NETCONF Protocol

* Information About the NETCONF Protocol, on page 1

* How to Configure the NETCONF Protocol, on page 24

* Verifying the NETCONF Protocol Configuration Through the CLI, on page 30
» Example: Named Method List, on page 33

* Displaying NETCONF-YANG Diagnostics Through RPCs, on page 33

+ Additional References for NETCONF Protocol, on page 36

* Feature Information for the NETCONF Protocol, on page 38

Information About the NETCONF Protocol

IntroductiontoDataModels:ProgrammaticandStandards-Based Configuration

The traditional way of managing network devices is by using Command Line Interfaces (CLIs) for
configurational (configuration commands) and operational data (show commands). For network management,
Simple Network Management Protocol (SNMP) is widely used, especially for exchanging management
information between various network devices. Although CLIs and SNMP are heavily used, they have several
restrictions. CLIs are highly proprietary, and human intervention is required to understand and interpret their
text-based specification. SNMP does not distinguish between configurational and operational data.

The solution lies in adopting a programmatic and standards-based way of writing configurations to any network
device, replacing the process of manual configuration. Network devices running on Cisco I0OS XE support
the automation of configuration for multiple devices across the network using data models. Data models are
developed in a standard, industry-defined language, that can define configuration and state information of a
network.

Cisco I0S XE supports the Yet Another Next Generation (YANG) data modeling language. YANG can be
used with the Network Configuration Protocol (NETCONF) to provide the desired solution of automated and
programmable network operations. NETCONF (RFC 6241) is an XML-based protocol that client applications
use to request information from and make configuration changes to the device. YANG is primarily used to
model the configuration and state data used by NETCONF operations.

In Cisco IOS XE, model-based interfaces interoperate with existing device CLI, Syslog, and SNMP interfaces.
These interfaces are optionally exposed northbound from network devices. YANG is used to model each
protocol based on RFC 6020.

NETCONF Protocol .

NETCONF Protocol |
Il netconr

From Cisco 10S XE 17.15.1, use the yang-interfaces feature deprecated disable command or the
Cisco-I0S-XE-Yang-interfaces-cfg.yang model to disable the deprecated NETCONF-YANG model elements.
By default deprecated model elements remain enabled.

N

Note To access Cisco YANG models in a developer-friendly way, clone the GitHub repository, and navigate to
the vendor/cisco subdirectory. Models for various releases of [OS-XE, IOS-XR, and NX-OS platforms are
available here.

NETCONF

NETCONF provides a mechanism to install, manipulate, and delete the configuration of network devices.

It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the
protocol messages.

NETCONF uses a simple Remote Procedure Call (RPC) based mechanism to facilitate communication between
aclient and a server. The client can be a script or application running as part of a network manager. The server
is typically a network device (switch or router). It uses Secure Shell (SSH) as the transport layer across network
devices. It uses SSH port number 830 as the default port. The port number is a configurable option.

NETCONF also supports capability discovery and model downloads. Supported models are discovered using
the ietf-netconf-monitoring model. Revision dates for each model are shown in the capabilities response.
Data models are available for optional download from a device using the get-schema RPC. You can use these
YANG models to understand or export the data model. For more details on NETCONF, see RFC 6241.

In releases prior to Cisco IOS XE Fuji 16.8.1, an operational data manager (based on polling) was enabled
separately. In Cisco IOS XE Fuji 16.8.1 and later releases, operational data works on platforms running
NETCONEF (similar to how configuration data works), and is enabled by default. For more information on
the components that are enabled for operational data queries or streaming, see the GitHub respository, to view
*-oper in the naming convention.

Restrictions for the NETCONF Protocol

* The NETCONF feature is not supported on a device running dual IOSd configuration or software
redundancy.

* If RP addresses from the NETCONTF datastore are removed using the no ip pim rp-address command,
there could be inconsistencies in the datastore, due to parser limitations. To remove RP address entries
from the NETCONF datastore, use the RPC.

YANG Model Version 1.1

YANG Version 1.1 is described by the RFC 7950, The YANG 1.1 Data Modeling Language. YANG Version
1.1 is a maintenance release of the YANG language that addresses ambiguities and defects in the YANG
Version 1.0 specification.

The YANG module in YANG Version 1.1 is advertised through the ietf-yang-library instead of the NETCONF
hello messages.

. NETCONF Protocol

https://github.com/YangModels/yang
https://github.com/YangModels/yang/tree/master/vendor/cisco
https://github.com/YangModels/yang/tree/master/vendor/cisco/xe/1681

| NETCONF Protocol

YANG Model Version 1.1 [J|j

The following example shows the NETCONF <get> RPC that retrieves a list of all the YANG modules
supported by a device:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter>
<modules-state xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"/>
</filter>
</get>
</rpc>

The output of the RPC reply contains a list of all the YANG modules regardless of the YANG version each
module uses.

Cisco IOS XE Cupertino 17.7.1 uses the YANG Version 1.0; however, you can still download the YANG
Version 1.1 from GitHub at https://github.com/YangModels/yang/tree/master/vendor/cisco/xe.

Alternatively, you can also download the YANG models from the device using the NETCONF get-schema
operation, and migrate the downloaded models to this version using the migrate_yang_version.py script.

The following example shows how to migrate from YANG Version 1.0 to YANG Version 1.1 using the script:
migrate yang version.py [-h] [--out OUT] path
Use the help command to view the options available with the script:

python migrate yang version.py --help
usage: migrate yang version.py [-h] [--out OUT] path

positional arguments:
path Path to the YANG files

optional arguments:
-h, --help show this help message and exit
--out OUT Path to the output YANG file

The following example shows how to use the out argument to move a file from its original location to another
folder:

python migrate yang version.py --out testdir/outdir testdir/indir

In the above example, testdir/outdir is the directory in which the YANG model Version 1.1 resides or where
the output of the script is placed. This directory will be created, if it is not available.

The testdir/indir directory is where the YANG model Version 1.0 resides; the input for the script.

After the YANG model Version 1.1 is created, either by downloading it from GitHub or by using the
migrate_yang_version.py script and compiled on the client application, end-to-end YANG model tests can
be executed and validated against Cisco IOS XE devices.

)

Note The YANG models on the device is still YANG Version 1.0. However; there is no need to change the RPC

payload of the client test cases.

NETCONF Protocol .

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe

NETCONF Protocol |
. NETCONF RESTCONF IPv6 Support

For inquiries related to the migrate_yang_version.py script or the Cisco IOS XE YANG migration process,
send an email to xe-yang-migration@cisco.com.

Cisco IOS XE Cupertino 17.8.1 uses YANG Version 1.1. The difference between YANG Version 1.1 and
Version 1.0 is documented at https://tools.ietf.org/html/rfc7950#page-10.

YANG Version in Cisco 10S XE Dublin 17.10.1

Cisco-defined YANG models are in YANG Version 1.1 in Cisco IOS XE Dublin 17.10.1 and later releases.
You can download this version from GitHub at
https://github.com/YangModels/yang/tree/master/vendor/cisco/xe.

In YANG Version 1.1, the critical change that impacts client applications that use NETCONF is in the <hello>
message content. As per RFC 7950, a server advertises support for YANG 1.1 modules by using the
ietf-yang-library, instead of listing them as capabilities in the <hello> message. We recommend that you use
the ietf-yang-library to gather the list of supported YANG modules, instead of deriving this list from the
<hello> message content.

NETCONF RESTCONF IPv6 Support

Data model interfaces (DMIs) support the use of IPv6 protocol. DMI IPv6 support helps client applications
to communicate with services that use IPv6 addresses. External facing interfaces will provide dual-stack
support; both IPv4 and IPv6.

DMIs are a set of services that facilitate the management of network elements. Application layer protocols
such as, NETCONF and RESTCONF access these DMIs over a network.

If IPv6 addresses are not configured, external-facing applications will continue to listen on IPv6 sockets; but
these sockets will be unreachable.

Converting 10S Commands to XML

In Cisco I0S XE Cupertino 17.7.1 and later releases, you can automatically translate IOS commands into
relevant NETCONF-YANG XML or RESTCONF-JSON request messages. You can analyze the generated
configuration messages and familiarize with the Xpaths used in these messages. The generated configuration
in the structured format can be used to provision other devices in the network; however, this configuration
cannot be modified.

Use the show running-config | format netconf-xml command or the show running-config | format
restconf-json command to translate IOS commands.

If the netconf-xml keyword is selected, the IOS commands are translated into the NETCONF-YANG XML
format, and if the restconf-json keyword is selected, the IOS commands are translated into the
RESTCONF-JSON format.

The translation of IOS commands into a structured format is disabled by default. You must initially configure
NETCONF-YANG, and once the data model interfaces (DMlIs) are initialized, use the appropriate format
option to translate the commands.

The following is sample output from the show running-config | format netconf-xml command:
Device# show running-config | format netconf-xml
<config xmlns="http://tail-f.com/ns/config/1.0">

<native xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-native">
<version>17.8</version>

. NETCONF Protocol

https://tools.ietf.org/html/rfc7950#page-10
https://github.com/YangModels/yang/tree/master/vendor/cisco/xe

| NETCONF Protocol

Converting 10S Commands to XML .

