
Cisco Open Plug-n-Play Agent Configuration Guide, Cisco IOS XE Everest
16.4.1

Feature Information for Open Plug-n-Play Agent 2

Finding Feature Information 2

Prerequisites for Open Plug-n-Play Agent 3

Restrictions for Open Plug-n-Play Agent 3

Information About Open Plug-n-Play Agent 4

Security Methods for the PnP Discovery Process 18

Security Methods for Post-PnP Discovery Process 21

How to Configure Open Plug-n-Play Agent 26

Trouble Shooting and Debugging 36

Glossary 36

Additional References for Open Plug-n-Play Agent 37

Feature Information for Open Plug-n-Play Agent 38

Revised: December 6, 2016,

Feature Information for Open Plug-n-Play Agent
The following table provides release information about the feature or features described in this module. This table lists only the
software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent
releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature
Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for Open Plug-n-Play Agent

Feature InformationReleasesFeature Name

The Cisco Open Plug-n-Play agent will not
support the XMPP protocol from Cisco IOS XE
Everest 16.4.1 release.

The Cisco Open Plug-n-Play agent converges
existing solutions into a unified agent and adds
functionality to enhance the current deployment
solutions.

The following commands were introduced or
modified by this feature:

backup device, backup profile, backup
reconnect, backup transport http, backup
transport https, backup transport xmpp
socket, backup transport xmpp starttls,
backup transport xmpp tls, device, pnp,
profile, reconnect (pnp), transport http,
transport https, transport xmpp socket,
transport xmpp starttls, and transport xmpp
tls.

Cisco IOS XE Everest 16.4.1Open Plug-n-Play Agent

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see
Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in
this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature
Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

2

http://www.cisco.com/go/cfn
https://tools.cisco.com/bugsearch/search
http://www.cisco.com/go/cfn

Prerequisites for Open Plug-n-Play Agent
• Cisco Open Plug-n-Play (PnP) deployment method depends on the type of discovery process as required by the customer.

• Deploy the discovery mechanism, either a DHCP server discovery process or a Domain Name Server (DNS) discovery process,
before launching the PnP.

• Configure the DHCP server or the DNS server before deploying the PnP.

• Ensure that the PnP server talks to the PnP agent.

• The PnP agent enforces the PnP server to send user credentials for every request. Cisco recommends the usage of HTTP secure
(HTTPS) protocol.

Note • The terms Cisco Open Plug-n-Play, Plug-n-Play, PnP are interchangeably used in this guide and all
mean the same.

• The terms PnP agent, agent, and deployment agent are interchangeably used in this guide and all
mean the same.

• The terms PnP server, server, and deployment server are interchangeably used in this guide and all
mean the same.

Restrictions for Open Plug-n-Play Agent
• Cisco Open Plug-n-Play (PnP) agent facilitates HTTP and HTTP secure (HTTPS) transport based communication with the
server.

• HTTPS cannot be used on platforms where crypto-enabled images are not supported (also, do not use Secure Sockets Layer
[SSL] or Transport Layer Security [TLS] protocols if crypto-enabled images are used).

• Non-VLAN 1 configuration-Cisco Network Plug and Play supports devices using VLAN 1 by default. To use a VLAN other
than 1, adjacent upstream devices must use supported releases and configure the following global CLI command on the upstream
device to push this CLI to the upcoming Plug and Play device: pnp startup vlan x. When you execute this command on an
adjacent upstream device, the VLAN membership change does not happen on that device. However, all the active interfaces
on the upcoming Plug and Play device are changed to the specified VLAN. This guideline applies to both routers and switches.

When you use the non-VLAN 1 feature, ensure that all the neighboring switch devices
are running Cisco IOS XE Release 3.6.3 and not the 3.6.0, 3.6.1, or 3.6.2 releases. For
more information about related caveat CSCut25533 that exists in these previous releases,
see the Caveats section in the Release Notes for Cisco Network Plug and Play.

Note

3

Information About Open Plug-n-Play Agent

Open Plug-n-Play Deployment Solution
The Cisco initiated Open Plug-n-Play (PnP) deployment solution supports the concept of redirection and includes a PnP agent, a PnP
server, and other components. Simplified deployment process of any Cisco device automates the following deployment related
operational tasks:

• Establishing initial network connectivity for the device

• Delivering device configuration

• Delivering software and firmware images

• Delivering licenses

• Delivering deployment script files

• Provisioning local credentials

• Notifying other management systems about deployment related events

Simplified deployment reduces the cost and complexity and increases the speed and security of deployments.

Cisco Open Plug-n-Play (PnP) agent is a software application that is running on a Cisco IOS or IOS-XE device. The PnP agent
together with the PnP deployment server provides effortless deployment services. When a device is powered on for the first time, the
PnP agent process wakes up in the absence of the startup config and attempts to discover the address of the PnP server. The PnP agent
uses methods like DHCP, Domain Name System (DNS), and others to acquire the desired IP address of the PnP server. When the
PnP agent successfully acquires the IP address, it initiates a long lived, bidirectional layer 3 connection with the server and waits for
a message from the server. The PnP server application sends messages to the agent requesting for information and services to be
performed on the device.

The PnP agent converges existing solutions into a unified agent and adds functionality to enhance the current solutions. The main
objectives of PnP agent are:

• Provide consistent day 1 deployment solution for all the deployment scenarios.

• Add new features to improve existing solutions.

• Provide day 2 management framework mainly in the context of configuration and image upgrades.

Plug-n-Play Features

Some of the features that the Cisco Open Plug-n-Play (PnP) agent provides today are:

• Day 0 boot strapping—Configuration, image, licenses, and other files

• Day 2 management—Configuration and image upgrades and on-going monitoring of Simple Network Management Protocol
(SNMP) and syslog messages.

• Open communication protocol—Enables customers and partners to write applications

• XML based payload over HTTP between the server and the agent.

• Security—Authentication and encrypted communication channel between the management app and the agent

4

• Deployment and management of devices behind firewall and Network Address Translation (NAT).

• Support for one-to-one and one-to-many communication

• Support for policy based deployment (product ID or location of the device)

• Deployment based on unique ID (Unique Device Identifier [UDI] or MAC)

• Unified solution across Cisco platforms (including IOS classic)

• Support for various deployment scenarios and use cases

• Zero-touch when possible, low-touch when needed

Plug-n-Play Agent Services and Capabilities

The services and capabilities of the Cisco Open Plug-n-Play (PnP) agent are as follows:

1 Backoff

2 CLI execution

3 Configuration upgrade

4 Device information

5 File transfer

6 Image install

7 License install

8 PnP tagging

9 Script execution

10 Topology information

The PnP server provides an optional checksum tag to be used in the image installation and config upgrade
service requests by the PnP agent. When the checksum is provided in the request, the image install process
compares the checksum against the current running image checksum.

If the checksums are same, the image being installed or upgraded is the same as the current image running
on the device. The image install process will not perform any other operation in this scenario.

If the checksums are not same, then the new image will be copied to the local file system, and checksum
will again be calculated and compared against the checksum provided in the request. If same, the process
will continue to install the new image or upgrade the device to new image. If now, the checksums are not
same, the process will exit with error.

Note

Backoff

A Cisco IOS device that supports PnP protocol (that uses HTTP transport), requires the PnP agent to send the work request to the
PnP server continuously. In case the PnP server does not have any scheduled or outstanding PnP service for the PnP agent to execute,
the continuous no operation work requests exhausts both network bandwidth and device resource. This PnP backoff service allows
the PnP server to inform the PnP agent to rest for the specified time and call back later.

5

CLI Execution

Cisco IOS supports two modes of command execution—EXEC mode and global configuration mode. Most of the EXEC commands
are one-time commands, such as show commands, which show the current configuration status, and clear commands, which clear
counters or interfaces. The EXEC commands are not saved when a device reboots. Configuration modes allow user to make changes
to the running configuration. If you save the configuration, these commands are saved when a device reboots.

