MPLS Traffic Engineering Tunnel Source

The Multiprotocol Label Switching (MPLS) Traffic Engineering (TE): Tunnel Source feature allows you to specify the IP address assigned to an interface as the source IP address for control packets. The default behavior is to use the router ID configured in the Interior Gateway Protocol (IGP) using the `mpls traffic-eng router-id` command.

- Finding Feature Information, page 1
- Prerequisites for MPLS Traffic Engineering Tunnel Source, page 1
- Restrictions for MPLS Traffic Engineering Tunnel Source, page 2
- Information About MPLS Traffic Engineering Tunnel Source, page 2
- How to Configure MPLS Traffic Engineering Tunnel Source, page 2
- Configuration Examples for MPLS Traffic Engineering Tunnel Source, page 5
- Additional References, page 6
- Feature Information for MPLS Traffic Engineering Tunnel Source, page 7

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS Traffic Engineering Tunnel Source

- You can configure tunnel source only for MPLS-TE tunnels.
- Understand how to configure TE tunnels. See the Additional References, on page 6.
Restrictions for MPLS Traffic Engineering Tunnel Source

- The configuration of other types of tunnels are not affected by this feature.
- Configuring a tunnel source affects the control traffic and not the traffic forwarded in the dataplane on this tunnel.

Information About MPLS Traffic Engineering Tunnel Source

When you configure an MPLS TE tunnel, the address specified in the `tunnel source` command is used as the source IP address for control traffic to signal the tunnel. The source IP address overrides the default IP address taken from the IGP command `mpls traffic-eng router-id`.

MPLS Traffic Engineering Tunnel Source Usage Guidelines

- Specifying a new source for an established tunnel causes the tunnel to be withdrawn and re-established.
- The tunnel source may be configured as an IP address or as an interface. If an interface is specified, it must have an associated IP address.

How to Configure MPLS Traffic Engineering Tunnel Source

Configuring MPLS Traffic Engineering Tunnel Source

You can configure the tunnel source as an IP address or as an interface. If you configure the tunnel source as an interface, then you should configure an IP address for the interface.

To specify a tunnel source for an MPLS TE tunnel, perform the following steps:
SUMMARY STEPS

1. enable
2. configure terminal
3. interface tunnel number
4. ip unnumbered interface-name interface-number
5. no ip directed-broadcast
6. tunnel source {ip-address | interface-type interface-number}
7. tunnel destination {host-name | ip-address | ipv6-address}
8. tunnel mode mpls traffic-eng
9. tunnel mpls traffic-eng priority setup-priority [hold-priority]
10. tunnel mpls traffic-eng bandwidth bandwidth
11. tunnel mpls traffic-eng affinity affinity-value mask mask-value
12. tunnel mpls traffic-eng path-option number explicit name explicit-path-name
13. tunnel mpls traffic-eng autoroute announce
14. end
15. show ip rsvp sender

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface tunnel number</td>
<td>Configures a tunnel interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface tunnel 1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ip unnumbered interface-name interface-number</td>
<td>Configures an unnumbered IP interface, which enables IP processing without an explicit address.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip unnumbered loopback0</td>
<td>• An MPLS TE tunnel interface should be unnumbered because it represents a unidirectional link.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>no ip directed-broadcast</td>
<td>Disables the translation of a directed broadcast to physical broadcasts.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-if)# no ip directed-broadcast</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>tunnel source {ip-address</td>
<td>interface-type interface-number}</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-if)# tunnel source loopback1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>tunnel destination {host-name</td>
<td>ip-address</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-if)# tunnel destination 192.168.2.1</td>
<td>• The destination must be the MPLS TE router ID of the destination device.</td>
</tr>
<tr>
<td>8</td>
<td>tunnel mode mpls traffic-eng</td>
<td>Sets the encapsulation mode of the tunnel to MPLS TE.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-if)# tunnel mode mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>tunnel mpls traffic-eng priority setup-priority hold-priority</td>
<td>Sets the priority to be used when the system determines which existing tunnels are eligible to be preempted.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-if)# tunnel mpls traffic-eng priority 1 1</td>
<td>• The setup-priority argument is the priority used when signaling an LSP for this tunnel to determine which existing tunnels can be preempted. Valid values are from 0 to 7. A lower number indicates a higher priority. An LSP with a setup priority of 0 can preempt any LSP with a non-0 priority.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The hold-priority argument is the priority associated with an LSP for this tunnel to determine if it should be preempted by other LSPs that are being signaled. Valid values are from 0 to 7, where a lower number indicates a higher priority.</td>
</tr>
<tr>
<td>10</td>
<td>tunnel mpls traffic-eng bandwidth bandwidth</td>
<td>Configures the bandwidth for the MPLS traffic engineering tunnel.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-if)# tunnel mpls traffic-eng bandwidth 5000</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

- **Step 11**
 - `tunnel mpls traffic-eng affinity affinity-value mask mask-value`
 - **Example:**

    ```
    Router(config-if)# tunnel mpls traffic-eng affinity 0x0 mask 0x0
    ```
 - **Purpose:** Configures the properties an MPLS TE tunnel requires in its links.

