EEM Python Module

Embedded Event Manager (EEM) policies support Python scripts. Python scripts can be executed as part of
EEM actions in EEM applets.

* Prerequisites for the EEM Python Module, on page 1

* Information About EEM Python Module, on page 1

* How to Configure the EEM Python Policy, on page 4

+ Additional References EEM Python Module, on page 9

* Feature Information for EEM Python Module, on page 10

Prerequisites for the EEM Python Module

Guest Shell must be working within the container. Guest Shell is not enabled by default. For more information
see the Guest Shell feature.

Information About EEM Python Module

Python Scripting in EEM

Embedded Event Manager (EEM) policies support Python scripts. You can register Python scripts as EEM
policies, and execute the registered Python scripts when a corresponding event occurs. The EEM Python script
has the same event specification syntax as the EEM TCL policy.

Configured EEM policies run within the Guest Shell. Guest Shell is a virtualized Linux-based environment,
designed to run custom Linux applications, including Python for automated control and management of Cisco
devices. The Guest Shell container provides a Python interpreter.

EEM Python Package

The EEM Python package can be imported to Python scripts for running EEM-specific extensions.

EEM Python Module .

EEM Python Module |
. Python-Supported EEM Actions

\)

Note The EEM Python package is available only within the EEM Python script (The package can be registered
with EEM, and has the EEM event specification in the first line of the script.) and not in the standard Python
script (which is run using the Python script name).

The Python package includes the following application programming interfaces (APIs):

* Action APIs—Perform EEM actions and have default parameters.

* CLI-execution APIs—Run IOS commands, and return the output. The following are the list of
CLI-execution APIs:

* eem_cli_open()

e cem_cli_exec()

e ecem_cli_read()

* eem_cli_read line()

e ecem_cli_run()

e cem_cli_run_interactive()
e ecem_cli_read pattern()

e eem_cli_write()

e cem_cli_close()

* Environment variables-accessing APIs—Get the list of built-in or user-defined variables. The following
are the environment variables-accessing APIs:

* cem_event reqinfo ()-Returns the built-in variables list.

» eem_user_variables()-Returns the current value of an argument.

Python-Supported EEM Actions

The Python package (is available only within the EEM script, and not available for the standard Python script)
supports the following EEM actions:

* Syslog message printing

* Send SNMP traps

* Reload the box

* Switchover to the standby device
* Run a policy

* Track Object read

* Track Object Set

* Cisco Networking Services event generation

. EEM Python Module

| EEM Python Module
EEM Variables]

The EEM Python package exposes the interfaces for executing EEM actions. You can use the Python script
to call these actions, and they are forwarded from the Python package via Cisco Plug N Play (PnP) to the
action handler.

EEM Variables

An EEM policy can have the following types of variables:

* Event-specific built-in variables—A set of predefinied variables that are populated with details about
the event that triggered the policy. The eem_event reqinfo () API returns the builtin variables list. These
variables can be stored in the local machine and used as local variables. Changes to local variables do
not reflect in builtin variables.

* User-defined variables—Variables that can be defined and used in policies. The value of these variables
can be referred in the Python script. While executing the script, ensure that the latest value of the variable
is available. The eem_user variables() API returns the current value of the argument that is provided in
the API.

EEM CLI Library Command Extensions

The following CLI library commands are available within EEM for the Python script to work:

* cem_cli_close()—Closes the EXEC process and releases the VTY and the specified channel handler
connected to the command.

* cem_cli_exec—Writes the command to the specified channel handler to execute the command. Then
reads the output of the command from the channel and returns the output.

» eem_cli_open—Allocates a VTY, creates an EXEC CLI session, and connects the VTY to a channel
handler. Returns an array including the channel handler.

* cem_cli_read()—Reads the command output from the specified CLI channel handler until the pattern of
the device prompt occurs in the contents read. Returns all the contents read up to the match.

* cem_cli_read line()—Reads one line of the command output from the specified CLI channel handler.
Returns the line read.

* ecem_cli_read pattern()—Reads the command output from the specified CLI channel handler until the
pattern that is to be matched occurs in the contents read. Returns all the contents read up to the match.

« eem_cli_run()—TIterates over the items in the clist and assumes that each one is a command to be executed
in the enable mode. On success, returns the output of all executed commands and on failure, returns
error.

» eem_cli_run_interactive()—Provides a sublist to the clist which has three items. On success, returns the
output of all executed commands and on failure, returns the error. Also uses arrays when possible as a
way of making things easier to read later by keeping expect and reply separated.