For show command request and response details and for all PnP configuration commands, seeCisco Open
Plug-n-Play Agent Command Reference.

Note

Configuration Upgrade

There are two types of configuration upgrades that can happen in a Cisco device—copying a new configuration files to startup
configuration and copying new configuration files to running configuration.

Copying a new configuration files to startup configuration— The new configuration file is copied from the file server to the device
through copy command and file check is performed to check the validity of the file. If the file is valid, then the file is copied to startup
configuration. Backing up the previous configuration file will be done if there is enough disk space available. The new configuration
is seen when the device reloads again.

Copying new configuration files to running configuration— The new configuration file is copied from the file server to the device
through copy command or configure replace command. Configuration file replace and rollback may leave the system in an unstable
state if rollback is performed efficiently. So configuration upgrade by copying the files is preferred.

Device Information

The PnP agent provides capability to extract device inventory and other important information to the PnP server on request. The
following five types of device-profile requests are supported:

1 all—returns complete inventory information, which includes unique device identifier (UDI), image, hardware and file system
inventory data.

2 filesystem— returns file system inventory information, which includes file system name and type, local size in bytes, free size in
bytes, read flag, and write flag.

3 hardware— returns hardware inventory information, which includes hostname, vendor string, platform name, processor type,
hardware revision, main memory size, I/O memory size, board ID, board rework ID, processor revision, midplane revision, and
location.

4 image—returns image inventory information, which includes version string, image name, boot variable, return to rommon reason,
bootloader variable, configuration register, configuration register on next boot, and configuration variable.

5 UDI— returns device UDI.

File Transfer

The PnP file server hosts files that can be copied over by the deploying devices in the network. The file server can be a dedicated
server hosting files or a part of the device hosting the PnP server. The PnP agent uses standard file transfer protocols to copy files
from the remote file server to the device. If the device is running a crypto image then secured file transfer protocols such as SFTP,
SCP, HTTPS are supported. For devices running non-crypto images, the PnP agent supports unsecured copy protocols such as FTP,
TFTP, HTTP.

6

Image Install

Image installation service enables a PnP-enabled device to perform image upgrade on receiving a request from the PnP server.

An Image Install request can be classified for the following types of devices:

1 Standalone devices
2 High availability devices
3 Stackable devices
4 Cisco Catalyst 6000 devices

Standalone Devices
When the PnP agent on a standalone device receives a request from the PnP server, the agent parses the XML payload and identifies
the request as an Image Upgrade request. The agent then creates an ImageInstall process, which identifies the request as a standalone
image install request. The PnP agent populates the data structure defined by the ImageInstall service and passes it to the ImageInstall
service.

The ImageInstall service then performs the following operations to successfully load the device with the new image:

1 Copies the image from the file server to a local disk (the file server information is provided by the PnP server in the request).
2 Configures the device to load the new image on next reload by executing the boot system command.
3 Reloads the device and sends a message to the PnP server.

High-Availability Devices
When the PnP agent is installed on a high-availability device, once ImageInstall service gets the data structure, the agent determines
that the request is for a high-availability device. The active route processor (RP) which is running the PnP agent performs all the
operations needed to install the image on both active and standby devices.

The ImageInstall service then performs the following operations to successfully load the devices with the new image:

1 Copies the image from the file server to a local disk of the device that is running the active RP. Information about the file server,
image location, and destination is populated in the data structure.

To reload the standby device with the same new image, the PnP agent running on the active device copies the image to the local
disk on the standby device.

2 Configures the active device to load the new image on next reload by executing the boot system command.

This causes the startup configuration to be synchronized with the standby device. Now, both active and standby devices have the
same new image configured.

3 Sends a message to the PnP server that the active device is reloading the standby device.

When the standby device comes up and reaches stateful switchover (SSO) state, the active device sends a message to the PnP
server that it is going to reload itself, and then undergoes a reload.

This causes a switchover to the standby device, which becomes the new active device.

Both active and standby devices are now running the new image.

Stackable devices

Cisco Catalyst 6000 devices

License Install

Cisco IOS automates installation of new licenses on PnP enabled Cisco devices. The PnP server sends work request to install new
licenses on the Cisco device. When the PnP agent receives license install work request, it installs the new license on the device,
configures the boot level, and reloads the device. The new license is applied when the device reloads. Once the service is completed,
PnP agent sends success or failure work response to the PnP server.

7

PnP Tagging

Cisco IOS provides capability to assign tags to the devices for better grouping and tracking of all Cisco devices. The PnP agent
provides XML service for configuring the tag information on the device and for propagating the tag information within the network
using Cisco Discovery Protocol (CDP). The purpose of this service is for the PnP agents to get to know their tag information and to
pass on this information to the PnP server upon request.

Script Execution

Cisco IOS provides capability to execute IOS shell scripts on all Cisco devices. Scripts can be executed by the PnP agent to perform
post–install activities on the device. The script is copied from the file server by the agent and is executed on the running system. The
post–install activities performed by these scripts consists of crypto key generation and other runtime configuration on the device.

Topology Information

By default, every Cisco device on the network runs Cisco Discovery Protocol (CDP). Through CDP, devices in the network discover
their immediate neighbors and populate their databases with the attributes learnt or derived through the protocol. This neighbor
information is stored in the database and is available on demand by the device to the PNP server. Typical neighbor information
comprises neighboring device ID, software version, hardware platform, interface ip, and the port on which CDP messages are sent
or received.

Plug-n-Play Agent

The Cisco Open Plug-n-Play (PnP) agent is an embedded software component that is present in all Cisco network devices that support
simplified deployment architecture. The PnP agent understands and interacts only with a PnP server. The PnP agent first tries to
discover a PnP server, with which it can communicate. Once a server is found and connection established, the agent performs
deployment related activities like configuration, image, license, and file updates by communicating with the server. It also notifies
the server of all interesting deployment related events like out-of-band configuration changes and a new device connection on an
interface.

Plug-n-Play Server

The Cisco Open Plug-n-Play (PnP) server is a central server that encodes the logic of managing and distributing deployment information
(images, configurations, files, and licenses) for the devices being deployed. The server communicates with the agent on the device
that supports the simplified deployment process using a specific deployment protocol.

Figure 1: Simplified Deployment Server

The PnP server also communicates with proxy servers like deployment applications on smart phones and PCs, or other PnP agents
acting as Neighbor Assisted Provisioning Protocol (NAPP) servers, and other types of proxy deployment servers like VPN gateways.

8

The PnP server can redirect the agent to another deployment server. A common example of redirection is a PnP server redirecting a
device to communicate with it directly after sending the bootstrap configuration through a NAPP server. A PnP server can be hosted
by an enterprise. This solution allows for a cloud based deployment service provided by Cisco. In this case, a device discovers and
communicates with Cisco’s cloud based deployment service for initial deployment. After that, it can be redirected to the customer’s
deployment server.

In addition to communicating with the devices, the server interfaces with a variety of external systems like Authentication, Authorizing,
and Accounting (AAA) systems, provisioning systems, and other management applications.

Plug-n-Play Agent Deployment

The following steps indicate the Cisco Open Plug-n-Play (PnP) agent deployment on Cisco devices:

1 The Cisco device, having PnP agent contacts the PnP server requesting for a task, that is, the PnP Agent sends its unique device
identifier (UDI) along with a request for work.

2 The PnP server if it has any task for the device, sends a work request. For example, image install, config upgrade, and so on.

3 When the PnP agent receives the work request, executes the task and sends back a reply to the PnP server about the task status,
whether it is a success or error, and the corresponding information requested.

9

Plug-n-Play Agent Network Topology

Figure 2: Network Topology of Cisco Open Plug-n-Play Agent Deployment

Plug-n-Play Agent Initialization

The Cisco Open Plug-n-Play (PnP) agent software is currently available on all Cisco IOS and IOS XE platforms, and is enabled by
default. The PnP agent can be initiated on a device by the following ways:

Absence of Startup Configuration

10

New Cisco devices are shipped to customers with no startup configuration file in the NVRAM of the devices. When a new device is
connected to a network and powered on, the absence of a startup configuration file on the device will automatically trigger the Open
Plug-n-Play (PnP) agent to discover the PnP server IP address.

