CONTENTS

CHAPTER 1

<table>
<thead>
<tr>
<th>Programmability</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>boot ipxe</td>
<td>2</td>
</tr>
<tr>
<td>boot manual</td>
<td>3</td>
</tr>
<tr>
<td>boot system</td>
<td>4</td>
</tr>
<tr>
<td>default boot</td>
<td>5</td>
</tr>
<tr>
<td>dig</td>
<td>7</td>
</tr>
<tr>
<td>guestshell</td>
<td>9</td>
</tr>
<tr>
<td>guestshell portforwarding</td>
<td>10</td>
</tr>
<tr>
<td>install</td>
<td>12</td>
</tr>
<tr>
<td>iox</td>
<td>17</td>
</tr>
<tr>
<td>mlog</td>
<td>18</td>
</tr>
<tr>
<td>netconf legacy</td>
<td>19</td>
</tr>
<tr>
<td>net-dhcp</td>
<td>20</td>
</tr>
<tr>
<td>net-debug</td>
<td>21</td>
</tr>
<tr>
<td>net-show</td>
<td>23</td>
</tr>
<tr>
<td>net-tcp-bufs</td>
<td>24</td>
</tr>
<tr>
<td>net-tcp-mss</td>
<td>25</td>
</tr>
<tr>
<td>net6-dhcp</td>
<td>26</td>
</tr>
<tr>
<td>net6-show</td>
<td>27</td>
</tr>
<tr>
<td>ping</td>
<td>28</td>
</tr>
<tr>
<td>ping4</td>
<td>29</td>
</tr>
<tr>
<td>ping6</td>
<td>30</td>
</tr>
<tr>
<td>show install</td>
<td>31</td>
</tr>
<tr>
<td>show platform yang-management process</td>
<td>34</td>
</tr>
<tr>
<td>show telemetry ietf subscription</td>
<td>36</td>
</tr>
</tbody>
</table>
Programmability

- boot ipxe, on page 2
- boot manual, on page 3
- boot system, on page 4
- default boot, on page 5
- dig, on page 7
- guestshell, on page 9
- guestshell portforwarding, on page 10
- install, on page 12
- iox, on page 17
- mlog, on page 18
- netconf legacy, on page 19
- net-dhcp, on page 20
- net-debug, on page 21
- net-show, on page 23
- net-tcp-bufs, on page 24
- net-tcp-mss, on page 25
- net6-dhcp, on page 26
- net6-show, on page 27
- ping, on page 28
- ping4, on page 29
- ping6, on page 30
- show install, on page 31
- show platform yang-management process, on page 34
- show telemetry ietf subscription, on page 36
boot ipxe

To configure iPXE boot, use the **boot ipxe** command in global configuration mode. To disable the configuration, use the **no** form of this command.

```
boot ipxe {forever |timeout seconds} switch switch-number
no boot ipxe {forever |timeout seconds} switch switch-number
```

Syntax Description

- **forever**
 - Attempts iPXE boot forever.
- **timeout seconds**
 - Configures a timeout in seconds for iPXE network boot. Valid values are from 1 to 2147483647.
- **switch switch-number**
 - Enables iPXE boot for switches in the stack. Valid values are from 0 to 9.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Denali 16.3.2</td>
<td>This command was introduced on Cisco Catalyst 3650 and 3850 Series Switches.</td>
</tr>
<tr>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This command was implemented on Cisco Catalyst 9300 and 9500 Series Switches</td>
</tr>
</tbody>
</table>

Usage Guidelines

iPXE is an open source implementation of the Preboot eXecution Environment (PXE). Bootloaders boot an image located on an HTTP, FTP, or a TFTP server.

If the **forever** keyword is configured, the switch sends Dynamic Host Configuration Protocol (DHCP) requests forever. If the **timeout** keyword is configured, DHCP requests are sent for the specified amount of time, and when the timeout expires, the switch reverts to device boot.

Example

The following example shows how to configure an iPXE boot timeout for switch 2:

```
Device(config)# boot ipxe timeout 240 switch 2
```
boot manual

To configure manual boot, use the `boot manual` command in global configuration mode. To remove the configuration, use the `no` form of this command.

```
boot manual switch switch-number
no boot manual switch switch-number
```

Syntax Description

- `switch switch-number` Configures manual boot for the switches in the stack.

Command Default

Manual boot is enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Denali 16.3.2</td>
<td>This command was introduced on Cisco Catalyst 3650 and 3850 Series Switches.</td>
</tr>
<tr>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This command was implemented on Cisco Catalyst 9300 and 9500 Series Switches</td>
</tr>
</tbody>
</table>

Usage Guidelines

When manual boot is disabled, and the switch reloads, the boot process starts automatically. When manual boot is disabled, the bootloader determines whether to execute a device boot or a network boot based on the configured value of the iPXE ROMMON variable.

Example

The following example shows how to configure manual boot for switch 2:

```
Device(config)# boot manual switch 2
```
To enable a system image boot, use the `boot system` command in global configuration mode. To disable the configuration, use the `no` form of this command.

```
boot system switch {all number} {flash: |ftp: |http: |tftp:}
```

```
no boot system [{switch |{all number}}] [{flash: |ftp: |http: |tftp:}]
```

Syntax Description

- **flash:** Specifies the flash filesystem to boot an image.
- **ftp:** Specifies an FTP location to boot an image.
- **http:** Specifies an HTTP location to boot an image.
- **tftp:** Specifies a TFTP location to boot an image.
- **switch number** Enables booting for switches in a stack. Valid values are from 0 to 9.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Denali 16.3.2</td>
<td>This command was introduced on Cisco Catalyst 3650 and 3850 Series Switches.</td>
</tr>
<tr>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This command was implemented on Cisco Catalyst 9300 and 9500 Series Switches</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can either use an IPv4 or an IPv6 address for the remote FTP/HTTP/TFTP servers. When using an IPv6 address, you must enter the IPv6 address inside square brackets (as per RFC 2732); otherwise, the device will not boot.

