

Loop-Free Alternate Fast Reroute

Loop-Free Alternate (LFA) Fast Reroute (FRR) is a mechanism that provides local protection for unicast traffic in order to rapidly converge traffic flows around link and/or node failures.

- Prerequisites for Loop-Free Alternate Fast Reroute, on page 1
- Restrictions for Loop-Free Alternate Fast Reroute, on page 1
- Information About Loop-Free Alternate Fast Reroute, on page 2
- How to Configure Loop-Free Alternate Fast Reroute, on page 5
- Verifying Loop-Free Alternate Fast Reroute, on page 10
- Verifying Remote Loop-Free Alternate Fast Reroute with VPLS, on page 13
- Verifying Tunnel Interfaces Created by OSPF IPv4 Remote LFA IPFRR, on page 16
- Additional References, on page 16

Prerequisites for Loop-Free Alternate Fast Reroute

- Any of the following protocols must be supported for Loop-Free Alternate Fast Reroute:
 - Intermediate System-to-Intermediate System (IS-IS)
 - Open Shortest Path First (OSPF)
- While configuring ISIS protocol, **isis network point-to-point** must be configured.

Restrictions for Loop-Free Alternate Fast Reroute

- Logical interfaces namely Port-channel (PoCH) support LFA FRR and remote LFA-FRR, with a single member link. Port-channel can be used as a backup path.
- Micro loops may form due to traffic congestion.
- A Multiprotocol Label Switching (MPLS) traffic engineering (TE) tunnel cannot be used as a protected interface. However, an MPLS-TE tunnel can be a protecting (repair) interface as long as the TE tunnel is used as a primary path.

Note

VPLS over TE Tunnel or TE FRR is not supported on the Cisco ASR 900 RSP3 module.

• For TDM psuedowires, the interfaces supported are CEM (CESoP, SAToP) and IMA (PVC,PVP); supported both on OC-3 and T1/E1 controllers. A maximum of 500 VCs can be configured per OC-3 controller.

Note

This restriction is applicable only on the Cisco RSP1 and RSP2 Modules.

• For TDM psuedowires, the interfaces supported are CEM on OC-3.

Note

This restriction is applicable only on the Cisco RSP3 Modules.

- Each bridge domain interface (BDI) protected by FRR can have only one EFP.
- Remote LFA FRR provides better convergence with SFP ports rather than copper ports. As a workaround for copper ports, BFD triggered FRR can be used.
- FRR is *not* supported with POS and serial interfaces.
- Scale limit for FRR-protected global prefixes is 1500 and for layer 3 VPNs, scale limit is 4000.

Information About Loop-Free Alternate Fast Reroute

The Loop-Free Alternate (LFA) Fast Reroute (FRR) feature offers an alternative to the MPLS Traffic Engineering Fast Reroute feature to minimize packet loss due to link or node failure.

LFA FRR enables a backup route to avoid traffic loss if a network fails. The backup routes (repair paths) are precomputed and installed in the router as the backup for the primary paths. After the router detects a link or adjacent node failure, it switches to the backup path to avoid traffic loss.

LFA is a node other than the primary neighbor. Traffic is redirected to an LFA after a network failure. An LFA makes the forwarding decision without any knowledge of the failure. An LFA must neither use a failed element nor use a protecting node to forward traffic. An LFA must not cause loops. By default, LFA is enabled on all supported interfaces as long as the interface can be used as a primary path.

Advantages of using per-prefix LFAs are as follows:

- The repair path forwards traffic during transition when the primary path link is down.
- All destinations having a per-prefix LFA are protected. This leaves only a subset (a node at the far side of the failure) unprotected.

Supported Information

- LFA FRR is supported with equal cost multipath (ECMP).
- Fast Reroute triggered by Bidirectional Forwarding (BFD) is supported.
- Remote LFA tunnels are High Availability aware; hence, Stateful Switchover (SSO) compliant.

Benefits of Loop-Free Alternate Fast Reroute

- · Same level of protection from traffic loss
- Simplified configuration
- Link and node protection
- Link and path protection
- LFA (loop-free alternate) paths
- Support for both IP and Label Distribution Protocol (LDP) core
- LFA FRR is supported with equal cost multipath (ECMP).
- Fast Reroute triggered by Bidirectional Forwarding (BFD).
- · Remote LFA tunnels are High Availability aware; hence, Stateful Switchover (SSO) compliant.