Figure 3: State Diagram for PnP Trigger with no Startup Configuration

CLI Configuration for Open Plug-n-Play Agent
Network administrators may use CLI configuration mode to initiate the Open Plug-n-Play (PnP) agent process at any time. By
configuring a PnP profile through CLI, a network administrator can start and stop the PnP agent on a device. When the PnP profile
is configured with CLI, the device starts the PnP agent process which, in turn, initiates a connection with the PnP server using the IP
address in the PnP profile.

Figure 4: State Diagram for PnP Trigger with CLI Configured PnP Profile

Open Plug-n-Play Agent Deployment Solutions
This section discusses the functionality of the Cisco Open Plug-n-Play (PnP) agent, exposed to the PnP server, for device deployment
andmanagement. The PnP agent deployment solution comprises the discovery process initiated by the agent, communication between
the device, agent, and the server, and the PnP agent services. The PnP solution is described in detail in the following sections:

Plug-n-Play Agent Discovery Process

The Cisco Open Plug-n-Play (PnP) agent discovery phase results in acquiring the IP address of the PnP server. When a system boots
up without a startup configuration file, the device will not have the IP configuration required to connect to the IP network. In such a
scenario, DHCP discovery process is used to obtain the IP parameters needed for the device to have IP connectivity.

When the device boots up, the absence of any startup config on the NVRAM triggers the PnP discovery agent to acquire the IP address
of the PnP server. In order to acquire the IP address of the PnP server, the PnP agent goes through one of the following discovery
mechanisms:

1 PnP discovery through DHCP server

2 PnP discovery through DHCP snooping

3 PnP discovery through DNS lookup

4 PnP proxy for layer 2 and layer 3 devices

5 PnP deployment application

11

Plug-n-Play Discovery through DHCP Server
Device with no startup configuration in the NVRAM triggers the Cisco Open Plug-n-Play (PnP) agent to initiate a DHCP discovery
process which acquires the IP configuration from the DHCP server required for the device. The DHCP server can be configured to
insert additional information using vendor specific option 43 upon receiving option 60 from the device with the string ‘cisco pnp’, to
pass on the IP address or hostname of the PnP server to the requesting device. When the DHCP response is received by the device,
the PnP agent extracts the option 43 from the response to get the IP address or the hostname of the PnP server. PnP agent then uses
this IP address or hostname to communicate with the PnP server.

Figure 5: DHCP Discovery Process for PnP server

Assumptions:

• New devices can reach DHCP server

• Customer is willing to configure DHCP server for network devices

Plug-n-Play Discovery through DHCP Snooping
If a third party DHCP server cannot be configured to insert any vendor specific options, an existing Cisco Open Plug-n-Play (PnP)
enabled device can be configured to snoop in to the DHCP response and insert PnP specific option 43 with the PnP server IP address.

12

Before inserting the option 43, the snooping agent verifies if the DHCPmessage is from a Cisco device in the network. The remaining
DHCP discovery process is same as described in the previous section.

Figure 6: DHCP Snooping by PnP Server

Assumptions:

• New devices can reach DHCP server

• Customer is not willing to configure DHCP server for network devices

• Upstream switch (SW) is configured to snoop DHCP and insert PnP server IP

Plug-n-Play Discovery through DNS Lookup
When the DHCP discovery fails to get the IP address of the Cisco Open Plug-n-Play (PnP) server, the agent falls back on Domain
Name System (DNS) lookup method. PnP agent then uses a preset deployment server name. The agent obtains the domain name of
the customer network from the DHCP response and constructs the fully qualified domain name (FQDN). The following FQDN is

13

constructed by the PnP agent using a preset deployment server name and the domain name information for the DHCP response,
deployment.customer.com. The agent then looks up the local name server and tries to resolve the IP address for the above FQDN.

Figure 7: DNS Lookup for deployment.customer.com

Assumptions:

• New devices can reach DHCP server

• Customer deployed PnP server in the network with the name “pnpserver”

Plug-n-Play Proxy Server for Layer 3 and Layer 2 Devices
In the absence of DHCP or Domain Name System (DNS) servers, an existing up and running Cisco Open Plug-n-Play (PnP) enabled
device in the neighborhood network can be configured to act as a PnP Neighbor Assisted Provisioning Protocol (NAPP) server.

The NAPP server is part of PnP discovery phase. This server is invoked when the PnP autonomic networking based discovery, DHCP,
DNS, Cisco cloud service discovery mechanisms fail to connect to the PnP server.

14

This device listens to a specific port for any incoming PnP messages. The Cisco device which is trying to come up as a PnP device
sends a UDP broadcast message to its network every 30 min for ten times. Hence, if the device does not receive a response, the
broadcasts stop after 300 min.

Figure 8: DNS Lookup for Layer 3 and Layer 2 Devices

When the device hosting the proxy server process receives the incoming broadcasts, it verifies the version field in the request and
forwards the request to the PnP server if version validation is successful. The proxy server process also caches the unique device
identifier (UDI) of the requesting client coming in via incoming datagram before forwarding the request to PnP server.

15

Upon receiving the configlet datagram from PnP server, the proxy server validates UDI in the incoming datagram with the entries in
the UDI cache. If validation is successful, proxy server process broadcasts the datagram to a specific port number reserved for the
proxy client processes to receive datagrams.

Upon receiving the datagrams, devices running proxy client processes, parse the incoming datagram for the target UDI. If the target
UDI in the datagram matches the UDI of the device, proxy client process proceeds with framing, error control and configuring the
configlet.

If the target UDI in the datagram fails to match UDI of the device, the packet is dropped.

Plug-n-Play Agent Deployment Application
A Cisco device can alternatively be manually configured by the network administrator using a deployment application running on
their PC or on a smart phone. The PC or the smart phone can be connected to the device using an USB or an Ethernet cable.

Figure 9: Manually Configured PnP Agent

Plug-n-Play Agent Deployment Protocol

Deployment can be run over different transports. These transports include Ethernet and IP with Transport Layer Security (TLS).
Layer 2 transport is typically used between a deployment agent and a proxy deployment server like a deployment application or as
a deployment agent acting as a proxy. Transport between an agent and a server is over an IP connection with TLS for security.
Transport between a proxy deployment server and a deployment server is also over IP with TLS.

Plug-n-Play Agent Application Protocol
The Cisco Open Plug-n-Play (PnP) agent application protocol is an XML-based protocol that defines a mechanism that allows network
devices to be monitored and controlled by a remote application. The PnP agent is a software module running on a Cisco device. The
PnP server is an application running as the network manager that remotely manages the network devices. The main features of the
PnP protocol are as follows:

1 Supports HTTP protocols

2 Supports Transport Level Security (TLS) based encryption for HTTP

16

3 Uses HTTP secure (HTTPS) certificate for TLS handshake

Plug-n-Play Transport over Ethernet
Cisco Open Plug-n-Play (PnP) agent uses the Ethernet based transport in the following two scenarios:

• Deployment agent communicating with a deployment application on a PC: In this case, the PC is connected to the device
being deployed using an Ethernet cable. The deployment application advertises itself as a deployment server supporting Ethernet
transport.

• Deployment agent communicating with an already deployed device acting as a proxy deployment server: In this case, the
new device being deployed has an Ethernet connection to an already deployed device. The deployment agent on the deployed
device responds to the discovery requests and acts as a proxy deployment server for the new device.

Once discovery is complete, the deployment agent starts an unsecured XML stream with the deployment server over Ethernet. This
protocol reserves an Ethertype (0xXX TBD) for this purpose. The deployment agent and the server then negotiate to use Extensible
Authentication Protocol–Transport Layer Security (EAP-TLS) to protect the communication and complete the EAP-TLS session
establishment. The deployment server then authenticates the device with the HTTP secure (HTTPS) certificate or some other supported
mechanism.

