THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2014 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

AutoQoS for the Enterprise 1

- Finding Feature Information 1
- Prerequisites for the AutoQoS for the Enterprise Feature 1
- Restrictions for the AutoQoS for the Enterprise Feature 2
- Information About the AutoQoS for the Enterprise Feature 3
 - Benefits of the AutoQoS for the Enterprise Feature 3
 - Design Considerations 4
- Configuration Phases 5
 - Auto-Discovery (Data Collection) Phase 6
 - AutoQoS Template Generation and Installation Phase 7
 - Class-Map Templates 7
 - Policy-Map Templates 14
- How to Configure the AutoQoS for the Enterprise Feature 14
 - Enabling the Auto-Discovery Phase 14
 - What to Do Next 17
 - Enabling the AutoQoS Template Generation Phase 18
 - Troubleshooting Tips 20
 - What to Do Next 21
- Verifying the AutoQoS for the Enterprise Configuration 21

CHAPTER 2

AutoQoS—VoIP 29

- Finding Feature Information 29
Contents

Prerequisites for AutoQoS—VoIP 29
Restrictions for AutoQoS—VoIP 30
Information About AutoQoS—VoIP 31
 Benefits of AutoQoS—VoIP 31
 Design Considerations 31
 Configurations for the Interface Configurations Policy Maps Class Maps and ACLs 33
How to Configure the AutoQoS—VoIP Feature 33
 Enabling the AutoQoS—VoIP Feature 33
 FAQs and Troubleshooting Tips 36
 What to Do Next 37
 Verifying the Configuration 37
Configuration Examples for AutoQoS—VoIP 38
 Examples: Configuring the AutoQoS—VoIP Feature 38
 Examples: Verifying the AutoQoS—VoIP Feature Configuration 40
Additional References for AutoQoS—VoIP 42
Feature Information for AutoQoS—VoIP 44
AutoQoS for the Enterprise

The AutoQoS for the Enterprise feature automates the deployment of quality of service (QoS) policies in a general business environment, particularly for midsize companies and branch offices of larger companies. Existing QoS policies may be present during the first configuration phase of this feature, that is, during the Auto-Discovery (data collection) phase. However, any existing QoS policies must be removed before the AutoQoS-generated policies are applied during the second configuration phase of this feature.

- Finding Feature Information, page 1
- Prerequisites for the AutoQoS for the Enterprise Feature, page 1
- Restrictions for the AutoQoS for the Enterprise Feature, page 2
- Information About the AutoQoS for the Enterprise Feature, page 3
- How to Configure the AutoQoS for the Enterprise Feature, page 14
- Configuration Examples for the AutoQoS for the Enterprise Feature, page 22
- Additional References for AutoQoS for the Enterprise, page 26
- Feature Information for AutoQoS for the Enterprise, page 28

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for the AutoQoS for the Enterprise Feature

- Ensure that no QoS policies (service policies) are attached to the interface. This feature cannot be configured if a QoS policy is attached to the interface.
• To include Simple Network Management Protocol (SNMP) traps (monitored events), the SNMP server must be enabled.
• To apply the AutoQoS for the Enterprise feature, the interface must be supported by a Programmable Intelligent Services Accelerator (PISA).

Restrictions for the AutoQoS for the Enterprise Feature

General Restrictions

• The AutoQoS for the Enterprise feature is supported on the following interfaces, data-link connection identifiers (DLCIs), and permanent virtual circuits (PVCs) only:
 • Serial interfaces with PPP or High-Level Data Link Control (HDLC)
 • Frame Relay DLCIs in point-to-point subinterfaces only
 • Frame Relay-to-ATM Interworking links
 • ATM PVCs

The AutoQoS for the Enterprise feature is supported on low-speed and high-speed ATM PVCs in point-to-point subinterfaces.

Note

An ATM PVC is classified as low speed if its bandwidth is less than or equal to 768 Kb/s; an ATM PVC is classified as high speed if its bandwidth is greater than 768 Kb/s.

Serial Interface Restrictions

• For a serial interface with a low-speed link, Multilink PPP (MLP) is configured automatically. The serial interface must have an IP address. When MLP is configured, this IP address is removed and put on the MLP bundle. To ensure that the traffic goes through the low-speed link, the following conditions must be met:
 • The AutoQoS for the Enterprise feature must be configured at the both ends of the link.
 • The amount of bandwidth configured must be the same on both ends of the link.

Frame Relay DLCI Restrictions

• The AutoQoS for the Enterprise feature cannot be configured on a Frame Relay DLCI if a map class is attached to the DLCI.
• If a Frame Relay DLCI is already assigned to one subinterface, the AutoQoS for the Enterprise feature cannot be configured from a different subinterface.
• For low-speed Frame Relay DLCIs configured for use on Frame Relay-to-ATM networks, MLP over Frame Relay (MLPoFR) is configured automatically. The subinterface must have an IP address.
When MLPoFR is configured, this IP address is removed and put on the MLP bundle. The AutoQoS for the Enterprise feature must also be configured on the ATM side of the network.

- For low-speed Frame Relay DLCIs with Frame Relay-to-ATM Interworking, the AutoQoS for the Enterprise feature cannot be configured if a virtual template is already configured for the DLCI.

ATM PVC Restrictions

- For a low-speed ATM PVC, the AutoQoS for the Enterprise feature cannot be configured if a virtual template is already configured for the ATM PVC.

- For low-speed ATM PVCs, MLP over ATM (MLPoATM) is configured automatically. The subinterface must have an IP address.

When MLPoATM is configured, this IP address is removed and put on the MLP bundle. The AutoQoS for the Enterprise feature must also be configured on the ATM side of the network.

Release Specific Restrictions

Depending on your release, the following restrictions may apply:

- Ingress QoS is not supported.

- AutoQoS is supported on L3 routed interfaces, but Auto QoS is not supported on L2 interfaces.

- Only the following commands are supported:
 - `auto discover qos`
 - `auto qos`

Information About the AutoQoS for the Enterprise Feature

Benefits of the AutoQoS for the Enterprise Feature

The key benefits of the AutoQoS for the Enterprise feature include the following:

- You can implement the QoS features required for voice, video, and data traffic without an in-depth knowledge of the following underlying technologies:
 - PPP
 - Frame Relay
 - ATM
 - Service policies
 - Link efficiency mechanisms (LEM), such as Link Fragmentation and Interleaving (LFI)

- The AutoQoS for the Enterprise feature simplifies QoS implementation and speeds up the provisioning of QoS technology over a Cisco network. It reduces human error and lowers training costs.
Design Considerations

General QoS Requirements

- Recommended methods and values are configured to meet the QoS requirements for voice traffic.
- The AutoQoS for the Enterprise feature takes the interface type and bandwidth into consideration when implementing the following QoS features:
 - Low latency queueing (LLQ)/Priority Queueing (PQ). The LLQ (specifically, PQ) is applied to the voice packets to meet the latency requirements.
 - Compressed Real-Time Protocol (cRTP). With cRTP, the 40-byte IP header of the voice packet is reduced from 2 to 4 bytes, thereby reducing voice bandwidth requirements. cRTP must be applied at both ends of a network link.
 - Link Fragmentation and Interleaving (LFI). LFI is used to reduce the jitter of voice packets by preventing voice packets from getting delayed behind large data packets in a queue. LFI must be applied at both ends of a network link.

Bandwidth Implications

The bandwidth of the serial interface determines the speed of the link. The speed of the link, in turn, determines the configurations generated by the AutoQoS for the Enterprise feature.

Note

Changing the bandwidth after configuring the AutoQoS for the Enterprise feature is not recommended.

The AutoQoS for the Enterprise feature uses the bandwidth that is allocated at the time the feature is configured. The AutoQoS for the Enterprise feature does not respond to changes made to bandwidth after the feature is configured.

For example, if the auto qos command is used to configure the AutoQoS for the Enterprise feature on an interface with 1000 Kb/s, the AutoQoS for the Enterprise feature generates configurations for high-speed interfaces. However, if the bandwidth is later changed to 500 Kb/s, the AutoQoS for the Enterprise feature will not use the lower bandwidth. The AutoQoS for the Enterprise feature retains the higher bandwidth and continues to use the generated configurations for high-speed interfaces.

To force the AutoQoS for the Enterprise feature to generate configurations for the low-speed interfaces, perform the following tasks:

1. Use the no auto qos command to remove the AutoQoS for the Enterprise feature.
2. Use the no auto discovery qos command to stop the Auto-Discovery (data collection) configuration phase.
3. Use the auto discovery qos command to resume the Auto-Discovery (data collection) phase.
4 Use the `auto qos` command to begin the AutoQoS template generation and installation configuration phase.

Fragmentation for Frame Relay Networks

For Frame Relay networks, fragmentation is configured using a delay of 10 milliseconds (ms) and a minimum fragment size of 60 bytes. This configuration ensures that the VoIP packets are not fragmented. However, when the G.711 coder-decoder (codec) is used on low-speed links, the fragment size configured by the AutoQoS for the Enterprise feature could be smaller than the size of the G.711 Voice over IP (VoIP) packet.

To solve this potential problem, choose one of the following:

- Change the fragment size to the required value.
- Change the size of the G.711 VoIP packet to a smaller value.

