
gNMI Protocol

The gNMI Protocol feature describes the model-driven configuration and retrieval of operational data using
the gRPC Network Management Interface (gNMI) capabilities, and the Get, Set, and Subscribe remote
procedure calls (RPCs). gNMI Version 0.4.0 is supported.

• Restrictions for gNMI Protocol, on page 1
• Information About the gNMI Protocol, on page 2
• How to Enable the gNMI Protocol, on page 14
• Configuration Examples for the gNMI Protocol, on page 20
• Additional References for the gNMI Protocol, on page 20
• Feature Information for the gNMI Protocol, on page 21

Restrictions for gNMI Protocol
The following restrictions apply to the gNMI Protocol feature:

• BYTES and ASCII encoding options are not supported.

PROTO encoding is supported from Cisco IOS XE Dublin 17.11.1.

• JSON IETF keys must contain a YANG prefix where the namespace of the child elements differs from
that of the parent. This means that the routed VLAN derived from augmentation in openconfig-vlan.yang
must be entered as oc-vlan:routed-vlan because it is different from the namespace of the parent nodes
(parent nodes have the prefix oc-if)

• GetRequest:

• Operational data filtering is not supported.

• Usemodels are not supported. These are a set of model datamessages indicating the schema definition
modules that define the data elements that must be returned in response to a Get RPC call.

• GetResponse:

• Alias, which is a string that provides an alternate name for a prefix specified within the GetResponse
notification message is not supported.

• Delete, which is a set of paths that are to be removed from a data tree is not supported.

gNMI Protocol
1

Information About the gNMI Protocol

About GNMI
gNMI is gRPC Network Management Interface developed by Google. gNMI provides the mechanism to
install, manipulate, and delete the configuration of network devices, and also to view operational data. The
content provided through gNMI can be modeled using YANG.

gRPC is a remote procedure call developed by Google for low-latency, scalable distributions with mobile
clients communicating to a cloud server. gRPC carries gNMI, and provides the means to formulate and transmit
data and operation requests.

When a gNMI service failure occurs, the gNMI broker (GNMIB) will indicate an operational change of state
from up to down, and all RPCs will return a service unavailable message until the database is up and running.
Upon recovery, the GNMIB will indicate a change of operation state from down to up, and resume normal
handling of RPCs.

gNMI supports <subscribe> RPC services. For more information, see the Model-Driven Telemetry chapter.

JSON IETF Encoding for YANG Data Trees
RFC 7951 defines JavaScript Object Notation (JSON) encoding for YANG data trees and their subtrees. gNMI
uses JSON for encoding data in its content layer.

The JSON type indicates that the value is encoded as a JSON string. JSON_IETF-encoded data must conform
to the rules for JSON serialisation described in RFC 7951. Both the client and target must support JSON
encoding.

Instances of YANG data nodes (leafs, containers, leaf-lists, lists, anydata nodes, and anyxml nodes) are
encoded as members of a JSON object or name/value pairs. Encoding rules are identical for all types of data
trees, such as configuration data, state data, parameters of RPC operations, actions, and notifications.

Every data node instance is encoded as a name/value pair where the name is formed from the data node
identifier. The value depends on the category of the data node.

The leaf Data Node

A leaf node has a value, but no children, in a data tree. A leaf instance is encoded as a name/value pair. This
value can be a string, number, literal true or false, or the special array [null], depending on the type of the
leaf. In the case that the data item at the specified path is a leaf node (which means it has no children, and an
associated value) the value of that leaf is encoded directly. (A bare JSON value is included; it does not require
a JSON object.)

The following example shows a leaf node definition:
leaf foo {
type uint8;
}

The following is a valid JSON-encoded instance:
"foo": 123

gNMI Protocol
2

gNMI Protocol
Information About the gNMI Protocol

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1612/b_1612_programmability_cg/model_driven_telemetry.html

Proto Encoding
gNMI protocol supports PROTO encoding along with the already supported JSON and JSON_IETF formats.
The gnmi.proto file represents the blueprint for generating a complete set of client and server-side procedures
that instantiate the framework for the gNMI protocol.

The existing encoding procedure for JSON and JSON_IETF formats push the input data that causes the output
values to have premature wraps and other issues, causing loss of data precision.

PROTO encoding allows the querying of applications to retrieve data in scalar (TypedValue) values; each
leaf is sent on its own update as per the gNMI specification. This allows customers to have access to float and
double values for more accuracy.

PROTO encoding is supported for all the paths that are supported by gNMI. PROTO encoding supports
subscribe RPC, but not GET and SET RPCs.

