
Model-driven telemetry

•

• Model-Driven Telemetry, on page 1
• Prerequisites for model-driven telemetry, on page 2
• Restrictions for model-driven telemetry, on page 3
• What are subscriptions?, on page 4
• Subscription management , on page 10
• Dynamic subscriptions, on page 11
• Configured subscriptions, on page 21
• Retrieving subscription details, on page 28
• Named receivers for configured subscriptions, on page 32
• Subscription receivers, on page 38
• High Availability in telemetry, on page 42
• FQDN support for gRPC subscriptions, on page 42
• XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers, on page 43
• Feature Information for Model-Driven Telemetry, on page 47

Model-Driven Telemetry
Telemetry is an automated communications process that collects measurements and other data at remote points
and transmits them to the receiving equipments formonitoring.Model-driven telemetry streamsYANG-modeled
data to a data collector.

Applications subscribe to specific data items using standards-based YANG data models over NETCONF,
RESTCONF, or gRPC Network Management Interface (gNMI) protocols. You can also create subscriptions
using CLIs for configured subscriptions.

Structured data is published at a defined cadence or on-change, based on the subscription criteria and data
type.

Systems using telemetry involves different roles. This document describes these telemetry roles:

• publisher: Network element that sends the telemetry data,

• receiver: Receives the telemetry data; also called the collector,

Model-driven telemetry
1

• controller: Network element that creates subscriptions but does not receive the telemetry data. The
telemetry data associated with the subscriptions it creates goes to receivers. Also called the management
agent or management entity, and

• subscriber: Network element that creates subscriptions and is also the receiver in this document.

Prerequisites for model-driven telemetry
These prerequisites apply to model-driven telemetry.

• Knowledge of YANG is needed to understand and define the data that is required when using telemetry.

• Knowledge of XML, XML namespaces, and XML XPath.

• Knowledge of standards and principles defined by the IETF telemetry specifications.

• The urn:ietf:params:netconf:capability:notification:1.1 capability must be listed in hello messages. This
capability is advertised only on devices that support IETF telemetry.

• NETCONF-YANG must be configured and running on the device.

Either NETCONF-YANG or gNXI must be configured for telemetry to work. If
your platform does not support gNXI, you must configure NETCONF, even if
NETCONF is not used. For more information on configuring NETCONF-YANG,
see the NETCONF Protocol module. For more information on gNXI, see the
gNMI Protocol module.

Note

Verify that the following processes are running, by using the show platform software yang-management
process command:

Device# show platform software yang-management process

confd : Running
nesd : Running
syncfd : Running
ncsshd : Running
dmiauthd : Running
nginx : Running
ndbmand : Running
pubd : Running
gnmib : Running

The process pubd is the model-driven telemetry process, and if it is not running,
model-driven telemetry will not work.

Note

The following table provides details about each of the Device Management Interface (DMI) processes.

Model-driven telemetry
2

Model-driven telemetry
Prerequisites for model-driven telemetry

https://en.wikipedia.org/wiki/XPath
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/178/b_178_programmability_cg/m_178_prog_yang_netconf.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/178/b_178_programmability_cg/m_178_prog_gnmi.html

Table 1: Field descriptions

Primary roleDMI process name

Configuration daemon.confd

Network element synchronizer daemon.nesd

Sync daemon (maintains synchronization between
the running state and corresponding models).

syncfd

NETCONF Secure Shell (SSH) daemon.ncsshd

DMI authentication daemon.dmiauthd

NGINX web server. Acts as a web server for
RESTCONF.

nginx

NETCONF database manager.ndbmand

Publication manager and publisher used for
model-driven telemetry.

pubd

GNMI protocol server.gnmib

Restrictions for model-driven telemetry
The following restrictions apply to model-driven telemetry.

• Automatic hierarchy in selections is not supported for on-change subscriptions when using the yang-push
stream. This means that when selecting a list, child lists of the list are not automatically included. For
example, the subscriber must manually create a subscription for each child list.

This restriction also applies to periodic subscriptions, if subscribed to the elements in the list below:

• openconfig-access-points

• openconfig-ap-manager

• openconfig-lacp

• openconfig-platform-psu

• Checking the authorization of data access is not supported. All the data requested by a subscriber is sent.

• Subtree filters are not supported. If subtree filters are specified, the subscription is marked as invalid.

• Defining multiple receivers within subscription parameters is not supported; only the first receiver
destination is attempted. Other defined receivers are ignored.

Model-driven telemetry
3

Model-driven telemetry
Restrictions for model-driven telemetry

What are subscriptions?
Subscriptions create associations between telemetry roles and define the data sent between them.

Subscriptions define the set of data that is requested as part of the telemetry data, such as, when the data is
required, how the data is formatted, which receivers should receive the data, and so on.

Telemetry uses two types of subscriptions, dynamic and configured.

• Dynamic subscriptions are created by clients or subscribers that connect to the publisher, so they are
dial-in.

• Configured subscriptions cause the publisher to initiate connections to receivers, making them dial-out.

Subscriptions can either be configured or dynamic, and use any combination of transport protocols. Periodic
triggered subscriptions (100 centiseconds minimum) and on-change triggered subscriptions are also supported.

The maximum number of supported subscriptions is platform-dependent, and all platforms support at least
100 subscriptions. NETCONF and other northbound programmable interfaces (such as RESTCONF or gNMI)
are supported to configure subscriptions. If too many subscriptions operate simultaneously and prevent all
valid configured subscriptions from being active, removing an active subscription may activate an inactive
but valid configured subscription.

Data source specifications
The sources of telemetry data in a subscription are specified using a stream and a filter. Stream refers to a
related set of events. RFC 5277 defines an event stream as a set of event notificationsmatching some forwarding
criteria.

Normally, the system filters the set of events from a stream, and different filter types are used for different
stream types.

Cisco IOS XE software supports two streams: yang-push and yang-notif-native.

Update notifications
As part of a subscription, you can specify when data is required; however this depends on the stream. Some
streams support making data available only when there is a change, or after an event within the stream. Other
streams make data available when there is a change or at a defined time period.

The when specification results in a series of update notifications that carry the telemetry data of interest. How
the data is sent depends on the protocol used for the connection between the publisher and the receiver.

Subscription identifiers
Subscriptions are identified by a 32-bit positive integer value. The IDs for configured subscriptions are set
by the controller, and for dynamic subscriptions, by the publisher.

Controllers must limit the values they use for configured subscriptions in the range 0 to 2,147,483,647 to
avoid collisions with the dynamic subscriptions created on the publisher. The dynamic subscription ID space
is global, meaning that the subscription IDs for independently-created dynamic subscriptions do not overlap.

Model-driven telemetry
4

Model-driven telemetry
What are subscriptions?

Dial-in and dial-out subscriptions
The two flavors of model-driven telemetry are dial-in and dial-out subscriptions. This table compares both
these types of subscriptions.

Table 2: Dial-in and dial-out subscriptions

Dial-outDial-in

Telemetry updates are sent to the specified receiver
or collector.

Telemetry updates are sent to the initiator or
subscriber.

Subscription is created as part of the running
configuration; it remains as the device configuration
till the configuration is removed.

Life of a subscription is tied to the connection or
session that created it, and over which telemetry
updates are sent. No change is observed in the running
configuration.

Dial-out subscriptions are created as part of the device
configuration and they automatically reconnect to the
receiver after a stateful switchover.

Dial-in subscriptions need to be re-initiated after a
reload, because established connections or sessions
are killed during a stateful switchover.

Subscription ID is fixed and configured on the device
as part of the configuration.

Subscription ID is dynamically generated upon the
successful establishment of a subscription.

Streams
Streams define a set of events that can be subscribed to, and this set of events can be almost anything. However,
as per the definition of each stream, all possible events are related in some way. This section describes the
supported streams, yang-push and yang-notif-native.

To view the set of streams that are supported, use management protocol operations to retrieve the streams
table from the Cisco-IOS-XE-mdt-oper-v2module (from the YANGmodel Cisco-IOS-XE-mdt-oper-v2.yang)
in the mdt-streams container.

This example shows how to use NETCONF to retrieve supported streams.
<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-streams/>
</mdt-oper-data>
</filter>
</get>

* Enter a NETCONF operation, end with an empty line

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-streams>
<stream>native</stream>
<stream>yang-notif-native</stream>
<stream>yang-push</stream>

</mdt-streams>
</mdt-oper-data>

Model-driven telemetry
5

Model-driven telemetry
Dial-in and dial-out subscriptions

</data>
</rpc-reply>

The example shows that three streams are supported: native, yang-notif-native, and yang-push. The stream
native is not available for general use and can be ignored.

Currently there are no CLIs to return the list of supported streams.Note

yang-push stream
The yang-push stream is a standard that allows automatic, continuous streaming of updates from a YANG
datastore to a client using notifications. The yang-push stream is the data in configuration and operational
databases that is described by a supported YANGmodel. This stream supports an XPath filter to specify what
data is of interest within the stream, and where the XPath expression is based on the YANGmodel that defines
the data of interest.

Update notifications are sent either when data changes or during fixed periods, but not for both, for a given
subscription. Subscriptions for data that does not currently exist are permitted, and these run as normal
subscriptions. The only target database that is supported is running.

Telemetry using the yang-push stream is based on the IETF NETCONF working group's early drafts for
telemetry. These are:

• Custom Subscription to Event Notifications, Version 03

• Subscribing to YANG datastore push updates, Version 07

These features that are described in the corresponding drafts are not supported.

• Subtree filters

• Out-of-band notifications

• Any subscription parameter not explicitly stated as supported

Determining on-change capability

Currently, there is no indication within YANG models about the type of data that can be subscribed to, by
using an on-change subscription. Attempts to subscribe to data that cannot be subscribed to by using on-change
subscription results in a failure (dynamic) or an invalid subscription (configured). For more information on
On-Change Publication, see the section, On-Change Publication for yang-push.

X-Path filter for yang-push

XML Path Language (XPath) is a query and navigation language designed to select and address nodes of an
XML document. It uses path-like expressions, similar to filesystem paths, to navigate through the hierarchical
structure of an XML document and identify elements, attributes, text, and other node types.

The dataset within the yang-push stream to be subscribed to should be specified by the use of an XPath filter.
The following guidelines apply to the XPath expression.

• XPath expressions can have keys to specify a single entry in a list or container. The supported key
specification syntax is
[{key name}={key value}]

Model-driven telemetry
6

Model-driven telemetry
yang-push stream

https://tools.ietf.org/html/draft-ietf-netconf-subscribed-notifications-03
https://tools.ietf.org/html/draft-ietf-netconf-yang-push-07

This is a sample XPath expression:
filter xpath /rt:routing-state/routing-instance[name="default"]
/ribs/rib[name="ipv4-default"]/routes/route # VALID!