<boot-start-marker/>
<boot>
<system>
<flash>
<flash-list-ordered-by-user>

<flash-leaf>bootflash:c8000v-universalk9.BLD POLARIS DEV_ LATEST 20211020 005209.SSA.bin</
flash-leaf>
</flash-list-ordered-by-user>
</flash>
</system>
</boot>
<boot-end-marker/>
<memory>
<free>
<low-watermark>
<processor>64219</processor>
</low-watermark>
</free>
</memory>
<call-home>
<contact-email-addr xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-call-home">
sch-smart-licensing@cisco.com</contact-email-addr>
<tac-profile xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-call-home">
<profile>
<CiscoTAC-1>
<active>true</active>
<destination>
<transport-method>http</transport-method>
</destination>
</CiscoTAC-1>
</profile>
</tac-profile>
</call-home>
<service>
<timestamps>
<debug-config>
<datetime>
<msec/>
<localtime/>
<show-timezone/>
</datetime>
</debug-config>
<log-config>
<datetime>
<msec/>
<localtime/>
<show-timezone/>
</datetime>
</log-config>
</timestamps>
<call-home/>
</service>
<platform>
<console xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-platform">
<output>serial</output>
</console>
<gfp xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-platform">
<utilization>
<monitor>
<load>80</load>
</monitor>
</utilization>
</qfp>

NETCONF Protocol .

Converting 10S Commands to XML

NETCONF Protocol |

<punt-keepalive xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-platform">

<disable-kernel-core>true</disable-kernel-core>
</punt-keepalive>
</platform>
<hostname>pi-prog-csrl</hostname>
<enable>
<password>
<secret>lab</secret>
</password>
</enable>
<username>
<name>admin</name>
<privilege>15</privilege>
<password>
<encryption>0</encryption>
<password>lab</password>
</password>
</username>
<vrf>
<definition>
<name>Mgmt-intf</name>
<address-family>
<ipv4d>
</ipvé>
<ipv6>
</ipv6>
</address-family>
</definition>
</vrf>
<ip>
<domain>
<name>cisco</name>
</domain>
<forward-protocol>
<protocol>nd</protocol>
</forward-protocol>
<route>
<ip-route-interface-forwarding-list>
<prefix>10.0.0.0</prefix>
<mask>255.255.0.0</mask>
<fwd-list>
<fwd>10.45.0.1</fwd>
</fwd-list>
</ip-route-interface-forwarding-list>
<vrf>
<name>Mgmt-intf</name>
<ip-route-interface-forwarding-list>
<prefix>0.0.0.0</prefix>
<mask>0.0.0.0</mask>
<fwd-list>
<fwd>10.104.54.129</fwd>
</fwd-list>
</ip-route-interface-forwarding-list>
</vrf>
</route>
<ssh>
<ssh-version>2</ssh-version>
</ssh>
<tftp>
<source-interface>
<GigabitEthernet>1</GigabitEthernet>
</source-interface>
<blocksize>8192</blocksize>
</tftp>

. NETCONF Protocol

| NETCONF Protocol
Converting 10S Commands to XML .

<http xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-http">
<authentication>
<local/>
</authentication>
<server>true</server>
<secure-server>true</secure-server>
</http>
</ip>
<ipv6>
<unicast-routing/>
</ipv6e>
<interface>
<GigabitEthernet>
<name>1</name>
<vrf>
<forwarding>Mgmt-intf</forwarding>
</vrf>
<ip>
<address>
<primary>
<address>10.104.54.222</address>
<mask>255.255.255.128</mask>
</primary>
</address>
</ip>
<mop>
<enabled>false</enabled>
<sysid>false</sysid>
</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-ethernet">
<auto>true</auto>
</negotiation>
</GigabitEthernet>
<GigabitEthernet>
<name>2</name>
<ip>
<address>
<primary>
<address>9.45.21.231</address>
<mask>255.255.0.0</mask>
</primary>
</address>
</ip>
<mop>
<enabled>false</enabled>
<sysid>false</sysid>
</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-ethernet">
<auto>true</auto>
</negotiation>
</GigabitEthernet>
<GigabitEthernet>
<name>3</name>
<mop>
<enabled>false</enabled>
<sysid>false</sysid>
</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-ethernet">
<auto>true</auto>
</negotiation>
</GigabitEthernet>
<GigabitEthernet>
<name>4</name>
<mop>

NETCONF Protocol .

NETCONF Protocol |
Converting 10S Commands to XML

<enabled>false</enabled>
<sysid>false</sysid>
</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-ethernet">
<auto>true</auto>
</negotiation>
</GigabitEthernet>
<GigabitEthernet>
<name>5</name>
<mop>
<enabled>false</enabled>
<sysid>false</sysid>
</mop>
<negotiation xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-ethernet">
<auto>true</auto>
</negotiation>
</GigabitEthernet>
</interface>
<control-plane>
</control-plane>
<clock>
<timezone>
<zone>IST</zone>
<hours>5</hours>
<minutes>30</minutes>
</timezone>
</clock>
<logging>
<console-config>
<console>false</console>
</console-config>
</logging>
<aaa>
<new-model xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-aaa"/>
<authentication xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-aaa">
<login>
<name>default</name>
<al>
<local/>
</al>
</login>
</authentication>
<authorization xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-aaa">
<exec>
<name>default</name>
<al>
<local/>
</al>
</exec>
</authorization>
<common-criteria xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-aaa">
<policy>enable secret policy</policy>
<char-changes>4</char-changes>
<lower-case>1</lower-case>
<max-length>127</max-length>
<min-length>10</min-length>
<numeric-count>1</numeric-count>
<upper-case>1</upper—-case>
</common-criteria>
<session-id xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-aaa">common</session-id>
</aaa>
<login>
<on-success>
<log>

. NETCONF Protocol

| NETCONF Protocol
Converting 10S Commands to XML .

</log>
</on-success>
</login>
<multilink>
<bundle-name
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-ppp">authenticated</bundle-name>
</multilink>
<redundancy>
</redundancy>
<spanning-tree>
<extend xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-spanning-tree">
<system-id/>
</extend>
</spanning-tree>
<subscriber>
<templating/>
</subscriber>
<crypto>
<pki xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-crypto">
<certificate>
<chain>
<name>SLA-TrustPoint</name>
<certificate>
<serial>01l</serial>
<certtype>ca</certtype>
</certificate>
</chain>
<chain>
<name>TP-self-signed-2685563505</name>
<certificate>
<serial>01l</serial>
<certtype>self-signed</certtype>
</certificate>
</chain>
</certificate>
<trustpoint>
<id>SLA-TrustPoint</id>
<enrollment>
<pkcsl2/>
</enrollment>
<revocation-check>crl</revocation-check>
</trustpoint>
<trustpoint>
<id>TP-self-signed-2685563505</1id>
<enrollment>
<selfsigned/>
</enrollment>
<revocation-check>none</revocation-check>
<rsakeypair>
<key-label>TP-self-signed-2685563505</key-label>
</rsakeypair>
<subject-name>cn=I0S-Self-Signed-Certificate-2685563505</subject-name>
</trustpoint>
</pki>
</crypto>
<license>
<udi>
<pid>C8000V</pid>
<sn>93SHKMJKOC6</sn>
</udi>
<boot>
<level>
<network-advantage>
<addon>dna-advantage</addon>

NETCONF Protocol .

NETCONF Protocol |
Converting 10S Commands to XML

</network-advantage>
</level>
</boot>
</license>
<line>
<aux>
<first>0</first>
</aux>
<console>
<first>0</first>
<exec-timeout>
<minutes>0</minutes>
<seconds>0</seconds>
</exec-timeout>
<stopbits>1</stopbits>
</console>
<vty>
<first>0</first>
<last>4</last>
<exec-timeout>
<minutes>0</minutes>
<seconds>0</seconds>
</exec-timeout>
<password>
<secret>lab</secret>
</password>
<transport>
<input>
<all/>
</input>
<output>
<all/>
</output>
</transport>
</vty>
<vty>
<first>5</first>
<last>31</last>
<transport>
<input>
<all/>
</input>
<output>
<all/>
</output>
</transport>
</vty>
</line>
<diagnostic xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-diagnostics">
<bootup>
<level>minimal</level>
</bootup>
</diagnostic>
</native>
</config>
pi-prog-csrl#
pi-prog-csrl#

pi-prog-csrl#show running-config | format restconf-json
{
"data": {
"Cisco-IOS-XE-native:native": {
"version": "17.8",
"boot-start-marker": [null],
"boot": {

. NETCONF Protocol

| NETCONF Protocol

"system": {
"flash": {

"flash-list-ordered-by-user":

{
"flash-leaf":

Converting 10S Commands to XML .

