4 4453 topology |
| **Step 17** | Displays information about Cisco SAF.
show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology pending
Example:
Router# show eigrp service-family ipv4 4453 topology pending |
| **Step 18** | Displays information about the specified service type for a Cisco SAF topology table.
show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology [service-type connected | external | internal | local | redistributed | summary]
Example:
Router# show eigrp service-family ipv4 4453 topology service-type connected |
| **Step 19** | Displays logged Stuck in Active (SIA) events in the Cisco SAF topology table.
show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology sia-events starting-event-number ending-event-number
Example:
Router# show eigrp service-family ipv4 4453 topology sia-events |
| **Step 20** | Displays Stuck in Active (SIA) events for a Cisco SAF topology table.
show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology sia-statistics [ip-address]
Example:
Router# show eigrp service-family ipv4 4453 topology sia-statistics 10.10.10.1 |
| **Step 21** | Displays a summary of a Cisco SAF topology table.
show eigrp service-family {ipv4 | ipv6} [vrf vrf-name]
autonomous-system-number topology summary
Example:
Router# show eigrp service-family ipv4 4453 topology summary |
How to Delete Information from a Cisco SAF Configuration

To delete service-family information from a Cisco SAF configuration, use the following commands in EXEC mode.

SUMMARY STEPS

1. `clear service-family xmcp client {address | handle}`
2. `clear eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number topology zero-successors`
3. `clear eigrp service-family neighbors neighbor-address | interface-type interface-number`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `clear service-family xmcp client {address | handle}` | Disconnects a connected XMCP client.
 Example:
 Router> clear service-family xmcp client 1.1.1.1 |
| Step 2 | `clear eigrp service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system-number topology zero-successors` | Deletes neighbors formed using the IPv4 or IPv6 protocol family for the specified autonomous system. Optionally, you can delete all virtual routing forwarding (VRF) instance tables or a specific VRF table for an IP address.
 Example:
 Router# clear eigrp service-family ipv4 4453 |
 Note Using the `clear eigrp service-family ipv6` command requires an IPv6-enabled SAF client, which currently does not exist. |
| Step 3 | `clear eigrp service-family neighbors neighbor-address | interface-type interface-number` | Deletes neighbors formed using the IPv4 protocol family from the neighbor table. Optionally, you can resynchronize with a peer without an adjacency reset (soft). Optionally, you can delete the interface type and number from the neighbor table that contains all entries learned through this interface.
 Example:
 Router> clear eigrp service-family neighbors Ethernet 0/0 |
Configuration Examples for Cisco SAF

Example: Enabling Cisco SAF

The following example enters router configuration mode, configures a Cisco SAF Forwarder, enables the service-family forwarder process, and configures an autonomous system named 4533.

```
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
```

Example: Configuring Cisco SAF Interfaces

The following example places the router in service-family configuration mode and enables all interfaces.

```
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# sf-interface default
Router(config-router-sf)# no shutdown
```

The following example places the router in service-family configuration mode and enables Ethernet interface 0/0.

```
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# sf-interface ethernet0/0
```

The following example places the router in service-family configuration mode and enables SAF on all interfaces, except the Ethernet0/0 interface.

```
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 3
Router(config-router-sf)# interface default
Router(config-router-sf)# sf-interface ethernet0/0
Router(config-router-sf)# shutdown
```

The following example places the router in service-family configuration mode and enables SAF on the Ethernet2/0 and Ethernet2/1 interfaces and disables all other interfaces.

```
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 2
Router(config-router-sf)# sf-interface default
Router(config-router-sf)# shutdown
Router(config-router-sf)# sf-interface ethernet2/0
Router(config-router-sf)# no shutdown
Router(config-router-sf)# sf-interface ethernet2/1
Router(config-router-sf)# no shutdown
```

Router(config-router-sf)# end
Example: Configuring Cisco SAF Topology

The following examples configures a Cisco SAF topology base.

Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# sf-interface default
Router(config-router-sf-interface)# no shutdown
Router(config-router-sf-interface)# topology base

Example: Configuring Cisco SAF Stub Routing

The following examples configures a Cisco SAF Forwarder as a stub router.

Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# eigrp stub connected

Example: Configuring Cisco SAF with IP-RIP

The following configuration example enables Cisco SAF with IP-RIP routing on network 10.0.0.0.

Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# topology base
Router(config-router-sf-topology)# exit-sf-topology
Router(config-router-sf)# exit service-family
Router(config-router)# router rip
Router(config-router)# network 10.0.0.0

Example: Configuring Cisco SAF with OSPF

The following configuration example enables Cisco SAF with OSPF routing on network 10.0.0.0, area 0.

Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# topology base
Router(config-router-sf-topology)# exit-sf-topology
Router(config-router-sf)# exit service-family
Router(config-router)# router ospf 787
Router(config-router)# network 10.0.0.0 0.0.0.255 area 0

Example: Configuring Cisco SAF with EIGRP

The following configuration example enables Cisco SAF with EIGRP routing on network 10.0.0.0.

Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 6476
Router(config-router-sf)# network 10.0.0.0 0.0.0.255
Router(config-router-sf)# topology base
Router(config-router-sf-topology)# exit-sf-topology
Router(config-router-sf)# exit service-family
There is no requirement to run routing over the same interfaces or networks in which services are distributed, however this could lead to services being distributed to areas where reachability is not guaranteed.

Example: Configuring Cisco SAF Forwarders Located on Separate LANs

The following examples configures two Cisco SAF Forwarders located on separate LANs.

Note

Use loopback mode to configure remote neighbors.

Cisco SAF Forwarder 1:

Router(config)# interface loopback1
Router(config-if)# ip address 10.1.1.1 255.255.255.255
Router(config-if)# exit
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 1
Router(config-router-sf)# neighbor 10.2.2.2 loopback1 remote 10

Cisco SAF Forwarder 2:

Router(config)# interface loopback1
Router(config-if)# ip address 10.2.2.2 255.255.255.255
Router(config-if)# exit
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 1
Router(config-router-sf)# neighbor 10.1.1.1 loopback1 remote 10

Note

This example assumes IP routing is configured between the two routers and the routers can ping both loopbacks.

