

# **gNMI** Protocol

This feature describes the model-driven configuration and retrieval of operational data using the gRPC Network Management Interface (gNMI) Capabilities, Get, Set and Subscribe remote procedure calls (RPCs). gNMI version 0.4.0 is supported.

- Restrictions for the gNMI Protocol, on page 1
- Information About the gNMI Protocol, on page 2
- How to Enable the gNMI Protocol, on page 12
- Configuration Examples for the gNMI Protocol, on page 18
- Additional References for the gNMI Protocol, on page 19
- Feature Information for the gNMI Protocol, on page 19

## **Restrictions for the gNMI Protocol**

The following restrictions apply to the feature:

• JSON, BYTES, PROTO, and ASCI encoding options are not supported.

JSON IETF keys must contain a YANG-prefix where the namespace of the following elements differs from the parent. This means that the routed-vlan derived from augmentation in openconfig-vlan.yang must be entered as *oc-vlan:routed-vlan* because it is different from the namespace of the parent nodes (parent nodes have the prefix, oc-if)

- GetRequest:
  - Operational data filtering is not supported.
  - Use models are not supported. These are a set of model data messages indicating the schema definition modules that define the data elements that must be returned in response to a Get RPC call.
- GetResponse:
  - Alias is not supported. It is a string that provides an alias for a prefix specified within the notification message.
  - Delete is not supported. It is a set of paths that are to be removed from a data tree.

## Information About the gNMI Protocol

### About GNMI

gNMI is gRPC Network Management Interface developed by Google. gNMI provides the mechanism to install, manipulate, and delete the configuration of network devices, and also to view operational data. The content provided through gNMI can be modeled using YANG.

gRPC is a remote procedure call developed by Google for low-latency, scalable distributions with mobile clients communicating to a cloud server. gRPC carries gNMI, and provides the means to formulate and transmit data and operation requests.

When a gNMI service failure occurs, the gNMI broker (GNMIB) will indicate an operational change of state from up to down, and all RPCs will return a service unavailable message until the database is up and running. Upon recovery, the GNMIB will indicate a change of operation state from down to up, and resume normal handling of RPCs.

gNMI supports <subscribe> RPC services. For more information, see the Model-Driven Telemetry chapter.

### JSON IETF Encoding for YANG Data Trees

RFC 7951 defines JavaScript Object Notation (JSON) encoding for YANG data trees and their subtrees. gNMI uses JSON for encoding data in its content layer.

The JSON type indicates that the value is encoded as a JSON string. JSON\_IETF-encoded data must conform to the rules for JSON serialisation described in RFC 7951. Both the client and target must support JSON encoding.

Instances of YANG data nodes (leafs, containers, leaf-lists, lists, anydata nodes, and anyxml nodes) are encoded as members of a JSON object or name/value pairs. Encoding rules are identical for all types of data trees, such as configuration data, state data, parameters of RPC operations, actions, and notifications.

Every data node instance is encoded as a name/value pair where the name is formed from the data node identifier. The value depends on the category of the data node.

#### The leaf Data Node

A leaf node has a value, but no children, in a data tree. A leaf instance is encoded as a name/value pair. This value can be a string, number, literal true or false, or the special array [null], depending on the type of the leaf. In the case that the data item at the specified path is a leaf node (which means it has no children, and an associated value) the value of that leaf is encoded directly. (A bare JSON value is included; it does not require a JSON object.)

The following example shows a leaf node definition:

```
leaf foo {
  type uint8;
}
```

The following is a valid JSON-encoded instance:

"foo": 123

### gNMI GET Request

The gNMI Get RPC specifies how to retrieve one or more of the configuration attributes, state attributes, derived state attributes, or all attributes associated with a supported mode from a date tree. A GetRequest is sent from a client to the target to retrieve values from the data tree. A GetResponse is sent in response to a GetRequest.

#### **GetRequest JSON Structure**

The following is a sample GetRequest JSON structure. Both the GetRequest and GetResponse are displayed.

#### GetRequest

```
The following is a path for the
openconfig-interfaces model
+++++++ Sending get request: +++++++
path {
    elem {
        name: "interfaces"
    }
    elem {
        name: "interface"
        key {
            key {
                key "name"
                value: "Loopback111"
        }
    }
}
```

