RSVP Aggregation

The RSVP Aggregation feature allows the Resource Reservation Protocol (RSVP) state to be reduced within an RSVP/DiffServ network by aggregating many smaller reservations into a single, larger reservation at the edge.

- Finding Feature Information, on page 1
- Prerequisites for RSVP Aggregation, on page 1
- Restrictions for RSVP Aggregation, on page 2
- Information About RSVP Aggregation, on page 3
- How to Configure RSVP Aggregation, on page 6
- Configuration Examples for RSVP Aggregation, on page 21
- Additional References, on page 25
- Feature Information for RSVP Aggregation, on page 26
- Glossary, on page 27

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for RSVP Aggregation

You must configure at least two aggregating nodes (provider edge [PE] devices), one interior node (provider [P] device) and two end user nodes (customer edge [CE] devices) within your network.

You must configure your network to support the following Cisco IOS features:

- RSVP
- Class Based Weighted Fair Queuing (CBWFQ)
- RSVP Scalability Enhancements
You configure these features because Cisco IOS Release 12.2(33)SRC supports control plane aggregation only. Dataplane aggregation must be achieved by using the RSVP Scalability Enhancements.

Restrictions for RSVP Aggregation

Functionality Restrictions

The following functionality is not supported:

- Multilevel aggregation
- Multiple, adjacent aggregation regions
- Dynamic resizing of aggregate reservations
- Policing of end-to-end (E2E) reservations by the aggregator
- Policing of aggregate reservations by interior devices
- Differentiated Services Code Point (DSCP) marking by the aggregator
- Equal Cost Multiple Paths (ECMP) load-balancing within the aggregation region
- RSVP Fast Local Repair in case of a routing change resulting in a different aggregator or deaggregator, admission control is performed on E2E PATH refresh
- Multicast RSVP reservations
- RSVP policy servers including Common Open Policy Server (COPS)
- Dataplane aggregation

The following functionality is supported:

- Multiple, non-adjacent aggregation regions
- Control plane aggregation

Configuration Restrictions

- Sources should not send marked packets without an installed reservation.
- Sources should not send marked packets that exceed the reserved bandwidth.
- Sources should not send marked packets to a destination other than the reserved path.
- All RSVP capable devices within an aggregation region regardless of role must support the aggregation feature to recognize the RFC 3175 RSVP message formats properly.

RSVP/DiffServ using CBWFQ provides the dataplane aggregation.
• E2E reservations must be present to establish dynamic aggregates; aggregates cannot be established manually.

• Aggregates are established at a fixed bandwidth regardless of the number of current E2E reservations being aggregated.

• Aggregators and deaggregators must be paired to avoid blackholing of E2E reservations because of dynamic aggregate establishment.

Note

Blackholing means that the reservation is never established. If an E2E reservation crosses from an exterior to an interior interface, the E2E reservation turns into an RSVP-E2E-IGNORE protocol packet. If there is no corresponding deaggregator, a device where this RSVP-E2E-IGNORE reservation crosses an interior to an exterior interface, then the RSVP-E2E-IGNORE reservation is never restored to an E2E reservation. The RSVP-E2E-IGNORE reservation eventually reaches its destination, which is the RSVP receiver; however, the RSVP receiver does not know what to do with the RSVP-E2E-IGNORE reservation and discards the packet.

Information About RSVP Aggregation

Feature Overview of RSVP Aggregation

High Level Overview

The establishment of a single RSVP reservation requires a large amount of resources including memory allocated for the associated data structures, CPU for handling signaling messages, I/O operations for datapath programming, interprocess communication, and signaling message transmission.

When a large number of small reservations are established, the resources required for setting and maintaining these reservations may exceed a node’s capacity to the point where the node’s performance is significantly degraded or it becomes unusable. The RSVP Aggregation feature addresses this scalability issue by introducing flow aggregation.

Flow aggregation is a mechanism wherein RSVP state can be reduced within a core device by aggregating many smaller reservations into a single, larger reservation at the network edge. This preserves the ability to perform connection admission control on core device links within the RSVP/DiffServ network while reducing signaling resource overhead.

How Aggregation Functions

Common segments of multiple end-to-end (E2E) reservations are aggregated over an aggregation region into a larger reservation that is called an aggregate reservation. An aggregation region is a connected set of nodes that are capable of performing RSVP aggregation as shown in the figure below.
Figure 1: RSVP Aggregation Network Overview

There are three types of nodes within an aggregation region:

- **Aggregator**—Aggregates multiple E2E reservations.
- **Deaggregator**—Deaggregates E2E reservations; provides mapping of E2E reservations onto aggregates.
- **Interior**—Neither aggregates or deaggregates, but is an RSVP core router that understands RFC 3175 formatted RSVP messages. Core/interior routers 1 through 4 are examples shown in the figure above.

There are two types of interfaces on the aggregator/deaggregator nodes:

- **Exterior interface**—The interface is not part of the aggregate region.
- **Interior interface**—The interface is part of the aggregate region.