Configuring a Centralized Cisco SAF Forwarder Example

The following example configures a centralized Cisco SAF Forwarder from which all service advertisements will send to neighbors on IP addresses 10.4.15.5 and 10.4.15.1.

Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# sf-interface loopback0
Router(config-router-sf-interface)# no split-horizon
Router(config-router-sf-interface)# exit-sf-interface
Router(config-router-sf)# topology base
Router(config-router-sf-topology)# exit-sf-topology
Router(config-router-sf)# neighbor 10.4.15.5 Loopback0 remote 20
Router(config-router-sf)# neighbor 10.4.15.1 Loopback0 remote 20
Router(config-router-sf)# exit-service-family
Examples: Configuring a Cisco SAF Client

The following example configures a Cisco SAF External Client named *example*, with a username of *username_example*, a password of *password_example*, and a keepalive setting of 360000 seconds.

```
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# topology base
Router(config-router-sf-topology)# external-client example
Router(config-router-sf-topology)# exit-sf-topology
Router(config-router-router)# exit-service-family
Router(config-router-router)# exit
Router(config)# service-family external-client listen ipv4 3444
Router(config-external-client)# external-client example
Router(config-external-client-mode)# username username_example
Router(config-external-client-mode)# password password_example
Router(config-external-client-mode)# keepalive 360000
```

The following example configures eight Cisco SAF External Clients named *example1* through *example5*, with usernames of *username_example1* through *username_example5*, passwords of *password_example1* through *password_example5*, and keepalive settings of 360000 seconds.

```
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 4533
Router(config-router-sf)# topology base
Router(config-router-sf-topology)# external-client example1
Router(config-router-sf-topology)# external-client example2
Router(config-router-sf-topology)# external-client example3
Router(config-router-sf-topology)# external-client example4
Router(config-router-sf-topology)# external-client example5
Router(config-router-sf-topology)# exit-sf-topology
Router(config-router-router)# exit-service-family
Router(config-router-router)# exit
Router(config)# service-family external-client listen ipv4 3444
Router(config-external-client)# external-client example1
Router(config-external-client-mode)# username username_example1
Router(config-external-client-mode)# password password_example1
Router(config-external-client-mode)# keepalive 360000
Router(config-external-client-mode)# external-client example2
Router(config-external-client-mode)# username username_example2
Router(config-external-client-mode)# password password_example2
Router(config-external-client-mode)# keepalive 360000
Router(config-external-client-mode)# external-client example3
Router(config-external-client-mode)# username username_example3
Router(config-external-client-mode)# password password_example3
Router(config-external-client-mode)# keepalive 360000
Router(config-external-client-mode)# external-client example4
Router(config-external-client-mode)# username username_example4
Router(config-external-client-mode)# password password_example4
Router(config-external-client-mode)# keepalive 360000
Router(config-external-client-mode)# external-client example5
```
Router(config-external-client-mode)# username
username_example5
Router(config-external-client-mode)# password
password_example5
Router(config-external-client-mode)# keepalive
360000

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Service Advertisement Framework commands</td>
<td>Cisco IOS Service Advertisement Framework Technology Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Cisco SAF

Table 1: Feature Information for Cisco Service Advertisement Framework

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Service Advertisement Framework</td>
<td>15.0M, 12.2(33)SRE, 12.2(33)XNE, 15.1T, 12.2(33)SXI4, 15.0(1)S, 15.1(2)S, 12.2(50)SY, 15.2(1)T, 15.2(3)T, 15.2(2)S, 15.1(1)SG</td>
<td>Cisco IOS XE 2.5, Cisco IOS XE 3S, Cisco IOS XE 3.3SG</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Software Releases</td>
<td>Feature Configuration Information</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
</tr>
</tbody>
</table>
| | | This feature allows applications to discover the existence, location, and configuration of networked resources within networks, and provides a timely and reliable awareness of the services within networks, as applications advertise and discover services on networks. This feature was introduced in Cisco IOS Release 15.0M. In Cisco IOS XE 2.5, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. In Cisco IOS XE 3.3 SG, support was added for the Cisco Catalyst 4000 Series Switches. The following commands were introduced in this feature:
 • authentication
 (service-family)
 • bandwidth-percent
 • clear eigrp service-family
 • dampening-change
 • dampening-interval
 • default external-client
 • default (SAF)
 • debug eigrp service-family
 • default-metric (EIGRP)
 • eigrp stub (service-family)
 • exit-service-family
 • exit-sf-interface
 • exit-sf-topology
 • external-client
 • keepalive (SAF)
 • maximum-service (EIGRP)
 • neighbors (service-family) |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Service Advertisement</td>
<td>15.0M, 12.2(33)SRE, 12.2(33)XNE, 15.0(1)S, 15.1(2)S, 15.2(3)T, 15.2(2)S</td>
<td>The following commands were modified in this feature:</td>
</tr>
<tr>
<td>Framework</td>
<td>Cisco IOS XE Release 2.5, Cisco IOS XE Release 3S, Cisco IOS XE Release 3.4S, Cisco IOS XE Release 3.6S</td>
<td>• accept-lifetime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eigrp log-neighbor-changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eigrp-log-neighbor-warnings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• eigrp router-id</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• hello-interval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• hold-time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• key</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• key chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• key-string (authentication)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• metric weights (EIGRP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• next-hop-self</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• send-lifetime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• split-horizon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• timers</td>
</tr>
</tbody>
</table>

The following command was modified in this feature:
- `password (SAF)`
- `service-family`
- `service-family external-client listen`
- `sf-interface`
- `show eigrp service-family`
- `show eigrp service-family ipv4 topology`
- `show eigrp service-family ipv6 topology`
- `show eigrp tech-support`
- `shutdown`
- `topology`
- `username (SAF)`
Feature Configuration Information

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
</table>
| Dynamic Neighbor | 15.1(2)S, 15.2(3)T, 15.2(2)S, XE 3.6S | The following commands were introduced or modified:
 - authentication mode
 - remote-neighbors source
 - show eigrp service-family external-client |
| Capabilities Manager | 15.0(1)SY, 15.2(3)T, 15.2(2)S, XE 3.6S | The following commands were introduced or modified:
 - clear service-routing capabilities-manager
 - service-routing capabilities-manager
 - show service-routing plugins capman
 - show service-routing capabilities-manager internal
 - show service-routing capabilities-manager group |
| XMCP (Extensible Messaging Client Protocol) | 15.2(2)T, 15.2(1)S, 15.2(3)T, 15.2(2)S, XE 3.6S | The following commands were introduced or modified:
 - allow-list
 - clear service-routing xmcp client
 - client (XMCP)
 - domain
 - keepalive (XMCP)
 - max-clients
 - nonce
 - service-routingxmcp clients
 - service-routingxmcp server |
Configuring Extensible Messaging Control Protocol

