MPLS Traffic Engineering Nonstop Routing Support

This technology is not applicable for the Cisco ASR 900 RSP3 Module.

The MPLS Traffic Engineering Nonstop Routing Support feature assists the Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) routing devices to recover from an interruption in service. This feature also defines the checkpoint and recovery scheme for the devices.

- Finding Feature Information, on page 1
- Prerequisites for MPLS Traffic Engineering Nonstop Routing Support, on page 2
- Restrictions for MPLS Traffic Engineering Nonstop Routing Support, on page 2
- Information About MPLS Traffic Engineering Nonstop Routing Support, on page 2
- How to Configure MPLS Traffic Engineering Nonstop Routing Support, on page 3
- Verifying MPLS Traffic Engineering Nonstop Routing Support, on page 4
- Configuration Examples for MPLS Traffic Engineering Nonstop Routing Support, on page 5
- Additional References for MPLS Traffic Engineering Nonstop Routing Support, on page 12
- Feature Information for MPLS Traffic Engineering Nonstop Routing Support, on page 13

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for MPLS Traffic Engineering Nonstop Routing Support

Your network must support the following Cisco features before you enable Multiprotocol Label Switching (MPLS) Traffic Engineering (TE):

- MPLS
- Cisco Express Forwarding
- Intermediate System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF)

Before enabling MPLS TE Nonstop Routing (NSR), a full-mode check needs to be done by the system to verify if the `mpls traffic-eng nsr` command is permitted or is restricted due to conflicts or user privileges.

Restrictions for MPLS Traffic Engineering Nonstop Routing Support

Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) and Resource Reservation Protocol (RSVP) Graceful Restart (GR) are both mutually exclusive recovery mechanisms. Hence, MPLS TE NSR cannot be enabled when RSVP GR is enabled.

Information About MPLS Traffic Engineering Nonstop Routing Support

MPLS Traffic Engineering Nonstop Routing Support Overview

Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) enables routing devices to recover from an interruption in service. The MPLS TE NSR functionality defines a checkpoint for the control plane of the routing devices. Resource Reservation Protocol (RSVP) Graceful Restart (GR) is another method for recovering and restarting interrupted services.

To avoid conflict and guarantee deterministic behavior, only one of the above mentioned recovery methods can be configured at a given time.

The MPLS TE NSR feature differs from the RSVP GR feature in the following ways:

- MPLS TE NSR devices are fully independent and do not rely on neighbor nodes for a stateful switchover (SSO) recovery.
- MPLS TE NSR supports the SSO recovery of Fast Reroute (FRR) active tunnels.
- MPLS TE NSR has an active standby mode. This helps with most of the recovery states being created before the SSO recovery actually happens, ensuring a faster recovery after SSO.
- MPLS TE NSR `show` commands display recovery information in standby mode as well.
• Label switched paths (LSPs) which are not fully signaled, do not resume signaling after an interruption and will go down on SSO.

How to Configure MPLS Traffic Engineering Nonstop Routing Support

Configuring MPLS Traffic Engineering Nonstop Routing Support

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ip cef**
4. **mpls traffic-eng nsr**
5. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip cef</td>
<td>Enables standard Cisco Express Forwarding operations.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip cef</td>
<td></td>
</tr>
<tr>
<td>Step 4 mpls traffic-eng nsr</td>
<td>Enables the MPLS Traffic Engineering (TE) Non-Stop Routing (NSR) function on a device.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note: Enabling the MPLS TE NSR functionality automatically enables the Resource Reservation Protocol (RSVP) NSR functionality as well.</td>
</tr>
<tr>
<td>Device(config)# mpls traffic-eng nsr</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
Verifying MPLS Traffic Engineering Nonstop Routing Support