Any router that is part of the aggregate region must have at least one interior interface and may have one or more exterior interfaces. Depending on the types of interfaces spanned by an IPv4 flow, a node can be an aggregator, a deaggregator, or an interior router with respect to that flow.

Aggregate RSVP DiffServ Integration Topology

RSVP aggregation further enhances RSVP scalability within an RSVP/DiffServ network as shown in the figure above by allowing the establishment of aggregate reservations across an aggregation region. This allows for aggregated connection admission control on core/interior device interfaces. Running RSVP on the core/interior devices allows for more predictable bandwidth use during normal and failure scenarios.

The voice gateways are running classic RSVP, which means RSVP is keeping a state per flow and also classifying, marking, and scheduling packets on a per-flow basis. The edge/aggregation devices are running RSVP with scalability enhancements for admission control on the exterior interfaces connected to the voice gateways and running RSVP aggregation on the interfaces connected to core/interior devices 1 and 3. The
core/interior devices in the RSVP/DiffServ network are running RSVP for the establishment of the aggregate reservations. The edge and core/interior devices inside the RSVP/DiffServ network also implement a specific per hop behavior (PHB) for a collection of flows that have the same DSCP.

The voice gateways identify voice data packets and set the appropriate DSCP in their IP headers so that the packets are classified into the priority class in the edge/aggregation devices and in core/interior devices 1, 2, 3 or 1, 4, 3.

The interior interfaces on the edge/aggregation/deaggregation devices (labeled A and B) connected to core/interior devices 1 and 3 are running RSVP aggregation. They are performing admission control only per flow against the RSVP bandwidth of the aggregate reservation for the corresponding DSCP.

Admission control is performed at the deaggregator because it is the first edge node to receive the returning E2E RSVP RESV message. CBWFQ is performing the classification, policing, and scheduling functions on all nodes within the RSVP/DiffServ network including the edge devices.

Aggregate reservations are dynamically established over an aggregation region when an E2E reservation enters an aggregation region by crossing from an exterior to an interior interface; for example, when voice gateway C initiates an E2E reservation to voice gateway D. The aggregation is accomplished by "hiding" the E2E RSVP messages from the RSVP nodes inside the aggregation region. This is achieved with a new IP protocol, RSVP-E2E-IGNORE, that replaces the standard RSVP protocol in E2E PATH, PATHTEAR, and RESVCONF messages. This protocol change to RSVP-E2E-IGNORE is performed by the aggregator when the message enters the aggregation region and later restored back to RSVP by the deaggregator when the message exits the aggregation region. Thus, the aggregator and deaggregator pairs for a given flow are dynamically discovered during the E2E PATH establishment.

The deaggregator device 2 is responsible for mapping the E2E PATH onto an aggregate reservation per the configured policy. If an aggregate reservation with the corresponding aggregator device 1 and a DSCP is established, the E2E PATH is forwarded. Otherwise a new aggregate at the requisite DSCP is established, and then the E2E PATH is forwarded. The establishment of this new aggregate is for the fixed bandwidth parameters configured at the deaggregator device 2. Aggregate PATH messages are sent from the aggregator to the deaggregator using RSVP’s normal IP protocol. Aggregate RESV messages are sent back from the deaggregator to the aggregator, thus establishing an aggregate reservation on behalf of the set of E2E flows that use this aggregator and deaggregator. All RSVP capable interior nodes process the aggregate reservation request following normal RSVP processing including any configured local policy.

The RSVP-E2E-IGNORE messages are ignored by the core/interior devices, no E2E reservation states are created, and the message is forwarded as IP. As a consequence, the previous hop/next hop (PHOP/ NHOP) for each RSVP-E2E-IGNORE message received at the deaggregator or aggregator is the aggregator or deaggregator node. Therefore, all messages destined to the next or previous hop (RSVP error messages, for example) do not require the protocol to be changed when they traverse the aggregation region.

By setting up a small number of aggregate reservations on behalf of a large number of E2E flows, the number of states stored at core/interior devices and the amount of signal processing within the aggregation region is reduced.

In addition, by using differentiated services mechanisms for classification and scheduling of traffic supported by aggregate reservations rather than performing per aggregate reservation classification and scheduling, the amount of classification and scheduling state in the aggregation region is further reduced. This reduction is independent of the number of E2E reservations and the number of aggregate reservations in the aggregation region. One or more RSVP/DiffServ DSCPs are used to identify the traffic covered by aggregate reservations, and one or more RSVP/DiffServ per hop behaviors (PHBs) are used to offer the required forwarding treatment to this traffic. There may be more than one aggregate reservation between the same pair of devices, each representing different classes of traffic and each using a different DSCP and a different PHB.
Integration with RSVP Features

RSVP aggregation has been integrated with many RSVP features, including the following:

• RSVP Fast Local Repair
• RSVP Local Policy Support
• RSVP Refresh Reduction and Reliable Messaging

Benefits of RSVP Aggregation

Enhanced Scalability
Aggregating a large number of small reservations into one reservation requires fewer resources for signaling, setting, and maintaining the reservation thereby increasing scalability.

