gNMI Protocol

The gNMI Protocol feature describes the model-driven configuration and retrieval of operational data using
the gRPC Network Management Interface (gNMI) capabilities, and the Get, Set, and Subscribe remote
procedure calls (RPCs). gNMI Version 0.4.0 is supported.

* Restrictions for gNMI Protocol, on page |

* Information About the gNMI Protocol, on page 2

* How to Enable the gNMI Protocol, on page 14

* Configuration Examples for the gNMI Protocol, on page 20
* Additional References for the gNMI Protocol, on page 20

* Feature Information for the gNMI Protocol, on page 21

Restrictions for gNMI Protocol

The following restrictions apply to the gNMI Protocol feature:
* BYTES and ASCII encoding options are not supported.
PROTO encoding is supported from Cisco IOS XE Dublin 17.11.1.

» JSON IETF keys must contain a YANG prefix where the namespace of the child elements differs from
that of the parent. This means that the routed VLAN derived from augmentation in openconfig-vlan.yang
must be entered as oc-vlan:routed-vlan because it is different from the namespace of the parent nodes
(parent nodes have the prefix oc-if)

* GetRequest:
* Operational data filtering is not supported.
» Use models are not supported. These are a set of model data messages indicating the schema definition

modules that define the data elements that must be returned in response to a Get RPC call.

* GetResponse:

* Alias, which is a string that provides an alternate name for a prefix specified within the GetResponse
notification message is not supported.

* Delete, which is a set of paths that are to be removed from a data tree is not supported.

gNMI Protocol .

gNMI Protocol |

. Information About the gNMI Protocol

Information About the gNMI Protocol

About GNMI

gNMI is gRPC Network Management Interface developed by Google. gNMI provides the mechanism to
install, manipulate, and delete the configuration of network devices, and also to view operational data. The
content provided through gNMI can be modeled using YANG.

gRPC is a remote procedure call developed by Google for low-latency, scalable distributions with mobile
clients communicating to a cloud server. gRPC carries gNMI, and provides the means to formulate and transmit
data and operation requests.

When a gNMI service failure occurs, the gNMI broker (GNMIB) will indicate an operational change of state
from up to down, and all RPCs will return a service unavailable message until the database is up and running.
Upon recovery, the GNMIB will indicate a change of operation state from down to up, and resume normal
handling of RPCs.

gNMI supports <subscribe> RPC services. For more information, see the Model-Driven Telemetry chapter.

JSON IETF Encoding for YANG Data Trees

RFC 7951 defines JavaScript Object Notation (JSON) encoding for YANG data trees and their subtrees. gNMI
uses JSON for encoding data in its content layer.

The JSON type indicates that the value is encoded as a JSON string. JSON_IETF-encoded data must conform
to the rules for JSON serialisation described in RFC 7951. Both the client and target must support JSSON
encoding.

Instances of YANG data nodes (leafs, containers, leaf-lists, lists, anydata nodes, and anyxml nodes) are
encoded as members of a JSON object or name/value pairs. Encoding rules are identical for all types of data
trees, such as configuration data, state data, parameters of RPC operations, actions, and notifications.

Every data node instance is encoded as a name/value pair where the name is formed from the data node
identifier. The value depends on the category of the data node.

The leaf Data Node

A leaf node has a value, but no children, in a data tree. A leaf instance is encoded as a name/value pair. This
value can be a string, number, literal true or false, or the special array [null], depending on the type of the
leaf. In the case that the data item at the specified path is a leaf node (which means it has no children, and an
associated value) the value of that leaf is encoded directly. (A bare JSON value is included; it does not require
a JSON object.)

The following example shows a leaf node definition:

leaf foo {
type uint8;
}

The following is a valid JSON-encoded instance:

"foo": 123

. gNMI Protocol

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1612/b_1612_programmability_cg/model_driven_telemetry.html

| gNMI Protocol
Proto Encoding .

Proto Encoding

gNMI protocol supports PROTO encoding along with the already supported JSON and JSON_IETF formats.
The gnmi.proto file represents the blueprint for generating a complete set of client and server-side procedures
that instantiate the framework for the gNMI protocol.

The existing encoding procedure for JSON and JSON_IETF formats push the input data that causes the output
values to have premature wraps and other issues, causing loss of data precision.

PROTO encoding allows the querying of applications to retrieve data in scalar (TypedValue) values; each
leaf'is sent on its own update as per the gNMI specification. This allows customers to have access to float and
double values for more accuracy.

PROTO encoding is supported for all the paths that are supported by gNMI. PROTO encoding supports
subscribe RPC, but not GET and SET RPCs.