Compound keys are supported by the use of multiple key specifications. Key names and values must be
exact; no ranges or wildcard values are supported.

• In XPath expressions, select multiple keys by specifying them one after another. The following is an
example of an XPath expression:
/wireless-access-point-oper:access-point-oper-data/radio-oper-data/
radio-slot-id[wtp-mac="00:11:22:33:44:55"][radio-slot-id="1"]

• XPath expressions support the use of the union operator (|) to allow a single subscription to support
multiple objects. The union operator only works for NETCONF transport and not for gRPC.

Periodic publication for yang-push

Periodic publication of a YANG-push stream refers to a subscription mode where updates from the YANG
datastore are sent automatically at regular, configured time intervals, regardless of whether the data has
changed. This means the subscriber receives data snapshots periodically, based on a defined time interval.

With periodic subscriptions, the first push-update with the subscribed information is sent immediately; but it
can be delayed if the device is busy or due to network congestion. Updates are then sent at the expiry of the
configured periodic timer. For example, if the period is configured as 10 minutes, the first update is sent
immediately after the subscription is created and every 10 minutes thereafter.

The period is time, in centiseconds (1/100 of a second), between periodic push updates. A period of 1000 will
result in getting updates to the subscribed information every 10 seconds. The minimum period that can be
configured is 100, or one second. There is no default value. This value must be explicitly set in the
establish-subscription RPC for dynamic subscriptions and in the configuration for configured subscriptions.

Periodic updates contain a full copy of the subscribed data element or table for all supported transport protocols.

When subscribing for empty data using a periodic subscription, empty update notifications are sent at the
requested period. If data comes into existence, its values at the next period are sent as a normal update
notification.

On-change publication for yang-push

In on-change publication, updates are pushed to the subscriber only when the monitored data in the targeted
YANG datastore changes.

When creating an on-change subscription, the dampening period must be set to 0 to indicate that there is no
dampening period; no other value is supported.

With on-change subscriptions, the first push update is the entire set of subscribed data (the initial
synchronization as defined in the IETF documents). This is not controllable. Subsequent updates are sent
when the data changes, and consist of only the changed data. However, the minimum data resolution for a
change is a row. So, if an on-change subscription is to a leaf within a row, if any item in that row changes, an
update notification is sent. The exact contents of the update notification depend on the transport protocol.

In addition, on-change subscriptions are not hierarchical. That is, when subscribing to a container that has
child containers, changes in the child container are not seen by the subscription.

Subscriptions for data that does not currently exist are permitted and run as normal subscriptions. The initial
synchronization update notification is empty and there are no further updates until data is available.

Model-driven telemetry
7

Model-driven telemetry
yang-push stream

XPath expressions must specify a single object. That object can be a container, a leaf, a leaf list or a list.

yang-notif-native stream
The yang-notif-native stream is any YANG notification in the publisher where the underlying source of events
for the notification uses Cisco IOS XE native technology. This stream also supports an XPath filter that
specifies which notifications are of interest. Update notifications for this stream are sent only when events
that the notifications are for occur.

Since this stream supports only on-change subscriptions, the dampening interval must be specified with a
value of 0.

XPath filter for yang-notif-native

The dataset within the yang-notif-native stream to be subscribed to is specified by the use of an XPath filter.
These guidelines apply to the XPath expression.

• XPath expressions must specify an entire YANG notification; attribute filtering is not supported.

• The union operator (|) is not supported.

Transport protocols
Protocols used for connecting a publisher and a receiver decides how the data is sent. This protocol is referred
to as the transport protocol, and is independent of the management protocol for configured subscriptions. The
transport protocol affects both the encoding of the data, for example XML, Google Protocol Buffers (GPB),
and the format of the update notification itself. gNMI, gRPC, and NETCONF are the supported transport
protocols.

The stream that is chosen may also affect the format of the update notification.Note

NETCONF protocol

The NETCONF protocol is available only for the transport of dynamic subscriptions, and can be used with
yang-push and yang-notif-native streams.

When using NETCONF as the transport protocol, three update notification formats are used.

• When the subscription uses the yang-push stream, and if it is periodic or when the initial synchronization
update notification is sent on an on-change subscription.

• When the subscription uses the yang-push stream and it is an on-change subscription, other than the
initial synchronization update notification.

• When the subscription uses the yang-notif-native stream.

yang-push format

When the yang-push source stream is sent over NETCONF as the transport with XML encoding, two update
notification formats are defined. These update notification formats are based on the
draft-ietf-netconf-yang-push-07. For more information, see section 3.7 of the IETF draft.

yang-notif-native format

Model-driven telemetry
8

Model-driven telemetry
yang-notif-native stream

When the source stream is yang-notif-native, the format of the update notification when encoded in XML
over NETCONF is as defined by RFC 7950. For more information, see section 7.16.2 of the RFC.

Unlike the formats for the yang-push stream, the subscription ID is not found in the update notification.

gRPC protocol

The gRPC protocol is available only for the transport of configured subscriptions, and can be used with
yang-push and yang-notif-native streams. Only kvGPB encoding is supported with gRPC transport protocol.

Receiver connection retries based on gRPC protocol (exponential back-off) are supported.

For telemetry messages defined in .proto files, see: mdt_grpc_dialout.proto and telemetry.proto.

Mutual authentication for gRPC telemetry

gRPC is one of the supported dial-out protocols used to transmit telemetry data. For dial-out protocols, the
device is considered the client and the collector, the server. gRPC supports both unencrypted TCP and encrypted
TLS-based connections.

A new gRPC-TLS profile that contains a pair of trustpoints is added to the telemetry configuration, so that a
client ID certificate can be used for mutual authentication. The profile contains two trustpoints, one is the
Certificate Authority (CA) certificate for server validation, and the other is the ID certificate for client validation.

When a device connects to a receiver for the first time, based on the server configuration, client or mutual
authentication may be required. The device will receive the receiver's identity certificate and validate whether
the certificate is signed by the CA identified in the certificate associated with the trustpoint configured in the
receiver profile. If the receiver then requests for the certificate ID of the device, the device sends the client
ID certificate previously installed in the profile’s ID-trustpoint field.

If the server is configured to require mutual authentication, and there is no client ID trustpoint in the profile,
the client authentication will not happen, nor will the connection succeed.

The same trustpoint label can be configured for multiple profiles, and the same profile can be configured for
multiple receivers.

The trustpoint with the client ID is not mandatory in the profile configuration, as mutual authentication is not
required for gRPC over TLS, and it can be configured only with server validation.

Note

To add the client ID trustpoint, use the telemetry protocol grpc profile <name> command.

Mutual authentication for gRPC telemetry cannot be disabled; but it can be left unused by not configuring
the receivers to use the gRPC-TLS protocol, or by removing or not configuring the client ID trustpoint field
in the receiver configuration.

This example shows how to configure a gRPC-TLS profile for mutual authentication.

Device# configure terminal
Device(config)# telemetry receiver protocol grpc-mtls
Device(config-mdt-protocol-receiver)# host name collector.cisco.com 57500
Device(config-mdt-protocol-receiver)# protocol grpc-tls profile different-ca
Device(config-mdt-protocol-receiver)# exit
Device(config)# telemetry protocol grpc profile myprofile
Device(config-mdt-protocol-grpc-profile)# exit
Device(config)# telemetry ietf subscription 100
Device(config-mdt-subs)# encoding encode-kvgpb

Model-driven telemetry
9

Model-driven telemetry
Transport protocols

https://github.com/cisco-ie/cisco-proto/blob/master/proto/xe/mdt_grpc_dialout.proto
https://github.com/cisco-ie/cisco-proto/blob/9cc3967cb1cabbb3e9f92f2c46ed96edf8a0a78b/proto/xe/telemetry.proto

Device(config-mdt-subs)# filter xpath /memory-ios-xe-oper:memory-statistics/memory-statistic
Device(config-mdt-subs)# receiver-type protocol
Device(config-mdt-subs)# stream yang-push
Device(config-mdt-subs)# update-policy periodic 5000
Device(config-mdt-subs)# receiver name grpc-mtls
Device(config-mdt-subs)# end
Device#

Subscription management
Any form of management operation can be used to create, delete, and modify configured subscriptions. This
includes both CLIs and network protocol management operations.

All subscriptions, both configured and dynamic, can be displayed using show commands and network protocol
management operations.

This table describes the supported streams and encodings along with the combinations that are supported.

Table 3: Supported combination of protocols

gNMIgRPCNETCONFTransport
Protocol

Dial-OutDial-InDial-OutDial-InDial-OutDial-In

Stream

NoYesYesNoNoYesyang-push

NoNoYesNoNoYesyang-notif-native

No• JSON_IETF

• PROTO

Key-value
Google
Protocol
Buffers
(kvGPB)

NoNoXMLEncodings

Creating, modifying, and deleting NETCONF subscriptions
You can send and receive YANG XML remote procedure calls (RPCs) in established NETCONF sessions to
create, modify, and delete subscriptions.

To establish a new subscription, use the establish-subscription RPC. When an establish-subscription RPC is
sent, the reply from a publisher contains an rpc-reply message with a subscription-result element containing
a result string.

To terminate a subscription, you can either delete it through delete-subscription RPC or forcibly kill it through
kill-subscription RPC. The delete-subscription RPC allows a subscriber to delete a subscription that was
previously created by the same subscriber who used the establish-subscription RPC.

Model-driven telemetry
10

Model-driven telemetry
Subscription management

Dynamic subscriptions
Dynamic subscriptions enable clients to specify which data paths to monitor and how often updates should
be sent, allowing real-time monitoring tailored to current operational needs

The lifetime of a subscription is limited to the lifetime of the connection between the subscriber and the
publisher, and telemetry data is sent only to that subscriber. Dynamic subscriptions do not persist if either the
publisher or the subscriber is rebooted. Dynamic subscriptions are dial-in subscriptions

Subscribers who connect to a publisher create dynamic subscriptions by using a mechanism within that
connection, usually an RPC.

Creating configured subscriptions
This section describes the sample RPCs to create various types of configured subscriptions.

