
Model-Driven Telemetry

• Model-Driven Telemetry, on page 1

Model-Driven Telemetry
Model-driven telemetry provides a mechanism to streamYANG-modelled data to a data collector. This module
describes model-driven telemetry and provides sample telemetry remote procedure calls (RPCs).

Prerequisites for Model-Driven Telemetry
• Knowledge of YANG is needed to understand and define the data that is required when using telemetry.

• Knowledge of XML, XML namespaces, and XML XPath.

• Knowledge of standards and principles defined by the IETF telemetry specifications.

• The urn:ietf:params:netconf:capability:notification:1.1 capability must be listed in hello messages. This
capability is advertised only on devices that support IETF telemetry.

• NETCONF-YANG must be configured and running on the device.

Either NETCONF-YANG or gNXI must be configured for telemetry to work. If
your platform does not support gNXI, you must configure NETCONF, even if
NETCONF is not used. For more information on configuring NETCONF-YANG,
see the NETCONF Protocol module. For more information on gNXI, see the
gNMI Protocol module.

Note

Verify that the following processes are running, by using the show platform software yang-management
process command:

Device# show platform software yang-management process

confd : Running
nesd : Running
syncfd : Running
ncsshd : Running
dmiauthd : Running
nginx : Running

Model-Driven Telemetry
1

https://en.wikipedia.org/wiki/XPath
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/178/b_178_programmability_cg/m_178_prog_yang_netconf.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/178/b_178_programmability_cg/m_178_prog_gnmi.html

ndbmand : Running
pubd : Running
gnmib : Running

The process pubd is the model-driven telemetry process, and if it is not running,
model-driven telemetry will not work.

Note

The following table provides details about each of the Device Management Interface (DMI) processes.

Table 1: Field Descriptions

Primary RoleDevice Management Interface Process Name

Configuration daemon.confd

Network element synchronizer daemon.nesd

Sync daemon (maintains synchronization between
the running state and corresponding models).

syncfd

NETCONF Secure Shell (SSH) daemon.ncsshd

DMI authentication daemon.dmiauthd

NGINX web server. Acts as a web server for
RESTCONF.

nginx

NETCONF database manager.ndbmand

Publication manager and publisher used for
model-driven telemetry.

pubd

GNMI protocol server.gnmib

NETCONF-Specific Prerequisites

• Knowledge of NETCONF and how to use it, including:

• Establishing a NETCONF session.

• Sending and receiving hello and capabilities messages.

• Sending and receiving YANG XML RPCs over the established NETCONF session. For more
information, see the Configure NETCONF/YANG and Validate Example for Cisco IOS XE 16.x
Platforms document.

Enabling and Validating NETCONF

The NETCONF functionality can be verified by creating an SSH connection to the device using a valid
username and password and receiving a hello message, which contains the capability of the device:

Model-Driven Telemetry
2

Model-Driven Telemetry
Prerequisites for Model-Driven Telemetry

https://www.cisco.com/c/en/us/support/docs/storage-networking/management/200933-YANG-NETCONF-Configuration-Validation.html
https://www.cisco.com/c/en/us/support/docs/storage-networking/management/200933-YANG-NETCONF-Configuration-Validation.html

Device:~ USER1$ ssh -s cisco1@172.16.167.175 -p 830 netconf
cisco1@172.16.167.175's password: cisco1

<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability
.
.
.
</capabilities>
<session-id>2870</session-id></hello>]]>]]>

Use < ^C > to exit

NETCONF is ready to use, when a successful reply is received in response to your hello message.

RESTCONF-Specific Prerequisites

• Knowledge of RESTCONF and how to use it (when creating a subscription using RESTCONF).

• RESTCONF must be configured on the device.

• RESTCONFmust send correctly-formedUniformResource Identifiers (URIs) that adhere to RESTCONF
RFC 8040.

Enabling and Validating RESTCONF

Validate RESTCONF using appropriate credentials and the following URI:
Operation: GET
Headers:
" Accept: application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json
" Content-Type: application/yang-data+json
Returned Output (omitted for breverity):
{

"ietf-restconf:data": {
"ietf-yang-library:modules-state": {

"module": [
{

"name": "ATM-FORUM-TC-MIB",
"revision": "",
"schema":

"https://10.85.116.28:443/restconf/tailf/modules/ATM-FORUM-TC-MIB",
"namespace": "urn:ietf:params:xml:ns:yang:smiv2:ATM-FORUM-TC-MIB"

},
{

"name": "ATM-MIB",
"revision": "1998-10-19",
"schema":

"https://10.85.116.28:443/restconf/tailf/modules/ATM-MIB/1998-10-19",
"namespace": "urn:ietf:params:xml:ns:yang:smiv2:ATM-MIB"

},
{

"name": "ATM-TC-MIB",

Model-Driven Telemetry
3

Model-Driven Telemetry
Prerequisites for Model-Driven Telemetry

https://tools.ietf.org/html/rfc8040

"revision": "1998-10-19",
"schema": "https://10.85.116.28:443/restconf/tailf/

..
<snip>
..
}

RESTCONF is validated successfully when you receive the above reply with all device capabilities.

gRPC-Specific Prerequisites

• Set up a gRPC collector that understands key-value Google Protocol Buffers (GPB) encoding.

Restrictions for Model-Driven Telemetry
• Automatic hierarchy in selections is not supported for on-change subscriptions when using the yang-push
stream. This means that when selecting a list, child lists of the list are not automatically included. For
example, the subscriber must manually create a subscription for each child list.

This restriction also applies to periodic subscriptions, if subscribed to the elements in the list below:

• Cisco-IOS-XE-wireless-access-point-oper

• Cisco-IOS-XE-wireless-ap-global-oper

• Cisco-IOS-XE-wireless-awips-oper

• Cisco-IOS-XE-wireless-client-global-oper

• Cisco-IOS-XE-wireless-client-oper

• Cisco-IOS-XE-wireless-general-cfg

• Cisco-IOS-XE-wireless-general-oper

• Cisco-IOS-XE-wireless-mesh-cfg

• Cisco-IOS-XE-wireless-mesh-oper

• Cisco-IOS-XE-wireless-mobility-oper

• Cisco-IOS-XE-wireless-rfid-oper

• Cisco-IOS-XE-wireless-rrm-emul-oper

• Cisco-IOS-XE-wireless-rrm-global-oper

• Cisco-IOS-XE-wireless-rrm-oper

• Cisco-IOS-XE-wireless-site-cfg

• bootcamp-test-autonomous

• openconfig-access-points

• openconfig-ap-manager

• openconfig-lacp

• openconfig-platform-psu

Model-Driven Telemetry
4

Model-Driven Telemetry
Restrictions for Model-Driven Telemetry

• Checking the authorization of data access is not supported. All the data requested by a subscriber is sent.

• Subtree filters are not supported. If subtree filters are specified, the subscription is marked as invalid.

• Defining multiple receivers within subscription parameters is not supported; only the first receiver
destination is attempted. Other defined receivers are ignored.

gRPC-Specific Restrictions

• Transport Layer Security-based (TLS-based) authentication between a device and receiver is not supported.

TLS-based authentication is supported in Cisco IOS XE Amsterdam 17.1.1 and later releases.

yang-push-Specific Restriction

• Subscription quality of service (QoS) is not supported.

Information About Model-Driven Telemetry
The following sections provide information about the various aspects of model-driven telemetry.

Model-Driven Telemetry Overview
Telemetry is an automated communications process by which measurements and other data are collected at
remote or inaccessible points and transmitted to the receiving equipment for monitoring. Model-driven
telemetry provides a mechanism to stream YANG-modeled data to a data collector.

Applications can subscribe to specific data items they need, by using standards-based YANG data models
over NETCONF, RESTCONF, or gRPC Network Management Interface (gNMI) protocols. Subscriptions
can also be created by using CLIs if it is a configured subscription.

Structured data is published at a defined cadence, or on-change, based upon the subscription criteria and data
type.

Telemetry Roles
In systems that use telemetry, different roles are involved. In this document the following telemetry roles are
described:

• Publisher: Network element that sends the telemetry data.

• Receiver: Receives the telemetry data. This is also called the collector.

• Controller: Network element that creates subscriptions but does not receive the telemetry data. The
telemetry data associated with the subscriptions, it creates goes to receivers. This is also called the
management agent or management entity.

• Subscriber: Network element that creates subscriptions. Technically, while this does not have to be the
receiver too, in this document, both are the same.

Subscription Overview
Subscriptions are items that create associations between telemetry roles, and define the data that is sent between
them.

Model-Driven Telemetry
5

Model-Driven Telemetry
Information About Model-Driven Telemetry

Specifically, a subscription is used to define the set of data that is requested as part of the telemetry data; when
the data is required, how the data is to be formatted, and, when not implicit, who (which receivers) should
receive the data.

Even though the maximum number of supported subscriptions is platform-dependent, currently 100
subscriptions are supported. The subscriptions can be either configured or dynamic, and use any combination
of transport protocols. If too many subscriptions are operating at the same time to allow all the valid configured
subscriptions to be active, the removal of an active subscription will cause one of the inactive but valid
configured subscriptions to be attempted. Periodic triggered subscriptions (100 centiseconds is the default
minimum) and on-change triggered subscriptions are supported.

NETCONF and other northbound programmable interfaces (such as RESTCONF or gNMI) are supported to
configure subscriptions.

Two types of subscriptions are used in telemetry on Cisco IOS XE systems: dynamic and configured
subscriptions.

Because dynamic subscriptions are created by clients (the subscriber) that connect into the publisher, they are
considered dial-in. Configured subscriptions cause the publisher to initiate connections to receivers, and as a
result, they are considered dial-out.

Dial-In and Dial-Out Model-Driven Telemetry

The two flavors of model-driven telemetry are, dial-in and dial-out.

Table 2: Dial-in and Dial-Out Model-Driven Telemetry

Dial-Out (Static or Configured)Dial-In (Dynamic)

Telemetry updates are sent to the specified receiver
or collector.

Telemetry updates are sent to the initiator or
subscriber.

Subscription is created as part of the running
configuration; it remains as the device configuration
till the configuration is removed.

Life of the subscription is tied to the connection
(session) that created it, and over which telemetry
updates are sent. No change is observed in the running
configuration.

Dial-out subscriptions are created as part of the device
configuration, and they automatically reconnect to the
receiver after a stateful switchover.

Dial-in subscriptions need to be reinitiated after a
reload, because established connections or sessions
are killed during stateful switchover.

Subscription ID is fixed and configured on the device
as part of the configuration.

Subscription ID is dynamically generated upon
successful establishment of a subscription.

Data Source Specifications

Sources of telemetry data in a subscription are specified by the use of a stream and a filter. The term stream
refers to a related set of events. RFC 5277 defines an event stream as a set of event notifications matching
some forwarding criteria.

