
Applying QoS Features Using the MQC

• About, on page 1
• Cisco Modular QoS CLI, on page 1
• Create Class Maps, on page 2
• Create Policy-Maps, on page 3
• Attach the Policy-Map, on page 7
• Verify Operation of the QoS Policy, on page 7

About
This chapter provide an overview of Modular QoS CLI (MQC), which is how all QoS features are configured
on the Cisco ASR 1000 Series Aggregation Services Router. MQC is a standardized approach to enabling
QoS on Cisco routing and switching platforms.

We intend this chapter as an overview of configuration tasks required for any QoS configuration. Individual
features are covered in appropriate modules.

Cisco Modular QoS CLI
With MQC, you perform 4 simple steps to enable and verify QoS. Examples are shown for each step. (Refer
to individual chapters for feature explanations.)

1. Create class-maps - Classify your traffic (applications) into classes that you will work on.
class-map voice
match dscp ef

class-map video
match dscp AF41 AF42

2. Create policy-map - Define the treatment each class should receive.
policy-map simple-example
class voice
priority
police cir percent 10

class video
bandwidth remaining percent 30

Applying QoS Features Using the MQC
1

3. Attach the policy-map - Bind the policy to a physical or logical interface, identifying the traffic on which
your policy should operate. You must specify whether the policy will apply to traffic that will enter the
router via that interface (ingress) or to traffic that will exit the router via that interface (egress).
interface gigabitethernet1/0/0
service-policy out simple-example

4. Verify operation of theQoS policy - Issue the show policy-map interface command to verify operation
of all QoS features configured with the MQC.
show policy-map interface gigabitethernet1/0/0

Create Class Maps
When you create a class-map you are defining a group of applications that should receive similar treatment.
Youwill specify a name for the group and subsequently use that namewhen defining the treatment they should
receive.

You will need to define one or more filters (classification rules), establishing that a particular packet
(application) belongs to the group you specified. When you create a class-map, you can decide whether a
packet must match just one filter (match-any) or all filters (match-all) to be considered part of that group.

Create a class-map as follows:
class-map [match-all|match-any] <traffic-class-name>
match…. Filter1
match….. Filter2

The following example illustrates a class where a packet need only match a single filter. If either the packet
has the DSCP value ef or Cisco NBAR recognizes that the packet carries the skype application, then we
consider the packet as belonging to the voice class. We use the name voice in a policy-map to define treatment
for any packet classified as belonging to this class:
class-map match-any voice
match dscp ef
match protocol skype

In the following example, we employ the match-all semantic: a packet must match all filters to belong to a
class. We mandate that traffic must be recognized as MAPI (using Cisco NBAR) and also be to or from the
address specified in the access list:
ip access-list extended mail-server-addr
permit ip any host 10.10.10.1
permit ip host 10.10.10.1 any

!
class-map match-all work-email
match protocol mapi
match access-group name mail-server-addr

The previous examples illustrate the flexibility of filter definitions on the ASR 1000 series platform. Filters
can be based on marks in the packet header (precedence, DSCP, Exp or COS), access-lists, Cisco NBAR
(match protocol xxx) or internal markings like qos-group. (Refer to the classification chapter for a more
complete description of supported filters - when available.)

For convenience, you can also include other class-maps as filters in a class-map:

Applying QoS Features Using the MQC
2

Applying QoS Features Using the MQC
Create Class Maps

class-map broadcast-video
match dscp cs5

class-map multimedia-streaming
match dscp af31 af32 af33

class-map multimedia-conferencing
match dscp af41 af42 af43

class-map realtime-interactive
match dscp cs4

!
class-map match-any all-video
match class broadcast-video
match class multimedia-streaming
match class multimedia conferencing
match class realtime-interactive

!
class-map match-any interactive-video
match class multimedia conferencing
match class realtime-interactive

In this example we use nested class-maps in the definition of classes all-video and interactive-video.

By definition, a particular packet might match the classification criteria of multiple classes in a class-map. If
so, the order in which classes are defined in a policy-map determines which class the packet belongs to; a
packet belongs to the first class it matches.

Create Policy-Maps
A policy-map is how you specify what actions should apply to each class of traffic you create.

