
NETCONF Protocol

• Information About the NETCONF Protocol, on page 1
• How to Configure the NETCONF Protocol, on page 24
• Verifying the NETCONF Protocol Configuration Through the CLI, on page 30
• Example: Named Method List, on page 33
• Displaying NETCONF-YANG Diagnostics Through RPCs, on page 33
• Additional References for NETCONF Protocol, on page 36
• Feature Information for the NETCONF Protocol, on page 38

Information About the NETCONF Protocol

IntroductiontoDataModels:ProgrammaticandStandards-BasedConfiguration
The traditional way of managing network devices is by using Command Line Interfaces (CLIs) for
configurational (configuration commands) and operational data (show commands). For network management,
Simple Network Management Protocol (SNMP) is widely used, especially for exchanging management
information between various network devices. Although CLIs and SNMP are heavily used, they have several
restrictions. CLIs are highly proprietary, and human intervention is required to understand and interpret their
text-based specification. SNMP does not distinguish between configurational and operational data.

The solution lies in adopting a programmatic and standards-based way of writing configurations to any network
device, replacing the process of manual configuration. Network devices running on Cisco IOS XE support
the automation of configuration for multiple devices across the network using data models. Data models are
developed in a standard, industry-defined language, that can define configuration and state information of a
network.

Cisco IOS XE supports the Yet Another Next Generation (YANG) data modeling language. YANG can be
used with the Network Configuration Protocol (NETCONF) to provide the desired solution of automated and
programmable network operations. NETCONF (RFC 6241) is an XML-based protocol that client applications
use to request information from and make configuration changes to the device. YANG is primarily used to
model the configuration and state data used by NETCONF operations.

In Cisco IOS XE, model-based interfaces interoperate with existing device CLI, Syslog, and SNMP interfaces.
These interfaces are optionally exposed northbound from network devices. YANG is used to model each
protocol based on RFC 6020.

NETCONF Protocol
1

From Cisco IOS XE 17.15.1, use the yang-interfaces feature deprecated disable command or the
Cisco-IOS-XE-Yang-interfaces-cfg.yangmodel to disable the deprecated NETCONF-YANGmodel elements.
By default deprecated model elements remain enabled.

To access Cisco YANG models in a developer-friendly way, clone the GitHub repository, and navigate to
the vendor/cisco subdirectory. Models for various releases of IOS-XE, IOS-XR, and NX-OS platforms are
available here.

Note

NETCONF
NETCONF provides a mechanism to install, manipulate, and delete the configuration of network devices.

It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the
protocol messages.

NETCONF uses a simple Remote Procedure Call (RPC) basedmechanism to facilitate communication between
a client and a server. The client can be a script or application running as part of a network manager. The server
is typically a network device (switch or router). It uses Secure Shell (SSH) as the transport layer across network
devices. It uses SSH port number 830 as the default port. The port number is a configurable option.

NETCONF also supports capability discovery and model downloads. Supported models are discovered using
the ietf-netconf-monitoring model. Revision dates for each model are shown in the capabilities response.
Data models are available for optional download from a device using the get-schema RPC. You can use these
YANG models to understand or export the data model. For more details on NETCONF, see RFC 6241.

In releases prior to Cisco IOS XE Fuji 16.8.1, an operational data manager (based on polling) was enabled
separately. In Cisco IOS XE Fuji 16.8.1 and later releases, operational data works on platforms running
NETCONF (similar to how configuration data works), and is enabled by default. For more information on
the components that are enabled for operational data queries or streaming, see the GitHub respository, to view
*-oper in the naming convention.

Restrictions for the NETCONF Protocol
• The NETCONF feature is not supported on a device running dual IOSd configuration or software
redundancy.

• If RP addresses from the NETCONF datastore are removed using the no ip pim rp-address command,
there could be inconsistencies in the datastore, due to parser limitations. To remove RP address entries
from the NETCONF datastore, use the RPC.

YANG Model Version 1.1
YANG Version 1.1 is described by the RFC 7950, The YANG 1.1 Data Modeling Language. YANG Version
1.1 is a maintenance release of the YANG language that addresses ambiguities and defects in the YANG
Version 1.0 specification.

The YANGmodule in YANGVersion 1.1 is advertised through the ietf-yang-library instead of the NETCONF
hello messages.

NETCONF Protocol
2

NETCONF Protocol
NETCONF

https://github.com/YangModels/yang
https://github.com/YangModels/yang/tree/master/vendor/cisco
https://github.com/YangModels/yang/tree/master/vendor/cisco/xe/1681

The following example shows the NETCONF <get> RPC that retrieves a list of all the YANG modules
supported by a device:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter>
<modules-state xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"/>

</filter>
</get>

</rpc>

The output of the RPC reply contains a list of all the YANG modules regardless of the YANG version each
module uses.

Cisco IOS XE Cupertino 17.7.1 uses the YANG Version 1.0; however, you can still download the YANG
Version 1.1 from GitHub at https://github.com/YangModels/yang/tree/master/vendor/cisco/xe.

Alternatively, you can also download the YANG models from the device using the NETCONF get-schema
operation, and migrate the downloaded models to this version using the migrate_yang_version.py script.

The following example shows how to migrate from YANGVersion 1.0 to YANGVersion 1.1 using the script:

migrate_yang_version.py [-h] [--out OUT] path

Use the help command to view the options available with the script:

python migrate_yang_version.py --help
usage: migrate_yang_version.py [-h] [--out OUT] path

positional arguments:
path Path to the YANG files

optional arguments:
-h, --help show this help message and exit
--out OUT Path to the output YANG file

The following example shows how to use the out argument to move a file from its original location to another
folder:

python migrate_yang_version.py --out testdir/outdir testdir/indir

In the above example, testdir/outdir is the directory in which the YANG model Version 1.1 resides or where
the output of the script is placed. This directory will be created, if it is not available.

The testdir/indir directory is where the YANG model Version 1.0 resides; the input for the script.

After the YANG model Version 1.1 is created, either by downloading it from GitHub or by using the
migrate_yang_version.py script and compiled on the client application, end-to-end YANG model tests can
be executed and validated against Cisco IOS XE devices.

The YANG models on the device is still YANG Version 1.0. However; there is no need to change the RPC
payload of the client test cases.

Note

NETCONF Protocol
3

NETCONF Protocol
YANG Model Version 1.1

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe

For inquiries related to the migrate_yang_version.py script or the Cisco IOS XE YANG migration process,
send an email to xe-yang-migration@cisco.com.

Cisco IOS XE Cupertino 17.8.1 uses YANG Version 1.1. The difference between YANG Version 1.1 and
Version 1.0 is documented at https://tools.ietf.org/html/rfc7950#page-10.

YANG Version in Cisco IOS XE Dublin 17.10.1

Cisco-defined YANG models are in YANG Version 1.1 in Cisco IOS XE Dublin 17.10.1 and later releases.
You can download this version from GitHub at
https://github.com/YangModels/yang/tree/master/vendor/cisco/xe.

In YANGVersion 1.1, the critical change that impacts client applications that use NETCONF is in the<hello>
message content. As per RFC 7950, a server advertises support for YANG 1.1 modules by using the
ietf-yang-library, instead of listing them as capabilities in the <hello> message. We recommend that you use
the ietf-yang-library to gather the list of supported YANG modules, instead of deriving this list from the
<hello> message content.

NETCONF RESTCONF IPv6 Support
Data model interfaces (DMIs) support the use of IPv6 protocol. DMI IPv6 support helps client applications
to communicate with services that use IPv6 addresses. External facing interfaces will provide dual-stack
support; both IPv4 and IPv6.

DMIs are a set of services that facilitate the management of network elements. Application layer protocols
such as, NETCONF and RESTCONF access these DMIs over a network.

If IPv6 addresses are not configured, external-facing applications will continue to listen on IPv6 sockets; but
these sockets will be unreachable.

Converting IOS Commands to XML
In Cisco IOS XE Cupertino 17.7.1 and later releases, you can automatically translate IOS commands into
relevant NETCONF-YANG XML or RESTCONF-JSON request messages. You can analyze the generated
configuration messages and familiarize with the Xpaths used in these messages. The generated configuration
in the structured format can be used to provision other devices in the network; however, this configuration
cannot be modified.

Use the show running-config | format netconf-xml command or the show running-config | format
restconf-json command to translate IOS commands.

If the netconf-xml keyword is selected, the IOS commands are translated into the NETCONF-YANG XML
format, and if the restconf-json keyword is selected, the IOS commands are translated into the
RESTCONF-JSON format.

The translation of IOS commands into a structured format is disabled by default. You must initially configure
NETCONF-YANG, and once the data model interfaces (DMIs) are initialized, use the appropriate format
option to translate the commands.

