MPLS LDP-VRF-Aware Static Labels

Last Updated: May 29, 2012

This document explains how to configure the MPLS LDP--VRF-Aware Static Labels feature and Multiprotocol Label Switching (MPLS) static labels. Virtual Private Network routing and forwarding (VRF)-aware static labels can be used at the edge of an MPLS Virtual Private Network (VPN), whereas MPLS static labels can be used only in the MPLS VPN provider core.

• Finding Feature Information, page 1
• Information About, page 1
• How to Configure MPLS LDP--VRF-Aware Static Labels, page 2
• Configuration Examples for MPLS LDP--VRF-Aware Static Labels, page 8
• Additional References, page 9
• Command Reference, page 11
• Feature Information for MPLS LDP--VRF-Aware Static Labels, page 11

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Toolkit and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About

To configure and use VRF-aware static labels, you should understand the following concepts:

• Overview of MPLS Static Labels and MPLS LDP--VRF-Aware Static Labels, page 2
• Labels Reserved for Static Assignment, page 2
Overview of MPLS Static Labels and MPLS LDP--VRF-Aware Static Labels

Label switch routers (LSRs) dynamically learn the labels they should use to label-switch packets by means of the following label distribution protocols:

- Label Distribution Protocol (LDP), the Internet Engineering Task Force (IETF) standard used to bind labels to network addresses
- Resource Reservation Protocol (RSVP) used to distribute labels for traffic engineering (TE)
- Border Gateway Protocol (BGP) used to distribute labels for MPLS VPNs

The LSR installs the dynamically learned label into its Label Forwarding Information Base (LFIB).

You can configure static labels for the following purposes:

- To bind labels to IPv4 prefixes to support MPLS hop-by-hop forwarding through neighbor routers that do not implement LDP label distribution. MPLS static labels allow you to configure entries in the MPLS forwarding table and assign label values to forwarding equivalence classes (FECs) learned by LDP. You can manually configure an LSP without running an LDP between the endpoints.
- To create static cross connects to support MPLS label switched path (LSP) midpoints when neighbor routers do not implement the LDP or RSVP label distribution, but do implement an MPLS forwarding path.
- To statically bind a VRF-aware label on a provider edge (PE) router to a customer network prefix (VPN IPv4 prefix). VRF-aware static labels can be used with nonglobal VRF tables, so the labels can be used at the VPN edge. For example, with the Carrier Supporting Carrier (CSC) feature, the backbone carrier can assign specific labels to FECs it advertises to the edge routers of customer carriers. Then, backbone carrier can monitor backbone traffic coming from particular customer carriers for billing or other purposes. Depending on how you configure VRF-aware static labels, they are advertised one of the following ways:
 - By LDP between PE and customer edge (CE) routers within a VRF instance
 - In VPNv4 BGP in the service provider’s backbone

Labels Reserved for Static Assignment

Before you can manually assign labels, you must reserve a range of labels to be used for the manual assignment. Reserving the labels ensures that the labels are not dynamically assigned. If you are running Cisco IOS Release 12.0S or an older release, you may need to reload the router for the range of labels you reserve to take effect.

How to Configure MPLS LDP--VRF-Aware Static Labels

- Reserving Labels to Use for MPLS Static Labels and MPLS LDP--VRF-Aware Static Labels, page 3
- Configuring MPLS Static Labels in the MPLS VPN Provider Core, page 4
- Configuring MPLS Static Cross Connects, page 5
- Configuring MPLS LDP--VRF-Aware Static Labels at the Edge of the VPN, page 6
Reserving Labels to Use for MPLS Static Labels and MPLS LDP--VRF-Aware Static Labels

The following procedure explains how to reserve the labels that are to be statically assigned so that the labels are not dynamically assigned.

SUMMARY STEPS

1. enable
2. configure terminal
3. mpls label range minimum-value maximum-value [static minimum-static-value maximum-static-value]
4. end
5. show mpls label range

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 mpls label range minimum-value maximum-value [static minimum-static-value maximum-static-value]</td>
<td>Reserves a range of labels for static labels assignment. The default is that no labels are reserved for static assignment. Note: You might need to reload the router for the range of labels you reserve to take effect.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mpls label range 200 100000 static 16 199</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring MPLS Static Labels in the MPLS VPN Provider Core

MPLS static labels allow you to configure entries in the MPLS forwarding table and assign label values to FECs learned by LDP. You can manually configure an LSP without running a label distribution protocol between the endpoints. In MPLS VPN networks, static labels can be used only in the MPLS VPN provider core.

• Globally enable MPLS on each LSR.
• Enable Cisco Express Forwarding on each LSR.