PROTO encoding is part of the gNMI protocol, and is enabled when the gNMI feature is enabled.

The following is a sample subscribeRequest RPC with PROTO:
subscribe:

prefix:
origin: "legacy"
elem:

name: "mdt-oper-v2:mdt-oper-v2-data"
>

>
subscription:
path:
elem:

name: "mdt-subscriptions"
>

>
mode: SAMPLE
sample_interval: 10000000000

>
mode: STREAM
encoding: PROTO

>

The following is a sample subscribeRequest response with PROTO:

update: <
timestamp: 1652408966709576000
prefix: <
origin: "openconfig"
elem: <
name: "oc-if:interfaces"

>
elem: <
name: "interface"
key: <
key: "name"
value: "*"

>
>
elem: <
name: "state"

>
update: <
path: <
origin: "openconfig"

gNMI Protocol
3

gNMI Protocol
Proto Encoding

elem: <
name: "interfaces"

>
elem: <
name: "interface"
key: <
key: "name"
value: "GigabitEthernet3"

>
>
elem: <
name: "ethernet"

>
elem: <
name: "config"

>
>
val: <
string_val: "{

\"mac-address\":\"00:0c:29:29:42:e9\”
}"
>

>
update: <

path: <
origin: "openconfig"
elem: <
name: "interfaces"

>
elem: <
name: "interface"
key: <
key: "name"
value: "GigabitEthernet3"

>
>
elem: <
name: "ethernet"

>
elem: <
name: "config"

>
>
val: <
bool_val: "{

\",\"auto-negotiate\":true
}"
>

>
update: <

path: <
origin: "openconfig"
elem: <
name: "interfaces"

>
elem: <
name: "interface"
key: <
key: "name"
value: "GigabitEthernet3"

>
>
elem: <
name: "ethernet"

gNMI Protocol
4

gNMI Protocol
Proto Encoding

>
elem: <
name: "config"

>
>
val: <
bool_val: "{

\"enable-flow-control\":true
}"
>

>

Errors are reported using the status.proto message in the RPC return message.

gNMI GET Request
The gNMI Get RPC specifies how to retrieve one or more of the configuration attributes, state attributes,
derived state attributes, or all attributes associated with a supported mode from a date tree. A GetRequest is
sent from a client to the target to retrieve values from the data tree. A GetResponse is sent in response to a
GetRequest.

GetRequest JSON Structure

The following is a sample GetRequest JSON structure. Both the GetRequest and GetResponse are displayed.

GetRequest

The following is a path for the
openconfig-interfaces model
++++++++ Sending get request: ++++++++
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}

}

GetResponse

encoding: JSON_IETF
++++++++ Received get response: ++++++++
notification {
timestamp: 1521699434792345469
update {
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "\"Loopback111\""

}

gNMI Protocol
5

gNMI Protocol
gNMI GET Request

}
}

val {
json_ietf_val: "{\n\t\"openconfig-interfaces:name\":\t\
"Loopback111\",\n\t\
"openconfig-interfaces:config\":\t{\n\t\t\
"openconfig-interfaces:type\":\t\"ianaift:
softwareLoopback\",\n\t\t\
"openconfig-interfaces:name\":\t\"Loopback111\",\n\t\t\
"openconfig-interfaces:enabled\":\t\"true\"\n\t},\n\t\
"openconfig-interfaces:state\":\t{\n\t\t\
"openconfig-interfaces:type\":\t\"ianaift:
softwareLoopback\",\n\t\t\
"openconfig-interfaces:name\":\t\"Loopback111\",\n\t\t\
"openconfig-interfaces:enabled\":\t\"true\",\n\t\t\
"openconfig-interfaces:ifindex\":\t52,\n\t\t\

"openconfig-interfaces:admin-status\":\t\"UP\",\n\t\t\
"openconfig-interfaces:oper-status\":\t\"UP\",\n\t\t\
"openconfig-interfaces:last-change\":\t2018,\n\t\t\
"openconfig-interfaces:counters\":\t{\n\t\t\t\
"openconfig-interfaces:in-octets\":\t0,\n\t\t\t\
"openconfig-interfaces:in-unicast-pkts\":\t0,\n\t\t\t\
"openconfig-interfaces:in-broadcast-pkts\":\t0,\n\t\t\t\
"openconfig-interfaces:in-multicast-pkts\":\t0,\n\t\t\t\
"openconfig-interfaces:in-discards\":\t0,\n\t\t\t\
"openconfig-interfaces:in-errors\":\t0,\n\t\t\t\
"openconfig-interfaces:in-unknown-protos\":\t0,\n\t\t\t\
"openconfig-interfaces:out-octets\":\t0,\n\t\t\t\
"openconfig-interfaces:out-unicast-pkts\":\t0,\n\t\t\t\
"openconfig-interfaces:out-broadcast-pkts\":\t0,\n\t\t\t\
"openconfig-interfaces:out-multicast-pkts\":\t0,\n\t\t\t\
"openconfig-interfaces:out-discards\":\t0,\n\t\t\t\
"openconfig-interfaces:out-errors\":\t0,\n\t\t\t\
"openconfig-interfaces:last-clear\":\t2018\n\t\t},\n\t\t\