Note

IPv6 is not supported on Catalyst 9000 Series Switches.

Example

The following example shows how to boot an image from an IPv4 HTTP server:

```
Device(config)# boot system switch 1 http://192.0.2.42/image-filename
```

The following example shows how to boot an image from an IPv6 HTTP server:

```
Device(config)# boot system switch 1 http://[2001:db8::1]/image-filename
```
default boot

To modify the default boot system parameters, use the `default boot` command in global configuration mode.

```
default boot {ipxe {forever |timeout |seconds} |manual |system {flash: |ftp: |http: |tftp:}} switch number
```

Syntax Description

- **ipxe**: Enables iPXE boot.
- **forever**: Attempts iPXE boot forever.
- **timeout seconds**: Configures a boot timeout in seconds. Valid values are from 1 to 2147483647.
- **manual**: Enables manual boot.
- **system**: Enables a system image boot.
- **flash:** Specifies the flash filesystem to boot an image.
- **ftp:** Specifies an FTP location to boot an image.
- **http:** Specifies an HTTP location to boot an image.
- **tftp:** Specifies a TFTP location to boot an image.
- **switch number**: Enables booting for switches in a stack. Valid values are from 0 to 9.

Command Default

Device boot is enabled.

Command Modes

Global configuration (config)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Denali 16.3.2</td>
<td>This command was introduced on Cisco Catalyst 3650 and 3850 Series Switches.</td>
</tr>
<tr>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This command was implemented on Cisco Catalyst 9300 and 9500 Series Switches</td>
</tr>
</tbody>
</table>

Usage Guidelines

You can either use the `no boot ipxe` or the `default boot ipxe` command to configure device boot.

If the `forever` keyword is configured, the switch sends Dynamic Host Configuration Protocol (DHCP) requests forever. If the `timeout` keyword is configured, DHCP requests are sent for the specified amount of time, and when the timeout expires, the switch reverts to device boot.

Example

The following example shows how to enable the default boot mode:

```
```
Device(config)# default boot ipxe
dig

To do a lookup of the Domain Name System (DNS) server, use the `dig` command in rommon mode.

```
dig hostname {v4 v6} [{dns-server-address}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>DNS host name</td>
</tr>
<tr>
<td>v4</td>
<td>IPv4 address.</td>
</tr>
<tr>
<td>v6</td>
<td>IPv6 address.</td>
</tr>
<tr>
<td>dns-server-address</td>
<td>(Optional) DNS Server IP address.</td>
</tr>
</tbody>
</table>

Command Modes

Rommon

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command does a look up of the DNS name and displays the IP/IPv6 address of the DNS server.

Example

The following is sample output from the `dig hostname` command:

```
Device: dig example.org
DNS lookup using 2001:DB8::1
addr = 2001:DB8:0000:0000:0000:0000:0000:0001
```

The following is sample output from the `dig hostname v4` command:

```
Device: dig example.org v4
DNS lookup using 10.29.27.5
addr = 172.16.0.1
```

The following is sample output from the `dig hostname v4 dns-server-address` command:

```
Device: dig example.org v4 10.29.27.5
DNS lookup using 10.29.27.5
addr = 172.16.0.1
```

The following is sample output from the `dig hostname v6` command:

```
Device: dig example.org v6
DNS lookup using 2001:DB::1
addr = 2001:DB8:0000:0000:0000:0000:0000:0001
```
<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>net-debug</td>
<td>Displays or changes the network debug values.</td>
</tr>
</tbody>
</table>
guestshell

To configure Guestshell infrastructure functionality, use the `guestshell` command in Privileged EXEC mode.

```
guestshell {destroy |disable |enable |run [{linux-executable}]} 
```

Syntax Description
- `destroy` Deactivates and uninstalls the Guestshell service.
- `disable` Disables the Guestshell service.
- `enable` Disables the Guestshell service.
- `run` [`linux-executable`] Executes or runs a Linux program in the Guestshell.

Command Default
Privileged EXEC (#)

Command Modes
- Privileged EXEC (#)

Command History
- Cisco IOS XE Everest 16.5.1
 - This command was introduced.

Usage Guidelines
Guestshell is an embedded Linux environment that allows customers to develop and run custom Python applications for automated control and management of Cisco switches. Guestshell is packaged as a Cisco application hosting framework (CAF)-formatted tar file (guest_shell.tar) into the Cisco IOS XE Everest 16.5.x release image read-only file system.

Configure the `iox` command in global configuration mode, before configuring this command. IOx is the Cisco-developed framework for hosting customer-deployed Linux applications on Cisco networking systems.

Example
The following example shows how to enable and run the Guestshell:

```
Device# configure terminal
Device(config)# iox
Device(config)# exit
Device# guestshell enable
Device# guestshell run
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iox</td>
<td>Configure IOx services.</td>
</tr>
</tbody>
</table>
guestshell portforwarding