LFA FRR and Remote LFA FRR over Bridge Domains Interfaces

The router supports bridge domain interfaces (BDI). For information on configuring bridge domains, see Configuring Ethernet Virtual Connections on the Cisco ASR 903 Router.

LFA FRR and remote LFA FRR is supported on bridge domain interfaces on the router. For information on configuring Remote LFA FRR on BDI, see How to Configure Loop-Free Alternate Fast Reroute, on page 5.

IS-IS and IP FRR

When a local link fails in a network, IS-IS recomputes new primary next-hop routes for all affected prefixes. These prefixes are updated in the RIB and the Forwarding Information Base (FIB). Until the primary prefixes are updated in the forwarding plane, traffic directed towards the affected prefixes are discarded. This process can take hundreds of milliseconds.

In IP FRR, IS-IS computes LFA next-hop routes for the forwarding plane to use in case of primary path failures. LFA is computed per prefix.

When there are multiple LFAs for a given primary path, IS-IS uses a tiebreaking rule to pick a single LFA for a primary path. In case of a primary path with multiple LFA paths, prefixes are distributed equally among LFA paths.

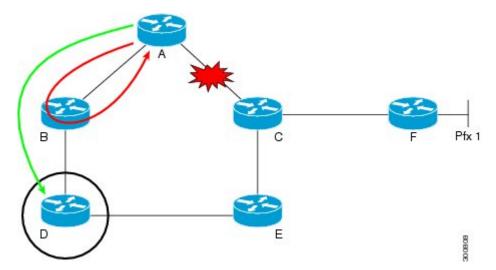
Repair Paths

Repair paths forward traffic during a routing transition. When a link or a router fails, due to the loss of a physical layer signal, initially, only the neighboring routers are aware of the failure. All other routers in the

network are unaware of the nature and location of this failure until information about this failure is propagated through a routing protocol, which may take several hundred milliseconds. It is, therefore, necessary to arrange for packets affected by the network failure to be steered to their destinations.

A router adjacent to the failed link employs a set of repair paths for packets that would have used the failed link. These repair paths are used from the time the router detects the failure until the routing transition is complete. By the time the routing transition is complete, all routers in the network revise their forwarding data and the failed link is eliminated from the routing computation.

Repair paths are precomputed in anticipation of failures so that they can be activated the moment a failure is detected.


The IPv4 LFA FRR feature uses the following repair paths:

- Equal Cost Multipath (ECMP) uses a link as a member of an equal cost path-split set for a destination. The other members of the set can provide an alternative path when the link fails.
- LFA is a next-hop route that delivers a packet to its destination without looping back. Downstream paths are a subset of LFAs.

Remote LFA FRR

Some topologies (for example the commonly used ring-based topology) require protection that is not afforded by LFA FRR alone. Consider the topology shown in the figure below:

Figure 1: Remote LFA FRR with Ring Topology

The red looping arrow represents traffic that is looping immediately after a failure between node A and C (before network reconvergence). Device A tries to send traffic destined to F to next-hop B. Device B cannot be used as an LFA for prefixes advertised by nodes C and F. The actual LFA is node D. However, node D is not directly connected to the protecting node A. To protect prefixes advertised by C, node A must tunnel the packet around the failed link A-C to node D, provided that the tunnel does not traverse the failing link.

Remote LFA FRR enables you to tunnel a packet around a failed link to a remote loop-free alternate that is more than one hop away. In the figure above, the green arrow between A and D shows the tunnel that is automatically created by the remote LFA feature to bypass looping.

Remote LFA FRR for TDM and ATM Psuedowires

The Router supports two pseudowire types that utilize CEM transport: Structure-Agnostic TDM over Packet (SAToP) and Circuit Emulation Service over Packet-Switched Network (CESoPSN). Remote LFA FRR is supported on TDM and ATM pseudowires. For information on configuring TDM and ATM pseudowires on the Cisco ASR 903, see Configuring Pseudowire.

For information on configuring Remote LFA FRR on TDM and ATM pseudowires, see How to Configure Loop-Free Alternate Fast Reroute, on page 5.

•

.

Border Gateway Protocol (BGP) Prefix-Independent Convergence (PIC) and LFA FRR Integration

Both the Labeled Border Gateway Protocol (BGP) Prefix-Independent Convergence (PIC) feature and the Loop-Free Alternate (LFA) Fast Reroute (FRR) feature can be configured together on the router.