#### GetResponse

```
encoding: JSON IETF
++++++ Received get response: +++++++
notification {
 timestamp: 1521699434792345469
 update {
   path {
     elem {
        name: "interfaces"
      }
     elem {
        name: "interface"
        kev {
         key: "name"
         value: "\"Loopback111\""
        }
      }
    }
    val {
      json ietf val: "{\n\t\"openconfig-interfaces:name\":\t\
      "Loopback111\", \n\t\
       "openconfig-interfaces:config\":\t{\n\t\t\
       "openconfig-interfaces:type\":\t\"ianaift:
        softwareLoopback\", \n\t\t\
       "openconfig-interfaces:name\":\t\"Loopback111\", \n\t\t\
       "openconfig-interfaces:enabled\":\t\"true\"\n\t},\n\t\
       "openconfig-interfaces:state\":\t{\n\t\t\
       "openconfig-interfaces:type\":\t\"ianaift:
        softwareLoopback\", \n\t\t\
       "openconfig-interfaces:name\":\t\"Loopback111\",\n\t\t
```

```
"openconfig-interfaces:enabled\":\t\"true\", \n\t\t\
"openconfig-interfaces:ifindex\":\t52,\n\t\t
"openconfig-interfaces:admin-status\":\t\"UP\",\n\t\t\
"openconfig-interfaces:oper-status\":\t\"UP\",\n\t\t\
"openconfig-interfaces:last-change\":\t2018,\n\t\t\
"openconfig-interfaces:counters\":\t{\n\t\t\t
"openconfig-interfaces:in-octets\":\t0, \n\t\t\t\
"openconfig-interfaces:in-unicast-pkts\":\t0,\n\t\t\t
"openconfig-interfaces:in-broadcast-pkts\":\t0,\n\t\t\t
"openconfig-interfaces:in-multicast-pkts\":\t0,\n\t\t\t
"openconfig-interfaces:in-discards\":\t0,\n\t\t\t
"openconfig-interfaces:in-errors\":\t0,\n\t\t\t
"openconfig-interfaces:in-unknown-protos\":\t0,\n\t\t\t
"openconfig-interfaces:out-octets\":\t0, \n\t\t\t\
"openconfig-interfaces:out-unicast-pkts\":\t0,\n\t\t\t
"openconfig-interfaces:out-broadcast-pkts\":\t0,\n\t\t\t
"openconfig-interfaces:out-multicast-pkts\":\t0, \n\t\t\t\
"openconfig-interfaces:out-discards\":\t0,\n\t\t\t
"openconfig-interfaces:out-errors\":\t0,\n\t\t\t
"openconfig-interfaces:last-clear\":\t2018\n\t\t},\n\t\t\
"openconfig-platform:hardware-port\":\t\
"Loopback111\"\n\t}, \n\t\
"openconfig-interfaces:subinterfaces\":\t{\n\t\t\
"openconfig-interfaces:index\":\t0, \n\t\t\
"openconfig-interfaces:config\":\t{\n\t\t\t
"openconfig-interfaces:index\":\t0,\n\t\t\t
"openconfig-interfaces:name\":\t\"Loopback111\",\n\t\t\t
"openconfig-interfaces:enabled\":\t\"true\"\n\t\t}, \n\t\t\
"openconfig-interfaces:state\":\t{\n\t\t\t
"openconfig-interfaces:index\":\t0,\n\t\t\t\
"openconfig-interfaces:name\":\t\"Loopback111.0\",\n\t\t\t
"openconfig-interfaces:enabled\":\t\"true\", \n\t\t\t\
"openconfig-interfaces:admin-status\":\t\"UP\", \n\t\t\t\
"openconfig-interfaces:oper-status\":\t\"UP\",\n\t\t\t
"openconfig-interfaces:last-change\":\t2018,\n\t\t\t
"openconfig-interfaces:counters\":\t{\n\t\t\t\t\
"openconfig-interfaces:in-octets\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-unicast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-broadcast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-multicast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-discards\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-errors\":\t0, \n\t\t\t\t\
"openconfig-interfaces:out-octets\":\t0,\n\t\t\t\t\
"openconfig-interfaces:out-unicast-pkts\":\t0, \n\t\t\t\t\
"openconfig-interfaces:out-broadcast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:out-multicast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:out-discards\":\t0,\n\t\t\t\t\
"openconfig-interfaces:out-errors\":\t0,\n\t\t\t\t\
"openconfig-interfaces:last-clear\":\
t2018\n\t\t\,\n\t\t\
"openconfig-if-ip:ipv6\":\t{\n\t\t\t
"openconfig-if-ip:config\":\t\"false\", \n\t\t\t
"openconfig-if-ip:state\":\t\"false\"\n\t\t}\n\t}"
```

} } }

#### **GetRequest on a Leaf Value**

The following is a sample GetRequest on a Leaf value. Both the GetRequest and the corresponding GetResponse are displayed.