Normally, the set of events from a stream are filtered. Different filter types are used for different stream types.

Cisco IOS XE supports two streams: yang-push and yang-notif-native.

Model-Driven Telemetry
6

Model-Driven Telemetry
Dial-In and Dial-Out Model-Driven Telemetry

Update Notifications

As part of a subscription, you can specify when data is required. However this is stream-dependent. Some
streams support making data available only when there a change happens, or after an event within the stream.
Other streams make data available when there is a change or at a defined time period.

The result of the when specification is a series of update notifications that carry the telemetry data of interest.
How the data is sent is dependent on the protocol used for the connection between the publisher and the
receiver.

Subscription Identifiers

Subscriptions are identified by a 32-bit positive integer value. The IDs for configured subscriptions is set by
the controller, and for dynamic subscriptions is set by the publisher.

Controllers must limit the values they use for configured subscriptions in the range 0 to 2147483647 to avoid
collisions with the dynamic subscriptions created on the publisher. The dynamic subscription ID space is
global, meaning that the subscription IDs for independently-created dynamic subscriptions do not overlap.

Subscription Management

Any form of management operation can be used to create, delete, and modify configured subscriptions. This
includes both CLIs and network protocol management operations.

All subscriptions, both configured and dynamic, can be displayed using show commands and network protocol
management operations.

The following table describes the supported streams and encodings along with the combinations that are
supported. While streams-as-inputs is intended to be independent of the protocols-as-outputs, not all
combinations are supported.

Table 3: Supported Combination of Protocols

gNMIgRPCNETCONFTransport
Protocol

Dial-OutDial-InDial-OutDial-InDial-OutDial-In

Stream

NoYesYesNoNoYesyang-push

NoNoYesNoNoYesyang-notif-native

NoJSON_IETFKey-value
Google
Protocol
Buffers
(kvGPB)

NoNoXMLEncodings

RPC Support in Telemetry

You can send and receive YANG XML remote procedure calls (RPCs) in established NETCONF sessions.

The <establish-subscription> and <delete-subscription> RPCs are supported for telemetry.

Model-Driven Telemetry
7

Model-Driven Telemetry
Update Notifications

When an <establish-subscription> RPC is sent, the RPC reply from a publisher contains an <rpc-reply>
message with a <subscription-result> element containing a result string.

The following table displays the response and reason for the response in an <rpc-reply> message:

CauseRPCResult String

Success<establish-subscription>ok

<delete-subscription>

The specified subscription does not
exist.

<delete-subscription>error-no-such-subscription

The requested subscription is not
supported.

<establish-subscription>error-no-such-option

A subscription cannot be created
because of the following reasons:

<establish-subscription>error-insufficient-resources

• There are too many
subscriptions.

• The amount of data requested
is too large.

• The interval for a periodic
subscription is too small.

Some other error.<establish-subscription>error-other

Service gNMI

The gNMI specification identifies a single top-level service named gNMI that contains high-level RPCs. The
following is a service definition that contains the subscribe service RPC:

service gNMI{
.
.
.
rpc Subscribe(stream SubscribeRequest)

returns (stream SubscribeResponse);

The <subscribe RPC> is used by a management agent to request a dynamic subscription. This RPC contains
a set of messages. The following section describes the messages supported by the <subscribe RPC>

SubscribeRequest Message

This message is sent by a client to request updates from the target for a specified set of paths. The following
is a message definition:

message SubscribeRequest {
oneof request {
SubscriptionList subscribe = 1;
PollRequest poll = 3;
AliasList aliases = 4;

Model-Driven Telemetry
8

Model-Driven Telemetry
Service gNMI

}
Repeated gNMI_ext.Extensions = 5;

}

Only request.subscribe is supported.Note

SubscribeResponse Message

This message is carried from the target to the client over an established <subscribe RPC>. The following is
a message definition:
message SubscribeResponse {
oneof response {
Notification update = 1;
Bool sync_response = 3;
Error error = 4 [deprecated=true];

}
}

Only Notification update is supported.Note

SubscriptionList Message

This message is used to indicate a set of paths for which common subscription behavior are required. Within
the specification of the SubscriptionList message, the client can identify one or more subscriptions to a given
prefix in the model. The following is a SubscriptionList message defintion:
message SubscriptionList {
Path prefix = 1;
repeated Subscription subscription = 2;
bool use_aliases = 3;
QOSMarking qos = 4;
enum Mode {

STREAM = 0;
ONCE = 1;
POLL = 2;

}
Mode mode = 5;
bool allow_aggregation = 6;
repeated ModelData use_models = 7;
Encoding encoding = 8; // only JSON_IETF supported in R16.12
Bool updates_only = 9;

}

Path prefix (only explicit element names), Subscription subscription, Mode mode STREAM, and Encoding
encoding IETF_JSON are supported.

Note

Model-Driven Telemetry
9

Model-Driven Telemetry
Service gNMI

Prefix Message

A valid subscription list may or may not contain a filled in prefix, composed of the shared (across all requested
subscriptions) portion of the xPath.

message Path {
repeated string element = 1; [deprecated]
string origin = 2;
repeated PathElem elem = 3;
optional string target = 4;

}

Origin (supported values are “” and “openconfig”), elem (supported element name is prefix-free), and target
are supported.

Note

Subscription Message

This message generically describes a set of data that is to be subscribed to by a client. It contains a path,and
attributes used to govern the notification behaviors. The following is a Subscription message definition:

message Subscription {
Path path = 1;
SubscriptionMode mode = 2;
uint64 sample_interval = 3;
bool suppress_redundant = 4;
uint64 heartbeat_interval = 5;

}

Path path, SubscriptionMode mode, Uint64 sample_interval, and Uint64 heartbeat_interval (only if the value
is set to 0) are supported.

Note

Path Message

A valid subscription contains a filled in path, which when added to the prefix associated with the subscription
list constitutes a full qualified path. The following is a Path message definition:

message Path {
repeated string element = 1; [deprecated]
string origin = 2;
repeated PathElem elem = 3;
optional string target = 4;

}

Model-Driven Telemetry
10

Model-Driven Telemetry
Service gNMI

Origin (supported values are “” and “openconfig”), elem (supported element name is prefix-free), and target
are supported.

Note

SubscriptionMode Message

This message informs the target about how to trigger notifications updates. The following is a SubscriptionMode
message definition:

enum SubscriptionMode {
TARGET_DEFINED = 0;
ON_CHANGE = 1;
SAMPLE = 2;

}

Only SAMPLE and ON_CHANGE (from Cisco IOS XE Bengaluru 17.6.1) are supported.

ON_CHANGE support is limited to certain model paths. To check whether a path supports ON_CHANGE,
query the path in the Cisco-IOS-XE-MDT-capabilities-oper model. For more information about the model,
see the section, Displaying On-Change Subscription YANG Models, on page 28.

Note

Notifications Message

This message delivers telemetry data from the subscription target to the collector. The following is a
Notifications message definition:

message Notification {
int64 timestamp = 1;
Path prefix = 2;
string alias = 3;
repeated Update update = 4;
repeated Path delete = 5;
bool atomic = 6;

}

Timestamp, prefix, and update are supported.Note

Dynamic Subscription Management

This section describes how to create and delete dynamic subscriptions.

Creating Dynamic Subscriptions for NETCONF Dial-In

Dynamic subscriptions are created by subscribers who connect to the publisher and call for subscription
creation using a mechanismwithin that connection, usually, an RPC. The lifetime of the subscription is limited
to the lifetime of the connection between the subscriber and the publisher, and telemetry data is sent only to
that subscriber. These subscriptions do not persist if either the publisher or the subscriber is rebooted. You
can create dynamic subscriptions by using the in-band <establish-subscription> RPC. The

Model-Driven Telemetry
11

Model-Driven Telemetry
Dynamic Subscription Management

<establish-subscription> RPC is sent from an IETF telemetry subscriber to the network device. The stream,
xpath-filter, and period fields in the RPC are mandatory.

RPCs that are used to create and delete dynamic subscriptions using NETCONF are defined in Custom
Subscription to Event Notifications draft-ietf-netconf-subscribed-notifications-03 and Subscribing to YANG
datastore push updates draft-ietf-netconf-yang-push-07.

Periodic Dynamic Subscriptions

The following is a sample periodic subscription for NETCONF Dial-In:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<establish-subscription

xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"
xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<stream>yp:yang-push</stream>
<yp:xpath-filter>/mdt-oper:mdt-oper-data/mdt-subscriptions</yp:xpath-filter>
<yp:period>1000</yp:period>

</establish-subscription>
</rpc>

On-Change Dynamic Subscription

The following is a sample on-change dynamic subscription over NETCONF:

<establish-subscription xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"
xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<stream>yp:yang-push</stream>

<yp:xpath-filter>/cdp-ios-xe-oper:cdp-neighbor-details/cdp-neighbor-detail</yp:xpath-filter>

<yp:dampening-period>0</yp:dampening-period>
</establish-subscription>

Deleting Dynamic Subscriptions

You can delete dynamic subscriptions by using the in-band <delete subscription> RPC, the clear telemetry
ietf subscription command, and the <kill-subscription> RPC along with disconnecting the transport session.

For gNMI each subscription in the SubscribeRequest.subscribe.subscription a separate dynamic subscription
ID is generated. Killing any of these subscription IDs, either through the <kill-subscription> RPC or clear
CLI, will cause all subscriptions specified in the subscribe request to be killed.

Introduced in Cisco IOS XE Gibraltar 16.10.1, the <delete-subscription> RPC can be issued only by a
subscriber, and it deletes only the subscriptions owned by that subscriber.

In Cisco IOS XE Gibraltar 16.11.1 and later releases, you can use the clear telemetry ietf subscription
command to delete a dynamic subscription. Introduced in Cisco IOS XE Gibraltar 16.11.1, the
<kill-subscription> RPC deletes dynamic subscription, the same way as the clear telemetry ietf subscription
command.

A subscription is also deleted when the parent NETCONF session is torn down or disconnected. If the network
connection is interrupted, it may take some time for the SSH or NETCONF session to timeout, and for
subsequent subscriptions to be removed.

Model-Driven Telemetry
12

Model-Driven Telemetry
Deleting Dynamic Subscriptions

https://tools.ietf.org/html/draft-ietf-netconf-subscribed-notifications-03
https://tools.ietf.org/html/draft-ietf-netconf-subscribed-notifications-03
https://tools.ietf.org/id/draft-ietf-netconf-yang-push-07.txt
https://tools.ietf.org/id/draft-ietf-netconf-yang-push-07.txt

The <kill-subscription> RPC is similar to the <delete-subscription> RPC. However, the <kill-subscription>
RPC uses the identifier element that contains the ID of the subscription to be deleted, instead of the
subscription-id element. The transport session used by the target subscription also differs from the one used
by the <delete-subscription> RPC.