BGP PIC is supported for bridge domain interfaces (BDI) with FRR.

Note

Each bridge domain interface (BDI) protected by FRR can have only one EFP.

For information on configuring BGP PIC, see BGP PIC Edge for IP and MPLS-VPN.

Remote LFA FRR with VPLS

VPLS (Virtual Private LAN Service) enables enterprises to link together their Ethernet-based LANs from multiple sites via the infrastructure provided by their service provider. For information on configuring VPLS, see Configuring Virtual Private LAN Services. Starting With Cisco IOS XE Release 3.10S, Remote LFA FRR is supported with VPLS.

For information on configuring remote LFA FRR with VPLS, see How to Configure Loop-Free Alternate Fast Reroute, on page 5.

How to Configure Loop-Free Alternate Fast Reroute

To enable loop-free alternate fast reroute support for L2VPNs, VPLS, TDM pseudowires and VPWS, you must configure LFA FRR for the routing protocol. You can enable LFA FRR using ISIS or OSFP configurations.

- For information on configuring LFA FRR using OSPF, see OSPFv2 Loop-Free Alternate Fast Reroute in the *IP Routing: OSPF Configuration Guide*.
- For information on configuring Remote LFA FRR using OSPF, seeOSPF IPv4 Remote Loop-Free Alternate IP Fast Reroute in the *IP Routing: OSPF Configuration Guide*.
- For information on configuring Remote LFA FRR using ISIS on the Cisco ASR 903, see Configuring IS-IS Remote Loop-Free Alternate Fast Reroute, on page 6.

Configuring IS-IS Remote Loop-Free Alternate Fast Reroute

The following additional configurations are mandatory:

mpls ldp discovery targeted-hello accept

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	router isis [area-tag]	Enables the IS-IS routing protocol and specifies
	Example:	an IS-IS process.Enters router configuration mode.
	Device(config)# router isis ipfrr	· Enters router configuration mode.
Step 4	fast-reroute per-prefix {level-1 level-2} {all	Enables per-prefix FRR.
	route-map route-map-name}	Configure the all keyword to protect all
	Example:	prefixes.
	Device (config-router)# fast-reroute per-prefix level-1 all	
Step 5	fast-reroute remote-lfa {level-1 level-2}	Configures an FRR path that redirects traffic to
	mpls-ldp [maximum-metric metric-value]	a remote LFA tunnel for either level 1 or level 2 packets.
	Example:	• Use the maximum-metric <i>metric-value</i>
	Device(config-router) # fast-reroute remote-lfa level-1 mpls-ldp	keyword-argument pair to specify the maximum metric value required to reach the release node.
Step 6	end	Exits router configuration mode and enters
	Example:	privileged EXEC mode.
	Device(config-router)# end	
		1

Recommended Configurations ISIS

For optimal results with remote LFA FRR, it is recommended that you use the following SFP timers:

• ISIS

- spf-interval 5 50 200
- prc-interval 5 50 200
- sp-gen-interval 5 50 200
- fast-flood 10
- Globally configure the MPLS IGP hold-down timer to avoid an indefinite wait by IGP for synchronization using the **mpls ldp igp sync holdown 2000** command.

Example: Configuring IS-IS Remote Loop-Free Alternate Fast Reroute

The following example shows how to enable remote LFA FRR:

```
Router(config)# router isis
Router(config)# fast-reroute per-prefix level-1 all
Router(config)# fast-reroute per-prefix level-2 all
Router(router-config)# fast-reroute remote-lfa level-1 mpls-ldp
Router(router-config)# fast-reroute remote-lfa level-2 mpls-ldp
```

Example: Configuring Remote LFA FRR with VPLS

Example: Configuration of Remote LFA FRR with Interior Gateway Protocol (IGP)

```
router isis hp
net 49.0101.0000.0000.0802.00
is-type level-2-only
ispf level-2
metric-style wide
fast-flood
set-overload-bit on-startup 180
max-lsp-lifetime 65535
lsp-refresh-interval 65000
spf-interval 5 50 200
prc-interval 5 50 200
lsp-gen-interval 5 5 200
no hello padding
log-adjacency-changes
nsf cisco
fast-reroute per-prefix level-1 all
fast-reroute per-prefix level-2 all
fast-reroute remote-lfa level-1 mpls-ldp
fast-reroute remote-lfa level-2 mpls-ldp
passive-interface Loopback0
mpls ldp sync
mpls traffic-eng router-id Loopback0
mpls traffic-eng level-2
```

