Python API

Python programmabililty supports Python APIs.

* About Python , on page 1
+ Additional References for Python API, on page 9
* Feature Information for Python API, on page 9

About Python

The Cisco IOS XE devices support Python Version 2.7 in both interactive and non-interactive (script) modes
within the Guest Shell. The Python scripting capability gives programmatic access to a device's CLI to perform
various tasks and Zero Touch Provisioning or Embedded Event Manager (EEM) actions.

Cisco Python Module

Cisco provides a Python module that provides access to run EXEC and configuration commands. You can
display the details of the Cisco Python module by entering the help() command. The help() command displays
the properties of the Cisco CLI module.

The following example displays information about the Cisco Python module:

Device# guestshell run python

Python 2.7.5 (default, Jun 17 2014, 18:11:42)

[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> >>> from cli import cli,clip,configure,configurep, execute, executep

>>> help (configure)
Help on function configure in module cli:

configure (configuration)

Apply a configuration (set of Cisco IOS CLI config-mode commands) to the device
and return a list of results.

configuration = '''interface gigabitEthernet 0/0

no shutdown'''

push it through the Cisco IOS CLI.
try:

results = cli.configure (configuration)
print "Success!"

Python API
I .-

. Cisco Python Module

except CLIConfigurationError as e:
print "Failed configurations:"

for failure in e.failed:

print failure

Args:
configuration (str or iterable): Configuration commands, separated by newlines.

Returns:
list (ConfigResult): A list of results, one for each line.

Raises:
CLISyntaxError: If there is a syntax error in the configuration.

>>> help (configurep)

Help on function configurep in module cli:

configurep (configuration)
Apply a configuration (set of Cisco IOS CLI config-mode commands) to the device
and prints the result.

configuration = '''interface gigabitEthernet 0/0
no shutdown'"''

push it through the Cisco IOS CLI.
configurep (configuration)

Args:

configuration (str or iterable): Configuration commands, separated by newlines.
>>> help (execute)

Help on function execute in module cli:

execute (command)
Execute Cisco IOS CLI exec-mode command and return the result.

command output = execute ("show version")
Args:

command (str): The exec-mode command to run.
Returns:

str: The output of the command.

Raises:
CLISyntaxError: If there is a syntax error in the command.

>>> help (executep)
Help on function executep in module cli:

executep (command)
Execute Cisco IOS CLI exec-mode command and print the result.

executep ("show version")
Args:

command (str): The exec-mode command to run.

>>> help (cli)

Help on function cli in module cli:

cli (command)
Execute Cisco IOS CLI command(s) and return the result.

. Python API

Python API |

| Python API
Cisco Python Module to Execute 10S CLI Commands .

A single command or a delimited batch of commands may be run. The
delimiter is a space and a semicolon, " ;". Configuration commands must be
in fully qualified form.

output = cli("show version")

output cli("show version ; show ip interface brief")

output cli("configure terminal ; interface gigabitEthernet 0/0 ; no shutdown")
Args:

command (str): The exec or config CLI command(s) to be run.

Returns:

string: CLI output for show commands and an empty string for
configuration commands.

Raises:
errors.cli syntax error: if the command is not valid.
errors.cli exec_error: if the execution of command is not successful.

>>> help(clip)
Help on function clip in module cli:

clip (command)
Execute Cisco IOS CLI command(s) and print the result.

A single command or a delimited batch of commands may be run. The
delimiter is a space and a semicolon, " ;". Configuration commands must be

in fully qualified form.

clip ("show version")

clip("show version ; show ip interface brief")
clip("configure terminal ; interface gigabitEthernet 0/0 ; no shutdown")
Args:

command (str): The exec or config CLI command(s) to be run.

Cisco Python Module to Execute 10S CLI Commands
A\

Note Guest Shell must be enabled for Python to run. For more information, see the Guest Shell chapter.

The Python programming language uses six functions that can execute CLI commands. These functions are
available from the Python CLI module. To use these functions, execute the import cli command.