### GetRequest

```
++++++ Sending get request: +++++++
path {
 elem {
   name: "interfaces"
 }
 elem {
   name: "interface"
   key {
     key: "name"
     value: "Loopback111"
    }
  }
  elem {
   name: "state"
  }
 elem {
   name: "oper-status"
  }
}
```

#### GetResponse

```
encoding: JSON IETF
++++++ Received get response: +++++++
notification {
 timestamp: 1521699326012374332
 update {
   path {
     elem {
       name: "interfaces"
     }
     elem {
       name: "interface"
       key {
         key: "name"
          value: "\"Loopback111\""
        }
     }
     elem {
       name: "state"
      }
     elem {
       name: "oper-status"
     }
    }
   val {
     json_ietf_val: "\"UP\""
    }
 }
}
```

### gNMI SetRequest

The Set RPC specifies how to set one or more configurable attributes associated with a supported model. A SetRequest is sent from a client to a target to update the values in the data tree.

SetRequests also support JSON keys, and must contain a YANG-prefix, in which the namespace of the element differs from parent.

For example, the *routed-vlan* element derived from augmentation in openconfig-vlan.yang must be entered as *oc-vlan:routed-vlan*, because it is different from the namespace of the parent node (The parent node prefix is oc-if.).

The total set of deletes, replace, and updates contained in any one SetRequest is treated as a single transaction. If any subordinate element of the transaction fails; the entire transaction is disallowed and rolled back. A SetResponse is sent back for a SetRequest.

#### Table 1: Example of a SetRequest JSON Structure

| SetRequest                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SetResponse                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>+++++++ Sending set request: +++++++ update {    path {      elem {         name: "interfaces"         }         elem {             name: "interface"             key {                 key {                       key: "name"                      value: "Loopback111"         }         }         elem {             name: "config"         }         val {             json_ietf_val:         "{\"openconfig-interfaces:enabled\":\"false\")"         }     } }</pre> | <pre>+++++++ Received set response: +++++++ response {    path {     elem {       name: "interfaces"       }     elem {         name: "interface"         key {             key {                 key {                       key: "name"                      value: "Loopback111"         }       }       elem {             name: "config"       }       op: UPDATE    } ' timestamp: 1521699342123890045 </pre> |

| SetRequest                                                                                                                                                       | SetResponse                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>+++++++ Sending set request: ++++++ update {    path {     elem {       name: "interfaces"     }    elem {       name: "interface"       key {    } }</pre> | <pre>+++++++ Received set response: ++++++ response {    path {     elem {       name: "interfaces"     }    elem {       name: "interface"       key {    } }</pre> |
| <pre>key {     key: "name"     value: "Loopback111"     } } elem {     name: "config" }</pre>                                                                    | <pre>key {     key: "name"     value: "Loopback111"     } } elem {     name: "config" }</pre>                                                                        |
| <pre>elem {     name: "description"     }     val {         json_ietf_val: "\"UPDATE DESCRIPTION\""     } }</pre>                                                | <pre>elem {     name: "description"     }     op: UPDATE } timestamp: 1521699342123890045</pre>                                                                      |

Table 2: Example of a SetRequest on Leaf Value

### gNMI Namespace

A namespace specifies the path prefixing to be used in the origin field of a message.

This section describes the namespaces used in Cisco IOS XE Gibraltar 16.10.1 and later releases:

• RFC 7951-specified namespaces: Path prefixes use the YANG module name as defined in RFC 7951.

The RFC 7951-specified value prefixing uses the YANG module name.

Value prefixing is not affected by the selected path prefix namespace. The following example shows an RFC 7951-specified value prefix:

```
val {
    json_ietf_val:"{
        "openconfig-interfaces:config": {
            "openconfig-interfaces:description":
            "DESCRIPTION"
        }
    }"
}"
```

An RFC 7951-specified namespace prefixing also uses the YANG module name. For example, the openconfig path to a loopback interface will be

/openconfig-interfaces:interfaces/interface[name=Loopback111]/

The following example shows a gNMI path with RFC7951 namespacing:

```
path {
    origin: "rfc7951"
    elem {
```

}

```
name: "openconfig-interface:interfaces"
}
elem {
    name: "interface"
    key {
        key: "name"
        value: "Loopback111"
    }
}
```

• Openconfig: No path prefixes are used. These can only be used with a path to an openconfig model.

The behavior of the Openconfig namespace prefixing is the same when no origin or namespace is provided. For example, the openconfig path to a loopback interface will be

```
/interfaces/interface[name=Loopback111]/
```

The following example shows a gNMI path with an Openconfig namespacing:

```
path {
    origin: "openconfig"
    elem {
        name: "interfaces"
    }
    elem {
        name: "interface"
        key {
            key: "name"
            value: "Loopback111"
        }
    }
}
```

• Blank: Same as the openconfig prefix. This is the default.

