CONTENTS

CHAPTER 1 Read Me First 1

CHAPTER 2 L2VPN Protocol-Based CLIs 3

Finding Feature Information 3
Information About L2VPN Protocol-Based CLIs 3
Overview of L2VPN Protocol-Based CLIs 3
Benefits of L2VPN Protocol-Based CLIs 4
L2VPN Protocol-Based CLI Changes 5
MPLS L2VPN Protocol-Based CLI: Examples 8
Additional References 12
Feature Information for L2VPN Protocol-Based CLIs 12

CHAPTER 3 Any Transport over MPLS 15

Finding Feature Information 15
Prerequisites for Any Transport over MPLS 16
Restrictions for Any Transport over MPLS 16
General Restrictions 16
ATM AAL5 over MPLS Restrictions 17
ATM Cell Relay over MPLS Restrictions 17
Ethernet over MPLS (EoMPLS) Restrictions 17
Per-Subinterface MTU for Ethernet over MPLS Restrictions 18
Frame Relay over MPLS Restrictions 18
HDLC over MPLS Restrictions 18
PPP over MPLS Restrictions 18
Tunnel Selection Restrictions 19
Experimental Bits with AToM Restrictions 19
Remote Ethernet Port Shutdown Restrictions 19
Information About Any Transport over MPLS 19
How AToM Transports Layer 2 Packets 19
How AToM Transports Layer 2 Packets Using Commands Associated with L2VPN Protocol-Based Feature 20
Benefits of AToM 21
MPLS Traffic Engineering Fast Reroute 22
Maximum Transmission Unit Guidelines for Estimating Packet Size 22
 Estimating Packet Size Example 23
Per-Subinterface MTU for Ethernet over MPLS 23
Per-Subinterface MTU for Ethernet over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature 24
Frame Relay over MPLS and DTE DCE and NNI Connections 24
 Local Management Interface and Frame Relay over MPLS 25
QoS Features Supported with AToM 26
OAM Cell Emulation for ATM AAL5 over MPLS 29
 OAM Cell Emulation for ATM AAL5 over MPLS in VC Class Configuration Mode 29
Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown 30
Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown Using Commands Associated with L2VPN Protocol-Based Feature 31
AToM Load Balancing with Single PW 32
Flow-Aware Transport (FAT) Load Balancing 32
Information About EoMPLS over IPv6 GRE Tunnel 32
 Additional Information on EoMPLS over IPv6 GRE Tunnel 33
How to Configure Any Transport over MPLS 33
 Configuring the Pseudowire Class 33
 Configuring the Pseudowire Class Using Commands Associated with L2VPN Protocol-Based Feature 34
 Changing the Encapsulation Type and Removing a Pseudowire 35
 Changing the Encapsulation Type and Removing a Pseudowire Using Commands Associated with the L2VPN Protocol-Based Feature 35
Configuring ATM AAL5 over MPLS 36
 Configuring ATM AAL5 over MPLS on PVCs 36
 Configuring ATM AAL5 over MPLS on PVCs using the commands associated with the L2VPN Protocol-Based CLIs feature 37
Example: Ethernet over MPLS with MPLS Traffic Engineering Fast Reroute Using Commands Associated with L2VPN Protocol-Based Feature 118

Example: Configuring OAM Cell Emulation 122

Example: Configuring OAM Cell Emulation using the commands associated with the L2VPN Protocol-Based CLIs feature 123

Example: Configuring ATM Cell Relay over MPLS 124

Example: Configuring ATM Cell Relay over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature 125

Example: Configuring per-Subinterface MTU for Ethernet over MPLS 126

Example: Configuring per-Subinterface MTU for Ethernet over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature 128

Example: Configuring Tunnel Selection 130

Example: Configuring Tunnel Selection Using Commands Associated with L2VPN Protocol-Based Feature 132

Example: Configuring MTU Values in xconnect Configuration Mode for L2VPN Interworking 134

Example: Configuring MTU Values in xconnect Configuration Mode for L2VPN Interworking Using Commands Associated with L2VPN Protocol-Based Feature 137

Examples: Configuring Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown 139

Examples: Configuring Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown Using Commands Associated with L2VPN Protocol-Based Feature 140

Additional References for Any Transport over MPLS 141

Feature Information for Any Transport over MPLS 141

CHAPTER 4

L2VPN Interworking 147

Finding Feature Information 147

Prerequisites for L2VPN Interworking 147

Restrictions for L2VPN Interworking 148

General Restrictions for L2VPN Interworking 148

Restrictions for Routed Interworking 149

Restrictions for PPP Interworking 150

Restrictions for Ethernet/VLAN-to-ATM AAL5 Interworking 150

Restrictions for Ethernet/VLAN-to-Frame Relay Interworking 151

Restrictions for HDLC-to-Ethernet Interworking 152

Information About L2VPN Interworking 152

Overview of L2VPN Interworking 152
L2VPN Interworking Modes 152
 Ethernet or Bridged Interworking 153
 IP or Routed Interworking 153

Ethernet VLAN-to-ATM AAL5 Interworking 154
 ATM AAL5-to-Ethernet Port AToM--Bridged Interworking 155
 ATM AAL5-to-Ethernet VLAN 802.1Q AToM--Bridged Interworking 156
 ATM-to-Ethernet--Routed Interworking 157

Ethernet VLAN-to-Frame Relay Interworking 158
 Frame Relay DLCI-to-Ethernet Port AToM--Bridged Interworking 158
 Frame Relay DLCI-to-Ethernet VLAN 802.1Q AToM--Bridged Interworking 159
 Frame Relay DLCI-to-Ethernet VLAN Qot1Q QinQ AToM - Bridged Interworking 160

HDLC-to-Ethernet Interworking 161
 HDLC-to-Ethernet — Ethernet or Bridged Interworking 161
 HDLC-to-Ethernet — IP or Routed Interworking 162

ATM Local Switching 163
 VC-to-VC Local Switching 163
 VP-to-VP Local Switching 164

PPP-to-Ethernet AToM-Routed Interworking 165
PPP-to-Ethernet AToM-Routed Interworking using the commands associated with the L2VPN Protocol-Based CLIs feature 165

Static IP Addresses for L2VPN Interworking for PPP 166
Static IP Addresses for L2VPN Interworking for PPP using the commands associated with the L2VPN Protocol-Based CLIs feature 166

How to Configure L2VPN Interworking 167
Configuring L2VPN Interworking 167
 Verifying the L2VPN Configuration 168
Configuring L2VPN Interworking using the commands associated with the L2VPN Protocol-Based CLIs feature 168
 Verifying the L2VPN Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature 170

Configuring Ethernet VLAN-to-ATM AAL5 Interworking 170
 ATM AAL5-to-Ethernet Port 170
 ATM AAL5-to-Ethernet Port using the commands associated with the L2VPN Protocol-Based CLIs feature 172
 ATM AAL5-to-Ethernet Port on a PE2 Router 175
ATM AAL5-to-Ethernet Port on a PE2 Router using the commands associated with the L2VPN Protocol-Based CLIs feature 177
ATM AAL5-to-Ethernet VLAN 802.1Q on a PE1 Router 180
ATM AAL5-to-Ethernet VLAN 802.1Q on a PE1 Router using the commands associated with the L2VPN Protocol-Based CLIs feature 182
ATM AAL5-to-Ethernet VLAN 802.1Q on a PE2 router 185
ATM AAL5-to-Ethernet VLAN 802.1Q on a PE2 router using the commands associated with the L2VPN Protocol-Based CLIs feature 187

Configuring Ethernet VLAN-to-Frame Relay Interworking 190
Frame Relay DLCI-to-Ethernet Port on a PE1 Router 190
Frame Relay DLCI-to-Ethernet Port on a PE1 Router using the commands associated with the L2VPN Protocol-Based CLIs feature 192
Frame Relay DLCI-to-Ethernet Port on a PE2 router 195
Frame Relay DLCI-to-Ethernet Port on a PE2 router using the commands associated with the L2VPN Protocol-Based CLIs feature 197
Frame Relay DLCI-to-Ethernet VLAN 802.1Q on a PE1 Router 200
Frame Relay DLCI-to-Ethernet VLAN 802.1Q on a PE1 Router using the commands associated with the L2VPN Protocol-Based CLIs feature 202
Frame Relay DLCI-to-Ethernet VLAN 802.1Q on a PE2 Router 205
Frame Relay DLCI-to-Ethernet VLAN 802.1Q on a PE2 Router using the commands associated with the L2VPN Protocol-Based CLIs feature 207

Configuring HDLC-to-Ethernet Interworking 210
HDLC-to-Ethernet Bridged Interworking on a HDLC PE Device 210
HDLC-to-Ethernet Bridged Interworking on a HDLC PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 211
HDLC-to-Ethernet Bridged Interworking (Port Mode) on an Ethernet PE Device 214
HDLC-to-Ethernet Bridged Interworking (Port Mode) on an Ethernet PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 215
HDLC-to-Ethernet Bridged Interworking (dot1q and QinQ Modes) on an Ethernet PE Device 218
HDLC-to-Ethernet Bridged Interworking (dot1q and QinQ Modes) on an Ethernet PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 219
HDLC-to-Ethernet Routed Interworking on a HDLC PE Device 222
HDLC-to-Ethernet Routed Interworking on a HDLC PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 224
HDLC-to-Ethernet Routed Interworking (Port Mode) on an Ethernet PE Device 226
HDLC-to-Ethernet Routed Interworking (Port Mode) on an Ethernet PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 227