PROTO encoding is part of the gNMI protocol, and is enabled when the gNMI feature is enabled.
The following is a sample subscribeRequest RPC with PROTO:

subscribe:
prefix:
origin: "legacy"
elem:
name: "mdt-oper-v2:mdt-oper-v2-data"
>
>
subscription:
path:
elem:
name: "mdt-subscriptions"
>
>
mode: SAMPLE
sample interval: 10000000000
>
mode: STREAM
encoding: PROTO
>

The following is a sample subscribeRequest response with PROTO:

update: <
timestamp: 1652408966709576000
prefix: <
origin: "openconfig"

elem: <
name: "oc-if:interfaces"
>
elem: <
name: "interface"
key: <
key: "name"
value: "*"
>
>
elem: <
name: "state"
>
update: <
path: <

origin: "openconfig"

gNMI Protocol .

Proto Encoding

elem: <
name: "interfaces"
>
elem: <
name: "interface"
key: <

key: "name"
value: "GigabitEthernet3"
>
>
elem: <
name: "ethernet"
>
elem: <
name: "config"
>
>
val: <
string val: "{
\"mac-address\":\"00:0c:29:29:42:e9\"
pm

>
>
update: <
path: <
origin: "openconfig"
elem: <
name: "interfaces"
>
elem: <
name: "interface"
key: <
key: "name"
value: "GigabitEthernet3"
>
>
elem: <
name: "ethernet"
>
elem: <
name: "config"
>
>
val: <
bool val: "{

\",\"auto-negotiate\":true

pn

>
>
update: <
path: <
origin: "openconfig"
elem: <
name: "interfaces"
>
elem: <
name: "interface"
key: <
key: "name"
value: "GigabitEthernet3"
>
>
elem: <
name: "ethernet"

. gNMI Protocol

gNMI Protocol |

| gNMI Protocol

>
elem: <
name: "config"
>
>
val: <
bool val: "{
\"enable-flow-control\":true
pn
>
>

Errors are reported using the status.proto message in the RPC return message.

gNMI GET Request

gNMI GET Request [J|]

The gNMI Get RPC specifies how to retrieve one or more of the configuration attributes, state attributes,
derived state attributes, or all attributes associated with a supported mode from a date tree. A GetRequest is
sent from a client to the target to retrieve values from the data tree. A GetResponse is sent in response to a

GetRequest.

GetRequest JSON Structure

The following is a sample GetRequest JSON structure. Both the GetRequest and GetResponse are displayed.

GetRequest

The following is a path for the
openconfig-interfaces model

++++++++ Sending get request: ++++++++

path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "Loopbacklll"
}
}
}
GetResponse

encoding: JSON_IETF

++++++++ Received get response: ++++++++

notification {
timestamp: 1521699434792345469
update {
path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "\"LoopbackllI\""

gNMI Protocol .

gNMI GET Request

val

{

json_ietf val: "{\n\t\"openconfig-interfaces:name\":\t\
"LoopbackllI\",\n\t\

. gNMI Protocol

"openconfig-interfaces:
"openconfig-interfaces:

config\":\t{\n\t\t\
type\":\t\"ianaift:

softwareLoopback\", \n\t\t\

"openconfig-interfaces:
"openconfig-interfaces:
"openconfig-interfaces:
"openconfig-interfaces:

name\":\t\"Loopbacklll\",\n\t\t\
enabled\":\t\"true\"\n\t}, \n\t\
state\":\t{\n\t\t\
type\":\t\"ianaift:

softwareLoopback\", \n\t\t\

"openconfig-interfaces:
renabled\":\t\"true\", \n\t\t\
tifindex\":\t52, \n\t\t\

"openconfig-interfaces
"openconfig-interfaces

"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces

name\":\t\"Loopbacklll\",\n\t\t\

radmin-status\":\t\"UP\",\n\t\t\
roper-status\":\t\"UP\", \n\t\t\
:last-change\":\t2018, \n\t\t\
scounters\":\t{\n\t\t\t\
tin-octets\":\t0, \n\t\t\t\
rin-unicast-pkts\":\t0, \n\t\t\t\
:in-broadcast-pkts\":\t0, \n\t\t\t\
rin-multicast-pkts\":\t0, \n\t\t\t\
tin-discards\":\t0, \n\t\t\t\
tin-errors\":\t0, \n\t\t\t\
:in-unknown-protos\":\t0, \n\t\t\t\
rout-octets\":\t0, \n\t\t\t\
rout-unicast-pkts\":\t0, \n\t\t\t\
:out-broadcast-pkts\":\t0, \n\t\t\t\
rout-multicast-pkts\":\t0, \n\t\t\t\
rout-discards\":\t0, \n\t\t\t\
rout-errors\":\t0, \n\t\t\t\
:last-clear\":\t2018\n\t\t}, \n\t\t\