Let’s re-examine the simple example above:
policy-map simple-example
class voice
priority
police cir percent 10

class video
bandwidth remaining percent 30

The policy-map name is simple-example – this is the name we use when we subsequently attach the policy
to one or more interfaces. The policy itself is quite readable – we have defined two classes of traffic: voice
and video. Voice traffic should receive priority (low latency) scheduling but throughput of that class is limited
to 10% of the interface bandwidth. For video traffic, we have a dedicated queue and a guarantee of 30% of
what remains after voice is serviced.

The above policy-map has a 3rd implicit class; class-default is the last class in a policy, whether explicitly
configured or not. It is a catch-all into which falls any traffic that does not match one of the user-defined
classes. In egress policies class-default will have its own queue and an implicit bandwidth remaining ratio of
1. If bandwidth values are specified in percentage, class-default will receive any unassigned percent (see
asterisks). Knowing this the above policy-map would actually look as follows:
class-map class-default
match any

!
policy-map simple-example
class voice
priority
police cir percent 10

Applying QoS Features Using the MQC
3

Applying QoS Features Using the MQC
Create Policy-Maps

class video
bandwidth remaining percent 30

class class-default
bandwidth remaining percent 70 ****

You never need to create a class-map for class-default. We visualize it here to provide a better understanding
of how the policy works. If a packet does not match the voice class or the video class it will always match
class-default.

Note

Examples of actions in the policy above include the priority, police, and bandwidth commands. Actions
function as control knobs to differentiate how one class of traffic will be treated vs. another.

One very important differentiation when looking at actions is queuing vs. non-queuing. What if we now add
one more class to the simple-example policy-map:
class-map youtube
match protocol youtube
!

policy-map simple-example
class voice
priority
police cir percent 10

class youtube
police cir percent 5

class video
bandwidth remaining percent 30

We have added a third user-defined class named youtube that is rate-limiting YouTube traffic such that it can
never exceed 5% of link capacity. As this class has no queuing action configured, no queue is created (see
below the list of actions that create a queue). Packets that match this class (those with protocol youtube) will
traverse the policer and then be enqueued in the class-default queue.

Did you notice that we placed the youtube class before the video class in our policy definition? We want to
ensure that youtube traffic is always part of this class rather than our video class. By defining this class earlier
in the policy-map we will check for a match to this class before we check the video class criteria.

The specific actions that will create a queue are priority, bandwidth, bandwidth remaining and shape.
Other actions like fair-queue, queue-limit and random-detectmay only be used in a class already containing
one of the actions that creates a queue. The actions police and set will not create a queue, although you can
use the police command for queue admission control.

One key reason to differentiate between queuing actions and non-queuing actions is that a policy-map that
will be applied to ingress traffic may not contain any queuing actions on the ASR 1000 Series Router. Let's
summarize which actions are queuing and which are not:

ActionQueuing and Non-Queuing Actions

Queuing Actions

Scheduling

priority

bandwidth

Applying QoS Features Using the MQC
4

Applying QoS Features Using the MQC
Create Policy-Maps

ActionQueuing and Non-Queuing Actions

bandwidth remaining

shape

fair-queue

QueueManagement / Congestion
Avoidance

queue-limit

random-detect

Non-Queuing Actions

Rate-Limiting / Admission
Control

police

Marking

set

Hierarchical policy-maps can be created by embedding a policy-map within a class of another policy-map:
policy-map child
class voice
priority
police cir percent 10

class video
bandwidth remaining percent 30

!
policy-map parent-vlan
class class-default
shape average 100m
service-policy child

A common use is to create a shape on parent / queue on child policy that can be attached to a logical interface
such as a VLAN or a tunnel.

From a classification perspective, a packet must adhere to the classification criteria of the child as well as the
parent class to be considered amember of a particular child class. In this example the parent class is class-default
and by definition any traffic will match this class.

When defining hierarchical polices we can re-use policy-maps for convenience.

In the following example, we use the policy-map named child in both parent-vlan100 and parent-vlan200.
When instantiated (attached to an interface) the voice class in parent-vlan100 will be limited to 10Mbps (10%
of 100m parent shaper) while the voice class in parent-vlan200 will be limited to 5 Mbps (10% of 50m parent
shaper):
policy-map child
class voice
priority
police cir percent 10

Applying QoS Features Using the MQC
5

Applying QoS Features Using the MQC
Create Policy-Maps

class video
bandwidth remaining percent 30

!
policy-map parent-vlan100
class class-default
shape average 100m
service-policy child

!
policy-map parent-vlan200
class class-default
shape average 50m
service-policy child

!
int gigabitethernet1/0/0.100
service-policy out parent-vlan100

int gigabitethernet1/0/0.200
service-policy out parent-vlan200

This example shows that although the definitionmay be shared the instances of the policy on different interfaces
are truly unique.

