THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACcompanyING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2020 Cisco Systems, Inc. All rights reserved.
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Read Me First</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>Congestion Management Overview</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Finding Feature Information</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Why Use Congestion Management</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Deciding Which Queueing Policy to Use</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Weighted Fair Queueing</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Class-Based Weighted Fair Queueing</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Low Latency Queueing</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Priority Queueing</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Bandwidth Management</td>
<td>15</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>IPv6 QoS: Queueing</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Finding Feature Information</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Information About IPv6 QoS: Queueing</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Implementation Strategy for QoS for IPv6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Congestion Management in IPv6 Networks</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Traffic Policing in IPv6 Environments</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Additional References</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Feature Information for IPv6 QoS: Queueing</td>
<td>19</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Low Latency Queueing with Priority Percentage Support</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Finding Feature Information</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Restrictions for LLQ with Priority Percentage Support</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Information About LLQ with Priority Percentage Support</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Benefits of LLQ with Priority Percentage Support</td>
<td>22</td>
</tr>
</tbody>
</table>
Changes to the bandwidth Command for LLQ with Priority Percentage Support 22
Changes to the priority Command for LLQ with Priority Percentage Support 23
Bandwidth Calculations in LLQ with Priority Percentage Support 23
How to Configure LLQ with Priority Percentage Support 23
 Specifying the Bandwidth Percentage 23
 Verifying the Bandwidth Percentage 24
Configuration Examples for LLQ with Priority Percentage Support 25
 Example Specifying the Bandwidth Percentage 25
 Example Mixing the Units of Bandwidth for Nonpriority Traffic 26
 Example Verifying the Bandwidth Percentage 27
Additional References 27
Feature Information for LLQ with Priority Percentage Support 28

CHAPTER 5
 Low Latency Queueing for IPsec Encryption Engines 31
 Finding Feature Information 31
 Feature Overview 31
 Benefits of the LLQ for IPSec Encryption Engines 32
 Restrictions 32
 Related Documents 32
 Supported Standards MIBs and RFCs 32
 Prerequisites 33
 Configuration Tasks 33
 Defining Class Maps 33
 Configuring Class Policy in the Policy Map 34
 Configuring Class Policy for a Priority Queue 34
 Configuring Class Policy Using a Specified Bandwidth 35
 Configuring the Class-Default Class Policy 35
 Attaching the Service Policy 36
 Verifying Configuration of Policy Maps and Their Classes 37
 Monitoring and Maintaining LLQ for IPsec Encryption Engines 37
 Configuration Examples 37
 LLQ for IPsec Encryption Engines Example 37

CHAPTER 6
 Configurable Queue Depth 39
Defining the Custom Queue List 58
Monitoring Custom Queue Lists 59
Custom Queueing Configuration Examples 59
Example Custom Queue List Defined 59
Examples Maximum Specified Size of the Custom Queues 59
Examples Packets Assigned to Custom Queues 60
 Protocol Type 60
 Interface Type 60
 Default Queue 60

CHAPTER 9

QoS Hierarchical Queueing for Ethernet DSLAMs 61
 Finding Feature Information 61
 Prerequisites for QoS Hierarchical Queueing for Ethernet DSLAMs 61
 Restrictions for QoS Hierarchical Queueing for Ethernet DSLAMs 62
 Information About QoS Hierarchical Queueing for Ethernet DSLAMs 62
 Different Levels of QoS Provisioning 62
 Integrated Queueing Hierarchy 63
 Configuration Guidelines for Hierarchical Queueing on Ethernet DSLAMs 63
 How to Configure QoS Hierarchical Queueing for Ethernet DSLAMs 64
 Configuring and Applying QoS Hierarchical Queueing Policy Maps to Sessions 64
 Configuring and Applying QoS Hierarchical Queueing Policy Maps to Subinterfaces 68
 Displaying Policy-Map Information for Hierarchical Queueing 70
 Configuration Examples for QoS Hierarchical Queueing for Ethernet DSLAMs 71
 Example Policy Maps on VLANs or QinQ Subinterfaces 71
 Example Policy Maps on VLANs with Arbitrary QinQ 73
 Example CPolicy Maps on Sessions 74
 Example Policy Maps on Sessions with Aggregate Shaping 76
 Additional References 77
 Feature Information for QoS Hierarchical Queueing for Ethernet DSLAMs 78

CHAPTER 10

QoS Hierarchical Queueing for ATM DSLAMs 79
 Finding Feature Information 79
 Prerequisites for QoS Hierarchical Queueing for ATM DSLAMs 79
 Restrictions for QoS Hierarchical Queueing for ATM DSLAMs 79
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information About QoS Hierarchical Queueing for ATM DSLAMs</td>
<td>80</td>
</tr>
<tr>
<td>Different Levels of QoS Provisioning</td>
<td>80</td>
</tr>
<tr>
<td>Integrated Queueing Hierarchy</td>
<td>80</td>
</tr>
<tr>
<td>Configuration Guidelines for Hierarchical Queueing on ATM DSLAMs</td>
<td>80</td>
</tr>
<tr>
<td>How to Configure QoS Hierarchical Queueing for ATM DSLAMs</td>
<td>81</td>
</tr>
<tr>
<td>Configuring and Applying QoS Hierarchical Queueing Policy Maps to Sessions</td>
<td>81</td>
</tr>
<tr>
<td>Configuring and Applying QoS Hierarchical Queueing Policy Maps to ATM VCs</td>
<td>84</td>
</tr>
<tr>
<td>Displaying Policy-Map Information for Hierarchical Queueing</td>
<td>87</td>
</tr>
<tr>
<td>Configuration Examples for QoS Hierarchical Queueing for ATM DSLAMs</td>
<td>88</td>
</tr>
<tr>
<td>Example Policy Maps on Sessions</td>
<td>88</td>
</tr>
<tr>
<td>Example Policy Maps on Sessions with Aggregate Shaping</td>
<td>89</td>
</tr>
<tr>
<td>Additional References</td>
<td>89</td>
</tr>
<tr>
<td>Feature Information for QoS Hierarchical Queueing for ATM DSLAMs</td>
<td>90</td>
</tr>
</tbody>
</table>

CHAPTER 11

Per-Flow Admission 91

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finding Feature Information</td>
<td>91</td>
</tr>
<tr>
<td>Prerequisites for Per-Flow Admission</td>
<td>91</td>
</tr>
<tr>
<td>Restrictions for Per-Flow Admission</td>
<td>91</td>
</tr>
<tr>
<td>Information About Per-Flow Admission</td>
<td>92</td>
</tr>
<tr>
<td>Overview of Per-Flow Admission</td>
<td>92</td>
</tr>
<tr>
<td>Benefits of Per-Flow Admission</td>
<td>92</td>
</tr>
<tr>
<td>How to Configure Per-Flow Admission</td>
<td>92</td>
</tr>
<tr>
<td>Configuring a Class Map</td>
<td>92</td>
</tr>
<tr>
<td>Configuring a Child Policy Map</td>
<td>94</td>
</tr>
<tr>
<td>Configuring Per-Flow Admission for a Class</td>
<td>95</td>
</tr>
<tr>
<td>Attaching a Per-Flow Admission Policy to an Interface</td>
<td>96</td>
</tr>
<tr>
<td>Verifying Per-flow Admission</td>
<td>98</td>
</tr>
<tr>
<td>Configuration Examples for Per-Flow Admission</td>
<td>99</td>
</tr>
<tr>
<td>Example: Configuring a Class Map</td>
<td>99</td>
</tr>
<tr>
<td>Example: Configuring a Policy Map</td>
<td>99</td>
</tr>
<tr>
<td>Example: Configuring Per-Flow Admission for a Class</td>
<td>99</td>
</tr>
<tr>
<td>Example: Attaching a Per-Flow Admission Policy to an Interface</td>
<td>100</td>
</tr>
<tr>
<td>Example: Verifying Per-Flow Admission</td>
<td>100</td>
</tr>
<tr>
<td>Additional References for Per-Flow Admission</td>
<td>101</td>
</tr>
</tbody>
</table>
Feature Information for Per-Flow Admission 101
Read Me First

Important Information about Cisco IOS XE 16

Effective Cisco IOS XE Release 3.7.0E for Catalyst Switching and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

Feature Information

Use Cisco Feature Navigator to find information about feature support, platform support, and Cisco software image support. An account on Cisco.com is not required.

Related References

- Cisco IOS Command References, All Releases

Obtaining Documentation and Submitting a Service Request

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.
CHAPTER 2

Congestion Management Overview

Congestion management features allow you to control congestion by determining the order in which packets are sent out an interface based on priorities assigned to those packets. Congestion management entails the creation of queues, assignment of packets to those queues based on the classification of the packet, and scheduling of the packets in a queue for transmission. The congestion management QoS feature offers four types of queueing protocols, each of which allows you to specify creation of a different number of queues, affording greater or lesser degrees of differentiation of traffic, and to specify the order in which that traffic is sent.

During periods with light traffic, that is, when no congestion exists, packets are sent out the interface as soon as they arrive. During periods of transmit congestion at the outgoing interface, packets arrive faster than the interface can send them. If you use congestion management features, packets accumulating at an interface are queued until the interface is free to send them; they are then scheduled for transmission according to their assigned priority and the queueing mechanism configured for the interface. The router determines the order of packet transmission by controlling which packets are placed in which queue and how queues are serviced with respect to each other.

This module discusses the types of queueing and queueing-related features (such as bandwidth management) which constitute the congestion management QoS features:

- Weighted fair queueing (WFQ). Also known as flow-based WFQ in this module.

WFQ offers dynamic, fair queueing that divides bandwidth across queues of traffic based on weights. (WFQ ensures that all traffic is treated fairly, given its weight.) To understand how WFQ works, consider the queue for a series of File Transfer Protocol (FTP) packets as a queue for the collective and the queue for discrete interactive traffic packets as a queue for the individual. Given the weight of the queues, WFQ ensures that for all FTP packets sent as a collective an equal number of individual interactive traffic packets are sent.)

Given this handling, WFQ ensures satisfactory response time to critical applications, such as interactive, transaction-based applications, that are intolerant of performance degradation. For serial interfaces at E1 (2.048 Mbps) and below, flow-based WFQ is used by default.

- Class-based WFQ (CBWFQ)

CBWFQ extends the standard WFQ functionality to provide support for user-defined traffic classes. For CBWFQ, you define traffic classes based on match criteria including protocols, access control lists (ACLs), and input interfaces. Packets satisfying the match criteria for a class constitute the traffic for that class.

- Priority queueing (PQ). With PQ, packets belonging to one priority class of traffic are sent before all lower priority traffic to ensure timely delivery of those packets.
You can assign only one queueing mechanism type to an interface.

A variety of queueing mechanisms can be configured using multilink, for example, Multichassis Multilink PPP (MMP). However, if only PPP is used on a tunneled interface—for example, virtual private dialup network (VPND), PPP over Ethernet (PPPoE)—no queueing can be configured on the virtual interface.

- Bandwidth Management

CBWFQ and LLQ (as well as other QoS functionality) can all reserve and consume bandwidth, up to a maximum of the reserved bandwidth on an interface. Specific commands can be used to allocate and fine-tune bandwidth as needed. For more information, see the Bandwidth Management, on page 15.

- Finding Feature Information, on page 4
- Why Use Congestion Management, on page 4
- Deciding Which Queueing Policy to Use, on page 5
- Weighted Fair Queueing, on page 6
- Class-Based Weighted Fair Queueing, on page 9
- Low Latency Queueing, on page 11
- Priority Queueing, on page 13
- Bandwidth Management, on page 15

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Why Use Congestion Management

Heterogeneous networks include many different protocols used by applications, giving rise to the need to prioritize traffic in order to satisfy time-critical applications while still addressing the needs of less time-dependent applications, such as file transfer. Different types of traffic sharing a data path through the network can interact with one another in ways that affect their application performance. If your network is designed to support different traffic types that share a single data path between routers, you should consider using congestion management techniques to ensure fairness of treatment across the various traffic types.

Here are some broad factors to consider in determining whether to configure congestion management QoS:

- Traffic prioritization is especially important for delay-sensitive, interactive transaction-based applications—for instance, desktop video conferencing—that require higher priority than do file transfer applications. However, use of WFQ ensures that all traffic is treated fairly, given its weight, and in a
dynamic manner. For example, WFQ addresses the requirements of the interactive application without penalizing the FTP application.

- Prioritization is most effective on WAN links where the combination of bursty traffic and relatively lower data rates can cause temporary congestion.

- Depending on the average packet size, prioritization is most effective when applied to links at T1/E1 bandwidth speeds or lower.

- If users of applications running across your network notice poor response time, you should consider using congestion management features. Congestion management features are dynamic, tailoring themselves to the existing network conditions. However, consider that if a WAN link is constantly congested, traffic prioritization may not resolve the problem. Adding bandwidth might be the appropriate solution.

- If there is no congestion on the WAN link, there is no reason to implement traffic prioritization.

The following list summarizes aspects you should consider in determining whether you should establish and implement a queueing policy for your network:

- Determine if the WAN is congested—that is, whether users of certain applications perceive a performance degradation.

- Determine your goals and objectives based on the mix of traffic you need to manage and your network topology and design. In identifying what you want to achieve, consider whether your goal is among the following:
 - To establish fair distribution of bandwidth allocation across all of the types of traffic you identify.
 - To grant strict priority to traffic from special kinds of applications you service—for example, interactive multimedia applications—possibly at the expense of less-critical traffic you also support.
 - To customize bandwidth allocation so that network resources are shared among all of the applications you service, each having the specific bandwidth requirements you have identified.
 - To effectively configure queueing. You must analyze the types of traffic using the interface and determine how to distinguish them. See the "Classification Overview" module for a description of how packets are classified.

After you assess your needs, review the available congestion management queueing mechanisms described in this module and determine which approach best addresses your requirements and goals.

- Configure the interface for the kind of queueing strategy you have chosen, and observe the results.

Traffic patterns change over time, so you should repeat the analysis process described in the second bullet periodically, and adapt the queueing configuration accordingly.

See the following section Deciding Which Queueing Policy to Use for elaboration of the differences among the various queueing mechanisms.

Deciding Which Queueing Policy to Use

When deciding which queueing policy to use, note the following points:

- PQ guarantees strict priority in that it ensures that one type of traffic will be sent, possibly at the expense of all others. For PQ, a low priority queue can be detrimentally affected, and, in the worst case, never allowed to send its packets if a limited amount of bandwidth is available or if the transmission rate of critical traffic is high.
Weighted Fair Queueing

- WFQ does not require configuration of access lists to determine the preferred traffic on a serial interface. Rather, the fair queue algorithm dynamically sorts traffic into messages that are part of a conversation.
- Low-volume, interactive traffic gets fair allocation of bandwidth with WFQ, as does high-volume traffic such as file transfers.
- Strict priority queueing can be accomplished with WFQ by using low latency queueing (LLQ). Strict PQ allows delay-sensitive data such as voice to be dequeued and sent before packets in other queues are dequeued.

The table below compares the salient features of flow-based WFQ, CBWFQ, and PQ.

<table>
<thead>
<tr>
<th>Table 1: Queueing Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Queues</td>
</tr>
<tr>
<td>WFQ</td>
</tr>
<tr>
<td>CBWFQ/</td>
</tr>
<tr>
<td>PQ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kind of Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFQ</td>
</tr>
<tr>
<td>CBWFQ/</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>PQ</td>
</tr>
</tbody>
</table>

Weighted Fair Queueing

This section contains overview information about WFQ (often referred to as flow-based WFQ).

WFQ Functionality

WFQ is a dynamic scheduling method that provides fair bandwidth allocation to all network traffic. WFQ applies priority, or weights, to identified traffic to classify traffic into conversations and determine how much bandwidth each conversation is allowed relative to other conversations. WFQ is a flow-based algorithm that simultaneously schedules interactive traffic to the front of a queue to reduce response time and fairly shares the remaining bandwidth among high-bandwidth flows. In other words, WFQ allows you to give low-volume traffic, such as Telnet sessions, priority over high-volume traffic, such as FTP sessions. WFQ gives concurrent file transfers balanced use of link capacity; that is, when multiple file transfers occur, the transfers are given comparable bandwidth. The figure below shows how WFQ works.
WFQ provides traffic priority management that dynamically sorts traffic into messages that make up a conversation. WFQ breaks up the train of packets within a conversation to ensure that bandwidth is shared fairly between individual conversations and that low-volume traffic is transferred in a timely fashion.