The following is sample output from the show running-config | format netconf-xml command:
Device# show running-config | format netconf-xml

<config xmlns="http://tail-f.com/ns/config/1.0">
<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
<version>17.8</version>

NETCONF Protocol
4

NETCONF Protocol
NETCONF RESTCONF IPv6 Support

https://tools.ietf.org/html/rfc7950#page-10
https://github.com/YangModels/yang/tree/master/vendor/cisco/xe

<boot-start-marker/>
<boot>
<system>
<flash>
<flash-list-ordered-by-user>

<flash-leaf>bootflash:c8000v-universalk9.BLD_POLARIS_DEV_LATEST_20211020_005209.SSA.bin</
flash-leaf>

</flash-list-ordered-by-user>
</flash>

</system>
</boot>
<boot-end-marker/>
<memory>
<free>
<low-watermark>
<processor>64219</processor>

</low-watermark>
</free>

</memory>
<call-home>
<contact-email-addr xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-call-home">
sch-smart-licensing@cisco.com</contact-email-addr>

<tac-profile xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-call-home">
<profile>
<CiscoTAC-1>
<active>true</active>
<destination>
<transport-method>http</transport-method>

</destination>
</CiscoTAC-1>

</profile>
</tac-profile>

</call-home>
<service>
<timestamps>
<debug-config>
<datetime>
<msec/>
<localtime/>
<show-timezone/>

</datetime>
</debug-config>
<log-config>
<datetime>
<msec/>
<localtime/>
<show-timezone/>

</datetime>
</log-config>

</timestamps>
<call-home/>

</service>
<platform>
<console xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-platform">
<output>serial</output>

</console>
<qfp xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-platform">
<utilization>
<monitor>
<load>80</load>

</monitor>
</utilization>

</qfp>

NETCONF Protocol
5

NETCONF Protocol
Converting IOS Commands to XML

<punt-keepalive xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-platform">
<disable-kernel-core>true</disable-kernel-core>

</punt-keepalive>
</platform>
<hostname>pi-prog-csr1</hostname>
<enable>
<password>
<secret>lab</secret>

</password>
</enable>
<username>
<name>admin</name>
<privilege>15</privilege>
<password>
<encryption>0</encryption>
<password>lab</password>

</password>
</username>
<vrf>
<definition>
<name>Mgmt-intf</name>
<address-family>
<ipv4>
</ipv4>
<ipv6>
</ipv6>

</address-family>
</definition>

</vrf>
<ip>
<domain>
<name>cisco</name>

</domain>
<forward-protocol>
<protocol>nd</protocol>

</forward-protocol>
<route>
<ip-route-interface-forwarding-list>
<prefix>10.0.0.0</prefix>
<mask>255.255.0.0</mask>
<fwd-list>
<fwd>10.45.0.1</fwd>

</fwd-list>
</ip-route-interface-forwarding-list>
<vrf>
<name>Mgmt-intf</name>
<ip-route-interface-forwarding-list>
<prefix>0.0.0.0</prefix>
<mask>0.0.0.0</mask>
<fwd-list>
<fwd>10.104.54.129</fwd>

</fwd-list>
</ip-route-interface-forwarding-list>

</vrf>
</route>
<ssh>
<ssh-version>2</ssh-version>

</ssh>
<tftp>
<source-interface>
<GigabitEthernet>1</GigabitEthernet>

</source-interface>
<blocksize>8192</blocksize>

</tftp>

NETCONF Protocol
6

NETCONF Protocol
Converting IOS Commands to XML

<http xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-http">
<authentication>
<local/>

</authentication>
<server>true</server>
<secure-server>true</secure-server>

</http>
</ip>
<ipv6>
<unicast-routing/>

</ipv6>
<interface>
<GigabitEthernet>
<name>1</name>
<vrf>
<forwarding>Mgmt-intf</forwarding>

</vrf>
<ip>
<address>
<primary>
<address>10.104.54.222</address>
<mask>255.255.255.128</mask>

</primary>
</address>

</ip>
<mop>
<enabled>false</enabled>
<sysid>false</sysid>

</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ethernet">
<auto>true</auto>

</negotiation>
</GigabitEthernet>
<GigabitEthernet>
<name>2</name>
<ip>
<address>
<primary>
<address>9.45.21.231</address>
<mask>255.255.0.0</mask>

</primary>
</address>

</ip>
<mop>
<enabled>false</enabled>
<sysid>false</sysid>

</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ethernet">
<auto>true</auto>

</negotiation>
</GigabitEthernet>
<GigabitEthernet>
<name>3</name>
<mop>
<enabled>false</enabled>
<sysid>false</sysid>

</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ethernet">
<auto>true</auto>

</negotiation>
</GigabitEthernet>
<GigabitEthernet>
<name>4</name>
<mop>

NETCONF Protocol
7

NETCONF Protocol
Converting IOS Commands to XML

<enabled>false</enabled>
<sysid>false</sysid>

</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ethernet">
<auto>true</auto>

</negotiation>
</GigabitEthernet>
<GigabitEthernet>
<name>5</name>
<mop>
<enabled>false</enabled>
<sysid>false</sysid>

</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ethernet">
<auto>true</auto>

</negotiation>
</GigabitEthernet>

</interface>
<control-plane>
</control-plane>
<clock>
<timezone>
<zone>IST</zone>
<hours>5</hours>
<minutes>30</minutes>

</timezone>
</clock>
<logging>
<console-config>
<console>false</console>

</console-config>
</logging>
<aaa>
<new-model xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-aaa"/>
<authentication xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-aaa">
<login>
<name>default</name>
<a1>
<local/>

</a1>
</login>

</authentication>
<authorization xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-aaa">
<exec>
<name>default</name>
<a1>
<local/>

</a1>
</exec>

</authorization>
<common-criteria xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-aaa">
<policy>enable_secret_policy</policy>
<char-changes>4</char-changes>
<lower-case>1</lower-case>
<max-length>127</max-length>
<min-length>10</min-length>
<numeric-count>1</numeric-count>
<upper-case>1</upper-case>

</common-criteria>
<session-id xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-aaa">common</session-id>

</aaa>
<login>
<on-success>
<log>

NETCONF Protocol
8

NETCONF Protocol
Converting IOS Commands to XML

</log>
</on-success>

</login>
<multilink>
<bundle-name

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-ppp">authenticated</bundle-name>
</multilink>
<redundancy>
</redundancy>
<spanning-tree>
<extend xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-spanning-tree">
<system-id/>

</extend>
</spanning-tree>
<subscriber>
<templating/>

</subscriber>
<crypto>
<pki xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-crypto">
<certificate>
<chain>
<name>SLA-TrustPoint</name>
<certificate>
<serial>01</serial>
<certtype>ca</certtype>

</certificate>
</chain>
<chain>
<name>TP-self-signed-2685563505</name>
<certificate>
<serial>01</serial>
<certtype>self-signed</certtype>

</certificate>
</chain>

</certificate>
<trustpoint>
<id>SLA-TrustPoint</id>
<enrollment>
<pkcs12/>

</enrollment>
<revocation-check>crl</revocation-check>

</trustpoint>
<trustpoint>
<id>TP-self-signed-2685563505</id>
<enrollment>
<selfsigned/>

</enrollment>
<revocation-check>none</revocation-check>
<rsakeypair>
<key-label>TP-self-signed-2685563505</key-label>

</rsakeypair>
<subject-name>cn=IOS-Self-Signed-Certificate-2685563505</subject-name>

</trustpoint>
</pki>

</crypto>
<license>
<udi>
<pid>C8000V</pid>
<sn>93SHKMJKOC6</sn>

</udi>
<boot>
<level>
<network-advantage>
<addon>dna-advantage</addon>

NETCONF Protocol
9

NETCONF Protocol
Converting IOS Commands to XML

</network-advantage>
</level>

</boot>
</license>
<line>
<aux>
<first>0</first>

</aux>
<console>
<first>0</first>
<exec-timeout>
<minutes>0</minutes>
<seconds>0</seconds>

</exec-timeout>
<stopbits>1</stopbits>

</console>
<vty>
<first>0</first>
<last>4</last>
<exec-timeout>
<minutes>0</minutes>
<seconds>0</seconds>

</exec-timeout>
<password>
<secret>lab</secret>

</password>
<transport>
<input>
<all/>

</input>
<output>
<all/>

</output>
</transport>

</vty>
<vty>
<first>5</first>
<last>31</last>
<transport>
<input>
<all/>

</input>
<output>
<all/>

</output>
</transport>

</vty>
</line>
<diagnostic xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-diagnostics">
<bootup>
<level>minimal</level>