SUMMARY STEPS

1. enable
2. show mpls traffic-eng nsr
3. show mpls traffic-eng nsr counters
4. show mpls traffic-eng nsr database
5. show mpls traffic-eng nsr oos
6. show mpls traffic-eng nsr summary
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 show mpls traffic-eng nsr</td>
<td>Displays options to obtain Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) configuration information such as the database status, counter numbers, devices which are out of sync, and the summary of all the devices.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show mpls traffic-eng nsr</td>
<td></td>
</tr>
<tr>
<td>counters</td>
<td>TE NSR counters</td>
</tr>
<tr>
<td>database</td>
<td>TE NSR check pointed data</td>
</tr>
<tr>
<td>oos</td>
<td>TE NSR out of sync database</td>
</tr>
<tr>
<td>summary</td>
<td>TE NSR summary</td>
</tr>
<tr>
<td></td>
<td>Output modifiers</td>
</tr>
<tr>
<td><cr></td>
<td></td>
</tr>
<tr>
<td>Step 3 show mpls traffic-eng nsr counters</td>
<td>Displays information about the data structures or states that are successfully created or removed, along with errors counts.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show mpls traffic-eng nsr counters</td>
<td></td>
</tr>
<tr>
<td>Step 4 show mpls traffic-eng nsr database</td>
<td>Displays information pertaining to the write and read databases supporting MPLS TE NSR. The write and read databases store the data that is used for recovering TE state on a standby device after stateful switchover (SSO).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show mpls traffic-eng nsr database</td>
<td></td>
</tr>
<tr>
<td>Step 5 show mpls traffic-eng nsr oos</td>
<td>Displays information pertaining to the out of sync databases supporting MPLS TE NSR. The out of sync databases indicate the devices whose states are not in sync with each other.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show mpls traffic-eng nsr oos</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for MPLS Traffic Engineering Nonstop Routing Support

Example: Configuring MPLS Traffic Engineering Nonstop Routing Support

The following example shows how to configure Multiprotocol (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) support on a device:

```
enable
configure terminal
ip cef
mpls traffic-eng nsr
end
```

Example: Verifying MPLS Traffic Engineering Nonstop Routing Support

Displaying MPLS Traffic Engineering Nonstop Routing Support Verification Options

The following example shows how to display the options that help you verify Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Nonstop Routing (NSR) information:

```
enable
show mpls traffic-eng nsr ?
counters TE NSR counters
database TE NSR check pointed database
oos TE NSR out of sync database
summary TE NSR summary
| Output modifiers
<cr>
```
Verifying MPLS Traffic Engineering Nonstop Routing Support Counters