WFQ classifies traffic into different flows based on packet header addressing, including such characteristics as source and destination network or MAC address, protocol, source and destination port and socket numbers of the session, Frame Relay data-link connection identifier (DLCI) value, and ToS value. There are two categories of flows: high-bandwidth sessions and low-bandwidth sessions. Low-bandwidth traffic has effective priority over high-bandwidth traffic, and high-bandwidth traffic shares the transmission service proportionally according to assigned weights. Low-bandwidth traffic streams, which comprise the majority of traffic, receive preferential service, allowing their entire offered loads to be sent in a timely fashion. High-volume traffic streams share the remaining capacity proportionally among themselves.

WFQ places packets of the various conversations in the fair queues before transmission. The order of removal from the fair queues is determined by the virtual time of the delivery of the last bit of each arriving packet. New messages for high-bandwidth flows are discarded after the congestive-messages threshold has been met. However, low-bandwidth flows, which include control-message conversations, continue to enqueue data. As a result, the fair queue may occasionally contain more messages than are specified by the threshold number.

WFQ can manage duplex data streams, such as those between pairs of applications, and simplex data streams such as voice or video.

The WFQ algorithm also addresses the problem of round-trip delay variability. If multiple high-volume conversations are active, their transfer rates and interarrival periods are made much more predictable. WFQ greatly enhances algorithms such as Systems Network Architecture (SNA) Logical Link Control (LLC) and TCP congestion control and slow start features.
WFQ is used as the default queueing mode on most serial interfaces configured to run at E1 speeds (2.048 Mbps) or below.

WFQ provides the solution for situations in which it is desirable to provide consistent response time to heavy and light network users alike without adding excessive bandwidth. WFQ automatically adapts to changing network traffic conditions.

Restrictions

WFQ is not supported with tunneling and encryption because these features modify the packet content information required by WFQ for classification.

Although WFQ automatically adapts to changing network traffic conditions, it does not offer the degree of precision control over bandwidth allocation that CQ and CBWFQ offer.

WFQ and IP Precedence

WFQ is IP precedence-aware. It can detect higher priority packets marked with precedence by the IP Forwarder and can schedule them faster, providing superior response time for this traffic. Thus, as the precedence increases, WFQ allocates more bandwidth to the conversation during periods of congestion.

WFQ assigns a weight to each flow, which determines the transmit order for queued packets. In this scheme, lower weights are served first. For standard Cisco IOS WFQ, the IP precedence serves as a divisor to this weighting factor.

Like CQ, WFQ sends a certain number of bytes from each queue. With WFQ, each queue corresponds to a different flow. For each cycle through all flows, WFQ effectively sends a number of bytes equal to the precedence of the flow plus one. This number is only used as a ratio to determine how many bytes per packets to send. However, for the purposes of understanding WFQ, using this number as the byte count is sufficient. For instance, traffic with an IP Precedence value of 7 gets a lower weight than traffic with an IP Precedence value of 3, thus, the priority in transmit order. The weights are inversely proportional to the IP Precedence value.

To determine the bandwidth allocation for each queue, divide the byte count for the flow by the total byte count for all flows. For example, if you have one flow at each precedence level, each flow will get precedence + 1 parts of the link:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36

Thus, precedence 0 traffic will get 1/36 of the bandwidth, precedence 1 traffic will get 2/36, and precedence 7 traffic will get 8/36.

However, if you have 18 precedence 1 flows and one of each of the rest, the total is now:

1 + 2(18) + 3 + 4 + 5 + 6 + 7 + 8 = 70

Precedence 0 traffic will get 1/70, each of the precedence 1 flows will get 2/70, and so on.

As flows are added or ended, the actual allocated bandwidth will continuously change.

WFQ and RSVP

RSVP uses WFQ to allocate buffer space and schedule packets, and to guarantee bandwidth for reserved flows. WFQ works with RSVP to help provide differentiated and guaranteed QoS services.

RSVP is the Internet Engineering Task Force (IETF) Internet Standard (RFC 2205) protocol for allowing an application to dynamically reserve network bandwidth. RSVP enables applications to request a specific QoS
for a data flow. The Cisco implementation allows RSVP to be initiated within the network using configured proxy RSVP.

RSVP is the only standard signalling protocol designed to guarantee network bandwidth from end to end for IP networks. Hosts and routers use RSVP to deliver QoS requests to the routers along the paths of the data stream and to maintain router and host state to provide the requested service, usually bandwidth and latency. RSVP uses a mean data rate, the largest amount of data the router will keep in queue, and minimum QoS to determine bandwidth reservation.

WFQ or Weighted Random Early Detection (WRED) acts as the preparer for RSVP, setting up the packet classification and scheduling required for the reserved flows. Using WFQ, RSVP can deliver an Integrated Services Guaranteed Service.

Class-Based Weighted Fair Queueing

CBWFQ extends the standard WFQ functionality to provide support for user-defined traffic classes. For CBWFQ, you define traffic classes based on match criteria including protocols, access control lists (ACLs), and input interfaces. Packets satisfying the match criteria for a class constitute the traffic for that class.

Once a class has been defined according to its match criteria, you can assign it characteristics. To characterize a class, you assign it bandwidth, weight, and maximum packet limit. The bandwidth assigned to a class is the guaranteed bandwidth delivered to the class during congestion.

To characterize a class, you also specify the queue limit for that class, which is the maximum number of packets allowed to accumulate in the queue for the class. Packets belonging to a class are subject to the bandwidth and queue limits that characterize the class.

After a queue has reached its configured queue limit, enqueuing of additional packets to the class causes tail drop or packet drop to take effect, depending on how class policy is configured.

Tail drop is used for CBWFQ classes unless you explicitly configure policy for a class to use WRED to drop packets as a means of avoiding congestion. Note that if you use WRED packet drop instead of tail drop for one or more classes comprising a policy map, you must ensure that WRED is not configured for the interface to which you attach that service policy.

If a default class is configured with the **bandwidth** policy-map class configuration command, all unclassified traffic is put into a single queue and given treatment according to the configured bandwidth. If a default class is configured with the **fair-queue** command, all unclassified traffic is flow classified and given best-effort treatment. If no default class is configured, then by default the traffic that does not match any of the configured classes is flow classified and given best-effort treatment. Once a packet is classified, all of the standard mechanisms that can be used to differentiate service among the classes apply.

Flow classification is standard WFQ treatment. That is, packets with the same source IP address, destination IP address, source TCP or UDP port, or destination TCP or UDP port are classified as belonging to the same flow. WFQ allocates an equal share of bandwidth to each flow. Flow-based WFQ is also called fair queuing because all flows are equally weighted.

For CBWFQ, the weight specified for the class becomes the weight of each packet that meets the match criteria of the class. Packets that arrive at the output interface are classified according to the match criteria filters you define, then each one is assigned the appropriate weight. The weight for a packet belonging to a specific class is derived from the bandwidth you assigned to the class when you configured it; in this sense the weight for a class is user-configurable.

After the weight for a packet is assigned, the packet is enqueued in the appropriate class queue. CBWFQ uses the weights assigned to the queued packets to ensure that the class queue is serviced fairly.
Configuring a class policy—thus, configuring CBWFQ—entails these three processes:

- Defining traffic classes to specify the classification policy (class maps).

 This process determines how many types of packets are to be differentiated from one another.

- Associating policies—that is, class characteristics—with each traffic class (policy maps).

 This process entails configuration of policies to be applied to packets belonging to one of the classes previously defined through a class map. For this process, you configure a policy map that specifies the policy for each traffic class.

- Attaching policies to interfaces (service policies).

 This process requires that you associate an existing policy map, or service policy, with an interface to apply the particular set of policies for the map to that interface.

CBWFQ Bandwidth Allocation

The sum of all bandwidth allocation on an interface cannot exceed 75 percent of the total available interface bandwidth. The remaining 25 percent is used for other overhead, including Layer 2 overhead, routing traffic, and best-effort traffic. Bandwidth for the CBWFQ class-default class, for instance, is taken from the remaining 25 percent. However, under aggressive circumstances in which you want to configure more than 75 percent of the interface bandwidth to classes, you can override the 75 percent maximum sum allocated to all classes or flows using the `max-reserved-bandwidth` command. If you want to override the default 75 percent, exercise caution and ensure that you allow enough remaining bandwidth to support best-effort and control traffic, and Layer 2 overhead.

Why Use CBWFQ?

Here are some general factors you should consider in determining whether you need to configure CBWFQ:

- Bandwidth allocation. CBWFQ allows you to specify the exact amount of bandwidth to be allocated for a specific class of traffic. Taking into account available bandwidth on the interface, you can configure up to 64 classes and control distribution among them, which is not the case with flow-based WFQ. Flow-based WFQ applies weights to traffic to classify it into conversations and determine how much bandwidth each conversation is allowed relative to other conversations. For flow-based WFQ, these weights, and traffic classification, are dependent on and limited to the seven IP Precedence levels.

- Coarser granularity and scalability. CBWFQ allows you to define what constitutes a class based on criteria that exceed the confines of flow. CBWFQ allows you to use ACLs and protocols or input interface names to define how traffic will be classified, thereby providing coarser granularity. You need not maintain traffic classification on a flow basis. Moreover, you can configure up to 64 discrete classes in a service policy.

CBWFQ and RSVP

RSVP can be used in conjunction with CBWFQ. When both RSVP and CBWFQ are configured for an interface, RSVP and CBWFQ act independently, exhibiting the same behavior that they would if each were running alone. RSVP continues to work as it does when CBWFQ is not present, even in regard to bandwidth availability assessment and allocation.
Restrictions

Configuring CBWFQ on a physical interface is only possible if the interface is in the default queueing mode. Serial interfaces at E1 (2.048 Mbps) and below use WFQ by default--other interfaces use FIFO by default. Enabling CBWFQ on a physical interface overrides the default interface queueing method.

If you configure a class in a policy map to use WRED for packet drop instead of tail drop, you must ensure that WRED is not configured on the interface to which you intend to attach that service policy.

Low Latency Queueing

The LLQ feature brings strict PQ to CBWFQ. Strict PQ allows delay-sensitive data such as voice to be dequeued and sent before packets in other queues are dequeued.

Without LLQ, CBWFQ provides WFQ based on defined classes with no strict priority queue available for real-time traffic. CBWFQ allows you to define traffic classes and then assign characteristics to that class. For example, you can designate the minimum bandwidth delivered to the class during congestion.

For CBWFQ, the weight for a packet belonging to a specific class is derived from the bandwidth you assigned to the class when you configured it. Therefore, the bandwidth assigned to the packets of a class determines the order in which packets are sent. All packets are serviced fairly based on weight; no class of packets may be granted strict priority. This scheme poses problems for voice traffic that is largely intolerant of delay, especially variation in delay. For voice traffic, variations in delay introduce irregularities of transmission manifesting as jitter in the heard conversation.

LLQ provides strict priority queueing for CBWFQ, reducing jitter in voice conversations. Configured by the priority command, LLQ enables use of a single, strict priority queue within CBWFQ at the class level, allowing you to direct traffic belonging to a class to the CBWFQ strict priority queue. To enqueue class traffic to the strict priority queue, you specify the named class within a policy map and then configure the priority command for the class. (Classes to which the priority command is applied are considered priority classes.) Within a policy map, you can give one or more classes priority status. When multiple classes within a single policy map are configured as priority classes, all traffic from these classes is enqueued to the same, single, strict priority queue.

One of the ways in which the strict PQ used within CBWFQ differs from its use outside CBWFQ is in the parameters it takes. Outside CBWFQ, you can use the ip rtp priority command to specify the range of UDP ports whose voice traffic flows are to be given priority service. Using the priority command, you are no longer limited to a UDP port number to stipulate priority flows because you can configure the priority status for a class within CBWFQ. Instead, all of the valid match criteria used to specify traffic for a class now apply to priority traffic. These methods of specifying traffic for a class include matching on access lists, protocols, and input interfaces. Moreover, within an access list you can specify that traffic matches are allowed based on the IP differentiated services code point (DSCP) value that is set using the first six bits of the ToS byte in the IP header.

Although it is possible to enqueue various types of real-time traffic to the strict priority queue, we strongly recommend that you direct only voice traffic to it because voice traffic is well-behaved, whereas other types of real-time traffic are not. Moreover, voice traffic requires that delay be nonvariable in order to avoid jitter. Real-time traffic such as video could introduce variation in delay, thereby thwarting the steadiness of delay required for successful voice traffic transmission.

For information on how to configure LLQ, see the "Configuring Weighted Fair Queueing" module.
LLQ Bandwidth Allocation

When you specify the `priority` command for a class, it takes a `bandwidth` argument that gives maximum bandwidth in kbps. You use this parameter to specify the maximum amount of bandwidth allocated for packets belonging to the class configured with the `priority` command. The bandwidth parameter both guarantees bandwidth to the priority class and restrains the flow of packets from the priority class.

In the event of congestion, policing is used to drop packets when the bandwidth is exceeded. Voice traffic enqueued to the priority queue is UDP-based and therefore not adaptive to the early packet drop characteristic of WRED. Because WRED is ineffective, you cannot use the WRED `random-detect` command with the `priority` command.

When congestion occurs, traffic destined for the priority queue is metered to ensure that the bandwidth allocation configured for the class to which the traffic belongs is not exceeded.

Priority traffic metering has the following qualities:

- Priority traffic metering is only performed under congestion conditions. When the device is not congested, the priority class traffic is allowed to exceed its allocated bandwidth. When the device is congested, the priority class traffic above the allocated bandwidth is discarded.
- It is performed on a per-packet basis, and tokens are replenished as packets are sent. If not enough tokens are available to send the packet, it is dropped.
- It restrains priority traffic to its allocated bandwidth to ensure that nonpriority traffic, such as routing packets and other data, is not starved.

With metering, the classes are policed and rate-limited individually. That is, although a single policy map might contain four priority classes, all of which are enqueued in a single priority queue, they are each treated as separate flows with separate bandwidth allocations and constraints.

It is important to note that because bandwidth for the priority class is specified as a parameter to the `priority` command, you cannot also configure the `bandwidth` policy-map class configuration command for a priority class. To do so is a configuration violation that would only introduce confusion in relation to the amount of bandwidth to allocate.

The bandwidth allocated for a priority queue always includes the Layer 2 encapsulation header. However, it does not include other headers. When you calculate the amount of bandwidth to allocate for a given priority class, you must account for the fact that Layer 2 headers are included. You must also allow bandwidth for the possibility of jitter introduced by routers in the voice path.

Note

The sum of all bandwidth allocation on an interface cannot exceed 75 percent of the total available interface bandwidth. However, under aggressive circumstances in which you want to configure more than 75 percent of the interface bandwidth to classes, you can override the 75 percent maximum sum allocated to all classes or flows using the `max-reserved-bandwidth` command. The `max-reserved-bandwidth` command is intended for use on main interfaces only.

Why Use LLQ?

Here are some general factors you should consider in determining whether you need to configure LLQ:

- LLQ provides strict priority service serial interfaces.
• LLQ is not limited to UDP port numbers. Because you can configure the priority status for a class within CBWFQ, you are no longer limited to UDP port numbers to stipulate priority flows. Instead, all of the valid match criteria used to specify traffic for a class now apply to priority traffic.

• By configuring the maximum amount of bandwidth allocated for packets belonging to a class, you can avoid starving nonpriority traffic.

Restrictions
The following restrictions apply to LLQ:

• The random-detect command, shape command, and bandwidth policy-map class configuration command cannot be used in conjunction with priority command in the same class-map.

• The priority command can be configured in multiple classes, but it should only be used for voice-like, constant bit rate (CBR) traffic.

• The queue-limit command can be configured in conjunction with the priority command when only one priority queue of a particular level exists in the policy-map.

• You cannot configure the default queue as a priority queue at any level.

Priority Queueing

PQ allows you to define how traffic is prioritized in the network. You configure four traffic priorities. You can define a series of filters based on packet characteristics to cause the router to place traffic into these four queues; the queue with the highest priority is serviced first until it is empty, then the lower queues are serviced in sequence.

For information on how to configure PQ, see the "Configuring Priority Queueing" module.

How It Works

During transmission, PQ gives priority queues absolute preferential treatment over low priority queues; important traffic, given the highest priority, always takes precedence over less important traffic. Packets are classified based on user-specified criteria and placed into one of the four output queues--high, medium, normal, and low--based on the assigned priority. Packets that are not classified by priority fall into the normal queue. The figure below illustrates this process.
When a packet is to be sent out an interface, the priority queues on that interface are scanned for packets in
descending order of priority. The high priority queue is scanned first, then the medium priority queue, and so
on. The packet at the head of the highest queue is chosen for transmission. This procedure is repeated every
time a packet is to be sent.