"openconfig-platform:hardware-port\":\t\
"Loopback111\"\n\t},\n\t\
"openconfig-interfaces:subinterfaces\":\t{\n\t\t\
"openconfig-interfaces:index\":\t0,\n\t\t\
"openconfig-interfaces:config\":\t{\n\t\t\t\
"openconfig-interfaces:index\":\t0,\n\t\t\t\
"openconfig-interfaces:name\":\t\"Loopback111\",\n\t\t\t\
"openconfig-interfaces:enabled\":\t\"true\"\n\t\t},\n\t\t\
"openconfig-interfaces:state\":\t{\n\t\t\t\
"openconfig-interfaces:index\":\t0,\n\t\t\t\
"openconfig-interfaces:name\":\t\"Loopback111.0\",\n\t\t\t\
"openconfig-interfaces:enabled\":\t\"true\",\n\t\t\t\
"openconfig-interfaces:admin-status\":\t\"UP\",\n\t\t\t\
"openconfig-interfaces:oper-status\":\t\"UP\",\n\t\t\t\
"openconfig-interfaces:last-change\":\t2018,\n\t\t\t\
"openconfig-interfaces:counters\":\t{\n\t\t\t\t\
"openconfig-interfaces:in-octets\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-unicast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-broadcast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-multicast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-discards\":\t0,\n\t\t\t\t\
"openconfig-interfaces:in-errors\":\t0,\n\t\t\t\t\

"openconfig-interfaces:out-octets\":\t0,\n\t\t\t\t\
"openconfig-interfaces:out-unicast-pkts\":\t0,\n\t\t\t\t\

gNMI Protocol
6

gNMI Protocol
gNMI GET Request

"openconfig-interfaces:out-broadcast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:out-multicast-pkts\":\t0,\n\t\t\t\t\
"openconfig-interfaces:out-discards\":\t0,\n\t\t\t\t\
"openconfig-interfaces:out-errors\":\t0,\n\t\t\t\t\
"openconfig-interfaces:last-clear\":\
t2018\n\t\t\t}\n\t\t},\n\t\t\
"openconfig-if-ip:ipv6\":\t{\n\t\t\t\
"openconfig-if-ip:config\":\t\"false\",\n\t\t\t\
"openconfig-if-ip:state\":\t\"false\"\n\t\t}\n\t}\n}"

}
}

}

GetRequest on a Leaf Value

The following is a sample GetRequest on a Leaf value. Both the GetRequest and the correspondingGetResponse
are displayed.

GetRequest

++++++++ Sending get request: ++++++++
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}
elem {
name: "state"

}
elem {
name: "oper-status"

}
}

GetResponse

encoding: JSON_IETF
++++++++ Received get response: ++++++++
notification {
timestamp: 1521699326012374332
update {
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "\"Loopback111\""

}
}
elem {
name: "state"

gNMI Protocol
7

gNMI Protocol
gNMI GET Request

}
elem {
name: "oper-status"

}
}
val {
json_ietf_val: "\"UP\""

}
}

}

gNMI SetRequest
The Set RPC specifies how to set one or more configurable attributes associated with a supported model. A
SetRequest is sent from a client to a target to update the values in the data tree.

SetRequests also support JSON keys, and must contain a YANG-prefix, in which the namespace of the element
differs from parent.

For example, the routed-vlan element derived from augmentation in openconfig-vlan.yang must be entered
as oc-vlan:routed-vlan, because it is different from the namespace of the parent node (The parent node prefix
is oc-if.).

The total set of deletes, replace, and updates contained in any one SetRequest is treated as a single transaction.
If any subordinate element of the transaction fails; the entire transaction is disallowed and rolled back. A
SetResponse is sent back for a SetRequest.