"bootflash:c8000v-universalk9.BLD POLARIS DEV_LATEST 20211020 _005209.SSA.bin"

}
1

}
}I

"boot-end-marker": [null],
"memory": {
"free": {
"low-watermark": {
"processor": 64219

}
}I

"call-home": {

"Cisco-I0OS-XE-call-home:contact-email-addr":
"Cisco-IOS-XE-call-home:tac-profile":

"profile": {
"CiscoTAC-1": {
"active": true,
"destination": {

"transport-method":

"service": {
"timestamps": {
"debug-config": {
"datetime": {
"msec": [null],

"localtime": [null],

"show-timezone":
}
}I
"log-config": {
"datetime": {
"msec": [null],

[null]

"localtime": [null],

"show-timezone":

}
}I
"call-home": [null]
}I
"platform": {

"Cisco-IOS-XE-platform:console":

"output": "serial"

}I

[null]

"Cisco-IOS-XE-platform:gfp":

"utilization": {
"monitor": {
"load": 80

}
}I

"Cisco-IOS-XE-platform:punt-keepalive":
"disable-kernel-core":

true

"http"

{

{

"sch-smart-licensing@cisco.comn",

NETCONF Protocol .

Converting 10S Commands to XML

}
}I

"hostname": "pi-prog-csrl",

"enable": {
"password": {
"secret": "lab"
}
}I
"username": [
{
"name": "admin",
"privilege": 15,
"password": {
"encryption": "0",
"password": "lab"

}
]I
"vrf": {
"definition": [
{
"name": "Mgmt-intf",
"address-family": {
"ipv4": {
}I
"ipve": {

"ip": |
"domain": {
"name": "cisco"
}I
"forward-protocol": {
"protocol": "nd"
}I

"route": {

"ip-route-interface-forwarding-list":

{

"prefix": "10]1.0.0.0",
"mask": "255.255.0.0",

"fwd-1list": [
{

"fwd": "9.45.0.1"

}
] 4
"vrf": [

{

"name": "Mgmt-intf",
"ip-route-interface-forwarding-list":

{

"prefix": "0.0.0.0",
"mask": "0.0.0.0",

"fwd-list": [
{

"fwd": "10.104.54.129"

. NETCONF Protocol

NETCONF Protocol |

| NETCONF Protocol

1
}I

"ssh": {

"ssh-version": "2"

}I
"tftp": |

"source-interface": {
"GigabitEthernet": "1"

}I

"blocksize": 8192

}I

"Cisco-IOS-XE-http:http": {

"authentication":
"local": [null]

}I
"server": true,
"secure-server":
}
}I
"ipV6"Z {
"unicast-routing":
}I
"interface": {
"GigabitEthernet":
{
"name": "1",
"vrfl'. {

"forwarding":

}I
"ipl'. {
"address": {
"primary":

{

true

[null]

[

"Mgmt-intf"

{

"address": "10.104.54.222",

"mask":

}
}I

"mOp" : |

"255.255.255.128"

"enabled": false,
"sysid": false

}I

"Cisco-I0S-XE-ethernet:negotiation":
"auto": true

"name": "2"’
"ip": {
"address": {
"primary":

{

"address": "10.45.21.231",

"mask":

}
}I

"mOp" : |

"255.255.0.0"

"enabled": false,
"sysid": false

}I

"Cisco-IOS-XE-ethernet:negotiation":
"auto": true

Converting 10S Commands to XML .

NETCONF Protocol .

. Converting 10S Commands to XML

"name": "3",

"mop": {
"enabled": false,
"sysid": false

}I

"Cisco-I0OS-XE-ethernet:negotiation":

"auto": true

"name": "4",

"mop": {
"enabled": false,
"sysid": false

}I

"Cisco-I0OS-XE-ethernet:negotiation":

"auto": true

"name": "5",

"mop": {
"enabled": false,
"sysid": false

}I

"Cisco-I0OS-XE-ethernet:negotiation":

"auto": true
}
}
]
}I
"control-plane": {
}I
"clock": {
"timezone": {
"zone": "IST",
"hours": 5,
"minutes": 30

}
}I

"logging": {
"console-config": {

"w.

"console": false

"Cisco-I0S-XE-aaa:new-model": [null],
"Cisco-I0S-XE-aaa:authentication": {

}I

]

"login": [

{
"name": "default",
nalv:
"local": [null]

"Cisco-I0S-XE-aaa:authorization": {
"exec": [
{
"name": "default",
nalv:

. NETCONF Protocol

"local": [null]

NETCONF Protocol |

| NETCONF Protocol

1
}I

Converting 10S Commands to XML .

"Cisco-I0S-XE—-aaa:common-criteria": [
{
"policy": "enable secret policy",
"char-changes": 4,
"lower-case": 1,

"max-length": 127,
"min-length": 10,
"numeric-count": 1,
"upper-case": 1
}
] 4

"Cisco-IOS-XE-aaa:session-id":

"common"
}I
"login": {
"on-success": {
"log": {
}
}
}I
"multilink": {
"Cisco-IOS-XE-ppp:bundle-name": "authenticated"
}I
"redundancy": {
}I
"spanning-tree": {
"Cisco-IOS-XE-spanning-tree:extend": ({

"system-id": [null]
}
}I
"subscriber": {
"templating": [null]
}I

"crypto": {
"Cisco-IOS-XE-crypto:pki": {
"certificate": {
"chain": [

{

"name": "SLA-TrustPoint",

"certificate": [
{
"serial"™: "O1",
"certtype": "ca"

1
}I
{

"name": "TP-self-signed-2685563505",

"certificate": [
{
"serial"™: "O1",
"certtype": "self-signed"

"trustpoint": [
{
"id": "SLA-TrustPoint",
"enrollment": {

NETCONF Protocol .

NETCONF Protocol |
Converting 10S Commands to XML

"pkcsl2": [null]
}I

"revocation-check": ["crl"]

"id": "TP-self-signed-2685563505",
"enrollment": {

"selfsigned": [null]
}I

"revocation-check": ["none"],
"rsakeypair": {
"key-label": "TP-self-signed-2685563505"
}I
"subject-name": "cn=I0S-Self-Signed-Certificate-2685563505"
}
]
}
}I
"license": {
"udi": |

"pid": "C8000V",
"sn": "93SHKMJKOC6"
}I
"boot": {
"level™: {
"network-advantage": {
"addon": "dna-advantage"

"first": "Q"

]I
"console": [
{
"firstl'. "O"
. ’
"exec-timeout": {
"minutes": 0,
"seconds": O
}I
"stopbits": "1"

"first": 0O,
"last": 4,
"exec-timeout": {
"minutes": 0,
"seconds": O
}I
"password": {
"secret": "lab"
}I
"transport": {
"input": {
"all": [null]
}I
"output": {
"all": [null]

. NETCONF Protocol

| NETCONF Protocol

NETCONF Global Session Lock .

"first": 5,
"last": 31,
"transport": {
"input": {
"all": [null]
}I
"output": {
"all": [null]
}
}
}
]
}I
"Cisco-IOS-XE-diagnostics:diagnostic": {
"bootup": {
"level": "minimal"

NETCONF Global Session Lock

The NETCONTF protocol provides a set of operations to manage device configurations and retrieve device
state information. NETCONF supports a global lock, and the ability to kill non-responsive sessions are
introduced in NETCONF.

To ensure consistency and prevent conflicting configurations through multiple simultaneous sessions, the
owner of the session can lock the NETCONF session. The NETCONF lock RPC locks the configuration
parser and the running configuration database. All other NETCONF sessions (that do not own the lock) cannot
perform edit operations; but can perform read operations. These locks are intended to be short-lived and allow
the owner to make changes without interaction with other NETCONF clients, non-NETCONF clients (such
as, SNMP and CLI scripts), and human users.

A global lock held by an active session is revoked when the associated session is killed. The lock gives the
session holding the lock exclusive write access to the configuration. When a configuration change is denied
due to a global lock, the error message will specify that a NETCONF global lock is the reason the configuration
change has been denied.

The <lock> operation takes a mandatory parameter, <target> that is the name of the configuration datastore
that is to be locked. When a lock is active, the <edit-config> and <copy-config> operations are not allowed.

If the clear configuration lock command is specified while a NETCONF global lock is being held, a full
synchronization of the configuration is scheduled and a warning syslog message is produced. This command
clears only the parser configuration lock.

The following is a sample RPC that shows the <lock> operation:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>

NETCONF Protocol .

. NETCONF Kill Session

NETCONF Protocol |

</lock>
</rpc>

NETCONF Kill Session

During a session conflict or client misuse of the global lock, NETCONF sessions can be monitored via the
show netconf-yang sessions command, and non-responsive sessions can be cleared using the clear
netconf-yang session command. The clear netconf-yang session command clears both the NETCONF lock
and the configuration lock.

A <kill-session> request will force a NETCONF session to terminate. When a NETCONF entity receives a
<kill-session> request for an open session, it stops all operations in process, releases all locks and resources
associated with the session, and closes any associated connections.

A <kill-session>request requires the session-ID of the NETCONF session that is to be terminated. If the value
of the session-ID is equal to the current session ID, an invalid-value error is returned. If a NETCONF session
is terminated while its transaction is still in progress, the data model infrastructure will request a rollback,
apply it to the network element, and trigger a synchronization of all YANG models.