Enhanced Bandwidth Usage within RSVP/DiffServ Core Network
Aggregating reservations across an RSVP/DiffServ network allow for more predictable bandwidth use of core links across RSVP/DiffServ PHBs. Aggregate reservations can use RSVP fast local repair and local policy preemption features for determining bandwidth use during failure scenarios.

How to Configure RSVP Aggregation

Configuring RSVP Scalability Enhancements
Perform these tasks on all nodes within the aggregation region including aggregators, deaggregators, and interior nodes.

Enabling RSVP on an Interface
Perform this task to enable RSVP on all the interfaces along the path from the sender to the receiver.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip routing
4. ip vrf vrf-name
5. exit
6. interface type number
7. ip vrf forwarding vrf-name
8. ip rsvp bandwidth [interface-kbps] [single-flow-kbps]
9. Repeat the previous step for each interface that you want to enable.
10. end
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable**
Example:
Device> enable
Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2** | **configure terminal**
Example:
Device# configure terminal
Enters global configuration mode. |
| **Step 3** | **ip routing**
Example:
Device(config)# ip routing
Enables IP routing. |
| **Step 4** | **ip vrf vrf-name**
Example:
Device(config)# ip vrf vrf1
Defines a VRF instance and enters VRF configuration mode. |
| **Step 5** | **exit**
Example:
Device(config-vrf)# exit
Exits VRF configuration mode and enters global configuration mode. |
| **Step 6** | **interface type number**
Example:
Device(config)# interface Ethernet0/0
Configures the interface type and enters interface configuration mode. |
| **Step 7** | **ip vrf forwarding vrf-name**
Example:
Device(config-if)# ip vrf forwarding vrf1
Associates a VRF instance with an interface or subinterface. |
| **Step 8** | **ip rsvp bandwidth [interface-kbps] [single-flow-kbps]**
Example:
Device(config-if)# ip rsvp bandwidth 1158 100
Enables RSVP bandwidth on an interface.
- The optional *interface-kbps* and *single-flow-kbps* arguments specify the amount of bandwidth that can be allocated by RSVP flows or to a single flow, respectively. Values are from 1 to 10000000.
Note
Repeat this command for each interface that you want to enable. |
| **Step 9** | Repeat the previous step for each interface that you want to enable.
-- |
Setting the Resource Provider

Note
Resource provider was formerly called QoS provider.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ip rsvp bandwidth** \([\text{interface-kbps} \ [\text{single-flow-kbps} [\text{bc1 kbps} \ [\text{sub-pool kbps}] / \text{percent percent-bandwidth} \ [\text{single-flow-kbps}]]]]\)
4. **ip rsvp resource-provider** \([\text{none} \ | \text{wfq-interface} \ | \text{wfq-pvc}]\)
5. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| Example: | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal |
| **Step 3** ip rsvp bandwidth \([\text{interface-kbps} [\text{single-flow-kbps} [\text{bc1 kbps} \ [\text{sub-pool kbps}] / \text{percent percent-bandwidth} \ [\text{single-flow-kbps}]]]]\) | Configures the interface type and enters interface configuration mode. |
| Example: | Router(config-if)# ip rsvp bandwidth 500 500 |
| **Step 4** ip rsvp resource-provider \([\text{none} \ | \text{wfq-interface} \ | \text{wfq-pvc}]\) | Sets the resource provider.
- Enter the optional none keyword to set the resource provider to none regardless of whether one is configured on the interface. |
| Example: | Router(config-if)# ip rsvp resource-provider none |
Setting the resource provider to none instructs RSVP to not associate any resources, such as weighted fair queueing (WFQ) queues or bandwidth, with a reservation.

- Enter the optional `wfq-interface` keyword to specify WFQ as the resource provider on the interface.
- Enter the optional `wfq-pvc` keyword to specify WFQ as the resource provider on the permanent virtual circuit (PVC) or connection.