The following example shows how to verify information about the data structures or states that are successfully created or removed, along with errors counts:

```
enable
   show mpls traffic-eng nsr counters

State: Active

Bulk sync
   Last bulk sync was successful (entries sent: 24)
      initiated: 1

Send timer
   started: 7

Checkpoint Messages (Items) Sent
   Succeeded:  13  (101)
      Acks accepted:13  (101)
      Acks ignored:   (0)
      Nacks:          0  (0)
      Failed:         0  (0)
   Buffer alloc: 13
   Buffer freed: 13

ISSU:
   Checkpoint Messages Transformed:
      On Send:
         Succeeded:  13
         Failed:    0
         Transformations: 0
      On Recv:
         Succeeded:  0
         Failed:    0
         Transformations: 0

Negotiation:
   Started:  1
   Finished: 1
   Failed to Start: 0

Messages:
   Sent:
      Send succeeded:  5
      Send failed:    0
      Buffer allocated:  5
      Buffer freed:    0
      Buffer alloc failed: 0
   Received:
      Succeeded:   7
      Failed:      0
      Buffer freed: 7

Init:
   Succeeded: 1
   Failed:    0

Session Registration:
   Succeeded: 0
   Failed:    0

Session Unregistration:
Succeeded: 0
Failed: 0

Errors:
None

Verifying MPLS Traffic Engineering Nonstop Routing Support Databases

The following example shows how to verify information pertaining to the write and read databases supporting MPLS TE NSR. The write and read databases store the data that is used for recovering TE state on a standby device after Stateful Switchover (SSO):

Device# show mpls traffic-eng nsr database if-autotun
IF_AUTOTUN WRITE DB

Header:
  State: Checkpointed  Action: Add
 Seq #: 14  Flags: 0x0

Data:
  te_nsr_seq_num: 28
  Tunnel ID: 100 (if_handle: 25), prot_if_handle: 3
  template_unit: n/a, dest: 10.2.0.1, flags=0x0

IF_AUTOTUN READ DB

Device# show mpls traffic-eng nsr database lsp-ac
| Output modifiers
<cr>

Device# show mpls traffic-eng nsr database lsp-ac
LM Tunnel WRITE DB:

  Tun ID: 1  LSP ID: 11  (P2MP)
  SubGrp ID: 1
  SubGrp Orig: 10.1.0.1
  Dest: 10.2.0.1
  Sender: 10.1.0.1  Ext. Tun ID: 10.1.0.1

Header:
  State: Checkpointed  Action: Add
  Seq #: 7  Flags: 0x0
  TE NSR Seq #: 14

LM Tunnel READ DB:

Device# show mpls traffic-eng nsr database internal

Write DB:

<table>
<thead>
<tr>
<th>Entry Type</th>
<th>Checkpointed or Ack-Pending</th>
<th>Send-Pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCALC Node</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCALC Link</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCALC Auto-Mes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PCALC SRLG</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lm_tunnel_t</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NSR LSP FRR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nsr_if_autotun</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nsr_tspvif_set</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nsr_slsp_head</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Read DB:
<table>
<thead>
<tr>
<th>Entry Type</th>
<th>Checkpointed</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCALC Node</td>
<td>5</td>
</tr>
<tr>
<td>PCALC Link</td>
<td>12</td>
</tr>
<tr>
<td>PCALC Auto-Mesh</td>
<td>0</td>
</tr>
<tr>
<td>PCALC SRLG</td>
<td>0</td>
</tr>
<tr>
<td>lm_tunnel_t</td>
<td>5</td>
</tr>
<tr>
<td>NSR LSP FRR</td>
<td>0</td>
</tr>
<tr>
<td>nsr_if_autotun</td>
<td>0</td>
</tr>
<tr>
<td>nsr_tspvif_setup</td>
<td>3</td>
</tr>
<tr>
<td>nsr_slsp_head</td>
<td>5</td>
</tr>
</tbody>
</table>

**TE NSR Sequence Bulk Sync List:**
Entries: 0; next avail seq num: 132

**TE NSR Sequence State Creation List:**
Entries: 30; next expected seq num: 132

<table>
<thead>
<tr>
<th>Seq Num</th>
<th>EntryPtr</th>
<th>Type</th>
<th>Action</th>
<th>Add Bundle Seq #:</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0x5A03B208</td>
<td>PCALC Node</td>
<td>Action: Add Bundle Seq #: 1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0x5A0BB38</td>
<td>PCALC Link</td>
<td>Action: Add Bundle Seq #: 2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0x5A0BDA0</td>
<td>PCALC Link</td>
<td>Action: Add Bundle Seq #: 2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0x59FF1BB0</td>
<td>PCALC Node</td>
<td>Action: Add Bundle Seq #: 1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0x5A0BB08</td>
<td>PCALC Link</td>
<td>Action: Add Bundle Seq #: 2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>0x586F2A50</td>
<td>PCALC Node</td>
<td>Action: Add Bundle Seq #: 4</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0x5949FC58</td>
<td>PCALC Link</td>
<td>Action: Add Bundle Seq #: 5</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0x5949FE0</td>
<td>PCALC Link</td>
<td>Action: Add Bundle Seq #: 5</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0x5725BC30</td>
<td>PCALC Link</td>
<td>Action: Add Bundle Seq #: 5</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>0x5725BE00</td>
<td>nsr_tspvif_setup</td>
<td>Action: Add Bundle Seq #: 12</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0x59FC9E80</td>
<td>nsr_slsp_head</td>
<td>Action: Add Bundle Seq #: 12</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>0x59296190</td>
<td>lm_tunnel_t</td>
<td>Action: Add Bundle Seq #: 16</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0x59296360</td>
<td>nsr_tspvif_setup</td>
<td>Action: Add Bundle Seq #: 16</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>0x571EB7F8</td>
<td>nsr_slsp_head</td>
<td>Action: Add Bundle Seq #: 16</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>0x5A0B770</td>
<td>lm_tunnel_t</td>
<td>Action: Add Bundle Seq #: 20</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>0x59296108</td>
<td>nsr_tspvif_setup</td>