If a session kill fails, and a global lock is held, enter the clear configuration lock command via the console
or vty. At this point, the data models can be stopped and restarted.

NETCONF-YANG SSH Server Support

NETCONF-YANG uses the IOS Secure Shell (SSH) Rivest, Shamir, and Adleman (RSA) public keys to
authenticate users as an alternative to password-based authentication.

For public-key authentication to work on NETCONF-YANG, the IOS SSH server must be configured. To
authenticate users to the SSH server, use one of the RSA keys configured by using the ip ssh pubkey-chain
and user commands.

NACM is a group-based access control mechanism. When users are authenticated, they are automatically
placed in an NACM privilege group based on their configured privilege level. Users can also be manually
placed in other user-defined groups. The default privilege level is 1. There are 16 privilege levels, PRIV00
to PRIV15.

If a user authenticates via the public-key; but does not have a corresponding Authentication, Authorization,
and Accounting (AAA) configuration, this user is rejected. If a user authenticates via a public-key; but the
AAA configuration for NETCONF is using a AAA source other than the local, this user is also rejected. Local
and TACACS+ AAA authorization are supported.

Token-based RESTCONF authentication is not supported. SSH user certificates are not supported.

NETCONF SSH Algorithms

The NETCONF-SSH server configuration file contains the list of all supported algorithms. From Cisco IOS
XE Dublin 17.12.1, you can enable or disable these algorithms at runtime by using commands or YANG
models.

Use the netconf-yang ssh server algorithm {encryption | kex | mac | hostkey} command to enable the
algorithms. Use the no form of this command to disable the algorithms. Also, the output of the show
netconf-yang status command will display the list of configured algorithms.

. NETCONF Protocol

| NETCONF Protocol
Named Method List [JJj

Users can also enable or disable the NETCONF-SSH algorithms through YANG models. The following is a
sample of the NETCONF request for the corresponding model:

<yang-interfaces-cfg-data xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-yang-interfaces-cfg">

<ssh-server>
<kex-algorithms>
<dh-groupl4-shal>false</dh-groupl4-shal>
</kex-algorithms>
<macs>
<hmac-shal>false</hmac-shal>
</macs>
<ciphers>
<aesl28-cbc>true</aesl28-cbe>
</ciphers>
<hostkey-algorithms>
<rsa-sha2-256>true </rsa-sha2-256>
</hostkey-algorithms>
</ssh-server>
</yang-interfaces-cfg-data>

Named Method List

gNMI, NETCONF, and RESTCONF uses the Cisco IOS authentication, authorization, and accounting (AAA)
server to authenticate and authorize an user. Prior to the introduction of the named method-list, only the default
method list was supported for authentication and authorization. This meant that the administrator could not
use a custom method-list name for authentication and authorization.

With the introduction of the Named Method List feature, it is possible to use a custom method-list name for
gNMI, NETCONF, and RESTCONF authentication and authorization, without changing the existing AAA
configuration of a device. You can use the yang-inter facesaaa {authentication | authorization} method-list
named-method-list command to create a custom method-list. Named method lists can provide multiple
authentication and authorization options.

A method list is a named list that describes the authentication and authorization methods to be queried, such
as, AAA, Lightweight Directory Access Protocol (LDAP), RADIUS, or TACACS+. Method lists define the
method and the sequence in which authorization is performed. Method lists enable one or more security

protocols for authentication and authorization, ensuring that a backup system is available in case of a failure.

The following is a sample NETCONF RPC that displays the named method list:

<edit-config>
<target><running/></target>
<config>
<yang-interfaces-cfg-data xmlns=http://cisco.com/ns/yang/Cisco-I0S-XE-yang-interfaces-cfg>

<aaa>
<authn>
<login-method-list>test</login-method-list>
</authn>
<authz>
<exec-method-list>test</exec-method-list>
</authz>
</aaa>
</yang-interfaces-cfg-data>
</config>
</edit-config>

NETCONF Protocol .

NETCONF Protocol |

. Candidate Configuration Support

Candidate Configuration Support

The Candidate Configuration feature enables support for candidate capability by implementing RFC 6241
with a simple commit option.

The candidate datastore provides a temporary work space in which a copy of the device's running configuration
is stored. You can create and modify the running configuration before committing the running configuration
to the device. Candidate capability is indicated by the following NETCONF capability:
urn:ietf:params:netconf:capability:candidate: 1.0. This NETCONTF capability indicates that the device supports
the candidate datastore.

This is a shared data store which enables the user to create, add, delete and make changes to the device
configuration without affecting the running configuration on the device. A commit operation pushes the
configuration from the candidate to the running configuration on the device. When the candidate data store
is enabled, the running data store is not writable through NETCONF sessions, and all configurations get
committed only through the candidate. In other words, the writable-running NETCONF capability is not
enabled with the candidate configuration.

N

Note

It must be kept in mind that candidate datastore is a shared data store. Multiple NETCONF sessions can
modify it contents simultaneously. Therefore, it is important to lock the datastore before modifying its contents,
to prevent conflicting commits that can eventually lead to the loss of any configuration changes.

NETCONF Operations on Candidate

The following operations can be performed on the candidate data store.

\)

Note The information in this section has been referenced from section 8.3.4 of RFC 6241. Please refer to the RFC

for more details and the exact RPCs.

Lock

A <lock>RPC is used to lock the target data store. This prevents others users from modifying the configuration
in the locked data store. Both candidate and running data can be locked through the lock operation.

\}

Note Locking the candidate datastore does not affect the Cisco IOS config lock or the running configuration lock
and vice versa.
Commit

A <commit> RPC, copies the candidate configuration to the device’s running configuration. A commit operation
must be performed after you have updated the candidate configuration to push the configuration to the device.

If either the running or the candidate datastore is locked by another NETCONF session, the <commit> RPC
will fail with an RPC error reply. The <error-tag> should be <in-use> and <error-info> should have the session
ID of the NETCONF session holding the lock. You can also lock the running configuration by using the global

. NETCONF Protocol

| NETCONF Protocol

NETCONF Operations on Candidate .

lock by entering the conf't lock mode, but, the commit operation will fail with an RPC error reply, with
error-tag value <in-use> and the session-id will be “0”.

Edit-config

The candidate configuration can be used as a target for the edit-config operation to modify a configuration.
You can change the candidate configuration without affecting the running configuration on the device.

Discard

To remove the changes made to the candidate configuration, perform a discard operation to revert the candidate
configuration to running configuration.

If contents of the candidate datastore are modified by NETCONF session A, and session B tries to lock the
candidate datastore, the lock fails. NETCONF session B must perform a <discard> operation to remove any
outstanding configuration changes on the candidate datastore from other NETCONF sessions before locking
a candidate.

Unlock

After working on candidate configuration, such as, lock, edit-config, or commit operations, you can unlock
the datastore, by specifying candidate as target in the unlock RPC. The candidate datastore is now available
for all operations in other sessions.

If a failure occurs with outstanding changes to the candidate datastore, it can be challenging to recover the
configuration, and may create problems for other sessions. To avoid any issues, outstanding changes must be
discarded when the lock is released—either implicitly on “NETCONTF session failure” or explicitly by using
the unlock operation.

Get-config, Copy-config, Validate

The candidate datastore can be used as a source or target for any of the get-config, copy-config or validate
config operations. If you do not want to commit the changes in the candidate datastore to the device; but only
to validate the configuration, you ca nuse the <validate> RPC followed by a discard operation.

Modifying the Candidate Datastore

The following diagram explains the recommended best practice when modifying the device configuration
through candidate datastore:

Figure 1: Modifying Candidate Datastore Steps

Ly —ip —P— /

Edit-config ymmit to Running

267511

1. Lock the running datastore.
2. Lock the candidate datastore.

3. Make modifications to the candidate configuration through edit-config RPCs with the target candidate.

NETCONF Protocol .

NETCONF Protocol |
. Confirmed Candidate Configuration Commit

4. Commit the candidate configuration to the running configuration.

5. Unlock the candidate and running datastores.

Confirmed Candidate Configuration Commit

The candidate configuration supports the confirmed commit capability. This implementation is as specified

in RFC 6241 for the confirmed commit capability which, when issued, sets the running configuration to the
current contents of the candidate configuration and starts a confirmed commit timer. The confirmed commit
operation will be rolled back if the commit is not issued within the timeout period. The default timeout period
is 600 seconds or 10 minutes.

When you commit the candidate configuration, you can require an explicit confirmation for the commit to
become permanent. The confirmed commit operation is useful for verifying that a configuration change works
correctly and does not prevent management access to the device. If the change prevents access or causes other
errors, the automatic rollback to the previous configuration restores access after the rollback deadline passes.
If the commit is not confirmed within the specified amount of time,by default, the device automatically
retrieves and commits (rolls back to) the previously committed configuration.

\}

Note RESTCONTF does not support confirmed commit.