Deleting Subscriptions Using the CLI

The following sample output shows all the available subscriptions:
Device# show telemetry ietf subscription all

Telemetry subscription brief

ID Type State Filter type
--
2147483648 Dynamic Valid xpath
2147483649 Dynamic Valid xpath

The following example shows how to delete a dynamic subscription:
Device# clear telemetry ietf subscription 2147483648

Deleting Subscriptions Using NETCONF <delete-Subscription> RPC

The following example shows how to delete a subscription using NETCONF:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<delete-subscription xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"
xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">

<subscription-id>2147483650</subscription-id>
</delete-subscription>

</rpc>

Deleting Subscriptions Using NETCONF <kill-Subscription> RPC

The following examples show how to delete subscriptions using the <kill-subscription> RPC:

<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-subscriptions/>
</mdt-oper-data>
</filter>
</get>

* Enter a NETCONF operation, end with an empty line

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-subscriptions>
<subscription-id>2147483652</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>

Model-Driven Telemetry
13

Model-Driven Telemetry
Deleting Dynamic Subscriptions

<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:48.848241+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483653</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:51.319279+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483654</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:55.302809+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483655</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:57.440936+00:00</last-state-change-time>

</mdt-subscriptions>
</mdt-oper-data>

</data>
</rpc-reply>
<kill-subscription xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"
xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<identifier>2147483653</identifier>
</kill-subscription>

* Enter a NETCONF operation, end with an empty line

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<subscription-result xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"

xmlns:notif-bis="urn:ietf:params:xml:ns:yang:ietf-event-notifications">notif-bis:ok</subscription-result>
</rpc-reply>
<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">

Model-Driven Telemetry
14

Model-Driven Telemetry
Deleting Dynamic Subscriptions

<mdt-subscriptions/>
</mdt-oper-data>
</filter>
</get>

* Enter a NETCONF operation, end with an empty line

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-subscriptions>
<subscription-id>2147483652</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:48.848241+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483654</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:55.302809+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483655</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:57.440936+00:00</last-state-change-time>

</mdt-subscriptions>
</mdt-oper-data>
</data>

</rpc-reply>

Configured Subscription Management

This section describes how to create, modifiy, and delete configured subscriptions.

Model-Driven Telemetry
15

Model-Driven Telemetry
Configured Subscription Management

Creating Configured Subscriptions

Configured subscriptions are created by management operations on the publisher by controllers, and explicitly
include the specification of the receiver of the telemetry data defined by a subscription. These subscriptions
persist across reboots of the publisher.

Configured subscriptions can be configured with multiple receivers, however; only the first valid receiver is
used. Connection to other receivers is not attempted, if a receiver is already connected, or is in the process of
being connected. If that receiver is deleted, another receiver is connected.

Configured dial-out subscriptions are configured on the device by the following methods:

• Using configuration CLIs to change to device configuration through console/VTY.

• Using NETCONF/RESTCONF to configure the desired subscription.

This section displays sample RPCs to create configured subscriptions.

Periodic Subscription

The following example shows how to configure gRPC as the transport protocol for configured subscriptions
using the CLI:

telemetry ietf subscription 101
encoding encode-kvgpb
filter xpath /memory-ios-xe-oper:memory-statistics/memory-statistic
stream yang-push
update-policy periodic 6000
source-vrf Mgmt-intf
receiver ip address 10.28.35.45 57555 protocol grpc-tcp

The following sample RPC shows how to create a periodic subscription using NETCONF that sends telemetry
updates to the receiver every 60 seconds:
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription>
<subscription-id>200</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-kvgpb</encoding>
<period>6000</period>
<xpath>/memory-ios-xe-oper:memory-statistics/memory-statistic</xpath>
</base>
<mdt-receivers>
<address>10.22.23.48</address>
<port>57555</port>
<protocol>grpc-tcp</protocol>
</mdt-receivers>
</mdt-subscription>
</mdt-config-data>
</config>
</edit-config>
</rpc>

The following sample RPC creates a periodic subscription using RESTCONF:

Model-Driven Telemetry
16

Model-Driven Telemetry
Creating Configured Subscriptions

URI:https://10.85.116.28:443/restconf/data/Cisco-IOS-XE-mdt-cfg:mdt-config-data
Headers:
application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json
Content-Type:
application/yang-data+json
BODY:
{
"mdt-config-data": {
"mdt-subscription":[
{
"subscription-id": "102",
"base": {
"stream": "yang-push",
"encoding": "encode-kvgpb",

"period": "6000",
"xpath": "/memory-ios-xe-oper:memory-statistics/memory-statistic"
}

"mdt-receivers": {
"address": "10.22.23.48"
"port": "57555"

}
}
]
}
}

On-Change Subscription

The following sample RPC shows how to create an on-change subscription using NETCONF that sends
updates only when there is a change in the target database:
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription>
<subscription-id>200</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-kvgpb</encoding>
<no-synch-on-start>false</no-synch-on-start>
<xpath>/cdp-ios-xe-oper:cdp-neighbor-details/cdp-neighbor-detail</xpath>
</base>
<mdt-receivers>
<address>10.22.23.48</address>
<port>57555</port>
<protocol>grpc-tcp</protocol>
</mdt-receivers>
</mdt-subscription>
</mdt-config-data>
</config>
</edit-config>
</rpc>

The following sample RPC shows how to create an on-change subscription using RESTCONF:
URI:
https://10.85.116.28:443/restconf/data/Cisco-IOS-XE-mdt-cfg:mdt-config-data
Headers:
application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json

Model-Driven Telemetry
17

Model-Driven Telemetry
Creating Configured Subscriptions

Content-Type:
application/yang-data+json
BODY:
{
"mdt-config-data": {
"mdt-subscription":[
{
"subscription-id": "102",
"base": {
"stream": "yang-push",
"encoding": "encode-kvgpb",

"dampening period": "0",
"xpath": "/cdp-ios-xe-oper:cdp-neighbor-details/cdp

-neighbor-detail "
}

"mdt-receivers": {
"address": "10.22.23.48"
"port": "57555"

}
}
]
}
}

gNMI Dial-In Subscription

The following is a sample gNMI dial-in subscription:

subscribe: <
prefix: <>
subscription: <
path: <
origin: "openconfig"
elem: <name: "routing-policy">

>
mode: SAMPLE
sample_interval: 10000000000

>
mode: STREAM
encoding: JSON_IETF

>'

subscribe: <
prefix: <>
subscription: <
path: <
origin: "legacy"
elem: <name: "oc-platform:components">
elem: <
name: "component"
key: <
key: "name"
value: "PowerSupply8/A"

>
>
elem: <name: "power-supply">
elem: <name: "state">

>
mode: SAMPLE
sample_interval: 10000000000

>
mode: STREAM
encoding: JSON_IETF

Model-Driven Telemetry
18

Model-Driven Telemetry
Creating Configured Subscriptions

>'

Modifying Configured Subscriptions

There are two ways to modify configured subscriptions:

• Management protocol configuration operations, such as NETCONF <edit-config> RPC

• CLI (same process as creating a subscription)

Subscription receivers are identified by the address and port number. Receivers cannot be modified. To change
the characteristics (protocol, profile, and so on) of a receiver, it must be deleted first and a new receiver created.

If a valid receiver configuration on a valid subscription is in the disconnected state, and the management wants
to force a new attempt at setting up the connection to the receiver, it must rewrite the receiver with the exact
same characteristics.

Deleting Configured Subscriptions

You can use the CLI or management operation to delete configured subscriptions. The no telemetry ietf
subscription command removes the configured subscriptions. Note that configured subscriptions cannot be
deleted using RPCs, only through the configuration interface.

Deleting Subscriptions Using the CLI

Device# configure terminal
Device(config)# no telemetry ietf subscription 101
Device(config)# end

Deleting Subscriptions Using NETCONF

The following sample RPC shows how to delete a configured subscription:

<edit-config>
<target>
<running/>

</target>
<config>
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription operation="delete">
<subscription-id>102</subscription-id>
</mdt-subscription>
</mdt-config-data>

</config>
</edit-config>

FQDN Support for gRPC Subscriptions

gRPC telemetry subscriptions are configuration-based, which means that users must specify the receiving
host and other subscription parameters as part of the device configuration. This receiver configuration is used
to determine the connection details for sending telemetry updates.With the introduction of the FQDN Support
for gRPC Subscriptions feature, along with IP addresses, Fully Qualified Domain Names (FQDNs) can also
be used for gRPC subscriptions.

Model-Driven Telemetry
19

Model-Driven Telemetry
Modifying Configured Subscriptions

In a telemetry subscription, receiver details can now be specified either as part of the subscription, or they
can be configured independently; where the receiver has a name and this name is used to specify the receiver
when configuring the subscription. In both the cases, it is possible to specify the same receiver name for
multiple subscriptions.

This feature cannot be disabled.

Named Receivers

With FQDN support, a new method of configuring receivers is introduced, called the named-receiver
configuration. Named receivers are top-level configuration entities that can exist independent of subscriptions.
Named receivers are identified by a name. The name is an arbitrary string, and is the index or key of the named
receiver records in the system. The named receiver configuration contains all configurations associated with
the receiver that is not subscription-dependent.

The advantages of using named receivers are as follows:

• Capable of supporting different types of receivers.

• Better state and diagnostics information.

• Hostname can be used instead of an IP address to specify the host for protocol receivers.

• Parameters of a receiver that is used by multiple subscriptions can be changed at a single place.

Only protocol-type named receivers are supported, and these are:

• cloud-native: Cloud native protocol

• cntp-tcp: Civil Network Time Protocol (CNTP) TCP protocol

• cntp-tls: CNTP TLS protocol

• grpc-tcp: gRPC TCP protocol

• grpc-tls: gRPC TLS protocol

• native: Native protocol

• tls-native: Native TLS protocol

Named Protocol Receivers

Named protocol receivers are used to specify telemetry transports that use protocols. In addition to the name
that identifies a receiver, named protocol receivers also use a host specification. The host specification takes
a hostname or IP address, and a destination port number. Secure protocol transports also use a profile string.

When a valid named protocol receiver is created, it is not automatically connected to the receiver. The named
protocol receiver must be requested by at least one subscription to create a connection to the receiver.

Note

You can configure a named protocol receiver by using the CLI or YANG models.