Table 1: Example of a SetRequest JSON Structure

SetResponseSetRequest

++++++++ Received set response: ++++++++
response {
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}
elem {
name: "config"

}
}
op: UPDATE

}
timestamp: 1521699342123890045

++++++++ Sending set request: ++++++++
update {
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}
elem {
name: "config"

}
}
val {
json_ietf_val:

"{\"openconfig-interfaces:enabled\":\"false\"}"

}
}

gNMI Protocol
8

gNMI Protocol
gNMI SetRequest

Table 2: Example of a SetRequest on Leaf Value

SetResponseSetRequest

++++++++ Received set response: ++++++++
response {
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}
elem {
name: "config"

}
elem {
name: "description"

}
}
op: UPDATE

}
timestamp: 1521699342123890045

++++++++ Sending set request: ++++++++
update {
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}
elem {
name: "config"

}
elem {
name: "description"

}
}
val {
json_ietf_val: "\"UPDATE DESCRIPTION\""

}
}

gNMI Namespace
A namespace specifies the path prefixing to be used in the origin field of a message.

This section describes the namespaces used in Cisco IOS XE Gibraltar 16.10.1 and later releases:

• RFC 7951-specified namespaces: Path prefixes use the YANG module name as defined in RFC 7951.

The RFC 7951-specified value prefixing uses the YANG module name.

Value prefixing is not affected by the selected path prefix namespace. The following example shows an
RFC 7951-specified value prefix:
val {

json_ietf_val:"{
"openconfig-interfaces:config": {
“openconfig-interfaces:description":
“DESCRIPTION”

}
}"

}

An RFC 7951-specified namespace prefixing also uses the YANG module name. For example, the
openconfig path to a loopback interface will be
/openconfig-interfaces:interfaces/interface[name=Loopback111]/

The following example shows a gNMI path with RFC7951 namespacing:
path {
origin: “rfc7951"
elem {

gNMI Protocol
9

gNMI Protocol
gNMI Namespace

name: "openconfig-interface:interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}

}

• Openconfig: No path prefixes are used. These can only be used with a path to an openconfig model.

The behavior of the Openconfig namespace prefixing is the samewhen no origin or namespace is provided.
For example, the openconfig path to a loopback interface will be
/interfaces/interface[name=Loopback111]/

The following example shows a gNMI path with an Openconfig namespacing:
path {
origin: “openconfig"
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}

}

• Blank: Same as the openconfig prefix. This is the default.

The following example shows a gNMI path with a blank Openconfig namespacing:
path {
elem {

name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}

}

This section describes the path prefixing used in releases prior to Cisco IOS XE Gibraltar 16.10.1.

Here, path prefixing uses the YANG module prefix as defined in the YANG module definition. For example,
the openconfig path to a loopback interface will be
/oc-if:interfaces/interface[name=Loopback111]/

The following example shows a gNMI Path with with legacy namespacing:
path {
origin: “legacy"
elem {
name: "oc-if:interfaces"

}

gNMI Protocol
10

gNMI Protocol
gNMI Namespace

elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}

}

gNMI Wildcards
The gNMI protocol supports wildcards for Get paths. This is the ability to use a wildcards in a path to match
multiple elements. These wildcards indicate all elements in a given subtree in the schema.

An elem is an element, and it is a value between / characters in an xPath. An elem is also available in a gNMI
path. For example, the position of a wildcard relative to elem names implies that the wildcard stands for an
interface, and is interpreted as all interfaces.

There are two types of wildcards; implicit and explicit, and both are supported. Get paths support all types
and combinations of path wildcards.

• Implicit wildcards: These expand a list of elements in an element tree. Implicit wildcard occurs when a
key value is not provided for elements of a list.

The following is a sample path implicit wildcard. This wildcard will return the descriptions of all interfaces
on a device:
path {
elem {
name: "interfaces"

}
elem {
name: "interface"

}
elem {
name: "config"

}
elem {
name: "description"

}
}

• Explicit wildcards: Provides the same functionality by

• Specifying an asterisk (*) for either the path element name or key name.

The following sample shows a path asterisk wildcard as the key name. This wildcard returns the
description for all interfaces on a device.
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "*"

}
}
elem {
name: “config"

gNMI Protocol
11

gNMI Protocol
gNMI Wildcards

}
elem {
name: "description"

}
}

The following sample shows a path asterisk wildcard as the path name. This wildcard will return
the description for all elements that are available in the Loopback111 interface.
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopback111"

}
}
elem {
name: "*"

}
elem {
name: "description"

}
}

• Specifying an ellipsis (...) or a blank entry as element names. These wildcards can expand to multiple
elements in a path.