Periodic subscriptions

This example shows how to configure gRPC as the transport protocol for configured subscriptions using the
CLI:

telemetry ietf subscription 101
encoding encode-kvgpb
filter xpath /memory-ios-xe-oper:memory-statistics/memory-statistic
stream yang-push
update-policy periodic 6000
source-vrf Mgmt-intf
receiver ip address 10.28.35.45 57555 protocol grpc-tcp

This sample RPC shows how to create a periodic subscription using NETCONF that sends telemetry updates
to the receiver every 60 seconds.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription>
<subscription-id>200</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-kvgpb</encoding>
<period>6000</period>
<xpath>/memory-ios-xe-oper:memory-statistics/memory-statistic</xpath>
</base>
<mdt-receivers>
<address>10.22.23.48</address>
<port>57555</port>
<protocol>grpc-tcp</protocol>
</mdt-receivers>
</mdt-subscription>
</mdt-config-data>
</config>
</edit-config>

Model-driven telemetry
11

Model-driven telemetry
Dynamic subscriptions

</rpc>

This sample RPC creates a periodic subscription using RESTCONF.
URI:https://10.85.116.28:443/restconf/data/Cisco-IOS-XE-mdt-cfg:mdt-config-data
Headers:
application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json
Content-Type:
application/yang-data+json
BODY:
{
"mdt-config-data": {
"mdt-subscription":[
{
"subscription-id": "102",
"base": {
"stream": "yang-push",
"encoding": "encode-kvgpb",

"period": "6000",
"xpath": "/memory-ios-xe-oper:memory-statistics/memory-statistic"
}

"mdt-receivers": {
"address": "10.22.23.48"
"port": "57555"

}
}
]
}
}

On-change subscriptions

This sample RPC shows how to create an on-change subscription using NETCONF that sends updates only
when there is a change in the target database.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription>
<subscription-id>200</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-kvgpb</encoding>
<no-synch-on-start-v2>false</no-synch-on-start-v2>
<xpath>/cdp-ios-xe-oper:cdp-neighbor-details/cdp-neighbor-detail</xpath>
</base>
<mdt-receivers>
<address>10.22.23.48</address>
<port>57555</port>
<protocol>grpc-tcp</protocol>
</mdt-receivers>
</mdt-subscription>
</mdt-config-data>
</config>
</edit-config>
</rpc>

Model-driven telemetry
12

Model-driven telemetry
Creating configured subscriptions

The following sample RPC shows how to create an on-change subscription using RESTCONF:
URI:
https://10.85.116.28:443/restconf/data/Cisco-IOS-XE-mdt-cfg:mdt-config-data
Headers:
application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json
Content-Type:
application/yang-data+json
BODY:
{
"mdt-config-data": {
"mdt-subscription":[
{
"subscription-id": "102",
"base": {
"stream": "yang-push",
"encoding": "encode-kvgpb",

"dampening period": "0",
"xpath": "/cdp-ios-xe-oper:cdp-neighbor-details/cdp

-neighbor-detail "
}

"mdt-receivers": {
"address": "10.22.23.48"
"port": "57555"

}
}
]
}
}

Receiving a response message
When a subscription is successfully created, the device responds with a subscription result of notif-bis:ok and
a subscription ID. This is a sample response RPC message for a dynamic subscription.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<subscription-result xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"
xmlns:notif-bis="urn:ietf:params:xml:ns:yang:ietf-event-notifications">notif-bis:
ok</subscription-result>
<subscription-id
xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications">2147484201</subscription-id>
</rpc-reply>

Receiving subscription push updates for NETCONF dial-in
Subscription updates pushed from the device are in the form of an XML RPC and are sent over the same
NETCONF session on which these are created. The subscribed information element or tree is returned within
the datastore-contents-xml tag. This is a sample RPC message that provides the subscribed information.

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2017-05-09T21:34:51.74Z</eventTime>
<push-update xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<subscription-id>2147483650</subscription-id>
<datastore-contents-xml>

<cpu-usage

Model-driven telemetry
13

Model-driven telemetry
Receiving a response message

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-process-cpu-oper"><cpu-utilization>
<five-minutes>5</five-minutes></cpu-utilization></cpu-usage>

</datastore-contents-xml>
</push-update>

</notification>

If the information element to which a subscription is made is empty, or if it is dynamic, for example, a named
access list that does not exist, the periodic update will be empty and will have a self-closing
datastore-contents-xml tag. This is a sample RPC message in which the periodic update is empty.

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2017-05-09T21:34:09.74Z</eventTime>
<push-update xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<subscription-id>2147483649</subscription-id>
<datastore-contents-xml />

</push-update>
</notification>

Deleting dynamic subscriptions
Dynamic subscriptions cannot be modified but can be terminated at any time. Dynamic subscriptions
automatically terminate if the session is terminated. In a dynamic subscription, the subscriber and receiver
are always the same entity.

You can delete dynamic subscriptions by using the in-band delete-subscription RPC, the clear telemetry
subscription dynamic command, and the kill-subscription RPC alongwith disconnecting the transport session.

In gNMI, for each subscription in the SubscribeRequest.subscribe.subscription a separate dynamic subscription
ID is generated. Killing any of these subscription IDs, either through the kill-subscription RPC or the clear
telemetry subscription dynamic command, will cause all subscriptions specified in the SubscribeRequest
to be killed.

The delete-subscription RPC can be issued only by a subscriber, and it deletes only the subscriptions owned
by that subscriber. You can also use the clear telemetry subscription dynamic command to delete dynamic
subscriptions. The kill-subscription RPC deletes dynamic subscriptions in the same way as the clear telemetry
subscription dynamic command.

In NETCONF, when the parent NETCONF session is torn down or disconnected, subscriptions are deleted.
If the network connection is interrupted, it may take some time for the SSH or NETCONF session to timeout,
and for subsequent subscriptions to be removed.

The kill-subscription RPC is similar to the delete-subscription RPC. However, the kill-subscription RPC uses
the identifier element that contains the ID of the subscription to be deleted, instead of the subscription-id
element used by the delete-subscription RPC. The transport session used by the target subscription also differs
from the one used by the delete-subscription RPC.

Deleting subscriptions using the CLI

The output of the show telemetry ietf subscription all command displays all the available subscriptions.
Device# show telemetry ietf subscription all

Telemetry subscription brief

ID Type State Filter type

Model-driven telemetry
14

Model-driven telemetry
Deleting dynamic subscriptions

--
2147483648 Dynamic Valid xpath
2147483649 Dynamic Valid xpath

This example shows how to delete a dynamic subscription.
Device# clear telemetry subscription dynamic 2147483648

Deleting subscriptions using NETCONF delete-subscription RPC

This example shows how to delete a subscription using the delete-subscription RPC.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<delete-subscription xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"
xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">

<subscription-id>2147483650</subscription-id>
</delete-subscription>

</rpc>

Deleting subscriptions using NETCONF kill-subscription RPC

This example shows how to delete subscriptions using the kill-subscription RPC.

<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-subscriptions/>
</mdt-oper-data>
</filter>
</get>

* Enter a NETCONF operation, end with an empty line

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-subscriptions>
<subscription-id>2147483652</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:48.848241+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483653</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

Model-driven telemetry
15

Model-driven telemetry
Deleting dynamic subscriptions

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:51.319279+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483654</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:55.302809+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483655</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:57.440936+00:00</last-state-change-time>

</mdt-subscriptions>
</mdt-oper-data>

</data>
</rpc-reply>
<kill-subscription xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"
xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">

<identifier>2147483653</identifier>
</kill-subscription>

* Enter a NETCONF operation, end with an empty line

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<subscription-result xmlns="urn:ietf:params:xml:ns:yang:ietf-event-notifications"

xmlns:notif-bis="urn:ietf:params:xml:ns:yang:ietf-event-notifications">notif-bis:ok</subscription-result>
</rpc-reply>
<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-subscriptions/>
</mdt-oper-data>
</filter>
</get>

* Enter a NETCONF operation, end with an empty line

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-subscriptions>
<subscription-id>2147483652</subscription-id>
<base>

…

Model-driven telemetry
16

Model-driven telemetry
Deleting dynamic subscriptions

</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:48.848241+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483654</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:55.302809+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483655</subscription-id>
<base>

…
</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>

…
</mdt-receivers>
<last-state-change-time>2018-12-13T21:16:57.440936+00:00</last-state-change-time>

</mdt-subscriptions>
</mdt-oper-data>
</data>

</rpc-reply>

Service gNMI
Service gRPC Network Management Interface (gNMI) is a network management protocol developed by
Google that uses gRPC (a remote procedure call framework) to manage network devices. It provides a unified
service for configuring network devices, retrieving operational state data, and streaming telemetry data in real
time.

The gNMI specification identifies a single top-level service named gNMI that contains high-level RPCs. This
is a service definition that contains the subscribe-service RPC.
service gNMI{
.
.
.
rpc Subscribe(stream SubscribeRequest)

returns (stream SubscribeResponse);

Model-driven telemetry
17

Model-driven telemetry
Service gNMI

SubscribeRequest message

This message is sent by a client to request updates from the target for a specified set of paths. This is a sample
SubscribeRequest message definition.

message SubscribeRequest {
oneof request {
SubscriptionList subscribe = 1;
PollRequest poll = 3;
AliasList aliases = 4;

}
Repeated gNMI_ext.Extensions = 5;

}

Only request.subscribe is supported.Note

SubscribeResponse message

This message is carried from the target to the client over an established subscribe RPC. This is a sample
SubscribeRespose message definition.

message SubscribeResponse {
oneof response {
Notification update = 1;
Bool sync_response = 3;
Error error = 4 [deprecated=true];

}
}

Only Notification update is supported.Note

gNMI sync_response message

A SubscribeResponse message is transmitted by a target (a switch or a router) to a gNMI client or collector
over an established gNMI subscribe RPC. The sync_response is a boolean field that is part of the
SubscribeResponse message, which indicates that all data values that corresponds to the paths in the
SubscriptionList has been transmitted at least once. The sync_response message is sent after the first update
message, and this field is enabled for both gNMI on-change and periodic notifications.

This sample SubscribeResponse message displays the sync_response field.

message SubscribeResponse {
oneof response {
Notification update = 1; // Changed or sampled value for a path.
// Indicate target has sent all values associated with the subscription
// at least once.
bool sync_response = 3;
// Deprecated in favour of google.golang.org/genproto/googleapis/rpc/status
Error error = 4 [deprecated = true];

Model-driven telemetry
18

Model-driven telemetry
Service gNMI

}
// Extension messages associated with the SubscribeResponse. See the
// gNMI extension specification for further definition.
repeated gnmi_ext.Extension extension = 5;

}

SubscriptionList message

This message is used to indicate a set of paths for which common subscription behavior is required. Within
the specification of the SubscriptionList message, the client can identify one or more subscriptions to a given
prefix in the model. This is a sample SubscriptionList message defintion.

message SubscriptionList {
Path prefix = 1;
repeated Subscription subscription = 2;
bool use_aliases = 3;
QOSMarking qos = 4;
enum Mode {

STREAM = 0;
ONCE = 1;
POLL = 2;

}
Mode mode = 5;
bool allow_aggregation = 6;
repeated ModelData use_models = 7;
Encoding encoding = 8;
Bool updates_only = 9;

}

Path prefix (only explicit element names), Subscription subscription, Mode mode STREAM, and Encoding
encoding IETF_JSON are supported.