SUMMARY STEPS
1. enable
2. configure terminal
3. mpls static binding ipv4 prefix mask {label | input label | output next-hop {explicit-null | implicit-null | label}}
4. end
5. show mpls static binding ipv4
6. show mpls forwarding-table

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
Command or Action

| Step 3 | mpls static binding ipv4 prefix mask {label | input label | output nexthop {explicit-null | implicit-null | label}} |
|--------|--|

Example:

```
Router(config)# mpls static binding ipv4 10.2.2.0 255.255.255.255 input 17
```

Purpose

Specifies static binding of labels to IPv4 prefixes. Specified bindings are installed automatically in the MPLS forwarding table as routing demands.

Step 4

end

Example:

```
Router(config)# end
```

Exits global configuration mode and enters privileged EXEC mode.

Step 5

show mpls static binding ipv4

Example:

```
Router(config)# show mpls static binding ipv4
```

Displays the configured static labels.

Step 6

show mpls forwarding-table

Example:

```
Router(config)# show mpls forwarding-table
```

Displays the static labels used for MPLS forwarding.

Configuring MPLS Static Cross Connects

You can configure MPLS static cross connects to support MPLS LSP midpoints when neighbor routers do not implement either the LDP or RSVP label distribution, but do implement an MPLS forwarding path.

- Globally enable MPLS on each LSR.
- Enable Cisco Express Forwarding on each LSR.

Note

- MPLS static cross connect functionality is supported in Cisco IOS Releases 12.0(23)S and 12.3(14)T and later releases. It is not supported in Cisco IOS Release 12.4(20)T.
- MPLS static cross-connect labels remain in the LFIB even if the router to which the entry points goes down.
- MPLS static cross-connect mappings remain in effect even with topology changes.
SUMMARY STEPS

1. enable
2. configure terminal
3. mpls static crossconnect inlabel out-interface nexthop {outlabel | explicit-null | implicit-null}
4. end
5. show mpls static crossconnect

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 mpls static crossconnect inlabel out-interface nexthop {outlabel</td>
<td>explicit-null</td>
</tr>
<tr>
<td>Note</td>
<td>The nexthop argument is required for multiaccess interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mpls static crossconnect 45 pos5/0 45 explicit-null</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show mpls static crossconnect</td>
<td>Displays the configured static cross connects.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show mpls static crossconnect</td>
<td></td>
</tr>
</tbody>
</table>

Configuring MPLS LDP--VRF-Aware Static Labels at the Edge of the VPN

You can statically bind a VRF-aware label on a PE router to a customer network prefix (VPN IPv4 prefix). VRF-aware static labels can be used with nonglobal VRF tables, so the labels can be used at the VPN edge.
Restrictions

- Globally enable MPLS on each LSR.
- Enable Cisco Express Forwarding on each LSR.
- Ensure the MPLS VPN is configured. See MPLS VPN Carrier Supporting Carrier Using LDP and IGP for information about configuring the VPN and VRFs.
- Ensure that the provider network has MPLS LDP installed and running. See MPLS VPN Carrier Supporting Carrier Using LDP and IGP for information about configuring LDP.

Note
The MPLS LDP-VRF-Aware Static Labels feature is supported only with MPLS VPN Carrier Supporting Carrier networks that use MPLS LDP.

SUMMARY STEPS

1. enable
2. configure terminal
3. mpls static binding ipv4 vrf vpn-name prefix mask {input label | label}
4. end
5. show mpls static binding ipv4 vrf vpn-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 mpls static binding ipv4 vrf vpn-name prefix mask {input label</td>
<td>label}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mpls static binding ipv4 vrf vpn100 10.2.0.0 255.255.0.0 input 17</td>
<td>Specified bindings are installed automatically in the MPLS forwarding table as routing demands.</td>
</tr>
<tr>
<td></td>
<td>Note You must configure the MPLS VPN and VRFs before creating VRF-aware static labels.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 4 end | Exits global configuration mode and enters privileged EXEC mode.

Example:

```
Router(config)# end
```

Step 5 show mpls static binding ipv4 vrf *vpn-name* | Displays the configured MPLS static bindings.

Example:

```
Router(config)# show mpls static binding ipv4 vrf vpn100
```

Troubleshooting Tips

To display information related to static binding events, use the `debug mpls static binding vrf` command.