The following sample shows a path ellipsis wildcard. This wildcard returns all description fields
available under /interfaces.
path {
elem {
name: "interfaces"

}
elem {
name: "..."

}
elem {
name: "description"

}
}

The following is a sample GetRequest with an implicit wildcard. This GetRequest will return the oper-status
of all interfaces on a device.

path {
elem {
name: "interfaces"
}

elem {
name: "interface"

}
elem {
name: "state"

}
elem {
name: "oper-status"

}

gNMI Protocol
12

gNMI Protocol
gNMI Wildcards

},
type: 0,
encoding: 4

The following is a sample GetResponse with an implicit wildcard:

notification {
timestamp: 1520627877608777450
update {
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "\"FortyGigabitEthernet1/1/1\""

}
}
elem {
name: "state"

}
elem {
name: "oper-status"

}
}
val {
json_ietf_val: "\"LOWER_LAYER_DOWN\""

}
},

<snip>
…
</snip>

update {
path {
elem {
name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "\"Vlan1\""

}
}
elem {
name: "state"

}
elem {
name: "oper-status"

}
}
val {
json_ietf_val: "\"DOWN\""

}
}

}

gNMI Protocol
13

gNMI Protocol
gNMI Wildcards

gNMI Configuration Persistence
The gNMI Configuration Persistence feature ensures that all successful configuration changes made through
the gNMI SetRequest RPC persists across device restarts. Prior to this feature, the gNMI configuration was
stored in the running configuration of a device. And the changes were saved by issuing the write memory
command, or the SaveConfig NETCONF RPC.

All changes in the running configuration, even if the data was modified by processes other than gNMI, the
data is saved to the startup configuration, when the SetRequest RPC is issued.

This feature is enabled by default and cannot be disabled.

gNMI Username and Password Authentication
User credentials, the username and password provide authorization as metadata in each gNMI RPC. The
following is a sample gNMI Capabilities RPC that use the username and password:

metadata = [('username','admin'), ('password','lab')]
cap_request = gnmi_pb2.CapabilityRequest()
pass metadata to the gnmi_pb2_grpc.gNMIStub object
secure_stub.Capabilities(cap_request, metadata=metadata)

gNMI Error Messages
When errors occur, gNMI returns descriptive error messages. The following section displays some gNMI
error messages.

The following sample error message is displayed when the path is invalid:

gNMI Error Response:
<_Rendezvous of RPC that terminated with (StatusCode.TERMINATED,
An error occurred while parsing provided xpath: unknown tag:
“someinvalidxpath" Additional information: badly formatted or nonexistent path)>

The following sample error message is displayed for an unimplemented error:

gNMI Error Response:
<_Rendezvous of RPC that terminated with (StatusCode.UNIMPLEMENTED,
Requested encoding "ASCII" not supported)>

The following sample error message is displayed when the data element is empty:

gNMI Error Response:
<_Rendezvous of RPC that terminated with (StatusCode.NOT_FOUND,
Empty set returned for path "/oc-if:interfaces/noinfohere")>

How to Enable the gNMI Protocol
Perform the following steps to enable the gNMI protocol:

gNMI Protocol
14

gNMI Protocol
gNMI Configuration Persistence

1. Create a set of certs for the gNMI client and device signed by a Certificate Authority (CA).

a. Create Certs with OpenSSL on Linux.

b. Install Certs on a device.

c. Configure gNMI on the device.

d. Verify whether gNMI is enabled and running.

2. Connect the gNMI client using client and root certificates configured in previous steps.

Creating Certs with OpenSSL on Linux
Certs and trustpoint are only required for secure gNMI servers.

The following example shows how to create Certs with OpenSSL on a Linux machine:
Setting up a CA
openssl genrsa -out rootCA.key 2048
openssl req -subj /C=/ST=/L=/O=/CN=rootCA -x509 -new -nodes -key rootCA.key -sha256 -out
rootCA.pem

Setting up device cert and key
openssl genrsa -out device.key 2048
openssl req -subj /C=/ST=/L=/O=/CN=<hostnameFQDN> -new -key device.key -out device.csr
openssl x509 -req -in device.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
device.crt -sha256
openssl pkcs12 -export -out mycert.pfx -inkey device.key -in device.crt -certfile rootCA.pem
-aes128
Enter Export Password:cisco
Verifying - Enter Export Password:cisco

Setting up client cert and key
openssl genrsa -out client.key 2048
openssl req -subj /C=/ST=/L=/O=/CN=gnmi_client -new -key client.key -out client.csr
openssl x509 -req -in client.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
client.crt -sha256