The maximum length of a queue is defined by the length limit. When a queue is longer than the queue limit,
all additional packets are dropped.

The priority output queueing mechanism can be used to manage traffic from all networking protocols. Additional
fine-tuning is available for IP and for setting boundaries on the packet size.

How Packets Are Classified for Priority Queueing

A priority list is a set of rules that describe how packets should be assigned to priority queues. A priority list
might also describe a default priority or the queue size limits of the various priority queues.

Packets can be classified by the following criteria:

- Protocol or subprotocol type
- Incoming interface
- Packet size
- Fragments
- Access list

Keepalives sourced by the network server are always assigned to the high priority queue; all other management
traffic (such as Interior Gateway Routing Protocol (IGRP) updates) must be configured. Packets that are not
classified by the priority list mechanism are assigned to the normal queue.
Why Use Priority Queueing?

PQ provides absolute preferential treatment to high priority traffic, ensuring that mission-critical traffic traversing various WAN links gets priority treatment. In addition, PQ provides a faster response time than do other methods of queueing.

Although you can enable priority output queueing for any interface, it is best used for low-bandwidth, congested serial interfaces.

Restrictions

When choosing to use PQ, consider that because lower priority traffic is often denied bandwidth in favor of higher priority traffic, use of PQ could, in the worst case, result in lower priority traffic never being sent. To avoid inflicting these conditions on lower priority traffic, you can use traffic shaping to rate-limit the higher priority traffic.

PQ introduces extra overhead that is acceptable for slow interfaces, but may not be acceptable for higher speed interfaces such as Ethernet. With PQ enabled, the system takes longer to switch packets because the packets are classified by the processor card.

PQ uses a static configuration and does not adapt to changing network conditions.

PQ is not supported on any tunnels.

Bandwidth Management

RSVP, CBWFQ and LLQ can all reserve and consume bandwidth, up to a maximum of the reserved bandwidth on an interface.

To allocate bandwidth, you can use one of the following commands:

- For RSVP, use the `ip rsvp bandwidth` command.
- For CBWFQ, use the `bandwidth` policy-map class configuration command.
- For LLQ, you can allocate bandwidth using the `priority` command.

When you configure these commands, be aware of bandwidth limitations and configure bandwidth according to requirements in your network. Remember, the sum of all bandwidths cannot exceed the maximum reserved bandwidth. The default maximum bandwidth is 75 percent of the total available bandwidth on the interface. The remaining 25 percent of bandwidth is used for overhead, including Layer 2 overhead, routing traffic, and best-effort traffic.

If you find that it is necessary to change the maximum reserved bandwidth, you can change the maximum bandwidth by using the `max-reserved-bandwidth` command. The `max-reserved-bandwidth` command can be used only on interfaces; it cannot be used on VCs.
IPv6 QoS: Queueing

Class-based and flow-based queueing are supported for IPv6.

- Finding Feature Information, on page 17
- Information About IPv6 QoS: Queueing, on page 17
- Additional References, on page 18
- Feature Information for IPv6 QoS: Queueing, on page 19

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About IPv6 QoS: Queueing

Implementation Strategy for QoS for IPv6

IPv6 packets are forwarded by paths that are different from those for IPv4. QoS features supported for IPv6 environments include packet classification, queueing, traffic shaping, weighted random early detection (WRED), class-based packet marking, and policing of IPv6 packets. These features are available at both the process switching and Cisco Express Forwarding switching paths of IPv6.

All of the QoS features available for IPv6 environments are managed from the modular QoS command-line interface (MQC). The MQC allows you to define traffic classes, create and configure traffic policies (policy maps), and then attach those traffic policies to interfaces.

To implement QoS in networks running IPv6, follow the same steps that you would follow to implement QoS in networks running only IPv4. At a very high level, the basic steps for implementing QoS are as follows:

- Know which applications in your network need QoS.
• Understand the characteristics of the applications so that you can make decisions about which QoS features would be appropriate.
• Know your network topology so that you know how link layer header sizes are affected by changes and forwarding.
• Create classes based on the criteria you establish for your network. In particular, if the same network is also carrying IPv4 traffic along with IPv6, decide if you want to treat both of them the same way or treat them separately and specify match criteria accordingly. If you want to treat them the same, use match statements such as `match precedence`, `match dscp`. If you want to treat them separately, add match criteria such as `match protocol ip` and `match protocol ipv6` in a match-all class map.
• Create a policy to mark each class.
• Work from the edge toward the core in applying QoS features.
• Build the policy to treat the traffic.
• Apply the policy.

Congestion Management in IPv6 Networks

Once you have marked the traffic, you can use the markings to build a policy and classify traffic on the rest of the network segments. If you keep the policy simple (for example approximately four classes), it will be easier to manage. Class-based and flow-based queueing are supported for IPv6. The processes and tasks use the same commands and arguments to configure various queueing options for both IPv4 and IPv6.

Traffic Policing in IPv6 Environments

Congestion management for IPv6 is similar to IPv4, and the commands used to configure queueing and traffic shaping features for IPv6 environments are the same commands as those used for IPv4. Traffic shaping allows you to limit the packet dequeue rate by holding additional packets in the queues and forwarding them as specified by parameters configured for traffic shaping features. Traffic shaping uses flow-based queueing by default. CBWFQ can be used to classify and prioritize the packets. Class-based policer and generic traffic shaping (GTS) or Frame Relay traffic shaping (FRTS) can be used for conditioning and policing traffic.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
</tbody>
</table>
Feature Information for IPv6 QoS: Queueing

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2: Feature Information for IPv6 QoS: Queueing

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 QoS: Queueing</td>
<td>Cisco IOS XE Release 2.1</td>
<td>Class-based and flow-based queueing are supported for IPv6.</td>
</tr>
</tbody>
</table>
Low Latency Queueing with Priority Percentage Support

This feature allows you to configure bandwidth as a percentage within low latency queueing (LLQ). Specifically, you can designate a percentage of the bandwidth to be allocated to an entity (such as a physical interface, a shaped ATM permanent virtual circuit (PVC), or a shaped Frame Relay PVC to which a policy map is attached). Traffic associated with the policy map will then be given priority treatment.

This feature also allows you to specify the percentage of bandwidth to be allocated to nonpriority traffic classes. It modifies two existing commands—`bandwidth` and `priority`—and provides additional functionality to the way that bandwidth can be allocated using these two commands.

- Finding Feature Information, on page 21
- Restrictions for LLQ with Priority Percentage Support, on page 21
- Information About LLQ with Priority Percentage Support, on page 22
- How to Configure LLQ with Priority Percentage Support, on page 23
- Configuration Examples for LLQ with Priority Percentage Support, on page 25
- Additional References, on page 27
- Feature Information for LLQ with Priority Percentage Support, on page 28

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for LLQ with Priority Percentage Support

Dropping Excess Traffic

If the incoming high priority traffic exceeds the bandwidth percentage calculated by the `priority percent` command, and there is congestion in the network, the excess traffic is dropped. This is identical to
the behavior demonstrated when the priority command uses bandwidth in kbps. In both cases, if the high priority traffic exceeds the bandwidth, and there is congestion in the network, excess traffic is dropped.

Exceeding the Configured Bandwidth Percentage Calculated by the bandwidth percent and priority percent Commands

By default, when the bandwidth percent and priority percent commands are used to allocate bandwidth, the sum of the bandwidth percentage allocated to the high priority traffic and the bandwidth percentage allocated to the nonpriority traffic cannot exceed 99 percent of the total bandwidth available on the interface.

The remaining 1 percent of the total bandwidth available on the interface is kept in reserve for the unclassified traffic and routing traffic, if any, and is proportionally divided among the defined traffic classes.

Information About LLQ with Priority Percentage Support

Benefits of LLQ with Priority Percentage Support

This feature allows the Cisco Software to accommodate networks with a large number of interfaces, all with differing bandwidths. This feature is useful when all of those interfaces with differing bandwidths need to be associated with a policy map that allocates proportional bandwidths to multiple classes.

Additionally, configuring bandwidth in percentages is most useful when the underlying link bandwidth is unknown or the relative class bandwidth distributions are known. For interfaces that have adaptive shaping rates (such as available bit rate [ABR] virtual circuits), CBWFQ can be configured by configuring class bandwidths in percentages.

Changes to the bandwidth Command for LLQ with Priority Percentage Support

This feature adds a new keyword to the bandwidth command—remaining percent. The feature also changes the functionality of the existing percent keyword. These changes result in the following commands for bandwidth: bandwidth percent and bandwidth remaining percent.

The bandwidth percent command configures bandwidth as an absolute percentage of the total bandwidth on the interface.

The bandwidth remaining percent command allows you to allocate bandwidth as a relative percentage of the total bandwidth available on the interface. This command allows you to specify the relative percentage of the bandwidth to be allocated to the classes of traffic. For instance, you can specify that 30 percent of the available bandwidth be allocated to class1, and 60 percent of the bandwidth be allocated to class2. Essentially, you are specifying the ratio of the bandwidth to be allocated to the traffic class. In this case, the ratio is 1 to 2 (30 percent allocated to class1 and 60 percent allocated to class2). The sum of the numbers used to indicate this ratio cannot exceed 100 percent. This way, you need not know the total amount of bandwidth available, just the relative percentage you want to allocate for each traffic class.

Each traffic class gets a minimum bandwidth as a relative percentage of the remaining bandwidth. The remaining bandwidth is the bandwidth available after the priority queue, if present, is given its required bandwidth, and after any Resource Reservation Protocol (RSVP) flows are given their requested bandwidth.

Because this is a relative bandwidth allocation, the packets for the traffic classes are given a proportionate weight only, and no admission control is performed to determine whether any bandwidth (in kbps) is actually
available. The only error checking that is performed is to ensure that the total bandwidth percentages for the classes do not exceed 100 percent.

Changes to the priority Command for LLQ with Priority Percentage Support

This feature also adds the `percent` keyword to the `priority` command. The `priority percent` command indicates that the bandwidth will be allocated as a percentage of the total bandwidth of the interface. You can then specify the percentage (that is, a number from 1 to 100) to be allocated by using the `percentage` argument with the `priority percent` command.

Unlike the `bandwidth` command, the `priority` command provides a strict priority to the traffic class, which ensures low latency to high priority traffic classes.

Bandwidth Calculations in LLQ with Priority Percentage Support

When the `bandwidth` and `priority` commands calculate the total amount of bandwidth available on an entity, the following guidelines are invoked:

- If the entity is a physical interface, the total bandwidth is the bandwidth on the physical interface.
- If the entity is a shaped ATM PVC, the total bandwidth is calculated as follows:
 - For a variable bit rate (VBR) VC, the average shaping rate is used in the calculation.
 - For an available bit rate (ABR) VC, the minimum shaping rate is used in the calculation.

How to Configure LLQ with Priority Percentage Support

Specifying the Bandwidth Percentage

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map
4. class {class-name | class-default}
5. priority {bandwidth-kbps | percent percentage}[burst]
6. bandwidth {bandwidth-kbps | percent percentage | remaining percent percentage}
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>policy-map policy-map</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# policy-map policy1</td>
<td>• Enter the policy map name. Names can be a maximum of 40 alphanumeric characters.</td>
</tr>
<tr>
<td>Step 4</td>
<td>**class {class-name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap)# class class1</td>
<td>• Enter the class name.</td>
</tr>
<tr>
<td>Step 5</td>
<td>**priority {bandwidth-kbps</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)#</td>
<td>priority percent 10</td>
</tr>
<tr>
<td>Step 6</td>
<td>**bandwidth {bandwidth-kbps</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)#</td>
<td>bandwidth percent 30</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)#</td>
<td>end</td>
</tr>
</tbody>
</table>

Verifying the Bandwidth Percentage

SUMMARY STEPS

1. enable
2. show policy-map policy-map
3. show policy-map policy-map class class-name
4. `show policy-map interface type number`

5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>show policy-map policy-map</code></td>
<td>(Optional) Displays the configuration of all classes for a specified service policy map or the configuration of all classes for all existing policy maps</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter the name of the policy map whose complete configuration is to be displayed.</td>
</tr>
<tr>
<td>Router# show policy-map policy1</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>show policy-map policy-map class class-name</code></td>
<td>(Optional) Displays the configuration for the specified class of the specified policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter the policy map name and the class name.</td>
</tr>
<tr>
<td>Router# show policy-map policy1 class class1</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>show policy-map interface type number</code></td>
<td>(Optional) Displays the packet statistics of all classes that are configured for all service policies either on the specified interface or subinterface or on a specific PVC on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter the interface type and number.</td>
</tr>
<tr>
<td>Router# show policy-map interface serial4/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>exit</code></td>
<td>(Optional) Exits privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# exit</td>
</tr>
</tbody>
</table>
As a result of this configuration, 10 percent of the interface bandwidth is guaranteed for the class called voice-percent. The classes called data1 and data2 get 30 percent and 20 percent of the remaining bandwidth, respectively.

Example Mixing the Units of Bandwidth for Nonpriority Traffic

If a particular unit (that is, kbps or percentages) is used when specifying the bandwidth for a specific class of nonpriority traffic, the same bandwidth unit must be used when specifying the bandwidth for the other nonpriority classes in that policy map. The bandwidth units within the same policy map must be identical. However, the unit for the priority command in the priority class can be different from the bandwidth unit of the nonpriority class. The same configuration can contain multiple policy maps, however, which in turn can use different bandwidth units.

The following sample configuration contains three policy maps—policy1, policy2, and policy3. In the policy map called policy1 and the policy map called policy2, the bandwidth is specified by percentage. However, in the policy map called policy3, bandwidth is specified in kbps.
Example Verifying the Bandwidth Percentage

The following sample output from the `show policy-map interface` command shows that 50 percent of the interface bandwidth is guaranteed for the class called class1 and that 25 percent is guaranteed for the class called class2. The output displays the amount of bandwidth as both a percentage and a number of kbps.

```
Router# show policy-map interface
serial3/2/0
Service-policy output:policy1
Class-map:class1 (match-all)
  0 packets, 0 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  Match:none
  Weighted Fair Queueing
    Output Queue:Conversation 265
    Bandwidth 50 (%)
    Bandwidth 772 (kbps) Max Threshold 64 (packets)
      (pkts matched/bytes matched) 0/0
      (depth/total drops/no-buffer drops) 0/0/0
Class-map:class2 (match-all)
  0 packets, 0 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  Match:none
  Weighted Fair Queueing
    Output Queue:Conversation 266
    Bandwidth 25 (%)
    Bandwidth 386 (kbps) Max Threshold 64 (packets)
      (pkts matched/bytes matched) 0/0
      (depth/total drops/no-buffer drops) 0/0/0
Class-map:class-default (match-any)
  0 packets, 0 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  Match: any
```

In this example, serial interface 3/2/0 has a total bandwidth of 1544 kbps. During periods of congestion, 50 percent (or 772 kbps) of the link bandwidth is guaranteed to the class called class1, and 25 percent (or 386 kbps) of the link bandwidth is guaranteed to the class called class2.

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
</tbody>
</table>
Feature Information for LLQ with Priority Percentage Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 3: Feature Information for Low Latency Queueing with Priority Percentage Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Latency Queueing with Priority Percentage Support</td>
<td>Cisco IOS XE Release 2.1</td>
<td>This feature allows you to configure bandwidth as a percentage within low latency queueing (LLQ). Specifically, you can designate a percentage of the bandwidth to be allocated to an entity (such as a physical interface, a shaped ATM permanent virtual circuit [PVC], or a shaped Frame Relay PVC to which a policy map is attached). Traffic associated with the policy map will then be given priority treatment. This feature was implemented on the Cisco ASR 1000 Series Routers. The following commands were introduced or modified: <code>bandwidth(policy-map class)</code>, <code>priority</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 5

Low Latency Queueing for IPsec Encryption Engines

This feature module describes the LLQ for IPsec encryption engines feature and includes the following sections:

- Finding Feature Information, on page 31
- Feature Overview, on page 31
- Supported Standards MIBs and RFCs, on page 32
- Prerequisites, on page 33
- Configuration Tasks, on page 33
- Monitoring and Maintaining LLQ for IPSec Encryption Engines, on page 37
- Configuration Examples, on page 37

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Overview

Low Latency Queueing (LLQ) for IPSec encryption engines helps reduce packet latency by introducing the concept of queueing before crypto engines. Prior to this, the crypto processing engine gave data traffic and voice traffic equal status. Administrators now designate voice traffic as priority. Data packets arriving at a router interface are directed into a data packet inbound queue for crypto engine processing. This queue is called the best effort queue. Voice packets arriving on a router interface are directed into a priority packet inbound queue for crypto engine processing. This queue is called the priority queue. The crypto engine undertakes packet processing in a favorable ratio for voice packets. Voice packets are guaranteed a minimum processing bandwidth on the crypto engine.
Benefits of the LLQ for IPSec Encryption Engines

The LLQ for IPSec encryption engines feature guarantees a certain level of crypto engine processing time for priority designated traffic.