"openconfig-platform:hardware-port\":\t\
"Loopbackl11\"\n\t}, \n\t\

"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces
"openconfig-interfaces

"openconfig-interfaces
"openconfig-interfaces

:subinterfaces\":\t{\n\t\t\
rindex\":\t0, \n\t\t\
cconfig\":\t{\n\t\t\t\

rindex\":\t0, \n\t\t\t\

:name\": \t\"Loopbacklll\",\n\t\t\t\
renabled\":\t\"true\"\n\t\t}, \n\t\t\
sstate\":\t{\n\t\t\t\

rindex\":\t0, \n\t\t\t\
:name\":\t\"Loopbackl111.0\",\n\t\t\t\
:enabled\":\t\"true\",\n\t\t\t\
radmin-status\":\t\"UP\", \n\t\t\t\
roper-status\":\t\"UP\", \n\t\t\t\
:last-change\":\t2018, \n\t\t\t\
:counters\":\t{\n\t\t\t\t\
rin-octets\":\t0, \n\t\t\t\t\
tin-unicast-pkts\":\t0, \n\t\t\t\t\
:in-broadcast-pkts\":\t0, \n\t\t\t\t\
rin-multicast-pkts\":\t0, \n\t\t\t\t\
tin-discards\":\t0, \n\t\t\t\t\
tin-errors\":\t0, \n\t\t\t\t\

rout-octets\":\t0, \n\t\t\t\t\
rout-unicast-pkts\":\t0, \n\t\t\t\t\

gNMI Protocol |

| gNMI Protocol
gNMI GET Request [J|]

"openconfig-interfaces:out-broadcast-pkts\":\t0, \n\t\t\t\t\
"openconfig-interfaces:out-multicast-pkts\":\t0, \n\t\t\t\t\
"openconfig-interfaces:out-discards\":\t0, \n\t\t\t\t\
"openconfig-interfaces:out-errors\":\t0, \n\t\t\t\t\
"openconfig-interfaces:last-clear\":\
£2018\n\t\t\t}\n\t\t}, \n\t\t\
"openconfig-if-ip:ipve\":\t{\n\t\t\t\
"openconfig-if-ip:config\":\t\"false\",\n\t\t\t\
"openconfig-if-ip:state\":\t\"false\"\n\t\t}\n\t}\n}"

GetRequest on a Leaf Value

The following is a sample GetRequest on a Leaf value. Both the GetRequest and the corresponding GetResponse
are displayed.

GetRequest

++++++++ Sending get request: ++++++++

path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "Loopbacklll"
}
}
elem {
name: "state"
}
elem {
name: "oper-status"
}
}
GetResponse

encoding: JSON_IETF
++++++++ Received get response: ++++++++
notification {
timestamp: 1521699326012374332
update {
path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "\"LoopbackllI\""

}
elem {
name: "state"

gNMI Protocol .

. gNMI SetRequest

}
elem {
name:
}
}
val {
json_ietf wval: "\"UP\""
}

"oper-status"

gNMI SetRequest

The Set RPC specifies how to set one or more configurable attributes associated with a supported model. A
SetRequest is sent from a client to a target to update the values in the data tree.

gNMI Protocol |

SetRequests also support JSON keys, and must contain a YANG-prefix, in which the namespace of the element

differs from parent.

For example, the routed-vian element derived from augmentation in openconfig-vlan.yang must be entered
as oc-vlan:routed-vlan, because it is different from the namespace of the parent node (The parent node prefix

is oc-if.).

The total set of deletes, replace, and updates contained in any one SetRequest is treated as a single transaction.
If any subordinate element of the transaction fails; the entire transaction is disallowed and rolled back. A
SetResponse is sent back for a SetRequest.

Table 1: Example of a SetRequest JSON Structure

SetRequest SetResponse
++++++++ Sending set request: ++++++++ ++++++++ Received set response: ++++++++
update { response {
path { path {
elem { elem {
name: "interfaces" name: "interfaces"
} }
elem { elem {
name: "interface" name: "interface"
key | key |
key: "name" key: "name"
value: "Loopbacklll" value: "Loopbacklll"
} }
} }
elem { elem {
name: "config" name: "config"
} }
} }
val { op: UPDATE
json ietf val: }
"{\"openconfig-interfaces:enabled\":\"false\"}"| timestamp: 1521699342123890045
}
}

. gNMI Protocol

| gNMI Protocol

Table 2: Example of a SetRequest on Leaf Value

gNMI Namespace .