Example: Configuration of Remote LFA FRR with VPLS at the interface level.

```
! interface GigabitEthernet0/3/3 ip address 198.51.100.1 255.255.255.0 ip router isis hp logging event link-status
```

```
load-interval 30
negotiation auto
mpls ip
mpls traffic-eng tunnels
isis network point-to-point
end
!
```

Example: Configuration of remote LFA FRR with VPLS at the global level.

```
!
12 vfi Test-2000 manual
vpn id 2010
bridge-domain 2010
neighbor 192.0.2.1 encapsulation mpls
```

Example: Configuration of remote LFA FRR with VPLS at Access side.

```
! interface TenGigabitEthernet0/2/0 no ip address service instance trunk 1 ethernet encapsulation dot1q 12-2012 rewrite ingress tag pop 1 symmetric bridge-domain from-encapsulation
```

How to Configure OSPF IPv4 Remote Loop-Free Alternate IP Fast Reroute

Configuring a Remote LFA Tunnel

Perform this task to configure a per-prefix LFA FRR path that redirects traffic to a remote LFA tunnel.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	router ospf process-id	Enables OSPF routing and enters route
	Example:	configuration mode.
	Device(config)# router ospf 10	

	Command or Action	Purpose
Step 4	fast-reroute per-prefix remote-lfa [area area-id] tunnel mpls-ldp Example: Device(config-router) # fast-reroute per-prefix remote-lfa area 2 tunnel	Configures a per-prefix LFA FRR path that redirects traffic to a remote LFA tunnel via MPLS-LDP. • Use the area <i>area-id</i> keyword and argument to specify an area in which to enable LFA FRR.
		1

Recommended Configurations OSPF

For optimal results with remote LFA FRR, it is recommended that you use the following SFP timers:

- timers throttle spf 50 200 5000
- timers throttle lsa 50 200 5000
- timers lsa arrival 100
- timers pacing flood 33

Note

ISPF should be disabled.

Configuring the Maximum Distance to a Tunnel Endpoint

Perform this task to configure the maximum distance to the tunnel endpoint in a per-prefix LFA FRR path that redirects traffic to a remote LFA tunnel.

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	router ospf process-id	Enables OSPF routing and enters router
	Example:	configuration mode.
	Device(config)# router ospf 10	

	Command or Action	Purpose
Step 4	fast-reroute per-prefix remote-lfa [area area-id] maximum-cost distance Example:	Configures the maximum distance to the tunnel endpoint in a per-prefix LFA FRR path that redirects traffic to a remote LFA tunnel.
	Device(config-router)# fast-reroute per-prefix remote-lfa area 2 maximum-cost 30	Use the area area-id keyword and variable to specify an area in which to enable LFA FRR.

Verifying Loop-Free Alternate Fast Reroute

Use one or more of the following commands to verify the LFA FRR configuration

- show ip cef network-prefix internal
- · show mpls infrastructure lfd pseudowire internal
- · show platform hardware pp active feature cef database ipv4 network-prefix