There are two methods for clients to interact with a service routing-enabled network:

• Through the internal Cisco IOS API for service routing, which is available only for clients implemented within Cisco IOS software

• Through the Extensible Messaging Client Protocol (XMCP), also referred to as the External Client protocol, which is available to any client running anywhere within the network on any platform

Cisco SAF Clients connect to the Cisco SAF network in one of two ways:

• Reside on the same router as a Cisco SAF Forwarder, in which case the Cisco SAF Client uses an internal API to connect to a Cisco SAF Forwarder.

• Be external to a Cisco SAF Forwarder. In this configuration, the SAF Client is referred to as a Cisco SAF External Client, and it requires a protocol interface for connecting to the Cisco SAF Forwarder.

Finding Feature Information, page 49
Prerequisite for XMCP, page 50
Information About XMCP, page 50
How to Configure XMCP, page 50
Configuration Example for XMCP, page 56
Additional References, page 56
Feature Information for XMCP, page 57

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisite for XMCP

- Before configuring XMCP, you should understand the concepts in the "Cisco SAF Overview" section, particularly the “Cisco SAF Client Overview” and “External Cisco SAF Client (XMCP) Overview” sections.
- This section covers configuration of the XMCP server functionality in Cisco IOS software. To configure a specific device or software (such as Cisco Unified Communications Manager) as an XMCP client, refer to the documentation for that device or software. Note that some client documentation may refer to configuring a "client-label". A client-label should be configured with the same identifier as the username.
- Before configuring an XMCP client to connect to a Cisco router configured as an XMCP server, ensure that you have configured IP routing between the client device and the Cisco router.
- Any device configured as an XMCP server should also be configured as a Cisco SAF Forwarder. (See “Configuring a Cisco SAF Forwarder”). You can configure the Cisco SAF Forwarder before or after you configure XMCP.

Information About XMCP

Once the XMCP session has been established successfully, the XMCP client may send XMCP publish, unpublish, subscribe, and unsubscribe requests. When the server receives and successfully authenticates these requests, it translates the requests into the equivalent Cisco SAF Client requests and sends them to the Cisco SAF Forwarder. Similarly, Cisco SAF Client notify requests from the forwarder will be translated into XMCP notify requests and sent to the XMCP client.

How to Configure XMCP

There are two methods for clients to interact with a service routing-enabled network:

- Through the internal Cisco IOS API for service routing, which is available only for clients implemented within Cisco IOS software.
- Through the Extensible Messaging Control Protocol (XMCP), also referred to as the External Client protocol, which is available to any client running anywhere within the network on any platform.
Configuring a Basic XMCP Server

SUMMARY STEPS

1. enable
2. configure terminal
3. service-routing xmcp listen
4. client username username password password
5. domain domain-number {default | only}
6. end
7. show service-routing xmcp server

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 service-routing xmcp listen</td>
<td>Enables the XMCP server, and enters XMCP configuration mode. The XMCP server will:</td>
</tr>
<tr>
<td>Example:</td>
<td>• Listen on its default port (4788)</td>
</tr>
<tr>
<td>Router(config)# service-routing xmcp listen</td>
<td>• Accept connections in any VRF (virtual routing forwarding) instance</td>
</tr>
<tr>
<td>Step 4 client username username password password</td>
<td>Defines a username and password pair that an XMCP client can use to authenticate this server, and enters XMCP client configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• By default, no username or password is defined; therefore, you must configure at least one client command to have a functioning XMCP server.</td>
</tr>
<tr>
<td>Router(config-xmcp)# client username exampleuser password examplepassword</td>
<td>• The password range is from 11 to 62 characters.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 5**
| `domain domain-number {default | only}` | (Optional) Defines the service-routing domain to which all clients using the given username and password pair will be assigned.
 • This pair corresponds to a SAF autonomous-system, so if you have configured this router as a SAF forwarder (see the "Configuring a Cisco SAF Forwarder" section), you should use the same SAF forwarder autonomous-system number as the domain number used here.
 • If you do not configure this command, clients will default to domain 7177. |
| **Step 6**
| `end` | Exits XMCP client configuration mode and returns to privileged EXEC mode. |
| **Step 7**
| `show service-routing xmcp server` | Displays a summary of the XMCP server configuration and the number of connected clients. |