Plug-n-Play Transport over IP
In Cisco Open Plug-n-Play (PnP) agent, the transport over IP is identical to standard Extensible Messaging and Presence Protocol
(XMPP) transport between an XMPP client and an XMPP server. The deployment agent opens TCP connection to the deployment
server and starts an XML stream of messages. The server can request the use of Transport Layer Security (TLS) at this time. The
agent closes the existing XML stream, initiates a TLS connection to the server, and then restarts the XML stream. The server can
request agent authentication over the TLS connection. Refer to RFC 3920 for the transport details for XMPP connections over IP.

Plug-n-Play Agent Security

Security to all Cisco Open Plug-n-Play (PnP) devices is provided at both transport level as well as the application level. The following
sections describe the security mechanisms in detail:

Plug-n-Play Transport Layer 3 Security
For non-crypto or non-crypto-enabled images, TLS security choice is not possible. One alternative minimum security is to have the
PnP agent initiate the connection to the specified trusted PnP server on port 5222.

Authentication and Authorization between Plug-n-Play Agent and Server
Once the Cisco Open Plug-n-Play (PnP) deployment agent discovers the PnP server, the agent engages the server in a Transport Layer
Security (TLS) handshake. In order to authenticate itself to the server, the agent presents its HTTP secure (HTTPS) certificate. The
administrator for the PnP server sets device authentication mechanisms which are acceptable for a particular deployment.

The deployment server presents its certificate to the deployment agent so that the agent can authenticate the server. Irrespective of
whether the agent is able to verify the server certificate, the agent engages the deployment server in a post-TLS authorization exchange.
In this exchange the agent requests the server to present its server authorization token. In response to this request the server presents
the authorization token it had obtained from Cisco. The agent verifies the signature on the authorization token. If the authorization
token is specific to a Unique Device Identifier (UDI), the agent also ensures its UDI is listed in the authorization-token. At the end
of this step, a secure communication channel is established between the deployment agent and the server. This secure communication
channel is leveraged by the server to send deployment information to the agent.

17

Security Methods for the PnP Discovery Process
This section describes the methods that are used to secure the PnP agent-server communication in various scenarios. The security
options are used by the PnP agent during the zero-touch PnP server discovery. This section includes the following topics:

• Self-Signed Certificate based Authentication , on page 18

• Mobile Device based Secured Installation, on page 19

• CA-Signed Certificate based Authentication, on page 19

• DHCP Option-based Discovery, on page 19

• DNS-based Discovery, on page 21

Self-Signed Certificate based Authentication
The PnP server has an option to use a self-signed SSL certificate for server side authentication.When the PnP server uses a self-signed
certificate, the PnP discovery cannot be used for automatically initiating secured communication from the agent to the server. The
device goes through usual PnP discovery mechanisms and when it finds the server, the agent sends a work-request over HTTP. The
server should use the PnP certificate-install service to instruct the agent to install the server self-signed certificate, and then automatically
reconnect back to the server over HTTPs.

To keep the solution secured, it is recommended that you use the unsecured port 80 of server to deliver the one-time certificate
installation to the devices. All other services should be sent over the secured port.

The following figure shows the end-to-end secured PnP workflow using a self-signed server SSL certificate.

Figure 10: PnP Deployment with Self-Signed Certificate

18

Mobile Device based Secured Installation
As part of this solution, an application for mobile devices is available to configure the bootstrap on the devices. The mobile application
can be used to install the server certificate directly on each device along with other bootstrap configuration and then allow the PnP
agent initiate secured communication with the server. In this method, the server does not open up any unsecured port for
certificate-install.

The following figure shows the end-to-end secured PnP workflow using the application on the mobile devices.

Figure 11: Secured PnP Deployment with the Mobile Application

CA-Signed Certificate based Authentication
Cisco distributes certificates signed by a signing authorities in a tar file format and signs the bundle with Cisco Certificate Authority
(CA) signature. This certificate bundle is provided by Cisco infoSec for public downloads on cisco.com.

The certificates from this bundle can be installed on the Cisco IOS device for server side validation during SSL handshake. It is
assumed that the server uses a certificate, which is signed by one of the CA that is available in the bundle.

The PnP agent uses the built-in PKI capability to validate the certificate bundle. As the bundle is signed by Cisco CA, the agent is
capable of identifying the bundle that is tampered before installing the certificates on the device. After the integrity of the bundle is
ensured by the agent, the agent installs the certificates on the device. After the certificates are installed on the device, the PnP agent
initiates an HTTPs connection to the server without any additional steps from the server. The following mechanisms helps the PnP
agent to initiate a zero-touch secured communication.

DHCP Option-based Discovery

The DHCP option 43 and option 60 is a vendor specific identifier which is used by the PnP agent to locate and connect to the PnP
server. To support multiple vendors, the PnP agent in Cisco device sends out a case-sensitive “ciscopnp” as the option 60 string during
the DHCP discovery. The DHCP server can be configured with multiple classes matching with a different option 60 string that comes
from each network device. After the option 60 string matches, the DHCP server sends out the corresponding option 43 string back
to the device. The following is the format for defining the option 43 for PnP deployments:

19

option 43 ascii "5A;K5;B2;I10.30.30.10;J443;Ttftp://10.30.30.10/ ios.p7b;Z10.30.30.1

The field ‘T’ in the PnP string provides an option for the network administrator to specify the location of the certificate bundle, which
can be hosted on a local or remote file server.

If the certificate bundle is available at the specified location, then the agent:

1 Downloads the bundle from the file server to the device.

2 Checks the signature of the downloaded bundle to ensure it has a genuine Cisco signature.

3 Installs the certificates on the device.

If the ‘T’ option is not specified and the transport mechanism is specified in the option 43 string as HTTPs, the PnP agent looks for
the Cisco signed certificate bundle in the default folder of the same server http://10.30.30.10:443/certificates/default/cert.p7b .

If the certificates are available at the default location then the agent performs the steps mentioned above to install the certificates.

After the certificates are installed and the server discovery is complete, the agent initiates the HTTPs connection with the server
without any additional configuration. During the HTTPs handshake, the device uses the certificates installed from the bundle to
validate the server certificate.

The following figure shows the end-to-end secured PnP workflow using the CA bundle-based certificate.

Figure 12: Secured PnP Deployment with Trustpool

This flow works only if the server is using a certificate signed by one of the known signing authorities that is available in the bundle.
If the server uses a certificate that is not a part of the bundle then the HTTPs handshake will fail. When you specify the option 43
string with HTTPs as a transport option and if the bundle download fails, the agent will not fall back to any of the unsecured
communication protocol even if the server is reachable. If the transport option is specified as HTTP with a parameter 'T' pointing to
a valid certificate bundle location, the agent overrides the transport option HTTP and changes it to HTTPs for secured communication.
Generally, the agent will choose the most secured communication from the available options.

The path specified in the DHCP option 43 to locate the certificate bundle file can be an absolute URL or a relative URL. If you specify
a relative URL, the agent forms a full URL with the server IP address or hostname as specified in the option 43 string and uses HTTP
as the file transfer protocol.

Also, to install the certificates, the agent expects the device to have an updated system clock. Because, you configure the DHCP
server first, you cannot specify the current time in the DHCP server. In such a scenario, an IP address or a URL can be specified as

20

an alternative parameter in the option 43 with the prefix 'Z', which can point the device to a NTP server. The agent synchronizes the
clock on the device with the NTP server and then installs the certificates.

DNS-based Discovery

In DNS-based discovery, a DHCP server receives the domain name of the customer network. The domain name is used to create a
PnP-specific, fully qualified domain name (FQDN) such as pnpserver.domain.com. In this method, the customer network resolves
this URL to a valid PnP server IP address. Because, there is no mechanism to specify the certificate location, the agent locates the
server certificate to initiate the HTTPs connection without manual intervention.