Arguments for these functions are strings of CLI commands. To execute a CLI command through the Python
interpreter, enter the CLI command as an argument string of one of the following six functions:

» cli.cli(fcommand)—This function takes an IOS command as an argument, runs the command through
the 10S parser, and returns the resulting text. If this command is malformed, a Python exception is raised.
The following is sample output from the cli.cli(command) function:

>>> import cli

>>> cli.clip('configure terminal; interface loopback 10; ip address
10.10.10.10 255.255.255.255")
*Mar 13 18:39:48.518: $SLINEPROTO-5-UPDOWN: Line protocol on Interface Loopbackl0O, changed

Python API .

Python API |

. Cisco Python Module to Execute 10S CLI Commands

state to up
>>> cli.clip('show clock')
'\n*18:11:53.989 UTC Mon Mar 13 2017\n"'
>>> output=cli.cli ('show clock')
>>> print (output)

*18:12:04.705 UTC Mon Mar 13 2017

cli.clip(command)—This function works exactly the same as the cli.cli(command) function, except
that it prints the resulting text to stdout rather than returning it. The following is sample output from the
cli.clip(command) function:

>>> ¢cli

>>> cli.clip('configure terminal; interface loopback 11; ip address
10.11.11.11 255.255.255.255")

*Mar 13 18:42:35.954: SLINEPROTO-5-UPDOWN: Line protocol on Interface Loopbackll, changed

state to up
*Mar 13 18:42:35.954: SLINK-3-UPDOWN: Interface Loopbackll, changed state to up

>>> cli.clip('show clock')
*18:13:35.313 UTC Mon Mar 13 2017

>>> output=cli.clip('show clock')
*18:19:26.824 UTC Mon Mar 13 2017

>>> print (output)

None

cli.execute(command)—This function executes a single EXEC command and returns the output; however,
does not print the resulting text No semicolons or newlines are allowed as part of this command. Use a
Python list with a for-loop to execute this function more than once. The following is sample output from
the cli.execute(command)

function:

>>> cli.execute ("show clock")
'15:11:20.816 UTC Thu Jun 8 2017"'
>>>
>>> cli.execute ('show clock'; 'show ip interface brief')
File "<stdin>", line 1
cli.execute('show clock'; 'show ip interface brief')

S

SyntaxError: invalid syntax
>>>

cli.executep(command)—This function executes a single command and prints the resulting text to stdout
rather than returning it. The following is sample output from the cli.executep(command) function:

>>> cli.executep('show clock')
*18:46:28.796 UTC Mon Mar 13 2017

>>> output=cli.executep ('show clock')
*18:46:36.399 UTC Mon Mar 13 2017

>>> print (output)

None

cli.configure(command)—This function configures the device with the configuration available in
commands. It returns a list of named tuples that contains the command and its result as shown below:

. Python API

| Python API

Python Scripts Overview .

[Think: result = (bool (success), original command, error_information)]

The command parameters can be in multiple lines and in the same format that is displayed in the output
of the show running-config command. The following is sample output from the cli.configure(command)
function:

>>>cli.configure (["interface GigabitEthernetl/0/7", "no shutdown",

n end"])

[ConfigResult (success=True, command='interface GigabitEthernetl/0/7"',

line=1, output='"', notes=None), ConfigResult (success=True, command='no shutdown',
line=2, output='"', notes=None), ConfigResult (success=True, command='end',

line=3, output='"', notes=None)]

cli.configurep(command)—This function works exactly the same as the cli.configure(command)
function, except that it prints the resulting text to stdout rather than returning it. The following is sample
output from the cli.configurep(command) function:

>>> cli.configurep (["interface GigabitEthernetl/0/7", "no shutdown",
"end"])

Line 1 SUCCESS: interface GigabitEthernetl/0/7

Line 2 SUCCESS: no shut

Line 3 SUCCESS: end

Python Scripts Overview

Python run in a virtualized Linux-based environment, Guest Shell. For more information, see the Guest Shell
chapter. Cisco provides a Python module that allows user’s Python scripts to run IOS CLI commands on the
host device.

Interactive Python Prompt

Python Script

When you execute the guestshell run python command on a device, the interactive Python prompt is opened
inside the Guest Shell. The Python interactive mode allows users to execute Python functions from the Cisco
Python CLI module to configure the device.