SetRequest

SetResponse

++++++++ Sending set request: ++++++++
update {
path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "Loopbacklll"
}
}

elem {
name: "config"
}
elem {
name: "description"
}
}
val {

json ietf val: "\"UPDATE DESCRIPTION\""
}

++++++++ Received set response: ++++++++
response {
path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "Loopbacklll"
}
}

elem {
name: "config"
}
elem {
name: "description"
}
}
op: UPDATE

}
timestamp: 1521699342123890045

gNMI Namespace

A namespace specifies the path prefixing to be used in the origin field of a message.

This section describes the namespaces used in Cisco IOS XE Gibraltar 16.10.1 and later releases:

* RFC 7951-specified namespaces: Path prefixes use the YANG module name as defined in RFC 7951.

The RFC 7951-specified value prefixing uses the YANG module name.

Value prefixing is not affected by the selected path prefix namespace. The following example shows an

RFC 7951-specified value prefix:
val {
json_ietf val:"{
"openconfig-interfaces:config": {

“openconfig-interfaces:description":

“DESCRIPTION”

po
}

An RFC 7951-specified namespace prefixing also uses the YANG module name. For example, the

openconfig path to a loopback interface will be

/openconfig-interfaces:interfaces/interface [name=Loopbacklll]/

The following example shows a gNMI path with RFC7951 namespacing:

path {
origin: “rfc7951"
elem {

gNMI Protocol .

. gNMI Namespace

gNMI Protocol |

name: "openconfig-interface:interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "Loopbacklll"

}

* Openconfig: No path prefixes are used. These can only be used with a path to an openconfig model.

The behavior of the Openconfig namespace prefixing is the same when no origin or namespace is provided.
For example, the openconfig path to a loopback interface will be

/interfaces/interface [name=Loopbackl11]/
The following example shows a gNMI path with an Openconfig namespacing:

path {
origin: “openconfig"
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "Loopbacklll"

}
* Blank: Same as the openconfig prefix. This is the default.
The following example shows a gNMI path with a blank Openconfig namespacing:

path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {

key: "name"
value: "Loopbacklll"

This section describes the path prefixing used in releases prior to Cisco IOS XE Gibraltar 16.10.1.
Here, path prefixing uses the YANG module prefix as defined in the YANG module definition. For example,
the openconfig path to a loopback interface will be

/oc-if:interfaces/interface [name=Loopbackll1l]/

The following example shows a gNMI Path with with legacy namespacing:

path {
origin: “legacy"
elem {
name: "oc-if:interfaces"

}

. gNMI Protocol

| gNMI Protocol

elem {
name: "interface"
key {
key: "name"
value: "Loopbacklll"

gNMI Wildcards

gNMI Wildcards]

The gNMI protocol supports wildcards for Get paths. This is the ability to use a wildcards in a path to match
multiple elements. These wildcards indicate all elements in a given subtree in the schema.

An elemis an element, and it is a value between / characters in an xPath. An elemis also available in a gNMI
path. For example, the position of a wildcard relative to elem names implies that the wildcard stands for an

interface, and is interpreted as all interfaces.

There are two types of wildcards; implicit and explicit, and both are supported. Get paths support all types

and combinations of path wildcards.

* Implicit wildcards: These expand a list of elements in an element tree. Implicit wildcard occurs when a

key value is not provided for elements of a list.

The following is a sample path implicit wildcard. This wildcard will return the descriptions of all interfaces

on a device:

path {
elem {
name: "interfaces"
}
elem {
name: "interface"
}
elem {
name: "config"
}
elem {
name: "description"
}
}

* Explicit wildcards: Provides the same functionality by

* Specifying an asterisk (*) for either the path element name or key name.

The following sample shows a path asterisk wildcard as the key name. This wildcard returns the

description for all interfaces on a device.

path {
elem {

name: "interfaces"

}
elem {
name: "interface"
key {
key: "name"
value: "*"
}
}
elem {
name: “config"

gNMI Protocol .

B v wildcards

gNMI Protocol |

}
elem {
name: "description"
}
}

The following sample shows a path asterisk wildcard as the path name. This wildcard will return
the description for all elements that are available in the Loopback111 interface.

path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "Loopbacklll"
}
}

elem {
name: "*"
}
elem {
name: "description"

}
}

* Specifying an ellipsis (...) or a blank entry as element names. These wildcards can expand to multiple
elements in a path.

The following sample shows a path ellipsis wildcard. This wildcard returns all description fields
available under /interfaces.

path {
elem {
name: "interfaces"
}
elem {
name: "..."