HDLC-to-Ethernet Routed Interworking (dot1q and QinQ Modes) on an Ethernet PE Device 230

HDLC-to-Ethernet Routed Interworking (dot1q and QinQ Modes) on an Ethernet PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 232

Verifying HDLC-to-Ethernet Interworking (Port Mode) Configuration on a HDLC PE Device 235

Verifying HDLC-to-Ethernet Interworking (Port Mode) Configuration on an Ethernet PE Device 237

Verifying HDLC-to-Ethernet Interworking (dot1q Mode) Configuration on a HDLC PE Device 239

Verifying HDLC-to-Ethernet Interworking (dot1q Mode) Configuration on an Ethernet PE Device 242

Verifying HDLC-to-Ethernet Interworking (QinQ Mode) Configuration on a HDLC PE Device 244

Verifying HDLC-to-Ethernet Interworking (QinQ Mode) Configuration on an Ethernet PE Device 247

Verifying L2VPN Interworking 249

Verifying L2VPN Interworking using the commands associated with the L2VPN Protocol-Based CLIs feature 250

Configuration Examples for L2VPN Interworking 250

Frame Relay DLCI-to-Ethernet VLAN 802.1Q Using Bridged Internetworking Example 250

Frame Relay DLCI-to-Ethernet VLAN 802.1Q Using Bridged Internetworking Example using the commands associated with the L2VPN Protocol-Based CLIs feature 250

ATM AAL5-to-Ethernet VLAN 802.1Q Using Bridged Internetworking Example 251

ATM AAL5-to-Ethernet VLAN 802.1Q Using Bridged Internetworking Example using the commands associated with the L2VPN Protocol-Based CLIs feature 251

ATM AAL5-to-Ethernet Port Using Routed Interworking Example 252

Frame Relay DLCI-to-Ethernet Port Using Routed Interworking Example 252

Frame Relay DLCI-to-Ethernet Port Using Routed Interworking Example using the commands associated with the L2VPN Protocol-Based CLIs feature 253

Ethernet-to-VLAN over AToM--Bridged Example 253

Ethernet to VLAN over AToM (Bridged) Example using the commands associated with the L2VPN Protocol-Based CLIs feature 254

VLAN-to-ATMAAL5 over AToM (Bridged) Example 255
VLAN-to-ATM AAL5 over AToM (Bridged) Example using the commands associated with the L2VPN Protocol-Based CLIs feature 259
Ethernet VLAN-to-PPP over AToM (Routed) Example 262
Ethernet VLAN to PPP over AToM (Routed) Example using the commands associated with the L2VPN Protocol-Based CLIs feature 264
ATM VC-to-VC Local Switching (Different Port) Example 267
ATM VP-to-VP Local Switching (Different Port) Example 269
Example: Configuring HDLC-to-Ethernet Interworking: Controller Slot on HDLC Devices 270
Example: Configuring HDLC-to-Ethernet Bridged Interworking on HDLC Devices 270
Example: Configuring HDLC-to-Ethernet Bridged Interworking on HDLC Devices Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 270
Example: Configuring HDLC-to-Ethernet Bridged Interworking on Ethernet Devices 271
Example: Configuring HDLC-to-Ethernet Bridged Interworking on Ethernet Devices Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 271
Example: Configuring HDLC-to-VLAN Bridged Interworking (Port Mode) on Ethernet Devices 272
Example: Configuring HDLC-to-VLAN Bridged Interworking on Ethernet Devices Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 272
Example: Configuring HDLC-to-VLAN Bridged Interworking (dot1q Mode) Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 273
Example: Configuring HDLC-to-VLAN Bridged Interworking (QinQ Mode) on Ethernet Devices 274
Example: Configuring HDLC-to-VLAN Bridged Interworking (QinQ Mode) on Ethernet Devices Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature 275
Additional References for L2VPN Interworking 275
Feature Information for L2VPN Interworking 277
LSRs Used at the Core of an MPLS Network 307
Benefits of MPLS CoS in IP Backbones 307
How to Configure MPLS Quality of Service 308
 Configuring WRED 308
 Verifying WRED 309
 Configuring CAR 309
 Verifying the CAR Configuration 310
 Configuring CBWFQ 311
 Verifying the CBWFQ Configuration 312
Configuration Examples for MPLS Quality of Service 314
 Example: Configuring Cisco Express Forwarding 315
 Example: Running IP on Device 1 315
 Example: Running MPLS on Device 2 316
 Example: Running MPLS on Device 3 316
 Example: Running MPLS on Device 4 317
 Example: Running MPLS on Device 5 318
 Example: Running IP on Device 6 319
Additional References for MPLS Quality of Service 320
Feature Information for MPLS Quality of Service 321

CHAPTER 8
QoS Policy Support on L2VPN ATM PVPs 323
 Finding Feature Information 323
 Prerequisites for QoS Policy Support on L2VPN ATM PVPs 323
 Restrictions for QoS Policy Support on L2VPN ATM PVPs 324
 Information About QoS Policy Support on L2VPN ATM PVPs 324
 The MQC Structure 324
 Elements of a Traffic Class 325
 Elements of a Traffic Policy 325
 How to Configure QoS Policy Support on L2VPN ATM PVPs 325
 Enabling a Service Policy in ATM PVP Mode 325
 Enabling a Service Policy in ATM PVP Mode using the commands associated with the L2VPN Protocol-Based CLIs feature 326
 Enabling Traffic Shaping in ATM PVP Mode 329
Enabling Traffic Shaping in ATM PVP Mode using the commands associated with the L2VPN Protocol-Based CLIs feature 330

Enabling Traffic Shaping in ATM PVP Mode Example using the commands associated with the L2VPN Protocol-Based CLIs feature 333

Enabling Matching of ATM VCIs 333

Configuration Examples for QoS Policy Support on L2VPN ATM PVPs 334

Example Enabling Traffic Shaping in ATM PVP Mode 334

Example Enabling Traffic Shaping in ATM PVP Mode using the commands associated with the L2VPN Protocol-Based CLIs feature 335

Additional References 335

Feature Information for QoS Policy Support on L2VPN ATM PVPs 336

MPLS Pseudowire Status Signaling 339

Finding Feature Information 339

Prerequisites for MPLS Pseudowire Status Signaling 339

Restrictions for MPLS Pseudowire Status Signaling 339

Information About MPLS Pseudowire Status Signaling 340

How MPLS Pseudowire Status Switching Works 340

How MPLS Pseudowire Status Switching Works using the commands associated with the L2VPN Protocol-Based CLIs feature 340

When One Router Does Not Support MPLS Pseudowire Status Signaling 341

When One Router Does Not Support MPLS Pseudowire Status Signaling using the commands associated with the L2VPN Protocol-Based CLIs feature 341

Status Messages Indicating That the Attachment Circuit Is Down 342

Status Messages Indicating That the Attachment Circuit Is Down using the commands associated with the L2VPN Protocol-Based CLIs feature 342

Message Codes in the Pseudowire Status Messages 343

Message Codes in the Pseudowire Status Messages using the commands associated with the L2VPN Protocol-Based CLIs feature 344

How to Configure MPLS Pseudowire Status Signaling 344

Enabling MPLS Pseudowire Status Signaling 344

Enabling MPLS Pseudowire Status Signaling using the commands associated with the L2VPN Protocol-Based CLIs feature 346

Configuration Examples for MPLS Pseudowire Status Signaling 347

Example MPLS Pseudowire Status Signaling 347
Example MPLS Pseudowire Status Signaling using the commands associated with the L2VPN Protocol-Based CLIs feature 348
Example Verifying That Both Routers Support Pseudowire Status Messages 349
Example Verifying That Both Routers Support Pseudowire Status Messages using the commands associated with the L2VPN Protocol-Based CLIs feature 349
Additional References 349
Feature Information for MPLS Pseudowire Status Signaling 351

CHAPTER 10
L2VPN VPLS Inter-AS Option B 353
Finding Feature Information 353
Prerequisites for L2VPN VPLS Inter-AS Option B 353
Restrictions for L2VPN VPLS Inter-AS Option B 354
Information About L2VPN VPLS Inter-AS Option B 354
 VPLS Functionality and L2VPN VPLS Inter-AS Option B 354
 L2VPN VPLS Inter-AS Option B Description 354
 L2VPN VPLS Inter-AS Option B Sample Topology 354
 Active and Passive PEs in an L2VPN VPLS Inter-AS Option B Configuration 355
Benefits of L2VPN VPLS Inter-AS Option B 355
 Private IP Addresses 355
 One Targeted LDP Session 355
How to Configure L2VPN VPLS Inter-AS Option B 356
 Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B 356
 What to Do Next 357
 Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B using the commands associated with the L2VPN Protocol-Based CLIs feature 358
 What to Do Next 359
Enabling L2VPN VPLS Inter-AS Option B on the ASBR 360
 What to Do Next 362
Enabling L2VPN VPLS Inter-AS Option B on the ASBR using the commands associated with the L2VPN Protocol-Based CLIs feature 362
 What to Do Next 364
Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router 365
 What to Do Next 366
Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router using the commands associated with the L2VPN Protocol-Based CLIs feature 366
What to Do Next

- Verifying the L2VPN VPLS Inter-AS Option B Configuration
- Verifying the L2VPN VPLS Inter-AS Option B Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