In a NETCONF session, to commit the candidate configuration and to explicitly confirm the commit to become
permanent, a client application encloses the empty <confirmed/> tag in the <commit> and <rpc> tag elements:

<rpc>
<commit>
<confirmed/>
</commit>
</rpc>

The following sample RPC shows how to change the default rollback timer:

<rpc>
<commit>
<confirmed/>
<confirm-timeout>nnn</confirm-timeout> !nnn is the rollback-delay in seconds.
</commit>
</rpc>

The following sample RPC shows that the NETCONF server confirms that the candidate configuration is
committed temporarily:

<rpc-reply xmlns="URN" xmlns:nc="URL">
<ok/>
</rpc-reply>

If the NETCONF server cannot commit the candidate configuration, the <rpc-reply> element will enclose an
<rpc-error> element explaining the reason for the failure. The most common causes are semantic or syntactic
errors in the candidate configuration.

. NETCONF Protocol

| NETCONF Protocol

Candidate Support Configuration .

To delay the rollback to a time later than the current rollback timer, the client application sends a <confirmed/>
tag inside a <commit> tag element again before the deadline passes. Optionally, it includes the
<confirm-timeout> element to specify how long to delay the next rollback. The client application can delay
the rollback indefinitely by sending the <confirmed/> tag repeatedly.

To commit the configuration permanently, the client application sends the <commit/> tag enclosed in an <rpc>
tag element before the rollback deadline passes. The rollback is canceled and the candidate configuration is
committed immediately. If the candidate configuration is the same as the temporarily committed configuration,
the temporarily committed configuration is recommitted.

If another application uses the <kill-session/> tag element to terminate this application’s session while a
confirmed commit is pending (this application has committed changes but not yet confirmed them), the
NETCONEF server that is using this session restores the configuration to its state before the confirmed commit
instruction was issued.

The candidate datastore is disabled by using the no netconf-yang feature candidate-datastore command.
Because the candidate datastore confirmed commit is enabled when the candidate datastore is enabled, the
confirmed commit is disabled when the candidate datastore is disabled. All sessions in progress are terminated,
and the confd program is restarted.

Candidate Support Configuration

The candidate datastore functionality can be enabled by using the netconf-yang featur e candidate-datastore
command. When the datastore state changes from running to candidate or back, a warning message is displayed,
notifying the user that a restart of NETCONF or RESTCONTF will occur in order for the change to take effect.

If the selection of the candidate or running datastore is specified in the configuration when a NETCONF-YANG
or RESTCONF confd process starts, a warning message appears as shown below:

Device (config) # netconf-yang feature candidate-datastore

netconf-yang initialization in progress - datastore transition not allowed, please try again
after 30 seconds

If the selection of the candidate or running datastore is made after the NETCONF-YANG or RESTCONF
confd process starts, the following apply:

« If the netconf-yang feature candidate-datastore command is configured, the command enables the
candidate datastore and prints the following warning:
“netconf-yang and/or restconf is transitioning from running to candidate netconf-yang

and/or restconf will now be restarted,
and any sessions in progress will be terminated”.

If the netconf-yang featur e candidate-datastore command is removed, the command disables the
candidate datastore, enables the running datastore and prints the following warning:

netconf-yang and/or restconf is transitioning from candidate to running netconf-yang
and/or restconf will now be restarted,
and any sessions in progress will be terminated”.

* When NETCONF-YANG or RESTCONEF are restarted, sessions in progress will be lost.

Side-Effect Synchronization of the Configuration Database

During configuration changes in the data model interface (DMI), a partial synchronization of the changes that
are triggered when a command or RPC is configured happens. This is called the side-effect synchronization,

NETCONF Protocol .

NETCONF Protocol |

. How to Configure the NETCONF Protocol

and it reduces the synchronization time and NETCONF downtime. Prior to the side-effect synchronization,
any configuration change used to trigger a time-consuming full synchronization of the configuration database.

The side-effect synchronization is enabled by the netconf-yang feature side-effect-sync command.

Some commands, when they are configured, triggers changes in some already configured commands. For
example, the following is the configuration on a device before the NETCONF edit-config RPC is configured:

hostname devicel23

The NETCONF edit-config RPC:

<native xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-native">
<hostname xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" nc:operation="delete"/>
</native>

The following is the configuration on the device after the NETCONF edit-config RPC is configured:

hostname Switch

Here, the side-effect of the NETCONF edit-config RPC is a change to the running configuration that is not
directly intended by the RPC. The edit-config request is supposed to delete the host name, but instead the
hostname is changed back to Switch. The side-effect synchronization does a synchronization of this
configuration change to the NETCONF database without synchronizing the entire configuration, thereby
improving performance.

The side-effect synchronization is based on the CLI-mode tree concept, where the commands are maintained
with modes and submodes structure. This CLI-mode tree data structure consists of three main nodes:

» Same-Level Node: This node points to the list of CLI nodes that belongs to the same parent and on the
same level.

* Parent Node: This node points to the CLI nodes parent, its mode, and submode node.

* Child Node: This node points to the child CLI; the CLI under the current mode or submode. If the node
has multiple child nodes then those child nodes are linked as part of the same-level node pointers.

How to Configure the NETCONF Protocol

NETCONF-YANG uses the primary trustpoint of a device. If a trustpoint does not exist, when
NETCONF-YANG is configured, it creates a self-signed trustpoint. For more information, see the Public Key
Infrastructure Configuration Guide, Cisco IOS XE Gibraltar 16.10.x.

Providing Privilege Access to Use NETCONF

SUMMARY STEPS

To start working with NETCONF APIs, you must be a user with privilege level 15.

enable

configureterminal

username name privilege level password password
aaa new-model

aaa authentication login default local

apwN=

. NETCONF Protocol

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/xe-16-10/sec-pki-xe-16-10-book/sec-pki-overview.html?bookSearch=true
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/sec_conn_pki/configuration/xe-16-10/sec-pki-xe-16-10-book/sec-pki-overview.html?bookSearch=true

| NETCONF Protocol

6. aaa authorization exec default local
7. end

DETAILED STEPS

Procedure

Providing Privilege Access to Use NETCONF .

Command or Action

Purpose

Step 1 enable Enables privileged EXEC mode.
Example: Enter your password if prompted.
Device# enable
Step 2 configure terminal Enters global configuration mode.
Example:
Device# configure terminal
Step 3 username name privilege level password password | Establishes a user name-based authentication system.
Configure the following keywords:
Example:
Device (config) # username example-name privilege 15 * pr|V|Iege level: Sets the priVilege level for the user.
password example password For the NETCONF protocol, it must be 15.
* password password: Sets a password to access the
CLI view.
Step 4 aaa new-model (Optional) Enables authorisation, authentication, and
Example: accounting (AAA).
Device (config) # aaa new-model If the aaa new-model command is configured, AAA
authentication and authorization is required.
Step 5 aaa authentication login default local Sets the login authentication to use the local username
database.
Example:
Device (config) # aaa authentication login default Note
local Prior to Cisco I0S XE Cupertino 17.9.1, only the default
AAA authentication login method is supported for the
NETCONF protocol. From Cisco I0S XE Cupertino 17.9.1,
named method-list is supported.
* For a remote AAA server, replace local with your
AAA server.
The default keyword applies the local user database
authentication to all ports.
Step 6 aaa authorization exec default local Configures user AAA authorization, check the local

Example:

Device (config)# aaa authorization exec default
local

database, and allows the user to run an EXEC shell.

Note

NETCONF Protocol .

NETCONF Protocol |
. Configuring NETCONF-YANG

Command or Action Purpose

Prior to Cisco I0S XE Cupertino 17.9.1, only the default
AAA authentication login method is supported for the
NETCONF protocol. From Cisco IOS XE Cupertino 17.9.1,
named method-list is supported.

* For a remote AAA server, replace local with your
AAA server.

* The default keyword applies the local user database
authentication to all ports.

Step 7 end Exits global configuration mode and returns to privileged

EXEC mode.
Example:

Device (config) # end

Configuring NETCONF-YANG

If the legacy NETCONTF protocol is enabled on your device, the RFC-compliant NETCONF protocol does
not work. Disable the legacy NETCONF protocol by using the no netconf legacy command.

SUMMARY STEPS
1. enable
2. configureterminal
3. netconf-yang
4. netconf-yang feature candidate-datastore
5. exit
DETAILED STEPS
Procedure
Command or Action Purpose
Step 1 enable Enables privileged EXEC mode.
Example: * Enter your password if prompted.

Device> enable

Step 2 configureterminal Enters global configuration mode.

Example:

Device# configure terminal

Step 3 netconf-yang Enables the NETCONF interface on your network device.

Example: Note
After the initial enablement through the CLI, network
devices can be managed subsequently through a model

Device (config)# netconf-yang

. NETCONF Protocol

| NETCONF Protocol

Configuring NETCONF Options .

Command or Action

Purpose

based interface. The complete activation of model-based
interface processes may require up to 90 seconds.

Step 4 netconf-yang feature candidate-datastore

Example:

Device (config) # netconf-yang feature
candidate-datastore

Enables candidate datastore.

Step 5 exit

Example:

Device (config)# exit

Exits global configuration mode.