For example, if the AutoQoS for the Enterprise feature is configured on a Frame Relay DLCI with 128 Kbps, the fragment size configured by the AutoQoS for the Enterprise feature will be 160 bytes. The size of the G.711 VoIP packet will be 160 bytes, minus the bytes in the packet headers for the layers. The workaround is to either change the fragment size from 160 bytes to 220 bytes or change the size of the G.711 VoIP packet from 160 bytes to 80 bytes.

Configuration Phases

The AutoQoS for the Enterprise feature consists of two configuration phases, completed in the following order:

- Auto-Discovery (data collection)

The Auto-Discovery phase uses network-based application recognition (NBAR)-based protocol discovery to detect the applications on the network and performs statistical analysis on the network traffic.

- AutoQoS template generation and installation

This phase generates templates from the data collected during the Auto-Discovery phase and installs the templates on the interface. Then these templates are used as the basis for creating the class maps and policy maps for your network. After the class maps and policy maps are created, they are then installed on the interface.

Depending on your release, when AutoQos is configured, a global macro is also applied to the interface to perform LAN-queueing actions. This macro contains commands to configure bandwidth, queue limit, and thresholds based on the traffic type, its priority and its rate. This data is collected during the Auto-Discovery phase.
The figure below illustrates the top-level processes for configuring the AutoQoS for Enterprise feature. The dotted lines indicate optional processes.

Figure 1: Top-Level Processes for Configuring the AutoQoS for the Enterprise Feature

First, start the Auto-Discovery (data collection) phase by using the `auto discovery qos [trust]` command. Note the following points about the Auto-Discovery phase:

- If you want to stop the Auto-Discovery phase, use the `no auto discovery qos` command. This command stops data collection and removes any data collection reports that have been generated.
- If you want to view the Auto-Discovery phase in progress, use the `show auto discovery qos` command. This command displays the results of the data collected during the Auto-Discovery phase.

Second, start the AutoQoS template generation phase by using the `auto qos` command. This phase generates templates from the data collected during the Auto-Discovery phase. It then uses those templates as the basis for creating and installing the class maps and policy maps for your network.

Note

After the `auto qos` command has finished creating and installing the templates, creating the class maps and policy maps, and installing the class maps and policy maps on the interface, you can view the class maps and policy maps by using the `show auto qos` command.

Detailed information about the Auto-Discovery phase and the AutoQoS template generation phase is provided below.

Auto-Discovery (Data Collection) Phase

The Auto-Discovery (data collection) phase uses NBAR to detect network applications as they arrive at an interface, collect data from the offered traffic, and perform statistical analysis.
The data collected should be a representative sampling of the volume and type of voice, video, and data on your network. Therefore, the amount of time devoted to data collection varies from network to network. Run the Auto-Discovery phase for as long as necessary. The length of time needed will vary, depending on the volume and nature of traffic on your network.

AutoQoS Template Generation and Installation Phase

This phase generates templates from the data collected during the Auto-Discovery phase and installs the templates on the interface. Then these templates are used as the basis for creating the class maps and policy maps for your network. After the class maps and policy maps are created, they are then installed on the interface.

During this phase, the AutoQoS for the Enterprise also assigns the appropriate bandwidth amounts and sets the appropriate scheduling parameters for the network traffic.

Depending on your release, a macro that contains MLS QOS commands to configure bandwidth, queue limit, and thresholds gets applied. To view these commands, use `show run interface` command. The commands will not be displayed as part of the `show auto qos` command.

AutoQoS can be applied on an interface with input service policy applied, but no output service policy can be applied on the interface while applying AutoQoS on it.

Class-Map Templates

The AutoQoS for the Enterprise feature creates a number of class-map templates, used for the following purposes:

- To classify applications and map them to classes for DiffServ per-hop behavior (PHB) mapping.
- To define the class-based QoS policy templates.

Depending on your release, the PISA MQC is limited to eight filters per class-map. To accommodate this, additional AutoQoS classes have been added to honor the eight filter per class limitation. Transactional, Bulk, Scavenger, and Management AutoQoS classes have been split.

AutoQoS Classes

The AutoQoS for the Enterprise feature defines ten AutoQoS classes, designed to accommodate various enterprise applications. The table below lists the AutoQoS class name, the type of traffic defined for the class, and the differentiated services code point (DSCP) value for the type of traffic, if applicable.

Table 1: Class Definitions for the AutoQoS for the Enterprise Feature

<table>
<thead>
<tr>
<th>AutoQoS Class Name</th>
<th>Traffic Type</th>
<th>DSCP Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Routing</td>
<td>Network control traffic, such as routing protocols</td>
<td>CS6</td>
</tr>
<tr>
<td>Interactive Voice</td>
<td>Inactive voice-bearer traffic</td>
<td>EF</td>
</tr>
<tr>
<td>Interactive Video</td>
<td>Interactive video data traffic</td>
<td>AF41</td>
</tr>
<tr>
<td>Streaming Video</td>
<td>Streaming media traffic</td>
<td>CS4</td>
</tr>
<tr>
<td>AutoQoS Class Name</td>
<td>Traffic Type</td>
<td>DSCP Value</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Telephony Signaling</td>
<td>Telephony signaling and control traffic</td>
<td>CS3</td>
</tr>
<tr>
<td>Transactional/Interactive</td>
<td>Database applications transactional in nature</td>
<td>AF21</td>
</tr>
<tr>
<td>Network Management</td>
<td>Network management traffic</td>
<td>CS2</td>
</tr>
<tr>
<td>Bulk Data</td>
<td>Bulk data transfers; web traffic; general data service</td>
<td>AF11</td>
</tr>
<tr>
<td>Scavenger</td>
<td>Casual entertainment; rogue traffic; traffic in this category is given less-than-best-effort treatment</td>
<td>CS1</td>
</tr>
<tr>
<td>Best Effort</td>
<td>Default class; all non-critical traffic; HTTP; all miscellaneous traffic</td>
<td>0</td>
</tr>
</tbody>
</table>

These classes are used with the modular quality of service (QoS) command-line interface (MQC) to configure class maps, once the classification (match) criteria are determined. The match criteria can be configured using the appropriate match protocol commands.

These classes are also chosen to meet the scheduling requirement in compliance with the DiffServ recommendations. Each class will be associated with an egress (output) queue. The applications mapped to a class will be put into the same queue and receive the same (weighted) queueing scheduling.

Note

The actual number of queues created corresponds to the number of applications (and then classes) discovered during AutoQoS-Discovery.

AutoQoS Classification Using NBAR

NBAR is the classification mechanism for the AutoQoS for the Enterprise feature. NBAR is a Cisco product that classifies network traffic using information about the application such as protocol type, URL, and dynamically assigned ports.

All the NBAR-supported applications are mapped to the AutoQoS classes described in the “Class Map Templates” section.

The AutoQoS for the Enterprise feature provides static default mapping rules used to build the AutoQoS class-map templates. The table below lists each AutoQoS class, the application to which it is mapped, and the Cisco match protocol command used in a policy map to establish the mapping.
Table 2: AutoQoS Classes, Applications, and match protocol Command

<table>
<thead>
<tr>
<th>AutoQoS Class</th>
<th>Application</th>
<th>match protocol Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive Voice</td>
<td>VoIP bearer</td>
<td>match protocol rtp voice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol cisco-phone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol vofr</td>
</tr>
<tr>
<td>Interactive Video 1</td>
<td>Video conference</td>
<td>match protocol rtp video</td>
</tr>
<tr>
<td>Telephony Signaling</td>
<td>Voice and video signaling and control</td>
<td>match protocol rtcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol h323</td>
</tr>
<tr>
<td>Streaming Video</td>
<td>Streaming video</td>
<td>match protocol cuseeme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol netshow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol realaudio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol streamwork</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol vdlive</td>
</tr>
<tr>
<td>AutoQoS Class</td>
<td>Application</td>
<td>match protocol Command</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Transactional/Interactive</td>
<td>Database</td>
<td>match protocol sap
match protocol sqlnet
match protocol sqlserver
match protocol sqlexec
match protocol citrix
match protocol notes
match protocol ldap
match protocol secure-ldap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interactive sessions</td>
<td></td>
<td>match protocol telnet
match protocol secure-telnet
match protocol rlogin
match protocol xwindows
match protocol ssh
match protocol finger
match protocol klogin
match protocol kshell
match protocol nickname
match protocol vnc
match protocol xdmcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other enterprise applications</td>
<td></td>
<td>match protocol novadigm
match protocol pcanywhere
match protocol appleqt
match protocol cobra-iiop
match protocol dicom
match protocol fix
match protocol ibm-db2
match protocol hl7
match protocol ora-srv</td>
</tr>
<tr>
<td>AutoQoS Class</td>
<td>Application</td>
<td>match protocol Command</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Bulk Data</td>
<td>File transfer</td>
<td>match protocol ftp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol secure-ftp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol nntp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol secure-ntp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol irc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol secure-irc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol tftp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol printer</td>
</tr>
<tr>
<td>Bulk Data (Continued)</td>
<td></td>
<td>match protocol cifs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol ipx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol microsoftd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol netbios</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol winmx</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol simap</td>
</tr>
<tr>
<td></td>
<td>Email and groupware</td>
<td>match protocol exchange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol smtp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol pop3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol secure-pop3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol mapi</td>
</tr>
<tr>
<td>Scavenger</td>
<td>Peer-to-peer file transfer</td>
<td>match protocol napster</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol fastrack</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol gnutella</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol kazaa2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol bittorent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol edonkey</td>
</tr>
<tr>
<td></td>
<td></td>
<td>match protocol directconnect</td>
</tr>
</tbody>
</table>

1. In some releases on the Cisco Catalyst 6500 series switch that is equipped with a Supervisor 32/PISA
tenpresence-media and telepresence-control packets are classified under AutoQos Class Interactive Video.
The table below lists the best-effort AutoQoS class (Best Effort), the application category for this class, and
the NBAR protocols associated with this class.
Table 3: Best Effort Class, Application Categories, and Associated NBAR Protocols

<table>
<thead>
<tr>
<th>AutoQoS Class</th>
<th>Application Category</th>
<th>NBAR Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Effort</td>
<td>Known</td>
<td>HTTP, HTTPS, Gopher, NFS, SunRPC, NTP, and RCMD</td>
</tr>
<tr>
<td>Note</td>
<td>Unknown</td>
<td>All applications not identified by NBAR</td>
</tr>
</tbody>
</table>

Note: The class-default does not need a match statement in the policy map.