Better Voice Performance

Voice packets can be identified as priority, allowing the crypto engine to guarantee a certain percentage of processing bandwidth. This feature impacts the end user experience by assuring voice quality if voice traffic is directed onto a congested network.

Improved Latency and Jitters

Predictability is a critical component of network performance. The LLQ for IPSec encryption engines feature delivers network traffic predictability relating to VPN. With this feature disabled, an end user employing an IP phone over VPN might experience jitter or latency, both symptoms of overall network latency and congestion. With this feature enabled, these undesirable characteristics are dissipated.

Restrictions

- No per-tunnel QoS policy. An interface QoS policy represents all tunnels.
- Assume the same IP precedence/DSCP marking for inbound and outbound voice packets.
- Assume the IP precedence/DSCP marking for voice packets are done at the source.
- Limited match criteria for voice traffic in the interface QoS policy.
- Assume call admission control is enforced within the enterprise.
- No strict error checking when aggregate policy’s bandwidth exceeds crypto engine bandwidth. Only a warning is displayed but configuration is allowed.
- Assume voice packets are either all encrypted or unencrypted.

Related Documents

- Cisco IOS Quality of Service Solutions Command Reference
- "Applying QoS Features Using the MQC" module

Supported Standards MIBs and RFCs

Standards

No new or modified standards are supported by this feature.

MIBs

No new or modified standards are supported by this feature.
To locate and download MIBs for selected platforms, Cisco IOS XE Software releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

No new or modified RFCs are supported by this feature.

Prerequisites

To use this feature, you should be familiar with the following:

- Access control lists
- Bandwidth management
- CBWFQ

Configuration Tasks

Defining Class Maps

SUMMARY STEPS

1. Router(config)# `class-map` class-map-name
2. Do one of the following:
 • Router(config-cmap)# `match access-group` `{access-group | name access-group-name}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# <code>class-map</code> class-map-name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td></td>
<td>• Router(config-cmap)# <code>match access-group</code> `{access-group</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-cmap)# <code>match input-interface</code> interface-name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
</tbody>
</table>
Configuring Class Policy in the Policy Map

To configure a policy map and create class policies that make up the service policy, begin with the `policy-map` command to specify the policy map name. Then use one or more of the following commands to configure the policy for a standard class or the default class:

- `priority`
- `bandwidth`
- `queue-limit` or `random-detect`
- `fair-queue` (for class-default class only)

For each class that you define, you can use one or more of the commands listed to configure the class policy. For example, you might specify bandwidth for one class and both bandwidth and queue limit for another class.

The default class of the policy map (commonly known as the class-default class) is the class to which traffic is directed if that traffic does not satisfy the match criteria of the other classes defined in the policy map.

You can configure class policies for as many classes as are defined on the router, up to the maximum of 64. However, the total amount of bandwidth allocated for all classes in a policy map must not exceed the minimum committed information rate (CIR) configured for the virtual circuit (VC) minus any bandwidth reserved by the `frame-relay voice bandwidth` and `frame-relay ip rtp priority` commands. If the minimum CIR is not configured, the bandwidth defaults to one half of the CIR. If all of the bandwidth is not allocated, the remaining bandwidth is allocated proportionally among the classes on the basis of their configured bandwidth.

To configure class policies in a policy map, perform the tasks described in the following sections. The task in the first section is required; the tasks in the remaining sections are optional.

Configuring Class Policy for a Priority Queue

SUMMARY STEPS

1. Router(config)# `policy-map` policy-map
2. Router(config-cmap)# `class` class-name
3. Router(config-pmap-c)# `priority` bandwidth-kbps

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# <code>policy-map</code> policy-map</td>
<td>Specifies the name of the policy map to be created or modified.</td>
</tr>
<tr>
<td>Step 2 Router(config-cmap)# <code>class</code> class-name</td>
<td>Specifies the name of a class to be created and included in the service policy.</td>
</tr>
</tbody>
</table>
Configuring Class Policy Using a Specified Bandwidth

SUMMARY STEPS

1. Router(config)# policy-map policy-map
2. Router(config-cmap)# class class-name
3. Router(config-pmap-c)# bandwidth bandwidth-kbps

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# policy-map policy-map</td>
<td>Specifies the name of the policy map to be created or modified.</td>
</tr>
<tr>
<td>Step 2 Router(config-cmap)# class class-name</td>
<td>Specifies the name of a class to be created and included in the service policy.</td>
</tr>
<tr>
<td>Step 3 Router(config-pmap-c)# bandwidth bandwidth-kbps</td>
<td>Specifies the amount of bandwidth to be assigned to the class, in kbps, or as a percentage of the available bandwidth. Bandwidth must be specified in kbps or as a percentage consistently across classes. (Bandwidth of the priority queue must be specified in kbps.)</td>
</tr>
</tbody>
</table>

Configuring the Class-Default Class Policy

SUMMARY STEPS

1. Router(config)# policy-map policy-map
2. Router(config-cmap)# class-default default-class-name
3. Router(config-pmap-c)# bandwidth bandwidth-kbps

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# policy-map policy-map</td>
<td>Specifies the name of the policy map to be created or modified.</td>
</tr>
<tr>
<td>Step 2 Router(config-cmap)# class-default default-class-name</td>
<td>Specifies the default class so that you can configure or modify its policy.</td>
</tr>
</tbody>
</table>
The class-default class is used to classify traffic that does not fall into one of the defined classes. Even though the class-default class is predefined when you create the policy map, you still have to configure it. If a default class is not configured, then traffic that does not match any of the configured classes is given best-effort treatment, which means that the network will deliver the traffic if it can, without any assurance of reliability, delay prevention, or throughput.

Step 3

Router(config-pmap-c)# bandwidth bandwidth-kbps

Example:

Example:

or

Example:

Example:

Router(config-pmap-c)# fair-queue

[**number-of-dynamic-queues**]

Specifies the amount of bandwidth, in kbps, to be assigned to the class. Specifies the number of dynamic queues to be reserved for use by flow-based WFQ running on the default class. The number of dynamic queues is derived from the bandwidth of the interface.

Attaching the Service Policy

SUMMARY STEPS

1. **Router(config)# interface type number**
2. **Router(config-if)# service-policy output policy-map**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type number</td>
<td>Specifies the interface using the LLQ for IPSec encryption engines.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# service-policy output policy-map</td>
<td>Attaches the specified service policy map to the output interface and enables LLQ for IPSec encryption engines.</td>
</tr>
</tbody>
</table>
Verifying Configuration of Policy Maps and Their Classes

SUMMARY STEPS

1. Router# show frame-relay pvc dlci
2. Router# show policy-map interface interface-name
3. Router# show policy-map interface interface-name dlci dlci

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# show frame-relay pvc dlci</td>
<td>Displays statistics about the PVC and the configuration of classes for the policy map on the specified data-link connection identifier (DLCI).</td>
</tr>
<tr>
<td>Step 2 Router# show policy-map interface interface-name</td>
<td>When LLQ is configured, displays the configuration of classes for all policy maps.</td>
</tr>
<tr>
<td>Step 3 Router# show policy-map interface interface-name dlci dlci</td>
<td>When LLQ is configured, displays the configuration of classes for the policy map on the specified DLCI.</td>
</tr>
</tbody>
</table>

Monitoring and Maintaining LLQ for IPSec Encryption Engines

SUMMARY STEPS

1. Router# show crypto eng qos

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# show crypto eng qos</td>
<td>Displays quality of service queueing statistics for LLQ for IPSec encryption engines.</td>
</tr>
</tbody>
</table>

Configuration Examples

LLQ for IPsec Encryption Engines Example

In the following example, a strict priority queue with a guaranteed allowed bandwidth of 50 kbps is reserved for traffic that is sent from the source address 10.10.10.10 to the destination address 10.10.10.20, in the range of ports 16384 through 20000 and 53000 through 56000.

First, the following commands configure access list 102 to match the desired voice traffic:

```
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 16384 20000
```
Router(config)# access-list 102 permit udp host 10.10.10.10 host 10.10.10.20 range 53000 56000

Next, the class map voice is defined, and the policy map called policy1 is created; a strict priority queue for the class voice is reserved, a bandwidth of 20 kbps is configured for the class bar, and the default class is configured for WFQ. The service-policy command then attaches the policy map to the fas0/0.

Router(config)# class-map voice
Router(config-cmap)# match access-group 102
Router(config-cmap)# exit
Router(config)# policy-map policy1
Router(config-pmap)# class voice
Router(config-pmap-c)# priority 50
Router(config-pmap-c)# exit
Router(config-pmap-c)# class bar
Router(config-pmap-c)# bandwidth 20
Router(config-pmap-c)# exit
Router(config-pmap-c)# class class-default
Router(config-pmap-c)# fair-queue
Router(config-pmap-c)# exit
Router(config-pmap-c)# exit
Router(config)# interface fastethernet0/0/0
Router(config-if)# service-policy output policy1
CHAPTER 6

Configurable Queue Depth

This feature allows you to configure (resize) the depth of the packet queues on your network. That is, you can set the maximum number (the depth) of packets that a class queue can hold, which in turn controls when the router drops packets. Configuring the depth of the packet queues helps alleviate packet queue congestion.

• Finding Feature Information, on page 39
• Information About Configuring Queue Depth, on page 39
• How to Configure Queue Depth, on page 40
• Configuration Examples for Configuring Queue Depth, on page 42
• Additional References, on page 44
• Feature Information for Configuring Queue Depth, on page 45

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Configuring Queue Depth

Queue Limit

Each queue has a limit on the number of packets that the router can place into the queue. This limit, referred to as the depth, is a user-configurable limit. During periods of high traffic, a queue fills with packets that are waiting for transmission. When a queue reaches its queue limit and becomes full, by default, the router drops packets until the queue is no longer full.

For the Cisco ASR 1000 Series Router in Cisco IOS XE Software Release 2.1, the packets-per-queue range is 1 to 2,000,000.
When a packet queue temporarily experiences congestion, increasing the depth of the queue using the queue-limit command reduces the number of packets dropped. However, setting the queue limit to a high value might reduce the number of packet buffers available to other interfaces.

If you do not specify a queue limit, the router calculates the default buffer size for each class queue as follows:

- **Class queues** -- The router uses 50 ms of 1500-byte packets but never less than 64 packets.
- **Class queues on ESP40** -- The router uses 25 ms of 1500-byte packets but never less than 64 packets.
- **Priority queues** -- The router uses a queue limit of 512 packets.

Note
When setting the queue limit, decide how many users will be active at any given time and tune the queue limits accordingly. This will allow individual interfaces to handle traffic bursts and not deplete the available memory. For assistance, contact the Cisco Support website at http://www.cisco.com/techsupport.

How to Configure Queue Depth

This section contains the following tasks:

Setting the Depth of a Traffic Class Queue

Before you begin

The traffic classes, class maps, and policy maps must exist.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `policy-map policy-map-name`
4. `class class-map-name`
5. `bandwidth \{bandwidth-kbps \| percent percent\}`
6. `queue-limit number-of-packets`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map policy-map-name</td>
<td>Specifying the name of the policy map and entering policy-map configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```plaintext
Router(config)# policy-map Policy1
```

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>class class-map-name</td>
<td>Assigning the traffic class you specify to the policy map. Enters policy-map class configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```plaintext
Router(config-pmap)# class Class1
```

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth *(bandwidth-kbps</td>
<td>percent percent)*</td>
</tr>
</tbody>
</table>

Example:

```plaintext
Router(config-pmap-c)# bandwidth 3000
```

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue-limit number-of-packets</td>
<td>Specifying or modifying the maximum number of packets that the queue can hold for this class.</td>
</tr>
</tbody>
</table>

Example:

```plaintext
Router(config-pmap-c)# queue-limit 32
```

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>(Optional) Exiting policy-map class mode.</td>
</tr>
</tbody>
</table>

Example:

```plaintext
Router(config-pmap-c)# end
```

Verifying the Depth of the Traffic Class Queue

SUMMARY STEPS

1. `enable`
2. `show policy-map interface type number`
3. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuration Examples for Configuring Queue Depth

Example Setting the Queue Size

The following example shows how to create a policy map named Policy1 that contains two classes named Class1 and Class2. The Class1 configuration enable a specific bandwidth allocation and specifies the maximum number of packets that can be queued for the class. Because Class1 limits the number of packets that can be held in the queue to 32, the router uses tail drop to drop packets when that limit is reached. Class2 enables bandwidth allocation only.

```bash
Router(config)# policy-map Policy1
Router(config-pmap)# class Class1
Router(config-pmap-c)# bandwidth 3000
Router(config-pmap-c)# queue-limit 32
Router(config-pmap-c)# exit
Router(config-pmap)# class Class2
Router(config-pmap-c)# bandwidth 2000
Router(config-pmap-c)# end
```

Example Verifying the Queue Size

Use the `show policy-map interface` command to display traffic statistics for the class maps, policy maps, and traffic queues on your network.

The following is sample output for the `show policy-map interface` command. In this example, the policy map named Traffic-5-PR is attached to serial interface 1/0/0 and includes three traffic classes. The Voice-5-PR class has a configured queue limit of 32 packets with 0 packets dropped. The Gold-5-PR class also indicates that no packets dropped. The Silver-5-PR class has a configured queue limit of 64 packets with 0 packets dropped.

```bash
Router# show policy-map interface serial 1/0/0
Serial1/0/0
```
Service-policy output: Traffic-Parent (1051)
Class-map: class-default (match-any) (1068/0)
 2064335 packets, 120273127 bytes
 5 minute offered rate 1000 bps, drop rate 0 bps
Match: any (1069)
 126970 packets, 3982597 bytes
 5 minute rate 0 bps
Shape : 6000 kbps
Service-policy : Traffic-5-PR (1052)
Class-map: Voice-5-PR (match-all) (1053/1)
 82310 packets, 4938600 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
Match: ip precedence 5 (1054)
Output queue: 0/32; 82310/4938600 packets/bytes output, 0 drops
Absolute priority
Queue-limit: 32 packets
Police:
 304000 bps, 1536 limit, 0 extended limit
conformed 82310 packets, 4938720 bytes; action: transmit
exceeded 0 packets, 0 bytes; action: drop
violated 0 packets, 0 bytes; action: drop
Class-map: Gold-5-PR (match-any) (1058/2)
1125476 packets, 67528560 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
Match: ip precedence 3 4 (1059)
1125476 packets, 67528560 bytes
 5 minute rate 0 bps
Output queue: 0/128; 1125503/67530180 packets/bytes output, 0 drops
Bandwidth : 188 kbps (Weight 3)
Class-map: Silver-5-PR (match-any) (1061/3)
697908 packets, 41874480 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
Match: ip precedence 0 1 2 (1062)
697908 packets, 41874480 bytes
 5 minute rate 0 bps
Output queue: 0/64; 697919/41875140 packets/bytes output, 0 drops
Bandwidth : 71 kbps (Weight 1)
Random-detect (precedence-based):
Exponential weight: 9 (1/512)
Current average queue length: 0 packets

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
<th>Prob</th>
<th>Rand-Drops</th>
<th>Tail-Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>32</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>32</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>32</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>32</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>32</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>32</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>32</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>32</td>
<td>1/10</td>
<td>0</td>
</tr>
</tbody>
</table>

Queue-limit: 64 packets
Class-map: class-default (match-any) (1066/0)
158641 packets, 5931487 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
Match: any (1067)
158641 packets, 5931487 bytes
 5 minute rate 0 bps
Output queue: 0/128; 31672/1695625 packets/bytes output, 0 drops
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>Packet classification</td>
<td>"Classifying Network Traffic" module</td>
</tr>
<tr>
<td>Creating classes, class maps, and policy maps</td>
<td>"Applying QoS Features Using the MQC" module</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. --</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE Software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature. --</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.htmlanych</td>
</tr>
</tbody>
</table>
Feature Information for Configuring Queue Depth

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 4: Feature Information for Configuring Queue Depth

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configurable Queue Depth</td>
<td>Cisco IOS XE Release 2.1</td>
<td>This feature allows you to configure (resize) the depth of the packet queues on your network. That is, you can set the maximum number (the depth) of packets that a class queue can hold, which in turn controls when the router drops packets. Configuring the depth of the packet queues helps alleviate packet queue congestion. The following command was introduced or modified: queue-limit.</td>
</tr>
</tbody>
</table>
CHAPTER 7

Multi-Level Priority Queues

The Multi-Level Priority Queues (MPQ) feature allows you to configure multiple priority queues for multiple traffic classes by specifying a different priority level for each of the traffic classes in a single service policy map. You can configure multiple service policy maps per device. Having multiple priority queues enables the device to place delay-sensitive traffic (for example, voice) on the outbound link before delay-insensitive traffic. As a result, high-priority traffic receives the lowest latency possible on the device.