}
elem {
name: "description"

The following is a sample GetRequest with an implicit wildcard. This GetRequest will return the oper-status
of all interfaces on a device.

path {
elem {
name: "interfaces"
}
elem {
name: "interface"
}
elem {
name: "state"
}
elem {
name: "oper-status"

}

. gNMI Protocol

| gNMI Protocol

}I
type: O,
encoding: 4

The following is a sample GetResponse with an implicit wildcard:

notification {
timestamp: 1520627877608777450
update {
path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "\"FortyGigabitEthernetl/1/1\""

}

elem {
name: "state"
}
elem {
name: "oper-status"
}
}
val |

json ietf val: "\"LOWER LAYER DOWN\""
}
}I

<snip>
</snip>
update {
path {
elem {
name: "interfaces"
}
elem {
name: "interface"
key {
key: "name"
value: "\"VlanI\""
}
}
elem {
name: "state"
}
elem {
name: "oper-status"
}
}
val {

json_ietf wval: "\"DOWN\""
}

gNMI Wildcards]

gNMI Protocol .

gNMI Protocol |
. gNMI Configuration Persistence

gNMI Configuration Persistence

The gNMI Configuration Persistence feature ensures that all successful configuration changes made through
the gNMI SetRequest RPC persists across device restarts. Prior to this feature, the gNMI configuration was
stored in the running configuration of a device. And the changes were saved by issuing the write memory
command, or the SaveConfig NETCONF RPC.

All changes in the running configuration, even if the data was modified by processes other than gNMI, the
data is saved to the startup configuration, when the SetRequest RPC is issued.

This feature is enabled by default and cannot be disabled.

gNMI Username and Password Authentication

User credentials, the username and password provide authorization as metadata in each gNMI RPC. The
following is a sample gNMI Capabilities RPC that use the username and password:

metadata = [('username', 'admin'), ('password',6 'lab')]
cap_request = gnmi pb2.CapabilityRequest ()

pass metadata to the gnmi pb2 grpc.gNMIStub object
secure_stub.Capabilities(cap request, metadata=metadata)

gNMI Error Messages

When errors occur, gNMI returns descriptive error messages. The following section displays some gNMI
error messages.

The following sample error message is displayed when the path is invalid:

gNMI Error Response:
< Rendezvous of RPC that terminated with (StatusCode.TERMINATED,
An error occurred while parsing provided xpath: unknown tag:
“someinvalidxpath" Additional information: badly formatted or nonexistent path)>

The following sample error message is displayed for an unimplemented error:

gNMI Error Response:
< Rendezvous of RPC that terminated with (StatusCode.UNIMPLEMENTED,
Requested encoding "ASCII" not supported)>

The following sample error message is displayed when the data element is empty:

gNMI Error Response:
< Rendezvous of RPC that terminated with (StatusCode.NOT FOUND,
Empty set returned for path "/oc-if:interfaces/noinfohere™)>

How to Enable the gNMI Protocol

Perform the following steps to enable the gNMI protocol:

. gNMI Protocol

| gNMI Protocol
Creating Certs with OpenSSL on Linux .

1. Create a set of certs for the gNMI client and device signed by a Certificate Authority (CA).

a. Create Certs with OpenSSL on Linux.

b. Install Certs on a device.

o

Configure gNMI on the device.

o

Verify whether gNMI is enabled and running.

2. Connect the gNMI client using client and root certificates configured in previous steps.

Creating Certs with OpenSSL on Linux

Certs and trustpoint are only required for secure gNMI servers.

The following example shows how to create Certs with OpenSSL on a Linux machine:

Setting up a CA

openssl genrsa -out rootCA.key 2048

openssl req -subj /C=/ST=/L=/0=/CN=rootCA -x509 -new -nodes -key rootCA.key -sha256 -out
rootCA.pem

Setting up device cert and key

openssl genrsa -out device.key 2048

openssl req -subj /C=/ST=/L=/0=/CN=<hostnameFQDN> -new -key device.key -out device.csr

openssl x509 -reqg -in device.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out

device.crt -sha256

openssl pkcsl2 -export -out mycert.pfx -inkey device.key -in device.crt -certfile rootCA.pem
-aesl28

Enter Export Password:cisco

Verifying - Enter Export Password:cisco

Setting up client cert and key

openssl genrsa -out client.key 2048

openssl req -subj /C=/ST=/L=/0=/CN=gnmi_client -new -key client.key -out client.csr
openssl x509 -reqg -in client.csr -CA rootCA.pem -CAkey rootCA.key -CAcreateserial -out
client.crt -sha256

Installing Certs on a Device Through the CLI

The following example show how to install certs on a device:

Send:

Device# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Device (config)# crypto pki trustpoint trustpointl

Device (ca-trustpoint) # revocation-check none

Device (ca-trustpoint)# crypto pki import AESTEST pkcsl2 bootflash:mycert.pfx password cisco
% Importing pkcsl2...

Source filename [mycert.pfx]?

Reading file from bootflash:mycert.pfx
CRYPTO_PKI: Imported PKCS12 file successfully.
Device (config) #

gNMI Protocol .