To enable Guest Shell port forwarding, use the **guestshell portforwarding** command in privileged EXEC mode.

```
guestshell portforwarding {add table-entry entry-name service {tcp | udp} source-port port-number destination-port port-number | delete table-entry entry-name }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>Adds an IP table entry.</td>
</tr>
<tr>
<td>table-entry entry-name</td>
<td>Specifies the IP table name. The table-name argument must be unique, and it can be alphanumeric characters.</td>
</tr>
<tr>
<td>service</td>
<td>Specifies the service protocol.</td>
</tr>
<tr>
<td>tcp</td>
<td>Specifies TCP as the service protocol.</td>
</tr>
<tr>
<td>udp</td>
<td>Specifies UDP as the service protocol.</td>
</tr>
<tr>
<td>source-port port-number</td>
<td>Specifies the source port. Valid values for the port-number argument are from 1 to 65535.</td>
</tr>
<tr>
<td>destination-port port-number</td>
<td>Specifies the destination port. Valid values for the port-number argument are from 1 to 65535.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes an IP table entry.</td>
</tr>
</tbody>
</table>

Command Default

Port forwarding is not enabled.

Command Modes

Privileged EXEC (#)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use this command to enable port forwarding for Guest Shell, when it connected through the GigabitEthernet 0/0 management interface.

Examples

The following example shows how to enable port forwarding for Guest Shell:

```
Device# configure terminal
Device(config)# iox
```
Device(config)# exit
Device# guestshell portforwarding add table-entry table1 service tcp
 source-port 32 destination-port 9
Device#

The following example shows how to disable port forwarding for Guest Shell:

Device# guestshell portforwarding delete table-entry table1
Device#

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>guestshell</td>
<td>Configures the Guest Shell infrastructure functionality.</td>
</tr>
</tbody>
</table>
To install data model update packages, use the `install` command in privileged EXEC mode.

```plaintext

Syntax Description

| activate | Validates whether the model update package is added through the install add command, and restarts the NETCONF processes (confd and opdatamgrd). This keyword runs a compatibility check, updates package status, and if the package can be restarted, it triggers post-install scripts to restart the necessary processes, or triggers a reload for non-restartable packages. | | | | |
| file | Specifies the package to be activated. |
| prompt-level {all | none} | (Optional) Prompts the user about installation activities. For example, the activate keyword, automatically triggers a reload for packages that require a reload. Before activating the package, a message will prompt users as to whether they want to continue. The all keyword allows you to enable prompts. The none keyword disables prompts. |
| add | Copies files from a remote location (via FTP, TFTP) to a device, and performs a compatibility check for the platform and image versions. This keyword runs base compatibility checks to ensure that a specified package is supported on a platform. It also adds an entry in the package file, so that the status can be monitored and maintained. |
| {http: | https: | rcp: | scp: | tftp:} | Specifies the package to be added. |
### commit
Makes changes persistent over reloads.
You can do a commit after activating a package, while the system is up, or after the first reload. If a package is activated, but not committed, it remains active after the first reload, but not after the second reload.

### deactivate
Deactivates an installed package.
Deactivating a package also updates the package status and triggers a process restart or a reload.

### remove
Remove installed packages.
The package file is removed from the file system. The `remove` keyword can only be used on packages that are currently inactive.

### inactive
Removes all inactive packages from the device.

### rollback
Rollbacks the data model update package to the base version, the last committed version, or a known commit ID, and restarts NECONF processes.

### to base
Returns to the base image.

### committed
Returns to the installation state when the last commit operation was performed.

### id install-ID
Returns to the specific install point ID. Valid values are from 1 to 4294967295.

---

**Command Default**
Model update packages are not installed.

**Command Modes**
Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced on the following platforms:</td>
</tr>
<tr>
<td></td>
<td>• Cisco 4000 Series Integrated Services Routers</td>
</tr>
<tr>
<td></td>
<td>• Cisco Catalyst 9300 Series Switches</td>
</tr>
<tr>
<td></td>
<td>• Cisco Catalyst 9500 Series Switches</td>
</tr>
<tr>
<td></td>
<td>• Cisco Cloud Services Router 1000v</td>
</tr>
<tr>
<td></td>
<td>• Cisco Integrated Services Virtual Routers (ISRv)</td>
</tr>
</tbody>
</table>

In Service Model Update adds new data models or extend functionality to existing data models. The update package provides YANG model enhancements outside of a release cycle. The update package is a superset of all existing models; it includes all existing models as well as updated YANG models.

A model update package must be added prior to activating the update package. A package must be deactivated, before it is removed from the bootflash.

**Cisco 4000 Series Integrated Services Routers**

The following example shows how to add an install package on a device:

```
Device# install add file tftp://172.16.0.1/tftpboot/folder1/isr4300-universalk9.2017-01-10_13.15.1.CSCxxxxxxx.dmp.bin
```

```
install add: START Sun Feb 26 05:57:04 UTC 2017
Downloading file tftp://172.16.0.1/tftpboot/folder1/isr4300-universalk9.2017-01-10_13.15.1.CSCxxxxxxx.dmp.bin
Finished downloading file tftp://172.16.0.1/tftpboot/folder1/isr4300-universalk9.2017-01-10_13.15.1.CSCxxxxxxx.dmp.bin
SUCCESS: install_add /bootflash/isr4300-universalk9.2017-01-10_13.15.1.CSCxxxxxxx.dmp.bin
```

```
Sun Feb 26 05:57:22 UTC 2017
```

The following example shows how to activate an install package:

```
Device# install activate file bootflash:
isr4300-universalk9.2017-01-10_13.15.1.CSCxxxxxxx.dmp.bin
```

```
install_activate: START Sun Feb 26 05:58:41 UTC 2017
DMP package.
Netconf processes stopped
SUCCESS: install_activate /bootflash/isr4300-universalk9.2017-01-10_13.15.1.CSCxxxxxxx.dmp.bin
```

```
Sun Feb 26 05:58:58 UTC 2017
```

The following example shows how to commit an installed package:

```
Programmability Command Reference, Cisco IOS XE Fuji 16.7.1
```

```
*Feb 26 05:58:47.661: %DMI-4-SUB_READ_FAIL: SIP0: vtyserverutild:
Confd subscription socket read failed Lost connection to ConfD (45): EOF on socket to ConfD.
*Feb 26 05:59:43.269: %DMI-5-SYNC_COMPLETE: SIP0: syncfd:
The running configuration has been synchronized to the NETCONF running data store.
```