During the system boot up, the device acquires IP network information from a DHCP server along with the domain name. With the
customer specific domain name, the PnP agent creates the following URL pnpserver.domain.com and looks for the Cisco signed
certificate bundle in a default folder of the server http://pnpserver.domain.com/certificates/default/cert.p7b.

If the certificate bundle is available at the specified location, then the agent will:

1 Downloads the bundle from the file server to the device.

2 Checks the signature of the downloaded bundle to ensure it has genuine Cisco signature.

3 Installs the certificates on the device.

If the certificate bundle is not available at the specified location, the PnP agent creates a second URL,pnpcertserver.domain.com and
looks for the Cisco signed certificate bundle in the default folder of the server,
http://pnpcertserver.domain.com/certificates/default/cert.p7b.

If the certificates are available at the specified location, then the agent performs the steps specified above to install the certificates.

After the certificates are installed and the server discovery is complete, the agent initiates the HTTPs connection with the server at
the URL, pnpserver.domain.com without any additional configuration. During the HTTPs handshake, the device uses the certificates
that are installed from the bundle to validate the server certificate.

Also, to install the certificates, the agent expects the device to have an updated system clock. Because, you configure the DHCP
server first, you cannot specify the current time in the DHCP server. In such a scenario, the agent uses a predefined URL,
pnpntpserver.domain.com which needs to be mapped to a NTP sever to synchronize the clock on the device, and then installs the
certificates.

However, if the certificate is not present at either URL, the PnP agent will fall back and establish the HTTP connection to the server
using the created FQDN pnpserver.cisco.com. With this workflow, the agent expects the server to use the certificate-install service
to install the self-signed certificates first and then start the provisioning steps.

Security Methods for Post-PnP Discovery Process
This section explains the methods provided by the PnP agent which can be, used by the PnP server to secure the client-server
communication after the completing the discovery process. This section includes the following topic:

• Certificate Install Service, on page 21

Certificate Install Service
The PnP agent provides a mechanism to manage SSL certificates on the device by providing the certificate-install service to the PnP
server. The certificate-install service provides a simple XML to install the server, self-signed or signed by standard CA certificates
on the device, before initiating an HTTPs connection. The certificate-install service also provides an option to install the client SSL
certificate and instruct the device to use the same SSL certificate during the next device authentication process.

21

SUDI-based PnP Application Level Authentication
The SSL communication ensures encryption of the data packets exchanged between the server and the device, but does not provide
a solution to authenticate the device.

To ensure that the server is talking to a genuine Cisco device, the agent uses the built-in Secure Unique Device Identifier (SUDI)
certificate support on the device. SUDI is a X.509 compliant device certificate burnt into the device's secured chip (ACT2) during
the manufacture time. The SUDI certificate contains the device's serial number, private-public keys, and the Cisco CA signature. The
agent provides the following mechanisms that can be used by the server to authenticate the device as a genuine Cisco device:

• SUDI-based Client Certificate Validation, on page 22

• SUDI-based Serial Number, on page 22

SUDI-based Client Certificate Validation

Before the agent initiates an HTTPs connection with the server, the agent checks whether the device has a built-in SUDI certificate.
If the device has a certificate, then the agent sends the SUDI certificate to the client during the SSL handshake for validating. Optionally,
the HTTPs server may choose to validate the device using the SUDI certificate during the SSL handshake. After validating, the HTTPs
server allows the device to connect to the server. To validate the device's SUDI certificate, the server should use Cisco CA to complete
the validation.

SUDI-based Serial Number

If the device is loaded with SUDI certificate, the PnP agent reads the serial number from the SUDI certificate and presents the same
information as an additional tag in the work-request body for all communication with the server. To achieve this, the following
optional tag is added in the work-info message, which goes out from the device in every work-request. This field is optional and does
not show up for devices that does not have SUDI certificate.
<xs:element name="deviceId" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="udi" src=”xs:string” minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="hostname" minOccurs="0" maxOccurs="1" type="xs:string"/>
<xs:element name="SUDI" minOccurs="0" maxOccurs="1" type="xs:string"/>
<xs:element name="authRequired" minOccurs="1" maxOccurs="1" type="xs:boolean"/>
<xs:element name="viaProxy" minOccurs="0" maxOccurs="1" type="xs:boolean"/>
<xs:element name="securityAdvise" minOccurs="0" maxOccurs="1" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
There is no change in the existing UDI mechanism that is read from the chassis inventory. The agent continues to be backwards
compatible by sending the chassis UDI as the primary identifier. The server can use the additionally provided SUDI-based serial
number to authenticate the device and then continue to use the primary UDI. For the devices without a SUDI certificate, the agent
does not send this additional SUDI-based serial number. Therefore, the server should continue with the primary UDI for authentication
and further communication.

There is no mechanism available to read the SUDI-based serial number from member hardware and there is no change in how UDI
is read from other members on a stack or HA unit. The agent will continue to read the UDI from all the hardware units as it does
presently.

SUDI-Based Device Authentication

In SUDI-based device authentication, the agent checks whether the device has a built-in SUDI certificate at the boot-up time. If the
device is loaded with the SUDI certificate, the agent provides a new PnP service, which allows the server to help the device to identify

22

itself. The availability of this new service depends on the presence of the SUDI certificate and is listed in the agent's capability service.
The new capability response has the following response:
<xs:element name="supported-capabilities" minOccurs="0" maxOccurs="1">
<xs:complexType>
<xs:sequence>
<xs:element name="Capability" maxOccurs="unbounded">
<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="cisco:pnp:capability"/>
<xs:enumeration value="cisco:pnp:device-auth"/>
<xs:enumeration value="cisco:pnp:cli-config"/>
<xs:enumeration value="cisco:pnp:cli-exec"/>
<xs:enumeration value="cisco:pnp:config-upgrade"/>
<xs:enumeration value="cisco:pnp:device-info"/>
<xs:enumeration value="cisco:pnp:file-transfer"/>
<xs:enumeration value="cisco:pnp:image-install"/>
<xs:enumeration value="cisco:pnp:reload"/>
<xs:enumeration value="cisco:pnp:snmp"/>
<xs:enumeration value="cisco:pnp:syslog"/>
<xs:enumeration value="cisco:pnp:snooping"/>
<xs:enumeration value="cisco:pnp:napp"/>
<xs:enumeration value="cisco:pnp:location"/>
<xs:enumeration value="cisco:pnp:script-exec"/>
<xs:enumeration value="cisco:pnp:licensing"/>
<xs:enumeration value="cisco:pnp:device-id"/>
<xs:enumeration value="cisco:pnp:backoff"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
Along with the above change in the capability-service, the agent adds an additional field under the hardware-info section of the
device-info response, to specify and check whether the SUDI certificate is built into the device.
<xs:element name="hardwareInfo" minOccurs="0" maxOccurs="1"><!-- Only if
harwadre-info type is requested -->
<xs:complexType>
<xs:sequence>
<xs:element name="hostname" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="vendor" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="sudiSupported" minOccurs="0" maxOccurs="1" type="xs:boolean"/>
<xs:element name="platformName" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="processorType" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="hwRevision" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="mainMemSize" minOccurs="1" maxOccurs="1" type="xs:integer"/>
<xs:element name="ioMemSize" minOccurs="1" maxOccurs="1" type="xs:integer"/>
<xs:element name="boardId" minOccurs="1" maxOccurs="1" type="xs:integer"/>
<xs:element name="boardReworkId" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="processorRev" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="midplaneVersion" minOccurs="1" maxOccurs="1" type="xs:string"/>
<xs:element name="location" minOccurs="1" maxOccurs="1" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>
After, the agent initiates an HTTPs connection with the server and sends a work-request, the server should be able to use the device
authentication service for a challenge request-response. The device authentication service requires a minimum of one field to generated
a string by the server. Optionally, the server can send a list of encryptions and hashing methods that it can support. The agent checks
whether it has the capability to use any of the listed encryption methods specified by the server, uses the encryption method and sends
a notification to the server. If the agent does not have the capability to use any of the methods specified by the server, then the agent
responds with an error message.
<xs:schema xmlns="urn:cisco:pnp:device-auth">
<xs:element name="request">
<xs:element name="hash-methods" type=”xs:string” minOccurs="1" maxOccurs="n"/>
<xs:element name="encryption-methods" type=”xs:string” minOccurs="1" maxOccurs="n"/>
<xs:element name="challenge-string" type=”xs:string” minOccurs="1" maxOccurs="1"/>
</xs:element>
</xs:schema>

23

When the server sends a device authentication service request to the agent, the agent does the following:

1 Uses one of the specified encryption and hashing methods.
2 If the agent does not have capability to use one of the specified encryption and hashing methods, the agent responds with an error

message.

