Congestion Avoidance Overview

* Congestion Avoidance Overview, on page 1

Congestion Avoidance Overview

Congestion avoidance techniques monitor network traffic loads in an effort to anticipate and avoid congestion
at common network bottlenecks. Congestion avoidance is achieved through packet dropping. Among the more
commonly used congestion avoidance mechanisms is Random Early Detection (RED), which is optimum for
high-speed transit networks. Cisco IOS XE Software includes an implementation of RED, called Weighted
RED (WRED), that combines the capabilities of the RED algorithm with the IP Precedence feature. WRED,
when configured, controls when the router drops packets.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Weighted Random Early Detection

WRED helps avoid the globalization problems that can occur. Global synchronization occurs as waves of
congestion crest only to be followed by troughs during which the transmission link is not fully utilized. Global
synchronization of TCP hosts, for example, can occur because packets are dropped all at once. Global
synchronization manifests when multiple TCP hosts reduce their transmission rates in response to packet
dropping and then increase their transmission rates once again when the congestion is reduced.

About Random Early Detection

The RED mechanism was proposed by Sally Floyd and Van Jacobson in the early 1990s to address network
congestion in a responsive rather than reactive manner. Underlying the RED mechanism is the premise that
most traffic runs on data transport implementations that are sensitive to loss and will temporarily slow down
when some of their traffic is dropped. TCP, which responds appropriately--even robustly--to traffic drop by

Congestion Avoidance Overview .

http://www.cisco.com/cisco/psn/bssprt/bss
http://www.cisco.com/go/cfn

. How It Works

How It Works

Congestion Avoidance Overview |

slowing down its traffic transmission, effectively allows the traffic-drop behavior of RED to work as a
congestion-avoidance signalling mechanism.

TCP constitutes the most heavily used network transport. Given the ubiquitous presence of TCP, RED offers
a widespread, effective congestion-avoidance mechanism.

In considering the usefulness of RED when robust transports such as TCP are pervasive, it is important to
consider also the seriously negative implications of employing RED when a significant percentage of the
traffic is not robust in response to packet loss. Neither Novell NetWare nor AppleTalk is appropriately robust
in response to packet loss, therefore you should not use RED for them.

The DiffServ Compliant WRED feature enables WRED to use the DSCP value when it calculates the drop
probability for a packet. The DSCP value is the first six bits of the IP type of service (ToS) byte.

This feature adds two new commands, random-detect dscp and dscp. It also adds two new arguments,
dscp-based and prec-based , to two existing WRED-related commands--the random-detect(interface) command
and the random-detect-group command.

The dscp-based argument enables WRED to use the DSCP value of a packet when it calculates the drop
probability for the packet. The prec-based argument enables WRED to use the IP Precedence value of a packet
when it calculates the drop probability for the packet.

These arguments are optional (you need not use any of them to use the commands) but they are also mutually
exclusive. That is, if you use the dscp-based argument, you cannot use the prec-based argument with the same
command.

After enabling WRED to use the DSCP value, you can then use the new random-detect dscp command to
change the minimum and maximum packet thresholds for that DSCP value.

Three scenarios for using these arguments are provided.

Packet Drop Probability

The packet drop probability is based on the minimum threshold, maximum threshold, and mark probability
denominator.

When the average queue depth is above the minimum threshold, RED starts dropping packets. The rate of
packet drop increases linearly as the average queue size increases until the average queue size reaches the
maximum threshold.

The mark probability denominator is the fraction of packets dropped when the average queue depth is at the
maximum threshold. For example, if the denominator is 512, one out of every 512 packets is dropped when
the average queue is at the maximum threshold.

When the average queue size is above the maximum threshold, all packets are dropped. The figure below
summarizes the packet drop probability.

. Congestion Avoidance Overview

| Congestion Avoidance Overview

How TCP Handles Traffic Loss .

Figure 1: RED Packet Drop Probability

: Two service levels
are shown: up fo six
can be defined
Packet Standard .
discard senvice]
probability pmfile\ Adjustable
' \ Premium
! ¥ service
! profile Average
0 | : queue size

ia7ea

I
Min 1 Max1 Min2 Max 2

The minimum threshold value should be set high enough to maximize the link utilization. If the minimum
threshold is too low, packets may be dropped unnecessarily, and the transmission link will not be fully used.

The difference between the maximum threshold and the minimum threshold should be large enough to avoid
global synchronization of TCP hosts (global synchronization of TCP hosts can occur as multiple TCP hosts

reduce their transmission rates). If the difference between the maximum and minimum thresholds is too small,
many packets may be dropped at once, resulting in global synchronization.