Configuring the Named Protocol Receiver Using YANG Models

Model-Driven Telemetry
20

Model-Driven Telemetry
Named Receivers

The YANG model, Cisco-IOS-XE-mdt-cfg, contains the named protocol receiver. The container
mdt-named-protocol-rcvrs inside the top level mdt-config-data container has a list of mdt-named-protocol-rcvr
structures. This group has five members:

• Name, which is the index in the list

• Protocol

• Profile

• Hostname

• Port number

The following is a sample NETCONF RPC that shows how to create a named protocol receiver:

<edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-named-protocol-rcvrs>
<mdt-named-protocol-rcvr>
<name>receiver1</name>
<protocol>tls-native</protocol>
<profile>tls-trustpoint</profile>
<host>
<hostname>rcvr.test.com</hostname>
</host>
<port>45000</port>
</mdt-named-protocol-rcvr>
</mdt-named-protocol-rcvrs>
</mdt-config-data>
</config>
</edit-config>

Subscription Configuration Using Named Receivers

To use a named receiver with a subscription, both the receiver type and receiver name must be specified. No
additional receiver configuration is required, since all receiver-specific configuration is part of the named
receiver configuration. However; named protocol receivers still use the source VRF and source address of
the subscriptions as part of the connection resolution process.

The only supported name receiver type is protocol.

Subscriptions can use either named receivers or legacy receivers, but cannot use both. If the legacy receiver
is configured, setting the subscription receiver type and a named-receiver name is blocked. Similarly, if a
subscription receiver type or a named receiver is specified, you cannot configure legacy receivers.

Note that subscriptions use only one receiver, even if more than one receiver is configured.

Subscriptions using legacy receivers and subscriptions using named receivers are permitted to use the same
connection; however, it is not recommended.

Configuring a Named-Receiver Subscription Configuration Using YANG Model

The only value supported for rcvr-type is rcvr-type-protocol, when named receivers are used. When legacy
receivers are used, the value is the default rcvr-type-unspecified.

Model-Driven Telemetry
21

Model-Driven Telemetry
Subscription Configuration Using Named Receivers

The following is a sample NETCONF RPC that shows how to create a subscription using a named
protocol-receiver:

<edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription>
<subscription-id>1</subscription-id>
<base>
<rcvr-type>rcvr-type-protocol</rcvr-type>
</base>
<mdt-receiver-names>
<mdt-receiver-name>
<name>receiver1</name>
</mdt-receiver-name>
</mdt-receiver-names>
</mdt-subscription>
</mdt-config-data>
</config>
</edit-config>

Named Receiver Operation and Operational State

Named receiver objects and subscription receiver objects (that refer to the named receiver) have two different
operational states. The operational states are valid or invalid. The most common reason for a named receiver
to be invalid is incomplete configuration, however; it could also be due to other reasons. The operational state
view of a named receiver has a field that provides a text explanation on why the receiver is invalid. When the
receiver state is valid, this field is empty.

Displaying Named Receiver State Using the CLI

To view the state of named receivers of all types, use the show telemetry receiver command. The all keyword
displays information about all named receivers in a brief format, and the name keyword displays detailed
information about the specified named receiver.

The following is sample output from the show telemetry receiver all command:

Device# show telemetry receiver all

Telemetry receivers

Name <…> Type Profile State Explanation
-----------<…>---
receiver1 <…> protocol tls-trustpoint Valid

The following is sample output from the show telemetry receiver name command:

Device# show telemetry receiver name receiver1

Name: receiver1
Profile: tls-trustpoint
State: Valid
Last State Change: 08/12/20 19:55:54
Explanation:
Type: protocol

Model-Driven Telemetry
22

Model-Driven Telemetry
Named Receiver Operation and Operational State

Protocol: tls-native
Host: rcvr.test.com
Port: 45000

Named Receiver State Using YANG Models

The state of the named receivers can be retrieved using the Cisco-IOS-XE-mdt-oper-v2 YANG model. The
mdt-oper-v2-data container contains an mdt-named-receivers list that contains the operational state of all
named receivers.

The following is a sample NETCONF reply to retrieve the state of named receivers:

<get>
<filter>
<mdt-oper-v2-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-named-receivers/>
</mdt-oper-v2-data>
</filter>
</get>

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-v2-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-named-receivers>
<name>receiver1</name>
<profile>tls-trustpoint</profile>
<params>
<protocol>tls-native</protocol>

<host>
<hostname>rcvr.test.com </hostname>
</host>
<port>45000</port>
</params>
<state>named-rcvr-state-valid</state>
<last-state-change-time>2020-…:00</last-state-change-time>
</mdt-named-receivers>
</mdt-oper-v2-data>
</data>
</rpc-reply>

Subscription Receiver Operation and Operational States

Subscription receivers are the subscription-related objects that connects to the actual subscription receiver or
collector. While the mechanism needed to reach the collector is specific to the receiver type, a connection is
the entity that is used to allow the subscription to reach its receiver or collector.

Subscription receiver state is based on its ability to request and use the connection to the receiver and has a
number of states that are associated with the control of other resources required to allow the subscription to
send updates to the receiver or collector.

Subscription Receiver States

The operational state of a subscription receiver consists of the configured name (that is the index of the
connection), the state of the receiver, an explanation or note about the state, and the time of the last state
change. The explanation string is not always used.

The possible states of a subscription receiver are shown in the table below.

Model-Driven Telemetry
23

Model-Driven Telemetry
Named Receiver State Using YANG Models

Table 4: Subscription Receiver States

DescriptionSubscription Receiver State

YANG ValueCLI Value

The receiver is disconnected and
no attempt is made to reconnect it.

rcvr-state-disconnectedDisconnected

Resolving the connection
parameters required to reach the
receiver.

rcvr-state-resolvingResolving

A request for a connection to reach
the receiver was using the
connection parameters determined
from the resolving state.

rcvr-state-transport-requestedTransport requested

Resources needed to connect the
subscription to the receiver are
being allocated.

rcvr-state-connectingConnecting

The subscription is connected to the
receiver, and updates can flow to
the receiver.

rcvr-state-connectedConnected

Resources used on the connection
are being re-allocated.

rcvr-state-disconnectingDisconnecting

The YANG value rcvr-state-invalid is used only by legacy receivers. Subscription receivers that are invalid
cannot be connected, so the subscription receiver state is set to disconnected when it is invalid. The explanation
string provides the distinction between invalid subscription receivers and disconnected subscription receivers.

A subscription receiver may be disconnected due to the following reasons:

• Another receiver on the subscription is not disconnected.

• Connection setup failed permanently.

• Named receiver does not exist.

• Named receiver is not the type specified in the subscription.

• Named receiver is not valid.

• Subscription is invalid.

• The requested connection is in use by a different receiver.

Subscription Receiver Connections

This section provides information on how subscription receivers use connections.

Telemetry Connections

Telemetry connections represent the transport instances used by subscriptions to reach the receivers and are
purely operational. Telemetry connections are identified by an integer index value. Other information about

Model-Driven Telemetry
24

Model-Driven Telemetry
Subscription Receiver Connections

the connections is specific to the type of connection, which is based on the type of receiver that the subscription
is configured to use.

For the secure Cisco proprietary transports, the host part of the configured named receiver must match the
distinguished name (DN) of the certificate provided by the receiver, when the connection is set up. For this
reason, it is not permitted to have more than one receiver using the same connection.

While all the states discussed in this section are available to all types of connections, not all have to be used.

Table 5: Telemetry Connection States

DescriptionConnection State

YANG ValueCLI Value

The connection has been created,
but not yet initiated.

con-state-pendingPending

A request to set up the connection
is in progress.

con-state-connectingConnecting

The connection is up and is
available for use by subscription
receivers.

con-state-activeActive

The connection has been torn down
and is waiting to be released by
subscription receivers.

con-state -disconnectingDisconnecting

Additional operational state associated with a connection includes the identity of the remote receiver (the
peer, when available), and the time of the last state change.

Telemetry Protocol Connections

This section discusses protocol type connections and how these are used by subscription receivers that are
assigned to named protocol receivers.

Table 6: Parameters of a Protocol-Type Connection

CommentsOriginParameter

Because hosts use domain names,
domain name resolution may be
required.

Named receiver hostDestination IP address

Must be explicitly configured.Named receiver portDestination port number

Default VRF is used, if not
specified. Otherwise the VRF name
is resolved to an internal identifier.

Subscription, if specifiedSource VRF

If not specified, the source IP
address is determined based on the
VRF and destination IP address.

Subscription, if specifiedSource IP address

Model-Driven Telemetry
25

Model-Driven Telemetry
Telemetry Protocol Connections

Some of these parameters are based on the configuration of the subscription receiver’s parent subscription.

When resolving the connection parameters from the configuration, the VRF is determined first, followed by
the destination IP address, and finally the source IP address, if an order is not specified. If a given step in the
resolution fails non-permanently, there are infinite retries at 5 second intervals.

A connection is instantiated as soon as it is requested. That is, as soon as the first subscription receiver goes
from the resolving state to the transport requested state, a connection instance with the parameters that were
resolved by the subscription receiver is created.

If the requested connection is successfully setup and used by telemetry, the connection state changes to
connected, which means that a connection exists between the Cisco IOS XE device and the receiver device.
To reallocate the resources used by the receiver, the subscription receivers that want to use the resources are
informed that the connection is set up. These subscription receivers then transition to the connecting state to
set up the resources required to connect the subscription to the receiver. Once these resources are in place,
the subscription receiver’s state changes to connected, and update notifications are received by the receiver.

The following are some of the reasons why a telemetry connection cannot become active:

• Destination unreachable.

• No listener at the remote host port.

• Listener at the remote host port is of the wrong type.

• Authentication failures.

When a connection setup is in progress, any subscription receiver using this connection is in the connecting
state because it has successfully resolved the parameters needed to initiate the connection setup.

Note

The action taken when a connection setup fails is specific to the protocol. The following table shows the retry
behaviors for connections within a single setup request and for re-resolution requests when the connection
setup request fails. This behavior is the same for connections requested by the legacy receivers as well.

Table 7: Protocol-Specific Retry Intervals

Re-resolution RequestsConnection RetriesProtocol

No limit; continuously requests
re-resolution when connection
retries fail. (14 seconds per try.)

5 retries at 1, 3, 4, and 7 seconds in
between them

• grpc-tcp

• grpc-tls

5, 10, 15, 20, 25, and 30 seconds.• cloud-native

• cntp-tcp

• cntp-tls

• native

• tls-native

Troubleshooting Named Receiver Connections

Model-Driven Telemetry
26

Model-Driven Telemetry
Troubleshooting Named Receiver Connections

When a subscription is set up, one of the common problems is that no telemetry update messages are received.
Possible reasons could be that there are no events to send, or the subscription is not valid. This section describes
how to troubleshoot some of the common problems that occur in named receiver connections.

The logs from the telemetry process, and the output of some of the show commands provide information that
can be used for troubleshooting the named receiver configuration.