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>(Optional) Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-if)# end
```

Disabling Data Packet Classification

Note

Disabling data packet classification instructs RSVP not to process every packet, but to perform admission control only.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type slot / subslot / port`
4. `ip rsvp data-packet classification none`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Class and Policy Maps

To configure class and policy maps, use the following commands, beginning in global configuration mode:

SUMMARY STEPS

1. `Device(config)# class-map class-map-name`
2. `Device(config)# policy-map policy-map-name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>Device(config)# class-map class-map-name</code></td>
<td>Specifies the name of the class for which you want to create or modify class map match criteria.</td>
</tr>
<tr>
<td>Step 2 <code>Device(config)# policy-map policy-map-name</code></td>
<td>Specifies the name of the policy map to be created, added to, or modified before you can configure policies for classes whose match criteria are defined in a class map.</td>
</tr>
</tbody>
</table>

Attaching a Policy Map to an Interface

Note

If at the time you configure the RSVP scalability enhancements, there are existing reservations that use classic RSVP, no additional marking, classification, or scheduling is provided for these flows. You can also delete these reservations after you configure the RSVP scalability enhancements.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type slot / subslot / port</td>
<td>Configures the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface gigabitEthernet 0/0/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>**service-policy [type access-control] {input</td>
<td>output} policy-map-name**</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Note Policy maps can be attached in the input or output direction of an interface. The direction and the router to which the policy map should be attached vary according to the network configuration. When using the <code>service-policy</code> command to attach the policy map to an interface, be sure to choose the router and the interface direction that are appropriate for the network configuration.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# service-policy output POLICY-ATM</code></td>
<td>• The optional <code>type access-control</code> keywords determine the exact pattern to look for in the protocol stack of interest.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter the <code>policy-map name</code>.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>(Optional) Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Interfaces with Aggregation Role

Perform this task on aggregators and deaggregators to specify which interfaces are facing the aggregation region.

Note

You do not need to perform this task on interior routers; that is, nodes having interior interfaces only.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type slot / subslot / port
4. ip rsvp aggregation role interior
5. Repeat Step 4 as needed to configure additional aggregator and deaggregator interfaces.
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type slot / subslot / port</td>
<td>Configures the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitEthernet 0/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip rsvp aggregation role interior</td>
<td>Enables RSVP aggregation on an aggregator or deaggregator’s interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip rsvp aggregation role interior</td>
<td></td>
</tr>
<tr>
<td>Step 5 Repeat Step 4 as needed to configure additional aggregator and deaggregator interfaces.</td>
<td>Configures additional aggregator and deaggregator interfaces.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>(Optional) Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Aggregation Mapping on a Deaggregator

Typically, an edge router acts as both an aggregator and deaggregator because of the unidirectional nature of RSVP reservations. Most applications require bidirectional reservations. Therefore, these parameters are used by a deaggregator when mapping E2E reservations onto aggregates during the dynamic aggregate reservation process.

Before you begin

You should configure an access control list (ACL) to define a group of RSVP endpoints whose reservations will be aggregated onto a single aggregate reservation session identified by the specified DSCP. Then for each ACL, define a map configuration.

Extended ACLs

The ACLs used within the `ip rsvp aggregation ip map` command match the RSVP message objects as follows for an extended ACL:

- Source IP address and port match the RSVP PATH message sender template or RSVP RESV message filter spec; this is the IP source or the RSVP sender.
- Destination IP address and port match the RSVP PATH/RESV message session object IP address; this is the IP destination address or the RSVP receiver.
- Protocol matches the RSVP PATH/RESV message session object protocol; if protocol = IP, then it matches the source or destination address as above.

Standard ACLs

The ACLs used within the `ip rsvp aggregation ip map` command match the RSVP message objects as follows for a standard ACL:

- IP address matches the RSVP PATH message sender template or RSVP RESV message filter spec; this is the IP source address or the RSVP sender.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip rsvp aggregation ip map {access-list {acl-number} | any} dscp value`
4. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Enters global configuration mode.
configure terminal	
Example:	
Router# configure terminal	

| **Step 3** | Configures RSVP aggregation rules that tell a router how to map E2E reservations onto aggregate reservations. |
| ip rsvp aggregation ip map \{access-list \{acl-number \} \| any\} dscp value | |
| Example: | The keywords and arguments specify additional information such as DSCP values. |
| Router(config)# ip rsvp aggregation ip map any dscp af41 | |

Step 4	(Optional) Returns to privileged EXEC mode.
end	
Example:	
Router(config)# end	

Configuring Aggregate Reservation Attributes on a Deaggregator

Perform this task on a deaggregator to configure the aggregate reservation attributes (also called token bucket parameters) on a per-DSCP basis.

Note

Typically, an edge device acts as both an aggregator and deaggregator because of the unidirectional nature of RSVP reservations. Most applications require bidirectional reservations. Therefore, these parameters are used by a deaggregator when mapping E2E reservations onto aggregates during the dynamic aggregate reservation process.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip rsvp aggregation ip reservation dscp value [aggregator agg-ip-address] traffic-params static rate data-rate [burst burst-size] [peak peak-rate]
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures RSVP aggregate reservation attributes (also called token bucket parameters) on a per-DSCP basis.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>ip rsvp aggregation ip reservation dscp value [aggregator agg-ip-address] traffic-params static rate data-rate [burst burst-size] [peak peak-rate]</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip rsvp aggregation ip reservation dscp af11 aggregator 10.10.10.10 traffic-params static rate 10 burst 8 peak 10</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring an RSVP Aggregation Device ID