The following example shows how to commit an installed package:
**Device**

```
install commit
```

*install_commit: START Sun Feb 26 06:46:48 UTC 2017
SUCCESS: install_commit Sun Feb 26 06:46:52 UTC 2017

The following example shows how to rollback to the base package:

**Device**

```
install rollback to base
```

*install_rollback: START Sun Feb 26 06:50:29 UTC 2017
7 install_rollback: Restarting impacted processes to take effect
7 install_rollback: restarting confd

*Feb 26 06:50:34.957: %DMI-4-CONTROL_SOCKET_CLOSED: SIP0: syncfd:
  Confd control socket closed Lost connection to ConfD (45): EOF on socket to ConfD.
*Feb 26 06:50:34.962: %DMI-4-CONTROL_SOCKET_CLOSED: SIP0: nesd:
  Confd control socket closed Lost connection to ConfD (45): EOF on socket to ConfD.
*Feb 26 06:50:34.963: %DMI-4-SUB_READ_FAIL: SIP0: vtyserverutil:
  Confd subscription socket read failed Lost connection to ConfD (45):
  EOF on socket to ConfD.Netconf processes stopped
7 install_rollback: DMP activate complete
SUCCESS: install_rollback Sun Feb 26 06:50:41 UTC 2017

*Feb 26 06:51:28.901: %DMI-5-SYNC_START: SIP0: syncfd:
  External change to running configuration detected.
The running configuration will be synchronized to the NETCONF running data store.
*Feb 26 06:51:30.339: %DMI-5-SYNC_COMPLETE: SIP0: syncfd:
  The running configuration has been synchronized to the NETCONF running data store.

**Cisco Catalyst 3000 Series Switches**

The following example shows how to add an install package on a device:

**Device**

```
install add file tftp://172.16.0.1//tftpboot/folder1/cat3k_caa-universalk9.16.06.01.CSCxxxxxxx.dmp.bin
```

*install_add: START Sat Jul 29 05:57:04 UTC 2017
Download file tftp://172.16.0.1//tftpboot/folder1/cat3k_caa-universalk9.16.06.01.CSCxxxxxxx.dmp.bin
Finished downloading file tftp://172.16.0.1//tftpboot/folder1/cat3k_caa-universalk9.16.06.01.CSCxxxxxxx.dmp.bin to bootflash:cat3k_caa-universalk9.16.06.01.CSCxxxxxxx.dmp.bin
SUCCESS: install_add /bootflash/... Sat Jul 29 05:57:22 UTC 2017

The following sample output from the **show install summary** command displays that the update package is now committed, and that it will be persistent across reloads:

**Device**

```
show install summary
```

Active Packages:
bootflash:cat3k_caa-universalk9.16.06.01.CSCxxxxxxx.dmp.bin
Inactive Packages:
No packages
Committed Packages:
bootflash:cat3k_caa-universalk9.16.06.01.CSCxxxxxxx.dmp.bin
Uncommitted Packages:
No packages

Device
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show install</td>
<td>Displays information about model update packages.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show install</td>
<td>Displays information about data model update packages.</td>
</tr>
</tbody>
</table>
**iox**

To configure IOx services, use the `iox` command in global configuration mode. To remove the configuration, use the `no` form of this command.

```plaintext
iox
no iox
```

This command has no arguments or keywords.

<table>
<thead>
<tr>
<th>Command Default</th>
<th>Command Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global configuration (config)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOx</td>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

IOx is the Cisco-developed framework for hosting customer-deployed Linux applications on Cisco networking systems. The `iox` command must be configured before configuring the `guestshell` command.

The following example shows how to configure IOx services:

```plaintext
Device# configure terminal
Device(config)# iox
Device(config)# exit
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>guestshell</td>
<td>Configures Guestshell infrastructure functionality.</td>
</tr>
</tbody>
</table>
To direct log messages to a memory buffer instead of the serial port, use the `mlog` command in rommon mode.

```
mlog [{show | reset | ctrl [{on | off | toggle}]}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show</code></td>
<td>(Optional) Displays memory log messages.</td>
</tr>
<tr>
<td><code>reset</code></td>
<td>(Optional) Resets the logging of messages to the memory log.</td>
</tr>
<tr>
<td><code>ctrl</code></td>
<td>(Optional)</td>
</tr>
<tr>
<td><code>on</code></td>
<td>(Optional)</td>
</tr>
<tr>
<td><code>off</code></td>
<td>(Optional)</td>
</tr>
<tr>
<td><code>toggle</code></td>
<td>(Optional)</td>
</tr>
</tbody>
</table>

**Command Modes**

Rommon

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command directs protocol log (that is all logs controlled by the `net-debug` command) messages to a memory buffer instead of the serial port.

With memory logging, log messages are displayed after a test is run. For example, HTTP debugs can be enabled through memory logging. Log messages are displayed in the memory buffer after running a copy from `http://server/name to null:` command.

**Example**

The following example shows how to direct log messages to the memory buffer:

```
Device: mlog show
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>net-debug</code></td>
<td>Displays or changes the network debug values.</td>
</tr>
</tbody>
</table>
**netconf legacy**

To enable legacy NETCONF protocol, use the `netconf legacy` command in global configuration mode. To disable the legacy NETCONF protocol, use the `no` form of this command.

```
netconf legacy
no netconf legacy
```

This command has no arguments or keywords.

**Command Default**

Legacy NETCONF protocol is not enabled.

**Command Modes**

Global configuration (config)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Denali 16.3.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If this command is enabled, the RFC-compliant NETCONF client (ncclient) does not work. This command enables the legacy NETCONF protocol that is non-RFC-compliant.

**Example**

The following example shows how to disable the legacy NETCONF protocol:

```
Device> enable
Device# configure terminal
Device(config)# no netconf legacy
```
To initiate an IPv4 Dynamic Host Control Protocol (DHCP) request for remote configuration, use the `net-dhcp` command in rommon mode.