NBAR allows new applications to be defined and added to the network by using different tools such as a Packet Description Language Module (PDLM). The AutoQoS class mapping cannot be predetermined for these applications. Therefore, these new applications will be viewed as unknown and put into the AutoQoS default (that is, Best Effort) class.

The table below lists the AutoQoS network routing protocol class (IP Routing), the application category for this class, and the NBAR protocols associated with this class.

Table 4: IP Routing Class, Application Categories, and Associated NBAR Protocols

<table>
<thead>
<tr>
<th>AutoQoS Class</th>
<th>Application Category</th>
<th>NBAR Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Routing</td>
<td>Network routing and signaling</td>
<td>All supported network routing and signaling protocols.</td>
</tr>
<tr>
<td></td>
<td>The Type of Service (ToS) byte is always marked as 0x11000000.</td>
<td>The list of NBAR supported protocols includes BGP, EIGRP, RIP, RSVP.</td>
</tr>
</tbody>
</table>

Note: The table below lists each AutoQoS management class (Network Management), the application to which it is mapped, and the Cisco match protocol command used in a policy map to establish the mapping.
Table 5: Network Management Class, Application Categories, and match protocol Command

<table>
<thead>
<tr>
<th>AutoQoS Class</th>
<th>Application Category</th>
<th>match protocol Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Management</td>
<td>Network Management</td>
<td>match protocol snmp
match protocol syslog
match protocol systat
match protocol dhcp
match protocol dns
match protocol ldap
match protocol secure-ldap
match protocol socks
match protocol imap
match protocol secure-imap
match protocol kerberos
match protocol tacacs
match protocol daytime
match protocol time
match protocol npp
match protocol echo
match protocol isakmp
match protocol clearcase
match protocol lockd</td>
</tr>
</tbody>
</table>

These AutoQoS classes and mapping scheme are used as the basic building blocks for packet classification. If these classes and this mapping scheme are not correct for your particular network, you can change them using the standard Cisco commands and the MQC.

Trusted Boundary

A trusted boundary is the location in the network where the QoS marking is established. AutoQoS can be enabled with the `trust` keyword of the `auto discovery qos` command when the data collection phase is enabled.

Note

Some releases do not support the trusted boundary feature.

The AutoQoS classification for trusted marking will use DSCP match statements specified in the table below. When a marking is trusted, the following DSCP values are used in the match statements in the policy maps.
Table 6: DSCP Values in Match Statements for Trusted Boundaries

<table>
<thead>
<tr>
<th>AutoQoS Class</th>
<th>DSCP Values in Match Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Routing</td>
<td>match ip dscp cs6</td>
</tr>
<tr>
<td>Interactive Voice</td>
<td>match ip dscp ef</td>
</tr>
<tr>
<td>Interactive Video</td>
<td>match ip dscp af41</td>
</tr>
<tr>
<td>Streaming Video</td>
<td>match ip dscp cs4</td>
</tr>
<tr>
<td>Telephony Signaling</td>
<td>match ip dscp cs3</td>
</tr>
<tr>
<td>Transactional/Interactive</td>
<td>match ip dscp af21</td>
</tr>
<tr>
<td>Network Management</td>
<td>match ip dscp cs2</td>
</tr>
<tr>
<td>Bulk Data</td>
<td>match ip dscp af11</td>
</tr>
<tr>
<td>Scavenger</td>
<td>match ip dscp cs1</td>
</tr>
</tbody>
</table>

Policy-Map Templates

The policy-map templates created by the AutoQoS for the Enterprise feature are used to define the following three components:

- Queue scheduling
- Minimum guaranteed bandwidth
- Default Weighted Random Early Detection (WRED) for the applicable classes

These components are designed according to “best practice” recommendations and include QoS features for specific link types, such as low- and high-speed Frame Relay DLCIs.

How to Configure the AutoQoS for the Enterprise Feature

Enabling the Auto-Discovery Phase

Before You Begin

Before using the `auto discovery qos` command at an interface or an ATM PVC, ensure that the following prerequisites have been met:

- Cisco Express Forwarding (CEF) must be enabled.
If the interface or subinterface has a link speed of 768 kb/s or lower, configure the primary or secondary IP address of the interface by using the `ip address` command.

For all interfaces or subinterfaces, configure the amount of bandwidth by using the `bandwidth` command. The amount of bandwidth allocated should be based on the link speed of the interface.

For an ATM PVC, configure the variable bit rate (VBR) by using either the `vbr-nrt` command or the `vbr-rt` command or configure the constant bit rate (CBR) by using the `cbr` command.

Note

- The `auto discovery qos` command is not supported on subinterfaces.
- Do not change the bandwidth of the interface when using the `auto discovery qos` command.
- All previously attached policies must be removed from the interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `bandwidth kilobits`
5. `vbr-nrt output-pcr output-scr output-mbs [input-pcr] [input-scr] [input-mbs]`
6. `vbr-rt peak-rate average-rate burst`
7. `cbr rate`
8. `pvc [name] vpi/vci [ces | ilmi | qsaal | smds]`
9. `ip address ip-address mask [secondary]`
10. `frame-relay interface-dlci dlci ietf | cisco [voice-cir cir] [ppp virtual-template-name]`
11. `auto discovery qos [trust]`
12. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
<p>| Example: | |
| Device> enable | |
| Step 2 configure terminal | Enters global configuration mode. |
| Example: | |
| Device# configure terminal | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Purpose</td>
</tr>
<tr>
<td>interface type number</td>
<td>Configures an interface (or subinterface) type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface serial4/0</td>
</tr>
<tr>
<td></td>
<td>• Enter the interface type and number.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Purpose</td>
</tr>
<tr>
<td>bandwidth kilobits</td>
<td>(Optional) Sets a bandwidth value for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# bandwidth 1540</td>
</tr>
<tr>
<td></td>
<td>• Enter the bandwidth value in Kb/s.</td>
</tr>
<tr>
<td>Note</td>
<td>This step applies only to interfaces and subinterfaces. It is not required for ATM PVCs.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Purpose</td>
</tr>
<tr>
<td>vbr-nrt output-pcr output-scr output-mbs</td>
<td>(Optional) Configures the variable bit rate-nonreal time (VBR-NRT) QoS and specifies the output peak cell rate (PCR), output sustainable cell rate (SCR), and output maximum burst cell size (MBS) for an ATM PVC, PVC range, switched virtual circuit (SVC), virtual circuit (VC) class, or VC bundle member.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# vbr-nrt 10000 5000 32 20000 10000 64</td>
</tr>
<tr>
<td></td>
<td>• Enter the output PCR, SCR, and MBS.</td>
</tr>
<tr>
<td>Note</td>
<td>This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Purpose</td>
</tr>
<tr>
<td>vbr-rt peak-rate average-rate burst</td>
<td>(Optional) Configures the real-time VBR for Voice over ATM connections.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# vbr-rt 640 56 80</td>
</tr>
<tr>
<td></td>
<td>• Enter the peak information rate (PIR), the average information rate (AIR), and the burst size.</td>
</tr>
<tr>
<td>Note</td>
<td>This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Purpose</td>
</tr>
<tr>
<td>cbr rate</td>
<td>(Optional) Configures the CBR for the ATM circuit emulation service (CES) for an ATM PVC.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-atm-vc)# cbr 56</td>
</tr>
<tr>
<td></td>
<td>This command can be used in different modes, including ATM-VC configuration mode (for ATM PVCs and SVCs), ATM PVC range configuration mode (for an ATM PVC range), or ATM PVC-in-range configuration mode (for an individual PVC within a PVC range).</td>
</tr>
<tr>
<td></td>
<td>• Enter the CBR.</td>
</tr>
<tr>
<td>Note</td>
<td>This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Purpose</td>
</tr>
<tr>
<td>**pvc [name] vpi/vci [ces</td>
<td>ilmi</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# pvc 1/32</td>
</tr>
<tr>
<td></td>
<td>• Enter the ATM network virtual path identifier (VPI) and the ATM network virtual channel identifier (VCI) for the ATM PVC.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
</tbody>
</table>
| `ip address ip-address mask [secondary]` | (Optional) Sets a primary or secondary IP address for an interface.
Note
This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.
Example:
Device(config-if)# ip address 10.10.100.1 255.255.255.0 |
| **Step 10** | |
| `frame-relay interface-dlci dlci ietf | cisco | [voice-cir cir] [ppp `virtual-template-name` |
Example:
Device(config-if)# frame-relay interface-dlci 100 |
(Optional) Assigns a DLCI to a specified Frame Relay subinterface on the device or access server, or assigns a specific PVC to a DLCI, or applies a virtual template configuration for a PPP session.
Note
This step applies only to Frame Relay interfaces (either low-speed or high-speed).
Example:
Device(config-if)# frame-relay interface-dlci 100 | |
| **Step 11** | |
| `auto discovery qos [trust]` | Configures the data discovery phase of the AutoQoS for the Enterprise feature.
Note
The optional `trust` keyword indicates that the DSCP markings of the packet are trust (that is, relied on) for classification of the voice, video, and data traffic. For more information, see the “Enabling the Auto Discovery Phase” section.
Example:
Device(config-if)# auto discovery qos | |
| **Step 12** | |
| `end` | (Optional) Returns to privileged EXEC mode.
Example:
Device(config-if)# end | |