The following example shows how to enable the interactive Python prompt:

Device# guestshell run python

Python 2.7.5 (default, Jun 17 2014, 18:11:42)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>
Device#

Python scripts can run in non-interactive mode by providing the Python script name as an argument in the
Python command. Python scripts must be accessible from within the Guest Shell. To access Python scripts
from the Guest Shell, save the scripts in bootflash/flash that is mounted within the Guest Shell.

Python API .

Python API |
. Python Script

The following sample Python script uses different CLI functions to configure and print show commands:

Device# more flash:sample script.py

import sys
import cli

intf= sys.argv[l:]
intf = '"'.join(intf[0])

print "\n\n *** Configuring interface %s with 'configurep' function *** \n\n" $intf
cli.configurep(["interface loopback55","ip address 10.55.55.55 255.255.255.0", "no
shut", "end"])

print "\n\n *** Configuring interface %s with 'configure' function *** \n\n"
cmd="interface %s,logging event link-status ,end' % intf

cli.configure (cmd.split (', "))

print "\n\n *** Printing show cmd with 'executep' function *** \n\n"
cli.executep('show ip interface brief')

print "\n\n *** Printing show cmd with 'execute' function *** \n\n"
output= cli.execute('show run interface %s' %intf)

print (output)

print "\n\n *** Configuring interface %s with 'cli' function *** \n\n"
cli.cli('config terminal; interface %s; spanning-tree portfast edge default' %$intf)

print "\n\n *** Printing show cmd with 'clip' function *** \n\n"

cli.clip('show run interface %s' %intf)

To run a Python script from the Guest Shell, execute the guestshell run python
/bootflash/guest-share/script.py command
at the device prompt.

The following example shows how to run a Python script from the Guest Shell:

Device# guestshell run python /bootflash/guest-share/sample_script.py loop55
*** Configuring interface loop55 with 'configurep' function ***

Line 1 SUCCESS: interface loopback55

Line 2 SUCCESS: ip address 10.55.55.55 255.255.255.0

Line 3 SUCCESS: no shut

Line 4 SUCCESS: end

*** Configuring interface %s with 'configure' function ***

*** Printing show cmd with 'executep' function ***

Interface IP-Address OK? Method Status Protocol
Vlanl unassigned YES NVRAM administratively down down
GigabitEthernet0/0 192.0.2.1 YES NVRAM up up
GigabitEthernetl1/0/1 unassigned YES unset down down
GigabitEthernetl1/0/2 unassigned YES unset down down
GigabitEthernetl1/0/3 unassigned YES unset down down
Tel/1/4 unassigned YES unset down down

. Python API

| Python API

Loopbackb5
Loopback66

10.55.55.55
unassigned

YES TFTP

*** Printing show cmd with 'execute' function ***

Building configuration...

Current configuration : 93 bytes

|

interface Loopback55

ip address 10.55.55.55 255.255.255.0
logging event link-status

end

*** Configuring interface %s with 'cli' function
*** Printing show cmd with 'clip' function ***

Building configuration...

Current configuration : 93 bytes

|

interface Loopback55

ip address 10.55.55.55 255.255.255.0
logging event link-status

end

Supported Python Versions

Supported Python Versions .

up up
YES manual up up

* Kk Kk

Guest Shell is pre-installed with Python Version 2.7. Guest Shell is a virtualized Linux-based environment,
designed to run custom Linux applications, including Python applications for automated control and
management of Cisco devices. Platforms with Montavista CGE7 support Python Version 2.7.11, and platforms

with CentOS 7 support Python Version 2.7.5.

The following table provides information about Python versions and the supported platforms:

Table 1: Python Version Support

Python Version

Platform

Python Version 2.7.5

All supported platforms except for Cisco Catalyst
3650 Series Switches and Cisco Catalyst 3850 Series
Switches.

Python Version 2.7.11

* Cisco Catalyst 3650 Series Switches

* Cisco Catalyst 3850 Series Switches

Python API .

Python API |
. Updating the Cisco CLI Python Module

Python Version Platform
Python Version 3.6 Supported in Cisco IOS XE Amsterdam 17.1.1 and
later releases.