Example: Verifying LFA FRR with L2VPN

show ip cef internal

The following is sample output from the **show ip cef internal** command:

```
Device# show ip cef 16.16.16.16 internal
16.16.16.16/32, epoch 2, RIB[I], refcount 7, per-destination sharing
  sources: RIB, RR, LTE
  feature space:
   IPRM: 0x00028000
   Broker: linked, distributed at 1st priority
   LFD: 16.16.16.16/32 1 local label
   local label info: global/17
        contains path extension list
        disposition chain 0x3A3C1DF0
        label switch chain 0x3A3C1DF0
  subblocks:
   1 RR source [no flags]
   non-eos chain [16|44]
  ifnums:
   GigabitEthernet0/0/2(9): 7.7.7.2
   GigabitEthernet0/0/7(14): 7.7.17.9
 path 35D61070, path list 3A388FA8, share 1/1, type attached nexthop, for IPv4, flags
has-repair
   MPLS short path extensions: MOI flags = 0x20 label 16
  nexthop 7.7.7.2 GigabitEthernet0/0/2 label [16|44], adjacency IP adj out of
GigabitEthernet0/0/2, addr 7.7.7.2 35E88520
    repair: attached-nexthop 7.7.17.9 GigabitEthernet0/0/7 (35D610E0)
 path 35D610E0, path list 3A388FA8, share 1/1, type attached nexthop, for IPv4, flags
repair, repair-only
 nexthop 7.7.17.9 GigabitEthernet0/0/7, repair, adjacency IP adj out of GigabitEthernet0/0/7,
 addr 7.7.17.9 3A48A4E0
  output chain: label [16|44]
  FRR Primary (0x35D10F60)
```

```
<primary: TAG adj out of GigabitEthernet0/0/2, addr 7.7.7.2 35E88380>
  <repair: TAG adj out of GigabitEthernet0/0/7, addr 7.7.17.9 3A48A340>
Rudy17#show mpls infrastructure 1fd pseudowire internal
PW ID: 1VC ID: 4, Nexthop address: 16.16.16.16
SSM Class: SSS HW
Segment Count: 1
VCCV Types Supported: cw ra ttl
Imposition details:
Label stack {22 16}, Output interface: Gi0/0/2
Preferred path: not configured
Control Word: enabled, Sequencing: disabled
 FIB Non IP entry: 0x35D6CEEC
Output chain: AToM Imp (locks 4) label 22 label [16|44]
 FRR Primary (0x35D10F60)
 <primary: TAG adj out of GigabitEthernet0/0/2, addr 7.7.7.2 35E88380>
Disposition details:
Local label: 16
 Control Word: enabled, Sequencing: disabled
SSS Switch: 3976200193
Output chain: mpls eos( connid router-alert AToM Disp (locks 5) / drop)
```

show mpls infrastructure lfd pseudowire internal

The following is sample output from the **show mpls infrastructure lfd pseudowire internal** command:

```
Device# show mpls infrastructure lfd pseudowire internal
PW ID: 1VC ID: 4, Nexthop address: 16.16.16.16
SSM Class: SSS HW
Segment Count: 1
VCCV Types Supported: cw ra ttl
Imposition details:
Label stack {22 16}, Output interface: Gi0/0/2
Preferred path: not configured
Control Word: enabled, Sequencing: disabled
FIB Non IP entry: 0x35D6CEEC
Output chain: AToM Imp (locks 4) label 22 label [16|44]
 FRR Primary (0x35D10F60)
  <primary: TAG adj out of GigabitEthernet0/0/2, addr 7.7.7.2 35E88380>
Disposition details:
Local label: 16
 Control Word: enabled, Sequencing: disabled
 SSS Switch: 3976200193
Output chain: mpls_eos( connid router-alert AToM Disp (locks 5)/ drop)
```

show platform hardware pp active feature cef database

The following is sample output from the **show platform hardware pp active feature cef database** command:

```
=== Label OCE ===
 Label flags: 4
 Num Labels: 1
 Num Bk Labels: 1
 Out Labels: 16
 Out Backup Labels: 44
 Next OCE Type: Fast ReRoute OCE; Next OCE handle: 0x10e6f428
=== FRR OCE ===
            : IP FRR
: Primary
 FRR type
  FRR state
 Primary IF's gid : 3
 Primary FID : 0x0000f801
 FIFC entries
                : 32
 PPO handle
               : 0x00000000
 Next OCE
                : Adjacency (0x10e63b38)
 Bkup OCE
                 : Adjacency (0x10e6e590)
=== Adjacency OCE ===
 Adj State: COMPLETE(0) Address: 7.7.7.2
 Interface: GigabitEthernet0/0/2 Protocol: TAG
 mtu:1500, flags:0x0, fixups:0x0, encap len:14
 Handles (adj id:0x00000039) (PI:0x1041d410) (PD:0x10e63b38)
 Rewrite Str: d0:c2:82:17:8a:82:d0:c2:82:17:f2:02:88:47
 HW Info:
   FID index: 0x0000f486
                         EL3 index: 0x00001003
MET index: 0x0000400c
                                                EL2 index: 0x00000000
   E12RW : 0x00000107
                                                  EAID : 0x00008060
   HW ADJ FLAGS: 0x40
   Hardware MAC Rewrite Str: d0:c2:82:17:8a:82:08:00:40:00:0d:02
=== Adjacency OCE ===
 Adj State: COMPLETE(0) Address: 7.7.17.9
 Interface: GigabitEthernet0/0/7 Protocol: TAG
 mtu:1500, flags:0x0, fixups:0x0, encap len:14
 Handles (adj id:0x00000012) (PI:0x104acbd0) (PD:0x10e6e590)
 Rewrite Str: d0:c2:82:17:c9:83:d0:c2:82:17:f2:07:88:47
  HW Info:
   E12RW : 0x00000111 MET index: 0x00004017 EAID : 0x0000807d
   HW ADJ FLAGS: 0x40
   Hardware MAC Rewrite Str: d0:c2:82:17:c9:83:08:00:40:00:0d:07
```