What to Do Next

Use the `auto qos` command to generate and install the AutoQoS templates. These templates are generated on the basis of the data collected in the Auto-Discovery phase, and will be used to create and install the corresponding class maps and policy maps.
Enabling the AutoQoS Template Generation and Installation Phase

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. bandwidth kilobits
5. vbr-nrt output-pcr output-scr output-mbs [input-pcr] [input-scr] [input-mbs]
6. vbr-rt peak-rate average-rate burst
7. cbr rate
8. pvc [name] vpi / vci [ces | ilmi | qsaal | smds]
9. ip address ip-address mask [secondary]
10. frame-relay interface-dlci dlci [ietf | cisco] [voice-cir cir] [ppp virtual-template-name]
11. auto qos
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Configures an interface (or subinterface) type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface serial4/0</td>
<td>• Enter the interface type and number.</td>
</tr>
<tr>
<td>Step 4 bandwidth kilobits</td>
<td>(Optional) Sets a bandwidth value for an interface.</td>
</tr>
<tr>
<td>Example: Device(config-if)# bandwidth 1540</td>
<td>• Enter the bandwidth value in Kb/s.</td>
</tr>
<tr>
<td>Note This step applies only to interfaces and subinterfaces. It is not required for ATM PVCs.</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 5 | vbr-nrt output-pcr output-scr output-mbs [input-pcr] [input-scr] [input-mbs] | (Optional) Configures the VBR-NRT and specifies the output PCR, output SCR, and output MBS for an ATM PVC, PVC range, SVC, VC class, or VC bundle member.
- Enter the output PCR, SCR, and MBS. |
| **Example:** | Device(config-if)# vbr-nrt 10000 5000 32 20000 10000 64 | |
| **Note** | This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces. |
| Step 6 | vbr-rt peak-rate average-rate burst | (Optional) Configures the real-time VBR for Voice over ATM connections.
- Enter the PIR, the AIR, and the burst size. |
| **Example:** | Device(config-if)# vbr-rt 640 56 80 | |
| **Note** | This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces. |
| Step 7 | cbr rate | (Optional) Configures the CBR for the ATM CES for an ATM PVC.
This command can be used in different modes, including ATM-VC configuration mode (for ATM PVCs and SVCs), ATM PVC range configuration mode (for an ATM PVC range), or ATM PVC-in-range configuration mode (for an individual PVC within a PVC range).
- Enter the CBR. |
| **Example:** | Device(config-if-atm-vc)# cbr 56 | |
| **Note** | This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces. |
| Step 8 | pvc [name] vpi / vci [ces | ilmi | qsaal | smds] | (Optional) Creates or assigns a name to an ATM PVC and specifies the encapsulation type on an ATM PVC.
- Enter the ATM network VPI and the ATM network VCI for the ATM PVC. |
| **Example:** | Device(config-if)# pvc 1/32 | |
| **Note** | This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces. |
| Step 9 | ip address ip-address mask [secondary] | (Optional) Sets a primary or secondary IP address for an interface.
Note Applies only to low-speed interfaces (that is, interfaces with link speeds of 768 Kbps or lower). |
| **Example:** | Device(config-if)# ip address 10.10.100.1 255.255.255.0 | |
| Step 10 | frame-relay interface-dlci dlci [ietf | cisco] [voice-cir cir] [ppp virtual-template-name] | (Optional) Assigns a DLCI to a specified Frame Relay subinterface on the device or access server, or assigns a specific PVC to a DLCI, or applies a virtual template configuration for a PPP session.
- Enter the DLCI number. |
| **Example:** | Device(config-if)# frame-relay interface-dlci 100 | |
| **Note** | This step applies only to Frame Relay interfaces (either low-speed or high-speed). |
Troubleshooting Tips

Below are answers to frequently asked questions (FAQs) and tips for troubleshooting situations that you may encounter when configuring or using the AutoQoS for the Enterprise feature.

Why can't I configure the AutoQoS for the Enterprise feature?
To configure the feature, CEF must be enabled. Verify that CEF is enabled on your network.

Why isn't the AutoQoS for the Enterprise feature supported on my device?
The AutoQoS for the Enterprise feature is supported only on the IP Plus image for low-end platforms. Verify that you have the IP Plus image installed on your device.

Why are some of my QoS configurations still present after I disable the AutoQoS for the Enterprise feature?
You have to manually disable any QoS configurations that were modified by the AutoQoS for the Enterprise feature.

Why did my low-speed network link go down when I enabled the AutoQoS for the Enterprise feature?
Ensure that the AutoQoS for the Enterprise feature is enabled on both sides of the network link.

Why can't I establish an end-to-end connection on the Frame Relay link?
Check the bandwidth on both sides of the Frame Relay link. The bandwidth on both sides of the link must be the same; otherwise a fragmentation size mismatch occurs, and a connection cannot be established.
What to Do Next

If the policy maps and class maps created (on the basis of the templates generated by the AutoQoS for the Enterprise feature) do not meet the needs of your network, the policy maps and class maps can be modified using the appropriate Cisco commands.

Although you can modify the policy maps and class maps, they may not be removed properly when the AutoQoS for the Enterprise feature is disabled using the `no auto qos` command. You may have to manually remove any modified policy maps and class maps. For more information about the `no auto qos` command, see the Cisco IOS Quality of Service Solutions Command Reference.

Verifying the AutoQoS for the Enterprise Configuration

SUMMARY STEPS

1. `enable`
2. `show auto qos [interface [interface type]]`
3. `show auto discovery qos [interface [type number]]`
4. `show policy-map interface [type number]`
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code> Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>show auto qos [interface [interface type]]</code> (Optional) Displays the AutoQoS templates created for a specific interface or all interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# show auto qos interface serial4/0</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>show auto discovery qos [interface [type number]]</code> (Optional) Displays the results of the data collected during the Auto-Discovery phase for a specific interface or all interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# show auto discovery qos interface serial4/0</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 4 | show policy-map interface [type number]
Example:
Device# show policy-map interface serial4/0 |
(Optional) Displays the packet statistics of all classes that are configured for all service policies either on the specified interface or subinterface or on a specific PVC on the interface.
- The packet statistics can be displayed for a specific interface, subinterface, PVC, or all interfaces, subinterfaces, or PVCs. |
Step 5 | exit
Example:
Device# exit |
(Optional) Exits privileged EXEC mode. |
Example Verifying the AutoQoS for the Enterprise Configuration

The AutoQoS template generation phase of the AutoQoS for the Enterprise feature automatically generates templates that are, in turn, used to create policy maps and class maps. These policy maps and class maps configure the QoS features on your network.

The output of the `show auto discovery qos` command, the `show auto qos` command, and the `show policy-map interface` command can be used to verify the contents of the policy maps and class maps created by this AutoQoS for the Enterprise feature. The following section contains sample output for each of these commands.

The following is sample output from the `show auto discovery qos` command. This example displays the data collected during the Auto-Discovery (data discovery) phase.

```
Device# show auto discovery qos

Serial2/1.1
AutoQoS Discovery enabled for applications
Discovery up time: 55 minutes, 52 seconds
AutoQoS Class information:
Class VoIP:
  Recommended Minimum Bandwidth: 517 Kbps/50% (PeakRate).
  Detected applications and data:
  Application/ AverageRate PeakRate Total
  Protocol (kbps/%) (kbps/%) (bytes)
  rtp audio 2/<1 517/50 703104

Class Interactive Video:
  Recommended Minimum Bandwidth: 24 Kbps/2% (AverageRate).
  Detected applications and data:
  Application/ AverageRate PeakRate Total
  Protocol (kbps/%) (kbps/%) (bytes)
  rtp video 24/2 5337/52 704574

Class Control:
  Recommended Minimum Bandwidth: 0 Kbps/0% (AverageRate).
  Detected applications and data:
  Application/ AverageRate PeakRate Total
  Protocol (kbps/%) (kbps/%) (bytes)
  h323 0/0 74/7 30212
  rtcp 0/0 7/<1 1540

Class Streaming Video:
  Recommended Minimum Bandwidth: 3 Kbps/<1% (AverageRate).
  Detected applications and data:
  Application/ AverageRate PeakRate Total
  Protocol (kbps/%) (kbps/%) (bytes)
  cuseeme 3/<1 6148/60 99038

Class Transactional:
  Recommended Minimum Bandwidth: 1 Kbps/<1% (AverageRate).
  Detected applications and data:
  Application/ AverageRate PeakRate Total
  Protocol (kbps/%) (kbps/%) (bytes)
  sqlnet 1/<1 1706/16 40187

Class Bulk:
  Recommended Minimum Bandwidth: 0 Kbps/0% (AverageRate).
  Detected applications and data:
  Application/ AverageRate PeakRate Total
  Protocol (kbps/%) (kbps/%) (bytes)
  ftp 0/0 313/30 74840

Class Scavenger:
  Recommended Minimum Bandwidth: 1 Kbps (AverageRate)/0% (fixed).
  Detected applications and data:
  Application/ AverageRate PeakRate Total
  Protocol (kbps/%) (kbps/%) (bytes)
```