<td>Action: Add Bundle Seq #: 20</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0x57258670</td>
<td>nsr_slsp_head</td>
<td>Action: Add Bundle Seq #: 20</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>0x5A060348</td>
<td>lm_tunnel_t</td>
<td>Action: Add Bundle Seq #: 20</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>0x5A03BB0</td>
<td>nsr_slsp_head</td>
<td>Action: Add Bundle Seq #: 20</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>0x5B1F12B0</td>
<td>lm_tunnel_t</td>
<td>Action: Add Bundle Seq #: 20</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0x5A03B400</td>
<td>nsr_slsp_head</td>
<td>Action: Add Bundle Seq #: 20</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>0x57258358</td>
<td>PCALC Node</td>
<td>Action: Add Bundle Seq #: 21</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>0x59FAP080</td>
<td>PCALC Link</td>
<td>Action: Add Bundle Seq #: 22</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0x59502AC0</td>
<td>PCALC Link</td>
<td>Action: Add Bundle Seq #: 23</td>
<td></td>
</tr>
</tbody>
</table>
Device# show mpls traffic-eng nsr database lsp-frr

Tun ID: 1  LSP ID: 10  (P2MP)
SubGrp ID: 1
SubGrp Orig: 10.1.0.1
Dest: 10.2.0.1
Sender: 10.1.0.1  Ext. Tun ID: 10.1.0.1

Header:
  State: Checkpointed  Action: Add
  Seq #: 45  Flags: 0x0

Data:
  te_nsr_seq_num: 164
  LSP Protected if_num: 3 (Ethernet0/0)
  LSP Next-Hop Info: rrr_id 10.2.0.1, address 10.2.0.1, label 17
  LSP Next-Next-Hop Info: rrr_id 0.0.0.0, address 0.0.0.0, label 16777216
  LSP Hold Priority: 7
  LSP bw_type: any pool
  LSP desired_bit_type: 0x0n
  LSP Backup ERO address 10.1.2.2
  LSP advertise_bw: NO

LSP-FRR READ DB

Device# show mpls traffic-eng nsr database lsp-frr filter destination ?
Hostname or A.B.C.D IP addr or name of destination (tunnel tail)

Device# show mpls traffic-eng nsr database lsp-frr filter lsp-id ?
<0-65535> LSP ID

Device# show mpls traffic-eng nsr database lsp-frr filter source ?
Hostname or A.B.C.D IP addr or name of sender (tunnel head)

Device# show mpls traffic-eng nsr database lsp-frr filter tunnel-id ?
<0-65535> tunnel ID

Device# show mpls traffic-eng nsr database lsp-head

SLSP_HEAD WRITE DB

Tun ID: 0  (P2P), lsp_id: 7

Header:
  State: Checkpointed  Action: Add
  Seq #: 6  Flags: 0x0

Data:
  te_nsr_seq_num: 18
  bandwidth: 5, thead_flags: 0x1, popt: 1
  feature flags: none
  output_if_num: 11, output_nhop: 10.1.3.2
  backup_output_if_num: 0
  output_tag: 19
  backup_output_tag: 16777218
  RRR path setup info
Destination: 10.3.0.1, Id: 10.3.0.1 Router Node (ospf) flag:0x0
IGP: ospf, IGP area: 0, Number of hops: 3, metric: 128
Hop 0: 10.1.3.2, Id: 10.2.0.1 Router Node (ospf), flag:0x0
Hop 1: 10.2.3.3, Id: 10.3.0.1 Router Node (ospf), flag:0x0
Hop 2: 10.3.0.1, Id: 10.3.0.1 Router Node (ospf), flag:0x0

SLSP_HEAD READ DB

Device# show mpls traffic-eng nsr database lsp-head filter destination ?
  Hostname or A.B.C.D IP addr or name of destination (tunnel tail)

Device# show mpls traffic-eng nsr database lsp-head filter lsp-id ?
  <0-65535> LSP ID

Device# show mpls traffic-eng nsr database lsp-head filter source ?
  Hostname or A.B.C.D IP addr or name of sender (tunnel head)

Device# show mpls traffic-eng nsr database lsp-head filter tunnel-id ?
  <0-65535> tunnel ID

Device# show mpls traffic-eng nsr database pcalc auto-mesh
PCALC Auto-Mesh WRITE DB:

PCALC Auto-Mesh READ DB:

Device# show mpls traffic-eng nsr database pcalc nbr
PCALC Link WRITE DB:
  Header:
    State: Checkpointed  Action: Add
    Seq #: 4  Flags: 0x0
    TE NSR Seq #: 26
    IGP Id:10.1.2.2  Area:0  Nbr IGP Id:10.1.2.2
    IP:10.1.2.1  Nbr IP:0.0.0.0  Framgment ID:1
    Intf ID Local:0  Remote:0

PCALC Link READ DB:

Device# show mpls traffic-eng nsr database pcalc node
PCALC Node WRITE DB:
  Header:
    State: Checkpointed  Action: Add
    Seq #: 4  Flags: 0x0
    TE NSR Seq #: 25
    Router Id 10.1.0.1
    node_id 1
    num_links 2
    tlvs_len 0
    flags 0x6
    rid_frag_id 0
    bclid_mismatch 0
    incarnation 0

Device# show mpls traffic-eng nsr database pcalc srlg
PCALC SRLGs WRITE DB:

PCALC SRLGs READ DB:

Device# show mpls traffic-eng nsr database summary
MPLS-TE Non-Stop-Routing is ENABLED
Write DB Coalescing: INACTIVE
Write DB:
  Send-Pending: 0
Ack-Pending : 0
Checkpointed: 35
Total : 35

Read DB:
Total : 0

Device# show mpls traffic-eng nsr database tun-setup
TSPVIF_SETUP WRITE DB

Tun ID: 7, lsp_id: 7
Header:
  State: Checkpointed  Action: Add
  Seq #: 6  Flags: 0x0
Data:
  te_nsr_seq_num: 17
    Setup Evt: allocating current tspsetup, chkpt_flags: 0x0

TSPVIF_SETUP READ DB

Verifying MPLS Traffic Engineering Nonstop Routing Support Out-of-Sync Databases

The following example shows how to verify information pertaining to the out-of-sync databases supporting MPLS TE NSR. The out-of-sync databases indicate the active and standby RSP whose states are not in sync with each other:

enable
show mpls traffic-eng nsr oos
Tunnel: 4000
  Time created: 02/20/13-12:03:13
  Time synced: 02/20/13-12:03:14
Key:
  Source: 10.1.0.1
  Destination: 10.2.0.1
  ID: 4000
  Ext Tun ID: 10.1.0.1
  Instance: 4
  Slsp p2mp ID: 0
  Slsp p2mp subgroup ID: 0
  Slsp p2mp subgroup origin: 0
RSVP States:
  Signal: Unknown
  Fast-Reroute: Disabled
  Delete State: True

TE States:
  Signal: Unknown
  Fast-Reroute: Disabled
  Delete State: True

Update History:
  Total number of updates: 2
  Update Time: 02/20/13-12:03:13
    Client Updating: RSVP
    Update State:
      Signal: Unknown
      Fast-Reroute: Unknown
      Delete State: True
Verifying MPLS Traffic Engineering Nonstop Routing Support Information Summary

The following example shows how to view a summary of MPLS TE NSR information such as the current TE NSR state (standby-hot / recovering / staling / active), recovery time, and the recovery result (success / failure):