. Enabling gNMI in Insecure Mode

Enabling gNMI in Insecure Mode

\}

gNMI Protocol |

Note This task is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.

In a Day Zero setup, first enable the device in insecure mode, then disable it, and enable the secure mode. To
stop gNxI in insecure mode, use the no gnxi server command.

)

Note goNxI insecure and secure servers can run simultaneously on a device.

\}

Note The gnxi commands apply to both gNMI and gRPC Network Operations Interface (gNOI) services. gNxI
tools are a collection of tools for Network Management that use the gNMI and gNOI protocols.

SUMMARY STEPS
1. enable
2. configureterminal
3. gnxi
4. gnxi server
5. gnxi port port-number
6. end
7. show gnxi state
DETAILED STEPS
Procedure
Command or Action Purpose
Step 1 enable Enables privileged EXEC mode.
Example: * Enter your password if prompted.
Device> enable
Step 2 configureterminal Enters global configuration mode.
Example:
Device# configure terminal
Step 3 gnxi Starts the gNxI process.
Example:

Device (config) # gnxi

. gNMI Protocol

| gNMI Protocol
Enabling gNMI in Secure Mode .

Command or Action Purpose
Step 4 gnxi server Enables the gNxI server in insecure mode.
Example:

Device (config) # gnxi server

Step 5 gnxi port port-number Sets the gNxI port to listen to.
Example: * The default insecure gNxI port is 50052.
(Optional) Device (config)# gnxi port 50000
Step 6 end Exits global configuration mode and returns to privileged
EXEC mode.
Example:

Device (config) # end

Step 7 show gnxi state Displays the status of gNxI interfaces.

Example:

Device# show gnxi state

Enabling gNMI in Secure Mode
A\

Note This task is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.

To stop gNxI in secure mode, use the NO gnxi secure-server command.

Note gNxI insecure and secure servers can simultaneously run on a device.

Note The gnxi commands apply to both gNMI and gRPC Network Operations Interface (gNOI) services. gNxI
tools are a collection of tools for Network Management that use the gNMI and gNOI protocols.

SUMMARY STEPS

enable

configureterminal

gnxi

gnxi secure-trustpoint trustpoint-name
gnxi secure-server

gnxi secure-client-auth

gnxi secure-port

end

show gnxi state

©ENDGOHWN

gNMI Protocol .

. Enabling gNMI in Secure Mode

DETAILED STEPS

Procedure

gNMI Protocol |

Command or Action

Purpose

Step 1 enable Enables privileged EXEC mode.
Example: * Enter your password if prompted.
Device> enable
Step 2 configureterminal Enters global configuration mode.
Example:
Device# configure terminal
Step 3 gnxi Starts the gNxI process.
Example:
Device (config) # gnxi
Step 4 gnxi secure-trustpoint trustpoint-name Specifies the trustpoint and cert set that gNxI uses for
authentication.
Example:
Device (config) # gnxi secure-trustpoint trustpointl
Step 5 gnxi secure-server Enables the gNxI server in secure mode.
Example:
Device (config)# gnxi secure-server
Step 6 gnxi secure-client-auth (Optional) The gNxI process authenticates the client
certificate against the root certificate.
Example:
Device (config) # gnxi secure-client-auth
Step 7 gnxi secure-port (Optional) Sets the gNxI port to listen to.
Example: * The default secure gNxI port is 9339.
Device (config) # gnxi secure-port
Step 8 end Exits global configuration mode and returns to privileged
EXEC mode.
Example:
Device (config)# end
Step 9 show gnxi state Displays the status of gNxI servers.

Example:

Device# show gnxi state

Example

The following is sample output from the show gnxi state command:

. gNMI Protocol

| gNMI Protocol
Connecting the gNMI Client .

Device# show gnxi state

State Status

Enabled Up

Connecting the gNMI Client

The gNMI client is connected by using the client and root certificates that are previously configured.

The following example shows how to connect the gNMI client using Python:

gRPC Must be compiled in local dir under path below:

>>> import sys

>>> sys.path.insert (0, "reference/rpc/gnmi/")

>>> import grpc

>>> import gnmi pb2

>>> import gnmi pb2 grpc

>>> gnmi_dir = '/path/to/where/openssl/creds/were/generated/"'

Certs must be read in as bytes

>>> with open(gnmi dir + 'rootCA.pem', 'rb') as f:
>>> ca_cert = f.read()

>>> with open(gnmi dir + 'client.crt', 'rb') as f:
>>> client cert = f.read()

>>> with open(gnmi dir + 'client.key', 'rb') as f:
>>> client key = f.read()

Create credentials object
>>> credentials = grpc.ssl channel credentials(root certificates=ca cert,
private key=client key, certificate chain=client cert)

Create a secure channel:

Default port is 9339, can be changed on ios device with 'gnxi secure-port ####'
>>> port = 9339

>>> host = <HOSTNAME FQDN>

>>> secure_ channel = grpc.secure channel ("%$s:%d" % (host, port), credentials)

Create secure stub:
>>> secure_ stub = gnmi pb2 grpc.gNMIStub (secure channel)

Done! Let's test to make sure it works:

>>> secure stub.Capabilities(gnmi_pb2.CapabilityRequest ())
supported models {

<snip>

}

supported encodings: <snip>

gNMI version: "0.4.0"

gNMI Protocol .