The following example shows a gNMI path with a blank Openconfig namespacing:

```
path {
  elem {
    name: "interfaces"
  }
  elem {
    name: "interface"
    key {
        key: "name"
        value: "Loopback111"
    }
  }
}
```

This section describes the path prefixing used in releases prior to Cisco IOS XE Gibraltar 16.10.1.

Here, path prefixing uses the YANG module prefix as defined in the YANG module definition. For example, the openconfig path to a loopback interface will be

/oc-if:interfaces/interface[name=Loopback111]/

The following example shows a gNMI Path with legacy namespacing:

```
path {
    origin: "legacy"
    elem {
        name: "oc-if:interfaces"
    }
```

L

```
elem {
   name: "interface"
   key {
      key: "name"
      value: "Loopback111"
   }
}
```

### gNMI Wildcards

The gNMI protocol supports wildcards for Get paths. This is the ability to use a wildcards in a path to match multiple elements. These wildcards indicate all elements in a given subtree in the schema.

An *elem* is an element, and it is a value between / characters in an xPath. An *elem* is also available in a gNMI path. For example, the position of a wildcard relative to *elem* names implies that the wildcard stands for an interface, and is interpreted as all interfaces.

There are two types of wildcards; implicit and explicit, and both are supported. Get paths support all types and combinations of path wildcards.

• Implicit wildcards: These expand a list of elements in an element tree. Implicit wildcard occurs when a key value is not provided for elements of a list.

The following is a sample path implicit wildcard. This wildcard will return the descriptions of all interfaces on a device:

```
path {
    elem {
        name: "interfaces"
    }
    elem {
        name: "interface"
    }
    elem {
        name: "config"
    }
    elem {
        name: "description"
    }
}
```

- Explicit wildcards: Provides the same functionality by
  - Specifying an asterisk (\*) for either the path element name or key name.

The following sample shows a path asterisk wildcard as the key name. This wildcard returns the description for all interfaces on a device.

```
path {
   elem {
      name: "interfaces"
   }
   elem {
      name: "interface"
      key {
         key: "name"
         value: "*"
      }
   }
   elem {
      name: "config"
```

```
}
elem {
    name: "description"
}
```

The following sample shows a path asterisk wildcard as the path name. This wildcard will return the description for all elements that are available in the Loopback111 interface.

```
path {
 elem {
    name: "interfaces"
  }
 elem {
    name: "interface"
    key {
     key: "name"
      value: "Loopback111"
    }
  }
   elem {
   name: "*"
  }
 elem {
   name: "description"
  }
}
```

• Specifying an ellipsis (...) or a blank entry as element names. These wildcards can expand to multiple elements in a path.

The following sample shows a path ellipsis wildcard. This wildcard returns all description fields available under /interfaces.

```
path {
    elem {
        name: "interfaces"
    }
    elem {
        name: "..."
    }
    elem {
        name: "description"
    }
}
```

The following is a sample GetRequest with an implicit wildcard. This GetRequest will return the oper-status of all interfaces on a device.

```
path {
   elem {
      name: "interfaces"
    }
   elem {
      name: "interface"
   }
   elem {
      name: "state"
   }
   elem {
      name: "oper-status"
   }
```

```
},
type: 0,
encoding: 4
```

The following is a sample GetResponse with an implicit wildcard:

```
notification {
 timestamp: 1520627877608777450
 update {
   path {
     elem {
       name: "interfaces"
     }
     elem {
       name: "interface"
       key {
        key: "name"
         value: "\"FortyGigabitEthernet1/1/1\""
       }
     }
     elem {
       name: "state"
}
     elem {
      name: "oper-status"
     }
    }
   val {
     json_ietf_val: "\"LOWER_LAYER_DOWN\""
    }
  },
<snip>
</snip>
update {
   path {
     elem {
       name: "interfaces"
     }
     elem {
       name: "interface"
       key {
        key: "name"
         value: "\"Vlan1\""
       }
      }
      elem {
      name: "state"
     }
     elem {
       name: "oper-status"
     }
    }
   val {
     json_ietf_val: "\"DOWN\""
    }
 }
}
```

### gNMI Configuration Persistence

The gNMI Configuration Persistence feature ensures that all successful configuration changes made through the gNMI SetRequest RPC persists across device restarts. Prior to this feature, the gNMI configuration was stored in the running configuration of a device. And the changes were saved by issuing the **write memory** command, or the SaveConfig NETCONF RPC.

All changes in the running configuration, even if the data was modified by processes other than gNMI, the data is saved to the startup configuration, when the SetRequest RPC is issued.

This feature is enabled by default and cannot be disabled.