```
enable
show mpls traffic-eng nsr summary
State:
Graceful-Restart: Disabled
HA state: Active
Checkpointing: Allowed
Messages:
Send timer: not running (Interval: 1000 msec)
Items sent per Interval: 200
CF buffer size used: 3968
```

Additional References for MPLS Traffic Engineering Nonstop Routing Support

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Multiprotocol Label Switching High Availability Configuration Guide</td>
<td>Cisco IOS XE Multiprotocol Label Switching High Availability Configuration Guide</td>
</tr>
<tr>
<td>MPLS TE commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2205</td>
<td>Resource Reservation Protocol (RSVP)</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for MPLS Traffic Engineering Nonstop Routing Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for MPLS Traffic Engineering Nonstop Routing Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Traffic Engineering Nonstop Routing Support</td>
<td>Cisco IOS XE Release 3.10S, 3.13S</td>
<td>The MPLS Traffic Engineering Non-Stop Routing Support feature assists the Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) routing devices to recover from an interruption in service. The MPLS TE Nonstop Routing (NSR) support functionality also defines the checkpoint and recovery scheme for the devices. From Cisco IOS XE 3.13S, support was provided for ASR 903. The following commands were introduced: \texttt{mpls traffic-eng nsr} and \texttt{show mpls traffic-eng nsr}.</td>
</tr>
</tbody>
</table>