Perform this task on aggregators and deaggregators to configure an RSVP aggregation device ID.

Note

Both aggregators and deaggregators need to be identified with a stable and routable IP address. This is the RFC 3175 device ID, which is also the IP address of the loopback interface with the lowest number. If there is no loopback interface configured or all those configured are down, then there will be no device ID assigned for the aggregating/deaggregating function and aggregate reservations will not be established.

Note

The device ID may change if the associated loopback interface goes down or its IP address is removed. In this case, the E2E and aggregate sessions are torn down. If a new device ID is determined, new E2E and aggregate sessions will use the new device ID.

SUMMARY STEPS

1. **enable**
2. `configure terminal`
3. `interface loopback number`
4. `ip address ip-address subnet-mask/prefix`
5. `end`

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.
Example:
Device> enable |
| **Step 2** | `configure terminal` | Enters global configuration mode.
Example:
Device# configure terminal |
| **Step 3** | `interface loopback number` | Creates a loopback interface and enters interface configuration mode.
Example:
Device(config)# interface loopback 1 |
| **Step 4** | `ip address ip-address subnet-mask/prefix` | Configures an IP address and subnet mask or prefix on the loopback interface.
Example:
Device(config-if)# ip address 192.168.50.1 255.255.255.0 |
| **Step 5** | `end` | (Optional) Returns to privileged EXEC mode.
Example:
Device(config-if)# end |

Enabling RSVP Aggregation

Perform this task on aggregators and deaggregators to enable RSVP aggregation globally after you have completed all the previous aggregator and deaggregator configurations.

Note

This task registers a device to receive RSVP-E2E-IGNORE messages. It is not necessary to perform this task on interior devices because they are only processing RSVP aggregate reservations. If you do so, you may decrease performance because the interior device will then unnecessarily process all the RSVP-E2E-IGNORE messages.
If you enable RSVP aggregation globally on an interior device, then you should configure all interfaces as interior.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip rsvp aggregation ip
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip rsvp aggregation ip</td>
<td>Enables RSVP aggregation globally on an aggregator or deaggregator.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip rsvp aggregation ip</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>(Optional) Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring RSVP Local Policy

Perform this task to apply a local policy to an RSVP aggregate reservation.

In classic (unaggregated) RSVP, a session is identified in the reservation message session object by the destination IP address and protocol information. In RSVP aggregation, a session is identified by the destination IP address and DSCP within the session object of the aggregate RSVP message. The **dscp-ip** keyword matches the DSCP within the session object.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip rsvp policy local \{acl acl1[...acl8] | dscp-ip value1 [value2 ... value8] | default | identity alias1 [alias2...alias4] | origin-as as1[as2...as8]\}
4. \{accept | forward [all | path | path-error | resv | resv-error] | default | exit | fast-reroute | local-override | maximum \{bandwidth [group x] [single y] | senders n\} | preempt-priority [traffic-eng x] setup-priority [hold-priority]\}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 ip rsvp policy local {acl acl1[...acl8]</td>
<td>dscp-ip value1 [value2 ... value8]</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter the dscp-ip value keyword and argument combination to specify a DSCP for matching the session object DCSP within the aggregate reservations. Values can be the following:</td>
</tr>
<tr>
<td></td>
<td>• 0 to 63--Numerical. The default value is 0.</td>
</tr>
<tr>
<td></td>
<td>• af11 to af43--Assured forwarding (AF).</td>
</tr>
<tr>
<td></td>
<td>• cs1 to cs7--Type of service (ToS) precedence.</td>
</tr>
<tr>
<td></td>
<td>• default--Default DSCP.</td>
</tr>
<tr>
<td></td>
<td>• ef--Expedited Forwarding (EF).</td>
</tr>
<tr>
<td>Note</td>
<td>You must associate at least one DSCP with a DSCP-based policy. However, you can associate as many as eight.</td>
</tr>
<tr>
<td>Step 4 {accept</td>
<td>forward [all</td>
</tr>
<tr>
<td>Example:</td>
<td>Note This is an optional step. An empty policy rejects everything, which may be desired in some cases.</td>
</tr>
<tr>
<td></td>
<td>See the ip rsvp policy local command for more detailed information on submode commands.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Router(config-rsvp-policy-local)# forward all | |
Step 5 | end |
Example: |
Router(config-rsvp-policy-local)# end | (Optional) Exits local policy configuration mode and returns to privileged EXEC mode. |

Verifying the RSVP Aggregation Configuration

Note

You can use the following `show` commands in user EXEC or privileged EXEC mode.

SUMMARY STEPS

1. `enable`
2. `show ip rsvp aggregation ip [endpoints | interface [if-name] | map [dscp value]] reservation [dscp value[aggregator ip-address]]`
3. `show ip rsvp aggregation ip endpoints [role {aggregator | deaggregator})] [ip-address] [dscp value] [detail]`
4. `show ip rsvp [atm-peak-rate-limit | counters | host | installed | interface | listeners | neighbor | policy | precedence | request | reservation | sbm | sender | signalling |tos]`
5. `show ip rsvp reservation [detail] [filter[destination ip-address | hostname] [dst-port port-number] [source ip-address | hostname][src-port port-number]]`
6. `show ip rsvp sender [detail] [filter[destination ip-address | hostname] [dst-port port-number] [source ip-address | hostname][src-port port-number]]`
7. `show ip rsvp installed [interface-type interface-number] [detail]`
8. `show ip rsvp interface [detail] [interface-type interface-number]`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 2</td>
<td>show ip rsvp aggregation ip [endpoints</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Displays RSVP summary aggregation information.</td>
</tr>
<tr>
<td></td>
<td>• The optional keywords and arguments display additional information.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Device# show ip rsvp aggregation ip | (Optional) Displays RSVP information about aggregator and deaggregator devices for currently established aggregate reservations.
• The optional keywords and arguments display additional information. |
| **Step 3** show ip rsvp aggregation ip endpoints [role {aggregator | deaggregator}] [ip-address] [dscp value] [detail]
Example:
Device# show ip rsvp aggregation ip endpoints | (Optional) Displays specific information for RSVP categories.
• The optional keywords display additional information. |
| **Step 4** show ip rsvp [atm-peak-rate-limit | counters | host | installed | interface | listeners | neighbor | policy | precedence | request | reservation | sbm | sender | signalling | tos]
Example:
Device# show ip rsvp | (Optional) Displays RSVP-related receiver information currently in the database.
• The optional keywords and arguments display additional information.