Configuration Examples for L2VPN VPLS Inter-AS Option B

- Example Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B
- Example: Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B using the commands associated with the L2VPN Protocol-Based CLIs feature
- Example Enabling L2VPN VPLS Inter-AS Option B on the ASBR
- Example Enabling L2VPN VPLS Inter-AS Option B on the PE Router
- Example Enabling L2VPN VPLS Inter-AS Option B on the PE Device using the commands associated with the L2VPN Protocol-Based CLIs feature
- Example Verifying the L2VPN VPLS Inter-AS Option B Configuration
- Example Verifying the L2VPN VPLS Inter-AS Option B Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature
- Example Sample L2VPN VPLS Inter-AS Option B Configuration
- Example Sample L2VPN VPLS Inter-AS Option B Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

Additional References for L2VPN VPLS Inter-AS Option B

Feature Information for L2VPN VPLS Inter-AS Option B

Glossary

CHAPTER 11

IEEE 802.1Q Tunneling (QinQ) for AToM

- Finding Feature Information
- Prerequisites for IEEE 802.1Q Tunneling (QinQ) for AToM
- Restrictions for IEEE 802.1Q Tunneling (QinQ) for AToM
- Information About IEEE 802.1Q Tunneling (QinQ) for AToM
- Ethernet VLAN QinQ AToM
- QinQ Tunneling Based on Inner and Outer VLAN Tags
- Rewritten Inner and Outer VLAN Tags on QinQ Frames
- How to Configure IEEE 802.1Q Tunneling (QinQ) for AToM
- Configuring Unambiguous IEEE 802.1Q Tunneling (QinQ) for AToM
- Configuring Unambiguous IEEE 802.1Q Tunneling (QinQ) for AToM using the commands associated with the L2VPN Protocol-Based CLIs feature
Configuring Ambiguous IEEE 802.1Q Tunneling (QinQ) for AToM 392
Configuring Ambiguous IEEE 802.1Q Tunneling (QinQ) for AToM using the commands associated with the L2VPN Protocol-Based CLIs feature 394
Verifying the IEEE 802.1Q Tunneling (QinQ) for ATM Configuration 397
Verifying the IEEE 802.1Q Tunneling (QinQ) for ATM Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature 397
Configuration Examples for IEEE 801.2 Tunneling (QinQ) for ATM 398
Example Configuring Unambiguous IEEE 802.1Q Tunneling (QinQ) for ATM 398
Example Configuring Unambiguous IEEE 802.1Q Tunneling (QinQ) for ATM using the commands associated with the L2VPN Protocol-Based CLIs feature 398
Example Configuring Ambiguous IEEE 802.1Q Tunneling (QinQ) for ATM 398
Example Configuring Ambiguous IEEE 802.1Q Tunneling (QinQ) for ATM using the commands associated with the L2VPN Protocol-Based CLIs feature 398
Example Verifying the IEEE 802.1Q Tunneling (QinQ) for ATM Configuration 399
Example Verifying the IEEE 802.1Q Tunneling (QinQ) for ATM Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature 399
Additional References 399
Feature Information for IEEE 802.1Q Tunneling (QinQ) for AToM 400

CHAPTER 12
Configuring the Managed IPv6 Layer 2 Tunnel Protocol Network Server 403
Finding Feature Information 403
Prerequisites for Configuring the Managed IPv6 LNS 403
Information About Configuring the Managed IPv6 LNS 404
L2TP Network Server 404
Tunnel Accounting 404
How to Configure the Managed LNS 405
Configuring a VRF on the LNS 405
Configuring a Virtual Template Interface 408
Assigning a VRF via the RADIUS Server 409
Configuring the LNS to Initiate and Receive L2TP Traffic 411
Limiting the Number of Sessions per Tunnel 412
Configuring RADIUS Attribute Accept or Reject Lists 414
Configuring AAA Accounting Using Named Method Lists 416
Configuring RADIUS Tunnel Authentication Method Lists on the LNS 417
Configuring the LNS for RADIUS Tunnel Authentication 419
Configuring RADIUS Tunnel Authentication Method Lists on the LNS 419
Configuring AAA Authentication Methods 421
Configuration Examples for the Managed IPv6 Layer 2 Tunnel Protocol Network Server 422
 Example Managed IPv6 LNS Configuration 422
 Example LNS Tunnel Accounting Configuration 426
 Example Verifying the User Profile on the RADIUS Server 427
Additional References 428
Feature Information for Configuring Managed IPv6 Layer 2 Tunnel Protocol Network Server 429

CHAPTER 13

L2VPN Pseudowire Redundancy 431
Finding Feature Information 431
Prerequisites for L2VPN Pseudowire Redundancy 431
Restrictions for L2VPN Pseudowire Redundancy 432
Information About L2VPN Pseudowire Redundancy 432
 Introduction to L2VPN Pseudowire Redundancy 432
How to Configure L2VPN Pseudowire Redundancy 434
 Configuring the Pseudowire 434
 Configuring the Pseudowire using the commands associated with the L2VPN Protocol-Based CLIs feature 435
 Configuring L2VPN Pseudowire Redundancy 436
 Configuring L2VPN Pseudowire Redundancy using the commands associated with the L2VPN Protocol-Based CLIs feature 438
Forcing a Manual Switchover to the Backup Pseudowire VC 440
Verifying the L2VPN Pseudowire Redundancy Configuration 441
Verifying the L2VPN Pseudowire Redundancy Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature 442
Configuration Examples for L2VPN Pseudowire Redundancy 444
 Example L2VPN Pseudowire Redundancy and AToM (Like to Like) 445
 Example L2VPN Pseudowire Redundancy and L2VPN Interworking 445
 Example L2VPN Pseudowire Redundancy with Layer 2 Local Switching 446
 Example L2VPN Pseudowire Redundancy and Layer 2 Tunneling Protocol Version 3 446
Configuration Examples for L2VPN Pseudowire Redundancy using the commands associated with the L2VPN Protocol-Based CLIs feature 447
 Example L2VPN Pseudowire Redundancy and AToM (Like to Like) using the commands associated with the L2VPN Protocol-Based CLIs feature 447
Example L2VPN Pseudowire Redundancy and L2VPN Interworking using the commands associated with the L2VPN Protocol-Based CLIs feature 448
Example L2VPN Pseudowire Redundancy and Layer 2 Tunneling Protocol Version 3 using the commands associated with the L2VPN Protocol-Based CLIs feature 449
Additional References 451
Feature Information for L2VPN Pseudowire Redundancy 452

CHAPTER 14

Pseudowire Group Switchover 453

Finding Feature Information 453
Prerequisites for Pseudowire Group Switchover 453
Restrictions for Pseudowire Group Switchover 454
Information About Pseudowire Group Switchover 454
 Introduction to Pseudowire Group Switchover 454
How to Configure Predictive Switchover 455
 Configuring Predictive Switchover (Global Configuration Mode) 455
 Configuring Predictive Switchover (Xconnect Configuration Mode) 456
Verifying a Pseudowire Group Switchover Configuration 456
Troubleshooting a Pseudowire Group Switchover Configuration 458
Configuration Examples for Predictive Switchover 458
 Example: Configuring Predictive Switchover (Global Configuration Mode) 458
 Example: Configuring Predictive Switchover (Xconnect Configuration Mode) 458
Additional References 459
Feature Information for Pseudowire Group Switchover 459

CHAPTER 15

L2VPN Pseudowire Switching 461

Finding Feature Information 461
Restrictions for L2VPN Pseudowire Switching 461
Information About L2VPN Pseudowire Switching 462
 How L2VPN Pseudowire Switching Works 462
 How Packets Are Manipulated at the Aggregation Point 463
How to Configure L2VPN Pseudowire Switching 463
 Configuring 463
How to Configure L2VPN Pseudowire Switching using the commands associated with the L2VPN Protocol-Based CLIs feature 466
CHAPTER 16

Xconnect as a Client of BFD 477
Finding Feature Information 477
Information About Xconnect as a Client of BFD 477
Xconnect as a Client of BFD 477
How to Configure Xconnect as a Client of BFD 478
Configuring Xconnect as a Client of BFD 478
Configuration Examples for Xconnect as a Client of BFD 479
Example: Xconnect as a Client of BFD 479
Additional References 479
Feature Information for Xconnect as a Client of BFD 481