» eem_cli_write()—Writes the command that is to be executed to the specified CLI channel handler. The
CLI channel handler executes the command.

EEM Python Module .

. How to Configure the EEM Python Policy

EEM Python Module |

How to Configure the EEM Python Policy

For the Python script to work, you must enable the Guest Shell. For more information, see the Guest Shell

chapter.

Registering a Python Policy

SUMMARY STEPS

enable

configure terminal

event manager directory user policy path
event manager policy policy-filename
exit

show event manager policy registered
show event manager history events

NOo A WN A

DETAILED STEPS

Procedure

Command or Action

Purpose

Step 1 enable Enables privileged EXEC mode.
Example: * Enter your password if prompted.
Device> enable
Step 2 configure terminal Enters global configuration mode.
Example:
Device# configure terminal
Step 3 event manager directory user policy path Specifies a directory to use for storing user library files or
user-defined EEM policies.
Example:
Device (config) # event manager directory user policy) Note
flash:/user library You must have a policy in the specified path. For example,
in this step, the eem_script.py policy is available in the
flash:/user_library folder or path.
Step 4 event manager policy policy-filename Registers a policy with EEM.

Example:

Device (config) # event manager policy eem script.py]

. EEM Python Module

* The policy is parsed based on the file extension. If the
file extension is .py, the policy is registered as Python
policy.

* EEM schedules and runs policies on the basis of an
event specification that is contained within the policy
itself. When the event manager policy command is

| EEM Python Module
Registering a Python Policy .

Command or Action Purpose

invoked, EEM examines the policy and registers it to
be run when the specified event occurs.

Step 5 exit Exits global configuration mode and returns to privileged

EXEC mode.
Example:

Device (config) # exit

Step 6 show event manager policy registered Displays the registered EEM policies.

Example:

Device# show event manager policy registered

Step 7 show event manager history events Displays EEM events that have been triggered.

Example:

Device# show event manager history events

Example
The following is sample output from the show event manager policy registered command:

Device# show event manager policy registered

No. Class Type Event Type Trap Time Registered Name
1 script user multiple Off Tue Aug 2 22:12:15 2016 multi 1.py
1: syslog: pattern {COUNTER}
2: none: policyname {multi 1l.py} sync {yes}
trigger delay 10.000
correlate event 1 or event 2
attribute tag 1 occurs 1
nice 0 queue-priority normal maxrun 100.000 scheduler rp primary Secu none

2 script user multiple Off Tue Aug 2 22:12:20 2016 multi 2.py
1: syslog: pattern {COUNTER}

2: none: policyname {multi 2.py} sync {yes}

trigger
correlate event 1 or event 2

nice 0 queue-priority normal maxrun 100.000 scheduler rp primary Secu none

3 script user multiple Off Tue Aug 2 22:13:31 2016 multi.tcl
1: syslog: pattern {COUNTER}

2: none: policyname {multi.tcl} sync {yes}

trigger
correlate event 1 or event 2
attribute tag 1 occurs 1

nice 0 queue-priority normal maxrun 100.000 scheduler rp primary Secu none

EEM Python Module .

EEM Python Module |
. Running Python Scripts as Part of EEM Applet Actions

Running Python Scripts as Part of EEM Applet Actions

Python Script: eem_script.py

An EEM applet can include a Python script with an action command. In this example, an user is
trying to run a standard Python script as part of the EEM action, however; EEM Python package is
not available in the standard Python script. The standard Python script in IOS has a package named
fromcli import cli,clip and this package can be used to execute IOS commands.

import sys
from cli import cli,clip,execute,executep,configure,configurep

intf= sys.argv([1l:]

intf = '"'.join(intf[0]

print ('This script is going to unshut interface %s and then print show ip interface
brief'$intf)

if intf == 'loopback55':
configurep (["interface loopback55","no shutdown","end"])
else

)

cmd='int %s,no shut ,end' % intf
configurep (cmd.split (', "'))

executep ('show ip interface brief')

This following is sample output from the guestshell run python command.