</bootup>
</diagnostic>

</native>
</config>
pi-prog-csr1#
pi-prog-csr1#
pi-prog-csr1#show running-config | format restconf-json
{
"data": {
"Cisco-IOS-XE-native:native": {
"version": "17.8",
"boot-start-marker": [null],
"boot": {

NETCONF Protocol
10

NETCONF Protocol
Converting IOS Commands to XML

"system": {
"flash": {
"flash-list-ordered-by-user": [
{
"flash-leaf":

"bootflash:c8000v-universalk9.BLD_POLARIS_DEV_LATEST_20211020_005209.SSA.bin"
}

]
}

}
},
"boot-end-marker": [null],
"memory": {
"free": {
"low-watermark": {
"processor": 64219

}
}

},
"call-home": {
"Cisco-IOS-XE-call-home:contact-email-addr": "sch-smart-licensing@cisco.com",
"Cisco-IOS-XE-call-home:tac-profile": {
"profile": {
"CiscoTAC-1": {
"active": true,
"destination": {
"transport-method": "http"

}
}

}
}

},
"service": {
"timestamps": {
"debug-config": {
"datetime": {
"msec": [null],
"localtime": [null],
"show-timezone": [null]

}
},
"log-config": {
"datetime": {
"msec": [null],
"localtime": [null],
"show-timezone": [null]

}
}

},
"call-home": [null]

},
"platform": {
"Cisco-IOS-XE-platform:console": {
"output": "serial"

},
"Cisco-IOS-XE-platform:qfp": {
"utilization": {
"monitor": {
"load": 80

}
}

},
"Cisco-IOS-XE-platform:punt-keepalive": {
"disable-kernel-core": true

NETCONF Protocol
11

NETCONF Protocol
Converting IOS Commands to XML

}
},
"hostname": "pi-prog-csr1",
"enable": {
"password": {
"secret": "lab"

}
},
"username": [
{
"name": "admin",
"privilege": 15,
"password": {
"encryption": "0",
"password": "lab"

}
}

],
"vrf": {
"definition": [
{
"name": "Mgmt-intf",
"address-family": {
"ipv4": {
},
"ipv6": {
}

}
}

]
},
"ip": {
"domain": {
"name": "cisco"

},
"forward-protocol": {
"protocol": "nd"

},
"route": {
"ip-route-interface-forwarding-list": [
{
"prefix": "10].0.0.0",
"mask": "255.255.0.0",
"fwd-list": [
{
"fwd": "9.45.0.1"

}
]

}
],
"vrf": [
{
"name": "Mgmt-intf",
"ip-route-interface-forwarding-list": [
{
"prefix": "0.0.0.0",
"mask": "0.0.0.0",
"fwd-list": [
{
"fwd": "10.104.54.129"

}
]

}
]

NETCONF Protocol
12

NETCONF Protocol
Converting IOS Commands to XML

}
]

},
"ssh": {
"ssh-version": "2"

},
"tftp": {
"source-interface": {
"GigabitEthernet": "1"

},
"blocksize": 8192

},
"Cisco-IOS-XE-http:http": {
"authentication": {
"local": [null]

},
"server": true,
"secure-server": true

}
},
"ipv6": {
"unicast-routing": [null]

},
"interface": {
"GigabitEthernet": [
{
"name": "1",
"vrf": {
"forwarding": "Mgmt-intf"

},
"ip": {
"address": {
"primary": {
"address": "10.104.54.222",
"mask": "255.255.255.128"

}
}

},
"mop": {
"enabled": false,
"sysid": false

},
"Cisco-IOS-XE-ethernet:negotiation": {
"auto": true

}
},
{
"name": "2",
"ip": {
"address": {
"primary": {
"address": "10.45.21.231",
"mask": "255.255.0.0"

}
}

},
"mop": {
"enabled": false,
"sysid": false

},
"Cisco-IOS-XE-ethernet:negotiation": {
"auto": true

}
},

NETCONF Protocol
13

NETCONF Protocol
Converting IOS Commands to XML

{
"name": "3",
"mop": {
"enabled": false,
"sysid": false

},
"Cisco-IOS-XE-ethernet:negotiation": {
"auto": true

}
},
{
"name": "4",
"mop": {
"enabled": false,
"sysid": false

},
"Cisco-IOS-XE-ethernet:negotiation": {
"auto": true

}
},
{
"name": "5",
"mop": {
"enabled": false,
"sysid": false

},
"Cisco-IOS-XE-ethernet:negotiation": {
"auto": true

}
}

]
},
"control-plane": {
},
"clock": {
"timezone": {
"zone": "IST",
"hours": 5,
"minutes": 30

}
},
"logging": {
"console-config": {
"console": false

}
},
"aaa": {
"Cisco-IOS-XE-aaa:new-model": [null],
"Cisco-IOS-XE-aaa:authentication": {
"login": [
{
"name": "default",
"a1": {
"local": [null]

}
}

]
},
"Cisco-IOS-XE-aaa:authorization": {
"exec": [
{
"name": "default",
"a1": {
"local": [null]

NETCONF Protocol
14

NETCONF Protocol
Converting IOS Commands to XML

}
}

]
},
"Cisco-IOS-XE-aaa:common-criteria": [
{
"policy": "enable_secret_policy",
"char-changes": 4,
"lower-case": 1,
"max-length": 127,
"min-length": 10,
"numeric-count": 1,
"upper-case": 1

}
],
"Cisco-IOS-XE-aaa:session-id": "common"

},
"login": {
"on-success": {
"log": {
}

}
},
"multilink": {
"Cisco-IOS-XE-ppp:bundle-name": "authenticated"

},
"redundancy": {
},
"spanning-tree": {
"Cisco-IOS-XE-spanning-tree:extend": {
"system-id": [null]

}
},
"subscriber": {
"templating": [null]

},
"crypto": {
"Cisco-IOS-XE-crypto:pki": {
"certificate": {
"chain": [
{
"name": "SLA-TrustPoint",
"certificate": [
{
"serial": "01",
"certtype": "ca"

}
]

},
{
"name": "TP-self-signed-2685563505",
"certificate": [
{
"serial": "01",
"certtype": "self-signed"

}
]

}
]

},
"trustpoint": [
{
"id": "SLA-TrustPoint",
"enrollment": {

NETCONF Protocol
15

NETCONF Protocol
Converting IOS Commands to XML

"pkcs12": [null]
},
"revocation-check": ["crl"]

},
{
"id": "TP-self-signed-2685563505",
"enrollment": {
"selfsigned": [null]

},
"revocation-check": ["none"],
"rsakeypair": {
"key-label": "TP-self-signed-2685563505"

},
"subject-name": "cn=IOS-Self-Signed-Certificate-2685563505"

}
]

}
},
"license": {
"udi": {
"pid": "C8000V",
"sn": "93SHKMJKOC6"

},
"boot": {
"level": {
"network-advantage": {
"addon": "dna-advantage"

}
}

}
},
"line": {
"aux": [
{
"first": "0"

}
],
"console": [
{
"first": "0",
"exec-timeout": {
"minutes": 0,
"seconds": 0

},
"stopbits": "1"

}
],
"vty": [
{
"first": 0,
"last": 4,
"exec-timeout": {
"minutes": 0,
"seconds": 0

},
"password": {
"secret": "lab"

},
"transport": {
"input": {
"all": [null]

},
"output": {
"all": [null]

NETCONF Protocol
16

NETCONF Protocol
Converting IOS Commands to XML

}
}

},
{
"first": 5,
"last": 31,
"transport": {
"input": {
"all": [null]

},
"output": {
"all": [null]

}
}

}
]

},
"Cisco-IOS-XE-diagnostics:diagnostic": {
"bootup": {
"level": "minimal"

}
}

}
}

}

NETCONF Global Session Lock
The NETCONF protocol provides a set of operations to manage device configurations and retrieve device
state information. NETCONF supports a global lock, and the ability to kill non-responsive sessions are
introduced in NETCONF.

To ensure consistency and prevent conflicting configurations through multiple simultaneous sessions, the
owner of the session can lock the NETCONF session. The NETCONF lock RPC locks the configuration
parser and the running configuration database. All other NETCONF sessions (that do not own the lock) cannot
perform edit operations; but can perform read operations. These locks are intended to be short-lived and allow
the owner to make changes without interaction with other NETCONF clients, non-NETCONF clients (such
as, SNMP and CLI scripts), and human users.

A global lock held by an active session is revoked when the associated session is killed. The lock gives the
session holding the lock exclusive write access to the configuration. When a configuration change is denied
due to a global lock, the error message will specify that a NETCONF global lock is the reason the configuration
change has been denied.

The <lock> operation takes a mandatory parameter, <target> that is the name of the configuration datastore
that is to be locked. When a lock is active, the <edit-config> and <copy-config> operations are not allowed.

