RSVP Interface-Based Receiver Proxy

The RSVP Interface-Based Receiver Proxy feature lets you configure a proxy router by outbound interface instead of configuring a destination address for each flow going through the same interface.

- Finding Feature Information, page 1
- Prerequisites for RSVP Interface-Based Receiver Proxy, page 1
- Restrictions for RSVP Interface-Based Receiver Proxy, page 2
- Information About RSVP Interface-Based Receiver Proxy, page 2
- How to Configure RSVP Interface-Based Receiver Proxy, page 3
- Configuration Examples for RSVP Interface-Based Receiver Proxy, page 6
- Additional References, page 9
- Feature Information for RSVP Interface-Based Receiver Proxy, page 10
- Glossary, page 11

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for RSVP Interface-Based Receiver Proxy

You must configure an IP address and enable Resource Reservation Protocol (RSVP) on one or more interfaces on at least two neighboring routers that share a link within the network.
Restrictions for RSVP Interface-Based Receiver Proxy

- Filtering using access control lists (ACLs), application IDs, or other mechanisms is not supported.
- A provider edge (PE) router cannot switch from being a proxy node to a transit node for a given flow during the lifetime of the flow.

Information About RSVP Interface-Based Receiver Proxy

Feature Overview of RSVP Interface-Based Receiver Proxy

The RSVP Interface-Based Receiver Proxy feature allows you to use RSVP to signal reservations and guarantee bandwidth on behalf of a receiver that does not support RSVP by terminating the PATH message and generating a RESV message in the upstream direction on an RSVP-capable router on the path to the endpoint. An example is a video-on-demand flow from a video server to a set-top box, which is a computer that acts as a receiver and decodes the incoming video signal from the video server.

Because set-top boxes may not support RSVP natively, you cannot configure end-to-end RSVP reservations between a video server and a set-top box. Instead, you can enable the RSVP interface-based receiver proxy on the router that is closest to that set-top box.

The router terminates the end-to-end sessions for many set-top boxes and performs admission control on the outbound (or egress) interface of the PATH message, where the receiver proxy is configured, as a proxy for Call Admission Control (CAC) on the router-to-set-top link. The RSVP interface-based receiver proxy determines which PATH messages to terminate by looking at the outbound interface to be used by the traffic flow.

You can configure an RSVP interface-based receiver proxy to terminate PATH messages going out a specified interface with a specific action (reply with RESV, or reject). The most common application is to configure the receiver proxy on the edge of an administrative domain on interdomain interfaces. The router then terminates PATH messages going out the administrative domain while still permitting PATH messages transitioning through the router within the same administrative domain to continue downstream.

The router terminates the end-to-end sessions for many set-top boxes, with the assumption that the links further downstream (for example, from the DSLAM to the set-top box) never become congested or, more likely, in the case of congestion, that the voice and video traffic from the router gets the highest priority and access to the bandwidth.

Benefits of RSVP Interface-Based Receiver Proxy

Before the RSVP Interface-Based Receiver Proxy feature was introduced, you had to configure a receiver proxy for every separate RSVP stream or set-top box. The RSVP Interface-Based Receiver Proxy feature allows you to configure the proxy by outbound interface. For example, if there were 100 set-top boxes downstream from the proxy router, you had to configure 100 proxies. With this enhancement, you configure only the outbound interfaces. In addition, the receiver proxy is guaranteed to terminate the reservation only on the last hop within the core network. Nodes that may function as transit nodes for some PATH messages but should proxy others depending on their placement in the network can perform the correct functions on a flow-by-flow basis.
How to Configure RSVP Interface-Based Receiver Proxy

Enabling RSVP on an Interface

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip rsvp bandwidth [interface-kbps][single-flow-kbps]`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface Ethernet0/0</td>
</tr>
<tr>
<td></td>
<td>Configures the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip rsvp bandwidth [interface-kbps][single-flow-kbps]</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# ip rsvp bandwidth 7500</td>
</tr>
<tr>
<td></td>
<td>Enables RSVP bandwidth on an interface.</td>
</tr>
<tr>
<td></td>
<td>• The optional <code>interface-kbps</code> and <code>single-flow-kbps</code> arguments specify the amount of bandwidth that can be allocated by RSVP flows or to a single flow, respectively. Values are from 1 to 10000000.</td>
</tr>
<tr>
<td>Note</td>
<td>Repeat this command for each interface that you want to enable.</td>
</tr>
</tbody>
</table>
Configuring a Receiver Proxy on an Outbound Interface

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type slot / subslot / port`
4. `ip rsvp listener outbound {reply | reject}`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type slot / subslot / port</td>
<td>Configures the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitEthernet 0/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip rsvp listener outbound {reply</td>
<td>reject}</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip rsvp listener outbound reject</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the RSVP Interface-Based Receiver Proxy Configuration

Perform the following task to verify the configuration. You can use these commands in any order.