```
net-dhcp [timeout]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>(Optional) Timeout in seconds.</td>
</tr>
</tbody>
</table>

**Command Modes**

Rommon

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command initiates an IPv4 DHCP request and processes the reply.

**Example**

The following example shows how to enable the `net-dhcp` command:

```
Device: net-dhcp
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net-debug</td>
<td>Displays or changes the network debug values.</td>
</tr>
<tr>
<td>net-show</td>
<td>Displays network parameters.</td>
</tr>
<tr>
<td>net6-dhcp</td>
<td>Initiates an IPv6 DHCP request for remote configuration.</td>
</tr>
</tbody>
</table>
net-debug

To display or change the network debug values use the **net-debug** command in rommon mode.

**net-debug** [{new-value}]

**Syntax Description**

| new-value | (Optional) New debug value to use. |

**Command Modes**

Rommon

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command enables or disables log levels for each of the following functional areas:

- Domain Name System (DNS)
- Dynamic Host Control Protocol (DHCP)
- File Transfer Protocol (FTP)
- Hypertext Transfer Protocol (HTTP)
- IP
- TCP
- UDP
- Uniform Resource Identifier (URI)

**Example**

This following is sample output from the **net-debug** command:

```
Device: net-debug

ether: 0
 ip: 0
dhcp: 0
udp: 0
tcp: 0
http: 0
dns: 0
uri: 0
t/ftp: 2
ip6: 0
dhcp6: 0:000 200 000 000
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mlog</td>
<td>Directs log messages to a memory buffer instead of the serial port.</td>
</tr>
</tbody>
</table>
net-show

To display network parameters, use the **net-show** command in rommon mode.

**net-show**

This command has no arguments or keywords.

## Command Modes

<table>
<thead>
<tr>
<th>Command Modes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rommon</td>
<td></td>
</tr>
</tbody>
</table>

## Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

## Usage Guidelines

This command displays network configuration such as IP address, gateway, MAC address and so on.

### Example

The following is sample output from the **net-show** command:

```
Device: net-show
Network params:
IPv4: ip addr 10.29.27.150
 netmask 255.255.0.0
 gateway 10.29.0.1
IPv6:
 link-local addr fe80::366f:90ff:feb8:cb80
 site-local addr fec0::366f:90ff:feb8:cb80
 DHCP addr 2001:dead:beef:cafe::9999
 router addr fe80::7ada:6eff:fe13:8580
 SLAAC addr 2001:dead:beef:cafe:90ff:feb8:cb80 /64
 SLAAC addr f00d::366f:90ff:feb8:cb80 /64
 SLAAC addr feed::366f:90ff:feb8:cb80 /64
Common: macaddr 34:6f:90:b8:cb:80
 dns 2001:dead:beef:cafe::5
 bootfile http://www.example.org/ed10m
 domain ip6.example.org
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net6-show</td>
<td>Displays IPv6 network parameters.</td>
</tr>
</tbody>
</table>
To display TCP buffers, use the `net-tcp-bufs` command in rommon mode.

```
net-tcp-bufs [{mss}]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mss</code></td>
<td>(Optional) The Maximum Segment Size (MSS) of TCP buffers.</td>
</tr>
</tbody>
</table>

### Command Modes

- Rommon

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

You can set the MSS of TCP buffers using the `mss` argument.

### Example

The following is sample output from the `net-tcp-bufs` command:

```
Device: net tcp-bufs
tcp_num_buffs 4
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net-tcp-mss</td>
<td>View or set the TCP MSS.</td>
</tr>
</tbody>
</table>
net-tcp-mss

To view or set the TCP Maximum Segment Size (MSS), use the net-tcp-mss command in rommon mode.

```
net-tcp-mss [mss]
```

**Syntax Description**

| mss | (Optional) The Maximum Segment Size (MSS) of TCP buffers. |

**Command Modes**

Rommon

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `mss` argument to change the MSS size.

**Example**

The following is sample output from the net-tcp-mss command:

```
Device: net-tcp-mss

switch: net-tcp-mss
tcp_segment_size 1024
```

The following is sample output from the net-tcp-mss mss command:

```
Device: net-tcp-mss 700

switch: net-tcp-mss 700
tcp_segment_size 700
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net-tcp-bufs</td>
<td>Displays TCP buffers.</td>
</tr>
</tbody>
</table>
**net6-dhcp**

To initiate an IPv6 Dynamic Host Control Protocol (DHCP) request for remote configuration, use the `net6-dhcp` command in rommon mode.

```
net6-dhcp [{timeout}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>(Optional) Timeout in seconds.</td>
</tr>
</tbody>
</table>

**Command Modes**

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rommon</td>
<td></td>
</tr>
</tbody>
</table>

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You can change the timeout by specifying a time in seconds.

**Example**

The following example shows how to enable the `net6-dhcp` command:

Device: `net6-dhcp`

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net-debug</td>
<td>Displays or changes the network debug values.</td>
</tr>
<tr>
<td>net-dhcp</td>
<td>Initiates an IPv4 DHCP request and processes the reply.</td>
</tr>
<tr>
<td>net-show</td>
<td>Displays network parameters.</td>
</tr>
</tbody>
</table>
net6-show

To display IPv6 network parameters, use the **net6-show** command in rommon mode.

**net6-show**

This command has no arguments or keywords.

**Command Modes**

Rommon

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>16.5.1</td>
<td></td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Example**

The following is sample output from the **net6-show** command:

```
Device: net6-show
switch: net6-show
IP6 addresses
link-local addr fe80::366f:90ff:feb8:cb80
site-local addr fec0::366f:90ff:feb8:cb80
 DHCP addr 2001:dead:beef:cafe::9999
 DHCP addr 2001:dead:beef:cafe::9999
 SLAAC addr 2001:dead:beef:cafe::9999 /64
 SLAAC addr 2001:dead:beef:cafe::9999 /64
 SLAAC addr 2001:dead:beef:cafe::9999 /64
 null addr ::
 all-nodes addr ff02::1
 all-routers addr ff02::2
 all-dhcp addr ff02::1
 slct-node addr ff02::1:ff8:cb80
 ll mmac addr 33:33:00:00:00:01
 sl mmac addr 33:33:00:00:00:02
 sn mmac addr 33:33:ff:b8:cb:80
 dhcp mmac addr 33:33:ff:00:99:99

IP6 neighbour table
0: ip6 fec0::366f:90ff:feb8:cb80 MAC 34:6f:90:b8:cb:80
4: ip6 fe80::32f7:9ff:fe08:7ebd MAC 30:f7:0d:08:7e:bd
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>net-show</td>
<td>Displays network parameters.</td>
</tr>
</tbody>
</table>
The ping command is a very common method for troubleshooting the accessibility of devices. A timeout is implemented at the bootloader device prompt, that allows the bootloader to poll the TCP stack every 200 ms. As a result, the bootloader may take up to 200 ms to respond to pings. However, when the bootloader is downloading a file, and thus actively polling for new packets, it responds to ping quickly.

Example

The following is sample output from the ping command:

Device: ping 10.29.27.5

Ping 10.29.27.5 with 32 bytes of data ...
Host 10.29.27.5 is alive.

The following is sample output from the ping host_ip_address retries command:

Device: ping 10 6.29.27.5 6

Ping 10.29.27.5 with 32 bytes of data ... reply received in 0 ms
Ping 10.29.27.5 with 32 bytes of data ... reply received in 0 ms
Ping 10.29.27.5 with 32 bytes of data ... reply received in 0 ms
Ping 10.29.27.5 with 32 bytes of data ... reply received in 0 ms
Ping 10.29.27.5 with 32 bytes of data ... reply received in 0 ms
Ping 10.29.27.5 with 32 bytes of data ... reply received in 0 ms

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping</td>
<td>Diagnoses basic network connectivity.</td>
</tr>
<tr>
<td>ping4</td>
<td>Determines the network connectivity to another device using IPv6 addressing.</td>
</tr>
</tbody>
</table>
ping4

To diagnose basic network connectivity, use the `ping4` command in rommon mode.

```
ping4 [{host_ip_address}][{retries}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>host_ip_address</code></td>
<td>(Optional) IP address of the host to be pinged.</td>
</tr>
<tr>
<td><code>retries</code></td>
<td>(Optional) Number of retries.</td>
</tr>
</tbody>
</table>

**Command Modes**

Rommon

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `ping` and `ping4` commands are the same

A timeout is implemented at the bootloader device prompt, that allows the bootloader to poll the TCP stack every 200 ms. As a result, the bootloader may take up to 200 ms to respond to pings. However, when the bootloader is downloading a file, and thus actively polling for new packets, it responds to ping quickly.

**Example**

The following is sample output from the `ping4 host_ip_address` command:

```
Device: ping4 10.29.27.5

Ping 10.29.27.5 with 32 bytes of data ...
Host 10.29.27.5 is alive.
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping</td>
<td>Diagnoses basic network connectivity.</td>
</tr>
<tr>
<td>ping6</td>
<td>Determines the network connectivity to another device using IPv6 addressing.</td>
</tr>
</tbody>
</table>
ping6

To determine the network connectivity to another device using IPv6 addressing, use the ping6 command, rommon mode.

```plaintext
ping6 [{host}] [{repeats}] [{len}]
```

**Syntax Description**

- **host** (Optional) IP address of the host to be pinged.
- **repeats** (Optional) Number of times to repeat the ping.
- **len**

**Command Modes**

Rommon

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A timeout is implemented at the bootloader device prompt, that allows the bootloader to poll the TCP stack every 200 ms. As a result, the bootloader may take up to 200 ms to respond to pings. However, when the bootloader is downloading a file, and thus actively polling for new packets, it responds to ping quickly.

**Example**

The following is sample output from the ping6 **host retries len** command:

```
Device: ping6 2001:dead:beef:cafe::5 6 1000
Ping host 2001:dead:beef:cafe::5, 6 times, 1000 bytes
Pinging 2001:dead:beef:cafe::5 ... reply in 0 ms
Pinging 2001:dead:beef:cafe::5 ... reply in 1 ms
Pinging 2001:dead:beef:cafe::5 ... reply in 1 ms
Pinging 2001:dead:beef:cafe::5 ... reply in 0 ms
Pinging 2001:dead:beef:cafe::5 ... reply in 0 ms
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping</td>
<td>Diagnoses basic network connectivity.</td>
</tr>
<tr>
<td>ping4</td>
<td>Diagnoses basic network connectivity.</td>
</tr>
</tbody>
</table>
show install

To display information about data model update packages, use the `show install` command in privileged EXEC mode.