If the clear configuration lock command is specified while a NETCONF global lock is being held, a full
synchronization of the configuration is scheduled and a warning syslog message is produced. This command
clears only the parser configuration lock.

The following is a sample RPC that shows the <lock> operation:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<lock>
<target>
<running/>

</target>

NETCONF Protocol
17

NETCONF Protocol
NETCONF Global Session Lock

</lock>
</rpc>

NETCONF Kill Session
During a session conflict or client misuse of the global lock, NETCONF sessions can be monitored via the
show netconf-yang sessions command, and non-responsive sessions can be cleared using the clear
netconf-yang session command. The clear netconf-yang session command clears both the NETCONF lock
and the configuration lock.

A <kill-session> request will force a NETCONF session to terminate. When a NETCONF entity receives a
<kill-session> request for an open session, it stops all operations in process, releases all locks and resources
associated with the session, and closes any associated connections.

A <kill-session> request requires the session-ID of the NETCONF session that is to be terminated. If the value
of the session-ID is equal to the current session ID, an invalid-value error is returned. If a NETCONF session
is terminated while its transaction is still in progress, the data model infrastructure will request a rollback,
apply it to the network element, and trigger a synchronization of all YANG models.

If a session kill fails, and a global lock is held, enter the clear configuration lock command via the console
or vty. At this point, the data models can be stopped and restarted.

NETCONF-YANG SSH Server Support
NETCONF-YANG uses the IOS Secure Shell (SSH) Rivest, Shamir, and Adleman (RSA) public keys to
authenticate users as an alternative to password-based authentication.

For public-key authentication to work on NETCONF-YANG, the IOS SSH server must be configured. To
authenticate users to the SSH server, use one of the RSA keys configured by using the ip ssh pubkey-chain
and user commands.

NACM is a group-based access control mechanism. When users are authenticated, they are automatically
placed in an NACM privilege group based on their configured privilege level. Users can also be manually
placed in other user-defined groups. The default privilege level is 1. There are 16 privilege levels, PRIV00
to PRIV15.

If a user authenticates via the public-key; but does not have a corresponding Authentication, Authorization,
and Accounting (AAA) configuration, this user is rejected. If a user authenticates via a public-key; but the
AAA configuration for NETCONF is using a AAA source other than the local, this user is also rejected. Local
and TACACS+ AAA authorization are supported.

Token-based RESTCONF authentication is not supported. SSH user certificates are not supported.

NETCONF SSH Algorithms

The NETCONF-SSH server configuration file contains the list of all supported algorithms. From Cisco IOS
XE Dublin 17.12.1, you can enable or disable these algorithms at runtime by using commands or YANG
models.

Use the netconf-yang ssh server algorithm {encryption | kex | mac | hostkey} command to enable the
algorithms. Use the no form of this command to disable the algorithms. Also, the output of the show
netconf-yang status command will display the list of configured algorithms.

NETCONF Protocol
18

NETCONF Protocol
NETCONF Kill Session

Users can also enable or disable the NETCONF-SSH algorithms through YANG models. The following is a
sample of the NETCONF request for the corresponding model:

<yang-interfaces-cfg-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-yang-interfaces-cfg">

<ssh-server>
<kex-algorithms>

<dh-group14-sha1>false</dh-group14-sha1>
</kex-algorithms>
<macs>

<hmac-sha1>false</hmac-sha1>
</macs>
<ciphers>

<aes128-cbc>true</aes128-cbc>
</ciphers>
<hostkey-algorithms>

<rsa-sha2-256>true </rsa-sha2-256>
</hostkey-algorithms>

</ssh-server>
</yang-interfaces-cfg-data>

Named Method List
gNMI, NETCONF, and RESTCONF uses the Cisco IOS authentication, authorization, and accounting (AAA)
server to authenticate and authorize an user. Prior to the introduction of the namedmethod-list, only the default
method list was supported for authentication and authorization. This meant that the administrator could not
use a custom method-list name for authentication and authorization.

With the introduction of the Named Method List feature, it is possible to use a custom method-list name for
gNMI, NETCONF, and RESTCONF authentication and authorization, without changing the existing AAA
configuration of a device. You can use the yang-interfaces aaa {authentication | authorization} method-list
named-method-list command to create a custom method-list. Named method lists can provide multiple
authentication and authorization options.

A method list is a named list that describes the authentication and authorization methods to be queried, such
as, AAA, Lightweight Directory Access Protocol (LDAP), RADIUS, or TACACS+. Method lists define the
method and the sequence in which authorization is performed. Method lists enable one or more security
protocols for authentication and authorization, ensuring that a backup system is available in case of a failure.

The following is a sample NETCONF RPC that displays the named method list:

<edit-config>
<target><running/></target>
<config>
<yang-interfaces-cfg-data xmlns=http://cisco.com/ns/yang/Cisco-IOS-XE-yang-interfaces-cfg>

<aaa>
<authn>
<login-method-list>test</login-method-list>

</authn>
<authz>
<exec-method-list>test</exec-method-list>

</authz>
</aaa>

</yang-interfaces-cfg-data>
</config>
</edit-config>

NETCONF Protocol
19

NETCONF Protocol
Named Method List

Candidate Configuration Support
The Candidate Configuration feature enables support for candidate capability by implementing RFC 6241
with a simple commit option.

The candidate datastore provides a temporary work space in which a copy of the device's running configuration
is stored. You can create and modify the running configuration before committing the running configuration
to the device. Candidate capability is indicated by the following NETCONF capability:
urn:ietf:params:netconf:capability:candidate:1.0. This NETCONF capability indicates that the device supports
the candidate datastore.

This is a shared data store which enables the user to create, add, delete and make changes to the device
configuration without affecting the running configuration on the device. A commit operation pushes the
configuration from the candidate to the running configuration on the device. When the candidate data store
is enabled, the running data store is not writable through NETCONF sessions, and all configurations get
committed only through the candidate. In other words, the writable-running NETCONF capability is not
enabled with the candidate configuration.

It must be kept in mind that candidate datastore is a shared data store. Multiple NETCONF sessions can
modify it contents simultaneously. Therefore, it is important to lock the datastore before modifying its contents,
to prevent conflicting commits that can eventually lead to the loss of any configuration changes.

Note

NETCONF Operations on Candidate
The following operations can be performed on the candidate data store.

The information in this section has been referenced from section 8.3.4 of RFC 6241. Please refer to the RFC
for more details and the exact RPCs.

Note

Lock

A<lock> RPC is used to lock the target data store. This prevents others users frommodifying the configuration
in the locked data store. Both candidate and running data can be locked through the lock operation.

Locking the candidate datastore does not affect the Cisco IOS config lock or the running configuration lock
and vice versa.

Note

Commit

A<commit> RPC, copies the candidate configuration to the device’s running configuration. A commit operation
must be performed after you have updated the candidate configuration to push the configuration to the device.

If either the running or the candidate datastore is locked by another NETCONF session, the <commit> RPC
will fail with an RPC error reply. The <error-tag> should be <in-use> and <error-info> should have the session
ID of the NETCONF session holding the lock. You can also lock the running configuration by using the global

NETCONF Protocol
20

NETCONF Protocol
Candidate Configuration Support

lock by entering the conf t lock mode, but, the commit operation will fail with an RPC error reply, with
error-tag value <in-use> and the session-id will be “0”.

Edit-config

The candidate configuration can be used as a target for the edit-config operation to modify a configuration.
You can change the candidate configuration without affecting the running configuration on the device.

Discard

To remove the changes made to the candidate configuration, perform a discard operation to revert the candidate
configuration to running configuration.

If contents of the candidate datastore are modified by NETCONF session A, and session B tries to lock the
candidate datastore, the lock fails. NETCONF session B must perform a <discard> operation to remove any
outstanding configuration changes on the candidate datastore from other NETCONF sessions before locking
a candidate.

Unlock

After working on candidate configuration, such as, lock, edit-config, or commit operations, you can unlock
the datastore, by specifying candidate as target in the unlock RPC. The candidate datastore is now available
for all operations in other sessions.

If a failure occurs with outstanding changes to the candidate datastore, it can be challenging to recover the
configuration, and may create problems for other sessions. To avoid any issues, outstanding changes must be
discarded when the lock is released—either implicitly on “NETCONF session failure” or explicitly by using
the unlock operation.

Get-config, Copy-config, Validate

The candidate datastore can be used as a source or target for any of the get-config, copy-config or validate
config operations. If you do not want to commit the changes in the candidate datastore to the device; but only
to validate the configuration, you ca nuse the <validate> RPC followed by a discard operation.