Configuration Examples for OSPF IPv4 Remote Loop-Free Alternate IP Fast Reroute

Example: Configuring a Remote LFA Tunnel

The following example shows how to configure a remote per-prefix LFA FRR in area 2. The remote tunnel type is specified as MPLS-LDP:

Router(config-router)# fast-reroute per-prefix remote-lfa area 2 tunnel mpls-ldp

Example: Configuring the Maximum Distance to a Tunnel Endpoint

The following example shows how to set a maximum cost of 30 in area 2:

Router(config-router)# fast-reroute per-prefix remote-lfa area 2 maximum-cost 30

Example: Verifying Tunnel Interfaces Created by OSPF IPv4 Remote LFA IPFRR

The following example displays information about about tunnel interfaces created by OSPF IPv4 LFA IPFRR:

Router# show ip ospf fast-reroute remote-lfa tunnels

OSPF Router with ID (192.168.1.1) (Process ID 1)
Area with ID (0)
Base Topology (MTID 0)

Interface MPLS-Remote-Lfa3
Tunnel type: MPLS-LDP
Tailend router ID: 192.168.3.3
Termination IP address: 192.168.3.3
Outgoing interface: Ethernet0/0
First hop gateway: 192.168.14.4
Tunnel metric: 20
Protects:

Verifying Remote Loop-Free Alternate Fast Reroute with VPLS

Example: Verifying Remote LFA FRR with VPLS

show ip cef internal

The following is sample output from the **show ip cef internal** command:

Router# show ip cef 198.51.100.2/32 internal

192.168.12.2 Ethernet0/1, total metric 30

```
198.51.100.2/32, epoch 2, RIB[I], refcount 7, per-destination sharing
 sources: RIB, RR, LTE
  feature space:
  IPRM: 0x00028000
  Broker: linked, distributed at 1st priority
  LFD: 198.51.100.2/32 1 local label
  local label info: global/2033
        contains path extension list
       disposition chain 0x46764E68
       label switch chain 0x46764E68
  subblocks:
  1 RR source [heavily shared]
   non-eos chain [explicit-null|70]
  TenGigabitEthernet0/1/0(15): 192.0.2.10
  MPLS-Remote-Lfa2(46)
  path 44CE1290, path list 433CF8CO, share 1/1, type attached nexthop, for IPv4, flags
```

show ip cef detail

The following is sample output from the **show ip cef detail** command:

```
Router# show ip cef 198.51.100.2/32 detail

198.51.100.2/32, epoch 2
local label info: global/2033

1 RR source [heavily shared]
nexthop 192.0.2.14 TenGigabitEthernet0/1/0 label [explicit-null|70]
repair: attached-nexthop 192.0.2.1 MPLS-Remote-Lfa2
nexthop 192.0.2.1 MPLS-Remote-Lfa2, repair
```