Configuring an Advanced XMCP Server

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `service-routing xmcp listen [ipv4 | ipv6] [port port-number] [vrf vrf-name]`
4. `allow-list [ipv4 acl-name | ipv6 acl-name]`
5. `max-clients {unauthenticated number [total number] | total number [unauthenticated number]}
6. `client unauthenticated`
7. `client username username {password password | encryption-type encrypted-password}
8. `domain domain-number {default | only}
9. `nonce {lifetime seconds | none}
10. `keepalive seconds`
11. `exit`
12. `show service-routing xmcp server`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure</td>
<td></td>
</tr>
<tr>
<td>terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 service-routing</td>
<td>Enables the XMCP server, and enters XMCP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>service-routing xmcp</td>
<td></td>
</tr>
<tr>
<td>listen [ipv4</td>
<td>ipv6]</td>
</tr>
<tr>
<td>[port port-number] [vrf vrf-name]</td>
<td></td>
</tr>
<tr>
<td>Router(config)# service-routing</td>
<td></td>
</tr>
<tr>
<td>xmcp listen ipv4 vrf vrf1</td>
<td></td>
</tr>
<tr>
<td>port 2000</td>
<td></td>
</tr>
<tr>
<td>• If you do not specify either IPv4 or IPv6 to restrict client connections, both will be permitted.</td>
<td></td>
</tr>
<tr>
<td>• Use the vrf keyword to restrict client connections to the specified VRF. If you do not use this keyword, clients may connect from any interface in any VRF.</td>
<td></td>
</tr>
<tr>
<td>• Use the port keyword to change the port number for clients to connect. If you do not use this keyword, the port number defaults to 4788.</td>
<td></td>
</tr>
<tr>
<td>Step 4 allow-list</td>
<td>(Optional) Allows only clients that match the specified access list to connect. All other clients will be denied. If you do not specify an allow list, clients will not be filtered by any access list.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xmcp)# allow-list</td>
<td></td>
</tr>
<tr>
<td>ipv4 XMCPClientListIPv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 max-clients</td>
<td>(Optional) Limits the maximum number of unauthenticated clients and the maximum number of clients of any type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xmcp)# max-clients</td>
<td></td>
</tr>
<tr>
<td>unauthenticated number</td>
<td></td>
</tr>
<tr>
<td>[total number]</td>
<td></td>
</tr>
<tr>
<td>[total number]</td>
<td></td>
</tr>
<tr>
<td>[unauthenticated number]</td>
<td></td>
</tr>
<tr>
<td>Router(config-xmcp)# max-clients</td>
<td></td>
</tr>
<tr>
<td>unauthenticated 5</td>
<td></td>
</tr>
<tr>
<td>Router(config-xmcp)# max-clients</td>
<td></td>
</tr>
<tr>
<td>unauthenticated 10</td>
<td></td>
</tr>
<tr>
<td>total 100</td>
<td></td>
</tr>
<tr>
<td>• When the maximum number of clients connected has been reached, any additional clients will be denied.</td>
<td></td>
</tr>
<tr>
<td>• If you do not specify a number of clients, a maximum of 1024 clients may connect, subject to available bandwidth and memory.</td>
<td></td>
</tr>
<tr>
<td>Step 6 client</td>
<td>Permit clients to connect without authentication credentials.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>unauthenticated</td>
<td></td>
</tr>
<tr>
<td>Router(config-xmcp)# client</td>
<td></td>
</tr>
<tr>
<td>unauthenticated</td>
<td></td>
</tr>
<tr>
<td>• This command also enters XMCP client configuration mode to provide additional attributes to apply to clients connecting in this manner.</td>
<td></td>
</tr>
<tr>
<td>• By default, unauthenticated clients are not permitted and no username or password credentials are considered as valid.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>• You must configure at least one <code>client</code> command to have any clients be accepted by the XMCP server.</td>
</tr>
</tbody>
</table>

Step 7

```command
client username username {password password | encryption-type encrypted-password}
```

Configures a username and password that will be accepted for XMCP (Extensible Messaging Client Protocol) client connections.

- Configure one or more `client` commands to permit clients to connect using the given authentication credentials.
- By default, unauthenticated clients are not permitted and no username or password credentials are considered as valid.
- You must configure at least one `client` command in order to have any clients be accepted by the XMCP server.

Example:
```
Router(config-xmcp-client)# client username example-user password example-password
```

Step 8

```command
domain domain-number {default | only}
```

(Optional) Defines the domain that clients using the given authentication credentials will be assigned by default, and whether the clients are permitted to request assignment to a different domain. The domain number corresponds to a SAF Forwarder autonomous-system number. By default, clients are assigned to domain 7177, but may request assignment to a different domain.

- Use the `default` keyword to select a default domain and permit clients to request a different domain.
- Use the `only` keyword to choose a default domain and deny clients to request a different domain.

Example:
```
Router(config-xmcp-client)# domain 100 default
```

Step 9

```command
nonce {lifetime seconds | none}
```

(Optional) Nonces provide additional session security (for clients that support this feature) against packet spoofing and replay attacks on the server. This feature requires additional bandwidth and CPU resources; therefore, it can be tuned or disabled to meet your security needs. By default, nonces are used for clients that support this feature. Nonces expire every 800 seconds, which requires the client to transition to a new nonce. To disable nonces, use the `nonce none` command.

- For higher security (but with higher client bandwidth and CPU usage), configure a shorter nonce lifetime to a minimum of 5 seconds.
- For lower security (and with lower client bandwidth and CPU usage), configure a longer nonce lifetime (up to a maximum of 3600 seconds).

Nonces are not used for unauthenticated clients; therefore, this command cannot be used in conjunction with the `client unauthenticated` command.

Example:
```
Router(config-xmcp-client)# nonce lifetime 600
```

Step 10

```command
keepalive seconds
```

(Optional) Tunes the keepalive interval for clients using the given authentication credentials.

- If the client does not send any messages for the given interval, the XMCP server will assume that the client has failed, terminate the XMCP session, and withdraw any services or subscriptions associated with this client.
- By default, clients have a keepalive interval of 30 seconds.

Example:
```
Router(config-xmcp-client)# keepalive 100
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits XMCP client configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xmcp-client)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Step 12	Displays a summary of the XMCP server configuration and the number of connected clients.
show service-routing xmcp server	
Example:	
Router> show service-routing xmcp server	

Displaying XMCP Client and Server Information

To display information about connected XMCP clients and servers, use the following commands in user EXEC or privileged EXEC mode. These commands may be used in any order.

SUMMARY STEPS

1. **show service-routing xmcp clients [ip-address | handle] [detail]**
2. **show service-routing xmcp server**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>show service-routing xmcp clients [ip-address</td>
<td>handle] [detail]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> show service-routing xmcp clients detail</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>show service-routing xmcp server</th>
<th>Displays information about the XMCP server status.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router> show service-routing xmcp server</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Example for XMCP

Example: Configuring an XMCP Server and Cisco SAF Forwarder

The following example, beginning in global configuration mode, shows how to configure a router as both an IPv4 XMCP server and as an IPv4 Cisco SAF forwarder. It maps all XMCP clients to the correct SAF autonomous system.