Modifying the Candidate Datastore

The following diagram explains the recommended best practice when modifying the device configuration
through candidate datastore:

Figure 1: Modifying Candidate Datastore Steps

1. Lock the running datastore.

2. Lock the candidate datastore.

3. Make modifications to the candidate configuration through edit-config RPCs with the target candidate.

NETCONF Protocol
21

NETCONF Protocol
NETCONF Operations on Candidate

4. Commit the candidate configuration to the running configuration.

5. Unlock the candidate and running datastores.

Confirmed Candidate Configuration Commit
The candidate configuration supports the confirmed commit capability. This implementation is as specified
in RFC 6241 for the confirmed commit capability which, when issued, sets the running configuration to the
current contents of the candidate configuration and starts a confirmed commit timer. The confirmed commit
operation will be rolled back if the commit is not issued within the timeout period. The default timeout period
is 600 seconds or 10 minutes.

When you commit the candidate configuration, you can require an explicit confirmation for the commit to
become permanent. The confirmed commit operation is useful for verifying that a configuration change works
correctly and does not prevent management access to the device. If the change prevents access or causes other
errors, the automatic rollback to the previous configuration restores access after the rollback deadline passes.
If the commit is not confirmed within the specified amount of time,by default, the device automatically
retrieves and commits (rolls back to) the previously committed configuration.

RESTCONF does not support confirmed commit.Note

In a NETCONF session, to commit the candidate configuration and to explicitly confirm the commit to become
permanent, a client application encloses the empty <confirmed/> tag in the <commit> and <rpc> tag elements:

<rpc>
<commit>
<confirmed/>

</commit>
</rpc>

The following sample RPC shows how to change the default rollback timer:

<rpc>
<commit>

<confirmed/>
<confirm-timeout>nnn</confirm-timeout> !nnn is the rollback-delay in seconds.

</commit>
</rpc>

The following sample RPC shows that the NETCONF server confirms that the candidate configuration is
committed temporarily:

<rpc-reply xmlns="URN" xmlns:nc="URL">
<ok/>

</rpc-reply>

If the NETCONF server cannot commit the candidate configuration, the <rpc-reply> element will enclose an
<rpc-error> element explaining the reason for the failure. The most common causes are semantic or syntactic
errors in the candidate configuration.

NETCONF Protocol
22

NETCONF Protocol
Confirmed Candidate Configuration Commit

To delay the rollback to a time later than the current rollback timer, the client application sends a <confirmed/>
tag inside a <commit> tag element again before the deadline passes. Optionally, it includes the
<confirm-timeout> element to specify how long to delay the next rollback. The client application can delay
the rollback indefinitely by sending the <confirmed/> tag repeatedly.

To commit the configuration permanently, the client application sends the <commit/> tag enclosed in an <rpc>
tag element before the rollback deadline passes. The rollback is canceled and the candidate configuration is
committed immediately. If the candidate configuration is the same as the temporarily committed configuration,
the temporarily committed configuration is recommitted.

If another application uses the <kill-session/> tag element to terminate this application’s session while a
confirmed commit is pending (this application has committed changes but not yet confirmed them), the
NETCONF server that is using this session restores the configuration to its state before the confirmed commit
instruction was issued.

The candidate datastore is disabled by using the no netconf-yang feature candidate-datastore command.
Because the candidate datastore confirmed commit is enabled when the candidate datastore is enabled, the
confirmed commit is disabled when the candidate datastore is disabled. All sessions in progress are terminated,
and the confd program is restarted.

Candidate Support Configuration
The candidate datastore functionality can be enabled by using the netconf-yang feature candidate-datastore
command.When the datastore state changes from running to candidate or back, a warningmessage is displayed,
notifying the user that a restart of NETCONF or RESTCONF will occur in order for the change to take effect.

If the selection of the candidate or running datastore is specified in the configuration when a NETCONF-YANG
or RESTCONF confd process starts, a warning message appears as shown below:
Device(config)# netconf-yang feature candidate-datastore

netconf-yang initialization in progress - datastore transition not allowed, please try again
after 30 seconds

If the selection of the candidate or running datastore is made after the NETCONF-YANG or RESTCONF
confd process starts, the following apply:

• If the netconf-yang feature candidate-datastore command is configured, the command enables the
candidate datastore and prints the following warning:
“netconf-yang and/or restconf is transitioning from running to candidate netconf-yang
and/or restconf will now be restarted,
and any sessions in progress will be terminated”.

• If the netconf-yang feature candidate-datastore command is removed, the command disables the
candidate datastore, enables the running datastore and prints the following warning:
netconf-yang and/or restconf is transitioning from candidate to running netconf-yang
and/or restconf will now be restarted,
and any sessions in progress will be terminated”.

• When NETCONF-YANG or RESTCONF are restarted, sessions in progress will be lost.

Side-Effect Synchronization of the Configuration Database
During configuration changes in the data model interface (DMI), a partial synchronization of the changes that
are triggered when a command or RPC is configured happens. This is called the side-effect synchronization,

NETCONF Protocol
23

NETCONF Protocol
Candidate Support Configuration

and it reduces the synchronization time and NETCONF downtime. Prior to the side-effect synchronization,
any configuration change used to trigger a time-consuming full synchronization of the configuration database.

The side-effect synchronization is enabled by the netconf-yang feature side-effect-sync command.

Some commands, when they are configured, triggers changes in some already configured commands. For
example, the following is the configuration on a device before the NETCONF edit-config RPC is configured:
hostname device123

The NETCONF edit-config RPC:
<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
<hostname xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" nc:operation="delete"/>
</native>

The following is the configuration on the device after the NETCONF edit-config RPC is configured:
hostname Switch

Here, the side-effect of the NETCONF edit-config RPC is a change to the running configuration that is not
directly intended by the RPC. The edit-config request is supposed to delete the host name, but instead the
hostname is changed back to Switch. The side-effect synchronization does a synchronization of this
configuration change to the NETCONF database without synchronizing the entire configuration, thereby
improving performance.

The side-effect synchronization is based on the CLI-mode tree concept, where the commands are maintained
with modes and submodes structure. This CLI-mode tree data structure consists of three main nodes:

• Same-Level Node: This node points to the list of CLI nodes that belongs to the same parent and on the
same level.

• Parent Node: This node points to the CLI nodes parent, its mode, and submode node.

• Child Node: This node points to the child CLI; the CLI under the current mode or submode. If the node
has multiple child nodes then those child nodes are linked as part of the same-level node pointers.

How to Configure the NETCONF Protocol
NETCONF-YANG uses the primary trustpoint of a device. If a trustpoint does not exist, when
NETCONF-YANG is configured, it creates a self-signed trustpoint. For more information, see the Public Key
Infrastructure Configuration Guide, Cisco IOS XE Gibraltar 16.10.x.

Providing Privilege Access to Use NETCONF
To start working with NETCONF APIs, you must be a user with privilege level 15.

SUMMARY STEPS

1. enable
2. configure terminal
3. username name privilege level password password

4. aaa new-model
5. aaa authentication login default local

NETCONF Protocol
24

NETCONF Protocol
How to Configure the NETCONF Protocol

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/xe-16-10/sec-pki-xe-16-10-book/sec-pki-overview.html?bookSearch=true
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/xe-16-10/sec-pki-xe-16-10-book/sec-pki-overview.html?bookSearch=true

6. aaa authorization exec default local
7. end

DETAILED STEPS

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: Enter your password if prompted.
Device# enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Establishes a user name-based authentication system.
Configure the following keywords:

username name privilege level password password

Example:

Step 3

• privilege level: Sets the privilege level for the user.
For the NETCONF protocol, it must be 15.

Device(config)# username example-name privilege 15
password example_password

• password password: Sets a password to access the
CLI view.

(Optional) Enables authorisation, authentication, and
accounting (AAA).

aaa new-model

Example:

Step 4

If the aaa new-model command is configured, AAA
authentication and authorization is required.

Device(config)# aaa new-model

Sets the login authentication to use the local username
database.

aaa authentication login default local

Example:

Step 5

NoteDevice(config)# aaa authentication login default
local Prior to Cisco IOS XE Cupertino 17.9.1, only the default

AAA authentication login method is supported for the
NETCONFprotocol. FromCisco IOSXECupertino 17.9.1,
named method-list is supported.

• For a remote AAA server, replace local with your
AAA server.

The default keyword applies the local user database
authentication to all ports.

Configures user AAA authorization, check the local
database, and allows the user to run an EXEC shell.

aaa authorization exec default local

Example:

Step 6

NoteDevice(config)# aaa authorization exec default
local

NETCONF Protocol
25

NETCONF Protocol
Providing Privilege Access to Use NETCONF

PurposeCommand or Action

Prior to Cisco IOS XE Cupertino 17.9.1, only the default
AAA authentication login method is supported for the
NETCONFprotocol. FromCisco IOSXECupertino 17.9.1,
named method-list is supported.