• Finding Feature Information, on page 47
• Prerequisites for Multi-Level Priority Queues, on page 47
• Restrictions for Multi-Level Priority Queues, on page 47
• Information About Multi-Level Priority Queues, on page 48
• How to Configure Multi-Level Priority Queues, on page 50
• Configuration Examples for Multi-Level Priority Queues, on page 52
• Additional References for Multi-Level Priority Queues, on page 53
• Feature Information for Multi-Level Priority Queues, on page 54

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Multi-Level Priority Queues

You must configure traffic classes using the class-map command.

Restrictions for Multi-Level Priority Queues

• You cannot configure both the priority command and the priority level command for two different classes in the same policy map. For example, the device does not accept the following configuration:
The priority rate command is not supported, instead you can use priority cir command on the Cisco RSP3 Module.

- You cannot specify the same priority level for two different classes in the same policy map. For example, the device does not accept the following configuration:

- You cannot configure the default queue as a priority queue at any level.

- You cannot configure the bandwidth command and multi-level priority queues on the same class. For example, the device rejects the following configuration:

  ```
  policy-map P1
  class C1
  priority level 1
  bandwidth 200
  ```

- You cannot configure the shape command and multi-level priority queues on the same class. For example, the device rejects the following configuration:

  ```
  policy-map P1
  class C1
  priority level 1
  shape average 56000
  ```

- To convert a one-level (flat) service policy with multiple priority queues configured to a hierarchical multi-level priority queues service policy, you must first detach the flat service policy from the interface using the no service-policy command and then add a child policy map to it.

- We recommend not to use MPQ at the logical level, that is, under the class-map containing match for the VLANs.

Information About Multi-Level Priority Queues

Benefits of Multi-Level Priority Queues

The MPQ feature allows you to configure multiple priority queues for multiple traffic classes by specifying a different priority level for each of the traffic classes in a single service policy map. You can configure multiple service policy maps per device.

Previously, devices could have only one strict priority queue per policy map for all delay-sensitive traffic—the device associated all priority traffic with this one single priority queue. However, having only one priority
queue can cause significant delay in delivering traffic, especially if the device sends high-priority traffic (for example, voice) behind low-priority traffic (for example, video). Using class-based weighted fair queueing (CBWFQ) to reduce delay by heavily weighting one queue can affect the granularity of bandwidth allocations to the other queues. The MPQ feature addresses these issues and improves latency.

Functionality of Multi-Level Priority Queues

The `priority` command is used to specify that a class of traffic has latency requirements with respect to other classes. For multiple priority queues, you can use the `priority level` command to configure a level of priority service on a class in a policy map. The device places traffic with a high-priority level on the outbound link ahead of traffic with a low-priority level. High-priority packets, therefore, are not delayed behind low-priority packets.

The device services the high-level priority queues until empty before servicing the next-level priority queues and non-priority queues. While the device services a queue, the service rate is as fast as possible and is constrained only by the rate of the underlying link or parent node in a hierarchy. If a rate is configured and the device determines that a traffic stream has exceeded the configured rate, the device drops the exceeding packets during periods of congestion. If the link is currently not congested, the device places the exceeding packets onto the outbound link.

When configuring MPQ on different traffic classes in a policy map, you must specify different priority levels for the traffic classes. For example, configure one traffic class to have priority level 2 and another class to have priority level 1.

Note

In a hierarchical MPQ configuration in which all traffic is sent through the level-2 priority queue only, the traffic sent through the level-2 priority queue receives the same treatment as the traffic sent through the level-1 priority queue.

You cannot configure the `priority` command and the `priority level` command on different classes in the same policy map.

Traffic Policing and Multi-Level Priority Queues

Bandwidth guarantees can be given to other classes only if traffic policing is enabled on the priority queue. Using the `priority` and `police` commands, multi-level priority queues can be configured to police traffic in one of the following ways:

- Conditional traffic policing, for example:

  ```
  policy-map my_policy
  class voice
    priority 400000 <<< Priority queue conditionally policed to 400M
  class gold
    bandwidth 400000 <<< 400M minimum guaranteed to class gold
  ```

 With conditional traffic policing on the queue, you run the risk of sudden degradation in priority service when an interface becomes congested. You can go from an instance of a priority class using the entire link to suddenly traffic being policed to the configured value. You need to know the available bandwidth and use some form of admission control to ensure that your offered loads do not exceed the available bandwidth.
With the conditional policing, traffic policing does not engage unless the interface is congested.

- Unconditional traffic policing, for example:

```
policy-map my_policy
  class voice
  priority <<< Indicates priority scheduling
  police 400000000 <<< Traffic policed to 400M
  class gold
    bandwidth 400000 <<<400M minimum guaranteed to class gold
```

The priority class is configured with an “always on” (unconditional) policer. The priority class is always policed to the configured value regardless of whether the interface is congested. The advantage of an unconditional policer is that you always know how much priority traffic will be offered to the downstream devices, thus making your bandwidth planning much simpler. This is the recommended choice.

- Absolute priority queue (no traffic policing)

If traffic policing is not configured, the priority traffic may consume the entire interface bandwidth.

How to Configure Multi-Level Priority Queues

Configuring Multi-Level Priority Queues in a Policy Map

Before you begin

The traffic classes, class maps, and policy maps must exist.

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-name
4. class class-name
5. priority level level
6. police cir bps
7. police cir percent percent
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Device> enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 configure terminal Example: Device# configure terminal</td>
<td>Creates or modifies a policy map and enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Step 3 policy-map policy-name* Example: Device(config)# policy-map Premium</td>
<td>Specifies a traffic class and enters policy-map class configuration mode.</td>
</tr>
<tr>
<td>Step 4 class class-name* Example: Device(config-pmap)# class business</td>
<td>Assigns priority to a traffic class at the priority level specified.</td>
</tr>
<tr>
<td>Step 5 priority level level* Example: Device(config-pmap-c)# priority level 2</td>
<td>Note Do not specify the same priority level for two different classes in the same policy map.</td>
</tr>
<tr>
<td>Step 6 police cir bps* Example: Device(config-pmap-c)# police cir 8000</td>
<td>(Optional) Configures traffic policing based on a bits per second (bps) rate.</td>
</tr>
<tr>
<td>Step 7 police cir percent percent* Example: Device(config-pmap-c)# police cir percent 20</td>
<td>(Optional) Configures traffic policing based on a percentage of bandwidth available on the interface.</td>
</tr>
</tbody>
</table>

Note (Optional) Configure traffic policing based on a percentage of bandwidth available on the interface.

cir is the committed information rate and is based on the interface shape rate. This keyword indicates an average rate at which the policer meters traffic.

bps specifies the average rate in bits per second (bps). Valid values are from 8000 to 2488320000 bps.

percent indicates to use the percentage of available bandwidth specified in percent to calculate the CIR. Valid values are from 1 to 100.
Verifying Multi-Level Priority Queues

Step 1
enable
Example:
Device> enable
Enables privileged EXEC mode.
- Enter your password if prompted.

Step 2
show policy-map interface type number
Example:
Displays the packet statistics of all classes that are configured for all service policies either on the specified interface or subinterface or on a specific PVC on the interface.
- Enter the interface type and number.

Step 3
exit
Example:
Device# exit
(Optional) Exits privileged EXEC mode.

Configuration Examples for Multi-Level Priority Queues

Example: Configuring Multi-Level Priority Queues

The following example shows how to configure multiple priority queues with 2 level priority. The policy map named Business has two traffic classes: Bronze and Gold. Bronze traffic has a level 2 (low) priority, whereas Gold traffic has a level 1 (high) priority. To prevent bandwidth starvation of Bronze traffic, the Gold traffic is policed at 30 percent of the interface bandwidth.
Although a policer is not required, configure policing for priority traffic to prevent bandwidth starvation of low-priority traffic. When policing is configured, the traffic rate is policed at the police rate for each of the priority queues.

The following example shows how to configure multiple priority queues with 7 level priority. The policy map named Business has seven traffic classes: Platinum, Gold, Silver, Bronze, Iron, Aluminium, and Steel. Steel traffic has a level 7 (lowest) priority, whereas Platinum traffic has a level 1 (highest) priority. To prevent bandwidth starvation, the Platinum and Gold traffic is policed at 30 percent and 20 percent respectively, of the interface bandwidth.

Example: Verifying Multi-Level Priority Queues

The following is partial sample output from the `show policy-map interface` command.

```
Device# show policy-map interface serial2/1/0
Serial2/1/0
Service-policy output: P1
Queue statistics for all priority classes:
.
.
Class-map: Gold (match-all)
0 packets, 0 bytes /*Updated for each priority level configured.*/
5 minute offered rate 0 bps, drop rate 0 bps
Match: ip precedence 2
Priority: 0 kbps, burst bytes 1500, b/w exceed drops: 0
Priority Level 2:
0 packets, 0 bytes
```

Additional References for Multi-Level Priority Queues

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>Priority queues, creating classes, class maps, and policy maps</td>
<td>“Applying QoS Features Using the MQC” module</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to</td>
<td></td>
</tr>
<tr>
<td>install and configure the software and to troubleshoot and resolve</td>
<td></td>
</tr>
<tr>
<td>technical issues with Cisco products and technologies. Access to most</td>
<td></td>
</tr>
<tr>
<td>tools on the Cisco Support and Documentation website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Multi-Level Priority Queues

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 5: Feature Information for Multi-Level Priority Queues

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Multi-Level Priority Queues| Cisco IOS XE Fuji 16.8.x | You can now configure MPQ till priority level 7.

QoS: Congestion Management Configuration Guide, Cisco IOS XE 17
The MPQ feature allows you to configure multiple priority queues for multiple traffic classes by specifying a different priority level for each of the traffic classes in a single service policy map. You can configure multiple service policy maps per device. Having multiple priority queues enables the device to place delay-sensitive traffic (for example, voice) on the outbound link before delay-insensitive traffic. As a result, high-priority traffic receives the lowest latency possible on the device.

In Cisco IOS XE Release 2.1, this feature was implemented on the Cisco ASR 1000 Series Routers. In Cisco IOS XE Release 3.7S, support was added for the Cisco ASR 903 Router. In Cisco IOS XE Release 3.16, support was added for the Cisco ASR 900 RSP3 Module.

The following commands were introduced or modified: `priority level`, `show policy-map interface`.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Level Priority Queues</td>
<td>Cisco IOS Release XE 2.1</td>
<td>The MPQ feature allows you to configure multiple priority queues for multiple traffic classes by specifying a different priority level for each of the traffic classes in a single service policy map. You can configure multiple service policy maps per device. Having multiple priority queues enables the device to place delay-sensitive traffic (for example, voice) on the outbound link before delay-insensitive traffic. As a result, high-priority traffic receives the lowest latency possible on the device.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Release XE 3.7S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Release XE 3.16</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 8

Configuring Custom Queueing

This module describes the tasks for configuring QoS custom queueing (CQ) on a router.

Note

• Finding Feature Information, on page 57
• Custom Queueing Configuration Task List, on page 57
• Custom Queueing Configuration Examples, on page 59

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Custom Queueing Configuration Task List

You must follow certain required, basic steps to enable CQ for your network. In addition, you can choose to assign packets to custom queues based on protocol type, interface where the packets enter the router, or other criteria you specify.

CQ allows a fairness not provided with priority queueing (PQ). With CQ, you can control the available bandwidth on an interface when it is unable to accommodate the aggregate traffic enqueued. Associated with each output queue is a configurable byte count, which specifies how many bytes of data should be delivered from the current queue by the system before the system moves on to the next queue. When a particular queue is being processed, packets are sent until the number of bytes sent exceeds the queue byte count defined by the queue-list queue byte-count command (see the following section Specifying the Maximum Size of the Custom Queues, on page 58), or until the queue is empty.

To configure CQ, perform the tasks described in the following sections.
Specifying the Maximum Size of the Custom Queues

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# queue-list list-number queue queue-number limit limit-number</td>
<td>Specifies the maximum number of packets allowed in each of the custom queues. The limit-number argument specifies the number of packets that can be queued at any one time. The range is from 0 to 32767. The default is 20.</td>
</tr>
<tr>
<td>Router(config)# queue-list list-number queue queue-number byte-count byte-count-number</td>
<td>Designates the average number of bytes forwarded per queue. The byte-count-number argument specifies the average number of bytes the system allows to be delivered from a given queue during a particular cycle.</td>
</tr>
</tbody>
</table>

Assigning Packets to Custom Queues

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# queue-list list-number protocol protocol-name queue queue-number queue-keyword keyword-value</td>
<td>Establishes queueing priorities based on the protocol type. Note All protocols supported by Cisco are allowed. The queue-keyword variable provides additional options, including byte count, TCP service and port number assignments, and AppleTalk, IP, IPX, VINES, or XNS access list assignments. Note When you use multiple rules, remember that the system reads the queue-list commands in order of appearance.</td>
</tr>
<tr>
<td>Router(config)# queue-list list-number interface interface-type interface-number queue-number</td>
<td>Establishes CQ based on packets entering from a given interface.</td>
</tr>
<tr>
<td>Router(config)# queue-list list-number default queue-number</td>
<td>Assigns a queue number for those packets that do not match any other rule in the custom queue list.</td>
</tr>
</tbody>
</table>

Defining the Custom Queue List

SUMMARY STEPS

1. Router(config)# interface interface-type interface-number
2. Router(config-if)# custom-queue-list list
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface interface-type interface-number</td>
<td>Specifies the interface, and then enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# custom-queue-list list</td>
<td>Assigns a custom queue list to the interface. The list argument is any number from 1 to 16. There is no default assignment. Note Use the custom-queue-list command in place of the priority-list command. Only one queue list can be assigned per interface.</td>
</tr>
</tbody>
</table>

Monitoring Custom Queue Lists

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show queue interface-type interface-number</td>
<td>Displays the contents of packets inside a queue for a particular interface or virtual circuit (VC).</td>
</tr>
<tr>
<td>Router# show queueing custom</td>
<td>Displays the status of the CQ lists.</td>
</tr>
<tr>
<td>Router# show interfaces interface-type interface-number</td>
<td>Displays the current status of the custom output queues when CQ is enabled.</td>
</tr>
</tbody>
</table>

Custom Queueing Configuration Examples

Example Custom Queue List Defined

The following example illustrates how to assign custom queue list number 3 to serial interface 0:

```
interface serial 0
custom-queue-list 3
```

Examples Maximum Specified Size of the Custom Queues

The following example specifies the maximum number of packets allowed in each custom queue. The queue length of queue 10 is increased from the default 20 packets to 40 packets.

```
queue-list 3 queue 10 limit 40
```

The queue length limit is the maximum number of packets that can be enqueued at any time, with the range being from 0 to 32767 queue entries.
The following example decreases queue list 9 from the default byte count of 1500 to 1400 for queue number 10:

```
queue-list 9 queue 10 byte-count 1400
```

The byte count establishes the lowest number of bytes the system allows to be delivered from a given queue during a particular cycle.

Examples Packets Assigned to Custom Queues

The following examples assign packets to custom queues by either protocol type or interface type, and the default assignment for unmatched packets.