Note The optional `filter` keyword is supported in Cisco IOS Releases 12.0S and 12.2S only. |
| **Step 5** show ip rsvp reservation [detail] [filter {destination ip-address | hostname} [dst-port port-number] [source ip-address | hostname][src-port port-number]]
Example:
Device# show ip rsvp reservation detail | (Optional) Displays RSVP PATH-related sender information currently in the database.
• The optional keywords and arguments display additional information.
Note The optional `filter` keyword is supported in Cisco IOS Releases 12.0S and 12.2S only. |
| **Step 6** show ip rsvp sender [detail] [filter {destination ip-address | hostname} [dst-port port-number] [source ip-address | hostname][src-port port-number]]
Example:
Device# show ip rsvp sender detail | (Optional) Displays RSVP-related installed filters and corresponding bandwidth information.
• The optional keywords and arguments display additional information. |
| **Step 7** show ip rsvp installed [interface-type interface-number] [detail]
Example:
Device# show ip rsvp installed detail | (Optional) Displays RSVP-related interface information.
• The optional keywords and arguments display additional information. |
| **Step 8** show ip rsvp interface [detail] [interface-type interface-number]
Example:
Device# show ip rsvp interface detail | (Optional) Exits privileged EXEC mode and returns to user EXEC mode. |
Configuration Examples for RSVP Aggregation

Examples Configuring RSVP Aggregation

The figure below shows a five-router network in which RSVP aggregation is configured.

Figure 2: Sample RSVP Aggregation Network

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring RSVP and DiffServ Attributes on an Interior Router

The following example configures RSVP/DiffServ attributes on an interior router (R3 in the figure above).

- GigabitEthernet interface 0/0/0 is enabled for RSVP and the amount of bandwidth available for reservations is configured.
- A resource provider is configured and data packet classification is disabled because RSVP aggregation supports control plane aggregation only.

Router# configure terminal

Enter configuration commands, one per line. End with CTRL/Z.
Router(config)# interface GigabitEthernet 0/0/0

Router(config-if)# ip rsvp bandwidth 400
Router(config-if)# ip rsvp resource-provider none
Router(config-if)# ip rsvp data-packet classification none
Router(config-if)# end

Configuring RSVP Aggregation on an Aggregator or Deaggregator

The following example configures RSVP aggregation attributes on an aggregator or deaggregator (R2 and R4 in the figure above):

- Loopback 1 is configured to establish an RSVP aggregation router ID.
- Ethernet interface 0/0 is enabled for RSVP and the amount of bandwidth available for reservations is configured.
- Ethernet interface 0/0 on an aggregator or deaggregator is configured to face an aggregation region.
- A resource provider is configured and data packet classification is disabled because RSVP aggregation supports control plane aggregation only.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface Loopback 1
Router(config)# ip address 192.168.50.1 255.255.255.0
Router(config)# interface GigabitEthernet 0/0/0
Router(config-if)# ip rsvp bandwidth 400
Router(config-if)# ip rsvp aggregation role interior
Router(config-if)# ip rsvp resource-provider none
Router(config-if)# ip rsvp data-packet classification none
Router(config-if)# end

Configuring RSVP Aggregation Attributes and Parameters

The following example configures additional RSVP aggregation attributes, including a global rule for mapping all E2E reservations onto a single aggregate with DSCP AF41 and the token bucket parameters for aggregate reservations, because dynamic resizing is not supported. This configuration is only required on nodes performing the deaggregation function (R4 in the figure above).

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip rsvp aggregation ip map any dscp af41
Router(config)# ip rsvp aggregation ip reservation dscp af41 aggregator 10.10.10.10 traffic-params static rate 10 burst 8 peak 10
Router(config)# end
Configuring an Access List for a Deaggregator

In the following example, access list 1 is defined for all RSVP messages whose RSVP PATH message sender template source address is in the 10.1.0.0 subnet so that the deaggregator (R4 in the figure above) maps those reservations onto an aggregate reservation for the DSCP associated with the AF41 PHB:

Router# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)# access-list 1 permit 10.1.0.0 0.0.255.255

Router(config)# ip rsvp aggregation ip map access-list 1 dscp af41

Router(config)# end

Configuring RSVP Aggregation

After you configure your RSVP aggregation attributes, you are ready to enable aggregation globally.

When you enable aggregation on a router, the router can act as an aggregator or a deaggregator. To perform aggregator and deaggregator functions, the RSVP process must see messages with the RSVP-E2E-IGNORE protocol type (134) on a router; otherwise, the messages are forwarded as data by the router's data plane. The `ip rsvp aggregation ip` command enables RSVP to identify messages with the RSVP-E2E-IGNORE protocol.

Note

This registers a router to receive RSVP-E2E-IGNORE messages. It is not necessary to configure this command on interior nodes that are only processing RSVP aggregate reservations and forwarding RSVP-E2E-IGNORE messages as IP datagrams). Since the router is loaded with an image that supports aggregation, the router will process aggregate (RFC 3175 formatted) messages correctly. Enabling aggregation on an interior node may decrease performance because the interior node will then unnecessarily process all RSVP-E2E-IGNORE messages.

Note

If you enable aggregation on an interior node, you must configure all its interfaces as interior. Otherwise, all the interfaces have the exterior role, and any E2E PATH (E2E-IGNORE) messages arriving at the router are discarded.

In summary, there are two options for an interior router (R3 in the figure above):

- No RSVP aggregation configuration commands are entered.
- RSVP aggregation is enabled and all interfaces are configured as interior.

Configuring RSVP Local Policy

You can configure a local policy optionally on any RSVP capable node. In this example, a local policy is configured on a deaggregator to set the preemption priority values within the RSVP RESV aggregate messages based upon matching the DSCP within the aggregate RSVP messages session object. This allows the bandwidth available for RSVP reservations to be used first by reservations of DSCP EF over DSCP AF41 on interior or
aggregation nodes. Any aggregate reservation for another DSCP will have a preemption priority of 0, the default.

Note

Within the RSVP RESV aggregate message at the deaggregator, this local policy sets an RFC 3181 "Signaled Preemption Priority Policy Element" that can be used by interior nodes or the aggregator that has `ip rsvp preemption` enabled.

The following example sets the preemption priority locally for RSVP aggregate reservations during establishment on an interior router (R3 in the figure above):

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)# ip rsvp policy local dscp-ip ef
Router(config-rsvp-local-policy)# 5 5
Router(config-rsvp-local-policy)# exit
Router(config)# ip rsvp policy local dscp-ip af41
Router(config-rsvp-local-policy)# 2 2
Router(config-rsvp-local-policy)# end
```

