Routed Pseudo-Wire and Routed VPLS

This feature module explains how to configure Routed Pseudo-Wire and Routed VPLS.

- Finding Feature Information, page 1
- Configuring Routed Pseudo-Wire and Routed VPLS, page 1
- Feature Information for Routed Pseudo-Wire and Routed VPLS, page 2

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Configuring Routed Pseudo-Wire and Routed VPLS

RPW and Routed VPLS can route Layer 3 traffic as well as switch Layer 2 frames for pseudowire connections between provider edge (PE) devices. Both point-to-point PE connections, in the form of Ethernet over MPLS (EoMPLS), and Virtual Private LAN Services (VPLS) multipoint PE connections are supported. The ability to route frames to and from these interfaces supports termination of a pseudowire into a Layer 3 network (VPN or global) on the same switch, or to tunnel Layer 3 frames over a Layer 2 tunnel (EoMPLS or VPLS). The feature supports faster network convergence in the event of a physical interface or device failure through the MPLS Traffic Engineering (MPLS-TE) and Fast Reroute (FRR) features. In particular, the feature enables MPLS TE-FRR protection for Layer 3 multicast over a VPLS domain.

When the RPW is configured in A-VPLS mode, TE/FRR is not supported because A-VPLS runs over ECMP and the ECMP convergence is comparable to TE/FRR.

To configure routing support for the pseudowire, configure an IP address and other Layer 3 features for the Layer 3 domain (VPN or global) in the virtual LAN (VLAN) interface configuration. The following example
assigns the IP address 10.10.10.1 to the VLAN 100 interface, and enables Multicast PIM. (Layer 2 forwarding is defined by the VFI VFI100.)

interface bdi 100

 ip address 10.10.10.1 255.255.255.0

The following example assigns an IP address 20.20.20.1 of the VPN domain VFI200. (Layer 2 forwarding is defined by the VFI VFI200.)

interface bdi 200

 ip address 20.20.20.1 255.255.255.0

Feature Information for Routed Pseudo-Wire and Routed VPLS

Table 1: Feature Information for Routed Pseudo-Wire and Routed VPLS

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed Pseudo-Wire and Routed VPLS</td>
<td>12.2(33)SRB</td>
<td>This feature routes Layer 3 traffic as well as switch Layer 2 frames for pseudowire connections between provider edge (PE) devices.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SXJ1</td>
<td>In Cisco IOS Release 12.2(33)SRB, this feature was introduced on the Cisco 7600 series routers.</td>
</tr>
<tr>
<td></td>
<td>15.2(4)M</td>
<td>In Cisco IOS Release 12.2(33)SXJ1, this feature was integrated.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 3.6S</td>
<td>In Cisco IOS Release 15.2(4)M, this feature was integrated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.6S, support was added for the Cisco ASR 1000 Series Routers.</td>
</tr>
</tbody>
</table>