CHAPTER 17

H-VPLS N-PE Redundancy for QinQ Access 483
Finding Feature Information 483
Prerequisites for H-VPLS N-PE Redundancy for QinQ Access 483
Restrictions for H-VPLS N-PE Redundancy for QinQ Access 484
Information About H-VPLS N-PE Redundancy for QinQ Access 484
How H-VPLS N-PE Redundancy for QinQ Access Works 484
H-VPLS N-PE Redundancy with QinQ Access Based on MSTP 484
How to Configure H-VPLS N-PE Redundancy for QinQ Access 485
Configuring the VPLS Pseudowire Between the N-PE Devices using the commands associated with
the L2VPN Protocol-Based CLIs feature 485
Configuring the VPLS Pseudowire Between the N-PE Devices using the commands associated with
the L2VPN Protocol-Based CLIs feature 487
Binding the Service Instance to the Bridge-Domain 489
Configuration Examples for H-VPLS N-PE Redundancy for QinQ Access 490
Example: H-VPLS N-PE Redundancy for QinQ Access 490
Example: H-VPLS N-PE Redundancy for MPLS Access using the commands associated with the
L2VPN Protocol-Based CLIs feature 491
Restrictions for Virtual Private LAN Services 514
Information About Virtual Private LAN Services 514
 VPLS Overview 514
 Full-Mesh Configuration 515
 Static VPLS Configuration 515
 H-VPLS 515
Supported Features 516
 Multipoint-to-Multipoint Support 516
 Non-Transparent Operation 516
 Circuit Multiplexing 516
 MAC-Address Learning, Forwarding, and Aging 516
 Jumbo Frame Support 516
 Q-in-Q Support and Q-in-Q to EoMPLS Support 516
VPLS Services 516
VPLS Integrated Routing and Bridging 517
VPLS and Type 4 dummy VLAN Tag 518
How to Configure Virtual Private LAN Services 518
 Configuring PE Layer 2 Interfaces on CE Devices 518
 Configuring 802.1Q Access Ports for Tagged Traffic from a CE Device 518
 Configuring 802.1Q Access Ports for Tagged Traffic from a CE Device: Alternate Configuration 520
 Configuring Access Ports for Untagged Traffic from a CE Device 522
 Configuring Access Ports for Untagged Traffic from a CE Device: Alternate Configuration 523
 Configuring Q-in-Q EFP 525
 Configuring Q-in-Q EFP: Alternate Configuration 526
 Configuring MPLS on a PE Device 528
 Configuring a VFI on a PE Device 529
 Configuring a VFI on a PE Device: Alternate Configuration 531
Configuring Static Virtual Private LAN Services 532
 Configuring a Pseudowire for Static VPLS 533
 Configuring VFI for Static VPLS 535
 Configuring a VFI for Static VPLS: Alternate Configuration 538
 Configuring an Attachment Circuit for Static VPLS 540
 Configuring an Attachment Circuit for Static VPLS: Alternate Configuration 541
<table>
<thead>
<tr>
<th>Service Interfaces</th>
<th>686</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Types</td>
<td>687</td>
</tr>
<tr>
<td>Prerequisites for EVPN Single-Homing</td>
<td>689</td>
</tr>
<tr>
<td>Restrictions for EVPN Single-Homing</td>
<td>689</td>
</tr>
<tr>
<td>How to Configure EVPN Single Homing</td>
<td>690</td>
</tr>
<tr>
<td>Configuring EVPN</td>
<td>690</td>
</tr>
<tr>
<td>Configuring EVPN Single-Homing</td>
<td>691</td>
</tr>
<tr>
<td>Configuration Examples for EVPN Single-Homing</td>
<td>693</td>
</tr>
<tr>
<td>Additional References for EVPN Single-Homing</td>
<td>698</td>
</tr>
<tr>
<td>Feature Information for EVPN Single-Homing</td>
<td>698</td>
</tr>
</tbody>
</table>

CHAPTER 30

<table>
<thead>
<tr>
<th>EVPN Multihoming</th>
<th>699</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information about EVPN Multihoming</td>
<td>699</td>
</tr>
<tr>
<td>BGP MPLS-based EVPN</td>
<td>699</td>
</tr>
<tr>
<td>EVPN Multihoming Topology</td>
<td>700</td>
</tr>
<tr>
<td>All-Active Multihoming</td>
<td>701</td>
</tr>
<tr>
<td>Route Types</td>
<td>701</td>
</tr>
<tr>
<td>Core Isolation</td>
<td>705</td>
</tr>
<tr>
<td>Prerequisites for EVPN Multihoming</td>
<td>705</td>
</tr>
<tr>
<td>Restrictions for EVPN Multihoming</td>
<td>706</td>
</tr>
<tr>
<td>How to Configure EVPN Multihoming</td>
<td>706</td>
</tr>
<tr>
<td>Configuring EVPN Multihoming</td>
<td>706</td>
</tr>
<tr>
<td>Configuration Examples for EVPN Multihoming</td>
<td>709</td>
</tr>
<tr>
<td>Verifying EVPN Multihoming</td>
<td>709</td>
</tr>
<tr>
<td>Additional References for EVPN Multihoming</td>
<td>715</td>
</tr>
<tr>
<td>Feature Information for EVPN Multihoming</td>
<td>716</td>
</tr>
</tbody>
</table>
Read Me First

Important Information about Cisco IOS XE 16

Effective Cisco IOS XE Release 3.7.0E for Catalyst Switching and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

Feature Information

Use Cisco Feature Navigator to find information about feature support, platform support, and Cisco software image support. An account on Cisco.com is not required.

Related References

- Cisco IOS Command References, All Releases

Obtaining Documentation and Submitting a Service Request

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.
L2VPN Protocol-Based CLIs

The L2VPN Protocol-Based CLIs feature provides a set of processes and an improved infrastructure for developing and delivering Cisco IOS software on various Cisco platforms. This feature introduces new commands and modifies or replaces existing commands to achieve a consistent functionality across Cisco platforms and provide cross-Operating System (OS) support.

- Finding Feature Information, on page 3
- Information About L2VPN Protocol-Based CLIs, on page 3
- Additional References, on page 12
- Feature Information for L2VPN Protocol-Based CLIs, on page 12

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About L2VPN Protocol-Based CLIs

Overview of L2VPN Protocol-Based CLIs

The L2VPN Protocol-Based CLIs feature introduces new commands and modifies or replaces existing commands to achieve a consistent functionality across Cisco platforms and provide cross-Operating System (OS) support.

Note

The new, updated, and replacement commands are available in Cisco IOS XE Release 3.7S and Cisco IOS Release 15.3(1)S. However, the legacy commands that are being replaced will be deprecated in later releases.
Benefits of L2VPN Protocol-Based CLIs

The L2VPN Protocol-Based CLIs feature provides the following benefits:

- Consistent user experience across different operating systems.
- Consistent configuration for all Layer 2 VPN (L2VPN) scenarios.
- Enhanced functionality that is achieved by configuring pseudowires as virtual interfaces and monitoring the pseudowires as physical ports.
- Feature configuration such as quality of service (QoS) service policies on individual pseudowires.
- Redundant pseudowire configuration that is independent of the primary pseudowire to provide enhanced high availability.

These benefits are achieved through the following enhancements:

- New service contexts can be created for point-to-point and multipoint Layer 2 services by using the new L2VPN cross connect and L2VPN virtual forwarding interface (VFI) contexts.
 - The L2VPN cross connect context is used for configuring point-to-point pseudowires, pseudowire stitching, and local switching (hair pinning). Ethernet interfaces, Ethernet Flow Points (EFP), ATM interfaces and WAN interfaces (PPP, HDLC, Serial), and pseudowire interfaces can be defined as members of an L2VPN cross connect context.
 - The L2VPN VFI context instantiates Virtual Private LAN Services (VPLS) VFI for multipoint scenarios. Pseudowires can be defined as members of an L2VPN VFI context.
 - Bridge domains are used for multipoint scenarios. EFPs, pseudowires, or VFIs can be configured as members of a bridge domain. Pseudowires can be configured as member of a VFI. The VFI can be configured as a member of a.

- New port contexts can be created (dynamically or manually) for pseudowires by using the pseudowire interface.

- Pseudowire customization can be achieved using interface templates and pseudowire interfaces that are applied to L2VPN context members. Pseudowire customizations include following features:
 - Encapsulation type
 - Control word
 - Maximum Transmission Unit (MTU)
 - Pseudowire signaling type
 - Tunnel selection

- Interworking and redundancy group service attributes can be configured under the L2VPN service context. The redundancy groups are configured independently from the primary pseudowire, which helps achieve zero traffic interruptions while adding, modifying, or deleting backup pseudowires.
L2VPN Protocol-Based CLI Changes

The following commands are introduced in Cisco IOS XE Release 3.7S, Cisco IOS Release 15.3(1)S, and Cisco IOS Release 15.4(1)S:

- `debug l2vpn pseudowire`
- `l2vpn`
- `l2vpn pseudowire static-oam class`
- `monitor event-trace l2vpn`
- `show interface pseudowire`
- `show l2vpn service`
- `shutdown (MPLS)`
- `vc`

The following commands are modified in Cisco IOS XE Release 3.7S and Cisco IOS Release 15.3(1)S:

- `auto-route-target`
- `bridge-domain parameterized vlan`
- `debug condition xconnect fib`
- `debug condition xconnect interface`
- `debug condition xconnect peer`
- `debug condition xconnect segment`
- `description`
- `encapsulation (MPLS)`
- `forward permit l2protocol all`
- `interworking`
- `l2vpn subscriber authorization group`
- `l2vpn xconnect context`
- `load-balance flow`
- `monitor event-trace ac`
- `monitor event-trace atom`
- `monitor event-trace l2tp`
- `monitor peer bfd`
- `mtu`
- `preferred-path`
- `remote circuit id`
- rd (VPLS)
- route-target (VPLS)
- sequencing
- status
- status admin-down disconnect
- status control-plane route-watch
- status decoupled
- status peer topology dual-homed
- status protocol notification static
- status redundancy
- switching tlv
- tlv
- tlv template
- vccv
- vccv bfd status signaling
- vccv bfd template
- vpls-id
- vpn id (MPLS)

The table below lists the legacy commands that will be replaced in future releases. From Cisco IOS XE Release 3.7S and Cisco IOS Release 15.3(1)S both new and legacy commands will coexist until the legacy commands are deprecated in future releases.