In Cisco IOS XE Amsterdam 17.1.1 and Cisco 10S
XE Amsterdam 17.2.1, Python V2 is the default.
However, in Cisco IOS XE Amsterdam 17.3.1 and
later releases, Python V3 is the default.

Note

Cisco Catalyst 9200 Series Switches do not support
Python Version 3.6 in Cisco IOS XE Amsterdam
17.1.1 and Cisco IOS XE Amsterdam 17.2.1. Cisco
Catalyst 9200 Series Switches support Python V3 in
Cisco I0S XE Amsterdam 17.3.1 and later releases.

Note
Not supported by Cisco Catalyst 3650 Series
Switches and Cisco Catalyst 3850 Series Switches.

Platforms with CentOS 7 support the installation of Redhat Package Manager (RPM) from the open source
repository.

Updating the Cisco CLI Python Module

The Cisco CLI Python module and EEM module are pre-installed on devices. However, when you update the
Python version by using either Yum or prepackaged binaries, the Cisco-provided CLI module must also be
updated.

)

Note When you update to Python Version 3 on a device that already has Python Version 2, both versions of Python
exist on the device. Use one of the following IOS commands to run Python:

* The guestshell run python2 command enables Python Version 2.
* The guestshell run python3 command enables Python Version 3.
* The guestshell run python command enables Python Version 2.

Use one of the following methods to update the Python version:

« Standalone tarball installation

* PIP install for the CLI module

Python API
8 I

| Python API

Additional References for Python API

Related Documents

Additional References for Python APl .

Related Topic

Document Title

Guest Shell

Guest Shell

EEM Python Module

Python Scripting in EEM

Technical Assistance

Description

Link

with Cisco products and technologies.

Syndication (RSS) Feeds.

ID and password.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple

Access to most tools on the Cisco Support website requires a Cisco.com user

The Cisco Support website provides extensive online resources, including | http:
documentation and tools for troubleshooting and resolving technical issues

//'Www.cisco.com/support

Feature Information for Python API

The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Python API .

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/guest_shell.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/eem_python_module.html
http://www.cisco.com/support
http://www.cisco.com/go/cfn

. Feature Information for Python API

Table 2: Feature Information for the CLI Python Module

Python API |

Feature Name Release Feature Information
CLI Python Module Cisco 10S XE Everest Python programmabilty provides a Python
16.5.1a module that allows users to interact with IOS

using CLIs.

In Cisco I0S XE Everest 16.5.1a, this feature
was implemented on the following platforms:

* Cisco Catalyst 3650 Series Switches
* Cisco Catalyst 3850 Series Switches
* Cisco Catalyst 9300 Series Switches

* Cisco Catalyst 9500 Series Switches
In Cisco IOS XE Everest 16.5.1b, this feature
was implemented on the following platforms:

* Cisco 4000 Series Integrated Services
Routers

Cisco IOS XE Everest 16.6.2

This feature was implemented on Cisco
Catalyst 9400 Series Switches.

Cisco 10S XE Fuji 16.7.1

This feature was implemented on the
following platforms:

* Cisco ASR 1000 Aggregation Services
Routers

e Cisco CSR 1000v Series Cloud Services
Routers

Cisco IOS XE Fuji 16.8.1
Cisco I0S XE Fuji 16.8.1a

In Cisco IOS XE Fuji 16.8.1, this feature was
implemented on following platforms:

* Cisco ASR 1004 Router
* Cisco ASR 1006 Router
* Cisco ASR 1006-X Router
* Cisco ASR 1009-X Router
* Cisco ASR 1013 Router

* Cisco 4000 Series Integrated Services
Router models with a minimum of 4 GB
RAM.

In Cisco IOS XE Fuji 16.8.1a, this feature was
implemented on Cisco Catalyst 9500-High
Performance Series Switches

. Python API

	Python API
	About Python
	Cisco Python Module
	Cisco Python Module to Execute IOS CLI Commands
	Python Scripts Overview
	Interactive Python Prompt
	Python Script
	Supported Python Versions
	Updating the Cisco CLI Python Module

	Additional References for Python API
	Feature Information for Python API