. Configuration Examples for the gNMI Protocol

Configuration Examples for the gNMI Protocol

Example: Enabling gNMI in Insecure Mode
A\

gNMI Protocol |

Note This example is applicable in Cisco IOS XE Amsterdam 17.3.1 and later releases.

The following example shows how to enable the gNxI server in insecure mode:

Device> enable

Device# configure terminal

Device (config) # gnxi

Device (config) # gnxi server

Device (config) # gnxi port 50000 <The default port is 50052.>
Device (config) # end

Device#

Example: Enabling gNMI in Secure Mode
Y

Note This example is applicable in Cisco I0S XE Amsterdam 17.3.1 and later releases.

Additional

The following example shows how to enable the gNxI server in secure mode:

Device> enable

Device# configure terminal

Device (config) # gnxi

Device (config) # gnxi secure-trustpoint trustpointl

()
Device (config) # gnxi secure-server
Device (config) # gnxi secure-client-auth
Device (config) # gnxi secure-port 50001 <The default port is 9339.>
Device (config) # end
Device#

References for the gNMI Protocol

Related Documents

Related Topic Document Title

DevNet https://developer.cisco.com/site/ios-xe/

gNMI https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

. gNMI Protocol

https://developer.cisco.com/site/ios-xe/
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

| gNMI Protocol

Feature Information for the gNMI Protocol .

Related Topic | Document Title

gNMI path https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md
encoding

Standards and RFCs

Standard/RFC Title

RFC 7951 JSON Encoding of Data Modeled with YANG

Technical Assistance

Description

Link

The Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can

subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple

Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

http://www.cisco.com/support

Feature Information for the gNMI Protocol

The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

gNMI Protocol .

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md
http://www.cisco.com/support
http://www.cisco.com/go/cfn

gNMI Protocol |
. Feature Information for the gNMI Protocol

Table 3: Feature Information for the gNMI Protocol

Feature Name Release Feature Information

gNMI Protocol Cisco IOS XE Fuji 16.8.1a | This feature describes the model-driven

configuration and retrieval of operational data
using the gNMI capabilities, GET and SET
RPCs.

This feature was implemented on the
following platforms:

* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches

* Cisco Catalyst 9500 Series Switches

Cisco IOS XE Gibraltar
16.10.1

In Cisco IOS XE Gibraltar 16.10.1, this feature
was implemented on Cisco Catalyst
9500-High Performance Series Switches.

Cisco IOS XE Gibraltar
16.11.1

In Cisco I0S XE Gibraltar 16.11.1, this feature
was implemented on Cisco Catalyst 9600
Series Switches.

Cisco IOS XE Gibraltar
16.12.1

In Cisco IOS XE Gibraltar 16.12.1, this feature
was implemented on the following platforms:

* Cisco Catalyst 9200 and 9200L Series
Switches

* Cisco Catalyst 9300L SKUs

* Cisco cBR-8 Converged Broadband
Router

Cisco IOS XE Amsterdam
17.1.1

In Cisco IOS XE Amsterdam 17.1.1, this
feature was implemented on the following
platforms:

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco ASR 920 Series Aggregation
Services Router

* Cisco Network Convergence System 520
Series

* Cisco Network Convergence System
4200 Series

Cisco IOS XE Amsterdam
17.2.1r

In Cisco IOS XE Amsterdam 17.2.1r, this
feature was implemented on Cisco ASR 1000
Series Aggregation Services Routers.

. gNMI Protocol

| gNMI Protocol
Feature Information for the gNMI Protocol .

Feature Name Release Feature Information

Cisco I0S XE Cupertino In Cisco IOS XE Cupertino 17.8.1, this feature
17.8.1 was implemented on the following platforms:

* Cisco Catalyst 9800-CL Wireless
Controllers

* Cisco Catalyst 9800-40 Wireless
Controllers

* Cisco Catalyst 9800-80 Wireless
Controllers

gNMI IPv6 Support Cisco I0S XE Dublin 17.10.1 | gNMI IPv6 support was enabled in Cisco IOS
XE Dublin 17.10.1.