Protocol Type

The following example assigns traffic that matches IP access list 10 to queue number 1:

```
queue-list 1 protocol ip 1 list 10
```

The following example assigns Telnet packets to queue number 2:

```
queue-list 4 protocol ip 2 tcp 23
```

The following example assigns User Datagram Protocol (UDP) Domain Name Service (DNS) packets to queue number 3:

```
queue-list 4 protocol ip 3 udp 53
```

Interface Type

In this example, queue list 4 establishes queueing priorities for packets entering on serial interface 0. The queue number assigned is 10.

```
queue-list 4 interface serial 0 10
```

Default Queue

You can specify a default queue for packets that do not match other assignment rules. In this example, the default queue for list 10 is set to queue number 2:

```
queue-list 10 default 2
```
CHAPTER 9

QoS Hierarchical Queueing for Ethernet DSLAMs

This feature module describes how to configure quality of service (QoS) hierarchical queueing policy maps on sessions and subinterfaces in Ethernet Digital Subscriber Line Access Multiplexer (E-DSLAM) applications on a Cisco ASR 1000 series router. The QoS Hierarchical Queueing for Ethernet DSLAMs feature supports IEEE 802.1 QinQ VLAN tag termination to configure inner VLAN identifiers on E-DSLAMs.

- Finding Feature Information, on page 61
- Prerequisites for QoS Hierarchical Queueing for Ethernet DSLAMs, on page 61
- Restrictions for QoS Hierarchical Queueing for Ethernet DSLAMs, on page 62
- Information About QoS Hierarchical Queueing for Ethernet DSLAMs, on page 62
- How to Configure QoS Hierarchical Queueing for Ethernet DSLAMs, on page 64
- Configuration Examples for QoS Hierarchical Queueing for Ethernet DSLAMs, on page 71
- Additional References, on page 77
- Feature Information for QoS Hierarchical Queueing for Ethernet DSLAMs, on page 78

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for QoS Hierarchical Queueing for Ethernet DSLAMs

You must configure traffic classes using the class-map command.
Restrictions for QoS Hierarchical Queueing for Ethernet DSLAMs

This feature is not supported in combination with load balancing when a session service policy is routed to a Layer 2 Tunnel Protocol (L2TP) tunnel. Do not configure load balancing on an L2TP tunnel if per-session queueing is enabled.

Information About QoS Hierarchical Queueing for Ethernet DSLAMs

Different Levels of QoS Provisioning

Traffic downstream from a Broadband Router Access Server (BRAS) requires different levels of QoS provisioning (for example, traffic shaping) depending on the network architecture between the BRAS and the subscriber. The figure below illustrates an Ethernet DSL access network. The sample network includes multiple entities where QoS provisioning is required for different reasons.

Figure 3: Ethernet DSL Access Network
The following entities may require different traffic shaping:

- A VLAN that is shaped to a certain aggregate traffic rate to limit the traffic to a group of subscribers (different 802.1Q interfaces in the figure above).
- Individual sessions that is shaped with certain QoS services for different classes of traffic (individual PCs in the figure above).

Integrated Queueing Hierarchy

Different traffic shaping requirements result in QoS provisioning at multiple levels at the same time. The QoS Hierarchical Queueing for Ethernet DSLAMs feature provides the ability to form one integrated queueing hierarchy that provides QoS provisioning at multiple levels with support for features such as bandwidth distribution at any of these levels.

The integrated queueing hierarchy is formed on the physical interface. When a service policy is instantiated on a session, the Subscriber Service Switch (SSS) infrastructure invokes the MQC and a common queueing control plane sets up and enables the queueing features.

Session-to-interface associations are resolved to determine the physical interface on which to form the integrated queueing hierarchy for all levels of QoS provisioning. As subinterface session-based policies are added, the respective queues are created and integrated into the queueing hierarchy.

When a subinterface is provisioned followed by session-based policy provisioning, the integrated queueing hierarchy is formed on top of the physical interface as a result of queueing policies provisioned at two different levels. When a session is provisioned before subinterface-based policy provisioning, the queueing hierarchy has a placeholder logical level between the physical queue and the session queue. The placeholder queue becomes the default queue at that level, and all other sessions are parented to that queue.

Configuration Guidelines for Hierarchical Queueing on Ethernet DSLAMs

When configuring the QoS Hierarchical Queueing for Ethernet DSLAMs feature, note the following guidelines:

- An individual subscriber is always identified by a PPP or IP session. A group of subscribers is identified by a particular VLAN by means of the outer tag ISP, E-DSLAM, or user-facing provider edge (U-PE).
- When a subinterface is used to aggregate a number of sessions with queueing policies, a queueing policy at a subinterface level must be a one-level policy map that is configured as class-default with only the shape and bandwidth remaining ratio feature enabled.
- Both subinterfaces and sessions can be oversubscribed and controlled by shaper and bandwidth remaining ratio.
How to Configure QoS Hierarchical Queueing for Ethernet DSLAMs

Configuring and Applying QoS Hierarchical Queueing Policy Maps to Sessions

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class class-map-name
5. bandwidth \{bandwidth-kbps | percent| remaining\}
6. precedence precedence min-threshold max-threshold mark-probability-denominator
7. set cos cos-value
8. exit
9. exit
10. policy-map policy-map-name
11. class class-default
12. shape average cir
13. bandwidth remaining ratio ratio
14. service-policy policy-map-name
15. exit
16. exit
17. interface virtual-template number
18. service-policy output policy-map-name
19. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>policy-map policy-map-name</td>
<td>Creates a child policy and enters policy-map configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter the policy-map name.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router(config)# policy-map session_a_child</td>
<td>Configures the traffic class that you specify and enters policy-map class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>class class-map-name</td>
<td>Configures the traffic class that you specify and enters policy-map class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter the name of a previously configured class map.</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap)# class voip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Enables class-based weighted fair queuing based on the keywords and arguments specified, as described below.</td>
<td></td>
</tr>
<tr>
<td>bandwidth {bandwidth-kbps</td>
<td>percentpercentage</td>
<td>remainingpercentpercentage}</td>
</tr>
<tr>
<td>Example:</td>
<td>• percent percentage--Specifies the minimum percentage of the link bandwidth allocated for a class belonging to a policy map. Valid values are from 1 to 99.</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# bandwidth 10000</td>
<td>• remaining percent percentage--Specifies the minimum percentage of unused link bandwidth allocated for a class belonging to a policy map. Valid values are from 1 to 99.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Configures a precedence level for the traffic class based on the arguments specified, as described below.</td>
<td></td>
</tr>
<tr>
<td>precedence precedence min-threshold max-threshold mark-probability-denominator</td>
<td>• precedence--Specifies the IP precedence number. Valid values are from 0 to 7.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• min-threshold--Specifies the minimum threshold in number of packets. Valid values are from 1 to 4096.</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# precedence 0 32 256 100</td>
<td>• max-threshold--Specifies the maximum threshold in number of packets. Valid values are from the minimum threshold to 4096.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mark-probability-denominator--Specifies the denominator for the fraction of packets dropped when the average queue depth is equal to the maximum threshold. For example, if the denominator is 512, 1 out of every 512 packets is dropped when the average queue is at the maximum threshold. Valid values are from 1 to 65536. The default value is 10 (1 out of every 10 packets is dropped at the maximum threshold).</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td><code>set cos cos-value</code></td>
<td>(Optional) Sets the Layer 2 class of service (CoS) value of an outgoing packet.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-pmap-c)# set cos 1</code></td>
<td>• Enter the IEEE 802.1Q CoS value from 0 to 7.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Use the <code>set cos</code> command only in service policies that are attached to the output direction of an interface; packets that enter an interface cannot be set with a CoS value. You can configure a CoS value on an Ethernet interface that is configured for 802.1Q or on a virtual access interface that is using an 802.1Q interface.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits policy-map class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-pmap-c)# exit</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits policy-map configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-pmap)# exit</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td><code>policy-map policy-map-name</code></td>
<td>Creates a parent policy and enters policy-map configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# policy-map session_a_parent</code></td>
<td>• Enter the policy-map name.</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td><code>class class-default</code></td>
<td>Configures the traffic class as class-default and enters policy-map class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-pmap)# class class-default</code></td>
<td>• Do not configure any other traffic class.</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td><code>shape average cir</code></td>
<td>Specifies average-rate traffic shaping for all traffic that does not match any other traffic class.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-pmap-c)# shape average 10000000</code></td>
<td>• Enter the <code>average</code> keyword followed by the committed information rate (CIR), in bits per second (bps).</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td><code>bandwidth remaining ratio ratio</code></td>
<td>Specifies the weight (ratio) for the subinterface.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| `Router(config-pmap-c)# bandwidth remaining ratio 10` | • Enter the relative weight of this subinterface (or class queue). This number (ratio) indicates the proportional relationship between the other subinterfaces or class queues.
Purpose

Command or Action	**Purpose**
Step 14 | Applies the child policy map to the parent class-default class.

- Example:

  ```
  Router(config-pmap-c)# service-policy session_a_child
  ```

Step 15 | Exits policy-map class configuration mode.

- Example:

  ```
  Router(config-pmap-c)# exit
  ```

Step 16 | Exits policy-map configuration mode.

- Example:

  ```
  Router(config-pmap)# exit
  ```

Step 17 | Creates a virtual template and enters interface configuration mode.

- Example:

  ```
  Router(config)# interface virtual-template 1
  ```

Step 18 | Applies the service policy to the virtual interface.

- Example:

  ```
  Router(config-if)# service-policy output session_a_parent
  ```

 Note You must specify the output keyword to apply the service policy to outbound traffic on the interface.

Step 19 | (Optional) Returns to privileged EXEC mode.

- Example:

  ```
  Router(config-if)# end
  ```

Examples

The following is an example of how to configure and apply a QoS hierarchical queueing policy map to PPP/IP sessions by using a virtual template:

```
Router> enable
Router# configure terminal
Router(config)# policy-map session_a_child
Router(config-pmap)# class voip
Router(config-pmap-c)# police 1000000
Router(config-pmap-c)# priority level 1
Router(config-pmap-c)# exit
Router(config-pmap)# class video
```
Configuring and Applying QoS Hierarchical Queueing Policy Maps to Subinterfaces

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class class-default
5. shape average cir
6. exit
7. exit
8. interface type slot/subslot/port.subinterface
9. encapsulation dot1q outer-vlan-id [second-dot1q inner-vlan-id]
10. service-policy output policy-map-name
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 3 | policy-map policy-map-name | Creates a policy map and enters policy-map configuration mode.
Example:
Router(config)# policy-map subint_1 |
| 4 | class class-default | Configures the traffic class as class-default and enters policy-map class configuration mode. Do not configure any other traffic class.
Example:
Router(config-pmap)# class class-default |
| 5 | shape average cir | Specifies average-rate traffic shaping for all traffic that does not match any other traffic class.
Example:
Router(config-pmap-c)# shape average 10000000 |
| 6 | exit | Exits policy-map class configuration mode.
Example:
Router(config-pmap-c)# exit |
| 7 | exit | Exits policy-map configuration mode.
Example:
Router(config-pmap)# exit |
| 8 | interface type slot/subslot/port,subinterface | Specifies the subinterface on which you are attaching the policy map and enters subinterface configuration mode.
Example:
Router(config)# interface GigabitEthernet3/1/1.1 |
| 9 | encapsulation dot1q outer-vlan-id [second-dot1q inner-vlan-id] | Enables IEEE 802.1Q encapsulation of traffic on the subinterface.
Example:
Router(config-subif)# encapsulation dot1q 100 |

Note: When a subinterface aggregates a number of sessions with queueing policies, a queueing policy at a subinterface level must be a one-level policy map configured as class-default.

Note: When a subinterface aggregates a number of sessions with queueing policies, a queueing policy at a subinterface level must be a one-level policy map with only the shape feature enabled.

Note: The second-dot1q keyword supports the IEEE 802.1 QinQ VLAN Tag Termination feature to configure an inner VLAN ID.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• outer-vlan-id--The outer VLAN identifier. The range is from 1 to 4095.</td>
<td></td>
</tr>
<tr>
<td>• inner-vlan-id--The inner VLAN identifier. The range is from 1 to 4095.</td>
<td></td>
</tr>
</tbody>
</table>

Step 10

```
service-policy output policy-map-name
```

Example:
```
Router(config-subif)# service-policy output subint_1
```

Attaches the service policy to the subinterface.

- **policy-map-name**--The name of the previously configured policy map.

Note You must specify the output keyword to apply the service policy to outbound traffic on the subinterface.

Step 11

```
end
```

Example:
```
Router(config-subif)# end
```

(Optional) Returns to privileged EXEC mode.

Examples

The following is an example of how to configure and apply a QoS hierarchical queueing policy map to a subinterface (and provide aggregate shaping for a large number of subscribers):

```
Router> enable
Router# configure terminal
Router(config)# policy-map subint_1
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 10000000
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface GigabitEthernet3/1/1.1
Router(config-subif)# encapsulation dot1q 100
Router(config-subif)# service-policy output subint_1
Router(config-subif)# end
```

Displaying Policy-Map Information for Hierarchical Queueing

SUMMARY STEPS

1. enable
2. show policy-map
3. show policy-map interface type number
4. show policy-map session
5. exit
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 show policy-map</td>
<td>(Optional) Displays all information for all class maps.</td>
</tr>
<tr>
<td>Example: Router# show policy-map</td>
<td></td>
</tr>
<tr>
<td>Step 3 show policy-map interface type number</td>
<td>(Optional) Displays the packet statistics of all classes that are configured for all service policies either on the specified interface or subinterface or on a specific PVC on the interface.</td>
</tr>
<tr>
<td>Example: Router# show policy-map interface GigabitEthernet4/0/0.1</td>
<td>- Enter the interface type and number.</td>
</tr>
<tr>
<td>Step 4 show policy-map session</td>
<td>(Optional) Displays the QoS policy map in effect for the SSS session.</td>
</tr>
<tr>
<td>Example: Router# show policy-map session</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>(Optional) Exits privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# exit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for QoS Hierarchical Queueing for Ethernet DSLAMs

Example Policy Maps on VLANs or QinQ Subinterfaces

The following example shows how to configure and apply QoS hierarchical queueing policy maps on VLANs or QinQ subinterfaces. A child queueing policy is applied to each parent subscriber line level policy. In this example, the policy maps are applied to create subscriber groups on subinterfaces.

```
Router> enable
Router# configure terminal
Router(config)# policy-map service_a_out
Router(config-pmap)# class voip
Router(config-pmap-c)# priority
Router(config-pmap-c)# police cir percent 20 bc 300 ms pir percent 40
Router(config-pmap-c)# set cos 1
```
Example Policy Maps on VLANs or QinQ Subinterfaces

Router(config-pmap-c)# exit
Router(config-pmap)# class video
Router(config-pmap-c)# police cir percent 20 bc 300 ms pir 40
Router(config-pmap-c)# set cos 2
Router(config-pmap-c)# exit
Router(config-pmap)# class gaming
Router(config-pmap-c)# bandwidth remaining percent 80
Router(config-pmap-c)# set cos 3
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining percent 20
Router(config-pmap-c)# set cos 4
Router(config-pmap-c)# exit
Router(config-pmap)# exit

Router(config)# policy-map service_z_out
Router(config-pmap)# exit

Router(config)# policy-map rate_1_service_a_in
Router(config-pmap)# class voip
Router(config-pmap-c)# police cir percent 25 4 ms 1 ms
Router(config-pmap-c)# exit
Router(config-pmap)# class gaming
Router(config-pmap-c)# police cir percent 50 2 ms 1 ms
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# police percent 20 bc 300 ms pir 40
Router(config-pmap-c)# exit
Router(config-pmap)# exit

Router(config)# policy-map rate_x_service_z_in
Router(config-pmap)# exit

Router(config)# policy-map rate_x_service_z_out
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining ratio 10
Router(config-pmap-c)# shape average 100000
Router(config-pmap-c)# service policy service_a_out
Router(config-pmap-c)# exit
Router(config-pmap)# exit

Router(config)# interface GigabitEthernet1/0/0.1
Router(config-subif)# encapsulation dot1q 5 second dot1q 20
Router(config-subif)# service-policy output rate_1_service_a_out
Router(config-subif)# service-policy input rate_1_service_a_in
Router(config-subif)# exit
Router(config)# interface GigabitEthernet1/0/0.2
Router(config-subif)# encapsulation dot1q 5 second dot1q 25
Router(config-subif)# service-policy output rate_x_service_z_out
Router(config-subif)# service-policy input rate_x_service_z_in
Router(config-subif)# end
Example Policy Maps on VLANs with Arbitrary QinQ