### gNMI Username and Password Authentication

User credentials, the username and password provide authorization as metadata in each gNMI RPC. The following is a sample gNMI Capabilities RPC that use the username and password:

```
metadata = [('username','admin'), ('password','lab')]
cap_request = gnmi_pb2.CapabilityRequest()
# pass metadata to the gnmi_pb2_grpc.gNMIStub object
secure stub.Capabilities(cap request, metadata=metadata)
```

### **gNMI Error Messages**

When errors occur, gNMI returns descriptive error messages. The following section displays some gNMI error messages.

The following sample error message is displayed when the path is invalid:

The following sample error message is displayed for an unimplemented error:

The following sample error message is displayed when the data element is empty:

## How to Enable the gNMI Protocol

Perform the following steps to enable the gNMI protocol:

- 1. Create a set of certs for the gNMI client and device signed by a Certificate Authority (CA).
  - a. Create Certs with OpenSSL on Linux.
  - **b.** Install Certs on a device.
  - c. Configure gNMI on the device.
  - d. Verify whether gNMI is enabled and running.
- 2. Connect the gNMI client using client and root certificates configured in previous steps.

### Creating Certs with OpenSSL on Linux

Certs and trustpoint are only required for secure gNMI servers.

The following example shows how to create Certs with OpenSSL on a Linux machine:

```
# Setting up a CA
openssl genrsa -out rootCA.key 2048
openssl req -subj /C=/ST=/L=/O=/CN=rootCA -x509 -new -nodes -key rootCA.key -sha256 -out
rootCA.pem
# Setting up device cert and key
openssl genrsa -out device.key 2048
openssl req -subj /C=/ST=/L=/O=/CN=<hostnameFQDN> -new -key device.key -out device.csr
openssl x509 -req -in device.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
device.crt -sha256
# Encrpyt device key - needed for input to IOS
openssl rsa -des3 -in device.key -out device.des3.key -passout pass:<password - remember
this for later>
# Setting up client cert and key
openssl genrsa -out client.key 2048
openssl req -subj /C=/ST=/L=/O=/CN=gnmi client -new -key client.key -out client.csr
openssl x509 -req -in client.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
client.crt -sha256
```

### Installing Certs on a Device Through the CLI

The following example show how to install certs on a device:

```
# Send:
Device# configure terminal
Device(config)# crypto pki import trustpoint1 pem terminal password password1
# Receive:
% Enter PEM-formatted CA certificate.
% End with a blank line or "quit" on a line by itself.
# Send:
# Send:
# Contents of rootCA.pem, followed by newline + 'quit' + newline:
-----BEGIN CERTIFICATE-----
<snip>
-----END CERTIFICATE-----
quit
# Receive:
```

```
% Enter PEM-formatted encrypted private General Purpose key.
% End with "quit" on a line by itself.
# Send:
# Contents of device.des3.key, followed by newline + 'quit' + newline:
----BEGIN RSA PRIVATE KEY----
Proc-Type: 4, ENCRYPTED
DEK-Info: DES-EDE3-CBC, D954FF9E43F1BA20
<snip>
----END RSA PRIVATE KEY-----
quit
# Receive:
% Enter PEM-formatted General Purpose certificate.
% End with a blank line or "quit" on a line by itself.
# Send:
# Contents of device.crt, followed by newline + 'quit' + newline:
----BEGIN CERTIFICATE----
<snip>
----END CERTIFICATE----
quit
# Receive:
% PEM files import succeeded.
Device(config)#
# Send:
Device(config) # crypto pki trustpoint trustpoint1
Device(ca-trustpoint) # revocation-check none
Device (ca-trustpoint) # end
Device#
```

### Enabling gNMI in Insecure Mode

# 

**Note** This task is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.

In a Day Zero setup, first enable the device in insecure mode, then disable it, and enable the secure mode. To stop gNxI in insecure mode, use the **no gnxi server** command.



Note

gNxI insecure and secure servers can run simultaneously on a device.



Note

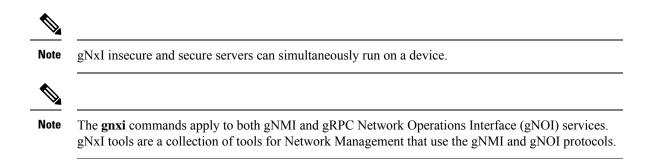
The **gnxi** commands apply to both gNMI and gRPC Network Operations Interface (gNOI) services. gNxI tools are a collection of tools for Network Management that use the gNMI and gNOI protocols.