This feature was implemented on the
following platforms:

* Cisco Catalyst 9200 and 9200L Series
Switches

* Cisco Catalyst 9300, 9300L, and 9300X
Series Switches

* Cisco Catalyst 9400 Series Switches

* Cisco Catalyst 9500 and 9500
High-Performance Series Switches

* Cisco Catalyst 9600 Series Switches

gNMI Username and Cisco I0S XE Gibraltar The Username and Password Authentication

Password Authentication 16.12.1 feature was added to the gNMI protocol. This
feature is supported on all IOS XE platforms
that support gNMI.

gNMI Configuration Cisco IOS XE Amsterdam | All successful configuration changes made

Persistence 17.3.1 through the gNMI SetRequest RPC persists

across device restarts. This feature was
implemented on the following platforms:

* Cisco Catalyst 9200 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches

* Cisco Catalyst 9600 Series Switches

gNMI Protocol .

gNMI Protocol |
. Feature Information for the gNMI Protocol

Feature Name Release Feature Information

gNOI Certificate Management | Cisco IOS XE Amsterdam | The gNOI Certificate Management Service
17.3.1 provides RPCs to install, rotate, get certificate,
revoke certificate, and generate certificate
signing request. This feature was implemented
on the following platforms:

* Cisco Catalyst 9200 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches

* Cisco Catalyst 9600 Series Switches

. gNMI Protocol

| gNMI Protocol

Feature Information for the gNMI Protocol .

Feature Name Release Feature Information
Named Method List Cisco I0S XE Cupertino
17.9.1

gNMI Protocol .

. Feature Information for the gNMI Protocol

gNMI Protocol |

Feature Name

Release

Feature Information

With the introduction of the Named Method
List feature, it is possible to use a custom
method-list name for authentication and
authorization, without changing the existing
AAA configuration of a device. Prior to this
feature, only the default method-list was
supported. For more information, see the
NETCONF Protocol chapter.

This feature was implemented on the
following platforms:

* Cisco 1000 Series Integrated Services
Routers

* Cisco 4000 Series Integrated Services
Routers

* Cisco ASR 900 Series Aggregation
Services Routers

* Cisco ASR 920 Series Aggregation
Services Routers

* Cisco ASR 1000 Aggregation Services
Routers

* Cisco Catalyst 8200 Series Edge
Platforms

* Cisco Catalyst 8300 Series Edge
Platforms

* Cisco Catalyst 8500 Series and 8500L
Series Edge Platforms

* Cisco Catalyst 9200 Series Switches
* Cisco Catalyst 9300 Series Switches
* Cisco Catalyst 9400 Series Switches
* Cisco Catalyst 9500 Series Switches
* Cisco Catalyst 9600 Series Switches

* Cisco Catalyst 9800 Series Wireless
Controllers

« Cisco Cloud Services Router 1000V
Series

* Cisco Network Convergence System 520
Series

* Cisco Network Convergence System

. gNMI Protocol

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/179/b_179_programmability_cg/m_179_prog_yang_netconf.html

| gNMI Protocol

Feature Information for the gNMI Protocol .

Feature Name

Release

Feature Information

4200 Series

PROTO Encoding

Cisco IOS XE Dublin 17.11.1

gNMI protocol supports PROTO encoding.
The gnmi.proto file represents the blueprint
for generating a complete set of client and
server-side procedures that represents the
framework for the gNMI protocol.

This feature was implemented on the
following platforms:

* Cisco Catalyst 9200, 9200L, and 9200X
Series Switches

* Cisco Catalyst 9300, 9300L, and 9300X
Series Switches

* Cisco Catalyst 9400 and 9400X Series
Switches

* Cisco Catalyst 9500, 9500
High-Performance, and 9500X Series
Switches

* Cisco Catalyst 9600 Series Switches

gNMI Protocol .

gNMI Protocol |
. Feature Information for the gNMI Protocol

. gNMI Protocol

	gNMI Protocol
	Restrictions for gNMI Protocol
	Information About the gNMI Protocol
	About GNMI
	JSON IETF Encoding for YANG Data Trees
	Proto Encoding
	gNMI GET Request
	gNMI SetRequest
	gNMI Namespace
	gNMI Wildcards
	gNMI Configuration Persistence
	gNMI Username and Password Authentication
	gNMI Error Messages

	How to Enable the gNMI Protocol
	Creating Certs with OpenSSL on Linux
	Installing Certs on a Device Through the CLI
	Enabling gNMI in Insecure Mode
	Enabling gNMI in Secure Mode
	Connecting the gNMI Client

	Configuration Examples for the gNMI Protocol
	Example: Enabling gNMI in Insecure Mode
	Example: Enabling gNMI in Secure Mode

	Additional References for the gNMI Protocol
	Feature Information for the gNMI Protocol