Configuring NETCONF Options

Configuring SNMP

Enable the SNMP Server in 10S to enable NETCONF to access SNMP MIB data using YANG models
generated from supported MIBs, and to enable supported SNMP traps in IOS to receive NETCONF notifications
from the supported traps.

SUMMARY STEPS

DETAILED STEPS

Perform the following steps:

1. Enable SNMP features in IOS.

2. After NETCONF-YANG starts, enable SNMP Trap support by sending the following RPC <edit-config>

message to the NETCONF-YANG port.

3. Send the following RPC message to the NETCONF-YANG port to save the running configuration to the
startup configuration.

Procedure

Step 1 Enable SNMP features in 10S.

Example:

configure terminal

logging
logging
logging
logging
logging
logging
logging
logging
logging
|

history debugging

snmp-trap
snmp-trap
snmp-trap
snmp-trap
snmp-trap
snmp-trap
snmp-trap
snmp-trap

emergencies
alerts
critical
errors
warnings
notifications
informational
debugging

NETCONF Protocol .

NETCONF Protocol |

. Configuring the SSH Server to Perform RSA-Based User Authentication

Step 2

Step 3

snmp-server community public RW

snmp-server trap link ietf

snmp-server enable traps snmp authentication linkdown linkup
snmp-server enable traps syslog

snmp-server manager

exit

After NETCONF-YANG starts, enable SNMP Trap support by sending the following RPC <edit-config> message to the
NETCONF-YANG port.

Example:

<?xml version="1.0" encoding="utf-8"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<edit-config>
<target>
<running/>
</target>
<config>
<netconf-yang xmlns="http://cisco.com/yang/cisco-self-mgmt">
<cisco-ia xmlns="http://cisco.com/yang/cisco-ia">
<snmp-trap-control>
<trap-list>
<trap-oid>1.3.6.1.4.1.9.9.41.2.0.1</trap-oid>
</trap-list>
<trap-list>
<trap-0id>1.3.6.1.6.3.1.1.5.3</trap-oid>
</trap-list>
<trap-list>
<trap-oid>1.3.6.1.6.3.1.1.5.4</trap-oid>
</trap-list>
</snmp-trap-control>
</cisco-ia>
</netconf-yang>
</config>
</edit-config>
</rpc>

Send the following RPC message to the NETCONF-YANG port to save the running configuration to the startup
configuration.

Example:

<?xml version="1.0" encoding="utf-8"7?>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="">
<cisco-ia:save-config xmlns:cisco-ia="http://cisco.com/yang/cisco-ia"/>

</rpc>

Configuring the SSH Server to Perform RSA-Based User Authentication

Perform this task to configure the SSH public key for NETCONF-YANG to authenticate users.

SUMMARY STEPS

enable
configureterminal
ip ssh pubkey-chain
username username

Wb

. NETCONF Protocol

| NETCONF Protocol

5. key-string
6. end

DETAILED STEPS

Procedure

Configuring a Named Method List .

Command or Action

Purpose

Step 1 enable Enables privileged EXEC mode.
Example: * Enter your password if prompted.
Device> enable
Step 2 configure terminal Enters global configuration mode.
Example:
Device# configure terminal
Step 3 ip ssh pubkey-chain Configures SSH-RSA keys for user and server
authentication on the SSH server and enters public-key
Example: .
configuration mode.
Device (config)# ip ssh pubkey-chain
* The user authentication is successful if the RSA public
key stored on the server is verified with the public or
the private key pair stored on the client.
Step 4 username username Configures the SSH username and enters public-key user
configuration mode.
Example:
Device (conf-ssh-pubkey) # username userl
Step 5 key-string Specifies the RSA public key of the remote peer and enters
public-key data configuration mode.
Example:
Device (conf-ssh-pubkey-user) # key-string Note
You can obtain the public key value from an open SSH
client; that is, from the .ssh/id_rsa.pub file.
Step 6 end Exits public-key data configuration mode and returns to
privileged EXEC mode.
Example:

Device (conf-ssh-pubkey-data) # end

» Use no hostname command to return to the default
host.

Configuring a Named Method List

SUMMARY STEPS

1. enable
2. configureterminal

NETCONF Protocol .

. Verifying the NETCONF Protocol Configuration Through the CLI

NETCONF Protocol |

3. yang-interfaces aaa authentication method-list named-method-list
4. yang-interfacesaaa authorization method-list named-method-list

b. exit

DETAILED STEPS

Procedure

Command or Action

Purpose

Step 1

enable

Example:

Device> enable

Enables privileged EXEC mode.

* Enter your password if prompted.

Step 2

configureterminal

Example:

Device# configure terminal

Enters global configuration mode.

Step 3

yang-inter faces aaa authentication method-list
named-method-list
Example:

Device (config) # yang-interfaces aaa authentication
method-1list authn-method

Configures a named method-list for authentication.

Step 4

yang-inter faces aaa authorization method-list
named-method-list
Example:

Device (config) # yang-interfaces aaa authorization
method-list authr-method

Configures a named method-list for authorization.

Step 5

exit
Example:

Device (config) # exit

Exits global configuration mode and returns to privileged
EXEC mode.

Verifying the NETCONF Protocol Configuration Through the CLI

Use the following commands to verify your NETCONF configuration.

SUMMARY STEPS

show netconf-yang datastores

show netconf-yang sessions

show netconf-yang sessions detail

show netconf-yang diagnostics summary
show netconf-yang statistics

o0k wN =2

. NETCONF Protocol

show platform softwar e yang-management process

| NETCONF Protocol

DETAILED STEPS
Procedure
Step 1 show netconf-yang datastores

Step 2

Step 3

Displays information about NETCONF-YANG datastores.

Example:

Device# show netconf-yang datastores

Device# show netconf-yang datastores

Datastore Name : running

Globally Locked By Session : 42

Globally Locked Time : 2018-01-15T14:25:14-05:00

show netconf-yang sessions
Displays information about NETCONF-YANG sessions.

Example:

Device# show netconf-yang sessions

R: Global-lock on running datastore
C: Global-lock on candidate datastore
S: Global-lock on startup datastore
Number of sessions : 10

session-id transport username source-host global-lock

Verifying the NETCONF Protocol Configuration Through the CLI .

40 netconf-ssh admin 10.85.70.224 None
42 netconf-ssh admin 10.85.70.224 None
44 netconf-ssh admin 10.85.70.224 None
46 netconf-ssh admin 10.85.70.224 None
48 netconf-ssh admin 10.85.70.224 None
50 netconf-ssh admin 10.85.70.224 None
52 netconf-ssh admin 10.85.70.224 None
54 netconf-ssh admin 10.85.70.224 None
56 netconf-ssh admin 10.85.70.224 None
58 netconf-ssh admin 10.85.70.224 None

show netconf-yang sessions detail

Displays detailed information about NETCONF-YANG sessions.

Example:
Device# show netconf-yang sessions detail
R: Global-lock on running datastore

C: Global-lock on candidate datastore
S: Global-lock on startup datastore

Number of sessions : 1

session-id : 19

transport : netconf-ssh

username : admin

source-host : 2001:db8::1

login-time : 2018-10-26T12:37:22+00:

00

NETCONF Protocol .

. Verifying the NETCONF Protocol Configuration Through the CLI

in-rpcs 0
in-bad-rpcs 0
out-rpc-errors 0
out-notifications 0
global-lock : None

Step 4 show netconf-yang diagnostics summary

Displays a summary of the NETCONF-YANG diagnostic information.

Example:

Device# show netconf-yang diagnostics summary

Diagnostic Debugging is ON

Diagnostic Debugging Level: Maximum

Total Log Size (bytes): 20097

Total Transactions: 1

message username session-id transaction-id start-time

NETCONF Protocol |

1 admin 35 53 03/12/21 14:31:03 03/12/21 14:31:04 20097

Step 5 show netconf-yang statistics
Displays information about NETCONF-YANG statistics.

Example:

Device# show netconf-yang statistics

netconf-start-time : 2018-01-15T12:51:14-05:00
in-rpcs : 0

in-bad-rpcs : 0

out-rpc-errors : 0

out-notifications : 0

in-sessions : 10

dropped-sessions : 0

in-bad-hellos : 0

Step 6 show platform software yang-management process

Displays the status of the software processes required to support NETCONF-YANG.

Example:

Device# show platform software yang-management process

confd : Running
nesd : Running
syncfd : Running
ncsshd : Running
dmiauthd : Running
vtyserverutild : Running
opdatamgrd : Running
nginx : Running
ndbmand : Running
Note

The process nginx runs if ip http secure-server orip http server is configured on the device. This process is not required
to be in the running state for NETCONF to function properly. However, the nginX process is required for RESTCONF.

. NETCONF Protocol

| NETCONF Protocol

Example: Named Method List .