QoS: AutoQoS Configuration Guide, Cisco IOS Release 15M&T
The following is sample output from the `show auto qos` command. This example displays the templates created on the basis of the data collected during the data collection phase.

```
Device# show auto qos
!
policy-map AutoQoS-Policy-Se2/1.1
  class AutoQoS-Voice-Se2/1.1
    priority percent 50
    set dscp ef
  class AutoQoS-Inter-Video-Se2/1.1
    bandwidth remaining percent 10
    set dscp af41
  class AutoQoS-Stream-Video-Se2/1.1
    bandwidth remaining percent 1
    set dscp cs4
  class AutoQoS-Transactional-Se2/1.1
    bandwidth remaining percent 1
    set dscp af21
  class AutoQoS-Scavenger-Se2/1.1
    bandwidth remaining percent 1
    set dscp cs1
  class class-default
    fair-queue
!
policy-map AutoQoS-Policy-Se2/1.1-Parent
  class class-default
    shape average 1024000
    service-policy AutoQoS-Policy-Se2/1.1
!
class-map match-any AutoQoS-Stream-Video-Se2/1.1
  match protocol cuseeme
!
class-map match-any AutoQoS-Transactional-Se2/1.1
  match protocol sqlnet
!
class-map match-any AutoQoS-Voice-Se2/1.1
  match protocol rtp audio
!
class-map match-any AutoQoS-Scavenger-Se2/1.1
  match protocol napster
!
class-map match-any AutoQoS-Inter-Video-Se2/1.1
  match protocol rtp video
!
xmon event 33333 log trap AutoQoS description "AutoQoS SNMP traps for Voice Drops" owner
```
AutoQoS

Serial2/1.1: DLCI 58 -
 interface Serial2/1.1 point-to-point
 frame-relay interface-dlci 58
 class AutoQoS-FR-Serial2/1-58
 !
 map-class frame-relay AutoQoS-FR-Serial2/1-58
 frame-relay cir 1024000
 frame-relay bc 10240
 frame-relay be 0
 frame-relay mincir 1024000

service-policy output AutoQoS-Policy-Se2/1.1-Parent

The following sample output from the `show policy-map interface` command displays the packet statistics of the classes (for all service policies) configured by the AutoQoS for the Enterprise feature on the serial 2/1/1 subinterface.

Device# show policy-map interface

Serial2/1.1: DLCI 58 -
Service-policy output: AutoQoS-Policy-Se2/1.1-Parent
Class-map: class-default (match-any)
 725797 packets, 224584146 bytes
 5 minute offered rate 3468000 bps, drop rate 2605000 bps
 Match: any
 Traffic Shaping
 Target/Average Byte Sustain Excess Interval Increment
 Rate Limit bits/int bits/int (ms) (bytes)
 1024000/1024000 6400 25600 25600 25 3200
 Adapt Queue Packets Bytes Packets Bytes Shaping
 Active Depth Delayed Delayed Active
 - 1000 268047 48786251 268032 48777309 yes
Service-policy : AutoQoS-Policy-Se2/1.1
Class-map: AutoQoS-Voice-Se2/1.1 (match-any)
 80596 packets, 5158144 bytes
 5 minute offered rate 105000 bps, drop rate 14000 bps
 Match: protocol rtp audio
 80596 packets, 5158144 bytes
 5 minute rate 105000 bps
 Queueing
 Strict Priority
 Output Queue: Conversation 72
 Bandwidth 70 (%) Bandwidth remaining 10 (%) Max Threshold 64 (packets)
 (pkts matched/bytes matched) 82010/5248640
 (total drops/bytes drops) 12501/800064
QoS Set
dscp ef
Packets marked 82010
Class-map: AutoQoS-Inter-Video-Se2/1.1 (match-any)
 50669 packets, 42473594 bytes
 5 minute offered rate 692000 bps, drop rate 513000 bps
 Match: protocol rtp video
 50669 packets, 42473594 bytes
 5 minute rate 692000 bps
 Queueing
 Output Queue: Conversation 73
 Bandwidth 176 (kbps) Burst 17900 (Bytes)
 (pkts matched/bytes matched) 51558/43218807
 (depth/total drops/no-buffer drops) 9/37454/7588
QoS Set
dscp af41
Packets marked 51558
Class-map: AutoQoS-Stream-Video-Se2/1.1 (match-any)
 79843 packets, 30678725 bytes
 5 minute offered rate 511000 bps, drop rate 428000 bps
 Match: protocol cuseeme
 79843 packets, 30678725 bytes
 5 minute rate 511000 bps
 Queueing
 Output Queue: Conversation 74
Additional References for AutoQoS for the Enterprise

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>NBAR</td>
<td>“Classifying Network Traffic Using NBAR” module</td>
</tr>
<tr>
<td>AutoQoS for voice over IP (VoIP)</td>
<td>“AutoQoS—VoIP ” module</td>
</tr>
<tr>
<td>LFI and cRTP</td>
<td>“Header Compression” module</td>
</tr>
<tr>
<td>Packet classification</td>
<td>“Classifying Network Traffic” module</td>
</tr>
<tr>
<td>LLQ</td>
<td>“Configuring Weighted Fair Queueing” module</td>
</tr>
</tbody>
</table>

Bandwidth remaining 1 (%) Max Threshold 64 (packets)
(pkts matched/bytes matched) 82381/31658370
(depth/total drops/no-buffer drops) 0/63869/7245
QoS Set
dscp cs4
Packets marked 82395
Class-map: AutoQoS-Transactional-Se2/1.1 (match-any)
77805 packets, 8511468 bytes
5 minute offered rate 157000 bps, drop rate 102000 bps
Match: protocol sqlnet
77805 packets, 8511468 bytes
5 minute rate 157000 bps
Queueing
Output Queue: Conversation 75
Bandwidth remaining 1 (%) Max Threshold 64 (packets)
(pkts matched/bytes matched) 80635/8820988
(depth/total drops/no-buffer drops) 64/50967/3296
QoS Set
dscp af21
Packets marked 80655
Class-map: AutoQoS-Scavenger-Se2/1.1 (match-any)
30723 packets, 7127736 bytes
5 minute offered rate 136000 bps, drop rate 84000 bps
Match: protocol napster
30723 packets, 7127736 bytes
5 minute rate 136000 bps
Queueing
Output Queue: Conversation 76
Bandwidth remaining 1 (%) Max Threshold 64 (packets)
(pkts matched/bytes matched) 31785/7373950
(depth/total drops/no-buffer drops) 0/16381/6160
QoS Set
dscp cs1
Packets marked 31955
Class-map: class-default (match-any)
406161 packets, 130634479 bytes
5 minute offered rate 2033000 bps, drop rate 1703000 bps
Match: any
Queueing
Flow Based Fair Queueing
Maximum Number of Hashed Queues 64
(total queued/total drops/no-buffer drops) 806/291482/13603
<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service policies (policy maps)</td>
<td>"Applying QoS Features Using the MQC” module</td>
</tr>
<tr>
<td>Frame Relay and ATM commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td>Frame Relay configuration</td>
<td>"Configuring Frame Relay” module</td>
</tr>
<tr>
<td>MLPPP</td>
<td>“Configuring Media-Independent PPP and Multilink PPP” module</td>
</tr>
<tr>
<td>SNMP</td>
<td>“Configuring SNMP Support” module</td>
</tr>
<tr>
<td>CiscoWorks QoS Policy Manager (QPM)</td>
<td>Product information available online at Cisco.com</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-CLASS-BASED-QOS-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>• CISCO-CLASS-BASED-QOS-CAPABILITY-MIB</td>
<td></td>
</tr>
<tr>
<td>• CISCO-NBAR-PROTOCOL-DISCOVERY-MIB</td>
<td></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for AutoQoS for the Enterprise

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 7: Feature Information for AutoQoS for the Enterprise

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoQos for the Enterprise</td>
<td>12.2(18)ZYA2
12.3(7)T
Cisco IOS XE Release 3.2SE</td>
<td>The AutoQoS for the Enterprise feature automates the deployment of quality of service (QoS) policies in a general business environment, particularly for midsize companies and branch offices of larger companies.
 In Release 12.3(7)T, this feature was introduced.
 In Release 12.2(18)ZYA2, support was added for the Cisco Catalyst 6500.
 The following commands were introduced or modified: auto discovery qos, auto qos, show auto discovery qos, show auto qos.</td>
</tr>
</tbody>
</table>
AutoQoS—VoIP

The AutoQoS—VoIP feature allows you to automate the delivery of quality of service (QoS) on your network and provides a means for simplifying the implementation and provisioning of QoS for Voice over IP (VoIP) traffic.