Note

Prefix message

A valid subscription list may or may not contain a filled in prefix, composed of the shared (across all requested
subscriptions) portion of the xPath.

message Path {
repeated string element = 1; [deprecated]
string origin = 2;
repeated PathElem elem = 3;
optional string target = 4;

}

Model-driven telemetry
19

Model-driven telemetry
Service gNMI

“Origin (supported values are “openconfig”, "legacy", and “rfc7951”), elem (supported element name is
prefix-free), and target are supported.

"legacy" indicates that YANG module prefixes should be used in the path, and origin "rfc7951", indicates
that module name prefixes should be used in the path.

Note

Subscription message

This message generically describes a set of data that is to be subscribed to by a client. It contains a path and
attributes used to govern the notification behaviors. This is a sample Subscription message definition.

message Subscription {
Path path = 1;
SubscriptionMode mode = 2;
uint64 sample_interval = 3;
bool suppress_redundant = 4;
uint64 heartbeat_interval = 5;

}

Path path, SubscriptionMode mode, and Uint64 sample_interval are supported.Note

Path message

A valid subscription contains a filled in path, which when added to the prefix associated with the subscription
list constitutes a full qualified path. This is a sample Path message definition.

message Path {
repeated string element = 1; [deprecated]
string origin = 2;
repeated PathElem elem = 3;
optional string target = 4;

}

Origin (supported values are “” and “openconfig”), elem (supported element name is prefix-free), and target
are supported.

Note

SubscriptionMode message

This message informs the target about how to trigger notifications updates. This is a sample SubscriptionMode
message definition:=,

enum SubscriptionMode {
TARGET_DEFINED = 0;
ON_CHANGE = 1;

Model-driven telemetry
20

Model-driven telemetry
Service gNMI

SAMPLE = 2;
}

Only ON_CHANGE and SAMPLE are supported.

ON_CHANGE support is limited to certain model paths. To check whether a path supports ON_CHANGE,
query the path in the Cisco-IOS-XE-MDT-capabilities-oper model. For more information about the model,
see the section, Displaying on-change subscription capabilities.

Note

Notifications message

This message delivers telemetry data from the subscription target to the collector. This is a Notifications
message definition.

message Notification {
int64 timestamp = 1;
Path prefix = 2;
string alias = 3;
repeated Update update = 4;
repeated Path delete = 5;
bool atomic = 6;

}

Timestamp, prefix, update, and delete (mainly used for on-change subscriptions) are supported.Note

Configured subscriptions
Configured subscriptions are telemetry or event subscriptions created by management operations on the
publisher by controllers, and explicitly include the specification of the receiver of the telemetry data defined
by a subscription. These subscriptions persist across device reboots and transport session interruptions.

Configured subscriptions can be configured with multiple receivers, however; only the first valid receiver is
used. Connection to other receivers is not attempted, if a receiver is already connected, or is in the process of
being connected. If that receiver is deleted, another receiver is connected.

Configured subscriptions are dial-out subscriptions and these subscriptions are configured on the device by

• using configuration CLIs to change to device configuration through console or VTY.

• using NETCONF or RESTCONF to configure the desired subscription.

Use either the Cisco-IOS-XE-mdt-cfg.yangmodel or the ietf-event-notifications.yangmodel to configure
subscriptions.

Creating configured subscriptions
This section describes the sample RPCs to create various types of configured subscriptions.

Model-driven telemetry
21

Model-driven telemetry
Configured subscriptions

Periodic subscriptions

This example shows how to configure gRPC as the transport protocol for configured subscriptions using the
CLI:

telemetry ietf subscription 101
encoding encode-kvgpb
filter xpath /memory-ios-xe-oper:memory-statistics/memory-statistic
stream yang-push
update-policy periodic 6000
source-vrf Mgmt-intf
receiver ip address 10.28.35.45 57555 protocol grpc-tcp

This sample RPC shows how to create a periodic subscription using NETCONF that sends telemetry updates
to the receiver every 60 seconds.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription>
<subscription-id>200</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-kvgpb</encoding>
<period>6000</period>
<xpath>/memory-ios-xe-oper:memory-statistics/memory-statistic</xpath>
</base>
<mdt-receivers>
<address>10.22.23.48</address>
<port>57555</port>
<protocol>grpc-tcp</protocol>
</mdt-receivers>
</mdt-subscription>
</mdt-config-data>
</config>
</edit-config>
</rpc>

This sample RPC creates a periodic subscription using RESTCONF.
URI:https://10.85.116.28:443/restconf/data/Cisco-IOS-XE-mdt-cfg:mdt-config-data
Headers:
application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json
Content-Type:
application/yang-data+json
BODY:
{
"mdt-config-data": {
"mdt-subscription":[
{
"subscription-id": "102",
"base": {
"stream": "yang-push",
"encoding": "encode-kvgpb",

"period": "6000",
"xpath": "/memory-ios-xe-oper:memory-statistics/memory-statistic"
}

Model-driven telemetry
22

Model-driven telemetry
Creating configured subscriptions

"mdt-receivers": {
"address": "10.22.23.48"
"port": "57555"

}
}
]
}
}

On-change subscriptions

This sample RPC shows how to create an on-change subscription using NETCONF that sends updates only
when there is a change in the target database.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"><edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription>
<subscription-id>200</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-kvgpb</encoding>
<no-synch-on-start-v2>false</no-synch-on-start-v2>
<xpath>/cdp-ios-xe-oper:cdp-neighbor-details/cdp-neighbor-detail</xpath>
</base>
<mdt-receivers>
<address>10.22.23.48</address>
<port>57555</port>
<protocol>grpc-tcp</protocol>
</mdt-receivers>
</mdt-subscription>
</mdt-config-data>
</config>
</edit-config>
</rpc>

The following sample RPC shows how to create an on-change subscription using RESTCONF:
URI:
https://10.85.116.28:443/restconf/data/Cisco-IOS-XE-mdt-cfg:mdt-config-data
Headers:
application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json
Content-Type:
application/yang-data+json
BODY:
{
"mdt-config-data": {
"mdt-subscription":[
{
"subscription-id": "102",
"base": {
"stream": "yang-push",
"encoding": "encode-kvgpb",

"dampening period": "0",
"xpath": "/cdp-ios-xe-oper:cdp-neighbor-details/cdp

-neighbor-detail "
}

"mdt-receivers": {

Model-driven telemetry
23

Model-driven telemetry
Creating configured subscriptions

"address": "10.22.23.48"
"port": "57555"

}
}
]
}
}

Configuring on-change gRPC subscriptions
Perform this task to configure an on-change gRPC subscription.

Procedure

Step 1 enable

Example:
Device> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:
Device# configure terminal

Enters global configuration mode.

Step 3 telemetry ietf subscription id

Example:
Device(config)# telemetry ietf subscription 8

Creates a telemetry subscription and enters telemetry-subscription mode.

Step 4 stream yang-push

Example:
Device(config-mdt-subs)# stream yang-push

Configures a stream for the subscription.

Step 5 filter xpath path

Example:
Device(config-mdt-subs)# filter xpath
/iosxe-oper:ios-oper-db/hwidb-table

Specifies the XPath filter for the subscription.

Step 6 update-policy {on-change | periodic period}

Example:
Device(config-mdt-subs)# update-policy on-change

Model-driven telemetry
24

Model-driven telemetry
Configuring on-change gRPC subscriptions

Configures an on-change update policy for the subscription.

Step 7 encoding encode-kvgpb

Example:
Device(config-mdt-subs)# encoding encode-kvgpb

Specifies kvGPB encoding.

Step 8 receiver ip address ip-address receiver-port protocol protocol profile name

Example:
Device(config-mdt-subs)# receiver ip address 10.22.22.45 45000 protocol
grpc_tls profile secure_profile

Configures the receiver IP address, protocol, and profile for notifications.

Step 9 end

Example:
Device(config-mdt-subs)# end

Exits telemetry-subscription configuration mode and returns to privileged EXEC mode.

Modifying configured subscriptions
You can modify subscriptions by using the

• management protocol configuration operations, such as NETCONF edit-config RPC, or

• CLI (same process as creating a subscription)

Use named receivers to modify subscriptions. For more information, see Named receivers for configured
subscriptions, on page 32 section.

If a valid receiver configuration on a valid subscription is in the disconnected state, and the management wants
to force a new attempt at setting up the connection to the receiver, it must rewrite the receiver with the exact
same characteristics.

Deleting configured subscriptions
You can use the CLI or management operation to delete configured subscriptions. The no telemetry ietf
subscription command removes the configured subscriptions. Note that configured subscriptions cannot be
deleted using the kill-subscription or delete-subscription RPCs; they can only be removed through the
configuration interface.

Deleting subscriptions using NETCONF

This sample RPC shows how to delete a configured subscription.

<edit-config>
<target>
<running/>

</target>

Model-driven telemetry
25

Model-driven telemetry
Modifying configured subscriptions

<config>
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription operation="delete">
<subscription-id>102</subscription-id>
</mdt-subscription>
</mdt-config-data>

</config>
</edit-config>

Deleting subscriptions using the CLI

This example shows how to delete a subscription.

Device# configure terminal
Device(config)# no telemetry ietf subscription 101
Device(config)# end

Managing configured subscriptions
Perform this task to manage a configured subscription.

Before you begin

gRPC can be used as a transport for subscriptions, but cannot be used to manage subscriptions.Note

Procedure

Step 1 enable

Example:
Device> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:
Device# configure terminal

Enters global configuration mode.

Step 3 telemetry ietf subscription id

Example:
Device(config)# telemetry ietf subscription 101

Creates a telemetry subscription and enters telemetry-subscription mode.

Model-driven telemetry
26

Model-driven telemetry
Managing configured subscriptions

Step 4 stream yang-push

Example:
Device(config-mdt-subs)# stream yang-push

Configures a stream for the subscription.

Step 5 filter xpath path

Example:
Device(config-mdt-subs)# filter xpath
/memory-ios-xe-oper:memory-statistics/memory-statistic

Specifies the XPath filter for the subscription.

Step 6 update-policy {on-change | periodic} period

Example:
Device(config-mdt-subs)# update-policy periodic 6000

Configures a periodic update policy for the subscription.

Step 7 encoding encode-kvgpb

Example:
Device(config-mdt-subs)# encoding encode-kvgpb

Specifies key-value Google Protocol Buffers (kvGPB) encoding.