Table 1: show platform software yang-management process Field Descriptions

Field Description

confd Configuration daemon

nesd Network element synchronizer daemon

syncfd Sync from daemon

ncsshd NETCONF Secure Shell (SSH) daemon

dmiauthd Device management inteface (DMI) authentication daemon
vtyserverutild VTY server util daemon

opdatamgrd Operational Data Manager daemon

nginx NGINX web server

ndbmand NETCONF database manager

Example: Named Method List

Along with the default method-list, you can enable multiple authentication or authorization options with the
named method-list. Method lists enable one or more security protocols to be used for authorization. The
method lists are processed serially by the Cisco IOS software. If the first configured method-list fails, the next
one is processed. This process continues until a successful authentication or authorization, or until all configured
methods are exhausted.

The following example shows how to configure named method-lists for NETCONF AAA:

Device> enable

Device# configure terminal

Device (config) # netconf-yang

Device (config)# yang-interfaces aaa authentication method-list netconf-authn
Device (config) # yang-interfaces aaa authorization method-list netconf-authr
Device (config) # end

Displaying NETCONF-YANG Diagnostics Through RPCs

You can either use the show netconf-yang diagnostics command or the following RPCs to view the diagnostics
information.

The following is a sample RPC that enables NETCONF-YANG diagnostics, and the RPC response received
from the host:

#308
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:b0f45ac0-3fe2-4eld-a3al-£57985965beb6">

NETCONF Protocol .

NETCONF Protocol |
. Displaying NETCONF-YANG Diagnostics Through RPCs

<enable-netconf-diag xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-netconf-diag-rpc">
<diag-level>diag-maximum</diag-level>
</enable-netconf-diag>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:b0f45ac0-3fe2-4eld-a3al-£57985965beb"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

The following is a sample RPC that shows the current status and the RPC response received from the host:

#294
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:c6c986ac-£fc44-45e2-9390-£f8a5968dc8d4">
<nc:get>
<nc:filter>
<netconf-diag-oper-data
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-netconf-diag-oper"/>
</nc:filter>
</nc:get>
</nc:rpc>

#

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:c6c986ac-fc44-45e2-9390-£8a5968dc8d4"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-diag-oper-data xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-netconf-diag-oper">

<diag-summary>
<level>diag-maximum</level>
<log-size>0</log-size>
<trans-count>0</trans-count>

</diag-summary>

</netconf-diag-oper-data>
</data>
</rpc-reply>

The following is a sample RPC to change the host name and the RPC response received from the host:

#
#364
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:£3005ee6-8a11-4146-b616-dd95a92b97d1">
<nc:edit-config>
<nc:target>
<nc:running/>
</nc:target>

. NETCONF Protocol

| NETCONF Protocol

Displaying NETCONF-YANG Diagnostics Through RPCs .

<nc:config>
<native xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-native">
<hostname>new-ott-c9300-35</hostname>
</native>
</nc:config>
</nc:edit-config>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:£3005ee6-8a11-4146-b616-dd95a92b97d1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

The following is a sample RPC to display the current status and the RPC response received from the host:

#294
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:9bffb8d5-3866-48ef-b59d-0486e508fbc4">
<nc:get>
<nc:filter>
<netconf-diag-oper-data
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-netconf-diag-oper"/>
</nc:filter>
</nc:get>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:9pffb8d5-3866-48ef-b59d-0486e508fbc4"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-diag-oper-data xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-netconf-diag-oper">

<diag-summary>
<level>diag-maximum</level>
<log-size>20775</log-size>
<trans-count>1</trans—-count>

</diag-summary>

<diag-trans>
<message>1</message>
<username>lab</username>
<session-id>31</session-id>
<trans-id>50</trans-id>
<start-time>2021-03-12T14:08:26.830334+00:00</start-time>
<end-time>2021-03-12T14:08:28.279414+00:00</end-time>
<log-size>20775</log-size>

</diag-trans>

</netconf-diag-oper-data>
</data>
</rpc-reply>

NETCONF Protocol .

NETCONF Protocol |

. Additional References for NETCONF Protocol

Additional

The following is a sample RPC to archive the collected system error messages, and the RPC response from
the host:

#
#256
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:1dbc795c-£594-4194-a89b-£d4d88446b69">
<archive-netconf-diag-logs xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-netconf-diag-rpc"/>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:1dbc795c-£594-4194-a89%b-£d4d88446b69"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<log-file xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-netconf-diag-rpc">
bootflash:netconf-yang-diag.20210312141009.tar.gz</log-file>

</rpc-reply>

The following is a sample RPC that disables NETCONF-YANG diagnostics, and the RPC response received
from the host:

#309
<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:d253a313-4aec-42bc-80a2-672e9bb9%ad56">
<enable-netconf-diag xmlns="http://cisco.com/ns/yang/Cisco-I0S-XE-netconf-diag-rpc">
<diag-level>diag-disabled</diag-level>
</enable-netconf-diag>
</nc:rpc>

##

Received message from host
<?xml version="1.0" ?>
<rpc-reply message-id="urn:uuid:d253a313-4aec-42bc-80a2-672e%b9%ad56"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

References for NETCONF Protocol

Related Documents

Related Topic Document Title

YANG data models for various release of | To access Cisco YANG models in a developer-friendly way,
I0S-XE, I0S-XR, and NX-OS platforms |please clone the GitHub repository, and navigate to the
vendor/cisco subdirectory. Models for various releases of
IOS-XE, IOS-XR, and NX-OS platforms are available here.

. NETCONF Protocol

https://github.com/YangModels/yang
https://github.com/YangModels/yang/tree/master/vendor/cisco

| NETCONF Protocol
Additional References for NETCONF Protocol .

Standards and RFCs

Standard/RFC Title

RFC 6020 YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF)

RFC 6241 Network Configuration Protocol (NETCONF)

RFC 6536 Network Configuration Protocol (NETCONF) Access Control Model

RFC 7950 The YANG 1.1 Data Modeling Language

RFC 8040 RESTCONF Protocol

Technical Assistance

Description Link

The Cisco Support website provides extensive online resources, http://www.cisco.com/support
including documentation and tools for troubleshooting and resolving
technical issues with Cisco products and technologies.

To receive security and technical information about your products,
you can subscribe to various services, such as the Product Alert Tool
(accessed from Field Notices), the Cisco Technical Services
Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a
Cisco.com user ID and password.

NETCONF Protocol .

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6536
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8040
http://www.cisco.com/support

. Feature Information for the NETCONF Protocol

NETCONF Protocol |

Feature Information for the NETCONF Protocol

Table 2: Feature Information for NETCONF Protocol

Feature Name

Release

Feature Information

NETCONF Protocol

Cisco IOS XE Denali 16.3.1

The NETCONF Protocol feature facilitates a
programmatic and standards-based way of
writing configurations and reading operational
data from network devices.

The following command was introduced:
netconf-yang.

This feature was implemented on the
following platforms:

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 1000 Series Aggregation
Services Routers

* Cisco Cloud Services Router 1000V
Series

Cisco IOS XE Everest 16.5.1a

This feature was implemented on the
following platforms:

* Cisco Catalyst 3650 Series Switches

* Cisco Catalyst 3850 Series Switches

Cisco IOS XE Everest 16.6.2

This feature was implemented on the
following platforms:

* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches

* Cisco Catalyst 9500 Series Switches

Cisco 10S XE Fuji 16.8.1a

. NETCONF Protocol

| NETCONF Protocol
Feature Information for the NETCONF Protocol .

Feature Name Release Feature Information

In Cisco IOS XE Fuji 16.8.1a, this feature was
implemented on the following platforms:

* Cisco 1000 Series Integrated Services
Routers

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco ASR 920 Series Aggregation
Services Routers

* Cisco Catalyst 9500-High Performance
Series Switches

* Cisco CBR-8 Series Routers

* Cisco Network Convergence System
4200 Series

Cisco 10S XE Fuji 16.9.2 This feature was implemented on the
following platforms:

* Cisco Catalyst 9200 and 9200L Series
Switches

* Cisco Catalyst 9300L SKUs

Cisco IOS XE Gibraltar In Cisco IOS XE Gibraltar 16.10.1, this
16.10.1 feature was implemented on the following
platforms:

* Cisco Catalyst 9800-40 Wireless
Controllers

* Cisco Catalyst 9800-80 Wireless
Controllers

* Cisco Network Convergence System 520

Series
Cisco IOS XE Gibraltar In Cisco I0S XE Gibraltar 16.11.1, this
16.11.1 feature was implemented on Cisco Catalyst

9600 Series Switches.

Cisco I0S XE Gibraltar In Cisco IOS XE Gibraltar 16.12.1, this
16.12.1 feature was implemented on Cisco Catalyst
9800-L Wireless Controllers.

Cisco IOS XE Amsterdam
17.3.1

NETCONF Protocol .

. Feature Information for the NETCONF Protocol

NETCONF Protocol |

Feature Name

Release

Feature Information

In Cisco I0S XE Amsterdam 17.3.1, this
feature was implemented on the following
platforms:

* Cisco Catalyst 8200 Series Edge
Platforms

* Cisco Catalyst 8300 Series Edge
Platforms

* Cisco Catalyst 8500 and 8500L Series
Edge Platforms

[Pv6 Support

NETCONF and RESTCONF

Cisco IOS XE Fuji 16.8.1a

IPv6 support for the NETCONF and
RESTCONEF protocols. This feature was
implemented on the following platforms:

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 1000 Series Aggregation
Services Routers

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco Catalyst 3650 Series Switches
* Cisco Catalyst 3850 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches
* Cisco CBR-8 Series Routers

* Cisco Cloud Services Router 1000V
Series

Cisco IOS XE Gibraltar
16.11.1

In Cisco I0S XE Gibraltar 16.11.1, this
feature was implemented on Cisco Catalyst
9500-High Performance Series Switches.