Installing Certs on a Device Through the CLI
The following example show how to install certs on a device:

Send:
Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# crypto pki trustpoint trustpoint1
Device(ca-trustpoint)# revocation-check none
Device(ca-trustpoint)# crypto pki import AESTEST pkcs12 bootflash:mycert.pfx password cisco
% Importing pkcs12...
Source filename [mycert.pfx]?
Reading file from bootflash:mycert.pfx
CRYPTO_PKI: Imported PKCS12 file successfully.
Device(config)#

gNMI Protocol
15

gNMI Protocol
Creating Certs with OpenSSL on Linux

Enabling gNMI in Insecure Mode

This task is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.Note

In a Day Zero setup, first enable the device in insecure mode, then disable it, and enable the secure mode. To
stop gNxI in insecure mode, use the no gnxi server command.

gNxI insecure and secure servers can run simultaneously on a device.Note

The gnxi commands apply to both gNMI and gRPC Network Operations Interface (gNOI) services. gNxI
tools are a collection of tools for Network Management that use the gNMI and gNOI protocols.

Note

SUMMARY STEPS

1. enable
2. configure terminal
3. gnxi
4. gnxi server
5. gnxi port port-number

6. end
7. show gnxi state

DETAILED STEPS

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Starts the gNxI process.gnxi

Example:

Step 3

Device(config)# gnxi

gNMI Protocol
16

gNMI Protocol
Enabling gNMI in Insecure Mode

PurposeCommand or Action

Enables the gNxI server in insecure mode.gnxi server

Example:

Step 4

Device(config)# gnxi server

Sets the gNxI port to listen to.gnxi port port-numberStep 5

Example: • The default insecure gNxI port is 50052.
(Optional) Device(config)# gnxi port 50000

Exits global configuration mode and returns to privileged
EXEC mode.

end

Example:

Step 6

Device(config)# end

Displays the status of gNxI interfaces.show gnxi state

Example:

Step 7

Device# show gnxi state

Enabling gNMI in Secure Mode

This task is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.Note

To stop gNxI in secure mode, use the no gnxi secure-server command.

gNxI insecure and secure servers can simultaneously run on a device.Note

The gnxi commands apply to both gNMI and gRPC Network Operations Interface (gNOI) services. gNxI
tools are a collection of tools for Network Management that use the gNMI and gNOI protocols.

Note

SUMMARY STEPS

1. enable
2. configure terminal
3. gnxi
4. gnxi secure-trustpoint trustpoint-name

5. gnxi secure-server
6. gnxi secure-client-auth
7. gnxi secure-port
8. end
9. show gnxi state

gNMI Protocol
17

gNMI Protocol
Enabling gNMI in Secure Mode

DETAILED STEPS

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Starts the gNxI process.gnxi

Example:

Step 3

Device(config)# gnxi

Specifies the trustpoint and cert set that gNxI uses for
authentication.

gnxi secure-trustpoint trustpoint-name

Example:

Step 4

Device(config)# gnxi secure-trustpoint trustpoint1

Enables the gNxI server in secure mode.gnxi secure-server

Example:

Step 5

Device(config)# gnxi secure-server

(Optional) The gNxI process authenticates the client
certificate against the root certificate.

gnxi secure-client-auth

Example:

Step 6

Device(config)# gnxi secure-client-auth

(Optional) Sets the gNxI port to listen to.gnxi secure-portStep 7

Example: • The default secure gNxI port is 9339.
Device(config)# gnxi secure-port

Exits global configuration mode and returns to privileged
EXEC mode.

end

Example:

Step 8

Device(config)# end

Displays the status of gNxI servers.show gnxi state

Example:

Step 9

Device# show gnxi state

Example

The following is sample output from the show gnxi state command:

gNMI Protocol
18

gNMI Protocol
Enabling gNMI in Secure Mode

Device# show gnxi state

State Status

Enabled Up

Connecting the gNMI Client
The gNMI client is connected by using the client and root certificates that are previously configured.