Note
You can use the following show commands in user EXEC or privileged EXEC mode.

SUMMARY STEPS

1. enable
2. show ip rsvp listeners [ip-address| any] [udp | tcp | any | protocol][dst-port | any]
3. show ip rsvp sender [detail] [filter [destination address] [dst-port port-number] [source address] [src-port port-number]]
4. show ip rsvp reservation [detail] [filter [destination address] [dst-port port-number] [source address] [src-port port-number]]
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | (Optional) Enables privileged EXEC mode.
• Enter your password if prompted.
Note Omit this step if you are using the show commands in user EXEC mode. |
<p>| Example: Router> enable |
| Step 2 show ip rsvp listeners [ip-address| any] [udp | tcp | any | protocol][dst-port | any] | Displays RSVP listeners for a specified port or protocol. |
| Example: Router# show ip rsvp listeners |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 show ip rsvp sender [detail] [filter [destination address] [dst-port port-number] [source address] [src-port port-number]]</td>
<td>Displays RSVP PATH-related sender information currently in the database.</td>
</tr>
<tr>
<td>Example: Router# show ip rsvp sender detail</td>
<td></td>
</tr>
<tr>
<td>Step 4 show ip rsvp reservation [detail] [filter [destination address] [dst-port port-number] [source address] [src-port port-number]]</td>
<td>Displays RSVP-related receiver information currently in the database.</td>
</tr>
<tr>
<td>Example: Router# show ip rsvp reservation detail</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>(Optional) Exits privileged EXEC mode and returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# exit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for RSVP Interface-Based Receiver Proxy

Examples Configuring RSVP Interface-Based Receiver Proxy

The four-router network in the figure below contains the configurations for the examples shown in the following sections:

Figure 1: Sample Network with an Interface-Based Receiver Proxy Configured
Configuring a Receiver Proxy on a Middle Router on Behalf of Tailend Routers

The following example configures a receiver proxy, also called a listener, on the middle router (Router 2) on behalf of the two tailend routers (Routers 3 and 4):

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitEthernet 2/0/0
Router(config-if)# ip rsvp listener outbound reply
Router(config-if)# exit
Router(config)# interface gigabitethernet 3/0/0
Router(config-if)# ip rsvp listener outbound reject
Router(config-if)# end

Configuring PATH Messages from a Headend Router to Tailend Routers to Test the Receiver Proxy

If you do not have another headend router generating RSVP PATH messages available, configure one in the network for the specific purpose of testing RSVP features such as the receiver proxy. Note that these commands are not expected (or supported) in a final deployment.

The following example configures four PATH messages from the headend router (Router 1) to the tailend routers (Routers 3 and 4):

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip rsvp sender-host 10.0.0.5 10.0.0.1 TCP 2 2 100 10
Router(config)# ip rsvp sender-host 10.0.0.5 10.0.0.1 UDP 1 1 100 10
Router(config)# ip rsvp sender-host 10.0.0.7 10.0.0.1 TCP 4 4 100 10
Router(config)# ip rsvp sender-host 10.0.0.7 10.0.0.1 UDP 3 3 100 10
Router(config)# end

Examples Verifying RSVP Interface-Based Receiver Proxy

This section contains the following verification examples:

Verifying the PATH Messages in the Database

The following example verifies that the PATH messages you configured are in the database:

Router# show ip rsvp sender
To From Pro DPort Sport Prev Hop I/F BPS
10.0.0.5 10.0.0.1 TCP 2 2 none none 100K
10.0.0.5 10.0.0.1 UDP 1 1 none none 100K
10.0.0.7 10.0.0.1 TCP 4 4 none none 100K
10.0.0.7 10.0.0.1 UDP 3 3 none none 100K

The following example verifies that a PATH message has been terminated by a receiver proxy configured to reply.

A receiver proxy that is configured to reject does not cause any state to be stored in the RSVP database; therefore, this show command does not display these PATH messages. Only one PATH message is shown.