```
Router(config)# service-routing xmcp listen ipv4
Router(config-xmcp)# client unauthenticated
Router(config-xmcp-client)# client unauthenticated
Router(config-xmcp-client)# domain 1228 only
Router(config-xmcp-client)# client username example password passwordexample
Router(config-xmcp-client)# domain 1228 only
Router(config-xmcp-client)# exit
Router(config-xmcp)# exit
Router(config)# router eigrp saf
Router(config-router)# service-family ipv4 autonomous-system 1228
Router(config-router-sf)# end
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Service Advertisement Framework commands</td>
<td>Cisco IOS Service Advertisement Framework Technology Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for XMCP

Table 2: Feature Information for XMCP

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| XMCP (Extensible Messaging Client Protocol) | 15.2(2)T, 15.2(1)S, 15.2(3)T, 15.2(2)S
Cisco IOS XE Release 3.6S, Cisco IOS XE Release 3.3SG
15.2(1)E | An XMCP client sends XMCP publish, unpublish, subscribe, and unsubscribe requests to a server. When the server receives and successfully authenticates these requests, it translates the requests into the equivalent Cisco SAF Client requests and sends them to the Cisco SAF Forwarder.
In Cisco IOS XE 3.3 SG, support was added for the Cisco Catalyst 4000 Series Switches.
The following commands were introduced or modified: |
| | | • allow-list
• clear service-routing xmcp client
• client (XMCP)
• domain
• keepalive (XMCP)
• max-clients
• nonce
• service-routing xmcp clients
• service-routingxmcp server |

Configuring Extensible Messaging Control Protocol
Feature Information for XMCP
CHAPTER 4

Configuring Dynamic Neighbors

When neighbors are not adjacent, normal Cisco SAF peering mechanisms cannot be used to exchange SAF information over the networking cloud. The neighbors are often multiple hops away, and separated by dark nets (routers not running SAF).

To support this type of network, SAF provides the `neighbor` command, which allows remote neighbors to be configured and sessions established though unicast packet transmission. However, as the number of Forwarders needing to exchange SAF information over the networking cloud increases, unicast SAF neighbor definitions may become cumbersome to manage. Each neighbor has to be manually configured, resulting in increased operational costs.

To better accommodate deployment of these topologies, ease configuration management, and reduce operational costs, the Dynamic Neighbors feature provides support for the dynamic discovery of remote unicast and multicast neighbors (referred to as “remote neighbors”). Remote neighbor support allows Cisco SAF peering to one or more remote neighbors, which may not be known at the time the router is configured, thus reducing configuration management.

This section contains the following major topics:

- Finding Feature Information, page 59
- Prerequisites for Dynamic Neighbors, page 60
- Restrictions for Dynamic Neighbors, page 60
- Information About Dynamic Neighbors, page 60
- How to Configure Dynamic Neighbors, page 63
- Configuration Examples for Dynamic Neighbors, page 65
- Additional References, page 66
- Feature Information for Dynamic Neighbors, page 67

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Dynamic Neighbors

Before configuring SAF dynamic neighbors, ensure that when using:

- Unicast-listen mode--IP connectivity (reachability) exists between routers that need to do dynamic peering.
- Multicast-group mode--Multicast is running on the network.
- The `allow-list` keyword--The configured Access Control List that will specify the remote IP addresses from which EIGRP neighbor connections may be accepted.

Restrictions for Dynamic Neighbors

- The `remote-neighbors` command requires a loopback as a source interface.
- Only named ACLs (Access Control Lists) are permitted with the `allow-list` keyword. Numbered ACLs that are configured are not permitted.

Within a service-family, the following restrictions apply:

- Only one `remote-neighbors unicast-listen` command and one `remote-neighbors multicast-group` command may be configured per interface. For example, you cannot configure `remote-neighbors source Loopback1 multicast-group 224.1.1.1` and `remote-neighbors source Loopback1 multicast-group 224.1.1.2`. If you want to configure multiple different multicast-group addresses in the same service-family, you need to use multiple source interfaces.
- A multicast-group address may only be associated to a single source interface. For example, you cannot configure `remote-neighbors source Loopback1 multicast-group 224.1.1.1` and `remote-neighbors source Loopback2 multicast-group 224.1.1.1`.

Information About Dynamic Neighbors

When neighbors are not adjacent, normal Cisco SAF peering mechanisms cannot be used to exchange SAF information over the networking cloud. The neighbors are often multiple hops away, and separated by dark nets (routers not running SAF).

To support this type of network, SAF provides the `neighbor` command, which allows remote neighbors to be configured and sessions established through unicast packet transmission. However, as the number of Forwarders needing to exchange SAF information over the networking cloud increases, unicast SAF neighbor definitions may become cumbersome to manage. Each neighbor has to be manually configured, resulting in increased operational costs.

To better accommodate deployment of these topologies, ease configuration management, and reduce operational costs, the Dynamic Neighbors feature provides support for the dynamic discovery of remote unicast and multicast neighbors (referred to as “remote neighbors”). Remote neighbor support allows Cisco SAF peering
Remote Neighbor Session Policy

When using remote unicast-listen or remote multicast-group neighbor configurations, SAF neighbor IP addresses are not pre-defined, and neighbors may be many hops away. A router with this configuration could peer with any router that sends a valid HELLO packet. Because of security considerations, this open aspect requires policy capabilities to limit peering to valid routers and to restrict the number of neighbors to limit resource consumption. This capability is accomplished using the following manually configured parameters, and takes effect immediately.

Neighbor Filter List

The optional allow-list keyword, available in the remote-neighbors command, enables you to use an access list (Access Control List) to specify the remote IP addresses from which Cisco SAF neighbor connections may be accepted. If you do not use the allow-list keyword, then all IP addresses (permit any) will be accepted. The Access Control List (ACL) defines a range of IPv4 or IPv6 IP addresses with the following conditions:

- Any neighbor that has a source IP address that matches an IP address in the access-list will be allowed (or denied) based on the user configuration.
- If the allow-list keyword is not specified, any IP address will be permitted (permit any).
- The allow-list keyword is supported only for remote multicast-group and unicast-listen neighbors. It is not available for static, remote static, or local neighbors.
- Incoming Cisco SAF packets that do not match the specified access list will be rejected.