You can also create hierarchical policies with policy-maps used in user-defined classes.

The following example illustrates a 3-level hierarchical policy, the max currently supported on the ASR 1000
Series Router. For a packet to match a class at the application level it must now match 3 requirements: the
voice or video classifier at the child, the vlan classifier in the vlan-sharing policy-map, and the class-default
(anything) in the physical level policy-map:
class-map vlan100
match vlan 100

class-map vlan200
match vlan 200

!
policy-map child
class voice
priority
police cir percent 10

class video
bandwidth remaining percent 30

!
policy-map vlan-sharing
class vlan100
shape average 100m
service-policy child

class vlan200
shape average 50m
service-policy child

!
policy-map physical-policy
class class-default
shape average 500m
service-policy vlan-sharing

!
interface gigabitethernet1/0/0
service-policy out physical-policy

When you create a policy-map, IOS will perform some error checking on the policy. For example, if I create
a policy with an unconstrained priority queue and then guarantee bandwidth to another queue, IOS will
recognize the disconnect; if the unconstrained priority queue can comsume the entire interface bandwidth
then clearly you cannot guarantee any of that bandwidth to another queue:

Applying QoS Features Using the MQC
6

Applying QoS Features Using the MQC
Create Policy-Maps

policy-map create-error-example
class unconstrained-priority
priority

class bandwidth-guarantee
bandwidth percent 50

If IOS detects an error in the policy during creation, it will reject the configuration and display an error at that
time.

Attach the Policy-Map
The third step in using the Cisco MQC is to instantiate the policy-map (ie., to attach the policy to an interface
and thus initiate control of traffic). We use the service-policy command to attach the policy and also to specify
whether it is acting on traffic ingressing that interface or egressing that interface:
interface gigabitethernet1/0/0
service-policy out simple-example

We have already mentioned that queuing policies are only supported for egress traffic (service-policy out
policy-name) but policies that contain only non-queuing actions may be attached for ingress (service-policy
in policy-name) or egress traffic.

We term the interface to where we apply the service-policy command the attach point. This point could be
a physical interface (such as an Ethernet interface or a T1 interface) or it could be a logical interface such as
a VLAN sub-interface or a tunnel interface.

When a policy-map contains queuing actions but no hierarchical policies we refer to the policy as a flat policy.
A flat policy may only be attached to a physical interface.

To attach a queuing policy to a logical interface, you must use a hierarchical shape on parent/queue on child
style policy.

As you recall, error checking occurs when you create a policy. A second round of error checking occurs when
you attach the policy to an interface. For example, I might create a policy with bandwidth guarantees that
can’t be realized on a particular type of interface. The policy-map may be valid when defined but when
combined with information about the attachment interface, IOS can recognize the error as in the following
example:
policy-map attach-error-example
class bulk-data
bandwidth 200000

This policy dictates that 200Mbps should be reserved for bulk-data. If I attach this policy to a GigabitEthernet
interface it should work fine. However, if I attach this policy to a POS OC3 interface it will be rejected at
attach time. An OC3 interface has a nominal bandwidth of 155 Mbps. 200 Mbps could never be reserved for
a particular class of traffic.

Verify Operation of the QoS Policy
One command is always available to verify the operation of any QoS policy:

show policy-map interface interface-name

Applying QoS Features Using the MQC
7

Applying QoS Features Using the MQC
Attach the Policy-Map

The output of this command displays a section for each class in a policy-map. It also shows statistics for
packets and bytes classified as belonging to that class as well as for each action configured in the class.

The statistics available from this command are also available via SNMP in the
CISCO-CLASS-BASED-QOS-MIB.

Note

If the QoS policy is attached to amultipoint interface such as DMVPN, we use the show policy-mapmultipoint
tunnel tunnel-number variant of the command. Similarly if the policy is attached to a broadband session, we
would use the show policy-map session uid session-number variant of the command.

Applying QoS Features Using the MQC
8

Applying QoS Features Using the MQC
Verify Operation of the QoS Policy

	Applying QoS Features Using the MQC
	About
	Cisco Modular QoS CLI
	Create Class Maps
	Create Policy-Maps
	Attach the Policy-Map
	Verify Operation of the QoS Policy