Table 1: Replacement Commands Introduced in Cisco IOS XE Release 3.7S and Cisco IOS Release 15.3(1)S

<table>
<thead>
<tr>
<th>Legacy Command</th>
<th>Replacement Command Introduced in Cisco IOS XE Release 3.7S and Cisco IOS Release 15.3(1)S</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup delay</td>
<td>redundancy delay (under l2vpn xconnect context)</td>
</tr>
<tr>
<td>bridge-domain (service instance)</td>
<td>member (bridge-domain)</td>
</tr>
<tr>
<td>clear mpls l2transport fsm state transition</td>
<td>clear l2vpn atom fsm state transition</td>
</tr>
<tr>
<td>clear mpls l2transport fsm event</td>
<td>clear l2vpn atom fsm event</td>
</tr>
<tr>
<td>clear xconnect</td>
<td>clear l2vpn service</td>
</tr>
<tr>
<td>connect (L2VPN local switching)</td>
<td>l2vpn xconnect context</td>
</tr>
<tr>
<td>debug acircuit</td>
<td>debug l2vpn acircuit</td>
</tr>
</tbody>
</table>
Legacy Command vs Replacement Command

<table>
<thead>
<tr>
<th>Legacy Command</th>
<th>Replacement Command Introduced in Cisco IOS XE Release 3.7S and Cisco IOS Release 15.3(1)S</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug mpls l2transport checkpoint</td>
<td>debug l2vpn atom checkpoint</td>
</tr>
<tr>
<td>debug mpls l2transport event-trace</td>
<td>debug l2vpn atom event-trace</td>
</tr>
<tr>
<td>debug mpls l2transport fast-failure-detect</td>
<td>debug l2vpn atom fast-failure-detect</td>
</tr>
<tr>
<td>debug mpls l2transport signaling</td>
<td>debug l2vpn atom signaling</td>
</tr>
<tr>
<td>debug mpls l2transport static-oam</td>
<td>debug l2vpn atom static-oam</td>
</tr>
<tr>
<td>debug mpls l2transport vc subscriber</td>
<td>debug l2vpn atom vc</td>
</tr>
<tr>
<td>debug mpls l2transport vc</td>
<td>debug l2vpn atom vc</td>
</tr>
<tr>
<td>debug mpls l2transport vc vc cv bfd event</td>
<td>debug l2vpn atom vc vcc v bfd event</td>
</tr>
<tr>
<td>debug vfi</td>
<td>debug l2vpn vfi</td>
</tr>
<tr>
<td>debug vfi checkpoint</td>
<td>debug l2vpn vfi checkpoint</td>
</tr>
<tr>
<td>debug xconnect</td>
<td>debug l2vpn xconnect</td>
</tr>
<tr>
<td>debug xconnect rib</td>
<td>debug l2vpn xconnect rib</td>
</tr>
<tr>
<td>description (L2VFI)</td>
<td>description (L2VPN)</td>
</tr>
<tr>
<td>l2 pseudowire routing</td>
<td>pseudowire routing</td>
</tr>
<tr>
<td>l2 router-id</td>
<td>router-id</td>
</tr>
<tr>
<td>l2 vfi</td>
<td>l2vpn vfi context</td>
</tr>
<tr>
<td>l2 subscriber</td>
<td>l2vpn subscriber</td>
</tr>
<tr>
<td>l2 vfi autodiscovery</td>
<td>autodiscovery</td>
</tr>
<tr>
<td>l2 vfi point-to-point</td>
<td>l2vpn xconnect context</td>
</tr>
<tr>
<td>local interface</td>
<td>pseudowire type</td>
</tr>
<tr>
<td>monitor event-trace st-pw-oam</td>
<td>monitor event-trace st-pw-oam</td>
</tr>
<tr>
<td>mpls label</td>
<td>label (pseudowire)</td>
</tr>
<tr>
<td>mpls control-word</td>
<td>control-word (encapsulation mpls under l2vpn connect context)</td>
</tr>
<tr>
<td>neighbor (l2 vfi)</td>
<td>member (l2vpn vfi)</td>
</tr>
<tr>
<td>protocol</td>
<td>signaling protocol</td>
</tr>
<tr>
<td>pseudowire-static-oam class</td>
<td>l2vpn pseudowire static-oam class</td>
</tr>
<tr>
<td>Legacy Command</td>
<td>Replacement Command Introduced in Cisco IOS XE Release 3.7S and Cisco IOS Release 15.3(1)S</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>pseudowire tlv template</td>
<td>l2vpn pseudowire tlv template</td>
</tr>
<tr>
<td>pw-class keyword in the xconnect command</td>
<td>source template type pseudowire</td>
</tr>
<tr>
<td>remote link failure notification</td>
<td>l2vpn remote link failure notification</td>
</tr>
<tr>
<td>show mpls l2transport binding</td>
<td>show l2vpn atom binding</td>
</tr>
<tr>
<td>show mpls l2transport checkpoint</td>
<td>show l2vpn atom checkpoint</td>
</tr>
<tr>
<td>show mpls l2transport hw-capability</td>
<td>show l2vpn atom hw-capability</td>
</tr>
<tr>
<td>show mpls l2transport static-oam</td>
<td>show l2vpn atom static-oam</td>
</tr>
<tr>
<td>show mpls l2transport summary</td>
<td>show l2vpn atom summary</td>
</tr>
<tr>
<td>show mpls l2transport pwid</td>
<td>show l2vpn atom pwid</td>
</tr>
<tr>
<td>show mpls l2transport vc</td>
<td>show l2vpn atom vc</td>
</tr>
<tr>
<td>show xconnect pwmib</td>
<td>show l2vpn pwmib</td>
</tr>
<tr>
<td>show xconnect rib</td>
<td>show l2vpn rib</td>
</tr>
<tr>
<td>show xconnect</td>
<td>show l2vpn service</td>
</tr>
<tr>
<td>show vfi</td>
<td>show l2vpn vfi</td>
</tr>
<tr>
<td>xconnect</td>
<td>l2vpn xconnect context and member</td>
</tr>
<tr>
<td>xconnect logging pseudowire status global</td>
<td>logging pseudowire status</td>
</tr>
<tr>
<td>xconnect logging redundancy global</td>
<td>logging redundancy</td>
</tr>
<tr>
<td>xconnect peer-ip vc-id</td>
<td>neighbor peer-ip vc-id (xconnect context)</td>
</tr>
</tbody>
</table>

MPLS L2VPN Protocol-Based CLI: Examples

The examples in this section provide the new configurations that are introduced by the MPLS L2VPN Protocol-Based CLIs feature that replace the existing (legacy) MPLS L2VPN CLIs.

MPLS L2VPN VPWS Configuration Using Replacement (or New) Commands

The following example shows the configuration for Virtual Private Wired Service (VPWS)—Ethernet over Multiprotocol Label Switching (EoMPLS). In this example, L2VPN members point to peer ID or virtual circuit (VC) ID. This configuration is used in most cases except when features like quality of service (QoS), need to be applied at the pseudowire level.

```bash
l2vpn xconnect context foo
  member GigabitEthernet2/1/1 service-instance 300
  member 10.0.0.1 888 encapsulation mpls

interface GigabitEthernet2/1/1
```
service instance 300
 encapsulation dot1q 30
 rewrite ingress tag pop 1 symmetric
!
service instance 400
 encapsulation dot1q 40
 rewrite ingress tag pop 1 symmetric

l2vpn xconnect context faa
 member GigabitEthernet2/1/1 service-instance 400
 member 10.0.0.1 999 encapsulation mpls
!

MPLS L2VPN Pseudowire Configuration Using Replacement (or New) Commands

In the following example, L2VPN members point to a pseudowire interface. The pseudowire interface is manually configured and includes peer ID and VC ID. This configuration is used in most cases except when features like quality of service (QoS), need to be applied at the pseudowire level.

l2vpn xconnect context foo
 member GigabitEthernet2/1/1 service-instance 300
 member Pseudowire888
!
 interface Pseudowire 888
 encapsulation mpls
 neighbor 10.0.0.1 888
 !
 interface Pseudowire 999
 encapsulation mpls
 neighbor 10.0.0.1 999
 !
 interface GigabitEthernet2/1/1
 service instance 300
 encapsulation dot1q 30
 rewrite ingress tag pop 1 symmetric
 !
 service instance 400
 encapsulation dot1q 40
 rewrite ingress tag pop 1 symmetric

l2vpn xconnect context sample-pw-redundancy
 member service-instance 200
 member 1.1.1.1 180 encap mpls group Denver
 member 2.2.2.2 180180 encap mpls group Denver priority 1
 member 3.3.3.3 180181 encap mpls group Denver priority 2
 redundancy delay 1 20 group Denver
!
 interface GigabitEthernet2/1/1
 service instance 200
 encapsulation dot1q 100
 rewrite ingress tag pop 1 symmetric
MPLS L2VPN Static Pseudowire Configuration Using Replacement (or New) Commands

The following configuration is shown for the Provider Edge (PE) 1 router in a network scheme where Customer Edge (CE) 1 and PE 1 and PE 2 and CE 2 traverse through a Provider core (P) router (CE 1—PE 1—P—PE 2—CE 2).

```plaintext
interface g2/1/1
service instance 300 ethernet
encapsulation dot1q 300
no shutdown

interface pseudowire 100
neighbor 10.4.4.4 121
encapsulation mpls
label 200 300
signaling protocol none
no shutdown

l2vpn xconnect context foo
  member GigabitEthernet2/1/1 service-instance 300
  member pseudowire 100
```

MPLS L2VPN Static Pseudowire Template Configuration Using Replacement (or New) Commands