The following example shows how to connect the gNMI client using Python:

gRPC Must be compiled in local dir under path below:
>>> import sys
>>> sys.path.insert(0, "reference/rpc/gnmi/")
>>> import grpc
>>> import gnmi_pb2
>>> import gnmi_pb2_grpc
>>> gnmi_dir = '/path/to/where/openssl/creds/were/generated/'

Certs must be read in as bytes
>>> with open(gnmi_dir + 'rootCA.pem', 'rb') as f:
>>> ca_cert = f.read()
>>> with open(gnmi_dir + 'client.crt', 'rb') as f:
>>> client_cert = f.read()
>>> with open(gnmi_dir + 'client.key', 'rb') as f:
>>> client_key = f.read()

Create credentials object
>>> credentials = grpc.ssl_channel_credentials(root_certificates=ca_cert,
private_key=client_key, certificate_chain=client_cert)

Create a secure channel:
Default port is 9339, can be changed on ios device with 'gnxi secure-port ####'
>>> port = 9339
>>> host = <HOSTNAME FQDN>
>>> secure_channel = grpc.secure_channel("%s:%d" % (host, port), credentials)

Create secure stub:
>>> secure_stub = gnmi_pb2_grpc.gNMIStub(secure_channel)

Done! Let's test to make sure it works:
>>> secure_stub.Capabilities(gnmi_pb2.CapabilityRequest())
supported_models {
<snip>
}
supported_encodings: <snip>
gNMI_version: "0.4.0"

gNMI Protocol
19

gNMI Protocol
Connecting the gNMI Client

Configuration Examples for the gNMI Protocol

Example: Enabling gNMI in Insecure Mode

This example is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.Note

The following example shows how to enable the gNxI server in insecure mode:

Device> enable
Device# configure terminal
Device(config)# gnxi
Device(config)# gnxi server
Device(config)# gnxi port 50000 <The default port is 50052.>
Device(config)# end
Device#

Example: Enabling gNMI in Secure Mode

This example is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.Note

The following example shows how to enable the gNxI server in secure mode:

Device> enable
Device# configure terminal
Device(config)# gnxi
Device(config)# gnxi secure-trustpoint trustpoint1
Device(config)# gnxi secure-server
Device(config)# gnxi secure-client-auth
Device(config)# gnxi secure-port 50001 <The default port is 9339.>
Device(config)# end
Device#

Additional References for the gNMI Protocol
Related Documents

Document TitleRelated Topic

https://developer.cisco.com/site/ios-xe/DevNet

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.mdgNMI

gNMI Protocol
20

gNMI Protocol
Configuration Examples for the gNMI Protocol

https://developer.cisco.com/site/ios-xe/
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

Document TitleRelated Topic

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.mdgNMI path
encoding

Standards and RFCs

TitleStandard/RFC

JSON Encoding of Data Modeled with YANGRFC 7951

Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for the gNMI Protocol
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

gNMI Protocol
21

gNMI Protocol
Feature Information for the gNMI Protocol

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md
http://www.cisco.com/support
http://www.cisco.com/go/cfn

Table 3: Feature Information for the gNMI Protocol

Feature InformationReleaseFeature Name

This feature describes the model-driven
configuration and retrieval of operational data
using the gNMI capabilities, GET and SET
RPCs.

This feature was implemented on the
following platforms:

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

Cisco IOS XE Fuji 16.8.1agNMI Protocol

In Cisco IOSXEGibraltar 16.10.1, this feature
was implemented on Cisco Catalyst
9500-High Performance Series Switches.

Cisco IOS XE Gibraltar
16.10.1

In Cisco IOSXEGibraltar 16.11.1, this feature
was implemented on Cisco Catalyst 9600
Series Switches.

Cisco IOS XE Gibraltar
16.11.1

In Cisco IOSXEGibraltar 16.12.1, this feature
was implemented on the following platforms:

• Cisco Catalyst 9200 and 9200L Series
Switches

• Cisco Catalyst 9300L SKUs

• Cisco cBR-8 Converged Broadband
Router

Cisco IOS XE Gibraltar
16.12.1

In Cisco IOS XE Amsterdam 17.1.1, this
feature was implemented on the following
platforms:

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco ASR 920 Series Aggregation
Services Router

• CiscoNetwork Convergence System 520
Series

• Cisco Network Convergence System
4200 Series

Cisco IOS XE Amsterdam
17.1.1

In Cisco IOS XE Amsterdam 17.2.1r, this
feature was implemented on Cisco ASR 1000
Series Aggregation Services Routers.

Cisco IOS XE Amsterdam
17.2.1r

gNMI Protocol
22

gNMI Protocol
Feature Information for the gNMI Protocol

Feature InformationReleaseFeature Name

In Cisco IOSXECupertino 17.8.1, this feature
was implemented on the following platforms:

• Cisco Catalyst 9800-CL Wireless
Controllers

• Cisco Catalyst 9800-40 Wireless
Controllers

• Cisco Catalyst 9800-80 Wireless
Controllers

Cisco IOS XE Cupertino
17.8.1

gNMI IPv6 support was enabled in Cisco IOS
XE Dublin 17.10.1.