Example Verifying the RSVP Aggregation Configuration

Verifying RSVP Aggregation and Configured Reservations

The following example verifies that RSVP aggregation is enabled and displays information about the reservations currently established and configured map and reservation policies:

```
Router# show ip rsvp aggregation ip
RFC 3175 Aggregation: Enabled
Level: 1
Default QoS service: Controlled-Load
Number of signaled aggregate reservations: 2
Number of signaled E2E reservations: 8
Number of configured map commands: 4
Number of configured reservation commands: 1
```

Verifying Configured Interfaces and Their Roles

The following example displays the configured interfaces and whether they are interior or exterior in regard to the aggregation region:

```
Router# show ip rsvp aggregation ip interface
```
Additional References

The following sections provide references related to the RSVP Application ID Support feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>QoS configuration tasks related to RSVP</td>
<td>"Configuring RSVP" module</td>
</tr>
<tr>
<td>Cisco United Communications Manager (CallManager) and related features</td>
<td>"Overview of Cisco Unified Communications Manager and Cisco IOS Interoperability" module</td>
</tr>
<tr>
<td>Regular expressions</td>
<td>"Using the Cisco IOS Command-Line Interface" module</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Verifying Aggregator and Deaggregator Reservations

The following example displays information about the aggregators and deaggregators when established reservations are present:

```
Router# show ip rsvp aggregation ip endpoints detail
Role  DSCP Aggregator  Deaggregator  State  Rate  Used  QBM PoolID
-----  -----------  -----------  -----  -------  -------  --------
Agg   46  10.3.3.3  10.4.4.4  ESTABL  100K  100K  0x00000003
Aggregate Reservation for the following E2E Flows (PSBs):
  To    From  Pro DPort Sport  Prev Hop  I/F  BPS
  10.4.4.4  10.1.1.1  UDP 1  1  10.23.20.3  Et1/0  100K
Aggregate Reservation for the following E2E Flows (RSBs):
  To    From  Pro DPort Sport  Next Hop  I/F  Fi Serv  BPS
  10.4.4.4  10.1.1.1  UDP 1  1  10.4.4.4  Se2/0  FF RATE 100K
Aggregate Reservation for the following E2E Flows (Reqs):
  To    From  Pro DPort Sport  Next Hop  I/F  Fi Serv  BPS
  10.4.4.4  10.1.1.1  UDP 1  1  10.23.20.3  Et1/0  FF RATE 100K
```