Table 8: Troubleshooting Named Receiver Connections

What to DoHow to Check/SymptomProblem

Fix the subscription configuration.show telemetry ietf subscription
id details

Subscription is not valid.

Fix the named receiver
configuration.

show telemetry ietf subscription
id receiver

Subscription receiver is not valid.

Verify the receiver, the network
configuration, or the interface state.

show telemetry ietf subscription
id receiver

Subscription receiver state appears
to never leave the resolving state.

Subscription receiver’s connection
parameters cannot be resolved.

Verify that the resolved connection
is valid, and the receiver or
collector is reachable and able to
accept inbound connections using
the specified transport.

show telemetry ietf subscription
id receiver

Subscription receiver state
constantly changes from resolving
to connecting.

Subscription receiver connection
does not come up.

Verify that the collector is of the
correct type, and that the configured
authentication and authorization is
valid.

show telemetry ietf subscription
id receiver

Subscription receiver state
constantly changes through all
states except disconnected.

Subscription receiver connections
are rejected.

Verify that the collector is able to
keep up with the flow of update
notifications.

show telemetry internal
subscription id stats

Message drop count is
incrementing, but the records sent
is not.

Subscription receiver is connected,
but no updates are received.

If the subscription is on-change,
ensure that there really have been
no events.

If the subscription is periodic,
ensure that the update period is
small, that the time is specified in
hundredths of a second.

show telemetry internal
subscription

No change in the count.

Subscription receiver is connected,
but no updates are received.

show telemetry internal connection: This command takes an optional connection index value. When no
index is specified, it displays the basic connection parameter information for all connections that are being
used. When a connection index is specified in the command, it shows low-level details about the connection.

Model-Driven Telemetry
27

Model-Driven Telemetry
Troubleshooting Named Receiver Connections

The command output is transport-specific, and might not be available for all transports. The output from this
command is subject to change.

show telemetry internal diagnostics: This command attempts to dump all telemetry logs and operational
state. When reporting problems, it may be helpful to use this command as close to the problem time as possible
and provide the output of the show running-config | section telemetry command as well.

Displaying On-Change Subscription YANG Models

The Cisco-IOS-XE-mdt-capabilities-oper.YANG model can be queried to display information about the
models that support on-change subscriptions and their transports.

Subscription Monitoring
Subscriptions of all types can be monitored by using CLIs and management protocol operations.

CLI

Use the show telemetry ietf subscription command to display information about telemetry subscriptions.
The following is sample output from the command:
Device# show telemetry ietf subscription 2147483667 detail

Telemetry subscription detail:

Subscription ID: 2147483667
State: Valid
Stream: yang-push
Encoding: encode-xml
Filter:
Filter type: xpath
XPath: /mdt-oper:mdt-oper-data/mdt-subscriptions

Update policy:
Update Trigger: periodic
Period: 1000

Notes:

NETCONF

The following is a sample NETCONF message that displays information about telemetry subscriptions:
<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-subscriptions/>
</mdt-oper-data>
</filter>
</get>

* Enter a NETCONF operation, end with an empty line
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-subscriptions>
<subscription-id>101</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-kvgpb</encoding>

Model-Driven Telemetry
28

Model-Driven Telemetry
Displaying On-Change Subscription YANG Models

<source-vrf>RED</source-vrf>
<period>10000</period>
<xpath>/ios:native/interface/Loopback[name="1"]</xpath>

</base>
<type>sub-type-static</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>
<address>5.22.22.45</address>
<port>57500</port>
<protocol>grpc-tcp</protocol>
<state>rcvr-state-connecting</state>
<comments/>
<profile/>
<last-state-change-time>1970-01-01T00:00:00+00:00</last-state-change-time>

</mdt-receivers>
<last-state-change-time>1970-01-01T00:00:00+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483648</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-xml</encoding>
<source-vrf/>
<period>1000</period>

<xpath>/if:interfaces-state/interface[name="GigabitEthernet0/0"]/oper-status</xpath>

</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>
<address>5.22.22.45</address>
<port>51259</port>
<protocol>netconf</protocol>
<state>rcvr-state-connected</state>
<comments/>
<profile/>
<last-state-change-time>1970-01-01T00:00:00+00:00</last-state-change-time>

</mdt-receivers>
<last-state-change-time>1970-01-01T00:00:00+00:00</last-state-change-time>

</mdt-subscriptions>
</mdt-oper-data>

</data>
</rpc-reply>

Streams
A stream defines a set of events that can be subscribed to, and this set of events can be almost anything.
However, as per the definition of each stream, all possible events are related in some way. This section
describes the supported streams.

To view the set of streams that are supported, use management protocol operations to retrieve the streams
table from the Cisco-IOS-XE-mdt-oper module (from the YANG model Cisco-IOS-XE-mdt-oper.yang) in
the mdt-streams container.

The following example shows how to use NETCONF to retrieve supported streams:
<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-streams/>

Model-Driven Telemetry
29

Model-Driven Telemetry
Streams

</mdt-oper-data>
</filter>
</get>

* Enter a NETCONF operation, end with an empty line

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-streams>
<stream>native</stream>
<stream>yang-notif-native</stream>
<stream>yang-push</stream>

</mdt-streams>
</mdt-oper-data>

</data>
</rpc-reply>

The example shows that three streams are supported: native, yang-notif-native, and yang-push. The stream
native is not available for general use and can be ignored.

Currently there are no CLIs to return the list of supported streams.Note

The yang-push Stream

The yang-push stream is the data in configuration and operational databases that is described by a supported
YANG model. This stream supports an XPath filter to specify what data is of interest within the stream, and
where the XPath expression is based on the YANG model that defines the data of interest.

Update notifications for this stream can be sent either when data changes or during fixed periods, but not for
both, for a given subscription. Subscriptions for data that does not currently exist are permitted, and these run
as normal subscriptions.

The only target database that is supported is running.

Determining On-Change Capability

Currently, there is no indication within YANG models about the type of data that can be subscribed to, by
using an on-change subscription. Attempts to subscribe to data that cannot be subscribed to by using on-change
subscription results in a failure (dynamic) or an invalid subscription (configured). For more information on
On-Change Publication, see the section, On-Change Publication for yang-push.

IETF Draft Compliance

Telemetry using the yang-push stream is based on the IETF NETCONF working group's early drafts for
telemetry. These are:

• Custom Subscription to Event Notifications, Version 03

• Subscribing to YANG datastore push updates, Version 07

Model-Driven Telemetry
30

Model-Driven Telemetry
The yang-push Stream

https://tools.ietf.org/html/draft-ietf-netconf-subscribed-notifications-03
https://tools.ietf.org/html/draft-ietf-netconf-yang-push-07

The following features that are described in the corresponding drafts are not supported:Note

• Subtree filters

• Out-of-band notifications

• Any subscription parameter not explicitly stated as supported

X-Path Filter for yang-push

The dataset within the yang-push stream to be subscribed to should be specified by the use of an XPath filter.
The following guidelines apply to the XPath expression:

• XPath expressions can have keys to specify a single entry in a list or container. The supported key
specification syntax is
[{key name}={key value}]

The following is an example of an XPath expression:
filter xpath
/rt:routing-state/routing-instance[name="default"]/ribs/rib[name="ipv4-default"]/routes/route

VALID!

Compound keys are supported by the use of multiple key specifications. Key names and values must be
exact; no ranges or wildcard values are supported.

• In XPath expressions, select multiple keys using [] between the keys, and encapsulate the string with “.
The following is an example of an XPath expression:
filter xpath
/environment-ios-xe-oper:environment-sensors/environment-sensor[location=\"Switch\ 1\"]
[name=\"Inlet\ Temp\ Sens\"]/current-reading

• XPath expressions support the use of the union operator (|) to allow a single subscription to support
multiple objects. The union operator only works for NETCONF transport and not for gRPC.

XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers

In Cisco IOS XE Bengaluru, 17.4.1, the following set of OpenConfig XPath expressions are supported on the
Cisco Catalyst 9800 Series Wireless Controllers.

Ensure that you run the following RPC using any of the programmability interfaces, such as NETCONF,
RESTCONF, or gNMI protocol, to enable telemetry subscription:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<running/>

</target>
<config>
<provision-aps xmlns="http://openconfig.net/yang/wifi/ap-manager">
<provision-ap>
<mac>eth_mac_of_the_AP</mac>
<config>
<mac>eth_mac_of_the_AP</mac>
<hostname>AP_NAME</hostname>

</config>

Model-Driven Telemetry
31

Model-Driven Telemetry
X-Path Filter for yang-push

</provision-ap>
</provision-aps>

</config>
</edit-config>

</rpc>

All of the XPath expressions listed below are a part of the openconfig-access-points YANG model, except
the last one, which is a part of the openconfig-ap-manager YANGmodel. For the telemetry operation to work
correctly, ensure that configurations are done based on the OpenConfig model.

• /access-points/access-point/radios/radio/state

• /access-points/access-point/radios/radio/neighbors/neighbor

• /access-points/access-point/radios/radio/neighbors/neighbor/state

• /access-points/access-point/ssids/ssid/bssids/bssid/state/counters

• /access-points/access-point/ssids/ssid/clients/client/state/counters

• /access-points/access-point/ssids/ssid/clients/client/client-rf/state

• /access-points/access-point/ssids/ssid/clients/client/client-connection/state

• /access-points/access-point/system/aaa/server-groups/server-group/servers/server/radius/state

• /joined-aps/joined-ap/state/opstate

When you subscribe to an XPath, you receive data for the subscribed XPath and all the XPaths under it in the
hierarchy. For example, subscribing to /access-points/access-point/radios/radio/state delivers data for all the
leaves associated with it, as well as the subcontainers under it.

If you require only a subset of information, set filters in the XPath expressions to limit the updates. To filter
the data of a specific access point (AP), use a key after the node. For example, to receive data for an AP with
hostname ‘my_hostname’, use the subscription XPath: access-point[hostname=’my_hostname’]. Note that
the data updates will contain data objects from all the leaves, and not just from the limited subset that is
defined.

Scale Information

The following tables show the minimum recommended intervals for each of the gathering points under three
different scale scenarios.