#### **SUMMARY STEPS**

- 1. enable
- 2. configure terminal

- 3. gnxi
- 4. gnxi server
- **5. gnxi port** *port-number*
- **6**. end
- 7. show gnxi state

#### **DETAILED STEPS**


|        | Command or Action                          | Purpose                                                   |
|--------|--------------------------------------------|-----------------------------------------------------------|
| Step 1 | enable                                     | Enables privileged EXEC mode.                             |
|        | Example:                                   | • Enter your password if prompted.                        |
|        | Device> enable                             |                                                           |
| Step 2 | configure terminal                         | Enters global configuration mode.                         |
|        | Example:                                   |                                                           |
|        | Device# configure terminal                 |                                                           |
| Step 3 | gnxi                                       | Starts the gNxI process.                                  |
|        | Example:                                   |                                                           |
|        | Device(config)# gnxi                       |                                                           |
| Step 4 | gnxi server                                | Enables the gNxI server in insecure mode.                 |
|        | Example:                                   |                                                           |
|        | Device(config)# gnxi server                |                                                           |
| Step 5 | gnxi port port-number                      | Sets the gNxI port to listen to.                          |
|        | Example:                                   | • The default insecure gNxI port is 50052.                |
|        | (Optional) Device(config)# gnxi port 50000 |                                                           |
| Step 6 | end                                        | Exits global configuration mode and returns to privileged |
|        | Example:                                   | EXEC mode.                                                |
|        | Device(config)# end                        |                                                           |
| Step 7 | show gnxi state                            | Displays the status of gNxI interfaces.                   |
|        | Example:                                   |                                                           |
|        | Device# show gnxi state                    |                                                           |

## **Enabling gNMI in Secure Mode**

Note

This task is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.

To stop gNxI in secure mode, use the **no gnxi secure-server** command.



### **SUMMARY STEPS**

- 1. enable
- 2. configure terminal
- 3. gnxi
- 4. gnxi secure-server
- 5. gnxi secure-trustpoint trustpoint-name
- 6. gnxi secure-client-auth
- 7. gnxi secure-port
- 8. end
- 9. show gnxi state

#### **DETAILED STEPS**

|        | Command or Action                                  | Purpose                                                  |
|--------|----------------------------------------------------|----------------------------------------------------------|
| Step 1 | enable                                             | Enables privileged EXEC mode.                            |
|        | Example:                                           | • Enter your password if prompted.                       |
|        | Device> enable                                     |                                                          |
| Step 2 | configure terminal                                 | Enters global configuration mode.                        |
|        | Example:                                           |                                                          |
|        | Device# configure terminal                         |                                                          |
| Step 3 | gnxi                                               | Starts the gNxI process.                                 |
|        | Example:                                           |                                                          |
|        | Device(config)# gnxi                               |                                                          |
| Step 4 | gnxi secure-server                                 | Enables the gNxI server in secure mode.                  |
|        | Example:                                           |                                                          |
|        | Device(config)# gnxi secure-server                 |                                                          |
| Step 5 | gnxi secure-trustpoint trustpoint-name             | Specifies the trustpoint and cert set that gNxI uses for |
|        | Example:                                           | authentication.                                          |
|        | Device(config)# gnxi secure-trustpoint trustpoint1 |                                                          |
| Step 6 | gnxi secure-client-auth                            | (Optional) The gNxI process authenticates the client     |
|        | Example:                                           | certificate against the root certificate.                |

|        | Command or Action                       | Purpose                                                              |
|--------|-----------------------------------------|----------------------------------------------------------------------|
|        | Device(config)# gnxi secure-client-auth |                                                                      |
| Step 7 | gnxi secure-port                        | (Optional) Sets the gNxI port to listen to.                          |
|        | Example:                                | • The default secure gNxI port is 9339.                              |
|        | Device(config)# gnxi secure-port        |                                                                      |
| Step 8 | end                                     | Exits global configuration mode and returns to privileged EXEC mode. |
|        | Example:                                |                                                                      |
|        | Device(config)# end                     |                                                                      |
| Step 9 | show gnxi state                         | Displays the status of gNxI servers.                                 |
|        | Example:                                |                                                                      |
|        | Device# show gnxi state                 |                                                                      |

#### Example

The following is sample output from the **show gnxi state** command:

Device# show gnxi state

State Status ------Enabled Up

## **Connecting the gNMI Client**

The gNMI client is connected by using the client and root certificates that are previously configured.