show platform hardware pp active feature cef databas

The following is sample output from the **show platform hardware pp active feature cef database** command:

```
Router# show platform hardware pp active feature cef database ipv4 198.51.100.2/32
```

```
=== CEF Prefix ===
198.51.100.2/32 -- next hop: UEA Label OCE (PI:0x10936770, PD:0x12dd1cd8)
             Route Flags: (0)
             Handles (PI:0x109099c8) (PD:0x12945968)
 HW Info:
   TCAM handle: 0x00000266
                          TCAM index: 0x0000015
   FID index : 0x00008e7f
                          EAID : 0x0001d7c4
            : 0x0000401c FID Count : 0x00000000
  MET
=== Label OCE ===
 Label flags: 4
 Num Labels: 1
 Num Bk Labels: 1
 Out Labels: 0
 Out Backup Labels: 70
=== FRR OCE ===
               : IP FRR
 FRR type
 FRR state
                : Primary
 Primary IF's gid : 52
 Primary FID : 0x00008cb6
 FIFC entries
               0, 0, 0, 0, 0, 0, 0, 0
 PPO handle : 0x0000000
 Next OCE
                : Adjacency (0x130e0df0)
               : Adjacency (0x130de608)
 Bkup OCE
```

```
=== Adjacency OCE ===
  Adj State: COMPLETE(0)
                         Address: 192.168.101.22
  Interface: TenGigabitEthernet0/1/0 Protocol: TAG
 mtu:1500, flags:0x0, fixups:0x0, encap len:14
  Handles (adj_id:0x000016ac) (PI:0x1090cc10) (PD:0x130e0df0)
  Rewrite Str: 18:33:9d:3d:83:10:c8:f9:f9:8d:04:10:88:47
HW Info:
   FID index: 0x00008e7e
                            EL3 index: 0x00001034
                                                     EL2 index: 0x00000000
   E12RW : 0x0000010d
                          MET index: 0x00004012
                                                    EAID : 0x0001d7c1
   HW ADJ FLAGS: 0x40
   Hardware MAC Rewrite Str: 18:33:9d:3d:83:10:08:00:40:00:0d:10
=== Adjacency OCE ===
 Adj State: COMPLETE(0) Address: 0
  Interface: MPLS-Remote-Lfa2 Protocol: TAG
 mtu:17940, flags:0x40, fixups:0x0, encap len:0
  Handles (adj id:0xf80002e8) (PI:0x10da2150) (PD:0x130de608)
  Rewrite Str:
  HW Info:
   FID index: 0x00008ca8
                          EL3 index: 0x0000101c
                                                   EL2 index: 0x00000000
          : 0x0000003
                          MET index: 0x00004024
    E12RW
                                                     EATD
    HW ADJ FLAGS: 0x40
   Hardware MAC Rewrite Str: 00:00:00:00:00:00:00:00:00:00:00
=== Label OCE ===
 Label flags: 4
 Num Labels: 1
Num Bk Labels: 1
 Out Labels: 37
 Out Backup Labels: 37
 Next OCE Type: Adjacency; Next OCE handle: 0x12943a00
=== Adjacency OCE ===
  Adj State: COMPLETE(0)
                         Address: 30.1.1.1
 Interface: GigabitEthernet0/3/3 Protocol: TAG
 mtu:1500, flags:0x0, fixups:0x0, encap len:14
 Handles (adj id:0x0000378e) (PI:0x10909738) (PD:0x12943a00)
 Rewrite Str: c8:f9:f9:8d:01:b3:c8:f9:f9:8d:04:33:88:47
  HW Info:
   FID index: 0x00008c78
                          EL3 index: 0x0000101c
                                                    EL2 index: 0x00000000
   E12RW : 0x00000109
                          MET index: 0x0000400e
                                                    EAID
                                                           : 0x0001cf4b
   HW ADJ FLAGS: 0x40
   Hardware MAC Rewrite Str: c8:f9:f9:8d:01:b3:08:00:40:00:0d:33
```

show mpls l2transport detail

The following is sample output from the **show mpls l2transport detail** command:

Router# show mpls 12transport vc 2000 detail

```
Local interface: VFI Test-1990 vfi up
Interworking type is Ethernet
Destination address: 192.0.2.1, VC ID: 2000, VC status: up
Output interface: Te0/1/0, imposed label stack {0 2217}
Preferred path: not configured
Default path: active
Next hop: 192.51.100.22
Create time: 1d08h, last status change time: 1d08h
Last label FSM state change time: 1d08h
Signaling protocol: LDP, peer 192.0.51.1:0 up
```

```
Targeted Hello: 192.51.100.2(LDP Id) -> 192.51.100.200, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
 LDP route watch
                                 : enabled
 Label/status state machine
                                  : established, LruRru
 Last local dataplane status rcvd: No fault
 Last BFD dataplane
                       status rcvd: Not sent
 Last BFD peer monitor status rcvd: No fault
 Last local AC circuit status rcvd: No fault
 Last local AC circuit status sent: No fault
 Last local PW i/f circ status rcvd: No fault
 Last local LDP TLV
                       status sent: No fault
                      status rcvd: No fault
 Last remote LDP TLV
```

Verifying Tunnel Interfaces Created by OSPF IPv4 Remote LFA IPFRR

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Device> enable	
Step 2 show ip ospf fast-reroute remote-lfa tunnels LFA FRR confi	show ip ospf fast-reroute remote-lfa tunnels	Displays information about the OSPF per-prefix
	LFA FRR configuration.	
	Device# show ip ospf fast-reroute remote-lfa tunnels	

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Command List, All Releases
MPLS commands	Multiprotocol Label Switching Command Reference

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	

Additional References