. NETCONF Protocol

| NETCONF Protocol

Feature Information for the NETCONF Protocol .

Feature Name

Release

Feature Information

NETCONTF Global Lock and
Kill Session

Cisco IOS XE Fuji 16.8.1a

The NETCONF protocol supports a global
lock, and the ability to kill non-responsive
sessions. This feature is implemented on the
following platforms:

* Cisco 1100 Series Integrated Services
Routers

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 1000 Series Aggregation
Services Routers

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco Catalyst 3650 Series Switches
* Cisco Catalyst 3850 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches
* Cisco CBR-8 Series Routers

* Cisco Cloud Services Router 1000v
Series

NETCONF Protocol .

. Feature Information for the NETCONF Protocol

NETCONF Protocol |

Feature Name

Release

Feature Information

NETCONF: Candidate
Configuration Support

Cisco IOS XE Fuji 16.9.1

The Candidate Config Support feature enables
support for candidate capability by
implementing RFC 6241 with a simple commit
option.

This feature was implemented on the
following platforms:

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 1000 Series Aggregation
Services Routers

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco Catalyst 3650 Series Switches
* Cisco Catalyst 3850 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches
* Cisco CBR-8 Series Routers

* Cisco Cloud Services Router 1000V
Series

The following command was introduced:
netconf-yang feature candidate-datastore.

. NETCONF Protocol

| NETCONF Protocol

Feature Information for the NETCONF Protocol .

Feature Name

Release

Feature Information

NETCONF: Candidate
Configuration Commit
Confirm

Cisco IOS XE Amsterdam
17.1.1

The candidate configuration supports the
confirmed commit capability.

This feature was implemented on the
following platforms:

* Cisco 1000 Series Integrated Services
Routers

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 1000 Series Aggregation
Services Routers

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco Catalyst 3650 Series Switches
* Cisco Catalyst 3850 Series Switches
* Cisco Catalyst 9200 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches

* Cisco cBR-8 Converged Broadband
Router

* Cisco Cloud Services Router 1000V
Series

* Cisco Network Convergence System 520
Series

* Cisco Network Convergence System
4200 Series

NETCONF Protocol .

. Feature Information for the NETCONF Protocol

NETCONF Protocol |

Feature Name Release Feature Information
NETCONF-YANG SSH Cisco 10S XE Gibraltar This feature was implemented on the
Server Support 16.12.1 following platforms:

* Cisco 1000 Series Integrated Services
Routers

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco ASR 920 Series Aggregation
Services Routers

* Cisco ASR 1000 Aggregation Services
Routers

* Cisco Catalyst 3650 Series Switches
* Cisco Catalyst 3850 Series Switches
* Cisco Catalyst 9200 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches
* Cisco Catalyst 9600 Series Switches

* Cisco Catalyst 9800 Series Wireless
Controllers

* Cisco cBR-8 Converged Broadband
Router

* Cisco Cloud Services Router 1000V
Series

* Cisco Network Convergence System 520
Series

* Cisco Network Convergence System
4200 Series

NETCONF-SSH Algorithms

Cisco IOS XE Dublin 17.12.1

You can enable or disable the NETCONF-SSH
algorithms during runtime by using Cisco I0S
commands or U YANG models.

This feature was implemented on the
following platform:

* Cisco Catalyst 9500 Series Switches

. NETCONF Protocol

| NETCONF Protocol

Feature Information for the NETCONF Protocol .

Feature Name

Release

Feature Information

Named Method List

Cisco IOS XE Cupertino
17.9.1

With the introduction of the Named Method
List feature, it is possible to use a custom
method-list name for authentication and
authorization, without changing the existing
AAA configuration of a device. Prior to this
feature, only the default method-list was
supported.

This feature was implemented on the
following platforms:

* Cisco 1000 Series Integrated Services
Routers

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco ASR 920 Series Aggregation
Services Routers

* Cisco ASR 1000 Aggregation Services
Routers

* Cisco Catalyst 8200 Series Edge
Platforms

* Cisco Catalyst 8300 Series Edge
Platforms

* Cisco Catalyst 8500 Series and 8500L
Series Edge Platforms

* Cisco Catalyst 9200 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches
* Cisco Catalyst 9600 Series Switches

* Cisco Catalyst 9800 Series Wireless
Controllers

* Cisco Cloud Services Router 1000V
Series

* Cisco Network Convergence System 520
Series

* Cisco Network Convergence System
4200 Series

NETCONF Protocol .

. Feature Information for the NETCONF Protocol

NETCONF Protocol |

Feature Name

Release

Feature Information

Side-Effect Synchronization
of the Configuration Database

Cisco 10S XE Bengaluru
17.4.1

During configuration changes in the DMI, a
partial synchronization of the changes that are
triggered when a command or RPC is
configured happens. This is called the
side-effect synchronization, and it reduces the
synchronization time and NETCONF
downtime.

This feature was implemented on the
following platforms:

* Cisco ASR 1000 Aggregation Services
Routers

* Cisco Catalyst 8500 and 8500L Series
Edge Platforms

* Cisco Catalyst 9200 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches

* Cisco Catalyst 9600 Series Switches

. NETCONF Protocol

| NETCONF Protocol

Feature Information for the NETCONF Protocol .

Feature Name

Release

Feature Information

YANG Model Version 1.1

Cisco IOS XE Cupertino
17.7.1

Cisco IOS XE Cupertino 17.7.1 uses the
YANG Version 1.0; however, you can also
use YANG Version 1.1. Download the YANG
Version 1.1 from GitHub at

5 QY((S9/00%

This feature was implemented on the
following platforms:

* Cisco 1000 Series Integrated Services
Routers

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 900 Aggregation Services
Routers

* Cisco ASR 920 Aggregation Services
Routers

* Cisco ASR 1000 Aggregation Services
Routers

* Cisco Catalyst 9200 and 9200L Series
Switches

* Cisco Catalyst 9300 and 9300L Series
Switches

* Cisco Catalyst 9400 Series Switches

* Cisco Catalyst 9500 and 9500-High
Performance Series Switches

* Cisco Catalyst 9600 Series Switches

* Cisco Catalyst 9800-40 Wireless
Controllers

* Cisco Catalyst 9800-80 Wireless
Controllers

* Cisco ¢cBR-8 Converged Broadband
Router

* Cisco Cloud Services Router 1000V
Series

* Cisco Network Convergence System 520
Series

* Cisco Network Convergence System
4200 Series

NETCONF Protocol .

https://github.com/YangModels/yang/tree/master/vendor/cisco/xe

. Feature Information for the NETCONF Protocol

NETCONF Protocol |

Feature Name Release Feature Information
Cisco IOS XE Cupertino Cisco IOS XE Cupertino 17.8.1 uses YANG
17.8.1 Version 1.1. The difference between YANG

Version 1.1 and Version 1.0 is documented at
https://tools.ietf.org/html/rfc7950#page-10

Cisco IOS XE Dublin 17.10.1

Cisco-defined YANG models are in YANG
Version 1.1 in Cisco IOS XE Dublin 17.10.1
and later releases.

Converting IOS Commands
to XML

Cisco IOS XE Cupertino
17.7.1

This feature helps to automatically translate
IOS commands into relevant
NETCONF-YANG XML or
RESTCONF-JSON request messages.

This feature is supported on all platforms that
support NETCONF-YANG.

. NETCONF Protocol

https://tools.ietf.org/html/rfc7950#page-10

	NETCONF Protocol
	Information About the NETCONF Protocol
	Introduction to Data Models: Programmatic and Standards-Based Configuration
	NETCONF
	Restrictions for the NETCONF Protocol
	YANG Model Version 1.1
	NETCONF RESTCONF IPv6 Support
	Converting IOS Commands to XML
	NETCONF Global Session Lock
	NETCONF Kill Session
	NETCONF-YANG SSH Server Support
	Named Method List
	Candidate Configuration Support
	NETCONF Operations on Candidate
	Confirmed Candidate Configuration Commit
	Candidate Support Configuration

	Side-Effect Synchronization of the Configuration Database

	How to Configure the NETCONF Protocol
	Providing Privilege Access to Use NETCONF
	Configuring NETCONF-YANG
	Configuring NETCONF Options
	Configuring SNMP

	Configuring the SSH Server to Perform RSA-Based User Authentication
	Configuring a Named Method List

	Verifying the NETCONF Protocol Configuration Through the CLI
	Example: Named Method List
	Displaying NETCONF-YANG Diagnostics Through RPCs
	Additional References for NETCONF Protocol
	Feature Information for the NETCONF Protocol