Device# guestshell run python /flash/eem script.py loop55

This script is going to unshut interface loop55 and then print show ip interface brief
Line 1 SUCCESS: int loopb55

Line 2 SUCCESS: no shut

Line 3 SUCCESS: end

Interface IP-Address OK? Method Status Protocol
Vlanl unassigned YES NVRAM administratively down down
GigabitEthernet0/0 5.30.15.37 YES NVRAM up up
GigabitEthernetl/0/1 unassigned YES unset down down
GigabitEthernetl/0/2 unassigned YES unset down down
GigabitEthernetl/0/3 unassigned YES unset down down
GigabitEthernetl1l/0/4 unassigned YES unset up up
GigabitEthernetl/0/5 unassigned YES unset down down
GigabitEthernetl/0/6 unassigned YES unset down down
GigabitEthernetl/0/7 unassigned YES unset down down
GigabitEthernetl1l/0/8 unassigned YES unset down down
GigabitEthernetl/0/9 unassigned YES unset down down
GigabitEthernetl/0/10 unassigned YES unset down down
GigabitEthernetl/0/11 unassigned YES unset down down
GigabitEthernetl/0/12 unassigned YES unset down down
GigabitEthernetl/0/13 unassigned YES unset down down
GigabitEthernetl/0/14 unassigned YES unset down down
GigabitEthernetl/0/15 unassigned YES unset down down
GigabitEthernetl/0/16 unassigned YES unset down down
GigabitEthernetl/0/17 unassigned YES unset down down
GigabitEthernetl1/0/18 unassigned YES unset down down
GigabitEthernetl/0/19 unassigned YES unset down down
GigabitEthernetl1l/0/20 unassigned YES unset down down
GigabitEthernetl/0/21 unassigned YES unset down down
GigabitEthernetl1l/0/22 unassigned YES unset down down

. EEM Python Module

| EEM Python Module
Adding a Python Script in an EEM Applet .

GigabitEthernetl1/0/23 unassigned YES unset up up
GigabitEthernetl1/0/24 unassigned YES unset down down
GigabitEthernetl/1/1 unassigned YES unset down down
GigabitEthernetl/1/2 unassigned YES unset down down
GigabitEthernetl/1/3 unassigned YES unset down down
GigabitEthernetl/1/4 unassigned YES unset down down
Tel/1/1 unassigned YES unset down down

Tel/1/2 unassigned YES unset down down

Tel/1/3 unassigned YES unset down down

Tel/1/4 unassigned YES unset down down

Loopback55 10.55.55.55 YES manual up up

Device#

Jun 7 12:51:20.549: $LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback55,
changed state to up

Jun 7 12:51:20.549: SLINK-3-UPDOWN: Interface Loopbackb5, changed state to up

The following is a sample script for printing messages to the syslog. This script must be stored in a
file, copied to the file system on the device, and registered using the event manager policy file.
::cisco::eem::event register syslog tag "1" pattern COUNTER maxrun 200

import eem
import time

eem.action_syslog ("SAMPLE SYSLOG MESSAGE","6","TEST")

The following is sample script to print EEM environment variables. This script must be stored in a
file, copied to the file system on the device, and registered using the event manager policy file.

::cisco::eem::event register syslog tag "1" pattern COUNTER maxrun 200

import eem
import time

c = eem.env_reqginfo ()

print "EEM Environment Variables"
for k,v in c.iteritems () :
print "KEY : " + k + str(" ---> ") + v

print "Built in Variables"
for i,j in a.iteritems()
print "KEY : " + i + str(" ---> ") + j

Adding a Python Script in an EEM Applet

SUMMARY STEPS

enable

configureterminal

event manager applet applet-name

event [tag event-tag] syslog pattern regular-expression
action label cli command cli-string

apwbd-=

EEM Python Module .

. Adding a Python Script in an EEM Applet

DETAILED STEPS

EEM Python Module |

6. action label cli command cli-string [pattern pattern-string |
7. end
8. show event manager policy active
9. show event manager history events
Procedure

Command or Action

Purpose

Step 1 enable Enables privileged EXEC mode.
Example: * Enter your password if prompted.
Device> enable
Step 2 configureterminal Enters global configuration mode.
Example:
Device# configure terminal
Step 3 event manager applet applet-name Registers an applet with the Embedded Event Manager
EEM) and enters applet configuration mode.
Example: () PP g
Device (config) # event manager applet
interface Shutdown
Step 4 event [tag event-tag] syslog pattern regular-expression | Specifies a regular expression to perform the syslog message
pattern match.
Example:
Device (config-applet) # event syslog pattern
"Interface Loopback55,
changed state to administratively down"
Step 5 action label cli command cli-string Specifies the IOS command to be executed when an EEM
applet is triggered.
Example: PP g8
Device (config-applet)# action 0.0 cli command "en"
Step 6 action label cli command cli-string [pattern pattern-string | Specifies the action to be specified with the pattern
] keyword.
Example: * Specify a regular expression pattern string that will
Device (config-applet)# action 1.0 cli command nunchthenﬁxtsohcﬁed;nonqn.
"guestshell run python3 /bootflash/eem script.py
loop55"
Step 7 end Exits applet configuration mode and returns to privileged
EXEC mode.
Example:
Device (config-applet) # end
Step 8 show event manager policy active Displays EEM policies that are executing.