3 Encrypts the challenge string provided by the server using the private key using the PKI APIs.

4 Sends a response back with the following:

1 Cipher text
2 Methods used to cipher
3 Certificate (SUDI or client installed certificate)

The following is the response schema:
<xs:schema xmlns="urn:cisco:pnp:device-auth">
<xs:element name="response">
<xs:element name="hash-used" type=”xs:string” minOccurs="1" maxOccurs="1"/>
<xs:element name="cipher-used" type=”xs:string” minOccurs="1" maxOccurs="1"/>
<xs:element name="cipher-string" type=”xs:string” minOccurs="1" maxOccurs="1"/>
<xs:element name="certificate" type=”xs:string” minOccurs="1" maxOccurs="1"/>
</xs:element>
</xs:schema>
After, the server receives the above response from the device, the server does the following:

1 Verifies the SUDI or the client certificate against the Cisco or customer CA.

2 Decrypts the cipher-string using the public key that is available in the SUDI or client certificate.

3 Verifies whether the deciphered string matches the original version.

4 Generates a session key (string) and sends it back to the device as an acknowledgment.

<xs:element name="workInfo" minOccurs="1" maxOccurs="1">
<xs:complexType>
<xs:sequence>

<xs:element name="session-key" type="xs:string" fixed="" minOccurs="0" maxOccurs="1"/>
<xs:element name="bye" type="xs:string" fixed="" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>
</xs:element>

After the agent receives the final acknowledgment from the server with the session-key, it associates the corresponding profile with
the provided session-key and sends it to the server as an attribute in the root PnP section of all the subsequent messages that the agent
sends.

The following example shows the session-key in the work information service:
<xs:schema xmlns="urn:cisco:pnp" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:svc="urn:cisco:pnp:work-info" targetNamespace="urn:cisco:pnp">
<xs:import namespace="urn:cisco:pnp:device-id" schemaLocation="pnp_device_id_body.xsd"/>
<xs:import namespace="urn:cisco:pnp:work-info"
schemaLocation="pnp_device_work_info_body.xsd"/>
<xs:element name="pnp">
<xs:complexType>
<xs:sequence>
<xs:element ref="svc:info" minOccurs="1" maxOccurs="1"/>
</xs:sequence>
<xs:attribute name="version" fixed="1.0" use="required"/>
<xs:attribute name="udi" type="xs:string" use="required"/>
<xs:attribute name="session-key" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>

24

</xs:schema>

The following example shows the session-key in the response section of image-install service. The session-key appears in the response
section of all other services including the notify-services.
<xs:schema xmlns="urn:cisco:pnp" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:svc="urn:cisco:pnp:image-install" targetNamespace="urn:cisco:pnp">
<xs:import namespace="urn:cisco:pnp:image-install"
schemaLocation="pnp_image_install_body.xsd"/>
<xs:simpleType name="NoCheckTime">
<xs:restriction base="xs:positiveInteger">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="180"/>
</xs:restriction>
</xs:simpleType>

<xs:element name="pnp">
<xs:complexType>

<xs:choice>
<xs:element ref="svc:request" minOccurs="1" maxOccurs="1"/>
<xs:element ref="svc:response" minOccurs="1" maxOccurs="1"/>

</xs:choice>
<xs:attribute name="version" type="xs:string" fixed="1.0" use="required"/>
<xs:attribute name="udi" type="xs:string" use="required"/>
<xs:attribute name="session-key" type="xs:string" use="optional"/>
<!-- noCheckTime in minutes, minimum 1, maximum 180 -->
<xs:attribute name="noCheckTime" type="NoCheckTime" use="optional"/>
<xs:attribute name="postReloadPriv" type="xs:string" fixed="ztd"
use="optional"/>

</xs:complexType>
</xs:element>

</xs:schema>

The server validates the session-key before sending any message from the device. Optionally, the server maintains a timer for the
session-keys and moves to invalid status when the timer expires. If the agent sends a message with an expired session-key, the server
repeats the device authentication process and generate a new session-key before sending to the same device again. If the device sends
a request without any session-key, then the server performs the device authentication process and generates a new session-key before
sending to the same device.

The following figure displays the message sequence between the agent and the server to accomplish the device authentication using
the SUDI certificate.

Figure 13: Message Sequence

25

How to Configure Open Plug-n-Play Agent

Configuring Open Plug-n-Play Agent Profile
Perform the following task to create an Open Plug-n-Play (PnP) agent profile:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for
the PnP agent profile. Profile names cannot be duplicated.

Exits the PnP profile initialization mode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 4

Configuring Open Plug-n-Play Agent Device
Perform the following task to create an Open Plug-n-Play (PnP) agent device:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

26

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for the
PnP agent profile. Profile names cannot be duplicated.

Configures the PnP agent on the device.device {username username } {password {0
| 7} password}

Step 4

• Establishes a username and password based authentication
system.

Example:

Device(config-pnp-init)# device username
sjohn password 0 Tan123

• username—User ID

• password—Password that a user enters

• 0—Specifies that an unencrypted password or secret (depending
on the configuration) follows.

• 7—Specifies that an encrypted (hidden) password follows.

Exits the PnP profile initialization mode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 5

Configuring Open Plug-n-Play Reconnect Factor
Perform the following task to configure the time to wait before attempting to reconnect a session in either fixed-interval-backoff,
exponential-backoff, or random-exponential-backoff mode:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

27

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for the PnP
agent profile. Profile names cannot be duplicated.

Specifies the time for the PnP agent initiator profile to wait before
attempting to reconnect a session.

reconnect [pause-time
[exponential-backoff-factor [random]]]

Step 4

Example:

Device(config-pnp-init)# reconnect 100
2 random

• The pause-time value is the time to wait, in seconds, before
attempting to reconnect after a connection is lost. The range is
from 1 to 2000000. The default is 60.

• Exponential backoff factor value is the value that triggers the
reconnect attempt exponentially. The range is from 2 to 9.

Exits the PnP profile initializationmode and returns to privileged EXEC
mode.

end

Example:

Device(config-pnp-init)# end

Step 5

Configuring Open Plug-n-Play HTTP Transport Profile
Perform the following task to create a HTTP transport profile of the Open Plug-n-Play (PnP) agent manually on a device.

Both IPv4 and IPv6 addresses can be used for PnP server IP configuration. Alternately, a hostname can also be used in the configuration
to connect to the PnP server.

Every profile can have one primary server and a backup server configuration. The PnP agent attempts to initiate a connection with
the primary server first and if it fails, it will try the backup server. If the backup server fails, the PnP agent will attempt to connect to
the primary server again. This will continue until a connection is established with one of the servers.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

28

PurposeCommand or Action

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a name for
the PnP agent profile. Profile names cannot be duplicated.

Creates a HTTP transport configuration for the PnP agent profile
based on the hostname of the server on which the PnP agent is
deployed.

transport http host host-name [port port-number]
[source interface-type]

Example:

Device(config-pnp-init)# transport http host

Step 4

• The value of the host specifies the host name, port, and
source of the server.

hostname-1 port 1 source gigabitEthernet
0/0/0 • The value of the port-number specifies the port that is used.

• The value of the interface-type specifies the interface on
which the agent is connected to the server.