- Finding Feature Information, page 29
- Prerequisites for AutoQoS—VoIP, page 29
- Restrictions for AutoQoS—VoIP, page 30
- Information About AutoQoS—VoIP, page 31
- How to Configure the AutoQoS—VoIP Feature, page 33
- Configuration Examples for AutoQoS—VoIP, page 38
- Additional References for AutoQoS—VoIP, page 42
- Feature Information for AutoQoS—VoIP, page 44

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for AutoQoS—VoIP

- Ensure that no QoS policies (service policies) are attached to the interface. This feature cannot be configured if a QoS policy (service policy) is attached to the interface.
- To include Simple Network Management Protocol (SNMP) traps (monitored events), the SNMP server must be enabled.
Restrictions for AutoQoS—VoIP

General Restrictions

• The AutoQoS—VoIP feature is supported on the following interfaces, data-link connection identifiers (DLCIs), and permanent virtual circuits (PVCs) only:
 • Serial interfaces with PPP or High-Level Data Link Control (HDLC)
 • Frame Relay DLCIs in point-to-point subinterfaces only
 • ATM PVCs

The AutoQoS—VoIP feature is supported on low-speed ATM PVCs in point-to-point subinterfaces only. The AutoQoS—VoIP feature is supported on high-speed ATM PVCs in any type of subinterface.

Note

An ATM PVC is classified as low-speed if its bandwidth is less than or equal to 768 kb/s; an ATM PVC is classified as high-speed if its bandwidth is greater than 768 kb/s.

• Frame Relay-to-ATM Interworking links

Serial Interface Restrictions

• For a serial interface with a low-speed link, Multilink PPP (MLP) is configured automatically. The serial interface must have an IP address. When MLP is configured, this IP address is removed and put on the MLP bundle. To ensure that the traffic goes through the low-speed link, the following conditions must be met:
 • The AutoQoS—VoIP feature must be configured at the both ends of the link.
 • The amount of bandwidth configured must be the same on both ends of the link.

Frame Relay DLCI Restrictions

• The AutoQoS—VoIP feature cannot be configured on a Frame Relay DLCI if a map class is attached to the DLCI.

• If a Frame Relay DLCI is already assigned to one subinterface, the AutoQoS—VoIP feature cannot be configured from a different subinterface.

• For low-speed Frame Relay DLCIs configured for use on Frame Relay-to-ATM networks, MLP over Frame Relay (MLPoFR) is configured automatically. The subinterface must have an IP address.

When MLPoFR is configured, this IP address is removed and put on the MLP bundle. The AutoQoS—VoIP feature must also be configured on the ATM side of the network.

• For low-speed Frame Relay DLCIs with Frame Relay-to-ATM Interworking, the AutoQoS—VoIP feature cannot be configured if a virtual template is already configured for the DLCI.
ATM PVC Restrictions

• For a low-speed ATM PVC, the AutoQoS—VoIP feature cannot be configured if a virtual template is already configured for the ATM PVC.

• For low-speed ATM PVCs, MLP over ATM (MLPoATM) is configured automatically. The subinterface must have an IP address.

When MLPoATM is configured, this IP address is removed and put on the MLP bundle. The AutoQoS—VoIP feature must also be configured on the ATM side of the network.

Information About AutoQoS—VoIP

Benefits of AutoQoS—VoIP

The key benefits of the AutoQoS—VoIP feature include the following:

• You can implement the QoS features required for VoIP traffic without an in-depth knowledge of the following underlying technologies:
 • PPP
 • Frame Relay
 • ATM
 • Service policies
 • Link efficiency mechanisms (LEM), such as Link Fragmentation and Interleaving (LFI)

• The AutoQoS—VoIP feature simplifies QoS implementation and speeds up the provisioning of QoS technology over a Cisco network. It reduces human error and lowers training costs. With the AutoQoS—VoIP feature, one command (the `auto qos` command) enables QoS for VoIP traffic across every Cisco device.

• You can also use existing Cisco commands to modify the configurations automatically generated by the AutoQoS—VoIP feature as needed to meet specific requirements.

Design Considerations

General QoS Requirements

• Recommended methods and values are configured to meet the QoS requirements for voice traffic.

• The AutoQoS—VoIP feature takes the interface type and bandwidth into consideration when implementing the following QoS features:
 • Classification, used to differentiate the voice packets from the data packets and handle the voice packets appropriately.
• Low latency queueing (LLQ)/Priority Queueing (PQ). This feature (specifically, PQ) is applied to the voice packets to meet the latency requirements.

• Compressed Real-Time Protocol (cRTP). With cRTP, the 40-byte IP header of the voice packet is reduced from 2 to 4 bytes, thereby reducing voice bandwidth requirements. cRTP must be applied at both ends of a network link.

• LFI, used to reduce the jitter of voice packets by preventing voice packets from getting delayed behind large data packets in a queue. LFI must be applied at both ends of a network link.

Bandwidth Implications

- The bandwidth of the serial interface determines the speed of the link. The speed of the link in turn determines the configurations generated by the AutoQoS—VoIP feature.

Note

Changing the bandwidth after configuring the AutoQoS—VoIP feature is not recommended.

The AutoQoS—VoIP feature uses the bandwidth at the time the feature is configured. AutoQoS—VoIP does not respond to changes made to bandwidth after the feature is configured.

For example, if the `auto qos voip` command is used to configure the AutoQoS—VoIP feature on an interface with 1000 kb/s, the AutoQoS—VoIP feature generates configurations for high-speed interfaces. However, if the bandwidth is later changed to 500 kb/s, the AutoQoS—VoIP feature will not use the lower bandwidth. The AutoQoS—VoIP feature retains the higher bandwidth and continues to use the generated configurations for high-speed interfaces.

To force the AutoQoS—VoIP feature to use the lower bandwidth (and thus generate configurations for the low-speed interfaces), use the `no auto qos voip` command to remove the AutoQoS—VoIP feature and then reconfigure the feature.

Fragmentation for Frame Relay Networks

- For Frame Relay networks, fragmentation is configured using a delay of 10 milliseconds (ms) and a minimum fragment size of 60 bytes. This ensures that the VoIP packets are not fragmented. However, when the G.711 coder-decoder (codec) is used on low-speed links, the fragment size configured by the AutoQoS—VoIP feature could be smaller than the size of the G.711 VoIP packet.

To solve this potential problem, choose one of the following:

- Change the fragment size to the required value.
- Change the size of the G.711 VoIP packet to a smaller value.

For example, if the AutoQoS—VoIP feature is configured on a Frame Relay DLCI with 128 kb/s, the fragment size configured by the AutoQoS—VoIP feature will be 160 bytes. The size of the G.711 VoIP packet will be 160 bytes, minus the bytes in the packet headers for the layers. The workaround is to either change the fragment size from 160 bytes to 220 bytes or change the size of the G.711 VoIP packet from 160 bytes to 80 bytes.

Signaling Protocols

The AutoQoS—VoIP feature currently identifies the following signaling protocols:
• H.323
• H.225 (Unicast only)
• Session Initiation Protocol (SIP)
• "Skinny" gateway protocol
• Media Gateway Control Protocol (MGCP)

Note
Access control lists (ACLs) can be configured to identify any additional signaling protocols that may be needed.

Configurations for the Interface Configurations Policy Maps Class Maps and ACLs

The AutoQoS—VoIP feature automatically creates configurations that are then used for the interface configurations, policy maps, class maps, and ACLs. The interface configurations, policy maps, class maps, and ACLs are created to classify VoIP packets and to provide the appropriate QoS treatment for the network traffic.

This feature also creates interface-specific (or PVC-specific) configurations. These interface-specific (or PVC-specific) configurations are created according to the interface type and the link speed.

Note
Links with bandwidths lower than or equal to 768 kb/s are considered low-speed links; links with bandwidths higher than 768 kb/s are considered high-speed links.

How to Configure the AutoQoS—VoIP Feature

Enabling the AutoQoS—VoIP Feature

Before You Begin
Before using the auto qos command at an interface or an ATM PVC, ensure that the following prerequisites have been met:

• Cisco Express Forwarding (CEF) must be enabled at the interface or ATM PVC.
• If the interface or subinterface has a link speed of 768 kb/s or lower, configure the primary or secondary IP address of the interface by using the ip address command.
• For all interfaces or subinterfaces, configure the amount of bandwidth by using the bandwidth command. The amount of bandwidth allocated should be based on the link speed of the interface.
For an ATM PVC, configure the variable bit rate (VBR) by using either the vbr-nrt command or the vbr-rt command or configure the constant bit rate (CBR) by using the cbr command.