Maximum Remote Neighbors

The optional max-neighbors keyword, available in the remote-neighbors command, enables you to specify a maximum number of remote neighbors that Cisco SAF can create using the remote neighbor configurations. When the maximum number of remote neighbors has been created for a configuration, Cisco SAF rejects all subsequent connection attempts for that configuration. This option helps to protect against denial-of-service attacks that attempt to create many remote neighbors in an attempt to overwhelm router resources. The max-neighbors configuration option has the following conditions:

- This option is supported only for remote multicast-group or unicast-listen neighbors. It is not available for local, static, or remote static neighbors.
- There is no default maximum. If you do not specify a maximum number of remote neighbors, the number of remote neighbors is limited only by available memory and bandwidth.
- Reducing the maximum number of remote neighbors to a number less than the current sessions will result in the neighbors (in no specific order) being dropped until the count reaches the new limit.
Configuration Changes for Neighbor Filter List and Maximum Remote Neighbors

When the allow-list or max-neighbors configurations are changed, any existing remote Cisco SAF sessions that are no longer allowed by the new configuration will be removed automatically and immediately. Pre-existing neighbors that are still allowed by the new configuration will not be affected.

Neighbor Types

The following terms are used when describing neighbor types:

- Local Neighbor--A neighbor that is adjacent on a shared subnet (or common subnet) and uses a link-local multicast address for packet exchange. This is the default type of neighbor in Cisco SAF.
- Static Neighbor--Any neighbor that uses unicast to communicate, is one hop away, is on a common subnet, and whose IP address has been specified using the neighbor ip-address command.
- Remote Neighbor--Any neighbor that is multiple hops away, including Remote Static Neighbors.
- Remote Static Neighbor--Any neighbor that uses unicast to communicate, is multiple hops away, and whose IP address has been specified using the neighbor ip-address command.
- Remote Multicast-Group--Any neighbor that is multiple hops away, but does not have its IP address manually configured using the neighbor ip-address command, and uses a configured multicast group address for packet exchange.
- Remote Unicast-listen (or simply Unicast-listen)--Any neighbor that uses unicast to communicate, is multiple hops away, and whose IP address has not been configured using the neighbor ip-address command.

Remote Unicast-Listen (Point-to-Point) Neighbors

For configurations in which multiple remote neighbors peer with a single hub (point-to-point), the hub can be configured for remote unicast-listen peering using the remote-neighbors command to allow the remote neighbors to peer with the hub without having to manually configure the remote neighbor IP addresses on the hub.

When configured with this command, the hub router:

- Uses its interface IP address as the source IP address for any unicast transmissions. This IP address must be routable.
- Requires neighbors peering with the hub to be configured using the neighbor ip-address loopback loopback-interface-number remotemaximum-hops command where ip-address is the unicast address of the local router interface IP address.
- Listens for unicast HELLO packets on the interface specified in the remote-neighbor command.
- Accepts a unicast HELLO packet if it is in the IP address range configured using the allow-list keyword, or any unicast HELLO packet if an allow list is not defined.
- Rejects multicast HELLO packets from any neighbor that is also sending unicast HELLO packets and is permitted by the unicast allow-list (or all neighbors if an allow-list is not defined).
Remote Multicast-Group (Multipoint-to-Multipoint) Neighbors

Multicast can be used to provide an efficient transport between multiple Cisco SAF neighbors. A single multicast-group address can be used for multiple Cisco SAF neighbors to exchange information within the same multicast-group. To configure multipoint-to-multipoint configurations, use the `multicast-group` keyword available in the `remote neighbors` command.

When configured with this command, the router:

- Uses the interface IP address as the source IP address for any unicast transmissions. This IP address must be routable.
- Uses the configured multicast-group address for all multicast packets sent and received.
- Requires all forwarders and routers, which form the multipoint-to-multipoint neighbor relationships, to be configured using the same multicast-group IP address.
- Requires multicast forwarding for the defined multicast-group address to be configured and functional for packet delivery.

Inheritance and Precedence of the Remote Neighbor Configurations

Static neighbors configured with the `neighbor ip-address` or the `neighbor ip address remote` commands take precedence over the remote neighbors that are created as a result of the `remote-neighbors` command. If the remote IP address of an incoming unicast Cisco SAF connection matches both a static neighbor and the remote unicast-listen neighbor access list, the static neighbor is used and no remote unicast-listen neighbor is created. If you configure a new static neighbor while a remote neighbor for the same remote IP address already exists, Cisco SAF automatically removes the remote unicast-listen neighbor.

Remote unicast-listen neighbors take precedence over remote multicast-group neighbors. If Cisco SAF is receiving both unicast and multicast HELLOs from the same remote IP address targeted at the same local interface, the neighbor will be treated as unicast (unicast-listen) rather than multicast (multicast-group) for packet exchange.

How to Configure Dynamic Neighbors

To configure Cisco SAF dynamic neighbors, use the following commands:
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp virtual-instance-name`
4. `service-family {ipv4 | ipv6} [vrf vrf-name] autonomous-system autonomous-system-number`
5. `remote-neighbors source interface {unicast-listen | multicast-group group-address} [allow-list access-list-name] [max-neighbors max-remote-peers]`
6. `exit-service-family`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router eigrp virtual-instance-name</td>
<td>Enables an EIGRP virtual instance in global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# router eigrp sa</td>
<td></td>
</tr>
<tr>
<td>Step 4 service-family {ipv4</td>
<td>ipv6} [vrf vrf-name] autonomous-system autonomous-system-number</td>
</tr>
<tr>
<td>Example: Router(config-router)# service-family ipv4 autonomous-system 4453</td>
<td></td>
</tr>
<tr>
<td>Step 5 remote-neighbors source interface {unicast-listen</td>
<td>multicast-group group-address} [allow-list access-list-name] [max-neighbors max-remote-peers]</td>
</tr>
<tr>
<td>Example: Router(config-router-sf)# remote-neighbors source Loopback1 unicast-listen allow-list myNeighborList</td>
<td>• allow-list keyword to use an access list (Access Control List) to specify the remote IP addresses from which Cisco SAF neighbor connections may be accepted. If you do not use the allow-list keyword, then all IP addresses (permit any) will be accepted.</td>
</tr>
</tbody>
</table>
Command or Action | **Purpose**
--- | ---
- **max-neighbors** keyword to specify the maximum number of remote neighbors. If you do not specify a number, the maximum number of remote neighbors is limited only by available memory and bandwidth.

Step 6 exit-service-family
Example:
`Router(config-router-sf)# exit-service-family`

Configuration Examples for Dynamic Neighbors

Examples: Configuring Cisco SAF Dynamic Neighbors

The following examples show how to configure both routers involved in the neighbor relationship.