Scenario1: Full Scale with four SSIDs

Table 9: Setup

2,000APs

30,000Clients

4SSIDs per AP

8BSSIDs per AP

12Physical neighbors per
AP

96Neighbors per AP

Model-Driven Telemetry
32

Model-Driven Telemetry
XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers

Table 10: Recommended Intervals

Recommended Interval
(Seconds)

Two Collectors

Recommended Interval
(Seconds)

One Collector

RecordsGathering Point

60302000Joined

60302000AAA

60304000Radio

603030,000Client RF

603030,000Client CNTR

1206030,000Client CONN

1809016,000BSSID

360180192,000Neighbor

Scenario2: Full Scale with six SSIDs

Table 11: Setup

2,000APs

30,000Clients

6SSIDs per AP

12BSSIDs per AP

12Physical neighbors per
AP

144Neighbors per AP

Table 12: Recommended Intervals

Recommended Interval (Seconds)

Two Collectors

Recommended Interval (Seconds)

One Collector

RecordsGathering
point

60302000Joined

60302000AAA

60304000Radio

603030,000Client RF

603030,000Client CNTR

Model-Driven Telemetry
33

Model-Driven Telemetry
XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers

Recommended Interval (Seconds)

Two Collectors

Recommended Interval (Seconds)

One Collector

RecordsGathering
point

1206030,000Client CONN

24012024,000BSSID

420240288,000Neighbor

Scenario3: Reduced Scale with six SSIDs

Table 13: Setup

1,000APs

15,000Clients

6SSIDs per AP

12BSSIDs per AP

12Physical neighbors per
AP

144Neighbors per AP

Table 14: Recommended Intervals

Recommended Interval (Seconds)

Two Collectors

Recommended Interval (Seconds)

One Collector

RecordsGathering
Point

30NA1000Joined

30NA1000AAA

30NA2000Radio

30NA15,000Client RF

30NA15,000Client CNTR

30NA15,000Client CONN

120NA12,000BSSID

180NA144,000Neighbor

XPath Values and Corresponding Rates on Cisco Catalyst 9800 Wireless Controllers

In the Cisco-IOS-XE-wireless-mesh-rpc, following are the permitted values and corresponding rates for XPath
/exec-linktest-ap/data-rate-idx:
ewlc-mesh-linktest-rate-idx-1 1 Mbps
ewlc-mesh-linktest-rate-idx-2 2 Mbps
ewlc-mesh-linktest-rate-idx-3 5 Mbps

Model-Driven Telemetry
34

Model-Driven Telemetry
XPath Values and Corresponding Rates on Cisco Catalyst 9800 Wireless Controllers

ewlc-mesh-linktest-rate-idx-4 6 Mbps
ewlc-mesh-linktest-rate-idx-5 9 Mbps
ewlc-mesh-linktest-rate-idx-6 11 Mbps
ewlc-mesh-linktest-rate-idx-7 12 Mbps
ewlc-mesh-linktest-rate-idx-8 18 Mbps
ewlc-mesh-linktest-rate-idx-9 24 Mbps
ewlc-mesh-linktest-rate-idx-10 36 Mbps
ewlc-mesh-linktest-rate-idx-11 48 Mbps
ewlc-mesh-linktest-rate-idx-12 54 Mbps
ewlc-mesh-linktest-rate-idx-13 108 Mbps
ewlc-mesh-linktest-rate-idx-14 m0
ewlc-mesh-linktest-rate-idx-15 m1
ewlc-mesh-linktest-rate-idx-16 m2
ewlc-mesh-linktest-rate-idx-17 m3
ewlc-mesh-linktest-rate-idx-18 m4
ewlc-mesh-linktest-rate-idx-19 m5
ewlc-mesh-linktest-rate-idx-20 m6
ewlc-mesh-linktest-rate-idx-21 m7
ewlc-mesh-linktest-rate-idx-22 m8
ewlc-mesh-linktest-rate-idx-23 m9
ewlc-mesh-linktest-rate-idx-24 m10
ewlc-mesh-linktest-rate-idx-25 m11
ewlc-mesh-linktest-rate-idx-26 m12
ewlc-mesh-linktest-rate-idx-27 m13
ewlc-mesh-linktest-rate-idx-28 m14
ewlc-mesh-linktest-rate-idx-295 m15

Periodic Publication for yang-push

With periodic subscriptions, the first push-update with the subscribed information is sent immediately; but it
can be delayed if the device is busy or due to network congestion. Updates are then sent at the expiry of the
configured periodic timer. For example, if the period is configured as 10 minutes, the first update is sent
immediately after the subscription is created and every 10 minutes thereafter.

The period is time, in centiseconds (1/100 of a second), between periodic push updates. A period of 1000 will
result in getting updates to the subscribed information every 10 seconds. The minimum period that can be
configured is 100, or one second. There is no default value. This value must be explicitly set in the
<establish-subscription> RPC for dynamic subscriptions and in the configuration for configured subscriptions.

Periodic updates contain a full copy of the subscribed data element or table for all supported transport protocols.

When subscribing for empty data using a periodic subscription, empty update notifications are sent at the
requested period. If data comes into existence, its values at the next period are sent as a normal update
notification.

On-Change Publication for yang-push

When creating an on-change subscription, the dampening period must be set to 0 to indicate that there is no
dampening period; no other value is supported.

With on-change subscriptions, the first push update is the entire set of subscribed to data (the initial
sychronization as defined in the IETF documents). This is not controllable. Subsequent updates are sent when
the data changes, and consist of only the changed data. However, the minimum data resolution for a change
is a row. So, if an on-change subscription is to a leaf within a row, if any item in that row changes, an update
notification is sent. The exact contents of the update notification depend on the transport protocol.

In addition, on-change subscriptions are not hierarchical. That is, when subscribing to a container that has
child containers, changes in the child container are not seen by the subscription.

Subscriptions for data that does not currently exist are permitted and run as normal subscriptions. The initial
synchronization update notification is empty and there are no further updates until data is available.

Model-Driven Telemetry
35

Model-Driven Telemetry
Periodic Publication for yang-push

XPath expressions must specify a single object. That object can be a container, a leaf, a leaf list or a list.

The yang-notif-native Stream

The yang-notif-native stream is any YANG notification in the publisher where the underlying source of events
for the notification uses Cisco IOS XE native technology. This stream also supports an XPath filter that
specifies which notifications are of interest. Update notifications for this stream are sent only when events
that the notifications are for occur.

Since this stream supports only on-change subscriptions, the dampening interval must be specified with a
value of 0.

XPath Filter for yang-notif-native

The dataset within the yang-notif-native stream to be subscribed to is specified by the use of an XPath filter.
The following guideline applies to the XPath expression:

• XPath expressions must specify an entire YANG notification; attribute filtering is not supported.

• The union operator (|) is not supported.

TLDP On-Change Notifications
Targeted Label Discovery Protocol (T-LDP) is an LDP session between label-switched routers (LSRs) that
are not directly connected. The TLDP On-Change Notifications feature notifies users when TLDP sessions
come up or go down and when TLDP is configured or disabled. TLDP must be enabled for the notifications
to work.

Event-based notifications are generated in the following two scenarios:

• Configured events are generated when TLDP is configured and removed from a device. Notifications
are also generated when a TLDP session comes up and goes down.

• Notifications are also generated when a TLDP session comes up and goes down.

Transport Protocol
The protocol that is used for the connection between a publisher and a receiver decides how the data is sent.
This protocol is referred to as the transport protocol, and is independent of the management protocol for
configured subscriptions. The transport protocol affects both the encoding of the data, for example XML,
Google Protocol Buffers (GPB) and the format of the update notification itself.

The stream that is chosen may also affect the format of the update notification.Note

Supported transport protocols are gNMI, gRPC, and NETCONF.

NETCONF Protocol

The NETCONF protocol is available only for the transport of dynamic subscriptions, and can be used with
yang-push and yang-notif-native streams.

Three update notification formats are used when using NETCONF as the transport protocol:

Model-Driven Telemetry
36

Model-Driven Telemetry
The yang-notif-native Stream

• When the subscription uses the yang-push stream, and if it is periodic or when the initial synchronization
update notification is sent on an on-change subscription.

• When the subscription uses the yang-push stream and it is an on-change subscription, other than the
initial synchronization update notification.

• When the subscription uses the yang-notif-native stream.

The yang-push Format

When the yang-push source stream is sent over NETCONF as a transport with XML encoding, two update
notification formats are defined. These update notification formats are based on the
draft-ietf-netconf-yang-push-07. For more information, see section 3.7 of the IETF draft.

The yang-notif-native Format

When the source stream is yang-notif-native, the format of the update notification when encoded in XML
over NETCONF is as defined by RFC 7950. For more information, see section 7.16.2 of the RFC.

Unlike the formats for the yang-push stream, the subscription ID is not found in the update notification.

gRPC Protocol

The gRPC protocol is available only for the transport of configured subscriptions, and can be used with
yang-push and yang-notif-native streams. Only kvGPB encoding is supported with gRPC transport protocol.

Receiver connection retries based on gRPC protocol (exponential back-off) are supported.

For telemetry messages defined in .proto files, see: mdt_grpc_dialout.proto and telemetry.proto.

Mutual Authentication for gRPC Telemetry

gRPC is one of the supported dial-out protocols used to transmit telemetry data. For dial-out protocols, the
device is considered the client and the collector, the server. gRPC supports both unencrypted TCP and encrypted
TLS-based connections.

A new gRPC-TLS profile that contains a pair of trustpoints is added to the telemetry configuration, so that a
client ID certificate can be used for mutual authentication. The profile contains two trustpoints, one is the
Certificate Authority (CA) certificate for server validation, and the other is the ID certificate for client validation.

When a device connects to a receiver for the first time, based on the server configuration, client or mutual
authentication may be required. The device will receive the receiver's identity certificate and validate whether
the certificate is signed by the CA identified in the certificate associated with the trustpoint configured in the
receiver profile. If the receiver then requests for the certificate ID of the device, the device sends the client
ID certificate previously installed in the profile’s ID-trustpoint field.

If the server is configured to require mutual authentication, and there is no client ID trustpoint in the profile,
the client authentication will not happen, nor will the connection succeed.

The same trustpoint label can be configured for multiple profiles, and the same profile can be configured for
multiple receivers.

The trustpoint with the client ID is not mandatory in the profile configuration, as mutual authentication is not
required for gRPC over TLS. As in prior releases, gRPC over TLS can be configured only with server validation.

Note

Model-Driven Telemetry
37

Model-Driven Telemetry
gRPC Protocol

https://github.com/cisco-ie/cisco-proto/blob/master/proto/xe/mdt_grpc_dialout.proto
https://github.com/cisco-ie/cisco-proto/blob/9cc3967cb1cabbb3e9f92f2c46ed96edf8a0a78b/proto/xe/telemetry.proto

To add the client ID trustpoint, use the telemetry protocol grpc profile <name> command.

This feature cannot be disabled; but it can be left unused by not configuring the receivers to use the gRPC-TLS
protocol, or by removing or not configuring the client ID trustpoint field in the receiver configuration.

High Availability in Telemetry
Dynamic telemetry connections are established over a NETCONF session through SSH to the active switch
or a member in a switch stack, or the active route processor in a high-availability-capable device. After
switchover, you must destroy and re-establish all the sessions that use crypto, including NETCONF sessions
that carry telemetry subscriptions. You must also re-create all the dynamic subscriptions after a switchover.
gNMI dial-in subscriptions also work the same as a NETCONF session through SSH.

gRPC dial-out subscriptions are configured on the device as part of the running configuration of the active
switch or member of the stack. When switchover occurs, the existing connections to the telemetry receivers
are torn down and reconnected (as long as there is still a route to the receiver). Subscriptions need not be
reconfigured.