Example:

. EEM Python Module

| EEM Python Module

Additional References EEM Python Module .

Command or Action

Purpose

Device# show event manager policy active

Step 9 show event manager history events

Example:

Device# show event manager history events

Displays the EEM events that have been triggered.

What to do next

The following example shows how to trigger the Python script configured in the task:

Device (config) # interface loopback 55
Device (config-if)# shutdown

Device (config-if)# end

Device#

Mar 13 10:53:22.358 EDT: %SYS-5-CONFIG_I: Configured from console by console
Mar 13 10:53:24.156 EDT: $LINK-5-CHANGED:

state to down

Mar 13 10:53:27.319 EDT: S$LINK-3-UPDOWN:

administratively down

Enter configuration commands, one per line.

Line protocol on Interface Loopback55, changed

Interface Loopback55, changed state to

End with CNTL/Z.

Mar 13 10:53:35.38 EDT: SLINEPROTO-5-UPDOWN: Line protocol on Interface Loopback55, changed

state to up

*Mar 13 10:53:35.39 EDT $LINK-3-UPDOWN:

+++ 10:54:33 edi37 (default) exec +++
show ip interface br

Interface IP-Address
GigabitEthernet0/0/0 unassigned
GigabitEthernet0/0/1 unassigned
GigabitEthernet0/0/2 10.1.1.31
GigabitEthernet0/0/3 unassigned

GigabitEthernetO 192.0.2.1
Loopback55 198.51.100.1
Loopback66 172.16.0.1
Loopback77 192.168.0.1
Loopback88 203.0.113.1

Interface Loopback55, changed state to up

OK?
YES
YES
YES
YES
YES
YES
YES
YES
YES

Method Status Protocol
unset down down
unset down down
DHCP up up

unset down down
manual up up
manual up up
manual up up
manual up up
manual up up

Additional References EEM Python Module

Related Documents

Related Topic

Document Title

EEM configuration

Embedded Event Manager Configuration Guide

EEM commands

Embedded Event Manager Command Reference

Guest Shell configuration

Guest Shell

EEM Python Module .

http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/configuration/xe-3s/eem-xe-3s-book.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/eem/command/eem-cr-book.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/guest_shell.html

EEM Python Module |
. Feature Information for EEM Python Module

Technical Assistance

Description Link

The Cisco Support website provides extensive online resources, including | http://www.cisco.com/support
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can

subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple

Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for EEM Python Module

The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

. EEM Python Module

http://www.cisco.com/support
http://www.cisco.com/go/cfn

| EEM Python Module

Table 1: Feature Information for EEM Python Module

Feature Information for EEM Python Module .

Feature Name Release Feature Information

EEM Python Module Cisco IOS XE Everest This feature supports Python scripts as EEM
16.5.1a policies.
Cisco IOS XE Everest No new commands were introduced.
16.5.1b

In Cisco IOS XE Everest 16.5.1a, this feature
was implemented on the following platforms:

* Cisco Catalyst 3650 Series Switches
* Cisco Catalyst 3850 Series Switches
* Cisco Catalyst 9300 Series Switches

In Cisco IOS XE Everest 16.5.1b, this feature
was implemented on the following platforms:

* Cisco ISR 4000 Series Integrated Service
Routers

Cisco IOS XE Everest 16.6.2

In Cisco IOS XE Everest 16.6.2, this feature
was implemented on Cisco Catalyst 9400
Series Switches.

Cisco 10S XE Fuji 16.8.1a

In Cisco IOS XE Fuji 16.8.1a, this feature was
implemented on Cisco Catalyst 9500-High
Performance Series Switches

EEM Python Module .

EEM Python Module |
. Feature Information for EEM Python Module

. EEM Python Module

	EEM Python Module
	Prerequisites for the EEM Python Module
	Information About EEM Python Module
	Python Scripting in EEM
	EEM Python Package
	Python-Supported EEM Actions
	EEM Variables
	EEM CLI Library Command Extensions

	How to Configure the EEM Python Policy
	Registering a Python Policy
	Running Python Scripts as Part of EEM Applet Actions
	Adding a Python Script in an EEM Applet

	Additional References EEM Python Module
	Feature Information for EEM Python Module

