L2VPN Pseudowire Preferential Forwarding

The L2VPN: Pseudowire Preferential Forwarding feature allows you to configure the pseudowires so that you can use ping and show commands to find status information for the pseudowires before, during, and after a switchover.

- Finding Feature Information, page 1
- Prerequisites for L2VPN—Pseudowire Preferential Forwarding, page 1
- Guidelines and Limitations for L2VPN—Pseudowire Preferential Forwarding, page 2
- Information About L2VPN—Pseudowire Preferential Forwarding, page 3
- How to Configure L2VPN—Pseudowire Preferential Forwarding, page 4
- Configuration Examples for L2VPN—Pseudowire Preferential Forwarding, page 7
- Additional References, page 9
- Feature Information for L2VPN—Pseudowire Preferential Forwarding, page 10

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN—Pseudowire Preferential Forwarding

- Before configuring the L2VPN: Pseudowire Preferential Forwarding feature, you should understand the concepts in the following documents:
 - Preferential Forwarding Status Bit Definition (draft-ietf-pwe3-redundancy-bit-xx.txt)
 - MPLS Pseudowire Status Signaling
L2VPN Pseudowire Redundancy
• NSF/SSO--Any Transport over MPLS and AToM Graceful Restart
• MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV

The PE routers must be configured with the following features:
• L2VPN Pseudowire Redundancy
• NSF/SSO--Any Transport over MPLS and AToM Graceful Restart

The L2VPN: Pseudowire Preferential Forwarding feature requires that the following mechanisms be in place to enable you to detect a failure in the network:
• Label switched paths (LSPs) Ping/Traceroute and Any Transport over MPLS Virtual Circuit Connection Verification (AToM VCCV)
• Local Management Interface (LMI)
• Operation, Administration, and Maintenance (OAM)

Guidelines and Limitations for L2VPN--Pseudowire Preferential Forwarding

• Only ATM attachment circuits are supported.
• The following features are not supported:
 • Port mode cell relay
 • Any Transport over MPLS: AAL5 over MPLS
 • VC cell packing
 • OAM emulation
 • ILMI/PVC-D
 • Permanent virtual circuit (PVC) Range
 • L2TPv3 Pseudowire Redundancy
 • Local switching
 • Multiple backup pseudowires
 • Static pseudowires
Information About L2VPN—Pseudowire Preferential Forwarding

Overview of L2VPN—Pseudowire Preferential Forwarding

The L2VPN: Pseudowire Preferential Forwarding feature allows you to configure pseudowires so that you can use ping, traceroute, and show commands to find status information before, during, and after a switchover. The implementation of this feature is based on Preferential Forwarding Status Bit Definition (draft-ietf-pwe3-redundancy-bit-xx.txt). The L2VPN: Pseudowire Preferential Forwarding feature provides the following enhancements for displaying information about the pseudowires:

- You can issue ping mpls commands on the backup pseudowires.
- You can display status of the pseudowires before, during, and after a switchover using the show xconnect and show mpls l2transport vc commands.

Note: In a single-segment pseudowire, the PE routers at each end of the pseudowire serve as the termination points. In multisegment pseudowires, the terminating PE routers serve as the termination points.

Overview of L2VPN—Pseudowire Preferential Forwarding using the commands associated with the L2VPN Protocol-Based CLIs feature

The L2VPN: Pseudowire Preferential Forwarding feature allows you to configure pseudowires so that you can use ping, traceroute, and show commands to find status information before, during, and after a switchover. The implementation of this feature is based on Preferential Forwarding Status Bit Definition (draft-ietf-pwe3-redundancy-bit-xx.txt). The L2VPN: Pseudowire Preferential Forwarding feature provides the following enhancements for displaying information about the pseudowires:

- You can issue ping mpls commands on the backup pseudowires.
- You can display status of the pseudowires before, during, and after a switchover using the show l2vpn service and show l2vpn atom vc commands.

Note: In a single-segment pseudowire, the PE routers at each end of the pseudowire serve as the termination points. In multisegment pseudowires, the terminating PE routers serve as the termination points.
How to Configure L2VPN--Pseudowire Preferential Forwarding

Configuring the Pseudowire Connection Between PE Routers

You set up a connection called a pseudowire between the routers to transmit Layer 2 frames between PE routers.