In the event of a device reload, subscription configurations must be synchronized to the start-up configuration
of a device. This ensures that after the device reboots, subscription configurations remain intact on the device.
When the necessary processes are up and running, the device attempts to connect to the telemetry receiver
and resume normal operations.

Note

Pubd Restartability
In Cisco IOS XE Cupertino 17.9.1, the pubd process is restartable on all platforms. Prior to this release, pubd
was restartable only on certain platforms. On other platforms, to restart the pubd process, the whole device
had to be restarted.

Pubd can be restarted by removing and re-adding the NETCONF-YANG or gNXI configuration, as applicable.
Note that this will also restart the other NETCONF-YANG or gNXI processes.

Sample Model-Driven Telemetry RPCs
The following section provides a list of sample RPCs, and describes how to configure subscriptions.

Managing Configured Subscriptions

Currently, you can only use the gRPC protocol for managing configured subscriptions.Note

SUMMARY STEPS

1. enable
2. configure terminal
3. telemetry ietf subscription id

4. stream yang-push
5. filter xpath path

Model-Driven Telemetry
38

Model-Driven Telemetry
High Availability in Telemetry

6. update-policy {on-change | periodic} period

7. encoding encode-kvgpb
8. source-vrf vrf-id

9. source-address source-address

10. receiver ip address ip-address receiver-port protocol protocol profile name

11. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Creates a telemetry subscription and enters
telemetry-subscription mode.

telemetry ietf subscription id

Example:

Step 3

Device(config)# telemetry ietf subscription 101

Configures a stream for the subscription.stream yang-push

Example:

Step 4

Device(config-mdt-subs)# stream yang-push

Specifies the XPath filter for the subscription.filter xpath path

Example:

Step 5

Device(config-mdt-subs)# filter xpath
/memory-ios-xe-oper:memory-statistics/memory-statistic

Configures a periodic update policy for the subscription.update-policy {on-change | periodic} period

Example:

Step 6

Device(config-mdt-subs)# update-policy periodic
6000

Specifies kvGPB encoding.encoding encode-kvgpb

Example:

Step 7

Device(config-mdt-subs)# encoding encode-kvgpb

Configures the source VRF instance.source-vrf vrf-id

Example:

Step 8

Device(config-mdt-subs)# source-address Mgmt-intf

Configures the source address.source-address source-address

Example:

Step 9

Model-Driven Telemetry
39

Model-Driven Telemetry
Managing Configured Subscriptions

PurposeCommand or Action
Device(config-mdt-subs)# source-vrf 192.0.2.1

Configures the receiver IP address, protocol, and profile
for notifications.

receiver ip address ip-address receiver-port protocol
protocol profile name

Example:

Step 10

Device(config-mdt-subs)# receiver ip address
10.28.35.45 57555 protocol grpc-tcp

Exits telemetry-subscription configuration mode and
returns to privileged EXEC mode.

end

Example:

Step 11

Device(config-mdt-subs)# end

Configuring On-Change gRPC Subscriptions

SUMMARY STEPS

1. enable
2. configure terminal
3. telemetry ietf subscription id

4. stream yang-push
5. filter xpath path

6. update-policy {on-change | periodic period}
7. encoding encode-kvgpb
8. receiver ip address ip-address receiver-port protocol protocol profile name

9. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Creates a telemetry subscription and enters
telemetry-subscription mode.

telemetry ietf subscription id

Example:

Step 3

Device(config)# telemetry ietf subscription 8

Configures a stream for the subscription.stream yang-push

Example:

Step 4

Device(config-mdt-subs)# stream yang-push

Model-Driven Telemetry
40

Model-Driven Telemetry
Configuring On-Change gRPC Subscriptions

PurposeCommand or Action

Specifies the XPath filter for the subscription.filter xpath path

Example:

Step 5

Device(config-mdt-subs)# filter xpath
/iosxe-oper:ios-oper-db/hwidb-table

Configures an on-change update policy for the subscription.update-policy {on-change | periodic period}

Example:

Step 6

Device(config-mdt-subs)# update-policy on-change

Specifies kvGPB encoding.encoding encode-kvgpb

Example:

Step 7

Device(config-mdt-subs)# encoding encode-kvgpb

Configures the receiver IP address, protocol, and profile
for notifications.

receiver ip address ip-address receiver-port protocol
protocol profile name

Example:

Step 8

Device(config-mdt-subs)# receiver ip address
10.22.22.45 45000 protocol
grpc_tls profile secure_profile

Exits telemetry-subscription configurationmode and returns
to privileged EXEC mode.

end

Example:

Step 9

Device(config-mdt-subs)# end

Receiving a Response Code
When a subscription is successfully created, the device responds with a subscription result of notif-bis:ok and
a subscription ID. The following is a sample response RPC message for a dynamic subscription:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<subscription-result xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"
xmlns:notif-bis="urn:ietf:params:xml:ns:yang:ietf-event-notifications">notif-bis:
ok</subscription-result>
<subscription-id
xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications">2147484201</subscription-id>
</rpc-reply>

Receiving Subscription Push Updates for NETCONF Dial-In
Subscription updates pushed from the device are in the form of an XML RPC and are sent over the same
NETCONF session on which these are created. The subscribed information element or tree is returned within
the datastore-contents-xml tag. The following is a sample RPC message that provides the subscribed
information:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2017-05-09T21:34:51.74Z</eventTime>
<push-update xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<subscription-id>2147483650</subscription-id>

Model-Driven Telemetry
41

Model-Driven Telemetry
Receiving a Response Code

<datastore-contents-xml>
<cpu-usage

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-process-cpu-oper"><cpu-utilization>
<five-minutes>5</five-minutes></cpu-utilization></cpu-usage>

</datastore-contents-xml>
</push-update>

</notification>

If the information element to which a subscription is made is empty, or if it is dynamic, for example, a named
access list, and does not exist, the periodic update will be empty and will have a self-closing
datastore-contents-xml tag. The following is a sample RPC message in which the periodic update is empty:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2017-05-09T21:34:09.74Z</eventTime>
<push-update xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<subscription-id>2147483649</subscription-id>
<datastore-contents-xml />

</push-update>
</notification>

Retrieving Subscription Details
You can retrieve the list of current subscriptions by sending a <get> RPC to the Cisco-IOS-XE-mdt-oper
model. You can also use the show telemetry ietf subscription command to display the list of current
subscriptions.

The following is a sample <get> RPC message:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-subscriptions/>

</mdt-oper-data>
</filter>

</get>
</rpc>

The following is a sample RPC reply:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper">
<mdt-subscriptions>
<subscription-id>2147485164</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-xml</encoding>
<period>100</period>
<xpath>/ios:native/router/ios-rip:rip/ios-rip:version</xpath>

</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<updates-in>0</updates-in>

Model-Driven Telemetry
42

Model-Driven Telemetry
Retrieving Subscription Details

<updates-dampened>0</updates-dampened>
<updates-dropped>0</updates-dropped>

</mdt-subscriptions>
</mdt-oper-data>

</data>
</rpc-reply>

The following is sample output from the show telemetry ietf subscription dynamic brief command:

Device# show telemetry ietf subscription dynamic brief

Telemetry subscription brief

ID Type State Filter type

2147483667 Dynamic Valid xpath
2147483668 Dynamic Valid xpath
2147483669 Dynamic Valid xpath

The following is sample output from the show telemetry ietf subscription subscription-ID detail command:

Device# show telemetry ietf subscription 2147483667 detail

Telemetry subscription detail:

Subscription ID: 2147483667
State: Valid
Stream: yang-push
Encoding: encode-xml
Filter:
Filter type: xpath
XPath: /mdt-oper:mdt-oper-data/mdt-subscriptions

Update policy:
Update Trigger: periodic
Period: 1000

Notes:

The following is sample output from the show telemetry ietf subscription all detail command:
Device# show telemetry ietf subscription all detail

Telemetry subscription detail:

Subscription ID: 101
Type: Configured
State: Valid
Stream: yang-push
Encoding: encode-kvgpb
Filter:
Filter type: xpath
XPath: /iosxe-oper:ios-oper-db/hwidb-table

Update policy:
Update Trigger: on-change
Synch on start: Yes
Dampening period: 0

Notes:

Model-Driven Telemetry
43

Model-Driven Telemetry
Retrieving Subscription Details

The following sample RPC shows how to retrieve subscription details uisng RESTCONF:
Subscription details can also be retrieved through a RESTCONF GET request to the
Cisco-IOS-XE-mdt-oper database:
URI:
https://10.85.116.28:443/restconf/data/Cisco-IOS-XE-mdt-oper: mdt-oper-data/mdt-subscriptions
Headers:
application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json
Content-Type:
application/yang-data+json
Returned output:
{
"Cisco-IOS-XE-mdt-oper:mdt-subscriptions": [
{
"subscription-id": 101,
"base": {
"stream": "yang-push",
"encoding": "encode-kvgpb",
"source-vrf": "",
"no-synch-on-start": false,
"xpath": "/iosxe-oper:ios-oper-db/hwidb-table"

},
"type": "sub-type-static",
"state": "sub-state-valid",
"comments": "",
"updates-in": "0",
"updates-dampened": "0",
"updates-dropped": "0",
"mdt-receivers": [
{
"address": "5.28.35.35",
"port": 57555,
"protocol": "grpc-tcp",
"state": "rcvr-state-connecting",
"comments": "Connection retries in progress",
"profile": ""

}
]

}
]

}

Configuring Named Protocol Receiver Using the CLI

SUMMARY STEPS

1. enable
2. configure terminal
3. telemetry receiver protocol receiver-name

4. protocol {cloud-native | cntp-tcp | cntp-tls profile profile-name | grpc-tcp | grpc-tls profile profile-name
| native | tls-native profile profile-name}

5. host {ip ip-address | name hostname} receiver-port

6. end

Model-Driven Telemetry
44

Model-Driven Telemetry
Configuring Named Protocol Receiver Using the CLI

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures a named protocol receiver, and enters telemetry
protocol-receiver configuration mode.

telemetry receiver protocol receiver-name

Example:

Step 3

Device(config)# telemetry receiver protocol
receiver1

Configures a protocol for the named protocol receiver
connection.

protocol {cloud-native | cntp-tcp | cntp-tls profile
profile-name | grpc-tcp | grpc-tls profile profile-name |
native | tls-native profile profile-name}