• kvGPB is a data encoding format that uses GPB technology to represent data as key-value pair. This encoding
organizes data as key-value pairs, where each key maps to a corresponding value.

Step 8 source-vrf vrf-id

Example:
Device(config-mdt-subs)# source-address Mgmt-intf

Configures the source VRF instance.

Step 9 source-address source-address

Example:
Device(config-mdt-subs)# source-vrf 192.0.2.1

Configures the source address.

Step 10 receiver ip address ip-address receiver-port protocol protocol profile name

Example:
Device(config-mdt-subs)# receiver ip address 10.28.35.45
57555 protocol grpc-tcp

Configures the receiver IP address, protocol, and profile for notifications.

Step 11 end

Example:
Device(config-mdt-subs)# end

Model-driven telemetry
27

Model-driven telemetry
Managing configured subscriptions

Exits telemetry-subscription configuration mode and returns to privileged EXEC mode.

Retrieving subscription details
get RPC

This section describes how to retrieve the list of current subscriptions and how to monitor subscriptions.

To retrieve the list of current subscriptions send a get RPC to the Cisco-IOS-XE-mdt-oper-v2. This is a sample
get RPC message.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-subscriptions/>

</mdt-oper-data>
</filter>

</get>
</rpc>

This is a sample RPC reply.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-subscriptions>
<subscription-id>2147485164</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-xml</encoding>
<period>100</period>
<xpath>/ios:native/router/ios-rip:rip/ios-rip:version</xpath>

</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<updates-in>0</updates-in>
<updates-dampened>0</updates-dampened>
<updates-dropped>0</updates-dropped>

</mdt-subscriptions>
</mdt-oper-data>

</data>
</rpc-reply>

Subscription details can also be retrieved through a RESTCONFGET request to the Cisco-IOS-XE-mdt-oper-v2
database. This sample RPC shows how to retrieve subscription details using RESTCONF.

URI:
https://10.85.116.28:443/restconf/data/Cisco-IOS-XE-mdt-oper-v2:
mdt-oper-data/mdt-subscriptions
Headers:

Model-driven telemetry
28

Model-driven telemetry
Retrieving subscription details

application/yang-data.collection+json, application/yang-data+json,
application/yang-data.errors+json
Content-Type:
application/yang-data+json
Returned output:
{
"Cisco-IOS-XE-mdt-oper-v2:mdt-subscriptions": [
{
"subscription-id": 101,
"base": {
"stream": "yang-push",
"encoding": "encode-kvgpb",
"source-vrf": "",
"no-synch-on-start-v2": false,
"xpath": "/iosxe-oper:ios-oper-db/hwidb-table"

},
"type": "sub-type-static",
"state": "sub-state-valid",
"comments": "",
"updates-in": "0",
"updates-dampened": "0",
"updates-dropped": "0",
"mdt-receivers": [
{
"address": "10.28.35.35",
"port": 57555,
"protocol": "grpc-tcp",
"state": "rcvr-state-connecting",
"comments": "Connection retries in progress",
"profile": ""

}
]

}
]

}

show telemetry ietf subscription command

You can also use the show telemetry ietf subscription command to display the list of current subscriptions.

This is sample output from the show telemetry ietf subscription dynamic brief command.

Device# show telemetry ietf subscription dynamic brief

Telemetry subscription brief

ID Type State Filter type

2147483667 Dynamic Valid xpath
2147483668 Dynamic Valid xpath
2147483669 Dynamic Valid xpath

This is sample output from the show telemetry ietf subscription subscription-ID detail command.

Device# show telemetry ietf subscription 2147483667 detail

Telemetry subscription detail:

Subscription ID: 2147483667
State: Valid
Stream: yang-push

Model-driven telemetry
29

Model-driven telemetry
Retrieving subscription details

Encoding: encode-xml
Filter:
Filter type: xpath
XPath: /mdt-oper:mdt-oper-data/mdt-subscriptions

Update policy:
Update Trigger: periodic
Period: 1000

Notes:

This is sample output from the show telemetry ietf subscription all detail command.
Device# show telemetry ietf subscription all detail

Telemetry subscription detail:

Subscription ID: 101
Type: Configured
State: Valid
Stream: yang-push
Encoding: encode-kvgpb
Filter:
Filter type: xpath
XPath: /iosxe-oper:ios-oper-db/hwidb-table

Update policy:
Update Trigger: on-change
Synch on start: Yes
Dampening period: 0

Notes:

Subscription monitoring

The process of managing telemetry subscriptions between publishers and subscribers is called subscription
monitoring. It involves tracking the status, health, and performance of telemetry data streams. Subscriptions
of all types can be monitored by using CLIs and management protocol operations.

Monitoring through models

This is a sample NETCONF message that displays information about telemetry subscriptions.

<get>
<filter>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-subscriptions/>
</mdt-oper-data>
</filter>
</get>

* Enter a NETCONF operation, end with an empty line
<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-subscriptions>
<subscription-id>101</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-kvgpb</encoding>
<source-vrf>RED</source-vrf>

Model-driven telemetry
30

Model-driven telemetry
Retrieving subscription details

<period>10000</period>
<xpath>/ios:native/interface/Loopback[name="1"]</xpath>

</base>
<type>sub-type-static</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>
<address>5.22.22.45</address>
<port>57500</port>
<protocol>grpc-tcp</protocol>
<state>rcvr-state-connecting</state>
<comments/>
<profile/>
<last-state-change-time>1970-01-01T00:00:00+00:00</last-state-change-time>

</mdt-receivers>
<last-state-change-time>1970-01-01T00:00:00+00:00</last-state-change-time>

</mdt-subscriptions>
<mdt-subscriptions>
<subscription-id>2147483648</subscription-id>
<base>
<stream>yang-push</stream>
<encoding>encode-xml</encoding>
<source-vrf/>
<period>1000</period>

<xpath>/if:interfaces-state/interface[name="GigabitEthernet0/0"]/oper-status</xpath>

</base>
<type>sub-type-dynamic</type>
<state>sub-state-valid</state>
<comments/>
<mdt-receivers>
<address>5.22.22.45</address>
<port>51259</port>
<protocol>netconf</protocol>
<state>rcvr-state-connected</state>
<comments/>
<profile/>
<last-state-change-time>1970-01-01T00:00:00+00:00</last-state-change-time>

</mdt-receivers>
<last-state-change-time>1970-01-01T00:00:00+00:00</last-state-change-time>

</mdt-subscriptions>
</mdt-oper-data>

</data>
</rpc-reply>

Monitoring through CLIs

Use the show telemetry ietf subscription command to display information about telemetry subscriptions.
This is sample output from the command.
Device# show telemetry ietf subscription 2147483667 detail

Telemetry subscription detail:

Subscription ID: 2147483667
State: Valid
Stream: yang-push
Encoding: encode-xml
Filter:
Filter type: xpath
XPath: /mdt-oper:mdt-oper-data/mdt-subscriptions

Update policy:
Update Trigger: periodic

Model-driven telemetry
31

Model-driven telemetry
Retrieving subscription details

Period: 1000
Notes:

Named receivers for configured subscriptions
With fully qualified domain name (FQDN) support, a new method of configuring receivers is introduced,
called the named-receiver configuration. Named receivers are top-level configuration entities that can exist
independent of subscriptions. Named receivers are identified by a name. The name is an arbitrary string, and
is the index or key of the named receiver records in the system. The named receiver configuration contains
all configurations associated with the receiver that is not subscription-dependent.

Named receivers can

• support different types of receivers,

• provide better state and diagnostics information,

• use a host name instead of an IP address to specify the host for protocol receivers, and

• change the parameters of a receiver that is used by multiple subscriptions at a single place.

Only protocol-type named receivers are supported, and these are

• grpc-tcp: gRPC TCP protocol

• grpc-tls: gRPC TLS protocol

Displaying named receiver state using YANG models
The state of the named receivers can be retrieved using the Cisco-IOS-XE-mdt-oper-v2 YANG model. The
mdt-oper-v2-data container contains an mdt-named-receivers list that contains the operational state of all
named receivers.

This is a sample NETCONF reply to retrieve the state of named receivers.

<get>
<filter>
<mdt-oper-v2-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-named-receivers/>
</mdt-oper-v2-data>
</filter>
</get>

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2">
<data>
<mdt-oper-v2-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-oper-v2">
<mdt-named-receivers>
<name>my-receiver</name>
<profile>tls-profile</profile>
<params>
<protocol>grpc-tls</protocol>

<host>
<hostname>rcvr.test.com </hostname>
</host>
<port>45000</port>

Model-driven telemetry
32

Model-driven telemetry
Named receivers for configured subscriptions

</params>
<state>named-rcvr-state-valid</state>
<last-state-change-time>2020-…:00</last-state-change-time>
</mdt-named-receivers>
</mdt-oper-v2-data>
</data>
</rpc-reply>

Displaying named receiver state using the CLI
To view the state of named receivers of all types, use the show telemetry receiver command. The all keyword
displays information about all named receivers in a brief format, and the name keyword displays detailed
information about the specified named receiver.

This is sample output from the show telemetry receiver all command.

Device# show telemetry receiver all

Telemetry receivers

Name <…> Type Profile State Explanation
-----------<…>--
receiver1 <…> protocol tls-trustpoint Valid

This is sample output from the show telemetry receiver name command.

Device# show telemetry receiver name my-receiver

Name: my-receiver
Profile: tls-profile
State: Valid
State Description:
Last State Change: 09/18/24 15:50:54
Type: protocol
Protocol: grpc-tls
Host: collector.cisco.com

Named protocol receivers
Named protocol receivers specify the telemetry transports that use protocols. Named protocol receivers refer
to explicitly-defined, reusable receiver entities that represent destinations for pushed notifications or telemetry
data. In addition to the name that identifies a receiver, named protocol receivers also use a host specification.
The host specification takes a hostname or IP address, and a destination port number. Instead of specifying
the receiver connection details directly within each subscription, named protocol receivers allow these details
to be defined once and referenced by name in multiple subscriptions. Secure protocol transports also use a
profile string.

When a valid named protocol receiver is created, it is not automatically connected to the receiver. The named
protocol receiver must be requested by at least one subscription to create a connection to the receiver.

Note

Model-driven telemetry
33

Model-driven telemetry
Displaying named receiver state using the CLI

Configuring named protocol receivers using YANG models
You can configure named protocol receivers through the CLI or YANG models. The YANG model,
Cisco-IOS-XE-mdt-cfg, contains the named protocol receiver. The container mdt-named-protocol-rcvrs inside
the top level mdt-config-data container has a list of mdt-named-protocol-rcvr structures.