Creates a HTTP transport configuration for the PnP agent profile
based on the IPv4 address of the server on which the PnP agent
is deployed.

transport http ipv4 ipv4-address [port port-number
] [source interface-type]

Example:

Device(config-pnp-init)# transport http ipv4

Step 5

10.0.1.0 port 221 source gigabitEthernet
0/0/0

Creates a HTTP transport configuration for the PnP agent profile
based on the IPv6 address of the server on which the PnP agent
is deployed.

transport http ipv6 ipv6-address [port port-number
] [source interface-type interface-number]

Example:

Device(config-pnp-init)# transport http ipv6

Step 6

2001:DB8:1::1 port 331 source gigabitEthernet
0/0/1

Exits the PnP profile initializationmode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

29

Configuring Open Plug-n-Play HTTPS Transport Profile
Perform the following task to create a HTTP Secure (HTTPS) transport profile of the Open Plug-n-Play (PnP) agent manually on a
device.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a name
for the PnP agent profile. Profile names cannot be
duplicated.

Creates a HTTPS transport configuration for the PnP agent
profile based on the hostname of the server on which the PnP
agent is deployed.

transport https host host-name [port port-number
][source interface-type][localcert trustpoint-name
][remotecert trustpoint-name]

Step 4

Example:

Device(config-pnp-init)# transport https host

• The value of localcert specifies the trustpoint used for
client-side authentication during the transport layer
security (TLS) handshake.

example.com port 231 source gigabitEthernet 0/0/0
localcert abc remotecert xyz • The value of remotecert specifies the trustpoint used for

server certificate validation.

Configure the trustpoint-name using the crypto pki
trustpoint command.

Note

Creates a HTTPS transport configuration for the PnP agent
profile based on the IPv4 address of the server on which the
PnP agent is deployed.

transport https ipv4 ipv4-address [port port-number
][source interface-type][localcert trustpoint-name
][remotecert trustpoint-name]

Example:

Device(config-pnp-init)# transport https ipv4

Step 5

10.0.1.0 port 221 source gigabitEthernet 0/0/0
localcert abc remotecert xyz

30

PurposeCommand or Action

Creates a HTTPS transport configuration for the PnP agent
profile based on the IPv6 address of the server on which the
PnP agent is deployed.

transport https ipv6 ipv6-address [port port-number
][source interface-type interface-number][localcert
trustpoint-name][remotecert trustpoint-name]

Example:

Device(config-pnp-init)# transport https ipv6

Step 6

2001:DB8:1::1 port 331 source gigabitEthernet
0/0/1 localcert abc remotecert xyz

Exits the PnP profile initialization mode and returns to
privileged EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Backup Open Plug-n-Play Device
Perform the following task to create a backup profile and to enable or disable Open Plug-n-Play agent manually on a device:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for the
PnP agent profile. Profile names cannot be duplicated.

Configures the PnP agent backup profile on the device.backup device {username username }
{password {0 | 7} password}

Step 4

• Establishes a username and password based authentication
system.

Example:

Device(config-pnp-init)# backup device
username sjohn password 0 Tan123

• username-User ID

• password-Password that a user enters

31

PurposeCommand or Action

• 0—Specifies that an unencrypted password or secret (depending
on the configuration) follows.

• 7—Specifies that a hidden password follows.

Exits the PnP profile initialization mode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 5

Configuring Backup Open Plug-n-Play Reconnect Factor
Perform the following task to configure backup reconnection of the Open Plug-n-Play (PnP) agent to the server in either
fixed-interval-backoff, exponential-backoff, or random-exponential-backoff manner :

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile initialization
mode.

pnp profile profile-name

Example:

Device(config)# pnp profile
test-profile-1

Step 3

• String of alphanumeric characters that specify a name for the PnP
agent profile. Profile names cannot be duplicated.

Specifies the time for the PnP agent initiator profile to wait before
attempting to reconnect a session.

backup reconnect [pause-time
[exponential-backoff-factor [random]]]

Step 4

Example:

Device(config-pnp-init)# backup
reconnect 100 2 random

• The pause-time value is the time to wait, in seconds, before
attempting to reconnect after a connection is lost. The range is
from 1 to 2000000. The default is 60.

• Exponential backoff factor value is the value that triggers the
reconnect attempt exponentially. The range is from 2 to 9.

32

PurposeCommand or Action

Exits the PnP profile initializationmode and returns to privileged EXEC
mode.

end

Example:

Device(config-pnp-init)# end

Step 5

Configuring Backup Open Plug-n-Play HTTP Transport Profile
Perform the following task to create a backup HTTP transport profile of the Open Plug-n-Play (PnP) agent manually on a device.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a name for
the PnP agent profile. Profile names cannot be duplicated.

Creates a backupHTTP transport configuration for the PnP agent
profile based on the hostname of the server on which the PnP
agent is deployed.

backup transport http host host-name [port
port-number] [source interface-type]

Example:

Device(config-pnp-init)# backup transport http

Step 4

• The value of the host specifies the host name, port, and
source of the server.

host hostname-1 port 1 source gigabitEthernet
0/0/0 • The value of the port-number specifies the port that is used.

• The value of the interface-type specifies the interface on
which the agent is connected to the server.

33

PurposeCommand or Action

Creates a backupHTTP transport configuration for the PnP agent
profile based on the IPv4 address of the server on which the PnP
agent is deployed.

backup transport http ipv4 ipv4-address [port
port-number] [source interface-type]

Example:

Device(config-pnp-init)# backup transport http

Step 5

ipv4 10.0.1.0 port 221 source gigabitEthernet
0/0/0

Creates a backupHTTP transport configuration for the PnP agent
profile based on the IPv6 address of the server on which the PnP
agent is deployed.

backup transport http ipv6 ipv6-address [port
port-number] [source interface-type interface-number
]

Example:

Device(config-pnp-init)# backup transport http

Step 6

ipv6 2001:DB8:1::1 port 331 source
gigabitEthernet 0/0/1

Exits the PnP profile initializationmode and returns to privileged
EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Backup Open Plug-n-Play HTTPS Transport Profile
Perform the following task to create a backup HTTPS transport profile of the Open Plug-n-Play (PnP) agent manually on a device.

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Creates a PnP agent profile and enters the PnP profile
initialization mode.

pnp profile profile-name

Example:

Device(config)# pnp profile test-profile-1

Step 3

• String of alphanumeric characters that specify a name
for the PnP agent profile. Profile names cannot be
duplicated.

34

PurposeCommand or Action

Creates a HTTPS backup transport configuration for the PnP
agent profile based on the hostname of the server on which
the PnP agent is deployed.

backup transport https host host-name [port port-number
][source interface-type][localcert trustpoint-name
][remotecert trustpoint-name]

Step 4

Example:

Device(config-pnp-init)# backup transport https

• The value of localcert specifies the trustpoint used for
client-side authentication during the transport layer
security (TLS) handshake.

host example.com port 231 source gigabitEthernet
0/0/0 localcert abc remotecert xyz • The value of remotecert specifies the trustpoint used

for server certificate validation.

Creates a HTTPS backup transport configuration for the PnP
agent profile based on the IPv4 address of the server on
which the PnP agent is deployed.

backup transport https ipv4 ipv4-address [port
port-number][source interface-type][localcert
trustpoint-name][remotecert trustpoint-name]

Example:

Device(config-pnp-init)# backup transport https

Step 5

ipv4 10.0.1.0 port 221 source gigabitEthernet
0/0/0 localcert abc remotecert xyz

Creates a HTTPS backup transport configuration for the PnP
agent profile based on the IPv6 address of the server on
which the PnP agent is deployed.

backup transport https ipv6 ipv6-address [port
port-number][source interface-type interface-number
][localcert trustpoint-name][remotecert trustpoint-name
]

Step 6

Example:

Device(config-pnp-init)# backup transport https
ipv6 2001:DB8:1::1 port 331 source gigabitEthernet
0/0/1 localcert abc remotecert xyz

Exits the PnP profile initialization mode and returns to
privileged EXEC mode.

end

Example:

Device(config-pnp-init)# end

Step 7

Configuring Open Plug-n-Play Agent Tag
Perform the following task to create an Open Plug-n-Play (PnP) agent tag information:

Procedure

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

35

PurposeCommand or Action

Example:

Device> enable

• Enter your password if prompted.