The following configuration is shown for the Provider Edge (PE) 1 router in a network scheme where Customer Edge (CE) 1 and PE 1 and PE 2 and CE 2 traverse through a Provider core (P) router (CE 1—PE 1—P—PE 2—CE 2).

```plaintext
template type pseudowire test
encapsulation mpls
signaling protocol none

interface g2/1/1
service instance 300 ethernet
encapsulation dot1q 300
no shutdown

interface pseudowire 100
neighbor 10.4.4.4 121
source template type pseudowire test
label 200 300
no shutdown

l2vpn xconnect context foo
  member GigabitEthernet2/1/1 service-instance 300
  member pseudowire 100
```

MPLS L2VPN Dynamic Pseudowire Template Configuration Using Replacement (or New) Commands

The following configuration is shown for the Provider Edge (PE) 1 router in a network scheme where Customer Edge (CE) 1 and PE 1 and PE 2 and CE 2 traverse through a Provider core (P) router (CE 1—PE 1—P—PE 2—CE 2).

```plaintext
```

Note

10

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
template type pseudowire test
encapsulation mpls
signaling protocol ldp
!
interface g2/1/1
service instance 300 ethernet
encapsulation dot1q 300
no shutdown
!
interface pseudowire 100
neighbor 10.4.4.4 121
source template type pseudowire test
no shutdown
!
12vpn xconnect context foo
 member GigabitEthernet2/1/1 service-instance 300
 member pseudowire 100

MPLS L2VPN Multi-segment Static-Dynamic Pseudowire Template Configuration Using Replacement (or New) Commands

The following PE router configuration is for a multi-segment static-dynamic pseudowire:

12vpn pseudowire tlv template TLV
 tlv mtu 1 4 dec 1500
!
interface pseudowire401
 source template type pseudowire staticTempl
 encapsulation mpls
 neighbor 10.4.4.4 101
 signaling protocol none
 label 4401 4301
 pseudowire type 4
 tlv template TLV
 tlv 1 4 dec 1500
 tlv vccv-flags C 4 hexstr 0110
!
interface pseudowire501
 source template type pseudowire dynTempl
 encapsulation mpls
 neighbor 10.2.2.2 101
 signaling protocol ldp

Displaying MPLS L2VPN Pseudowire Template Configuration Using Replacement (or New) Commands

The following example displays output from the show interface pseudowire command:

PE1#show interface pseudowire 100
pseudowire100 is up
 Description: Pseudowire Interface
 MTU 1500 bytes, BW 10000000 Kbit
 Encapsulation mpls
 Peer IP 10.4.4.4, VC ID 121
 RX
 21 packets 2623 bytes 0 drops
 TX
 20 packets 2746 bytes 0 drops

The following example displays output from the show template command:

PE1#show template

<table>
<thead>
<tr>
<th>Template</th>
<th>class/type</th>
<th>Component(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>owner</td>
<td>interface pseudowire</td>
</tr>
</tbody>
</table>
Sourcing a Template Under an Interface Pseudowire Using Replacement (or New) Commands

The following example configures the interface pseudowire to inherit all attributes defined from a template on the PE 2 router.

PE2(config-subif)#interface pseudowire 100
PE2(config-if)#source template type pseudowire test
PE2(config-if)#neighbor 10.4.4.4 121
PE2(config-if)#no shutdown

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for L2VPN Protocol-Based CLIs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 2: Feature Information for L2VPN Protocol-Based CLIs

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN Protocol-Based CLIs</td>
<td>Cisco IOS XE 3.7S</td>
<td>The L2VPN Protocol-Based CLIs feature provides a set of processes and an improved infrastructure for developing and delivering Cisco IOS software on various Cisco platforms. This feature introduces new commands and modifies or replaces existing commands to achieve a consistent functionality across Cisco platforms and provide cross-Operating System (OS) support. In Cisco IOS XE Release 3.7S, this feature was introduced on the Cisco ASR 903 Router.</td>
</tr>
</tbody>
</table>
CHAPTER 3

Any Transport over MPLS

This module describes how to configure Any Transport over MPLS (AToM) to transport data link layer (Layer 2) packets over a Multiprotocol Label Switching (MPLS) backbone. AToM enables service providers to connect customer sites with existing Layer 2 networks by using a single, integrated, packet-based network infrastructure—a Cisco MPLS network. Instead of using separate networks with network management environments, service providers can deliver Layer 2 connections over an MPLS backbone. AToM provides a common framework to encapsulate and transport supported Layer 2 traffic types over an MPLS network core.

AToM supports the following like-to-like transport types:

- ATM Adaptation Layer Type-5 (AAL5) over MPLS
- ATM Cell Relay over MPLS
- Ethernet over MPLS (port modes)

Finding Feature Information, on page 15
Prerequisites for Any Transport over MPLS, on page 16
Restrictions for Any Transport over MPLS, on page 16
Information About Any Transport over MPLS, on page 19
How to Configure Any Transport over MPLS, on page 33
Configuration Examples for Any Transport over MPLS, on page 111
Additional References for Any Transport over MPLS, on page 141
Feature Information for Any Transport over MPLS, on page 141

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Any Transport over MPLS

- IP routing must be configured in the core so that the provider edge (PE) routers can reach each other via IP.
- MPLS must be configured in the core so that a label-switched path (LSP) exists between the PE routers.
- A loopback interface must be configured for originating and terminating Layer 2 traffic. Ensure that the PE routers can access the other router’s loopback interface. Note that the loopback interface is not needed in all cases. For example, tunnel selection does not need a loopback interface when AToM is directly mapped to a traffic engineering (TE) tunnel.

Restrictions for Any Transport over MPLS

General Restrictions

The following general restrictions pertain to all transport types under AToM:

- Address format: Configure the Label Distribution Protocol (LDP) router ID on all PE routers to be a loopback address with a /32 mask. Otherwise, some configurations might not function properly.

Ethernet over MPLS (EoMPLS) Restrictions

The following restrictions pertain to the Ethernet over MPLS feature:

- Ethernet over MPLS supports VLAN packets that conform to the IEEE 802.1Q standard. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames. The Inter-Switch Link (ISL) protocol is not supported between the PE and CE routers.
- The AToM control word is supported. However, if the peer PE does not support a control word, the control word is disabled. This negotiation is done by LDP label binding.
- Ethernet packets with hardware-level cyclic redundancy check (CRC) errors, framing errors, and runt packets are discarded on input.

General Restrictions

- Address format—Configure the Label Distribution Protocol (LDP) router ID on all PE routers to be a loopback address with a /32 mask. Otherwise, some configurations might not function properly.
- For PTPoIP configuration with explicit Null MPLS encapsulation, when a Transparent Clock (TC) is placed between a PTP master and a PTP slave, the TC does not update the correction field.
- If an AToM tunnel spans different service providers that exchange MPLS labels using IPv4 Border Gateway Protocol (BGP) (RFC 3107), you add a label to the stack. The maximum MPLS label stack is .
- Hot standby pseudowire (HSPW) convergence without pseudowire grouping increments linearly. For example, for a thousand virtual circuits, it requires about 54 seconds of convergence time. This is applicable only for the Cisco RSP3 Module.
Clear interface is not the recommended way to measure the convergence numbers.

- With two ECMP paths, load sharing on L2VPN traffic occurs based on odd or even MPLS VC labels. If L2VPN circuits have either odd or even MPLS VC labels, load sharing is not performed. But if L2VPN circuits have a combination of both odd and even MPLS VC labels, then the odd MPLS VC labels circuits will select one link whereas the even MPLS VC labels circuits will select another link.

ATM AAL5 over MPLS Restrictions

- AAL5 over MPLS is supported only in SDU mode.

ATM Cell Relay over MPLS Restrictions

- If you have TE tunnels running between the PE routers, you must enable LDP on the tunnel interfaces.
- The F4 end-to-end OAM cells are transparently transported along with the ATM cells. When a permanent virtual path (PVP) or permanent virtual circuit (PVC) is down on one PE router, the label associated with that PVP or PVC is withdrawn. Subsequently, the peer PE router detects the label withdrawal and sends an F4 AIS/RDI signal to its corresponding CE router. The PVP or PVC on the peer PE router remains in the up state.
- VC class configuration mode is not supported in port mode.
- The AToM control word is supported. However, if a peer PE does not support the control word, it is disabled.

For configuring ATM cell relay over MPLS in VP mode, the following restrictions apply:

- If a VPI is configured for VP cell relay, you cannot configure a PVC using the same VPI.
- VP trunking (mapping multiple VPs to one emulated VC label) is not supported. Each VP is mapped to one emulated VC.
- VP mode and VC mode drop idle cells.