• For a remote AAA server, replace local with your
AAA server.

• The default keyword applies the local user database
authentication to all ports.

Exits global configuration mode and returns to privileged
EXEC mode.

end

Example:

Step 7

Device(config)# end

Configuring NETCONF-YANG
If the legacy NETCONF protocol is enabled on your device, the RFC-compliant NETCONF protocol does
not work. Disable the legacy NETCONF protocol by using the no netconf legacy command.

SUMMARY STEPS

1. enable
2. configure terminal
3. netconf-yang
4. netconf-yang feature candidate-datastore
5. exit

DETAILED STEPS

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Enables the NETCONF interface on your network device.netconf-yangStep 3

Example: Note
After the initial enablement through the CLI, network
devices can be managed subsequently through a model

Device (config)# netconf-yang

NETCONF Protocol
26

NETCONF Protocol
Configuring NETCONF-YANG

PurposeCommand or Action

based interface. The complete activation of model-based
interface processes may require up to 90 seconds.

Enables candidate datastore.netconf-yang feature candidate-datastore

Example:

Step 4

Device(config)# netconf-yang feature
candidate-datastore

Exits global configuration mode.exit

Example:

Step 5

Device (config)# exit

Configuring NETCONF Options

Configuring SNMP
Enable the SNMP Server in IOS to enable NETCONF to access SNMP MIB data using YANG models
generated from supportedMIBs, and to enable supported SNMP traps in IOS to receiveNETCONF notifications
from the supported traps.

Perform the following steps:

SUMMARY STEPS

1. Enable SNMP features in IOS.
2. After NETCONF-YANG starts, enable SNMP Trap support by sending the following RPC <edit-config>

message to the NETCONF-YANG port.
3. Send the following RPC message to the NETCONF-YANG port to save the running configuration to the

startup configuration.

DETAILED STEPS

Procedure

Step 1 Enable SNMP features in IOS.

Example:
configure terminal
logging history debugging
logging snmp-trap emergencies
logging snmp-trap alerts
logging snmp-trap critical
logging snmp-trap errors
logging snmp-trap warnings
logging snmp-trap notifications
logging snmp-trap informational
logging snmp-trap debugging
!

NETCONF Protocol
27

NETCONF Protocol
Configuring NETCONF Options

snmp-server community public RW
snmp-server trap link ietf
snmp-server enable traps snmp authentication linkdown linkup
snmp-server enable traps syslog
snmp-server manager
exit

Step 2 After NETCONF-YANG starts, enable SNMP Trap support by sending the following RPC <edit-config> message to the
NETCONF-YANG port.

Example:
<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<edit-config>
<target>
<running/>

</target>
<config>
<netconf-yang xmlns="http://cisco.com/yang/cisco-self-mgmt">
<cisco-ia xmlns="http://cisco.com/yang/cisco-ia">
<snmp-trap-control>
<trap-list>
<trap-oid>1.3.6.1.4.1.9.9.41.2.0.1</trap-oid>

</trap-list>
<trap-list>
<trap-oid>1.3.6.1.6.3.1.1.5.3</trap-oid>

</trap-list>
<trap-list>
<trap-oid>1.3.6.1.6.3.1.1.5.4</trap-oid>

</trap-list>
</snmp-trap-control>

</cisco-ia>
</netconf-yang>

</config>
</edit-config>

</rpc>

Step 3 Send the following RPC message to the NETCONF-YANG port to save the running configuration to the startup
configuration.

Example:
<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<cisco-ia:save-config xmlns:cisco-ia="http://cisco.com/yang/cisco-ia"/>

</rpc>

Configuring the SSH Server to Perform RSA-Based User Authentication
Perform this task to configure the SSH public key for NETCONF-YANG to authenticate users.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip ssh pubkey-chain
4. username username

NETCONF Protocol
28

NETCONF Protocol
Configuring the SSH Server to Perform RSA-Based User Authentication

5. key-string
6. end

DETAILED STEPS

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures SSH-RSA keys for user and server
authentication on the SSH server and enters public-key
configuration mode.

ip ssh pubkey-chain

Example:
Device(config)# ip ssh pubkey-chain

Step 3

• The user authentication is successful if the RSA public
key stored on the server is verified with the public or
the private key pair stored on the client.

Configures the SSH username and enters public-key user
configuration mode.

username username

Example:

Step 4

Device(conf-ssh-pubkey)# username user1

Specifies the RSA public key of the remote peer and enters
public-key data configuration mode.

key-string

Example:

Step 5

NoteDevice(conf-ssh-pubkey-user)# key-string
You can obtain the public key value from an open SSH
client; that is, from the .ssh/id_rsa.pub file.

Exits public-key data configuration mode and returns to
privileged EXEC mode.

end

Example:

Step 6

• Use no hostname command to return to the default
host.

Device(conf-ssh-pubkey-data)# end

Configuring a Named Method List

SUMMARY STEPS

1. enable
2. configure terminal

NETCONF Protocol
29

NETCONF Protocol
Configuring a Named Method List

3. yang-interfaces aaa authentication method-list named-method-list

4. yang-interfaces aaa authorization method-list named-method-list

5. exit

DETAILED STEPS

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures a named method-list for authentication.yang-interfaces aaa authentication method-list
named-method-list

Step 3

Example:
Device(config)# yang-interfaces aaa authentication
method-list authn-method

Configures a named method-list for authorization.yang-interfaces aaa authorization method-list
named-method-list

Step 4

Example:
Device(config)# yang-interfaces aaa authorization
method-list authr-method

Exits global configuration mode and returns to privileged
EXEC mode.

exit

Example:

Step 5

Device(config)# exit

Verifying the NETCONF Protocol Configuration Through the CLI
Use the following commands to verify your NETCONF configuration.

SUMMARY STEPS

1. show netconf-yang datastores
2. show netconf-yang sessions
3. show netconf-yang sessions detail
4. show netconf-yang diagnostics summary
5. show netconf-yang statistics
6. show platform software yang-management process

NETCONF Protocol
30

NETCONF Protocol
Verifying the NETCONF Protocol Configuration Through the CLI

DETAILED STEPS

Procedure

Step 1 show netconf-yang datastores

Displays information about NETCONF-YANG datastores.

Example:
Device# show netconf-yang datastores

Device# show netconf-yang datastores
Datastore Name : running
Globally Locked By Session : 42
Globally Locked Time : 2018-01-15T14:25:14-05:00

Step 2 show netconf-yang sessions

Displays information about NETCONF-YANG sessions.

Example:
Device# show netconf-yang sessions

R: Global-lock on running datastore
C: Global-lock on candidate datastore
S: Global-lock on startup datastore
Number of sessions : 10
session-id transport username source-host global-lock

40 netconf-ssh admin 10.85.70.224 None
42 netconf-ssh admin 10.85.70.224 None
44 netconf-ssh admin 10.85.70.224 None
46 netconf-ssh admin 10.85.70.224 None
48 netconf-ssh admin 10.85.70.224 None
50 netconf-ssh admin 10.85.70.224 None
52 netconf-ssh admin 10.85.70.224 None
54 netconf-ssh admin 10.85.70.224 None
56 netconf-ssh admin 10.85.70.224 None
58 netconf-ssh admin 10.85.70.224 None

Step 3 show netconf-yang sessions detail

Displays detailed information about NETCONF-YANG sessions.

Example:
Device# show netconf-yang sessions detail

R: Global-lock on running datastore
C: Global-lock on candidate datastore
S: Global-lock on startup datastore

Number of sessions : 1

session-id : 19
transport : netconf-ssh
username : admin
source-host : 2001:db8::1
login-time : 2018-10-26T12:37:22+00:00

NETCONF Protocol
31

NETCONF Protocol
Verifying the NETCONF Protocol Configuration Through the CLI

in-rpcs : 0
in-bad-rpcs : 0
out-rpc-errors : 0
out-notifications : 0
global-lock : None

Step 4 show netconf-yang diagnostics summary

Displays a summary of the NETCONF-YANG diagnostic information.

Example:
Device# show netconf-yang diagnostics summary

Diagnostic Debugging is ON
Diagnostic Debugging Level: Maximum
Total Log Size (bytes): 20097
Total Transactions: 1
message username session-id transaction-id start-time end-time log size
--
1 admin 35 53 03/12/21 14:31:03 03/12/21 14:31:04 20097

Step 5 show netconf-yang statistics

Displays information about NETCONF-YANG statistics.

Example:
Device# show netconf-yang statistics

netconf-start-time : 2018-01-15T12:51:14-05:00
in-rpcs : 0
in-bad-rpcs : 0
out-rpc-errors : 0
out-notifications : 0
in-sessions : 10
dropped-sessions : 0
in-bad-hellos : 0

Step 6 show platform software yang-management process

Displays the status of the software processes required to support NETCONF-YANG.