Enters global configuration mode.configure terminal

Example:

Device# configure terminal

Step 2

Use the pnp tag command to configure the tag for the device. The
neighboring Cisco devices will receive this tag information through Cisco
Discovery Protocol (CDP).

pnp tag tag-name

Example:

Device(config)# pnp tag xyz

Step 3

If there is an existing tag for the device, the tag name can be only
changed when the xml schema is sent by the PnP server to change
the tag name. The tag name cannot be overwritten.

Note

• String of alphanumeric characters that specify a name for the PnP
agent tag.

Exits the global configuration mode and returns to privileged EXEC mode.end

Example:

Device(config)# end

Step 4

Trouble Shooting and Debugging
To run the debugging on the Open Plug-n-Play (PnP) server, start the server, configure the PnP profile and PnP transport. That is,
start the service interaction between PnP agent and PnP server.

Capture the debugs by executing the debug pnp service command.

Glossary
NAPP Server: The Cisco Open Plug-n-Play (PnP) Neighbor Assisted Provisioning Protocol (NAPP) server that is part of PnP
discovery phase. This is a PnP enabled device in the neighborhood that can be configured to act as a PnP proxy server.

PnP Agent: An embedded agent on the device to automate deployment process

PnP Helper Applications: Applications on smart phones and personal computers that facilitate deployment. PnP helper applications
are not specific to a customer or device and can be used in any deployment scenario. May be needed in limited scenarios

PnP Protocol: Protocol between the PnP agent and PnP server. This is an open protocol allowing third-party development of PnP
servers

36

PnP Server: A central server that manages and distributes deployment information (images, configurations, files, and licenses) for
the devices being deployed. Open Plug-n-Play (PnP) server provides a north bound interface for management applications and
communicates with the PnP agents on the devices using the PnP protocol.

Additional References for Open Plug-n-Play Agent

Related Documents

Document TitleRelated Topic

Cisco IOS Master Command List, All
Releases

Cisco IOS commands

Cisco IOS PnP Command ReferencePnP commands: Complete command syntax, command mode, command history,
defaults, usage guidelines, and examples

Solution Guide for Cisco Network Plug
and Play.

Cisco Network Plug and Play solution

Configuration Guide for Cisco Network
Plug and Play on Cisco APIC-EM.

How to use the Cisco Network Plug and Play in the APIC-EM to configure Cisco
network devices.

Cisco Application Policy Infrastructure
Controller Enterprise Module
Deployment Guide.

How to deploy the APIC-EM.

Cisco APIC-EM Quick Start Guide.Getting started with the APIC-EM.

MIBs

MIBs LinkMIB

To locate and download MIBs for selected platforms, Cisco
software releases, and feature sets, use Cisco MIB Locator
found at the following URL:

http://www.cisco.com/go/mibs

• CISCO-BULK-FILE-MIB

• CISCO-DATA-COLLECTION-MIB

• CISCO-PROCESS-MIB

• Expression-MIB

37

http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html
http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html
http://www.cisco.com/en/US/docs/ios-xml/ios/pnp/command/nm-pnp-cr-book.html
http://www.cisco.com/go/mibs

Technical Assistance

LinkDescription

http://www.cisco.com/cisco/web/support/index.htmlThe Cisco Support and Documentationwebsite provides online
resources to download documentation, software, and tools.
Use these resources to install and configure the software and
to troubleshoot and resolve technical issues with Cisco products
and technologies. Access to most tools on the Cisco Support
and Documentation website requires a Cisco.com user ID and
password.

Feature Information for Open Plug-n-Play Agent
The following table provides release information about the feature or features described in this module. This table lists only the
software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent
releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature
Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2: Feature Information for Open Plug-n-Play Agent

Feature InformationReleasesFeature Name

The Cisco Open Plug-n-Play agent converges
existing solutions into a unified agent and adds
functionality to enhance the current deployment
solutions.

The following commands were introduced or
modified by this feature:

backup device, backup profile, backup
reconnect, backup transport http, backup
transport https, backup transport xmpp
socket, backup transport xmpp starttls,
backup transport xmpp tls, device, pnp,
profile, reconnect (pnp), transport http,
transport https, transport xmpp socket,
transport xmpp starttls, and transport xmpp
tls.

Open Plug-n-Play Agent

38

http://www.cisco.com/support
http://www.cisco.com/go/cfn

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITEDWARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDINGANYOTHERWARRANTYHEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS"WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FORA PARTICULAR PURPOSEANDNONINFRINGEMENTORARISING FROMACOURSEOFDEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://
www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

© 2016 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks

Europe HeadquartersAsia Pacific HeadquartersAmericas Headquarters
Cisco Systems International BV
Amsterdam, The Netherlands

Cisco Systems (USA) Pte. Ltd.
Singapore

Cisco Systems, Inc.
San Jose, CA 95134-1706
USA

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the
Cisco Website at www.cisco.com/go/offices.

	Cisco Open Plug-n-Play Agent Configuration Guide, Cisco IOS XE Everest 16.4.1
	Feature Information for Open Plug-n-Play Agent
	Finding Feature Information
	Prerequisites for Open Plug-n-Play Agent
	Restrictions for Open Plug-n-Play Agent
	Information About Open Plug-n-Play Agent
	Open Plug-n-Play Deployment Solution
	Plug-n-Play Features
	Plug-n-Play Agent Services and Capabilities
	Plug-n-Play Agent
	Plug-n-Play Server
	Plug-n-Play Agent Deployment
	Plug-n-Play Agent Network Topology
	Plug-n-Play Agent Initialization
	Absence of Startup Configuration
	CLI Configuration for Open Plug-n-Play Agent

	Open Plug-n-Play Agent Deployment Solutions
	Plug-n-Play Agent Discovery Process
	Plug-n-Play Discovery through DHCP Server
	Plug-n-Play Discovery through DHCP Snooping
	Plug-n-Play Discovery through DNS Lookup
	Plug-n-Play Proxy Server for Layer 3 and Layer 2 Devices
	Plug-n-Play Agent Deployment Application

	Plug-n-Play Agent Deployment Protocol
	Plug-n-Play Agent Application Protocol
	Plug-n-Play Transport over Ethernet
	Plug-n-Play Transport over IP

	Plug-n-Play Agent Security
	Plug-n-Play Transport Layer 3 Security
	Authentication and Authorization between Plug-n-Play Agent and Server

	Security Methods for the PnP Discovery Process
	Self-Signed Certificate based Authentication
	Mobile Device based Secured Installation
	CA-Signed Certificate based Authentication
	DHCP Option-based Discovery
	DNS-based Discovery

	Security Methods for Post-PnP Discovery Process
	Certificate Install Service
	SUDI-based PnP Application Level Authentication
	SUDI-based Client Certificate Validation
	SUDI-based Serial Number
	SUDI-Based Device Authentication

	How to Configure Open Plug-n-Play Agent
	Configuring Open Plug-n-Play Agent Profile
	Configuring Open Plug-n-Play Agent Device
	Configuring Open Plug-n-Play Reconnect Factor
	Configuring Open Plug-n-Play HTTP Transport Profile
	Configuring Open Plug-n-Play HTTPS Transport Profile
	Configuring Backup Open Plug-n-Play Device
	Configuring Backup Open Plug-n-Play Reconnect Factor
	Configuring Backup Open Plug-n-Play HTTP Transport Profile
	Configuring Backup Open Plug-n-Play HTTPS Transport Profile
	Configuring Open Plug-n-Play Agent Tag

	Trouble Shooting and Debugging
	Glossary
	Additional References for Open Plug-n-Play Agent
	Feature Information for Open Plug-n-Play Agent