How TCP Handles Traffic Loss

\}

Note

Both this section and How the Router Interacts with TCP, on page 4 contain detailed information that you
need not read in order to use WRED or to have a general sense of the capabilities of RED. If you want to
understand why problems of global synchronization occur in response to congestion and how RED addresses
them, read these sections.

When the recipient of TCP traffic--called the receiver--receives a data segment, it checks the four octet (32-bit)
sequence number of that segment against the number the receiver expected, which would indicate that the
data segment was received in order. If the numbers match, the receiver delivers all of the data that it holds to
the target application, then it updates the sequence number to reflect the next number in order, and finally it
either immediately sends an acknowledgment (ACK) packet to the sender or it schedules an ACK to be sent
to the sender after a short delay. The ACK notifies the sender that the receiver received all data segments up
to but not including the one marked with the new sequence number.

Receivers usually try to send an ACK in response to alternating data segments they receive; they send the
ACK because for many applications, if the receiver waits out a small delay, it can efficiently include its reply
acknowledgment on a normal response to the sender. However, when the receiver receives a data segment
out of order, it immediately responds with an ACK to direct the sender to resend the lost data segment.

When the sender receives an ACK, it makes this determination: It determines if any data is outstanding. If no
data is outstanding, the sender determines that the ACK is a keepalive, meant to keep the line active, and it
does nothing. If data is outstanding, the sender determines whether the ACK indicates that the receiver has
received some or none of the data. If the ACK indicates receipt of some data sent, the sender determines if
new credit has been granted to allow it to send more data. When the ACK indicates receipt of none of the data
sent and there is outstanding data, the sender interprets the ACK to be a repeatedly sent ACK. This condition
indicates that some data was received out of order, forcing the receiver to remit the first ACK, and that a

Congestion Avoidance Overview .

Congestion Avoidance Overview |

. How the Router Interacts with TCP

second data segment was received out of order, forcing the receiver to remit the second ACK. In most cases,
the receiver would receive two segments out of order because one of the data segments had been dropped.

When a TCP sender detects a dropped data segment, it resends the segment. Then it adjusts its transmission
rate to half of what is was before the drop was detected. This is the TCP back-off or slow-down behavior.
Although this behavior is appropriately responsive to congestion, problems can arise when multiple TCP
sessions are carried on concurrently with the same router and all TCP senders slow down transmission of
packets at the same time.

How the Router Interacts with TCP

\}

Note

About WRED

The sections How TCP Handles Traffic Loss, on page 3 and How TCP Handles Traffic Loss, on page 3
contain detailed information that you need not read in order to use WRED or to have a general sense of the
capabilities of RED. If you want to understand why problems of global synchronization occur in response to
congestion and how RED addresses them, read these sections.

To see how the router interacts with TCP, we will look at an example. In this example, on average, the router
receives traffic from one particular TCP stream every other, every 10th, and every 100th or 200th message
in the interface in MAE-EAST or FIX-WEST. A router can handle multiple concurrent TCP sessions. Because
network flows are additive, there is a high probability that when traffic exceeds the Transmit Queue Limit
(TQL) at all, it will vastly exceed the limit. However, there is also a high probability that the excessive traffic
depth is temporary and that traffic will not stay excessively deep except at points where traffic flows merge
or at edge routers.

If the router drops all traffic that exceeds the TQL, many TCP sessions will simultaneously go into slow start.
Consequently, traffic temporarily slows down to the extreme and then all flows slow-start again; this activity
creates a condition of global synchronization.

However, if the router drops no traffic, as is the case when queueing features such as fair queueing or priority
queueing (PQ) are used, then the data is likely to be stored in main memory, drastically degrading router
performance.

By directing one TCP session at a time to slow down, RED solves the problems described, allowing for full
utilization of the bandwidth rather than utilization manifesting as crests and troughs of traffic.

WRED combines the capabilities of the RED algorithm with the IP Precedence feature to provide for preferential
traffic handling of higher priority packets. WRED can selectively discard lower priority traffic when the
interface begins to get congested and provide differentiated performance characteristics for different classes
of service.

You can configure WRED to ignore IP precedence when making drop decisions so that nonweighted RED
behavior is achieved.

For interfaces configured to use the Resource Reservation Protocol (RSVP) feature, WRED chooses packets
from other flows to drop rather than the RSVP flows. Also, IP Precedence governs which packets are
dropped--traffic that is at a lower precedence has a higher drop rate and therefore is more likely to be throttled
back.