Step 4

Example:
Device(config-mdt-protocol-receiver)# protocol
grpc-tcp

Configures the name protocol receiver hostname.host {ip ip-address | name hostname} receiver-port

Example:

Step 5

Device(config-mdt-protocol-receiver)# host name
rcvr.test.com 45000

Exits telemetry protocol-receiver configuration mode and
returns to privileged EXEC mode.

end

Example:

Step 6

Device(config-mdt-protocol-receiver)# end

Subscription Configuration Using Named Receivers Using CLI

SUMMARY STEPS

1. enable
2. configure terminal
3. telemetry ietf subscription id

4. receiver-type protocol }
5. receiver name name

6. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Model-Driven Telemetry
45

Model-Driven Telemetry
Subscription Configuration Using Named Receivers Using CLI

PurposeCommand or Action

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Creates a telemetry subscription and enters
telemetry-subscription mode.

telemetry ietf subscription id

Example:

Step 3

Device(config)# telemetry ietf subscription 101

Configures a protocol-type receiver.receiver-type protocol }

Example:

Step 4

Device(config-mdt-subs)# receiver-type protocol

Configures a name for the receiver for notifications.receiver name name

Example:

Step 5

Device(config-mdt-subs)# receiver name receiver1

Exits telemetry telemetry-subscription mode and returns to
privileged EXEC mode.

end

Example:

Step 6

Device(config-mdt-subs)# end

Additional References for Model-Driven Telemetry

Related Documents

Document TitleRelated Topic

https://github.com/CiscoDevNet/yang-explorerYANG Explorer

Standards and RFCs

TitleStandard/RFC

https://tools.ietf.org/id/
draft-ietf-netconf-subscribed-notifications-03.txt

Custom Subscription to Event Notifications
draft-ietf-netconf-subscribed-notifications-03

draft-ietf-netconf-netconf-event-notifications-01NETCONF Support for Event Notifications

NETCONF Event NotificationsRFC 5277

Network Configuration Protocol (NETCONF)RFC 6241

The YANG 1.1 Data Modeling LanguageRFC 7950

RESTCONF ProtocolRFC 8040

Model-Driven Telemetry
46

Model-Driven Telemetry
Additional References for Model-Driven Telemetry

https://github.com/CiscoDevNet/yang-explorer
https://tools.ietf.org/id/draft-ietf-netconf-subscribed-notifications-03.txt
https://tools.ietf.org/id/draft-ietf-netconf-subscribed-notifications-03.txt
https://tools.ietf.org/html/draft-ietf-netconf-netconf-event-notifications-01
https://tools.ietf.org/html/rfc5277
https://tools.ietf.org/html/rfc6241
https://tools.ietf.org/html/rfc7950
https://tools.ietf.org/html/rfc8040

TitleStandard/RFC

draft-ietf-netconf-rfc5277bis-01Subscribing to Event Notifications

draft-ietf-netconf-yang-push-04Subscribing to YANG Datastore Push Updates

https://tools.ietf.org/id/
draft-ietf-netconf-yang-push-07.txt

Subscribing to YANG datastore push updates
draft-ietf-netconf-yang-push-07

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for Model-Driven Telemetry
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Model-Driven Telemetry
47

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

https://tools.ietf.org/html/draft-ietf-netconf-rfc5277bis-01
https://tools.ietf.org/html/draft-ietf-netconf-yang-push-04
https://tools.ietf.org/id/draft-ietf-netconf-yang-push-07.txt
https://tools.ietf.org/id/draft-ietf-netconf-yang-push-07.txt
http://www.cisco.com/support
http://www.cisco.com/go/cfn

Table 15: Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Model-driven telemetry allows
network devices to continuously
stream real time configuration and
operating state information to
subscribers.

• Cisco Catalyst 3650 Series
Switches

• Cisco Catalyst 3850 Series
Switches

• Cisco Catalyst 9300 Series
Switches

• Cisco Catalyst 9500 Series
Switches

Cisco IOS XE Everest 16.6.1Model-Driven Telemetry
NETCONF Dial-In

• Cisco Catalyst 9400 Series
Switches

Cisco IOS XE Everest 16.6.2

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers
(ASR1001-HX, ASR1001-X,
ASR1002-HX, ASR1002-X)

Cisco IOS XE Fuji 16.7.1

• Cisco 1000 Series Integrated
Services Routers

• CiscoASR 1000RP2 andRP3
Series Aggregation Services
Routers

Cisco IOS XE Fuji 16.8.1

• Cisco Catalyst 9500-High
Performance Series Switches

Cisco IOS XE Fuji 16.8.1a

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregation Services Router

• Cisco cBR-8 Converged
Broadband Router

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Fuji 16.9.1

Model-Driven Telemetry
48

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Cisco IOS XE Gibraltar 16.9.2 • Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300L SKUs

• Cisco Cloud Services Router
1000v

• Cisco Network Convergence
System 520 Series

Cisco IOS XE Gibraltar 16.10.1

• Cisco Catalyst 9600 Series
Switches

Cisco IOS XE Gibraltar 16.11.1

Model-Driven Telemetry
49

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Telemetry updates that are sent to
the initiator/subscriber are called
Dial-in.

This feature was implemented on
the following platforms:

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco cBR-8 Converged
Broadband Router

Cisco IOS XE Gibraltar 16.12.1Model-Driven Telemetry gNMI
Dial-In

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Amsterdam 17.1.1

Cisco ASR 1000 Series
Aggregation Services Routers

Cisco IOS XE Amsterdam 17.2.1

Model-Driven Telemetry
50

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Configured subscriptions cause the
publisher to initiate connections to
receivers, and these connections are
considered as dial-out.

This feature was implemented on
the following platforms:

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Gibraltar 16.10.1Model-Driven Telemetry gRPC
Dial-Out

• Cisco Catalyst 9600 Series
Switches

Cisco IOS XE Gibraltar 16.11.1

Model-Driven Telemetry
51

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

To delete dynamic subscriptions,
you can use the CLI and the
kill-subscription RPC.

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router
(RSP2)

• Cisco Catalyst 3650 Series
Switches

• Cisco Catalyst 3850 Series
Switches

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Gibraltar 16.11.1Model-Driven Telemetry: Kill
Subscription

Model-Driven Telemetry
52

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

The TLDP On-Change
Notifications feature notifies users
when TLDP sessions come up or
go down and when TLDP is
configured or disabled.

This feature was implemented on
the following platforms:

• Cisco 4000 Series Integrated
Services Routers

• Cisco Catalyst 9200 Series
Switches

• Cisco Catalyst 9300 Series
Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 Series
Switches

Cisco IOS XE Amsterdam 17.2.1TLDP On-Change Notifications

Model-Driven Telemetry
53

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Transport-Layer Security is
supported for gRPC dial-out. This
feature is supported on the
following platforms:

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Amsterdam 17.1.1TLS for gRPC Dial-Out

Model-Driven Telemetry
54

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

With the introduction of the FQDN
Support for gRPC Subscriptions
feature, along with IP addresses,
FQDN can also be used for gRPC
subscriptions.

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Bengaluru 17.6.1FQDN Support for gRPC
Subscriptions

Model-Driven Telemetry
55

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

The Leaf-Level Filtering for
Telemetry feature allows filtering
below the gatherpoint level for the
optimized code paths.

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

Cisco IOS XE Cupertino 17.7.1Leaf-Level Filtering

A new gRPC TLS profile that
contains a pair of trustpoints was
added to the telemetry
configuration, so that a client ID
certificate can be specified for
mutual authentication. This new
profile can be used instead of the
trustpoint containing the server CA
certificate when configuring the
receiver profile. The trustpoint
containing the server CA certificate
is now configured as part of the
gRPC TLS profile.

This feature is supported on the
following platforms:

• CiscoCatalyst 9800-CLSeries
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

Cisco IOS XE Cupertino 17.9.1Mutual Authentication for gRPC
Telemetry

Model-Driven Telemetry
56

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Cisco IOS XE Cupertino 17.9.1Pubd Restartability

Model-Driven Telemetry
57

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

The pubd process is made
restartable from this release
onwards.

This feature is supported on the
following platforms:

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• CiscoCatalyst 9800-CLSeries
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

• Cisco Network Convergence
System 520 Series

Model-Driven Telemetry
58

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Cisco Network Convergence
System 4200 Series

•

Model-Driven Telemetry
59

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

Model-Driven Telemetry
60

Model-Driven Telemetry
Feature Information for Model-Driven Telemetry

	Model-Driven Telemetry
	Model-Driven Telemetry
	Prerequisites for Model-Driven Telemetry
	Restrictions for Model-Driven Telemetry
	Information About Model-Driven Telemetry
	Model-Driven Telemetry Overview
	Telemetry Roles
	Subscription Overview
	Dial-In and Dial-Out Model-Driven Telemetry
	Data Source Specifications
	Update Notifications
	Subscription Identifiers
	Subscription Management
	RPC Support in Telemetry
	Service gNMI

	Dynamic Subscription Management
	Creating Dynamic Subscriptions for NETCONF Dial-In
	Deleting Dynamic Subscriptions

	Configured Subscription Management
	Creating Configured Subscriptions
	Modifying Configured Subscriptions
	Deleting Configured Subscriptions
	FQDN Support for gRPC Subscriptions
	Named Receivers
	Named Protocol Receivers
	Configuring the Named Protocol Receiver Using YANG Models
	Subscription Configuration Using Named Receivers
	Configuring a Named-Receiver Subscription Configuration Using YANG Model
	Named Receiver Operation and Operational State
	Named Receiver State Using YANG Models
	Subscription Receiver Operation and Operational States
	Subscription Receiver States
	Subscription Receiver Connections
	Telemetry Connections
	Telemetry Protocol Connections

	Troubleshooting Named Receiver Connections

	Displaying On-Change Subscription YANG Models

	Subscription Monitoring
	Streams
	The yang-push Stream
	X-Path Filter for yang-push
	XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers
	XPath Values and Corresponding Rates on Cisco Catalyst 9800 Wireless Controllers

	Periodic Publication for yang-push
	On-Change Publication for yang-push

	The yang-notif-native Stream
	XPath Filter for yang-notif-native

	TLDP On-Change Notifications
	Transport Protocol
	NETCONF Protocol
	gRPC Protocol
	Mutual Authentication for gRPC Telemetry

	High Availability in Telemetry
	Pubd Restartability

	Sample Model-Driven Telemetry RPCs
	Managing Configured Subscriptions
	Configuring On-Change gRPC Subscriptions

	Receiving a Response Code
	Receiving Subscription Push Updates for NETCONF Dial-In
	Retrieving Subscription Details
	Configuring Named Protocol Receiver Using the CLI
	Subscription Configuration Using Named Receivers Using CLI

	Additional References for Model-Driven Telemetry
	Feature Information for Model-Driven Telemetry