Note
- The auto qos voip command is not supported on subinterfaces.
- Do not change the bandwidth of the interface before using the auto qos command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface` type number
4. `bandwidth` kilobits
5. `vbr-nrt` output-pcr output-scr output-mbs [input-pcr] [input-scr] [input-mbs]
6. `vbr-rt` peak-rate average-rate burst
7. `cbr` rate
8. `pvc` [name] vpi / vci [ces | ilmi | qsaal | smds]
9. `ip address` ip-address mask secondary
10. `frame-relay interface-dlci` dlci [ietf | cisco] [voice-cir cir] [ppp virtual-template-name]
11. `auto qos voip` [trust] [fr-atm]
12. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Device> enable</td>
<td>Device> enable</td>
</tr>
</tbody>
</table>

Step 2	Enters global configuration mode.
configure terminal	Enters global configuration mode.
Example:	Enters global configuration mode.
Device# configure terminal	Device# configure terminal

Step 3	Configures an interface (or subinterface) type and enters interface configuration mode.
interface type number	Configures an interface (or subinterface) type and enters interface configuration mode.
Example:	Configures an interface (or subinterface) type and enters interface configuration mode.
Device(config-if)# interface serial 4/0	Device(config-if)# interface serial 4/0

<p>| Step 4 | (Optional) Sets a bandwidth value for an interface. |
| bandwidth kilobits | (Optional) Sets a bandwidth value for an interface. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# bandwidth 1540</td>
<td>• Enter the bandwidth value in kb/s.</td>
</tr>
<tr>
<td>Note</td>
<td>This step applies only to interfaces and subinterfaces. It is not required for ATM PVCs.</td>
</tr>
</tbody>
</table>

Step 5

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>vbr-nrt output-pcr output-scr output-mbs</td>
<td>(Optional) Configures the variable bit rate-nonreal time (VBR-NRT) QoS and specifies the output peak cell rate (PCR), output sustainable cell rate (SCR), and output maximum burst cell size (MBS) for an ATM PVC, PVC range, switched virtual circuit (SVC), virtual circuit (VC) class, or VC bundle member.</td>
</tr>
<tr>
<td>[input-pcr] [input-scr] [input-mbs]</td>
<td>• Enter the output PCR, SCR, and MBS.</td>
</tr>
</tbody>
</table>

Note: This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.

Step 6

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>vbr-rt peak-rate average-rate burst</td>
<td>(Optional) Configures the real-time VBR for Voice over ATM connections.</td>
</tr>
<tr>
<td>[peak-rate] [average-rate] [burst]</td>
<td>• Enter the peak information rate (PIR), the average information rate (AIR), and the burst size.</td>
</tr>
</tbody>
</table>

Note: This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.

Step 7

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbr rate</td>
<td>(Optional) Configures the CBR for the ATM circuit emulation service (CES) for an ATM PVC.</td>
</tr>
<tr>
<td>[rate]</td>
<td>This command can be used in different modes, including ATM-VC configuration mode (for ATM PVCs and SVCs), ATM PVC range configuration mode (for an ATM PVC range), or ATM PVC-in-range configuration mode (for an individual PVC within a PVC range).</td>
</tr>
<tr>
<td>[cbcrate]</td>
<td>• Enter the CBR in kb/s.</td>
</tr>
</tbody>
</table>

Note: This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.

Step 8

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvc [name] vpi / vci [ces] [ilmi] [qsaal] [smds]</td>
<td>(Optional) Creates or assigns a name to an ATM PVC and specifies the encapsulation type on an ATM PVC.</td>
</tr>
<tr>
<td>[pvcname] [vpi] / [vci]</td>
<td>• Enter the ATM network virtual path identifier (VPI) and the ATM network virtual channel identifier (VCI) for the ATM PVC.</td>
</tr>
</tbody>
</table>

Note: This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.

Step 9

Example:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip address [ip-address] mask [secondary]</td>
<td>(Optional) Sets a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>[ipaddress]</td>
<td>Applies only to low-speed interfaces (that is, interfaces with link speeds of 768 kb/s or lower.)</td>
</tr>
</tbody>
</table>

Note: This step applies only to ATM PVCs. It is not required for interfaces or subinterfaces.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10</td>
<td>(Optional) Assigns a DLCI to a specified Frame Relay subinterface on the device or access server, or assigns a specific PVC to a DLCI, or applies a virtual template configuration for a PPP session.</td>
</tr>
<tr>
<td>`frame-relay interface-dlci dlci [ietf</td>
<td>cisco] [voice-cir cir] [ppp virtual-template-name]`</td>
</tr>
<tr>
<td>Note</td>
<td>This step applies only to Frame Relay interfaces (either low-speed or high-speed).</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# frame-relay interface-dlci 100</td>
</tr>
<tr>
<td>Step 11</td>
<td>Configures the AutoQoS—VoIP feature.</td>
</tr>
<tr>
<td><code>auto qos voip [trust] [fr-atm]</code></td>
<td>Note For low-speed Frame Relay DLCIs interconnected with ATM PVCs in the same network, the <code>fr-atm</code> keyword must be explicitly configured in the <code>auto qos voip</code> command to configure the AutoQoS—VoIP feature properly. That is, the command must be configured as <code>auto qos voip fr-atm</code>.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# auto qos voip</td>
</tr>
<tr>
<td>Step 12</td>
<td>(Optional) Returns to interface configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# exit</td>
</tr>
</tbody>
</table>

FAQs and Troubleshooting Tips

Below are answers to frequently asked questions (FAQs) and tips for troubleshooting situations that you may encounter when configuring or using the AutoQoS—VoIP feature.

Why can’t I configure the AutoQoS—VoIP feature?

- To configure the feature, CEF must be is enabled. Verify that CEF is enabled on your network.
- Also, the feature cannot be enabled if a service policy is already attached to the interface. Determine whether there is a service policy attached to the interface. If so, remove the service policy from the interface.

Why isn’t the AutoQoS—VoIP feature supported on my device?

- The AutoQoS—VoIP feature is supported only on the IP Plus image for lower-end platforms. Verify that you have the IP Plus image installed on your device.

Why are some of my QoS configurations still present after I disable the AutoQoS—VoIP feature?

- You have to manually disable any QoS configurations that were modified by the AutoQoS—VoIP feature.
Why did my low-speed network link go down when I enabled the AutoQoS—VoIP feature?

- Ensure that AutoQoS—VoIP is enabled on both sides of the network link.

Why can’t I establish an end-to-end connection on the Frame Relay link?

- Check the bandwidth on both sides of the Frame Relay link. The bandwidth on both sides of the link must be the same, otherwise a fragmentation size mismatch occurs and a connection cannot be established.

What to Do Next

If the interface configurations, policy maps, class maps, and ACLs created (on the basis of the configurations created by the AutoQoS—VoIP feature) do not meet the needs of your network, the interface configurations, policy maps, class maps, and ACLs can be modified using the appropriate Cisco commands.

Note

While you can modify the interface configurations, policy maps, class maps, and ACLs, they may not be removed properly when the AutoQoS—VoIP feature is disabled using the no auto qos command. You may need to manually remove any modified interface configurations, policy maps, class maps, and ACLs. For more information about the no auto qos command, see the Cisco IOS Quality of Service Solutions Command Reference.

Verifying the Configuration

SUMMARY STEPS

1. enable
2. show auto qos [interface [interface type]]
3. show policy-map interface [interface type]
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Step 2 show auto qos [interface [interface type]] | (Optional) Displays the interface configurations, policy maps, class maps, and ACLs created on the basis of automatically generated configurations. |
| Example: Device# show auto qos interface s4/0 | |
| Example: | The interface configurations, policy maps, class maps, and ACLs can be displayed for a specific interface or all interfaces. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 show policy-map interface [interface type]</td>
<td>(Optional) Displays the packet statistics of all classes that are configured for all service policies either on the specified interface or subinterface or on a specific PVC on the interface.</td>
</tr>
<tr>
<td>Example: Device# show policy-map interface s4/0</td>
<td>• The packet statistics can be displayed for a specific interface, subinterface, PVC, or all interfaces, subinterfaces, or PVCs.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>(Optional) Exits privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device# exit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for AutoQoS—VoIP

Examples: Configuring the AutoQoS—VoIP Feature

When the `auto qos voip` command is used to configure the AutoQoS—VoIP feature, configurations are generated. These configurations are then used to create interface configurations, policy maps, class maps, and ACLs.

This section contains examples of configuring the AutoQoS—VoIP feature on the interfaces, PVCs, and links.

Example: Configuring the AutoQoS—VoIP Feature on a High-Speed Serial Interface

In this example, the AutoQoS—VoIP feature is configured on the high-speed serial interface 1/2.

```
Device> enable
Device# configure terminal
Device(config)# interface serial 1/2
Device(config-if)# bandwidth 1540
Device(config-if)# auto qos voip
Device(config-if)# exit
```

Example: Configuring the AutoQoS—VoIP Feature on a Low-Speed Serial Interface

In this example, the AutoQoS—VoIP feature is configured on the low-speed serial interface 1/3.

```
Device# configure terminal
Device(config)# interface serial 1/3
Device(config-if)# bandwidth 512
Device(config-if)# ip address 10.10.100.1 255.255.255.0
Device(config-if)# auto qos voip
Device(config-if)# exit
```
Example: Configuring the **AutoQoS—VoIP Feature on High-Speed Frame Relay Interfaces**

In this example, the AutoQoS—VoIP feature is configured on the high-speed serial point-to-point Frame Relay subinterface 4/1.2.

```
Device> enable
Device# configure terminal
Device(config)# interface serial 4/1.2 point-to-point
Device(config-if)# bandwidth 1540
Device(config-if)# frame-relay interface-dlci 100
Device(config-fr-dlci)# auto qos voip
Device(config-if)# exit
```

Example: Configuring the **AutoQoS—VoIP Feature on Low-Speed Frame Relay Interfaces**

In this example, the AutoQoS—VoIP feature is configured on the low-speed point-to-point Frame Relay subinterface 4/2.1.

```
Device# configure terminal
Device(config)# interface serial 4/2.1 point-to-point
Device(config-if)# bandwidth 512
Device(config-if)# ip address 10.10.100.1 255.255.255.0
Device(config-if)# frame-relay interface-dlci 100
Device(config-fr-dlci)# auto qos voip
Device(config-if)# exit
```