The following example shows how to configure and apply QoS hierarchical queueing policy maps on VLANs with subscriber lines grouped by arbitrary QinQ. A child queueing policy is applied to each parent subscriber line level policy. This example includes the configuration of multiple class maps.

```
Router> enable
Router# configure terminal
Router(config)# class-map match-all user_1
Router(config-cmap)# match vlan 10
Router(config-cmap)# exit
Router(config)# class-map match-all user_2
Router(config-cmap)# match vlan 11
Router(config-cmap)# exit
Router(config)# class-map match-all user_3
Router(config-cmap)# match vlan 10
Router(config-cmap)# exit
Router(config)# class-map match-any user_4
Router(config-cmap)# match vlan 11
Router(config-cmap)# exit
Router(config)# class-map match-all user_n
Router(config-cmap)# exit
Router(config)# class-map match-any isp_A
Router(config-cmap)# match class user_1
Router(config-cmap)# match class user_2
Router(config-cmap)# exit
Router(config)# class-map match-any isp_Z
Router(config-cmap)# match class user_3
Router(config-cmap)# match class user_4
Router(config-cmap)# exit
!
Router(config)# policy-map service_a_out
Router(config-pmap)# class voip
Router(config-pmap-c)# priority
Router(config-pmap-c)# police cir percent 20 bc 300 ms pir percent 40
Router(config-pmap-c)# set cos 1
Router(config-pmap-c)# exit
Router(config-pmap)# class video
Router(config-pmap-c)# police cir percent 20 bc 300 ms pir percent 40
Router(config-pmap-c)# set cos 2
Router(config-pmap-c)# exit
Router(config-pmap)# class gaming
Router(config-pmap-c)# bandwidth remaining percent 80
Router(config-pmap-c)# set cos 3
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining percent 20
Router(config-pmap-c)# set cos 4
Router(config-pmap-c)# exit
Router(config-pmap)# exit
!
Router(config)# policy-map service_z_out
Router(config)# policy-map service_a_in
```
Example CPolicy Maps on Sessions

The following example shows how to configure and apply QoS hierarchical queueing policy maps on sessions. A child queueing policy is applied to each parent subscriber line level policy.
Router> enable
Router# configure terminal
Router(config)# policy-map service_a_out
Router(config-pmap)# class voip
Router(config-pmap-c)# priority
Router(config-pmap-c)# set cos 1
Router(config-pmap-c)# exit
Router(config-pmap)# class video
Router(config-pmap-c)# set cos 2
Router(config-pmap-c)# exit
Router(config-pmap)# class gaming
Router(config-pmap-c)# bandwidth remaining percent 80
Router(config-pmap-c)# set cos 3
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining percent 20
Router(config-pmap-c)# set cos 4
Router(config-pmap-c)# exit
Router(config-pmap)# exit
!
Router(config)# policy-map service_z_out
Router(config-pmap)# exit
!
Router(config)# policy-map rate_1_service_a_out
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining ratio 10
Router(config-pmap-c)# shape average 100000
Router(config-pmap-c)# service-policy service_a_out
Router(config-pmap-c)# exit
Router(config-pmap)# exit
!
Router(config)# policy-map rate_x_service_z_out
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining ratio 10
Router(config-pmap-c)# shape average 100000
Router(config-pmap-c)# service-policy service_z_out
Router(config-pmap-c)# exit
Router(config-pmap)# exit
!
Router(config)# policy-map rate_1_service_a_in
Router(config-pmap)# class voip
Router(config-pmap-c)# police cir percent 25 4 ms 1 ms
Router(config-pmap-c)# exit
Router(config-pmap)# class gaming
Router(config-pmap-c)# police cir percent 50 2 ms 1 ms
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# police cir percent 20 bc 300 ms pir precent 40
Router(config-pmap-c)# exit
Router(config-pmap)# exit
!
Router(config)# policy-map rate_x_service_z_in
Router(config-pmap)# exit
!
Router(config)# policy-map isp_A_out
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 100000
Router(config-pmap-c)# bandwidth remaining ratio 10
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# exit
Router(config)# policy-map isp_Z_out
Router(config-pmap)# exit
Example Policy Maps on Sessions with Aggregate Shaping

The following example shows how to configure and apply QoS hierarchical queueing policy maps on sessions with multiple PPP/IP sessions per subscriber line. In this example, the same policies are applied to all sessions using the same virtual interface.

Router> enable
Router# configure terminal
Router(config)# policy-map service_a_out
Router(config-pmap)# class voip
Router(config-pmap-c)# priority
Router(config-pmap-c)# police cir percent 25 4 ms 1 ms
Router(config-pmap-c)# set cos 1
Router(config-pmap-c)# exit
Router(config-pmap)# class video
Router(config-pmap-c)# police cir percent 30 5 ms 1 ms
Router(config-pmap-c)# set cos 2
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining percent 20
Router(config-pmap-c)# set cos 3
Router(config-pmap-c)# exit
Router(config-pmap)# exit
!
Router(config)# policy-map service_z_out
Router(config-pmap)# exit
!
Router(config)# policy-map rate_1_service_a_in
Router(config-pmap)# class voip
Router(config-pmap-c)# police cir percent 25 4 ms 1 ms
Router(config-pmap-c)# exit
Router(config-pmap)# class video
Router(config-pmap-c)# police cir percent 30 2 ms 1 ms
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# police cir percent 40 2 ms 1 ms
Router(config-pmap-c)# exit
Router(config-pmap-c)# exit
!
Router(config)# policy-map rate_x_service_z_in
Router(config-pmap)# exit
!
Router(config)# policy-map rate_1_service_a_out
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining ratio 10
Router(config-pmap-c)# shape average 100000
Router(config-pmap-c)# service policy service_a_out
Router(config-pmap-c)# exit
Router(config-pmap)# exit

Router(config)# policy-map rate_x_service_z_out
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining ratio 10
Router(config-pmap-c)# shape average 100000
Router(config-pmap-c)# service policy service_z_out
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface GigabitEthernet1/0/0
Router(config-if)# encapsulation dot1q 1
Router(config-if)# service-policy output isp_A_out
Router(config-if)# exit
Router(config)# interface GigabitEthernet2/0/0
Router(config-if)# encapsulation dot1q 2
Router(config-if)# service-policy output isp_Z_out
Router(config-if)# end

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>Traffic shaping</td>
<td>"Regulating Traffic Flow Using Traffic Shaping" module</td>
</tr>
<tr>
<td>MQC</td>
<td>"Applying QoS Features Using the MQC" module</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE Software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for QoS Hierarchical Queueing for Ethernet DSLAMs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.

To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 6: Feature Information for QoS Hierarchical Queueing for Ethernet DSLAMs

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Hierarchical Queueing for Ethernet DSLAMs</td>
<td>Cisco IOS XE Release 2.4</td>
<td>This feature module describes how to configure QoS hierarchical queueing policy maps on sessions and subinterfaces in Ethernet Digital Subscriber Line Access Multiplexer (E-DSLAM) applications. This feature was implemented on Cisco ASR 1000 Series Routers.</td>
</tr>
</tbody>
</table>
CHAPTER 10

QoS Hierarchical Queueing for ATM DSLAMs

This feature module describes how to configure quality of service (QoS) hierarchical queueing policy maps on sessions and ATM VCs in ATM Digital Subscriber Line Access Multiplexer (A-DSLAM) applications on a Cisco ASR 1000 Series Aggregation Services Router.

- Finding Feature Information, on page 79
- Prerequisites for QoS Hierarchical Queueing for ATM DSLAMs, on page 79
- Restrictions for QoS Hierarchical Queueing for ATM DSLAMs, on page 79
- Information About QoS Hierarchical Queueing for ATM DSLAMs, on page 80
- How to Configure QoS Hierarchical Queueing for ATM DSLAMs, on page 81
- Configuration Examples for QoS Hierarchical Queueing for ATM DSLAMs, on page 88
- Additional References, on page 89
- Feature Information for QoS Hierarchical Queueing for ATM DSLAMs, on page 90

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for QoS Hierarchical Queueing for ATM DSLAMs

You must configure traffic classes using the class-map command.

Restrictions for QoS Hierarchical Queueing for ATM DSLAMs

The QoS Hierarchical Queueing for ATM DSLAMs feature is not supported in combination with load balancing when a session service policy is routed to a Layer 2 Tunnel Protocol (L2TP) tunnel. This feature is supported only with shaped ATM VCs, which means ATM VCs that are defined as constant bit rate (CBR), Variable bit rate (VBR) or shaped unspecified bit rate (UBR), (that is, UBR with a peak cell rate).
Information About QoS Hierarchical Queueing for ATM DSLAMs

Different Levels of QoS Provisioning

Traffic downstream from a Broadband Router Access Server (BRAS) requires different levels of QoS provisioning (for example, traffic shaping) depending on the network architecture between the BRAS and the subscriber. The figure below illustrates an ATM DSL access network. The sample network includes multiple entities where QoS provisioning is required for different reasons.

Figure 4: ATM DSL Access Network

Integrated Queueing Hierarchy

Different traffic shaping requirements result in QoS provisioning at multiple levels at the same time. The QoS-Hierarchical Queueing for ATM DSLAMs feature provides the ability to form one integrated queueing hierarchy that provides QoS provisioning at multiple levels with support for features such as bandwidth distribution at any of these levels.

The integrated queueing hierarchy is formed on the physical interface. When a service policy is instantiated on a session, the Subscriber Service Switch (SSS) infrastructure invokes the Modular QoS CLI (MQC) and a common queueing control plane sets up and enables the queueing features.

Session-to-ATM associations are resolved to determine the ATM VC on which the session QoS queues are built. QoS policies consisting of a shaper may also be applied simultaneously at the VC level.

Configuration Guidelines for Hierarchical Queueing on ATM DSLAMs

When configuring the QoS Hierarchical Queueing for ATM DSLAMs feature, note the following guidelines:

- When an ATM VC is used to aggregate a number of sessions with queueing policies, a queueing policy at an ATM VC level must be a one-level policy map that is configured as class-default with only the shape feature enabled.

- Both ATM VCs and sessions can be oversubscribed and controlled by shapers.
How to Configure QoS Hierarchical Queueing for ATM DSLAMs

Configuring and Applying QoS Hierarchical Queueing Policy Maps to Sessions

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class class-map-name
5. bandwidth \(\text{bandwidth-kbps} \ | \text{percent} \ | \text{remaining} \text{percent}\)
6. exit
7. exit
8. policy-map policy-map-name
9. class class-default
10. shape average \(\text{cir} \ | \text{percent}\)
11. bandwidth remaining ratio ratio
12. service-policy output policy-map-name
13. exit
14. exit
15. interface virtual-template number
16. service-policy output policy-map-name
17. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
Example:
Router> enable |
| Step 2 | configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| Step 3 | policy-map policy-map-name | Creates a child policy and enters policy-map configuration mode.
Example:
Router(config)# policy-map session-a-child |
| Step 4 | class class-map-name | Configures the traffic class that you specify and enters policy-map class configuration mode.
Example: |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-pmap)# class voip</td>
<td>• Enter the name of a previously configured class map.</td>
</tr>
</tbody>
</table>

Step 5

bandwidth \{**bandwidth-kbps | percent|remaining(percent)**\}

Example:

Router(config-pmap-c)# bandwidth 10000

Example:

(Optional) Enables class-based weighted fair queueing based on the keywords and arguments specified.

• **bandwidth-kbps**--Specifies the minimum bandwidth allocated for a class belonging to a policy map. Valid values are from 1 to 2,000,000.

• **percent**--Specifies the minimum percentage of the link bandwidth allocated for a class belonging to a policy map. Valid values are from 1 to 100.

• **remaining percent**--Specifies the minimum percentage of unused link bandwidth allocated for a class belonging to a policy map. Valid values are from 1 to 99.

Step 6

exit

Example:

Router(config-pmap-c)# exit

Exits policy-map class configuration mode.

Step 7

exit

Example:

Router(config-pmap)# exit

Exits policy-map configuration mode.

Step 8

policy-map *policy-map-name*

Example:

Router(config)# policy-map session_a_parent

Creates a parent policy and enters policy-map configuration mode.

• Enter the policy-map name.

Step 9

class *class-default*

Example:

Router(config-pmap)# class class-default

Configures the traffic class as class-default and enters policy-map class configuration mode.

Note Do not configure any other traffic class.

Step 10

shape average \{**cir | percent**\}

Example:

Router(config-pmap-c)# shape average 10000000

Specifies average-rate traffic shaping for all traffic that does not match any other traffic class.

• Enter the **average** keyword followed by the committed information rate (CIR), in bits per second (bps), or enter the **average** keyword followed by **percentage** keyword to specify a percentage of the interface bandwidth for the CIR. Valid values are from 1 to 100.
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td><code>bandwidth remaining ratio ratio</code></td>
<td>Specifies the weight (ratio) for the ATM VC.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pmap-c)# bandwidth remaining ratio 10</code></td>
<td><code>Router(config-pmap-c)# bandwidth remaining ratio 10</code></td>
</tr>
<tr>
<td>12</td>
<td><code>service-policy policy-map-name</code></td>
<td>Applies the child policy map to the parent class-default class.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pmap-c)# service-policy session-a-child</code></td>
<td><code>Router(config-pmap-c)# service-policy session-a-child</code></td>
</tr>
<tr>
<td>13</td>
<td><code>exit</code></td>
<td>Exits policy-map class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pmap-c)# exit</code></td>
<td><code>Router(config-pmap-c)# exit</code></td>
</tr>
<tr>
<td>14</td>
<td><code>exit</code></td>
<td>Exits policy-map configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pmap-c)# exit</code></td>
<td><code>Router(config-pmap-c)# exit</code></td>
</tr>
<tr>
<td>15</td>
<td><code>interface virtual-template number</code></td>
<td>Creates a virtual template and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface virtual-template 1</code></td>
<td><code>Router(config)# interface virtual-template 1</code></td>
</tr>
<tr>
<td>16</td>
<td><code>service-policy output policy-map-name</code></td>
<td>Applies the service policy to the virtual interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# service-policy output session_a_parent</code></td>
<td><code>Router(config-if)# service-policy output session_a_parent</code></td>
</tr>
</tbody>
</table>

Note

You must specify the output keyword to apply the service policy to outbound traffic on the interface.

17	`end`	(Optional) Returns to privileged EXEC mode.
	Example:	**Example:**
	`Router(config-if)# end`	`Router(config-if)# end`

Examples

The following is an example of how to configure and apply a QoS hierarchical queueing policy map to PPP/IP sessions by using a virtual template:
Configuring and Applying QoS Hierarchical Queueing Policy Maps to ATM VCs

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class class-default
5. shape average {cir | percent | percentage}
6. exit
7. exit
8. interface type slot/subslot/port/subinterface
9. pvc [name] vpi/vci [ces | ilmi | qsaal | smds | l2transport]
10. vbr-nrt peak-cell-rate average-cell-rate
11. service-policy output policy-map-name
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Command or Action

Example:

- `Router> enable`

<table>
<thead>
<tr>
<th>Step 2</th>
<th>configure terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router# configure terminal</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>policy-map policy-map-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config)# policy-map subint-1</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>class class-default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-pmap)# class class-default</code></td>
</tr>
</tbody>
</table>

Note When an ATM VC aggregates a number of sessions with queueing policies, a queueing policy at an ATM VC level must be a one-level policy map with only the shape feature enabled.

| Step 5 | shape average {cir|percent}percentage |
|--------|-------------------------------------|
| **Example:** | `Router(config-pmap-c)# shape average 10000000` |

Note When an ATM VC aggregates a number of sessions with queueing policies, a queueing policy at an ATM VC level must be a one-level policy map with only the shape feature enabled.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-pmap-c)# exit</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-pmap)# exit</code></td>
</tr>
</tbody>
</table>
Purpose

- **Command or Action**: interface type slot/subslot/port.subinterface
- **Example**: `Router(config)# interface ATM 3/1/1.1`

Step 8

Specifies the ATM VC on which you are attaching the policy map and enters ATM VC configuration mode.

- Enter the interface type and slot number, subslot number, port number, and ATM VC number.

Purpose

- **Command or Action**: `vbr-nrt peak-cell-rate average-cell-rate`
- **Example**: `Router(config-if-atm-vc)# vbr-nrt 800000 800000`

Step 10

Sets the VC type to VBR with a peak and average cell rate.

Purpose

- **Command or Action**: `service-policy output policy-map-name`
- **Example**: `Router(config-subif)# service-policy output subint-1`

Step 11

Attaches the service policy to the ATM VC.

- policy-map-name--The name of the previously configured policy map.