The following example shows how to connect the gNMI client using Python:

```
# gRPC Must be compiled in local dir under path below:
>>> import sys
>>> sys.path.insert(0, "reference/rpc/gnmi/")
>>> import grpc
>>> import qnmi pb2
>>> import gnmi_pb2_grpc
>>> gnmi_dir = '/path/to/where/openssl/creds/were/generated/'
# Certs must be read in as bytes
>>> with open(gnmi_dir + 'rootCA.pem', 'rb') as f:
>>>
      ca cert = f.read()
>>> with open(gnmi_dir + 'client.crt', 'rb') as f:
>>> client cert = f.read()
>>> with open(gnmi dir + 'client.key', 'rb') as f:
      client_key = f.read()
>>>
# Create credentials object
>>> credentials = grpc.ssl_channel_credentials(root_certificates=ca_cert,
private_key=client_key, certificate_chain=client_cert)
# Create a secure channel:
```

```
# Default port is 9339, can be changed on ios device with 'gnxi secure-port ####"
>>> port = 9339
>>> host = <HOSTNAME FQDN>
>>> secure_channel = grpc.secure_channel("%s:%d" % (host, port), credentials)
# Create secure stub:
>>> secure_stub = gnmi_pb2_grpc.gNMIStub(secure_channel)
# Done! Let's test to make sure it works:
>>> secure_stub.Capabilities(gnmi_pb2.CapabilityRequest())
supported_models {
<snip>
}
supported_encodings: <snip>
gNMI version: "0.4.0"
```

## **Configuration Examples for the gNMI Protocol**

### Example: Enabling gNMI in Insecure Mode

Ø



This example is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.

The following example shows how to enable the gNxI server in insecure mode:

```
Device> enable
Device# configure terminal
Device(config)# gnxi
Device(config)# gnxi server
Device(config)# gnxi port 50000 <The default port is 50052.>
Device(config)# end
Device#
```

### Example: Enabling gNMI in Secure Mode

Note

This example is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.

The following example shows how to enable the gNxI server in secure mode:

```
Device> enable
Device# configure terminal
Device(config)# gnxi
Device(config)# gnxi server
Device(config)# gnxi secure-server
Device(config)# gnxi secure-trustpoint trustpoint1
Device(config)# gnxi secure-client-auth
Device(config)# gnxi secure-port 50001 <The default port is 9339.>
```

L

Device(config)# **end** Device#

## Additional References for the gNMI Protocol

#### **Related Documents**

| <b>Related Topic</b>  | Document Title                                                                        |
|-----------------------|---------------------------------------------------------------------------------------|
| DevNet                | https://developer.cisco.com/site/ios-xe/                                              |
| gNMI                  | https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md    |
| gNMI path<br>encoding | https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md |

#### **Standards and RFCs**

| Standard/RFC | Title                                   |  |
|--------------|-----------------------------------------|--|
| RFC 7951     | JSON Encoding of Data Modeled with YANG |  |

#### **Technical Assistance**

| Description                                                                                                                                                                                                                                                          | Link                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.                                                                            | http://www.cisco.com/support |
| To receive security and technical information about your products, you can<br>subscribe to various services, such as the Product Alert Tool (accessed from<br>Field Notices), the Cisco Technical Services Newsletter, and Really Simple<br>Syndication (RSS) Feeds. |                              |
| Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.                                                                                                                                                                         |                              |

# Feature Information for the gNMI Protocol

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

| Feature Name  | Release                           | Feature Information                                                                                                                             |
|---------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| gNMI Protocol | Cisco IOS XE Fuji 16.8.1a         | This feature describes the model-driven<br>configuration and retrieval of operational data<br>using the gNMI capabilities, GET and SET<br>RPCs. |
|               |                                   | This feature was implemented on the following platforms:                                                                                        |
|               |                                   | Cisco Catalyst 9300 Series Switches                                                                                                             |
|               |                                   | Cisco Catalyst 9400 Series Switches                                                                                                             |
|               |                                   | Cisco Catalyst 9500 Series Switches                                                                                                             |
|               | Cisco IOS XE Gibraltar<br>16.10.1 | In Cisco IOS XE Gibraltar 16.10.1, this feature<br>was implemented on Cisco Catalyst<br>9500-High Performance Series Switches.                  |
|               | Cisco IOS XE Gibraltar<br>16.11.1 | In Cisco IOS XE Gibraltar 16.11.1, this feature<br>was implemented on Cisco Catalyst 9600<br>Series Switches.                                   |
|               | Cisco IOS XE Gibraltar<br>16.12.1 | In Cisco IOS XE Gibraltar 16.12.1, this feature was implemented on the following platforms:                                                     |
|               |                                   | Cisco Catalyst 9200 and 9200L Series<br>Switches                                                                                                |
|               |                                   | Cisco Catalyst 9300L SKUs                                                                                                                       |
|               |                                   | Cisco cBR-8 Converged Broadband<br>Router                                                                                                       |
|               | Cisco IOS XE Amsterdam<br>17.1.1  | In Cisco IOS XE Amsterdam 17.1.1, this feature was implemented on the following platforms:                                                      |
|               |                                   | Cisco ASR 900 Series Aggregation<br>Services Routers                                                                                            |
|               |                                   | Cisco ASR 920 Series Aggregation<br>Services Router                                                                                             |
|               |                                   | Cisco Network Convergence System 520<br>Series                                                                                                  |
|               |                                   | Cisco Network Convergence System     4200 Series                                                                                                |
|               | Cisco IOS XE Amsterdam<br>17.2.1r | In Cisco IOS XE Amsterdam 17.2.1r, this<br>feature was implemented on Cisco ASR 1000<br>Series Aggregation Services Routers.                    |