Router# show ip rsvp sender detail
PATH:
Verifying the Running Configuration

The following example verifies the configuration for GigabitEthernet interface 2/0/0:

```
Router# show running-config interface gigabitEthernet 2/0/0
Building configuration...
Current configuration : 132 bytes
!
interface gigabitEthernet2/0/0
  ip address 172.16.0.1 255.0.0.0
  no cdp enable
  ip rsvp bandwidth 2000
  ip rsvp listener outbound reply
end
```

The following example verifies the configuration for GigabitEthernet interface 3/0/0:

```
Router# show running-config interface gigabitEthernet 3/0/0
Building configuration...
Current configuration : 133 bytes
!
interface gigabitEthernet3/0/0
  ip address 172.16.0.2 255.0.0.0
  no cdp enable
  ip rsvp bandwidth 2000
  ip rsvp listener outbound reject
end
```

Verifying the Listeners

The following example verifies the listeners (proxies) that you configured on the middle router (Router 2) on behalf of the two tailend routers (Routers 3 and 4):

```
Router# show ip rsvp listener
To  Protocol  DPort  Description        Action  OutIf
10.0.0.0  0       0       RSVP Proxy     reply    Et2/0
10.0.0.0  0       0       RSVP Proxy     reject   Et3/0
```

Verifying the Reservations

The following example displays reservations established by the middle router (Router 2) on behalf of the tailend routers (Routers 3 and 4) as seen from the headend router (Router 1):

```
Router# show ip rsvp reservation
To  From  Proto  DPort  Sport  Next Hop  I/F  Fi Serv  BPS
10.0.0.7 10.0.0.1  TCP  4    4       10.0.0.2  GL1/0 FF RATE 100K
10.0.0.7 10.0.0.1  UDP  3    3       10.0.0.2  GL1/0 FF RATE 100K
```

The following example verifies that a reservation is locally generated (proxied). Only one reservation is shown:

```
Router# show ip rsvp reservation detail
RSVP Reservation. Destination is 10.0.0.7, Source is 10.0.0.1,
Protocol is UDP, Destination port is 1, Source port is 1
Next Hop: 10.2.3.3 on GigabitEthernet2/0/0
Reservation Style is Fixed-Filter, QoS Service is Guaranteed-Rate
Resv ID handle: 01000405.
Created: 09:24:24 EST Fri Jun 2 2006
Average Bitrate is 100K bits/sec, Maximum Burst is 10K bytes
Min Policed Unit: 0 bytes, Max Pkt Size: 0 bytes
Status: Proxied
Policy: Forwarding. Policy source(s): Default

Verifying CAC on an Outbound Interface
The following example verifies that the proxied reservation performed CAC on the local outbound interface:

Router# show ip rsvp installed
RSVP: GigabitEthernet2/0/0 has no installed reservations
RSVP: GigabitEthernet3/0/0
BPS To From Protoc DPort Sport
100K 10.0.0.7 10.0.0.1 UDP 1 1

Additional References
The following sections provide references related to the RSVP Interface-Based Receiver Proxy feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>QoS configuration tasks related to RSVP</td>
<td>&quot;Configuring RSVP&quot; module</td>
</tr>
<tr>
<td>Internet draft</td>
<td>RSVP Proxy Approaches , Internet draft, October 2006 [draft-lefaucheur-tsvwg-rsvp-proxy-00.txt]</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2205</td>
<td>Resource ReSerVation Protocol (RSVP)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for RSVP Interface-Based Receiver Proxy

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1: Feature Information for RSVP Interface-Based Receiver Proxy

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSVP Interface-Based Receiver Proxy</td>
<td>Cisco IOS XE Release 2.6</td>
<td>The RSVP Interface-Based Receiver Proxy feature lets you configure a proxy router by outbound interface instead of configuring a destination address for each flow going through the same interface.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 3.8S</td>
<td>The following commands were introduced or modified: <code>ip rsvp bandwidth</code>, <code>ip rsvp listener outbound</code>, <code>show ip rsvp listeners</code>, <code>show ip rsvp reservation</code>, <code>show ip rsvp sender</code>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.8S, support was added for the Cisco ASR 903 Router.</td>
</tr>
</tbody>
</table>

Glossary

- **flow** -- A stream of data traveling between two endpoints across a network (for example, from one LAN station to another). Multiple flows can be transmitted on a single circuit.
- **PE router** -- provider edge router. A router that is part of a service provider’s network and is connected to a customer edge (CE) router.
- **proxy** -- A component of RSVP that manages all locally originated and terminated state.
- **receiver proxy** -- A configurable feature that allows a router to proxy RSVP RESV messages for local or remote destinations.
- **RSVP** -- Resource Reservation Protocol. A protocol for reserving network resources to provide quality of service guarantees to application flows.
- **set-top box** -- A computer that acts as a receiver and decodes the incoming signal from a satellite dish, a cable network, or a telephone line.