Configuration Examples for MPLS LDP--VRF-Aware Static Labels

Reserving Labels to Use for MPLS Static Labels and MPLS LDP--VRF-Aware Static Labels Example

In the following example, the `mpls label range` command reserves a generic range of labels from 200 to 100000 and configures a static label range of 16 to 199:

```
Router(config)# mpls label range 200 100000 static 16 199
% Label range changes take effect at the next reload.
```

In this example, the output from the `show mpls label range` command indicates that the new label ranges do not take effect until a reload occurs:

```
Router# show mpls label range
Downstream label pool: Min/Max label: 16/100000
[Configured range for next reload: Min/Max label: 200/100000]
Range for static labels: Min/Max/Number: 16/199
```

In the following output, the `show mpls label range` command, executed after a reload, indicates that the new label ranges are in effect:

```
Router# show mpls label range
Downstream label pool: Min/Max label: 200/100000
Range for static labels: Min/Max/Number: 16/199
```
Configuring MPLS Static Labels in the MPLS VPN Provider Core Example

The following example configures input and output labels for several prefixes:

Router(config)# mpls static binding ipv4 10.0.0.0 255.0.0.0 55
Router(config)# mpls static binding ipv4 10.0.0.0 255.0.0.0 output 10.0.0.66 167
Router(config)# mpls static binding ipv4 10.66.0.0 255.255.0.0 input 17
Router(config)# mpls static binding ipv4 10.66.0.0 255.255.0.0 output 10.13.0.8 explicit-null

The `show mpls static binding ipv4` command displays the configured static labels:

```
Router# show mpls static binding ipv4
10.0.0.0/8: Incoming label: 55
   Outgoing labels:
      10.0.0.66  167
10.66.0.0/24: Incoming label: 17
   Outgoing labels:
      10.13.0.8  explicit-null
```

Configuring MPLS Static Cross Connects Example

In the following example, the `mpls static crossconnect` command configures a cross connect from incoming label 45 to outgoing label 46 on the POS interface 5/0:

Router(config)# mpls static crossconnect 45 pos5/0 46

The `show mpls static crossconnect` command displays information about cross connects that have been configured:

```
Router# show mpls static crossconnect
Local  Outgoing    Outgoing   Next Hop
label  label       interface      
45     46          pos5/0     point2point  (in LFIB)
```

Configuring MPLS LDP--VRF-Aware Static Labels at the VPN Edge Example

In the following example, the `mpls static binding ipv4 vrf` commands configure static label bindings. They also configure input (local) labels for various prefixes.

```
Router(config)# mpls static binding ipv4 vrf vpn100 10.0.0.0 10.0.0.0 55
Router(config)# mpls static binding ipv4 vrf vpn100 10.66.0.0 255.255.0.0 input 17
```

In the following output, the `show mpls static binding ipv4 vrf` command displays the configured VRF-aware static bindings:

```
Router# show mpls static binding ipv4 vrf vpn100
10.0.0.0/8:  (vrf: vpn100)  Incoming label: 55
   Outgoing labels:  None
10.66.0.0/16: (vrf: vpn100)  Incoming label: 17
   Outgoing labels:  None
```

Additional References

The following sections provide references related to the MPLS LDP--VRF-Aware Static Labels feature.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS VPN CSC with LDP and IGP</td>
<td>MPLS VPN Carrier Supporting Carrier Using LDP and IGP</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
Command Reference

- debug mpls static binding
- mpls label range
- mpls static binding ipv4
- mpls static binding ipv4 vrf
- show mpls label range
- show mpls static binding ipv4
- show mpls static binding ipv4 vrf

Feature Information for MPLS LDP--VRF-Aware Static Labels

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1 Feature Information for MPLS LDP--VRF-Aware Static Labels

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS LDP-VRF-Aware Static Labels</td>
<td>12.0(23)S</td>
<td>The MPLS LDP-VRF-Aware Static Labels feature explains how to configure the MPLS LDP--VRF-Aware Static Labels feature and MPLS static labels.VVRF-aware static labels can be used at the edge of an MPLS VPN, whereas MPLS static labels can be used only in the MPLS VPN provider core.</td>
</tr>
<tr>
<td></td>
<td>12.0(26)S</td>
<td>In 12.0(23)S, MPLS static labels were introduced, but they supported only global routing tables.</td>
</tr>
<tr>
<td></td>
<td>12.3(14)T</td>
<td>In 12.0(26)S, the MPLS LDP--VRF-Aware Static Labels feature was introduced, allowing MPLS static labels to be used for VRF traffic at the VPN edge.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRA</td>
<td>In 12.3(14)T, this feature was integrated.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SXH</td>
<td>In 12.2(33)SRA, this feature was integrated.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SB</td>
<td>In 12.2(33)SXH, this feature was integrated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In 12.2(33)SB, support was added for the Cisco 10000 series router.</td>
</tr>
</tbody>
</table>