### Table 3: Feature Information for the gNMI Protocol

| Feature Name                                 | Release                           | Feature Information                                                                                                                                                          |
|----------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | Cisco IOS XE Cupertino<br>17.8.1  | In Cisco IOS XE Cupertino 17.8.1, this feature was implemented on the following platforms:                                                                                   |
|                                              |                                   | Cisco 1000 Series Integrated Services<br>Routers                                                                                                                             |
|                                              |                                   | Cisco 4000 Series Integrated Services<br>Routers                                                                                                                             |
|                                              |                                   | Cisco Catalyst 9800-CL Wireless     Controllers                                                                                                                              |
|                                              |                                   | Cisco Catalyst 9800-40 Wireless     Controllers                                                                                                                              |
|                                              |                                   | Cisco Catalyst 9800-80 Wireless     Controllers                                                                                                                              |
| gNMI Username and<br>Password Authentication | Cisco IOS XE Gibraltar<br>16.12.1 | The Username and Password Authentication feature was added to the gNMI protocol. This feature is supported on all IOS XE platforms that support gNMI.                        |
| gNMI Configuration<br>Persistence            | Cisco IOS XE Amsterdam<br>17.3.1  | All successful configuration changes made<br>through the gNMI SetRequest RPC persists<br>across device restarts. This feature was<br>implemented on the following platforms: |
|                                              |                                   | Cisco 1000 Series Integrated Services     Routers                                                                                                                            |
|                                              |                                   | Cisco 4000 Series Integrated Services<br>Routers                                                                                                                             |
|                                              |                                   | Cisco Catalyst 9200 Series Switches                                                                                                                                          |
|                                              |                                   | Cisco Catalyst 9300 Series Switches                                                                                                                                          |
|                                              |                                   | Cisco Catalyst 9400 Series Switches                                                                                                                                          |
|                                              |                                   | Cisco Catalyst 9500 Series Switches                                                                                                                                          |
|                                              |                                   | Cisco Catalyst 9600 Series Switches                                                                                                                                          |

| Feature Name                                   | Release                          | Feature Information                                                                                                                                                                                                                                                          |
|------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gNOI Certificate Management                    | Cisco IOS XE Amsterdam<br>17.3.1 | The gNOI Certificate Management Service<br>provides RPCs to install, rotate, get certificate,<br>revoke certificate, and generate certificate<br>signing request. This feature was implemented<br>on the following platforms:                                                |
|                                                |                                  | Cisco Catalyst 9200 Series Switches                                                                                                                                                                                                                                          |
|                                                |                                  | Cisco Catalyst 9300 Series Switches                                                                                                                                                                                                                                          |
|                                                |                                  | Cisco Catalyst 9400 Series Switches                                                                                                                                                                                                                                          |
|                                                |                                  | Cisco Catalyst 9500 Series Switches                                                                                                                                                                                                                                          |
|                                                |                                  | Cisco Catalyst 9600 Series Switches                                                                                                                                                                                                                                          |
| gNOI Bootstrapping with<br>Certificate Service | Cisco IOS XE Amsterdam<br>17.3.1 | After installing gNOI certificates,<br>bootstrapping is used to configure or operate<br>a target device. gNMI bootstrapping is enabled<br>by using the <b>gnxi-secure-int</b> command and<br>disabled by using the<br><b>secure-allow-self-signed-trustpoint</b><br>command. |
|                                                |                                  | This feature was implemented on the following platforms:                                                                                                                                                                                                                     |
|                                                |                                  | Cisco Catalyst 9200 Series Switches                                                                                                                                                                                                                                          |
|                                                |                                  | Cisco Catalyst 9300 Series Switches                                                                                                                                                                                                                                          |
|                                                |                                  | Cisco Catalyst 9400 Series Switches                                                                                                                                                                                                                                          |
|                                                |                                  | Cisco Catalyst 9500 Series Switches                                                                                                                                                                                                                                          |
|                                                |                                  | Cisco Catalyst 9600 Series Switches                                                                                                                                                                                                                                          |