Ethernet over MPLS (EoMPLS) Restrictions

- The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet.
- The subinterface on the adjoining CE router must be on the same VLAN as the PE router.
- Ethernet over MPLS supports VLAN packets that conform to the IEEE 802.1Q standard. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames. The Inter-Switch Link (ISL) protocol is not supported between the PE and CE routers.
- The AToM control word is supported. However, if the peer PE does not support a control word, the control word is disabled.
- Ethernet packets with hardware-level cyclic redundancy check (CRC) errors, framing errors, and runt packets are discarded on input.
Per-Subinterface MTU for Ethernet over MPLS Restrictions

- The following features do not support MTU values in xconnect subinterface configuration mode:
 - Layer 2 Tunnel Protocol Version 3 (L2TPv3)
 - Virtual Private LAN services (VPLS)
 - L2VPN Pseudowire Switching
- The MTU value can be configured in xconnect subinterface configuration mode only on the following interfaces and subinterfaces:
 - Fast Ethernet
 - Gigabit Ethernet
- The router uses an MTU validation process for remote VCs established through LDP, which compares the MTU value configured in xconnect subinterface configuration mode to the MTU value of the remote customer interface. If an MTU value has not been configured in xconnect subinterface configuration mode, then the validation process compares the MTU value of the local customer interface to the MTU value of the remote xconnect, either explicitly configured or inherited from the underlying interface or subinterface.
- When you configure the MTU value in xconnect subinterface configuration mode, the specified MTU value is not enforced by the dataplane. The dataplane enforces the MTU values of the interface (port mode) or subinterface (VLAN mode).
- Ensure that the interface MTU is larger than the MTU value configured in xconnect subinterface configuration mode. If the MTU value of the customer-facing subinterface is larger than the MTU value of the core-facing interface, traffic may not be able to travel across the pseudowire.

Frame Relay over MPLS Restrictions

Frame Relay traffic shaping is not supported with AToM switched VCs.

HDLC over MPLS Restrictions

- Asynchronous interfaces are not supported.
- You must configure HDLC over MPLS on router interfaces only. You cannot configure HDLC over MPLS on subinterfaces.

PPP over MPLS Restrictions

- Zero hops on one router is not supported. However, you can have back-to-back PE routers.
- Asynchronous interfaces are not supported. The connections between the CE and PE routers on both ends of the backbone must have similar link layer characteristics. The connections between the CE and PE routers must both be synchronous.
- Multilink PPP (MLP) is not supported.
- You must configure PPP on router interfaces only. You cannot configure PPP on subinterfaces.
Tunnel Selection Restrictions

- The selected path should be an LSP destined to the peer PE router.
- The selected tunnel must be an MPLS TE tunnel.
- If you specify an IP address, that address must be the IP address of the loopback interface on the remote PE router. The address must have a /32 mask. There must be an LSP destined to that selected address. The LSP need not be a TE tunnel.

Experimental Bits with AToM Restrictions

- You must statically set the experimental (EXP) bits in both the VC label and the LSP tunnel label, because the LSP tunnel label might be removed at the penultimate router.
- For EXP bits and ATM AAL5 over MPLS and for EXP bits and Frame Relay over MPLS, if you do not assign values to the experimental bits, the priority bits in the header’s “tag control information” field are set to zero.
- For EXP bits and ATM Cell Relay over MPLS in VC mode, if you do not assign values to the experimental bits, the priority bits in the header’s “tag control information” field are set to zero.
- For EXP bits and HDLC over MPLS and PPP over MPLS, if you do not assign values to the experimental bits, zeros are written into the experimental bit fields.

Remote Ethernet Port Shutdown Restrictions

This feature is not symmetrical if the remote PE router is running an older version image or is on another platform that does not support the EoMPLS remote Ethernet port shutdown feature and the local PE is running an image which supports this feature.

Remote Ethernet Port Shutdown is supported only on EFP with encapsulation default.

Information About Any Transport over MPLS

To configure AToM, you must understand the following concepts:

How AToM Transports Layer 2 Packets

AToM encapsulates Layer 2 frames at the ingress PE and sends them to a corresponding PE at the other end of a pseudowire, which is a connection between the two PE routers. The egress PE removes the encapsulation and sends out the Layer 2 frame.

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You set up the connection, called a pseudowire, between the routers. You specify the following information on each PE router:

- The type of Layer 2 data that will be transported across the pseudowire, such as Ethernet, Frame Relay, or ATM
The IP address of the loopback interface of the peer PE router, which enables the PE routers to communicate

A unique combination of peer PE IP address and VC ID that identifies the pseudowire

The following example shows the basic configuration steps on a PE router that enable the transport of Layer 2 packets. Each transport type has slightly different steps.

Step 1 defines the interface or subinterface on the PE router:

`Router# interface interface-type interface-number`

Step specifies the encapsulation type for the interface, such as dot1q:

`Router(config-if-srv)# encapsulation encapsulation-type`

Step 4 does the following:

- Makes a connection to the peer PE router by specifying the LDP router ID of the peer PE router.
- Specifies a 32-bit unique identifier, called the VC ID, which is shared between the two PE routers.

The combination of the peer router ID and the VC ID must be unique on the router. Two circuits cannot use the same combination of peer router ID and VC ID.

- Specifies the tunneling method used to encapsulate data in the pseudowire. AToM uses MPLS as the tunneling method.

`Router(config-if-srv)# xconnect peer-router-id vcid encapsulation mpls`

As an alternative, you can set up a pseudowire class to specify the tunneling method and other characteristics. For more information, see the Configuring the Pseudowire Class, on page 33.

How AToM Transports Layer 2 Packets Using Commands Associated with L2VPN Protocol-Based Feature

AToM encapsulates Layer 2 frames at the ingress PE and sends them to a corresponding PE at the other end of a pseudowire, which is a connection between the two PE routers. The egress PE removes the encapsulation and sends out the Layer 2 frame.

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You set up the connection, called a pseudowire, between the routers. You specify the following information on each PE router:

- The type of Layer 2 data that will be transported across the pseudowire, such as Ethernet, Frame Relay, or ATM
- The IP address of the loopback interface of the peer PE router, which enables the PE routers to communicate
- A unique combination of peer PE IP address and VC ID that identifies the pseudowire

How AToM Transports Layer 2 Packets Using Commands Associated with L2VPN Protocol-Based Feature
The following example shows the basic configuration steps on a PE router that enable the transport of Layer 2 packets. Each transport type has slightly different steps.

Step 1 defines the interface or subinterface on the PE router:

```
Router# interface
interface-type interface-number
```

Step 3 specifies the encapsulation type for the interface, such as dot1q:

```
Router(config-if)# encapsulation
encapsulation-type
```

Step 3 does the following:

- Makes a connection to the peer PE router by specifying the LDP router ID of the peer PE router.
- Specifies a 32-bit unique identifier, called the VC ID, which is shared between the two PE routers.

The combination of the peer router ID and the VC ID must be unique on the router. Two circuits cannot use the same combination of peer router ID and VC ID.

- Specifies the tunneling method used to encapsulate data in the pseudowire. AToM uses MPLS as the tunneling method.

```
Router(config)# interface pseudowire 100
Router(config-if)# encapsulation mpls
Router(config-if)# neighbor 10.0.0.1 123
Router(config-if)# exit
!
Router(config)# l2vpn xconnect context A
Router(config-xconnect)# member pseudowire 100
```

As an alternative, you can set up a pseudowire class to specify the tunneling method and other characteristics. For more information, see the Configuring the Pseudowire Class, on page 33.

Benefits of AToM

The following list explains some of the benefits of enabling Layer 2 packets to be sent in the MPLS network:

- The AToM product set accommodates many types of Layer 2 packets, including Ethernet and Frame Relay, across multiple Cisco router platforms. This enables the service provider to transport all types of traffic over the backbone and accommodate all types of customers.

- AToM adheres to the standards developed for transporting Layer 2 packets over MPLS. This benefits the service provider that wants to incorporate industry-standard methodologies in the network. Other Layer 2 solutions are proprietary, which can limit the service provider’s ability to expand the network and can force the service provider to use only one vendor’s equipment.

- Upgrading to AToM is transparent to the customer. Because the service provider network is separate from the customer network, the service provider can upgrade to AToM without disruption of service to the customer. The customers assume that they are using a traditional Layer 2 backbone.
MPLS Traffic Engineering Fast Reroute

AToM can use MPLS traffic engineering (TE) tunnels with fast reroute (FRR) support. AToM VCs can be rerouted around a failed link or node at the same time as MPLS and IP prefixes.

Enabling fast reroute on AToM does not require any special commands; you can use standard fast reroute commands. At the ingress PE, an AToM tunnel is protected by fast reroute when it is routed to an FRR-protected TE tunnel. Both link and node protection are supported for AToM VCs at the ingress PE.

Maximum Transmission Unit Guidelines for Estimating Packet Size

The following calculation helps you determine the size of the packets traveling through the core network. You set the maximum transmission unit (MTU) on the core-facing interfaces of the P and PE routers to accommodate packets of this size. The MTU should be greater than or equal to the total bytes of the items in the following equation:

\[
\text{Core MTU} \geq (\text{Edge MTU} + \text{Transport header} + \text{AToM header} + (\text{MPLS label stack} \times \text{MPLS label size}))
\]

The following sections describe the variables used in the equation.

Edge MTU

The edge MTU is the MTU for the customer-facing interfaces.

Transport Header

The Transport header depends on the transport type. The table below lists the specific sizes of the headers.

<table>
<thead>
<tr>
<th>Transport Type</th>
<th>Packet Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL5</td>
<td>0-32 bytes</td>
</tr>
<tr>
<td>Ethernet VLAN</td>
<td>18 bytes</td>
</tr>
<tr>
<td>Ethernet Port</td>
<td>14 bytes</td>
</tr>
<tr>
<td>Frame Relay DLCI</td>
<td>2 bytes for Cisco encapsulation, 8 bytes for Internet Engineering Task Force (IETF) encapsulation</td>
</tr>
<tr>
<td>HDLC</td>
<td>4 bytes</td>
</tr>
<tr>
<td>PPP</td>
<td>4 bytes</td>
</tr>
</tbody>
</table>

AToM Header

The AToM header is 4 bytes (control word). The control word is optional for Ethernet, PPP, HDLC, and cell relay transport types. The control word is required for Frame Relay and ATM AAL5 transport types.