This group has five members:

• hostname

• name, which is the list key

• port number

• protocol

• profile

This is a sample NETCONF RPC that shows how to create a named protocol receiver.

<edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-named-protocol-rcvrs>
<mdt-named-protocol-rcvr>
<name>my-receiver</name>
<protocol>grpc-tls</protocol>
<profile>tls-profile</profile>
<host>
<hostname>collector.cisco.com</hostname>
</host>
<port>57500</port>
</mdt-named-protocol-rcvr>
</mdt-named-protocol-rcvrs>
</mdt-config-data>
</config>
</edit-config>

Configuring named protocol receivers
Perform this task to configure a named protocol receiver.

Procedure

Step 1 enable

Example:
Device> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Model-driven telemetry
34

Model-driven telemetry
Configuring named protocol receivers using YANG models

Step 2 configure terminal

Example:
Device# configure terminal

Enters global configuration mode.

Step 3 telemetry receiver protocol receiver-name

Example:
Device(config)# telemetry receiver protocol receiver1

Configures a named protocol receiver, and enters telemetry protocol-receiver configuration mode.

Step 4 protocol {cloud-native | cntp-tcp | cntp-tls profile profile-name | grpc-tcp | grpc-tls profile profile-name | native |
tls-native profile profile-name}

Example:
Device(config-mdt-protocol-receiver)# protocol grpc-tcp

Configures a protocol for the named protocol receiver connection.

Step 5 host {ip ip-address | name hostname} receiver-port

Example:
Device(config-mdt-protocol-receiver)# host name rcvr.test.com 45000

Configures the name protocol receiver hostname.

Step 6 end

Example:
Device(config-mdt-protocol-receiver)# end

Exits telemetry protocol-receiver configuration mode and returns to privileged EXEC mode.

Named-receiver subscriptions
To use a named receiver with a subscription, both the receiver type and receiver name must be specified. No
additional receiver configuration is required, since all receiver-specific information is part of the named
receiver configuration. However; named protocol receivers still use the source virtual routing and forwarding
(VRF) instance and source address of the subscriptions as part of the connection resolution process.

The only supported named receiver type is protocol.

Subscriptions can use either named receivers or legacy receivers, but cannot use both. If the legacy receiver
is configured, setting the subscription receiver type and a named-receiver name is blocked. Similarly, if a
subscription receiver type or a named receiver is specified, you cannot configure legacy receivers.

Subscriptions use only one receiver, even if more than one receiver is configured.

Subscriptions using legacy receivers and subscriptions using named receivers are permitted to use the same
connection; however, it is not recommended.

Note

Model-driven telemetry
35

Model-driven telemetry
Named-receiver subscriptions

Named receiver operation and operational state
Named receiver objects and subscription receiver objects (that refer to the named receiver) have two different
operational states. The operational states can be valid or invalid. The most common reason for a named receiver
to be invalid is incomplete configuration; however, it could also be due to other reasons. The operational state
view of a named receiver has a field that provides a text explanation on why the receiver is invalid. When the
receiver state is valid, this field is empty.

Configuring named-receiver subscriptions configuration using YANG models
When named receivers are used, the only value supported for rcvr-type is rcvr-type-protocol, and when legacy
receivers are used, the value is the default rcvr-type-unspecified.

This is a sample NETCONF RPC that shows how to create a subscription using a named protocol-receiver.

<edit-config>
<target>
<running/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<mdt-config-data xmlns="http://cisco.com/ns/yang/Cisco-IOS-XE-mdt-cfg">
<mdt-subscription>
<subscription-id>1</subscription-id>
<base>
<rcvr-type>rcvr-type-protocol</rcvr-type>
</base>
<mdt-receiver-names>
<mdt-receiver-name>
<name>receiver1</name>
</mdt-receiver-name>
</mdt-receiver-names>
</mdt-subscription>
</mdt-config-data>
</config>
</edit-config>

Configuring named-receiver subscriptions using the CLI
Perform this task to configure named receiver subscriptions,

Procedure

Step 1 enable

Example:
Device> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:
Device# configure terminal

Model-driven telemetry
36

Model-driven telemetry
Named receiver operation and operational state

Enters global configuration mode.

Step 3 telemetry ietf subscription id

Example:
Device(config)# telemetry ietf subscription 101

Creates a telemetry subscription and enters telemetry-subscription mode.

Step 4 receiver-type protocol

Example:
Device(config-mdt-subs)# receiver-type protocol

Configures a protocol-type receiver.

Step 5 receiver name name

Example:
Device(config-mdt-subs)# receiver name receiver1

Configures a name for the receiver for notifications.

Step 6 end

Example:
Device(config-mdt-subs)# end

Exits telemetry telemetry-subscription mode and returns to privileged EXEC mode.

Troubleshooting named receiver connections
When a subscription is set up, one of the common problems is that no telemetry update messages are received.
Possible reasons could be that there are no events to send, or the subscription is not valid. This section describes
how to troubleshoot some of the common problems that occur in named receiver connections.

The logs from the telemetry process, and the output of some of the show commands provide information that
can be used for troubleshooting the named receiver configuration.

Table 4: Troubleshooting named receiver connections

What to doHow to Check/ SymptomProblem

Fix the subscription configuration.show telemetry ietf subscription
id details

Subscription is not valid.

Fix the named receiver
configuration.

show telemetry ietf subscription
id receiver

Subscription receiver is not valid.

Verify the receiver, the network
configuration, or the interface state.

show telemetry ietf subscription
id receiver

Subscription receiver state appears
to never leave the resolving state.

Subscription receiver’s
connection parameters cannot be
resolved.

Model-driven telemetry
37

Model-driven telemetry
Troubleshooting named receiver connections

What to doHow to Check/ SymptomProblem

Verify that the resolved connection
is valid, and the receiver or
collector is reachable and able to
accept inbound connections using
the specified transport.

show telemetry ietf subscription
id receiver

Subscription receiver state
constantly changes from resolving
to connecting.

Subscription receiver connection
does not come up.

Verify that the collector is of the
correct type, and that the configured
authentication and authorization is
valid.

show telemetry ietf subscription
id receiver

Subscription receiver state
constantly changes through all
states except disconnected.

Subscription receiver connections
are rejected.

Verify that the collector is able to
keep up with the flow of update
notifications.

show telemetry internal
subscription id stats

Message drop count is
incrementing, but the records sent
is not.

Subscription receiver is
connected, but no updates are
received.

If the subscription is on-change,
ensure that there really have been
no events.

If the subscription is periodic,
ensure that the update period is
small, that the time is specified in
hundredths of a second.

show telemetry internal
subscription

No change in the count.

This section provides more details about the commands that provide internal information to troubleshoot
issues.

show telemetry connection: This command takes an optional connection index value. When no index is
specified, it displays the basic connection parameter information for all connections that are being used.When
a connection index is specified in the command, it shows low-level details about the connection. The command
output is transport-specific, and might not be available for all transports. The output from this command is
subject to change.

show telemetry internal diagnostics: This command attempts to dump all telemetry logs and operational
state. When reporting problems, it may be helpful to use this command as close to the problem time as possible
and provide the output of the show running-config | section telemetry command as well.

Subscription receivers
Subscription receivers are the subscription-related objects that connect to the actual subscription receiver or
collector. While the mechanism needed to reach the collector is specific to the receiver type, a connection is
the entity that is used to allow the subscription to reach its receiver or collector.

Subscription receiver state is based on its ability to request and use the connection to the receiver and has a
number of states that are associated with the control of other resources required to allow the subscription to
send updates to the receiver or collector.

Model-driven telemetry
38

Model-driven telemetry
Subscription receivers

Subscription receivers use connections through telemetry or telemetry protocols

Subscription receiver states
The operational state of a subscription receiver consists of the configured name (that is the index of the
connection), the state of the receiver, an explanation or note about the state, and the time of the last state
change. The explanation string is not always used.

The possible states of a subscription receiver are shown in this table.

Table 5: Subscription receiver states

DescriptionSubscription receiver state

YANG valueCLI value

The receiver is disconnected and no
attempt is made to reconnect it.

rcvr-state-disconnectedDisconnected

Resolving the connection parameters
required to reach the receiver.

rcvr-state-resolvingResolving

A request for a connection to reach the
receiver was using the connection
parameters determined from the resolving
state.

rcvr-state-transport-requestedTransport requested

Resources needed to connect the
subscription to the receiver are being
allocated.

rcvr-state-connectingConnecting

The subscription is connected to the
receiver, and updates can flow to the
receiver.

rcvr-state-connectedConnected

Resources used on the connection are
being re-allocated.

rcvr-state-disconnectingDisconnecting

The YANG value rcvr-state-invalid is used only by legacy receivers. Subscription receivers that are invalid
cannot be connected, so the subscription receiver state is set to disconnected when it is invalid. The explanation
string provides the distinction between invalid subscription receivers and disconnected subscription receivers.

A subscription receiver may be disconnected due to these reasons:

• Another receiver on the subscription is not disconnected.

• Connection setup failed permanently.

• Named receiver does not exist.

• Named receiver is not the type specified in the subscription.

• Named receiver is not valid.

• Subscription is invalid.

Model-driven telemetry
39

Model-driven telemetry
Subscription receiver states

• The requested connection is in use by a different receiver.

Telemetry connections
Telemetry connections represent the transport instances used by subscriptions to reach the receivers and are
purely operational. Telemetry connections are identified by an integer index value. Other information about
the connections is specific to the type of connection, which is based on the type of receiver that the subscription
is configured to use.

For the secure dial-out transports, the host part of the configured named receiver must match the distinguished
name (DN) of the certificate provided by the receiver, when the connection is set up. For this reason, it is not
permitted to have more than one receiver using the same connection.

While all the states discussed in this section are available to all types of connections, not all have to be used.

The possible states of a telemetry connection are shown in this table.

Telemetry connection states

Table 6: Connection states and description

DescriptionConnection state

YANG valueCLI value

The connection has been created, but not
yet initiated.

con-state-pendingPending

A request to set up the connection is in
progress.

con-state-connectingConnecting

The connection is up and is available for
use by subscription receivers.

con-state-activeActive

The connection has been torn down and
is waiting to be released by subscription
receivers.

con-state -disconnectingDisconnecting

Additional operational state associated with a connection includes the identity of the remote receiver (the
peer, when available), and the time of the last state change.

Telemetry protocol connections
Telemetry protocol connections are the communication links and mechanisms established between telemetry
data sources and telemetry collectors or management systems to transport telemetry data. These connections
use specific protocols to deliver network performance, state, and event data for monitoring and analysis.

This section discusses protocol type connections and how these are used by subscription receivers that are
assigned to named protocol receivers.

This table displays the protocol-connection parameters.