This example uses the **unicast-listen** keyword to configure remote neighbors to accept inbound connections from IP addresses that match the access list `myNeighborList`.

```plaintext
Router1(config)# interface Loopback1
Router1(config-if)# ip address 10.1.1.1 255.255.255.255
Router1(config-if)# exit
Router1(config)# ip access-list standard myNeighborList
Router1(config-standard-nacl)# permit 10.0.0.0 0.255.255.255
Router1(config-standard-nacl)# exit
Router1(config)# router eigrp virtual-name
Router1(config-router)# service-family ipv4 autonomous-system 4453
Router1(config-router-sf)# remote-neighbors source Loopback1 unicast-listen allow-list
  myNeighborList
Router2(config)# interface Loopback2
Router2(config-if)# ip address 10.2.2.2 255.255.255.255
Router2(config-if)# exit
Router2(config)# router eigrp virtual-name
Router2(config-router)# service-family ipv4 autonomous-system 4453
Router2(config-router-sf)# neighbor 10.1.1.1 Loopback2 remote 20
```

This example uses the **multicast-group** keyword to use IP multicast to discover remote neighbors and form remote neighbor relationships. It also specifies 30 as the maximum number of inbound connections from remote neighbors that a member of the multicast group may accept.

```plaintext
Router1(config)# interface Loopback1
Router1(config-if)# ip address 10.1.1.1 255.255.255.255
Router1(config-if)# ip pim sparse-mode
Router1(config-if)# exit
Router1(config)# router eigrp virtual-name
Router1(config-router)# service-family ipv4 autonomous-system 4453
Router1(config-router-sf)# remote-neighbors source Loopback1 multicast-group 224.44.56.1
  max-neighbors 30
Router2(config)# interface Loopback2
Router2(config-if)# ip address 10.2.2.2 255.255.255.255
```
Router2(config-if)# ip pim sparse-mode
Router2(config-if)# exit
Router2(config)# router eigrp virtual-name
Router2(config-router)# service-family ipv4 autonomous-system 4453
Router2(config-router-sf)# remote-neighbors source Loopback2 multicast-group 224.44.56.1 max-neighbors 30

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Service Advertisement Framework commands</td>
<td>Cisco IOS Service Advertisement Framework Technology Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to</td>
<td></td>
</tr>
<tr>
<td>install and configure the software and to troubleshoot and resolve technical</td>
<td></td>
</tr>
<tr>
<td>issues with Cisco products and technologies. Access to most tools on the</td>
<td></td>
</tr>
<tr>
<td>Cisco Support and Documentation website requires a Cisco.com user ID and</td>
<td></td>
</tr>
<tr>
<td>password.</td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for Dynamic Neighbors

Table 3: Feature Information for Dynamic Neighbors

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Dynamic Neighbors| 15.1(2)S, 15.2(3)T, 15.2(2)S, 15.1(1)SG | The Dynamic Neighbors feature provides support for the dynamic discovery of remote unicast and multicast neighbors (referred to as “remote neighbors”). Remote neighbor support allows Cisco SAF peering to one or more remote neighbors. In Cisco IOS XE 3.3 SG, support was added for the Cisco Catalyst 4000 Series Switches. The following commands were introduced or modified:
 - authentication mode
 - remote-neighbors source
 - show eigrp service-family external-client |
| | Cisco IOS XE 3.6S, Cisco IOS XE 3.3SG | |
Configuring Capabilities Manager

• Finding Feature Information, page 69
• Prerequisites for Configuring Capabilities Manager, page 69
• Information About Capabilities Manager, page 69
• How to Configure Capabilities Manager, page 73
• Additional References, page 78
• Feature Information for Capabilities Manager, page 79

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring Capabilities Manager

• To ensure that a router has Capabilities Manager available, enter the `showservice-routingplugincapman` command. To enable a router to distribute its capabilities information, configure a SAF Forwarder on the router.
• To view capabilities information present on other routers in the network, configure a SAF Forwarder.

Information About Capabilities Manager

Capabilities Manager is enabled by default at system startup. At startup, it registers as a Service Routing Client and proceeds to discover various capabilities of the hardware and software platform.
Capabilities Discovery

Capabilities Manager only discovers whether a capability is supported on the local system. It does not discover whether the capability is configured or enabled or discover any other information about the capability for other routers in the network.

Capabilities information will be installed into the local Network Information Base (NIB) as service routing data and made available for advertisement by any SAF Forwarder to the Service Routing network. Capabilities information is passed to the Service Routing infrastructure in XML format and stored in the local NIB.

Interoperability with SAF Forwarder

Capabilities Manager does not advertise capabilities information to the Service Routing network. A SAF Forwarder performs the functions to distribute capabilities information. However, a SAF Forwarder is not required for Capabilities Manager to function. If a SAF Forwarder is not configured, the capabilities information is bound to the local router and is not distributed to other routers in the network. When a SAF Forwarder is configured, it will distribute all capabilities information by default.

Capabilities Information

Capabilities information is installed in the Network Information Base (NIB) as service routing data. It is identified by a SAF address in the form of:

- service ID—Capabilities Manager uses service ID 100.
- subservice ID—Capability group ID. The subservice ID indicates the group ID of the capabilities data type.
- Instance number—Unique identifier for the local router. It is assigned in order of the hardware serial number, default MAC address, IPv4 router ID, or IPv6 router ID.

Capabilities Groups

Capabilities Manager classifies capabilities by group to facilitate query and retrieval, and assigns each group a unique ID. Capabilities Manager provides the following capability groups:

- 1 (HARDWARE)
- 2 (SOFTWARE)

Hardware Group Information

Hardware information is designated as group ID 1. Group 1 provides the following capabilities information, when available. All hardware information may not be available on each platform that supports Capabilities Manager.

- Host Name
- Platform
• Main Memory Size
• IO Memory Size

Software Group Information
Software information is designated as group ID 2. Group 2 provides the following capabilities information, when available. All software information may not be available on each platform that supports Capabilities Manager.