As part of the pseudowire configuration, issue the `status redundancy master` command to make it the master. This enables the L2VPN: Pseudowire Preferential Forwarding feature to display the status of the active and backup pseudowires. By default, the PE router is in slave mode.

Note

One pseudowire must be the master, and the other must be the slave. You cannot configure both pseudowires as master or slave.

Note

You must specify the `encapsulation mpls` command as part of the pseudowire class in order for the AToM VCs to work properly. If you omit the `encapsulation mpls` command, you receive the following error:

% Incomplete command.

Before You Begin

The PE routers must be configured for the L2VPN Pseudowire Redundancy and NSF/SSO--Any Transport over MPLS and AToM Graceful Restart features. See the following documents for configuration instructions.

- L2VPN Pseudowire Redundancy
- NSF/SSO--Any Transport over MPLS and AToM Graceful Restart

SUMMARY STEPS

1. `configure terminal`
2. `pseudowire-class name`
3. `encapsulation mpls`
4. `status redundancy {master|slave}`
5. `interworking {ethernet | ip}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>switch# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify, and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example: switch(config)# pseudowire-class atom</td>
<td></td>
</tr>
<tr>
<td>Step 3 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example: switch(config-pw)# encapsulation mpls</td>
<td>• For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td>Step 4 status redundancy {master</td>
<td>slave}</td>
</tr>
<tr>
<td>Example: switch(config-pw)# status redundancy master</td>
<td>• By default, the PE router is in slave mode.</td>
</tr>
<tr>
<td></td>
<td>Note One pseudowire must be the master, and the other must be the slave. You cannot configure both pseudowires as master or slave.</td>
</tr>
<tr>
<td>Step 5 interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td>Example: switch(config-pw)# interworking ip</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Pseudowire Connection Between PE Routers

You set up a connection called a pseudowire between the routers to transmit Layer 2 frames between PE routers.

As part of the pseudowire configuration, issue the status redundancy master command to make it the master. This enables the L2VPN: Pseudowire Preferential Forwarding feature to display the status of the active and backup pseudowires. By default, the PE router is in slave mode.

Note One pseudowire must be the master, and the other must be the slave. You cannot configure both pseudowires as master or slave.

Note You must specify the encapsulation mpls command as part of the pseudowire class in order for the AToM VCs to work properly. If you omit the encapsulation mpls command, you receive the following error: % Incomplete command.
Before You Begin

The PE routers must be configured for the L2VPN Pseudowire Redundancy and NSF/SSO--Any Transport over MPLS and AToM Graceful Restart features. See the following documents for configuration instructions.

- L2VPN Pseudowire Redundancy
- NSF/SSO--Any Transport over MPLS and AToM Graceful Restart

SUMMARY STEPS

1. enable
2. configure terminal
3. interface pseudowire number
4. encapsulation mpls
5. neighbor peer-address vcid-value
6. status redundancy {master|slave}
7. interworking {ethernet | ip}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface pseudowire number</td>
<td>Establishes an interface pseudowire with a value that you specify, and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface pseudowire 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example: Device(config-pw)# encapsulation mpls</td>
<td>• For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td>Step 5 neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example: Router(config-pw)# neighbor 10.0.0.1 123</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for L2VPN--Pseudowire Preferential Forwarding

Example: L2VPN--Pseudowire Preferential Forwarding Configuration

The following commands configure a PE router with the L2VPN: Pseudowire Preferential Forwarding feature:

```
mpls ldp graceful-restart
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp advertise-labels
!
pseudowire-class mpls
  encapsulation mpls
  status redundancy master
interface ATM0/2/0.1 multipoint
  logging event subif-link-status
  atm pvp 50 12transport
  xconnect 10.1.1.2 100 pw-class mpls
  backup peer 10.1.1.3 100 encap mpls
end
```

Example: L2VPN--Pseudowire Preferential Forwarding Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

The following commands configure a PE router with the L2VPN: Pseudowire Preferential Forwarding feature:

```
mpls ldp graceful-restart
mpls ip
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>status redundancy {master</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-pw)# status redundancy master</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>One pseudowire must be the master, and the other must be the slave. You cannot configure both pseudowires as master or slave.</td>
</tr>
<tr>
<td>Step 7</td>
<td>interworking {ethernet</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-pw)# interworking ip</td>
</tr>
</tbody>
</table>

L2VPN Pseudowire Preferential Forwarding

Configuration Examples for L2VPN--Pseudowire Preferential Forwarding

Example: L2VPN--Pseudowire Preferential Forwarding Configuration

The following commands configure a PE router with the L2VPN: Pseudowire Preferential Forwarding feature:

```
mpls ldp graceful-restart
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp advertise-labels
!
pseudowire-class mpls
  encapsulation mpls
  status redundancy master
interface ATM0/2/0.1 multipoint
  logging event subif-link-status
  atm pvp 50 12transport
  xconnect 10.1.1.2 100 pw-class mpls
  backup peer 10.1.1.3 100 encap mpls
end
```

Example: L2VPN--Pseudowire Preferential Forwarding Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

The following commands configure a PE router with the L2VPN: Pseudowire Preferential Forwarding feature:

```
mpls ldp graceful-restart
mpls ip
```
Example: Displaying the Status of the Pseudowires

The following examples show the status of the active and backup pseudowires before, during, and after a switchover.

The `show mpls l2transport vc` command on the active PE router displays the status of the pseudowires:

```
Router# show mpls l2transport vc
```

```
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ---------- ----------
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.2 100 UP
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.3 100 STANDBY
```

The `show mpls l2transport vc` command on the backup PE router displays the status of the pseudowires. The active pseudowire on the backup PE router has the HOTSTANDBY status.

```
Router1-standby# show mpls l2transport vc
```

```
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ---------- ----------
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.2 100 HOTSTANDBY
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.3 100 DOWN
```

During a switchover, the status of the active and backup pseudowires changes:

```
Router# show mpls l2transport vc
```

```
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ---------- ----------
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.2 100 RECOVERING
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.3 100 DOWN
```

After the switchover is complete, the recovering pseudowire shows a status of UP:

```
Router# show mpls l2transport vc
```

```
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ---------- ----------
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.2 100 UP
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.3 100 STANDBY
```

The `show xconnect` command displays the standby (SB) state for the backup pseudowire, which is independent of the stateful switchover mode of the router:

```
Router# show xconnect all
```

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
The ping mpls and traceroute mpls commands show that the data plane is active on the backup pseudowire:

```
Router# ping mpls pseudowire 10.193.193.22 331
%Total number of MS-PW segments is less than segment number; Adjusting the segment number to 1
Sending 5, 100-byte MPLS Echos to 10.193.193.22, timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
```

```
Router# traceroute mpls pseudowire 10.193.193.22 331 segment 1
Tracing MS-PW segments within range [1-1] peer address 10.193.193.22 and timeout 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
! 1 10.193.33.22 4 ms [Labels: 23 Exp: 0]
   local 10.193.193.3 remote 10.193.193.22 vc id 331
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of commands associated with MPLS and MPLS applications</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>L2VPN Pseudowires</td>
<td>- L2VPN Pseudowire Redundancy</td>
</tr>
<tr>
<td></td>
<td>- MPLS Pseudowire Status Signaling</td>
</tr>
<tr>
<td>NSF/SSO for L2VPNs</td>
<td>NSF/SSO--Any Transport over MPLS and AToM Graceful Restart</td>
</tr>
<tr>
<td>Ping and Traceroute for L2VPNs</td>
<td>MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-pwe3-redundancy-bit-xx.txt</td>
<td>Preferential Forwarding Status Bit Definition</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed from</td>
<td></td>
</tr>
<tr>
<td>Field Notices), the Cisco Technical Services Newsletter, and Really Simple</td>
<td></td>
</tr>
<tr>
<td>Syndication (RSS) Feeds. Access to most tools on the Cisco Support website</td>
<td></td>
</tr>
<tr>
<td>requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for L2VPN--Pseudowire Preferential Forwarding

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1: Feature Information for L2VPN: Pseudowire Preferential Forwarding

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN: Pseudowire Preferential Forwarding</td>
<td>Cisco IOS XE Release 2.3</td>
<td>This feature allows you to configure the pseudowires so that you can use <code>ping</code> and <code>show</code> commands to find status information of the pseudowires before, during, and after a switchover. The following commands were introduced or modified: <code>show mpls l2transport vc</code>, <code>show xconnect</code>, <code>status redundancy</code>.</td>
</tr>
</tbody>
</table>