Model-driven telemetry
40

Model-driven telemetry
Telemetry connections

Table 7: Parameters of a protocol-type connection

CommentsOriginParameter

Because hosts use domain names,
domain name resolution may be
required.

Named receiver hostDestination IP address

Must be explicitly configured.Named receiver portDestination port number

Default VRF is used, if not specified.
Otherwise the VRF name is resolved
to an internal identifier.

Subscription, if specifiedSource VRF

If not specified, the source IP
address is determined based on the
VRF and destination IP address.

Subscription, if specifiedSource IP address

Some of these parameters are based on the configuration of the subscription receiver’s parent subscription.

When resolving the connection parameters from the configuration, the VRF is determined first, followed by
the destination IP address, and finally the source IP address, if an order is not specified. If a given step in the
resolution fails non-permanently, there are infinite retries at 5 second intervals.

A connection is instantiated as soon as it is requested. That is, as soon as the first subscription receiver goes
from the resolving state to the transport requested state, a connection instance with the parameters that were
resolved previously by the subscription receiver is created.

If the requested connection is successfully setup and used by telemetry, the connection state changes to
connected, which means that a connection exists between the Cisco IOS XE device and the receiver device.
To reallocate the resources used by the receiver, the subscription receivers that want to use these resources
are informed that the connection is set up. These subscription receivers then transition to the connecting state
to set up the resources required to connect the subscription to the receiver. Once these resources are in place,
the subscription receiver’s state changes to connected, and update notifications are received by the receiver.

These are some of the reasons why a telemetry connection cannot become active:

• authentication failures,

• destination unreachable,

• listener at the remote host port is of the wrong type, and

• no listener at the remote host port.

When a connection setup is in progress, any subscription receiver using this connection will be in the connecting
state, because it has successfully resolved the parameters needed to initiate the connection setup.

Note

The action taken when a connection setup fails is specific to the protocol. This table shows the retry behaviors
for connections within a single setup request and for re-resolution requests when the connection setup request
fails. This behavior is the same for connections requested by the legacy receivers as well.

Model-driven telemetry
41

Model-driven telemetry
Telemetry protocol connections

Retry intervals for protocols

Table 8: Protocol-specific retry intervals

Re-resolution requestsConnection retriesProtocol

No limit; continuously requests
re-resolutionwhen connection retries
fail. 14 seconds per try.

5 retries at 1, 3, 4, and 7 seconds
in between each try

• grpc-tcp

• grpc-tls

5, 10, 15, 20, 25, and 30 seconds.• cloud-native

• cntp-tcp

• cntp-tls

• native

• tls-native

High Availability in telemetry
Dynamic telemetry connections are established over a NETCONF session through SSH to the active switch
or a member in a switch stack, or the active route processor in a high-availability-capable device. You must
also re-create all the dynamic subscriptions after a switchover. gNMI dial-in subscriptions also work the same
as a NETCONF session through SSH.

gRPC dial-out subscriptions are configured on the device as part of the running configuration of the active
switch or member of the stack. When switchover occurs, the existing connections to the telemetry receivers
are torn down and reconnected (as long as there is still a route to the receiver). Subscriptions need not be
reconfigured.

In the event of a device reload, subscription configurations must be synchronized to the start-up configuration
of a device. This ensures that after the device reboots, subscription configurations remain intact on the device.
When the necessary processes are up and running, the device attempts to connect to the telemetry receiver
and resume normal operations.

FQDN support for gRPC subscriptions
gRPC telemetry subscriptions are configuration-based, which means that users must specify the receiving
host and other subscription parameters as part of the device configuration. This receiver configuration is used
to determine the connection details for sending telemetry updates.With FQDN support, alongwith IP addresses,
Fully Qualified Domain Names (FQDNs) can also be used for gRPC subscriptions. FQDN support is enabled
by default.

To use FQDN, a subscription must use a named receiver, as described earlier. This example shows an FQDN
used for gRPC subscriptions.

telemetry receiver protocol my-receiver
host name receiver.cisco.com 12345
protocol grpc-tcp

Model-driven telemetry
42

Model-driven telemetry
High Availability in telemetry

telemetry ietf subscription 101

encoding encode-kvgpb
filter xpath /mdt-oper-v2-data/mdt-subscriptions

stream yang-push
update-policy periodic 1000

receiver name my-receiver

telemetry ietf subscription 102

encoding encode-kvgpb
filter xpath /mdt-oper-v2-data/mdt-connections

stream yang-push
update-policy periodic 1000

receiver name my-receiver

XPath Expressions Supported on Cisco Catalyst 9800 Wireless
Controllers

In Cisco IOS XE Bengaluru, 17.4.1, the following set of OpenConfig XPath expressions are supported on the
Cisco Catalyst 9800 Series Wireless Controllers.

Ensure that you run the following RPC using any of the programmability interfaces, such as NETCONF,
RESTCONF, or gNMI protocol, to enable telemetry subscription:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<edit-config>
<target>
<running/>

</target>
<config>
<provision-aps xmlns="http://openconfig.net/yang/wifi/ap-manager">
<provision-ap>
<mac>eth_mac_of_the_AP</mac>
<config>
<mac>eth_mac_of_the_AP</mac>
<hostname>AP_NAME</hostname>

</config>
</provision-ap>

</provision-aps>
</config>

</edit-config>
</rpc>

All of the XPath expressions listed below are a part of the openconfig-access-points YANG model, except
the last one, which is a part of the openconfig-ap-manager YANGmodel. For the telemetry operation to work
correctly, ensure that configurations are done based on the OpenConfig model.

• /access-points/access-point/radios/radio/state

• /access-points/access-point/radios/radio/neighbors/neighbor

• /access-points/access-point/radios/radio/neighbors/neighbor/state

Model-driven telemetry
43

Model-driven telemetry
XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers

• /access-points/access-point/ssids/ssid/bssids/bssid/state/counters

• /access-points/access-point/ssids/ssid/clients/client/state/counters

• /access-points/access-point/ssids/ssid/clients/client/client-rf/state

• /access-points/access-point/ssids/ssid/clients/client/client-connection/state

• /access-points/access-point/system/aaa/server-groups/server-group/servers/server/radius/state

• /joined-aps/joined-ap/state/opstate

When you subscribe to an XPath, you receive data for the subscribed XPath and all the XPaths under it in the
hierarchy. For example, subscribing to /access-points/access-point/radios/radio/state delivers data for all the
leaves associated with it, as well as the subcontainers under it.

If you require only a subset of information, set filters in the XPath expressions to limit the updates. To filter
the data of a specific access point (AP), use a key after the node. For example, to receive data for an AP with
hostname ‘my_hostname’, use the subscription XPath: access-point[hostname=’my_hostname’]. Note that
the data updates will contain data objects from all the leaves, and not just from the limited subset that is
defined.

Scale Information

The following tables show the minimum recommended intervals for each of the gathering points under three
different scale scenarios.

Scenario1: Full Scale with four SSIDs

Table 9: Setup

2,000APs

30,000Clients

4SSIDs per AP

8BSSIDs per AP

12Physical neighbors per
AP

96Neighbors per AP

Table 10: Recommended Intervals

Recommended Interval
(Seconds)

Two Collectors

Recommended Interval
(Seconds)

One Collector

RecordsGathering Point

60302000Joined

60302000AAA

60304000Radio

Model-driven telemetry
44

Model-driven telemetry
XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers

Recommended Interval
(Seconds)

Two Collectors

Recommended Interval
(Seconds)

One Collector

RecordsGathering Point

603030,000Client RF

603030,000Client CNTR

1206030,000Client CONN

1809016,000BSSID

360180192,000Neighbor

Scenario2: Full Scale with six SSIDs

Table 11: Setup

2,000APs

30,000Clients

6SSIDs per AP

12BSSIDs per AP

12Physical neighbors per
AP

144Neighbors per AP

Table 12: Recommended Intervals

Recommended Interval (Seconds)

Two Collectors

Recommended Interval (Seconds)

One Collector

RecordsGathering
point

60302000Joined

60302000AAA

60304000Radio

603030,000Client RF

603030,000Client CNTR

1206030,000Client CONN

24012024,000BSSID

420240288,000Neighbor

Scenario3: Reduced Scale with six SSIDs

Model-driven telemetry
45

Model-driven telemetry
XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers

Table 13: Setup

1,000APs

15,000Clients

6SSIDs per AP

12BSSIDs per AP

12Physical neighbors per
AP

144Neighbors per AP

Table 14: Recommended Intervals

Recommended Interval (Seconds)

Two Collectors

Recommended Interval (Seconds)

One Collector

RecordsGathering
Point

30NA1000Joined

30NA1000AAA

30NA2000Radio

30NA15,000Client RF

30NA15,000Client CNTR

30NA15,000Client CONN

120NA12,000BSSID

180NA144,000Neighbor

XPath Values and Corresponding Rates on Cisco Catalyst 9800 Wireless
Controllers

In the Cisco-IOS-XE-wireless-mesh-rpc, following are the permitted values and corresponding rates for XPath
/exec-linktest-ap/data-rate-idx:
ewlc-mesh-linktest-rate-idx-1 1 Mbps
ewlc-mesh-linktest-rate-idx-2 2 Mbps
ewlc-mesh-linktest-rate-idx-3 5 Mbps
ewlc-mesh-linktest-rate-idx-4 6 Mbps
ewlc-mesh-linktest-rate-idx-5 9 Mbps
ewlc-mesh-linktest-rate-idx-6 11 Mbps
ewlc-mesh-linktest-rate-idx-7 12 Mbps
ewlc-mesh-linktest-rate-idx-8 18 Mbps
ewlc-mesh-linktest-rate-idx-9 24 Mbps
ewlc-mesh-linktest-rate-idx-10 36 Mbps
ewlc-mesh-linktest-rate-idx-11 48 Mbps
ewlc-mesh-linktest-rate-idx-12 54 Mbps
ewlc-mesh-linktest-rate-idx-13 108 Mbps

Model-driven telemetry
46

Model-driven telemetry
XPath Values and Corresponding Rates on Cisco Catalyst 9800 Wireless Controllers

ewlc-mesh-linktest-rate-idx-14 m0
ewlc-mesh-linktest-rate-idx-15 m1
ewlc-mesh-linktest-rate-idx-16 m2
ewlc-mesh-linktest-rate-idx-17 m3
ewlc-mesh-linktest-rate-idx-18 m4
ewlc-mesh-linktest-rate-idx-19 m5
ewlc-mesh-linktest-rate-idx-20 m6
ewlc-mesh-linktest-rate-idx-21 m7
ewlc-mesh-linktest-rate-idx-22 m8
ewlc-mesh-linktest-rate-idx-23 m9
ewlc-mesh-linktest-rate-idx-24 m10
ewlc-mesh-linktest-rate-idx-25 m11
ewlc-mesh-linktest-rate-idx-26 m12
ewlc-mesh-linktest-rate-idx-27 m13
ewlc-mesh-linktest-rate-idx-28 m14
ewlc-mesh-linktest-rate-idx-295 m15

From Cisco IOS XE 17.15.2, a new CEP gatherpoint is implemented in
Cisco-IOS-XE-wireless-client-global-opermodule with xPath: /client-global-oper-data/client-cnsld-data. Data
from multiple tables like common-oper-data, dot11-oper-data, traffic-stats, sisf and so on is combined and
provided in a single update using the new xPath.