Example:
Device# show platform software yang-management process

confd : Running
nesd : Running
syncfd : Running
ncsshd : Running
dmiauthd : Running
vtyserverutild : Running
opdatamgrd : Running
nginx : Running
ndbmand : Running

Note
The process nginx runs if ip http secure-server or ip http server is configured on the device. This process is not required
to be in the running state for NETCONF to function properly. However, the nginx process is required for RESTCONF.

NETCONF Protocol
32

NETCONF Protocol
Verifying the NETCONF Protocol Configuration Through the CLI

Table 1: show platform software yang-management process Field Descriptions

DescriptionField

Configuration daemonconfd

Network element synchronizer daemonnesd

Sync from daemonsyncfd

NETCONF Secure Shell (SSH) daemonncsshd

Device management inteface (DMI) authentication daemondmiauthd

VTY server util daemonvtyserverutild

Operational Data Manager daemonopdatamgrd

NGINX web servernginx

NETCONF database managerndbmand

Example: Named Method List
Along with the default method-list, you can enable multiple authentication or authorization options with the
named method-list. Method lists enable one or more security protocols to be used for authorization. The
method lists are processed serially by the Cisco IOS software. If the first configured method-list fails, the next
one is processed. This process continues until a successful authentication or authorization, or until all configured
methods are exhausted.

The following example shows how to configure named method-lists for NETCONF AAA:
Device> enable
Device# configure terminal
Device(config)# netconf-yang
Device(config)# yang-interfaces aaa authentication method-list netconf-authn
Device(config)# yang-interfaces aaa authorization method-list netconf-authr
Device(config)# end

Displaying NETCONF-YANG Diagnostics Through RPCs
You can either use the show netconf-yang diagnostics command or the following RPCs to view the diagnostics
information.

The following is a sample RPC that enables NETCONF-YANG diagnostics, and the RPC response received
from the host:

#308
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="urn:uuid:b0f45ac0-3fe2-4e1d-a3a1-f57985965be6">

NETCONF Protocol
33

NETCONF Protocol
Example: Named Method List

<enable-netconf-diag xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-netconf-diag-rpc">
<diag-level>diag-maximum</diag-level>

</enable-netconf-diag>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:b0f45ac0-3fe2-4e1d-a3a1-f57985965be6"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

The following is a sample RPC that shows the current status and the RPC response received from the host:

#294
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="urn:uuid:c6c986ac-fc44-45e2-9390-f8a5968dc8d4">
<nc:get>
<nc:filter>
<netconf-diag-oper-data

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-netconf-diag-oper"/>
</nc:filter>

</nc:get>
</nc:rpc>

#

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:c6c986ac-fc44-45e2-9390-f8a5968dc8d4"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<netconf-diag-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-netconf-diag-oper">

<diag-summary>
<level>diag-maximum</level>
<log-size>0</log-size>
<trans-count>0</trans-count>

</diag-summary>
</netconf-diag-oper-data>

</data>
</rpc-reply>

The following is a sample RPC to change the host name and the RPC response received from the host:
#
#364
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="urn:uuid:f3005ee6-8a11-4146-b616-dd95a92b97d1">
<nc:edit-config>
<nc:target>
<nc:running/>

</nc:target>

NETCONF Protocol
34

NETCONF Protocol
Displaying NETCONF-YANG Diagnostics Through RPCs

<nc:config>
<native xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-native">
<hostname>new-ott-c9300-35</hostname>

</native>
</nc:config>

</nc:edit-config>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:f3005ee6-8a11-4146-b616-dd95a92b97d1"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

The following is a sample RPC to display the current status and the RPC response received from the host:

#294
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="urn:uuid:9bffb8d5-3866-48ef-b59d-0486e508fbc4">
<nc:get>
<nc:filter>
<netconf-diag-oper-data

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-netconf-diag-oper"/>
</nc:filter>

</nc:get>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:9bffb8d5-3866-48ef-b59d-0486e508fbc4"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>
<netconf-diag-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-netconf-diag-oper">

<diag-summary>
<level>diag-maximum</level>
<log-size>20775</log-size>
<trans-count>1</trans-count>

</diag-summary>
<diag-trans>
<message>1</message>
<username>lab</username>
<session-id>31</session-id>
<trans-id>50</trans-id>
<start-time>2021-03-12T14:08:26.830334+00:00</start-time>
<end-time>2021-03-12T14:08:28.279414+00:00</end-time>
<log-size>20775</log-size>

</diag-trans>
</netconf-diag-oper-data>

</data>
</rpc-reply>

NETCONF Protocol
35

NETCONF Protocol
Displaying NETCONF-YANG Diagnostics Through RPCs

The following is a sample RPC to archive the collected system error messages, and the RPC response from
the host:
#
#256
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="urn:uuid:1dbc795c-f594-4194-a89b-fd4d88446b69">
<archive-netconf-diag-logs xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-netconf-diag-rpc"/>

</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:1dbc795c-f594-4194-a89b-fd4d88446b69"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<log-file xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-netconf-diag-rpc">
bootflash:netconf-yang-diag.20210312141009.tar.gz</log-file>

</rpc-reply>

The following is a sample RPC that disables NETCONF-YANG diagnostics, and the RPC response received
from the host:

#309
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"

message-id="urn:uuid:d253a313-4aec-42bc-80a2-672e9bb9ad56">
<enable-netconf-diag xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-netconf-diag-rpc">
<diag-level>diag-disabled</diag-level>

</enable-netconf-diag>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:d253a313-4aec-42bc-80a2-672e9bb9ad56"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>
</rpc-reply>

Additional References for NETCONF Protocol
Related Documents

Document TitleRelated Topic

To access Cisco YANG models in a developer-friendly way,
please clone the GitHub repository, and navigate to the
vendor/cisco subdirectory. Models for various releases of
IOS-XE, IOS-XR, and NX-OS platforms are available here.

YANG data models for various release of
IOS-XE, IOS-XR, and NX-OS platforms

NETCONF Protocol
36

NETCONF Protocol
Additional References for NETCONF Protocol

https://github.com/YangModels/yang
https://github.com/YangModels/yang/tree/master/vendor/cisco

Standards and RFCs

TitleStandard/RFC

YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF)

RFC 6020

Network Configuration Protocol (NETCONF)RFC 6241

Network Configuration Protocol (NETCONF) Access Control ModelRFC 6536

The YANG 1.1 Data Modeling LanguageRFC 7950

RESTCONF ProtocolRFC 8040

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources,
including documentation and tools for troubleshooting and resolving
technical issues with Cisco products and technologies.

To receive security and technical information about your products,
you can subscribe to various services, such as the Product Alert Tool
(accessed from Field Notices), the Cisco Technical Services
Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a
Cisco.com user ID and password.

NETCONF Protocol
37

NETCONF Protocol
Additional References for NETCONF Protocol

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8040
http://www.cisco.com/support

Feature Information for the NETCONF Protocol
Table 2: Feature Information for NETCONF Protocol

Feature InformationReleaseFeature Name

The NETCONF Protocol feature facilitates a
programmatic and standards-based way of
writing configurations and reading operational
data from network devices.

The following command was introduced:
netconf-yang.

This feature was implemented on the
following platforms:

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 1000 Series Aggregation
Services Routers

• Cisco Cloud Services Router 1000V
Series

Cisco IOS XE Denali 16.3.1NETCONF Protocol

This feature was implemented on the
following platforms:

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

Cisco IOSXEEverest 16.5.1a

This feature was implemented on the
following platforms:

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

Cisco IOS XE Everest 16.6.2

Cisco IOS XE Fuji 16.8.1a

NETCONF Protocol
38

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

In Cisco IOSXE Fuji 16.8.1a, this feature was
implemented on the following platforms:

• Cisco 1000 Series Integrated Services
Routers

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco ASR 920 Series Aggregation
Services Routers

• Cisco Catalyst 9500-High Performance
Series Switches

• Cisco CBR-8 Series Routers

• Cisco Network Convergence System
4200 Series

This feature was implemented on the
following platforms:

• Cisco Catalyst 9200 and 9200L Series
Switches

• Cisco Catalyst 9300L SKUs

Cisco IOS XE Fuji 16.9.2

In Cisco IOS XE Gibraltar 16.10.1, this
feature was implemented on the following
platforms:

• Cisco Catalyst 9800-40 Wireless
Controllers

• Cisco Catalyst 9800-80 Wireless
Controllers

• CiscoNetwork Convergence System 520
Series

Cisco IOS XE Gibraltar
16.10.1

In Cisco IOS XE Gibraltar 16.11.1, this
feature was implemented on Cisco Catalyst
9600 Series Switches.