This feature was implemented on the
following platforms:

• Cisco Catalyst 9200 and 9200L Series
Switches

• Cisco Catalyst 9300, 9300L, and 9300X
Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 and 9500
High-Performance Series Switches

• Cisco Catalyst 9600 Series Switches

Cisco IOSXEDublin 17.10.1gNMI IPv6 Support

The Username and Password Authentication
feature was added to the gNMI protocol. This
feature is supported on all IOS XE platforms
that support gNMI.

Cisco IOS XE Gibraltar
16.12.1

gNMI Username and
Password Authentication

All successful configuration changes made
through the gNMI SetRequest RPC persists
across device restarts. This feature was
implemented on the following platforms:

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco Catalyst 9600 Series Switches

Cisco IOS XE Amsterdam
17.3.1

gNMI Configuration
Persistence

gNMI Protocol
23

gNMI Protocol
Feature Information for the gNMI Protocol

Feature InformationReleaseFeature Name

The gNOI Certificate Management Service
provides RPCs to install, rotate, get certificate,
revoke certificate, and generate certificate
signing request. This feature was implemented
on the following platforms:

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco Catalyst 9600 Series Switches

Cisco IOS XE Amsterdam
17.3.1

gNOICertificateManagement

gNMI Protocol
24

gNMI Protocol
Feature Information for the gNMI Protocol

Feature InformationReleaseFeature Name

Cisco IOS XE Cupertino
17.9.1

Named Method List

gNMI Protocol
25

gNMI Protocol
Feature Information for the gNMI Protocol

Feature InformationReleaseFeature Name

With the introduction of the Named Method
List feature, it is possible to use a custom
method-list name for authentication and
authorization, without changing the existing
AAA configuration of a device. Prior to this
feature, only the default method-list was
supported. For more information, see the
NETCONF Protocol chapter.

This feature was implemented on the
following platforms:

• Cisco 1000 Series Integrated Services
Routers

• Cisco 4000 Series Integrated Services
Routers

• Cisco ASR 900 Series Aggregation
Services Routers

• Cisco ASR 920 Series Aggregation
Services Routers

• Cisco ASR 1000 Aggregation Services
Routers

• Cisco Catalyst 8200 Series Edge
Platforms

• Cisco Catalyst 8300 Series Edge
Platforms

• Cisco Catalyst 8500 Series and 8500L
Series Edge Platforms

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco Catalyst 9600 Series Switches

• Cisco Catalyst 9800 Series Wireless
Controllers

• Cisco Cloud Services Router 1000V
Series

• Cisco Network Convergence System 520
Series

• Cisco Network Convergence System

gNMI Protocol
26

gNMI Protocol
Feature Information for the gNMI Protocol

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/179/b_179_programmability_cg/m_179_prog_yang_netconf.html

Feature InformationReleaseFeature Name

4200 Series

gNMI protocol supports PROTO encoding.
The gnmi.proto file represents the blueprint
for generating a complete set of client and
server-side procedures that represents the
framework for the gNMI protocol.

This feature was implemented on the
following platforms:

• Cisco Catalyst 9200, 9200L, and 9200X
Series Switches

• Cisco Catalyst 9300, 9300L, and 9300X
Series Switches

• Cisco Catalyst 9400 and 9400X Series
Switches

• Cisco Catalyst 9500, 9500
High-Performance, and 9500X Series
Switches

• Cisco Catalyst 9600 Series Switches

Cisco IOSXEDublin 17.11.1PROTO Encoding

gNMI Protocol
27

gNMI Protocol
Feature Information for the gNMI Protocol

gNMI Protocol
28

gNMI Protocol
Feature Information for the gNMI Protocol

	gNMI Protocol
	Restrictions for gNMI Protocol
	Information About the gNMI Protocol
	About GNMI
	JSON IETF Encoding for YANG Data Trees
	Proto Encoding
	gNMI GET Request
	gNMI SetRequest
	gNMI Namespace
	gNMI Wildcards
	gNMI Configuration Persistence
	gNMI Username and Password Authentication
	gNMI Error Messages

	How to Enable the gNMI Protocol
	Creating Certs with OpenSSL on Linux
	Installing Certs on a Device Through the CLI
	Enabling gNMI in Insecure Mode
	Enabling gNMI in Secure Mode
	Connecting the gNMI Client

	Configuration Examples for the gNMI Protocol
	Example: Enabling gNMI in Insecure Mode
	Example: Enabling gNMI in Secure Mode

	Additional References for the gNMI Protocol
	Feature Information for the gNMI Protocol