- **Step 12**
 - `tunnel mpls traffic-eng path-option number explicit name explicit-path-name`
 - **Example:**

    ```
    Router(config-if)# tunnel mpls traffic-eng path-option 1 explicit name BEST-WAY
    ```
 - **Purpose:** Configures a path option for an MPLS TE tunnel.
 - The `explicit` keyword specifies that the path of the LSP is an IP explicit path.

- **Step 13**
 - `tunnel mpls traffic-eng autoroute announce`
 - **Example:**

    ```
    Router(config-if)# tunnel mpls traffic-eng autoroute announce
    ```
 - **Purpose:** Causes the IGP to use the tunnel in its enhanced shortest path first (SPF) calculation.

- **Step 14**
 - `end`
 - **Example:**

    ```
    Router(config-if)# end
    ```
 - **Purpose:** Exits interface configuration modes and enters privileged EXEC mode.

- **Step 15**
 - `show ip rsvp sender`
 - **Example:**

    ```
    Router# show ip rsvp sender
    ```
 - **Purpose:** Displays the IP address used as the source for tunnel control traffic.

Configuration Examples for MPLS Traffic Engineering Tunnel Source

MPLS Traffic Engineering Tunnel Source Example

The output of the `show running-config` command displays the tunnel source configuration. If the `tunnel source` command is not configured, the IP address specified in the IGP command `mpls traffic-eng router-id` is used.

```
Router# show running-config
```
Building configuration...
Current configuration: 3969 bytes
!
interface Tunnel1
 ip unnumbered loopback0
 tunnel source loopback1
 tunnel mode mpls traffic-eng
 tunnel destination 192.168.2.1
 tunnel mpls traffic-eng priority 1 1
 tunnel mpls traffic-eng bandwidth 5000
 tunnel mpls traffic-eng affinity 0x0 mask 0x0
 tunnel mpls traffic-eng path-option 1 explicit name BEST-WAY
 tunnel mpls traffic-eng autoroute announce
!
... router isis
 net 49.0000.0001.0000.0001.00
 is-type level-1
 metric-style wide
 mpls traffic-eng router-id Ethernet4/0/1
 mpls traffic-eng level-1
!
The following sample output from the show ip rsvp sender command displays that the source IP address of the loopback interface used for tunnel control traffic:

Router# show ip rsvp sender
<table>
<thead>
<tr>
<th>To</th>
<th>From</th>
<th>Pro</th>
<th>DPort</th>
<th>Sport</th>
<th>Prev Hop</th>
<th>I/F</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.2.1</td>
<td>192.168.42.2</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>192.168.42.10</td>
<td>Et0/0</td>
<td>SE LOAD SM</td>
</tr>
</tbody>
</table>

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>MPLS TE automatic bandwidth adjustment for TE tunnels configuration tasks</td>
<td>MPLS Traffic Engineering (TE)--Automatic Bandwidth Adjustment for TE Tunnels module</td>
</tr>
<tr>
<td>MPLS TE - LSP Attributes</td>
<td>MPLS Traffic Engineering--LSP Attributes module</td>
</tr>
<tr>
<td>MPLS TE: Path Protection</td>
<td>MPLS Traffic Engineering (TE) - Path Protection module</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for MPLS Traffic Engineering Tunnel Source

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1: Feature Information for MPLS Traffic Engineering: Tunnel Source

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Traffic Engineering: Tunnel Source</td>
<td>12.2(33)SRD</td>
<td>The MPLS Traffic Engineering: Tunnel source feature allows you to specify the IP address assigned to an interface as the source IP address for control packets. The default behavior is to use the router ID configured in the IGP using the <code>mpls traffic-eng router-id</code> command. The following command was introduced or modified: <code>tunnel source</code>.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SXI2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(52)SE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0(1)M</td>
<td></td>
</tr>
</tbody>
</table>