Example: Configuring the **AutoQoS—VoIP Feature on a High-Speed ATM PVC**

In this example, the AutoQoS—VoIP feature is configured on the high-speed point-to-point ATM PVC ATM5/0.1.

```
Device# configure terminal
Device(config)# interface ATM5/0.1 point-to-point
Device(config-if)# pvc 1/32
Device(config-if)# vbr-nrt 1540 1540
Device(config-if)# auto qos voip
Device(config-if)# exit
```

Example: Configuring the **AutoQoS—VoIP Feature on a Low-Speed ATM PVC**

In this example, the AutoQoS—VoIP feature is configured on a low-speed point-to-point ATM PVC ATM5/0.2.

```
Device# configure terminal
Device(config)# interface ATM5/0.2 point-to-point
Device(config-if)# ip address 10.10.100.1 255.255.255.0
Device(config-if)# pvc 1/32
Device(config-if)# vbr-nrt 512 512
Device(config-if)# auto qos voip
Device(config-if)# exit
```

Example: Configuring the **AutoQoS—VoIP Feature for Frame Relay-to-ATM Interworking**

In this example, the AutoQoS—VoIP feature is configured for Frame Relay-to-ATM Interworking. The AutoQoS—VoIP feature is configured on the serial point-to-point subinterface 1/3.1.

```
Device# configure terminal
Device(config)# interface serial 1/3.1 point-to-point
Device(config-if)# bandwidth 512
Device(config-if)# ip address 10.10.100.1 255.255.255.0
Device(config-if)# frame-relay interface-dlci 100
```
Device(config-if)# auto qos voip fr-atm
Device(config-if)# exit
In this configuration, the optional \texttt{fr-atm} keyword is used to enable the AutoQoS—VoIP feature for the Frame Relay-to-ATM Interworking.

\textbf{Note}

The ATM-to-ATM side of the network needs no special configuration to distinguish it from the ATM-to-Frame Relay side of the network.

\section*{Examples: Verifying the AutoQoS—VoIP Feature Configuration}

When the \texttt{auto qos voip} command is used to configure the AutoQoS—VoIP feature, configurations are generated. These configurations are then used to create interface configurations, policy maps, class maps, and ACLs. The \texttt{show auto qos interface} command can be used to verify the contents of the interface configurations, policy maps, class maps, and ACLs.

This section contains the following sample output of the \texttt{show auto qos interface} command for interfaces, PVCs, and links.

\textbf{Note}

The \texttt{show auto qos interface} command output displays only those configurations created by the AutoQoS—VoIP feature.

\subsection*{Sample show auto qos interface Command Output for a High-Speed Serial Interface}

The following is sample output from the \texttt{show auto qos} command for a high-speed serial interface:

\verbatimverbatim
Device# show auto qos interface serial 6/0
Serial6/0 -
 !
 interface Serial6/0
 service-policy output AutoQoS-Policy-UnTrust
\verbatimverbatim

\subsection*{Sample show auto qos interface Command Output for a Low-Speed Serial Interface}

The following is sample output from the \texttt{show auto qos} command for a low-speed serial interface:

\verbatimverbatim
Device# show auto qos interface serial 6/0
Serial6/0 -
 !
 interface Serial6/0
 no ip address
 encapsulation ppp
 no fair-queue
 ppp multilink
 multilink-group 2001100126
 !
 interface Multilink2001100126
 bandwidth 512
 ip address 10.10.100.1 255.255.255.0
 service-policy output AutoQoS-Policy-UnTrust
 ppp multilink
 ppp multilink fragment-delay 10
\verbatimverbatim
ppp multilink interleave
ip rtp header-compression iphc-format

Sample show auto qos interface Command Output for a High-Speed Frame Relay Interface

The following is sample output from the show auto qos command for a high-speed Frame Relay interface:

Device# show auto qos interface serial6/1.1

Serial6/1.1: DLCI 100 -
! interface Serial6/1
frame-relay traffic-shaping
!
interface Serial6/1.1 point-to-point
frame-relay interface-dlci 100
 class AutoQoS-VoIP-FR-Serial6/1-100
!
map-class frame-relay AutoQoS-VoIP-FR-Serial6/1-100
frame-relay cir 1540000
frame-relay bc 15400
frame-relay be 0
frame-relay mincir 1540000
service-policy output AutoQoS-Policy-UnTrust

Note
The output from the show auto qos interface command for high-speed Frame Relay interfaces is similar to the output for low-speed Frame Relay interfaces. The only difference is that Frame Relay Fragmentation and cRTP are not configured for high-speed Frame Relay interfaces.

Sample show auto qos interface Command Output for a Low-Speed Frame Relay Interface

The following is sample output from the show auto qos command for a low-speed Frame Relay interface:

Device# show auto qos interface serial 6/1.1

Serial6/1.1: DLCI 100 -
! interface Serial6/1
frame-relay traffic-shaping
!
interface Serial6/1.1 point-to-point
frame-relay interface-dlci 100
 class AutoQoS-VoIP-FR-Serial6/1-100
!
map-class frame-relay AutoQoS-VoIP-FR-Serial6/1-100
frame-relay cir 512000
frame-relay bc 5120
frame-relay be 0
frame-relay mincir 512000
service-policy output AutoQoS-Policy-UnTrust
frame-relay fragment 640

Sample show auto qos interface Command Output for a High-Speed ATM PVC

The following is sample output from the show auto qos command for a high-speed ATM PVC:

Device# show auto qos interface atm 2/0.1

ATM2/0.1: PVC 1/100 -
! interface ATM2/0.1 point-to-point
pvc 1/100
tx-ring-limit 3
service-policy output AutoQoS-Policy-UnTrust

Sample show auto qos interface Command Output for a Low-Speed ATM PVC

The following is sample output from the `show auto qos` command for a low-speed ATM PVC:

Device# show auto qos interface atm 2/0.1
ATM2/0.1: PVC 1/100 -
 !
 interface ATM2/0.1 point-to-point
 pvc 1/100
 tx-ring-limit 3
 encapsulation aal5mux ppp Virtual-Template200
 !
 interface Virtual-Template200
 bandwidth 512
 ip address 10.10.100.1 255.255.255.0
 service-policy output AutoQoS-Policy-UnTrust
 ppp multilink
 ppp multilink fragment-delay 10
 ppp multilink interleave

Sample show auto qos interface Command Output for Frame Relay-to-ATM Interworking Links

The following is sample output from the `show auto qos` command for Frame Relay-to-ATM Interworking links:

Device# show auto qos interface serial6/1.1
Serial6/1.1: DLCI 100 -
 !
 interface Serial6/1
 frame-relay traffic-shaping
 !
 interface Serial6/1.1 point-to-point
 frame-relay interface-dlci 100 ppp Virtual-Template200
 class AutoQoS-VoIP-FR-Serial6/1-100
 !
 interface Virtual-Template200
 bandwidth 512
 ip address 10.10.100.1 255.255.0.0
 service-policy output AutoQoS-Policy-UnTrust
 ppp multilink
 ppp multilink fragment-delay 10
 ppp multilink interleave
 !
 map-class frame-relay AutoQoS-VoIP-FR-Serial6/1-100
 frame-relay cir 512000
 frame-relay bc 5120
 frame-relay be 0
 frame-relay mncir 512000

Additional References for AutoQoS—VoIP

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>LFI and cRTP</td>
<td>“Header Compression” module</td>
</tr>
<tr>
<td>Packet classification</td>
<td>“Classifying Network Traffic” module</td>
</tr>
<tr>
<td>LLQ</td>
<td>“Configuring Weighted Fair Queueing” module</td>
</tr>
<tr>
<td>Service policies (policy maps)</td>
<td>“Applying QoS Features Using the MQC” module</td>
</tr>
<tr>
<td>Frame Relay and ATM commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td>Frame Relay configuration</td>
<td>“Configuring Frame Relay” module</td>
</tr>
<tr>
<td>MLPPP</td>
<td>“Configuring Media-Independent PPP and Multilink PPP” module</td>
</tr>
<tr>
<td>SNMP</td>
<td>“Configuring SNMP Support” module</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>To obtain lists of supported MIBs by platform and Cisco IOS release, and to download MIB modules, go to the Cisco MIB website on Cisco.com at the following URL: http://www.cisco.com/public/sw-center/netmgmt/cmtlk/mibs.shtml</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for AutoQoS—VoIP

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
The AutoQoS—VoIP feature allows you to automate the delivery of quality of service (QoS) on your network and provides a means for simplifying the implementation and provisioning of QoS for Voice over IP (VoIP) traffic.

The following commands are new or modified: `auto qos voip`, `show auto qos`.

In Cisco IOS XE 3.1.0SG, this feature was integrated.

Table 8: Feature Information for AutoQoS—VoIP

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoQoS—VoIP</td>
<td>12.2(15)T Cisco IOS XE 3.1.0SG Cisco IOS XE Release 3.2SE</td>
<td>The AutoQoS—VoIP feature allows you to automate the delivery of quality of service (QoS) on your network and provides a means for simplifying the implementation and provisioning of QoS for Voice over IP (VoIP) traffic. The following commands are new or modified: <code>auto qos voip</code>, <code>show auto qos</code>. In Cisco IOS XE 3.1.0SG, this feature was integrated.</td>
</tr>
</tbody>
</table>