Cisco IOS XE Gibraltar
16.11.1

In Cisco IOS XE Gibraltar 16.12.1, this
feature was implemented on Cisco Catalyst
9800-L Wireless Controllers.

Cisco IOS XE Gibraltar
16.12.1

Cisco IOS XE Amsterdam
17.3.1

NETCONF Protocol
39

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

In Cisco IOS XE Amsterdam 17.3.1, this
feature was implemented on the following
platforms:

• Cisco Catalyst 8200 Series Edge
Platforms

• Cisco Catalyst 8300 Series Edge
Platforms

• Cisco Catalyst 8500 and 8500L Series
Edge Platforms

IPv6 support for the NETCONF and
RESTCONF protocols. This feature was
implemented on the following platforms:

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 1000 Series Aggregation
Services Routers

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco CBR-8 Series Routers

• Cisco Cloud Services Router 1000V
Series

Cisco IOS XE Fuji 16.8.1aNETCONF and RESTCONF
IPv6 Support

In Cisco IOS XE Gibraltar 16.11.1, this
feature was implemented on Cisco Catalyst
9500-High Performance Series Switches.

Cisco IOS XE Gibraltar
16.11.1

NETCONF Protocol
40

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

The NETCONF protocol supports a global
lock, and the ability to kill non-responsive
sessions. This feature is implemented on the
following platforms:

• Cisco 1100 Series Integrated Services
Routers

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 1000 Series Aggregation
Services Routers

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco CBR-8 Series Routers

• Cisco Cloud Services Router 1000v
Series

Cisco IOS XE Fuji 16.8.1aNETCONF Global Lock and
Kill Session

NETCONF Protocol
41

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

The Candidate Config Support feature enables
support for candidate capability by
implementingRFC6241with a simple commit
option.

This feature was implemented on the
following platforms:

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 1000 Series Aggregation
Services Routers

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco CBR-8 Series Routers

• Cisco Cloud Services Router 1000V
Series

The following command was introduced:
netconf-yang feature candidate-datastore.

Cisco IOS XE Fuji 16.9.1NETCONF: Candidate
Configuration Support

NETCONF Protocol
42

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

The candidate configuration supports the
confirmed commit capability.

This feature was implemented on the
following platforms:

• Cisco 1000 Series Integrated Services
Routers

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 1000 Series Aggregation
Services Routers

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco cBR-8 Converged Broadband
Router

• Cisco Cloud Services Router 1000V
Series

• CiscoNetwork Convergence System 520
Series

• Cisco Network Convergence System
4200 Series

Cisco IOS XE Amsterdam
17.1.1

NETCONF: Candidate
Configuration Commit
Confirm

NETCONF Protocol
43

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

This feature was implemented on the
following platforms:

• Cisco 1000 Series Integrated Services
Routers

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco ASR 920 Series Aggregation
Services Routers

• Cisco ASR 1000 Aggregation Services
Routers

• Cisco Catalyst 3650 Series Switches

• Cisco Catalyst 3850 Series Switches

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco Catalyst 9600 Series Switches

• Cisco Catalyst 9800 Series Wireless
Controllers

• Cisco cBR-8 Converged Broadband
Router

• Cisco Cloud Services Router 1000V
Series

• CiscoNetwork Convergence System 520
Series

• Cisco Network Convergence System
4200 Series

Cisco IOS XE Gibraltar
16.12.1

NETCONF-YANG SSH
Server Support

You can enable or disable theNETCONF-SSH
algorithms during runtime by using Cisco IOS
commands or U YANG models.

This feature was implemented on the
following platform:

• Cisco Catalyst 9500 Series Switches

Cisco IOSXEDublin 17.12.1NETCONF-SSH Algorithms

NETCONF Protocol
44

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

With the introduction of the Named Method
List feature, it is possible to use a custom
method-list name for authentication and
authorization, without changing the existing
AAA configuration of a device. Prior to this
feature, only the default method-list was
supported.

This feature was implemented on the
following platforms:

• Cisco 1000 Series Integrated Services
Routers

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco ASR 920 Series Aggregation
Services Routers

• Cisco ASR 1000 Aggregation Services
Routers

• Cisco Catalyst 8200 Series Edge
Platforms

• Cisco Catalyst 8300 Series Edge
Platforms

• Cisco Catalyst 8500 Series and 8500L
Series Edge Platforms

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco Catalyst 9600 Series Switches

• Cisco Catalyst 9800 Series Wireless
Controllers

• Cisco Cloud Services Router 1000V
Series

• CiscoNetwork Convergence System 520
Series

• Cisco Network Convergence System
4200 Series

Cisco IOS XE Cupertino
17.9.1

Named Method List

NETCONF Protocol
45

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

During configuration changes in the DMI, a
partial synchronization of the changes that are
triggered when a command or RPC is
configured happens. This is called the
side-effect synchronization, and it reduces the
synchronization time and NETCONF
downtime.

This feature was implemented on the
following platforms:

• Cisco ASR 1000 Aggregation Services
Routers

• Cisco Catalyst 8500 and 8500L Series
Edge Platforms

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco Catalyst 9600 Series Switches

Cisco IOS XE Bengaluru
17.4.1

Side-Effect Synchronization
of the Configuration Database

NETCONF Protocol
46

NETCONF Protocol
Feature Information for the NETCONF Protocol

Feature InformationReleaseFeature Name

Cisco IOS XE Cupertino 17.7.1 uses the
YANG Version 1.0; however, you can also
use YANGVersion 1.1. Download the YANG
Version 1.1 from GitHub at
https://github.com/YangModels/yang/tree/master/vendor/cisco/xefolder.

This feature was implemented on the
following platforms:

• Cisco 1000 Series Integrated Services
Routers

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 900 Aggregation Services
Routers

• Cisco ASR 920 Aggregation Services
Routers

• Cisco ASR 1000 Aggregation Services
Routers

• Cisco Catalyst 9200 and 9200L Series
Switches

• Cisco Catalyst 9300 and 9300L Series
Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 and 9500-High
Performance Series Switches

• Cisco Catalyst 9600 Series Switches

• Cisco Catalyst 9800-40 Wireless
Controllers

• Cisco Catalyst 9800-80 Wireless
Controllers

• Cisco cBR-8 Converged Broadband
Router

• Cisco Cloud Services Router 1000V
Series

• CiscoNetwork Convergence System 520
Series

• Cisco Network Convergence System
4200 Series

Cisco IOS XE Cupertino
17.7.1

YANG Model Version 1.1

NETCONF Protocol
47

NETCONF Protocol
Feature Information for the NETCONF Protocol

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe

Feature InformationReleaseFeature Name

Cisco IOS XE Cupertino
17.8.1

Cisco IOS XE Cupertino 17.8.1 uses YANG
Version 1.1. The difference between YANG
Version 1.1 and Version 1.0 is documented at
https://tools.ietf.org/html/rfc7950#page-10

Cisco-defined YANG models are in YANG
Version 1.1 in Cisco IOS XE Dublin 17.10.1
and later releases.

Cisco IOSXEDublin 17.10.1

This feature helps to automatically translate
IOS commands into relevant
NETCONF-YANG XML or
RESTCONF-JSON request messages.

This feature is supported on all platforms that
support NETCONF-YANG.

Cisco IOS XE Cupertino
17.7.1

Converting IOS Commands
to XML

NETCONF Protocol
48

NETCONF Protocol
Feature Information for the NETCONF Protocol

https://tools.ietf.org/html/rfc7950#page-10

	NETCONF Protocol
	Information About the NETCONF Protocol
	Introduction to Data Models: Programmatic and Standards-Based Configuration
	NETCONF
	Restrictions for the NETCONF Protocol
	YANG Model Version 1.1
	NETCONF RESTCONF IPv6 Support
	Converting IOS Commands to XML
	NETCONF Global Session Lock
	NETCONF Kill Session
	NETCONF-YANG SSH Server Support
	Named Method List
	Candidate Configuration Support
	NETCONF Operations on Candidate
	Confirmed Candidate Configuration Commit
	Candidate Support Configuration

	Side-Effect Synchronization of the Configuration Database

	How to Configure the NETCONF Protocol
	Providing Privilege Access to Use NETCONF
	Configuring NETCONF-YANG
	Configuring NETCONF Options
	Configuring SNMP

	Configuring the SSH Server to Perform RSA-Based User Authentication
	Configuring a Named Method List

	Verifying the NETCONF Protocol Configuration Through the CLI
	Example: Named Method List
	Displaying NETCONF-YANG Diagnostics Through RPCs
	Additional References for NETCONF Protocol
	Feature Information for the NETCONF Protocol