The following example displays information about the aggregators and deaggregators when established reservations are present:

```
Router# show ip rsvp aggregation ip endpoints detail
Role  DSCP Aggregator  Deaggregator  State  Rate  Used  QBM PoolID
-----  -----------  -----------  -----  -------  -------  --------
Agg   46  10.3.3.3  10.4.4.4  ESTABL  100K  100K  0x00000003
Aggregate Reservation for the following E2E Flows (PSBs):
  To    From  Pro DPort Sport  Prev Hop  I/F  BPS
  10.4.4.4  10.1.1.1  UDP 1  1  10.23.20.3  Et1/0  100K
Aggregate Reservation for the following E2E Flows (RSBs):
  To    From  Pro DPort Sport  Next Hop  I/F  Fi Serv  BPS
  10.4.4.4  10.1.1.1  UDP 1  1  10.4.4.4  Se2/0  FF RATE 100K
Aggregate Reservation for the following E2E Flows (Reqs):
  To    From  Pro DPort Sport  Next Hop  I/F  Fi Serv  BPS
  10.4.4.4  10.1.1.1  UDP 1  1  10.23.20.3  Et1/0  FF RATE 100K
```
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2205</td>
<td>Resource ReSerVation Protocol (RSVP)</td>
</tr>
<tr>
<td>RFC 2872</td>
<td>Application and Sub Application Identity Policy Element for Use with RSVP</td>
</tr>
<tr>
<td>RFC 3181</td>
<td>Signaled Preemption Priority Policy Element</td>
</tr>
<tr>
<td>RFC 3182</td>
<td>Identity Representation for RSVP</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for RSVP Aggregation

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1: Feature Information for RSVP Aggregation

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSVP Aggregation</td>
<td>Cisco IOS XE Release 2.6</td>
<td>The RSVP Aggregation feature allows the Resource Reservation Protocol (RSVP) state to be reduced within an RSVP/DiffServ network by aggregating many smaller reservations into a single, larger reservation at the edge.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 3.8S</td>
<td>The following commands were introduced or modified: <code>debug ip rsvp aggregation</code>, <code>debug qbm</code>, <code>ip rsvp aggregation ip</code>, <code>ip rsvp aggregation ip map</code>, <code>ip rsvp aggregation ip reservation dscp traffic-params static rate</code>, <code>ip rsvp aggregation ip role interior</code>, <code>ip rsvp policy local</code>, <code>show ip rsvp</code>, <code>show ip rsvp aggregation ip</code>, <code>show ip rsvp aggregation ip endpoints</code>, <code>show ip rsvp installed</code>, <code>show ip rsvp interface</code>, <code>show ip rsvp policy local</code>, <code>show ip rsvp request</code>, <code>show ip rsvp reservation</code>, <code>show ip rsvp sender</code>, <code>show qbm client</code>, <code>show qbm pool</code>.</td>
</tr>
</tbody>
</table>

In Cisco IOS XE Release 3.8S, support was added for the Cisco ASR 903 Router.

Glossary

admission control -- The process by which an RSVP reservation is accepted or rejected on the basis of end-to-end available network resources.

aggregate -- An RSVP flow that represents multiple end-to-end (E2E) flows; for example, a Multiprotocol Label Switching Traffic Engineering (MPLS-TE) tunnel may be an aggregate for many E2E flows.

aggregation region -- An area where E2E flows are represented by aggregate flows, with aggregators and deaggregators at the edge; for example, an MPLS-TE core, where TE tunnels are aggregates for E2E flows. An aggregation region contains a connected set of nodes that are capable of performing RSVP aggregation.

aggregator -- The device that processes the E2E PATH message as it enters the aggregation region. This device is also called the TE tunnel head-end device; it forwards the message from an exterior interface to an interior interface.

bandwidth -- The difference between the highest and lowest frequencies available for network signals. The term is also used to describe the rated throughput capacity of a given network medium or protocol.

deaggregator -- The device that processes the E2E PATH message as it leaves the aggregation region. This device is also called the TE tunnel tail-end device; it forwards the message from an interior interface to an exterior interface.

E2E --end-to-end. An RSVP flow that crosses an aggregation region, and whose state is represented in aggregate within this region, such as a classic RSVP unicast flow crossing an MPLS-TE core.

LSP --label-switched path. A configured connection between two devices, in which label switching is used to carry the packets. The purpose of an LSP is to carry data packets.

QoS --quality of service. A measure of performance for a transmission system that reflects its transmission quality and service availability.
RSVP -- Resource Reservation Protocol. A protocol that supports the reservation of resources across an IP network. Applications running on IP end systems can use RSVP to indicate to other nodes the nature (bandwidth, jitter, maximum burst, and so on) of the packet streams that they want to receive.

state -- Information that a device must maintain about each LSP. The information is used for rerouting tunnels.

TE -- Traffic engineering. The techniques and processes used to cause routed traffic to travel through the network on a path other than the one that would have been chosen if standard routing methods had been used.

tunnel -- Secure communications path between two peers, such as two devices.