Feature Information for Model-Driven Telemetry
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Model-driven telemetry
47

Model-driven telemetry
Feature Information for Model-Driven Telemetry

http://www.cisco.com/go/cfn

Table 15: Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Model-driven telemetry allows
network devices to continuously
stream real time configuration and
operating state information to
subscribers.

• Cisco Catalyst 3650 Series
Switches

• Cisco Catalyst 3850 Series
Switches

• Cisco Catalyst 9300 Series
Switches

• Cisco Catalyst 9500 Series
Switches

Cisco IOS XE Everest 16.6.1Model-Driven Telemetry
NETCONF Dial-In

• Cisco Catalyst 9400 Series
Switches

Cisco IOS XE Everest 16.6.2

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers
(ASR1001-HX, ASR1001-X,
ASR1002-HX, ASR1002-X)

Cisco IOS XE Fuji 16.7.1

• Cisco 1000 Series Integrated
Services Routers

• CiscoASR 1000RP2 andRP3
Series Aggregation Services
Routers

Cisco IOS XE Fuji 16.8.1

• Cisco Catalyst 9500-High
Performance Series Switches

Cisco IOS XE Fuji 16.8.1a

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregation Services Router

• Cisco cBR-8 Converged
Broadband Router

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Fuji 16.9.1

Model-driven telemetry
48

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Cisco IOS XE Gibraltar 16.9.2 • Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300L SKUs

• Cisco Cloud Services Router
1000v

• Cisco Network Convergence
System 520 Series

Cisco IOS XE Gibraltar 16.10.1

• Cisco Catalyst 9600 Series
Switches

Cisco IOS XE Gibraltar 16.11.1

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

Cisco IOS XE Cupertino 17.9.1

Model-driven telemetry
49

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Telemetry updates that are sent to
the initiator/subscriber are called
Dial-in.

This feature was implemented on
the following platforms:

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco cBR-8 Converged
Broadband Router

Cisco IOS XE Gibraltar 16.12.1Model-Driven Telemetry gNMI
Dial-In

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Amsterdam 17.1.1

Cisco ASR 1000 Series
Aggregation Services Routers

Cisco IOS XE Amsterdam 17.2.1

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

Cisco IOS XE Cupertino 17.9.1

Model-driven telemetry
50

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Configured subscriptions cause the
publisher to initiate connections to
receivers, and these connections are
considered as dial-out.

This feature was implemented on
the following platforms:

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Gibraltar 16.10.1Model-Driven Telemetry gRPC
Dial-Out

• Cisco Catalyst 9600 Series
Switches

Cisco IOS XE Gibraltar 16.11.1

Cisco IOS XE Cupertino 17.9.1

Model-driven telemetry
51

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

Model-driven telemetry
52

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

To delete dynamic subscriptions,
you can use the CLI and the
kill-subscription RPC.

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router
(RSP2)

• Cisco Catalyst 3650 Series
Switches

• Cisco Catalyst 3850 Series
Switches

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Gibraltar 16.11.1Model-Driven Telemetry: Kill
Subscription

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

Cisco IOS XE Cupertino 17.9.1

Model-driven telemetry
53

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Transport-Layer Security is
supported for gRPC dial-out. This
feature is supported on the
following platforms:

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Amsterdam 17.1.1TLS for gRPC Dial-Out

Cisco IOS XE Cupertino 17.9.1

Model-driven telemetry
54

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

Model-driven telemetry
55

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Cisco IOS XE 17.14.1gNMI sync_response Message

Model-driven telemetry
56

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

The sync_response is a boolean
field that is part of the
SubscribeResponse response
message. The sync_response
message is sent after the first update
message.

This feature was implemented on
the following platforms:

• Cisco ASR 1000 Series
Aggregation Services Routers

• CiscoCatalyst IE3200Rugged
Series

• CiscoCatalyst IE3300Rugged
Series

• CiscoCatalyst IE3400Rugged
Series

• CiscoCatalyst IR1101Rugged
Series

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco Cloud Services Router
1000V Series

Model-driven telemetry
57

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Cisco Embedded Services
3300 Series

•

Model-driven telemetry
58

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

gNMI telemetry supports
on-change subscriptions on the
same set of models as other
telemetry protocols.

This feature was implemented on
the following platforms:

• Cisco ASR 1000 Series
Aggregation Services Routers

• CiscoCatalyst IE3200Rugged
Series

• CiscoCatalyst IE3300Rugged
Series

• CiscoCatalyst IE3400Rugged
Series

• CiscoCatalyst IR1101Rugged
Series

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco Cloud Services Router
1000V Series

• Cisco Embedded Services
3300 Series

Cisco IOS XE 17.14.1gNMI: Stream Subscriptions with
On-Change Mode

Model-driven telemetry
59

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

With the introduction of the FQDN
Support for gRPC Subscriptions
feature, along with IP addresses,
FQDN can also be used for gRPC
subscriptions.

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

Cisco IOS XE Bengaluru 17.6.1FQDN Support for gRPC
Subscriptions

Model-driven telemetry
60

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

Cisco IOS XE Cupertino 17.9.1

The Leaf-Level Filtering for
Telemetry feature allows filtering
below the gatherpoint level for the
optimized code paths.

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

Cisco IOS XE Cupertino 17.7.1Leaf-Level Filtering

Model-driven telemetry
61

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Cisco IOS XE Cupertino 17.9.1Mutual Authentication for gRPC
Telemetry

Model-driven telemetry
62

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

A new gRPC TLS profile that
contains a pair of trustpoints was
added to the telemetry
configuration, so that a client ID
certificate can be specified for
mutual authentication. This new
profile can be used instead of the
trustpoint containing the server CA
certificate when configuring the
receiver profile. The trustpoint
containing the server CA certificate
is now configured as part of the
gRPC TLS profile.

This feature is supported on the
following platforms:

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

• Cisco Catalyst 9800-40 Series

Model-driven telemetry
63

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

The TDL URI string supports
on-change notifications.

This feature was implemented on
Cisco ASR 1000 Series
Aggregation Services Routers

Cisco IOS XE Dublin 17.10.1On-Change Notification

On-change subscriptions are
supported for location-aware
models on the yang-push stream.

This feature was introduced on the
following platforms:

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300, 9300L,
9300LM, and 9300X Series
Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500,
9500-High Performance, and
9500X Series Switches

• Cisco Catalyst 9600 and
9600X Series Switches

Cisco IOS XE 17.17.1On-Change Telemetry Support for
Location-Aware Models

Model-driven telemetry
64

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

Cisco IOS XE Cupertino 17.9.1Pubd Restartability

Model-driven telemetry
65

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

The pubd process is made
restartable from this release
onwards.

This feature was introduced on the
following platforms:

• Cisco 1000 Series Integrated
Services Routers

• Cisco 4000 Series Integrated
Services Routers

• Cisco ASR 1000 Series
Aggregation Services Routers

• Cisco ASR 900 Series
Aggregation Services Routers

• Cisco ASR 920 Series
Aggregated Services Router

• Cisco Catalyst 9200 and
9200L Series Switches

• Cisco Catalyst 9300 and
9300L Series Switches

• Cisco Catalyst 9400 Series
Switches

• Cisco Catalyst 9500 and
9500-High Performance Series
Switches

• Cisco Catalyst 9600 Series
Switches

• Cisco Catalyst 9800-CL
Wireless Controller

• Cisco Catalyst 9800-L
Wireless Controller

• Cisco Catalyst 9800-40 Series
Wireless Controller

• Cisco Catalyst 9800-80 Series
Wireless Controller

• Cisco cBR-8 Converged
Broadband Router

• Cisco Cloud Services Router
1000V Series

Model-driven telemetry
66

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Feature InformationReleaseFeature Name

• Cisco Network Convergence
System 520 Series

• Cisco Network Convergence
System 4200 Series

This feature introduces a
dampening period for on-change
subscriptions. All record updates
are sent at the end of the dampening
period, even when there are
multiple updates of the same record
during that period.

This feature was introduced on all
platforms that support Telemetry.

Cisco IOS XE Dublin 17.11.1SubscriptionDampening Period for
On-Change Telemetry

Model-driven telemetry
67

Model-driven telemetry
Feature Information for Model-Driven Telemetry

Model-driven telemetry
68

Model-driven telemetry
Feature Information for Model-Driven Telemetry

	Model-driven telemetry
	Model-Driven Telemetry
	Prerequisites for model-driven telemetry
	Restrictions for model-driven telemetry
	What are subscriptions?
	Data source specifications
	Update notifications
	Subscription identifiers
	Dial-in and dial-out subscriptions
	Streams
	yang-push stream
	yang-notif-native stream
	Transport protocols

	Subscription management
	Creating, modifying, and deleting NETCONF subscriptions

	Dynamic subscriptions
	Creating configured subscriptions
	Receiving a response message
	Receiving subscription push updates for NETCONF dial-in
	Deleting dynamic subscriptions
	Service gNMI

	Configured subscriptions
	Creating configured subscriptions
	Configuring on-change gRPC subscriptions
	Modifying configured subscriptions
	Deleting configured subscriptions
	Managing configured subscriptions

	Retrieving subscription details
	Named receivers for configured subscriptions
	Displaying named receiver state using YANG models
	Displaying named receiver state using the CLI
	Named protocol receivers
	Configuring named protocol receivers using YANG models
	Configuring named protocol receivers

	Named-receiver subscriptions
	Named receiver operation and operational state
	Configuring named-receiver subscriptions configuration using YANG models
	Configuring named-receiver subscriptions using the CLI

	Troubleshooting named receiver connections

	Subscription receivers
	Subscription receiver states
	Telemetry connections
	Telemetry protocol connections

	High Availability in telemetry
	FQDN support for gRPC subscriptions
	XPath Expressions Supported on Cisco Catalyst 9800 Wireless Controllers
	XPath Values and Corresponding Rates on Cisco Catalyst 9800 Wireless Controllers

	Feature Information for Model-Driven Telemetry