Note

You must specify the output keyword to apply the service policy to outbound traffic on the ATM VC.

Purpose

- **Command or Action**: `end`
- **Example**: `Router(config-subif)# end`

Step 12

(Optional) Returns to privileged EXEC mode.

Examples

The following is an example of how to configure and apply a QoS hierarchical queueing policy map to an ATM VC (and provide aggregate shaping for a large number of subscribers):

```
Router> enable
Router# configure terminal
Router(config)# policy-map subint-1
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 10000000
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface ATM 3/1/1.1
Router(config-if-atm-vc)# pvc 2/100
Router (config-if-atm-vc)## vbr-nrt 800000 800000
Router(config-subif)# service-policy output subint-1
Router(config-subif)# end
```
Displaying Policy-Map Information for Hierarchical Queueing

SUMMARY STEPS

1. `enable`
2. `show policy-map`
3. `show policy-map interface type number`
4. `show policy-map session`
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>(Optional) Displays all information for all class maps.</td>
</tr>
<tr>
<td>show policy-map</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show policy-map</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) Displays the packet statistics of all classes that are configured for all service policies either on the specified interface or ATM VC or on a specific PVC on the interface.</td>
</tr>
<tr>
<td>show policy-map interface type number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show policy-map interface ATM 4/0/0.1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Displays the QoS policy map in effect for the SSS session.</td>
</tr>
<tr>
<td>show policy-map session</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show policy-map session</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Exits privileged EXEC mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for QoS Hierarchical Queueing for ATM DSLAMs

Example Policy Maps on Sessions

The following example shows how to configure and apply QoS hierarchical queueing policy maps on sessions. A child queueing policy is applied to each parent subscriber line level policy.

```
Router> enable
Router# configure terminal
Router(config)# policy-map service-a-out
Router(config-pmap)# class voip
Router(config-pmap-c)# priority
Router(config-pmap-c)# set cos 1
Router(config-pmap-c)# exit
Router(config-pmap)# class video
Router(config-pmap-c)# set cos 2
Router(config-pmap-c)# exit
Router(config-pmap)# class gaming
Router(config-pmap-c)# bandwidth remaining percent 80
Router(config-pmap-c)# set cos 3
Router(config-pmap-c)# exit
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining percent 20
Router(config-pmap-c)# set cos 4
Router(config-pmap-c)# exit
Router(config-pmap)= exit

Router(config)# policy-map rate-1-service-a-out
Router(config-pmap)# class class-default
Router(config-pmap-c)# bandwidth remaining ratio 10
Router(config-pmap-c)# shape average 100000
Router(config-pmap-c)# service-policy service-a-out
Router(config-pmap-c)= exit
Router(config-pmap)= exit

Router(config)# interface virtual-template 20
Router(config-if)# service-policy output rate-1-service-a-out
Router(config-if)# service-policy input rate-1-service-a-in
Router(config-if)= end
```
Example Policy Maps on Sessions with Aggregate Shaping

The following example shows how to configure and apply QoS hierarchical queueing policy maps on sessions with multiple PPP/IP sessions per subscriber line. In this example, queueing is configured as in previous example. The VC is configured as follows:

```bash
Router(config)# policy-map isp_A_out
Router(config-pmap)# class class-default
Router(config-pmap-c)# shape average 500000
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface ATM 1/0/0.1
Router(config-subif)# pvc 10/100
Router(config-if-atm-vc)# vbr-nrt 800000 800000
Router(config-if-atm-vc)# service-policy output isp-A-out
Router(config-if-atm-vc)# exit
Router(config-subif)# exit
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>Traffic shaping</td>
<td>"Regulating Traffic Flow Using Traffic Shaping" module</td>
</tr>
<tr>
<td>MQC</td>
<td>"Applying QoS Features Using the MQC" module</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE Software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for QoS Hierarchical Queueing for ATM DSLAMs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Hierarchical Queueing for ATM DSLAMs</td>
<td>Cisco IOS XE Release 2.4 Cisco IOS XE Release 2.5</td>
<td>This feature module describes how to configure QoS hierarchical queueing policy maps on sessions and ATM VCs in ATM Digital Subscriber Line Access Multiplexer (A-DSLAM) applications. This feature was implemented on Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
</tbody>
</table>
Per-Flow Admission

The Per-Flow Admission feature provides explicit controls to limit packet flow into a WAN edge in order to protect already admitted flows on the routing/WAN edge.

- Finding Feature Information, on page 91
- Prerequisites for Per-Flow Admission, on page 91
- Restrictions for Per-Flow Admission, on page 91
- Information About Per-Flow Admission, on page 92
- How to Configure Per-Flow Admission, on page 92
- Configuration Examples for Per-Flow Admission, on page 99
- Additional References for Per-Flow Admission, on page 101
- Feature Information for Per-Flow Admission, on page 101

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Per-Flow Admission

A class must have bandwidth or priority defined before configuring the Per-Flow Admission feature.

Restrictions for Per-Flow Admission

Per-flow admission is currently supported only on Ethernet and serial interfaces, and Dynamic Multipoint Virtual Private Network (DMVPN) tunnels.
Information About Per-Flow Admission

Overview of Per-Flow Admission

Application (mainly voice and video) quality drops when they are connected from a branch to head quarters and data centers over a WAN because the WAN interface bandwidth is limited and always comes at a premium cost. There are no well-defined controls to restrict flows through a WAN link and no explicit controls to limit the flows to protect already admitted flows. This limitation leads to quality degradation of already admitted flows.

The Per-Flow Admission feature allows operators to understand the number of flows that can be accommodated into an interface without quality degradation. In most deployments, the N+1st flow affects the quality of all existing valid first N flows. The Per-Flow Admission feature enables nodes to automatically learn about flows and their bandwidth as they get accommodated into the interface where bandwidth is at a premium. The network node accommodates only flows that the interface can handle, and it drops flows thereafter.

Benefits of Per-Flow Admission

The following are benefits of integrating the Per-Flow Admission feature to Quality of Service (QoS):

- Makes QoS networks more predictable and robust.
- Requires no end-to-end coordination because per-flow admission is a per-hop decision and each hop makes decision independently.
- Does not require the source to predict the flow rate.
- Ensures a higher probability of getting a reservation in the network.
- Works well with rate adaption because certain parts of the flow may be elastic.
- Promotes better selection of admitted traffic.
- Works at the IP layer.
- Works transparently with other network technologies such as Network Address Translation (NAT).
- Does not allow the source to hog the network.
- Provides benefits for certain endpoints by selecting only certain parts of the flow as admitted.

How to Configure Per-Flow Admission

Configuring a Class Map

SUMMARY STEPS

1. enable
2. configure terminal
3. metadata flow
4. class-map [match-all | match-any] class-map-name
5. exit
6. class-map [match-all | match-any] class-map-name
7. **match dscp** *dscp-value*
8. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 metadata flow</td>
<td>Enables metadata on all interfaces.</td>
</tr>
<tr>
<td>Example: Device(config)# metadata flow</td>
<td></td>
</tr>
<tr>
<td>Step 4 class-map [match-all</td>
<td>match-any] class-map-name</td>
</tr>
<tr>
<td>Example: Device(config)# class-map match-all admitted</td>
<td>• Enter the class map name.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits the class-map configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-cmap)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 class-map [match-all</td>
<td>match-any] class-map-name</td>
</tr>
<tr>
<td>Example: Device(config-cmap)# class-map match-all af4</td>
<td>• Enter the class map name.</td>
</tr>
<tr>
<td>Step 7 match dscp dscp-value</td>
<td>Identifies a specific IP Differentiated Services Code Point (DSCP) value as a match criterion.</td>
</tr>
<tr>
<td>Example: Device(config-cmap)# match dscp af41 af42 af43</td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Exits class-map configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-cmap)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Child Policy Map

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class {class-name | class-default}
5. set dscp dscp-value
6. class {class-name | class-default}
7. set dscp dscp-value
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>policy-map policy-map-name</td>
<td>Creates a policy map using the specified name and enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# policy-map child</td>
<td>• Enter the name of the policy map that you want to create.</td>
</tr>
<tr>
<td>Step 4</td>
<td>**class {class-name</td>
<td>class-default}**</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-pmap)# class admitted</td>
<td>• This class is associated with the class map created earlier.</td>
</tr>
<tr>
<td>Step 5</td>
<td>set dscp dscp-value</td>
<td>Sets the differentiated services code point (DSCP) value in the type of service (ToS) byte and assigns higher priority to admitted traffic by marking up the admitted flow and marking down the un-admitted flow.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-pmap-c)# set dscp af41</td>
<td>• Enter the DSCP value.</td>
</tr>
<tr>
<td>Step 6</td>
<td>**class {class-name</td>
<td>class-default}**</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-pmap-c)# class un-admitted</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enter the name of the class or enter the class-default keyword. This class will be matched against the match metadata cac status un-admitted command.</td>
<td></td>
</tr>
</tbody>
</table>

Step 7

set dscp dscp-value

Example:

```
Device(config-pmap-c)# set dscp af42
```

Sets the DSCP value in the ToS byte. Sets higher priority to admitted traffic by marking up the admitted flow and marking down the un-admitted flow.

• Enter the DSCP value.

Step 8

end

Example:

```
Device(config-pmap-c)# end
```

Exits policy-map class configuration mode and returns to privileged EXEC mode.

Configuring Per-Flow Admission for a Class

Before you begin

A class must have bandwidth or priority defined before configuring per-flow admission.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **policy-map policy-map-name**
4. **class {class-name | class-default}**
5. **bandwidth {kilobits | percent percentage}**
6. **admit cac local**
7. **rate {kbps | percent percentage}**
8. **flow rate fixed kbps flow-bit-rate**
9. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 enable
 Example:
 Device> enable |
 Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Step 2**
 configure terminal
 Example:
 Device# configure terminal |
 Enters global configuration mode. |
Command or Action

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>policy-map policy-map-name</td>
<td>Creates a policy map using the specified name and enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# policy-map test</td>
<td></td>
</tr>
</tbody>
</table>

- Enter the name of the policy map that you want to create.

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>class {class-name</td>
<td>class-default}</td>
</tr>
<tr>
<td>Example: Device(config-pmap)# class af4</td>
<td></td>
</tr>
</tbody>
</table>

- This class is associated with the class map created earlier.

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth {kilobits</td>
<td>percent percentage}</td>
</tr>
<tr>
<td>Example: Device(config-pmap-c)# bandwidth 200</td>
<td></td>
</tr>
</tbody>
</table>

- Enter the bandwidth in kbps.

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>admit cac local</td>
<td>Enables per-flow admission for this class and enters per-flow admission configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-pmap-c)# admit cac local</td>
<td></td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate {kbps</td>
<td>percent percentage}</td>
</tr>
<tr>
<td>Example: Device(config-pmap-admit-cac)# rate percent 80</td>
<td></td>
</tr>
</tbody>
</table>

Step 8

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>flow rate fixed kbps flow-bit-rate</td>
<td>Specifies how much bandwidth to allocate for each flow.</td>
</tr>
<tr>
<td>Example: Device(config-pmap-admit-cac)# flow rate fixed 100</td>
<td></td>
</tr>
</tbody>
</table>

Step 9

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Exits per-flow admission configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-pmap-admit-cac)# end</td>
<td></td>
</tr>
</tbody>
</table>

Attaching a Per-Flow Admission Policy to an Interface

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class {class-name | class-default}
5. `service-policy policy-map`
6. `end`
7. `configure terminal`
8. `interface type number`
9. `ip address ip-address mask`
10. `load-interval seconds`
11. `service-policy output policy-map-name`
12. `no shutdown`
13. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.
| | **Example:** | • Enter your password if prompted. |
| | `Device> enable` | |
| 2 | `configure terminal` | Enters global configuration mode. |
| | **Example:** | |
| | `Device# configure terminal` | |
| 3 | `policy-map policy-map-name` | Creates a policy map using the specified name and enters policy-map configuration mode.
| | **Example:** | • Enter the name of the policy map that you want to create. |
| | `Device(config)# policy-map test` | |
| 4 | `class {class-name | class-default}` | Specifies the name of the class whose policy you want to create and enters policy-map class configuration mode.
| | **Example:** | • This class is associated with the class map created earlier. |
| | `Device(config-pmap)# class af4` | |
| 5 | `service-policy policy-map` |Attaches the policy map to a class. |
| | **Example:** | |
| | `Device(config-pmap-c)# service-policy child` | |
| 6 | `end` | Exits policy-map class configuration mode and returns to privileged EXEC mode. |
| | **Example:** | |
| | `Device(config-pmap-c)# end` | |
| 7 | `configure terminal` | Enters global configuration mode. |
| | **Example:** | |
| | `Device# configure terminal` | |
Verifying Per-flow Admission

SUMMARY STEPS

1. `enable`
2. `show policy-map interface interface-name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Purpose Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td><code>interface type number</code></td>
<td>Configures the specified interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter the interface type and number.</td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# interface Serial2/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>ip address ip-address mask</code></td>
<td>Sets an IP address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# ip address 10.10.100.1 255.255.255.0</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>load-interval seconds</code></td>
<td>Specifies the interval for load calculation of an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# load-interval 30</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td><code>service-policy output policy-map-name</code></td>
<td>Attaches a policy map to an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# service-policy output test</code></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td><code>no shutdown</code></td>
<td>Enables the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# no shutdown</code></td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td><code>end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Per-Flow Admission

Example: Configuring a Class Map

Device> enable
Device# configure terminal
Device(config)# metadata flow
Device(config)# class-map match-all admitted
Device(config-cmap)# match metadata cac status admitted
Device(config-cmap)# class-map match-all af4
Device(config-cmap)# match dscp af41 af42 af43
Device(config-cmap)# end

Example: Configuring a Policy Map

Device> enable
Device# configure terminal
Device(config)# policy-map child
Device(config-pmap)# class admitted
Device(config-pmap-c)# set dscp af41
Device(config-pmap-c)# class class-default
Device(config-pmap-c)# set dscp af42
Device(config-pmap-c)# end

Example: Configuring Per-Flow Admission for a Class

Device> enable
Device# configure terminal
Device(config)# policy-map test
Device(config-pmap)# class af4
Device(config-pmap-c)# bandwidth 200
Device(config-pmap-c)# admit cac local
Device(config-pmap-admit-cac)# rate percent 80
Device(config-pmap-admit-cac)# flow rate fixed 100
Device(config-pmap-c)# exit
Example: Attaching a Per-Flow Admission Policy to an Interface

```
Device> enable
Device# configure terminal
Device(config-pmap-c)# service-policy child
Device(config-pmap-c)# end
Device# configure terminal
Device(config)# interface Serial2/0
Device(config-if)# bandwidth 384
Device(config-if)# ip address 10.10.100.1 255.255.255.0
Device(config-if)# load-interval 30
Device(config-if)# service-policy output test
Device(config-if)# no shutdown
Device(config-if)# end
```

Example: Verifying Per-Flow Admission

```
Device# show policy-map interface

Service-policy output: test

Class-map: af4 (match-all)
269 packets, 336250 bytes
30 second offered rate 90000 bps, drop rate 13000 bps
Match: dscp af41 (34) af42 (36) af43 (38)
Queueing
queue limit 100 ms/ 2500 bytes
(queue depth/total drops/no-buffer drops) 2500/39/0
(pkts output/bytes output) 230/287500
bandwidth 200 kbps

cac local rate 200 kbps, reserved 200 kbps
flow rate fixed 100 kbps

All flows:
  Number of admitted flows: [2]
  Number of non-admitted flows: [1]

Service-policy : child

Class-map: admitted (match-all)
178 packets, 222500 bytes
30 second offered rate 60000 bps, drop rate 0000 bps
Match: metadata cac status admitted
QoS Set
dscp af41
  Packets marked 194

Class-map: unadmitted (match-all)
88 packets, 110000 bytes
30 second offered rate 30000 bps, drop rate 0000 bps
Match: metadata cac status un-admitted
QoS Set
dscp af42
```
Packets marked 96

Class-map: class-default (match-any)
3 packets, 3750 bytes
30 second offered rate 1000 bps, drop rate 0000 bps
Match: any

Class-map: class-default (match-any)
181 packets, 115396 bytes
30 second offered rate 31000 bps, drop rate 0000 bps
Match: any

queue limit 64 packets
(queue depth/total drops/no-buffer drops) 0/0/0
(pkts output/bytes output) 181/115396

Additional References for Per-Flow Admission

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Per-Flow Admission

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 8: Feature Information for Per-Flow Admission