• Host Name
• Software
• Image
• Version
• Software subsystems:
 • IP Multicast
 • eigrp_ipv4
 • eigrp_ipv6
 • fh_fd_ipsla
 • ospf
 • ospfv3
 • isis
 • isis_ipv6
 • bgp_ipv4
 • bgp_ipv6
 • service_routing

XML Schema for Capabilities Data
If you have an Extensible Messaging Client Protocol (XMCP) client (external client) connected to a SAF Forwarder, you can subscribe to the Capabilities Manager, which is service ID 100. The data can be interpreted using the following XML schema:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema'>
<xs:element name="Capabilities" type="CapabilitiesType"/>
<xs:complexType name="CapabilitiesType">
<xs:sequence>
<xs:element ref="Group" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:schema>
```
Example:

<Capabilities>
 <Group Name="HARDWARE">
 <Capability Name="HostName">
 <Value>R100</Value>
 </Capability>
 <Capability Name="Platform">
 <Value>Solaris Unix (Sparc) processor</Value>
 </Capability>
 <Capability Name="MainMemorySize">
 <Value>63683Kbytes</Value>
 </Capability>
 </Group>
 <Group Name="SOFTWARE">
 <Capability Name="HostName">
 <Value>R100</Value>
 </Capability>
 <Capability Name="Software">
 <Value>Cisco IOS Software</Value>
 </Capability>
 </Group>
</Capabilities>
How to Configure Capabilities Manager

Disabling and Enabling and Capabilities Manager

Capabilities Manager is enabled by default. You can disable and reenable Capabilities Manager at any time.

- Disabling Capabilities Manager will remove all the capabilities information that is installed in the local Network Information Base (NIB) and unregister the information from Service Routing.
- Re-enabling Capabilities Manager will rediscover capabilities and provide information to the local NIB and to the Service Routing network.

Perform this task to disable and reenable Capabilities Manager.

SUMMARY STEPS

1. enable
2. configure terminal
3. no service-routing capabilities-manager
4. service-routing capabilities-manager
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
enable
Example:
Router> enable | Enables privileged EXEC mode. Enter your password if prompted. |
| Step 2
configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| Step 3
no service-routing capabilities-manager
Example:
Router(config)# no service-routing capabilities-manager | Disables Capabilities Manager. |
| Step 4
service-routing capabilities-manager
Example:
Router(config)# service-routing capabilities-manager | Enables Capabilities Manager. |

Displaying Capabilities Manager Information

To display information about Capabilities Manager, use the following commands in privileged EXEC mode.

SUMMARY STEPS

1. show service-routing plugins *plugin-name*
2. show service-routing plugins capabilities-manager internal
3. show service-routing capabilities-manager
4. show service-routing capabilities-manager [group *group-id*] [local]

DETAILED STEPS

Step 1
show service-routing plugins *plugin-name*
Example:
Device> show service-routing plugins capman
Service Routing plugins:::
capman : 1.00.00 : Cisco Capability Manager

Displays information about Capabilities Manager plugins.

Step 2
show service-routing plugins capabilities-manager internal

Example:
Device> show service-routing capabilities-manager internal

Service-Routing Capabilities Manager

Major Version: 1 Minor Version: 0 Edit Version: 0
Reachability: 5.12.20.13:0
Local Instance GUID: 53504531-3233-3830-3136-390000000000

Displays internal information about Capabilities Manager.

Step 3
show service-routing capabilities-manager

Example:
Device> show service-routing capabilities-manager

Service-Routing Capabilities Manager

Registered Capabilities

Group/ID: HARDWARE/1
Service: 100:1:53504531-3233-3830-3136-390000000000
Originator: 5.12.20.13
Capability Data:
<Capabilities>
 <Group Name="HARDWARE">
 <Capability Name="HostName">
 <Value>Router</Value>
 </Capability>
 <Capability Name="Platform">
 <Value>cisco WS-C4503-E (MPC8572) processor</Value>
 </Capability>
 <Capability Name="MainMemorySize">
 <Value>786516Kbytes</Value>
 </Capability>
 <Capability Name="IOMemorySize">
 <Value>20480Kbytes</Value>
 </Capability>
 </Group>
</Capabilities>

Group/ID: SOFTWARE/2
Service: 100:2:53504531-3233-3830-3136-390000000000
Originator: 5.12.20.13
Capability Data:
<Capabilities>
 <Group Name="SOFTWARE">
 <Capability Name="HostName">
 <Value>Router</Value>
 </Capability>
 <Capability Name="Software">
 <Value>Cisco IOS Software</Value>
 </Capability>
 </Group>
</Capabilities>
Step 4
show service-routing capabilities-manager [group group-id] [local]

Example:
Device# show service-routing capabilities-manager group 1 local

Registered Capabilities

Group/ID: HARDWARE/1
Service: 100:1:53504531-3233-3830-3136-390000000000
Originator: 5.12.20.13
Capability Data:
<Capabilities>
 <Capability Name="Hardware">
Clearing Registered Capabilities Information

Perform this task to clear current capabilities information from the NIB. Once the NIB is cleared, Capabilities Manager will automatically rediscover new capabilities.

SUMMARY STEPS

1. enable
2. clear service-routing capabilities-manager

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 clear service-routing capabilities-manager</td>
<td>Clears the current capabilities information from the NIB database. Capabilities Manager will automatically discover new capabilities.</td>
</tr>
<tr>
<td>Example: Device# clear service-routing capabilities-manager</td>
<td></td>
</tr>
</tbody>
</table>
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Service Advertisement Framework commands</td>
<td>Cisco IOS Service Advertisement Framework Technology Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Capabilities Manager

Table 4: Feature Information for Capabilities Manager

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capabilities Manager</td>
<td>15.0(1)SY, 15.2(3)T, 15.2(2)S</td>
<td>Capabilities Manager is enabled by default at system startup. At startup, it registers as a Service Routing Client and proceeds to discover various capabilities of the hardware and software platform.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE 3.6S, Cisco IOS XE 3.3SG</td>
<td>In Cisco IOS XE 3.3 SG, support was added for the Cisco Catalyst 4000 Series Switches. The following commands were introduced or modified:</td>
</tr>
<tr>
<td></td>
<td>15.2(1)E</td>
<td>- clear service-routing capabilities-manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- service-routing capabilities-manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- show service-routing plugins capman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- show service-routing capabilities-manager internal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- show service-routing capabilities-manager group</td>
</tr>
</tbody>
</table>