```
show install {active |committed |inactive |log |package {bootflash: |flash: |webui:}|rollback |summary |uncommitted}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Displays information about active packages.</td>
</tr>
<tr>
<td>committed</td>
<td>Displays package activations that are persistent.</td>
</tr>
<tr>
<td>inactive</td>
<td>Displays inactive packages.</td>
</tr>
<tr>
<td>log</td>
<td>Displays entries stored in the logging installation buffer.</td>
</tr>
<tr>
<td>package</td>
<td>Displays metadata information about the package, including description, restart information, components in the package, and so on.</td>
</tr>
<tr>
<td>`{bootflash:</td>
<td>flash:</td>
</tr>
<tr>
<td>rollback</td>
<td>Displays the software set associated with a saved installation.</td>
</tr>
<tr>
<td>summary</td>
<td>Displays information about the list of active, inactive, committed, and superseded packages.</td>
</tr>
<tr>
<td>uncommitted</td>
<td>Displays package activations that are non persistent.</td>
</tr>
</tbody>
</table>

### Command Modes

Privileged EXEC (#)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>This command was introduced on the following platforms:</td>
</tr>
<tr>
<td></td>
<td>• Cisco 4000 Series Integrated Services Routers</td>
</tr>
<tr>
<td></td>
<td>• Cisco Catalyst 9300 Series Switches</td>
</tr>
<tr>
<td></td>
<td>• Cisco Catalyst 9500 Series Switches</td>
</tr>
<tr>
<td></td>
<td>• Cisco Cloud Services Router 1000v</td>
</tr>
<tr>
<td></td>
<td>• Cisco Integrated Services Virtual Routers (ISRv)</td>
</tr>
<tr>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This command was implemented on the following platforms:</td>
</tr>
<tr>
<td></td>
<td>• Cisco Catalyst 3650 Series Switches</td>
</tr>
<tr>
<td></td>
<td>• Cisco Catalyst 3850 Series Switches</td>
</tr>
</tbody>
</table>
Usage Guidelines

Use the show commands to view the status of an installed model update package.

**Cisco 4000 Series Integrated Services Routers**

The following is sample output from the `show install package` command:

```
Device# show install package bootflash:
isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
```

Name: isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Version: 16.5.1.0.199.1484082952..Everest
Platform: ISR4300
Package Type: dmp
Defect ID: CSCxxxxxxx
Package State: Added
Supersedes List: {}
Smu ID: 1
Device#

The following is sample output from the `show install summary` command:

```
Device# show install summary
Active Packages: bootflash:isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Inactive Packages: No packages
Committed Packages: No packages
Uncommitted Packages: bootflash:isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Device#
```

The following is sample output from the `show install log` command:

```
Device# show install log
[0|install_op_boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
[3|install_add]: END SUCCESS Sun Feb 26 05:57:22 UTC 2017
[4|install_add]: END SUCCESS /bootflash/isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Device# show install log
[0|install_op_boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
[3|install_add]: END SUCCESS Sun Feb 26 05:57:22 UTC 2017
[4|install_add]: END SUCCESS /bootflash/isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Device# show install log
[0|install_op_boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
[3|install_add]: END SUCCESS Sun Feb 26 05:57:22 UTC 2017
[4|install_add]: END SUCCESS /bootflash/isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Device# show install log
[0|install_op_boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
[3|install_add]: END SUCCESS Sun Feb 26 05:57:22 UTC 2017
[4|install_add]: END SUCCESS /bootflash/isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Device# show install log
[0|install_op_boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
[3|install_add]: END SUCCESS Sun Feb 26 05:57:22 UTC 2017
[4|install_add]: END SUCCESS /bootflash/isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
Device# show install log
[0|install_op_boot]: START Fri Feb 24 19:20:19 Universal 2017
[0|install_op_boot]: END SUCCESS Fri Feb 24 19:20:23 Universal 2017
[3|install_add]: START Sun Feb 26 05:55:31 UTC 2017
[3|install_add]: END SUCCESS Sun Feb 26 05:57:22 UTC 2017
[4|install_add]: END SUCCESS /bootflash/isr4300-universalk9.16.05.01.CSCxxxxxxx.dmp.bin
```

The table below lists the significant fields shown in the display.

**Table 1: show install summary Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Packages</td>
<td>Name of the active model update package.</td>
</tr>
<tr>
<td>Inactive Packages</td>
<td>List of inactive packages.</td>
</tr>
<tr>
<td>Committed Packages</td>
<td>Installed model update packages that have saved or committed changes to the</td>
</tr>
<tr>
<td></td>
<td>hard disk, so that the changes become persistent across reloads.</td>
</tr>
</tbody>
</table>
Cisco Catalyst 3000 Series Switches

The following sample output from the `show install summary` command displays that the update package is now committed, and that it will be persistent across reloads:

```
Device# show install summary

Active Packages:
bootflash:cat3k_caa-universalk9.16.06.01.CSCxxxxxxx.dmp.bin

Inactive Packages:
No packages

Committed Packages:
bootflash:cat3k_caa-universalk9.16.06.01.CSCxxxxxxx.dmp.bin

Uncommitted Packages:
No packages

Device#
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncommitted Packages</td>
<td>Model update package activations that are non persistent.</td>
</tr>
</tbody>
</table>
show platform yang-management process

To display the status of the software processes required to support NETCONF-YANG, use the `show platform yang-management process` command in privileged EXEC mode.

```
show platform yang-management process [{monitor [{switch {switch-number |active |standby;} R0}]}{switch [{switch-number |active |standby}; R0]}
```

### Syntax Description

- **monitor**
  - (Optional) Displays detailed information about processes that are running.

- **switch switch-number**
  - (Optional) Displays information about the specified switch.

- **active**
  - (Optional) Displays information about the active instance of the switch.

- **standby**
  - (Optional) Displays information about the standby instance of the switch.

- **R0**
  - (Optional) Displays information about the Route Processor (RP) slot zero.

### Command Modes

Privileged EXEC (#)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.3.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The following is sample output from the `show platform software yang-management process` command:

```
Device# show platform software yang-management process

confd : Running
nssd : Running
syncfd : Running
ncsshd : Running
dmiauthd : Running
vtyserverutild : Running
opdatamgrd : Running
nginx : Running
ndbmand : Running
```

The table below lists the significant fields shown in the display.
Table 2: show platform software yang-management process Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>confd</td>
<td>Configuration daemon</td>
</tr>
<tr>
<td>nesd</td>
<td>Network element synchronizer daemon</td>
</tr>
<tr>
<td>syncfd</td>
<td>Sync from daemon</td>
</tr>
<tr>
<td>ncsshd</td>
<td>NETCONF Secure Shell (SSH) daemon</td>
</tr>
<tr>
<td>dmiauthd</td>
<td>Device management interfac e(DMI) authentication daemon</td>
</tr>
<tr>
<td>vtyserverutild</td>
<td>VTY server util daemon</td>
</tr>
<tr>
<td>opdatamgrd</td>
<td>Operational Data Manager daemon</td>
</tr>
<tr>
<td>nginx</td>
<td>NGINX web server</td>
</tr>
<tr>
<td>ndbmand</td>
<td>NETCONF database manager</td>
</tr>
</tbody>
</table>

The following is sample output from the `show platform software yang-management process monitor` command:

```
Device# show platform software yang-management process monitor

COMMAND PID S VSZ RSS %CPU %MEM ELAPSED
nginx 24689 S 139328 11996 0.0 0.2 24-02:00:55
nginx 24695 S 146544 6824 0.0 0.1 24-02:00:55
```

The table below lists the significant fields shown in the display.

Table 3: show platform software yang-management process monitor Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND</td>
<td>Command name</td>
</tr>
<tr>
<td>PID</td>
<td>Process ID</td>
</tr>
<tr>
<td>S</td>
<td>Process state</td>
</tr>
<tr>
<td>VSZ</td>
<td>Virtual memory size (in KB)</td>
</tr>
<tr>
<td>RSS</td>
<td>Resident set size (in KB)</td>
</tr>
<tr>
<td>%CPU</td>
<td>CPU usage percentage</td>
</tr>
<tr>
<td>%MEM</td>
<td>Memory usage percentage</td>
</tr>
<tr>
<td>ELAPSED</td>
<td>Elapsed execution time</td>
</tr>
</tbody>
</table>
show telemetry ietf subscription

To display information about telemetry subscriptions on a device, use the `show telemetry ietf subscription` command in user EXEC or privileged EXEC mode.

```
show telemetry ietf subscription {subscription-ID | all | configured | dynamic} [{brief | detail}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>subscription-ID</td>
<td>Subscription ID. Valid values are from 0 to 4294967295.</td>
</tr>
<tr>
<td>all</td>
<td>Displays all subscription information.</td>
</tr>
<tr>
<td>configured</td>
<td>Displays a list of subscriptions configured via CLI or NETCONF set config.</td>
</tr>
<tr>
<td>dynamic</td>
<td>Displays information about dynamic subscriptions created using the &lt;establish-subscription&gt; RPC.</td>
</tr>
<tr>
<td>brief</td>
<td>(Optional) Displays a brief summary of the subscription information.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays the subscription information in detail.</td>
</tr>
</tbody>
</table>

**Command Modes**

- User EXEC (>
- Privileged EXEC (#)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show telemetry ietf subscription` command or the `<get>` RPC to retrieve the list of current subscription details on a device.

**Example**

The following is sample output from the `show telemetry ietf subscription subscription-ID detail` command:

```
Device# telemetry ietf subscription 2147483667 detail

Telemetry subscription detail:

 Subscription ID: 2147483667
 State: Valid
 Stream: yang-push
 Encoding: encode-xml
 Filter:
 Filter type: xpath
```
XPath: /mdt-oper:mdt-oper-data/mdt-subscriptions

Update policy:
   Update Trigger: periodic
   Period: 1000

Notes:

The following is sample output from the `show telemetry ietf subscription dynamic brief` command:

```
Device# show telemetry ietf subscription dynamic brief

Telemetry subscription brief

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>State</th>
<th>Filter type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2147483667</td>
<td>Dynamic</td>
<td>Valid</td>
<td>xpath</td>
</tr>
<tr>
<td>2147483668</td>
<td>Dynamic</td>
<td>Valid</td>
<td>xpath</td>
</tr>
<tr>
<td>2147483669</td>
<td>Dynamic</td>
<td>Valid</td>
<td>xpath</td>
</tr>
</tbody>
</table>
```

The table below lists the significant fields shown in the display.

**Table 4: show telemetry ietf subscription Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription ID</td>
<td>Subscription identifier</td>
</tr>
<tr>
<td>State</td>
<td>Validity of a configured subscription. State will always be valid for dynamic subscriptions. For example, a configured subscription can be in a half-configured state, and therefore invalid. However, if a dynamic establish subscription is invalid, an error RPC response is sent back, and the subscription will not appear in this table.</td>
</tr>
<tr>
<td>Stream</td>
<td>Type of streaming used for subscriptions. Only YANG-push is supported.</td>
</tr>
<tr>
<td>Encoding</td>
<td>Specifies encode-xml as the encoding type.</td>
</tr>
<tr>
<td>Filter Type</td>
<td>Type of filter used for subscriptions. Only XPath is supported.</td>
</tr>
<tr>
<td>XPath</td>
<td>XPath filter type or how the subscribed information was selected.</td>
</tr>
<tr>
<td>Update Trigger</td>
<td>Type of trigger to update subscriptions.</td>
</tr>
<tr>
<td>Period</td>
<td>Periodic timer configured to trigger an update. Values are specified in centiseconds (1/100 of a second).</td>
</tr>
<tr>
<td>Notes</td>
<td>A brief explanation about why a subscription is invalid. But for dynamic subscriptions, this field is always be empty.</td>
</tr>
</tbody>
</table>
### show telemetry ietf subscription

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Subscription ID.</td>
</tr>
</tbody>
</table>