WRED differs from other congestion avoidance techniques such as queueing strategies because it attempts
to anticipate and avoid congestion rather than control congestion once it occurs.

. Congestion Avoidance Overview

| Congestion Avoidance Overview

Why Use WRED

How It Works

why use WRED ||

WRED makes early detection of congestion possible and provides for multiple classes of traffic. It also protects
against global synchronization. For these reasons, WRED is useful on any output interface where you expect
congestion to occur.

However, WRED is usually used in the core routers of a network, rather than at the edge of the network. Edge
routers assign IP precedences to packets as they enter the network. WRED uses these precedences to determine
how to treat different types of traffic.

WRED provides separate thresholds and weights for different IP precedences, allowing you to provide different
qualities of service in regard to packet dropping for different traffic types. Standard traffic may be dropped
more frequently than premium traffic during periods of congestion.

WRED is also RSVP-aware, and it can provide the controlled-load QoS service of integrated service.

By randomly dropping packets prior to periods of high congestion, WRED tells the packet source to decrease
its transmission rate. If the packet source is using TCP, it will decrease its transmission rate until all the packets
reach their destination, which indicates that the congestion is cleared.

WRED generally drops packets selectively based on IP precedence. Packets with a higher IP precedence are
less likely to be dropped than packets with a lower precedence. Thus, the higher the priority of a packet, the
higher the probability that the packet will be delivered.

WRED selectively drops packets when the output interface begins to show signs of congestion. By dropping
some packets early rather than waiting until the queue is full, WRED avoids dropping large numbers of packets
at once and minimizes the chances of global synchronization. Thus, WRED allows the transmission line to
be used fully at all times.

In addition, WRED statistically drops more packets from large users than small. Therefore, traffic sources
that generate the most traffic are more likely to be slowed down than traffic sources that generate little traffic.

WRED helps to avoid the globalization problems. Global synchronization manifests when multiple TCP hosts
reduce their transmission rates in response to packet dropping and then increase their transmission rates once
again when the congestion is reduced.

WRED is only useful when the bulk of the traffic is TCP/IP traffic. With TCP, dropped packets indicate
congestion, so the packet source will reduce its transmission rate. With other protocols, packet sources may
not respond or may resend dropped packets at the same rate. Thus, dropping packets does not decrease
congestion.

WRED treats non-IP traffic as precedence 0, the lowest precedence. Therefore, non-IP traffic, in general, is
more likely to be dropped than IP traffic.

The figure below illustrates how WRED works.

Congestion Avoidance Overview .

. Average Queue Size

Average Queue Size

Figure 2: Weighted Random Early Detection

Incoming packets

D camim

D'Bcard tast

.+

O -

Congestion Avoidance Overview |

Transmit
queus

Outgaing
packets

7T

(CH T

FIFQ scheduling

—_—

Discard test basedon: Queueing
* Buffer queus buffer
depth rEes0Urces

* |P Precedence
* RSVP session

L -p-]

The average queue size is based on the previous average and the current size of the queue. The formula is:

average = (old average * (1-1/2"n)) + (current queue size * 1/2"n)

where 7 is the exponential weight factor, a user-configurable value.

For high values of n, the previous average queue size becomes more important. A large factor smooths out
the peaks and lows in queue length. The average queue size is unlikely to change very quickly, avoiding
drastic swings in size. The WRED process will be slow to start dropping packets, but it may continue dropping
packets for a time after the actual queue size has fallen below the minimum threshold. The slow-moving
average will accommodate temporary bursts in traffic.

Note

If the value of n gets too high, WRED will not react to congestion. Packets will be sent or dropped as if WRED
were not in effect.

For low values of n, the average queue size closely tracks the current queue size. The resulting average may
fluctuate with changes in the traffic levels. In this case, the WRED process responds quickly to long queues.
Once the queue falls below the minimum threshold, the process stops dropping packets.

If the value of n gets too low, WRED will overreact to temporary traffic bursts and drop traffic unnecessarily.

. Congestion Avoidance Overview

	Congestion Avoidance Overview
	Congestion Avoidance Overview
	Finding Feature Information
	Weighted Random Early Detection
	About Random Early Detection
	How It Works
	Packet Drop Probability
	How TCP Handles Traffic Loss
	How the Router Interacts with TCP

	About WRED
	Why Use WRED
	How It Works
	Average Queue Size