MPLS Label Stack

The MPLS label stack size depends on the configuration of the core MPLS network:
• AToM uses one MPLS label to identify the AToM VCs (VC label). Therefore, the minimum MPLS label stack is one for directly connected AToM PEs, which are PE routers that do not have a P router between them.

• If LDP is used in the MPLS network, the label stack size is two (the LDP label and the VC label).

• If a TE tunnel instead of LDP is used between PE routers in the MPLS network, the label stack size is two (the TE label and the VC label).

• If a TE tunnel and LDP are used in the MPLS network (for example, a TE tunnel between P routers or between P and PE routers, with LDP on the tunnel), the label stack is three (TE label, LDP label, VC label).

• If you use MPLS fast reroute in the MPLS network, you add a label to the stack. The maximum MPLS label stack in this case is four (FRR label, TE label, LDP label, VC label).

• If AToM is used by the customer carrier in an MPLS VPN Carrier Supporting Carrier environment, you add a label to the stack. The maximum MPLS label stack in the provider carrier network is

• If an AToM tunnel spans different service providers that exchange MPLS labels using IPv4 Border Gateway Protocol (BGP) (RFC 3107), you add a label to the stack. The maximum MPLS label stack is

• TE-FRR with BGP labels for layer 2 and layer 3 VPNs must terminate on the BGP gateway because of the four-label limitation.

Other circumstances can increase the MPLS label stack size. Therefore, analyze the complete data path between the AToM tunnel endpoints and determine the maximum MPLS label stack size for your network. Then multiply the label stack size by the size of the MPLS label.

Estimating Packet Size Example

The estimated packet size in the following example is 1526 bytes, based on the following assumptions:

• The edge MTU is 1500 bytes.

• The transport type is Ethernet VLAN, which designates 18 bytes for the transport header.

• The AToM header is 0, because the control word is not used.

• The MPLS label stack is 2, because LDP is used. The MPLS label is 4 bytes.

$$\text{Edge MTU} + \text{Transport header} + \text{AToM header} + (\text{MPLS label stack} \times \text{MPLS label}) = \text{Core MTU}$$

1500 \quad 18 \quad 0 \quad 2 \times 4 \quad = 1526

You must configure the P and PE routers in the core to accept packets of 1526 bytes.

Per-Subinterface MTU for Ethernet over MPLS

MTU values can be specified in xconnect subinterface configuration mode. When you use xconnect subinterface configuration mode to set the MTU value, you establish a pseudowire connection for situations where the interfaces have different MTU values that cannot be changed.

If you specify an MTU value in xconnect subinterface configuration mode that is outside the range of supported MTU values (64 bytes to the maximum number of bytes supported by the interface), the command might be rejected. If you specify an MTU value that is out of range in xconnect subinterface configuration mode, the router enters the command in subinterface configuration mode.
For example, if you specify an MTU of 1501 in xconnect subinterface configuration mode, and that value is out of range, the router enters the command in subinterface configuration mode, where it is accepted:

```
Router# configure terminal
Router(config)# interface gigabitethernet0/0/2.1
Router(config-subif)# xconnect 10.10.10.1 100 encapsulation mpls
Router(config-subif-xconn)# mtu 1501
```

If the MTU value is not accepted in either xconnect subinterface configuration mode or subinterface configuration mode, then the command is rejected.

Per-Subinterface MTU for Ethernet over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature

MTU values can be specified in xconnect configuration mode. When you use xconnect configuration mode to set the MTU value, you establish a pseudowire connection for situations where the interfaces have different MTU values that cannot be changed.

If you specify an MTU value in xconnect configuration mode that is outside the range of supported MTU values (64 bytes to the maximum number of bytes supported by the interface), the command might be rejected.

If you specify an MTU value that is out of range in xconnect configuration mode, the router enters the command in subinterface configuration mode.

For example, if you specify an MTU of 1501 in xconnect configuration mode, and that value is out of range, the router enters the command in subinterface configuration mode, where it is accepted:

```
Router# configure terminal
Router(config)# interface gigabitethernet0/0/2.1
Router(config)# interface pseudowire 100
Router(config-if)# encapsulation mpls
Router(config-if)# neighbor 10.10.10.1 100
Router(config-if)# mtu 1501
```

If the MTU value is not accepted in either xconnect configuration mode or subinterface configuration mode, then the command is rejected.

Frame Relay over MPLS and DTE DCE and NNI Connections

You can configure an interface as a DTE device or a DCE switch, or as a switch connected to a switch with network-to-network interface (NNI) connections. Use the following command in interface configuration mode:

```
Router(config)# l2vpn xconnect context A
Router(config-xconnect)# member pseudowire 100 Router
Router(config-xconnect)# member gigabitethernet0/0/2.1
```
frame-relay intf-type \{dce | dte | nni\}

The keywords are explained in the table below.

Table 4: frame-relay intf-type Command Keywords

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dce</td>
<td>Enables the router or access server to function as a switch connected to a router.</td>
</tr>
<tr>
<td>dte</td>
<td>Enables the router or access server to function as a DTE device. DTE is the default.</td>
</tr>
<tr>
<td>nni</td>
<td>Enables the router or access server to function as a switch connected to a switch.</td>
</tr>
</tbody>
</table>

Local Management Interface and Frame Relay over MPLS

Local Management Interface (LMI) is a protocol that communicates status information about PVCs. When a PVC is added, deleted, or changed, the LMI notifies the endpoint of the status change. LMI also provides a polling mechanism that verifies that a link is up.

How LMI Works

To determine the PVC status, LMI checks that a PVC is available from the reporting device to the Frame Relay end-user device. If a PVC is available, LMI reports that the status is “Active,” which means that all interfaces, line protocols, and core segments are operational between the reporting device and the Frame Relay end-user device. If any of those components is not available, the LMI reports a status of “Inactive.”

Only the DCE and NNI interface types can report the LMI status.

The figure below is a sample topology that helps illustrate how LMI works.

Figure 1: Sample Topology

In the figure above, note the following:

• CE1 and PE1 and PE2 and CE2 are Frame Relay LMI peers.
• CE1 and CE2 can be Frame Relay switches or end-user devices.
• Each Frame Relay PVC comprises multiple segments.
• The DLCI value is local to each segment and is changed as traffic is switched from segment to segment. Two Frame Relay PVC segments exist in the figure; one is between PE1 and CE1 and the other is between PE2 and CE2.

The LMI protocol behavior depends on whether you have DLCI-to-DLCI or port-to-port connections.
DLCI-to-DLCI Connections

If you have DLCI-to-DLCI connections, LMI runs locally on the Frame Relay ports between the PE and CE devices:

- CE1 sends an active status to PE1 if the PVC for CE1 is available. If CE1 is a switch, LMI checks that the PVC is available from CE1 to the user device attached to CE1.

- PE1 sends an active status to CE1 if the following conditions are met:
 - A PVC for PE1 is available.
 - PE1 received an MPLS label from the remote PE router.
 - An MPLS tunnel label exists between PE1 and the remote PE.

For DTE or DCE configurations, the following LMI behavior exists: The Frame Relay device accessing the network (DTE) does not report the PVC status. Only the network device (DCE) or NNI can report the status. Therefore, if a problem exists on the DTE side, the DCE is not aware of the problem.

Port-to-Port Connections

If you have port-to-port connections, the PE routers do not participate in the LMI status-checking procedures. LMI operates only between the CE routers. The CE routers must be configured as DCE-DTE or NNI-NNI.

For information about LMI, including configuration instructions, see the “Configuring the LMI” section of the Configuring Frame Relay document.

QoS Features Supported with AToM

The tables below list the QoS features supported by AToM.

Table 5: QoS Features Supported with Ethernet over MPLS

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>Ethernet over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service policy</td>
<td>Can be applied to:</td>
</tr>
<tr>
<td></td>
<td>• Interface (input and output)</td>
</tr>
<tr>
<td>Classification</td>
<td>Supports the following commands:</td>
</tr>
<tr>
<td></td>
<td>• match cos (on interfaces)</td>
</tr>
<tr>
<td></td>
<td>• match mpls experimental (on interfaces)</td>
</tr>
<tr>
<td></td>
<td>• match qos-group (on interfaces) (output policy)</td>
</tr>
<tr>
<td>Marking</td>
<td>Supports the following commands:</td>
</tr>
<tr>
<td></td>
<td>• set cos (output policy)</td>
</tr>
<tr>
<td></td>
<td>• set discard-class (input policy)</td>
</tr>
<tr>
<td></td>
<td>• set mpls experimental (input policy) (on interfaces)</td>
</tr>
<tr>
<td></td>
<td>• set qos-group (input policy)</td>
</tr>
</tbody>
</table>
Table 6: QoS Features Supported with Frame Relay over MPLS

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>Frame Relay over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service policy</td>
<td>Can be applied to:</td>
</tr>
<tr>
<td></td>
<td>• Interface (input and output)</td>
</tr>
<tr>
<td></td>
<td>• PVC (input and output)</td>
</tr>
<tr>
<td>Classification</td>
<td>Supports the following commands:</td>
</tr>
<tr>
<td></td>
<td>• <code>match fr-de</code> (on interfaces and VC)</td>
</tr>
<tr>
<td></td>
<td>• <code>match fr-dlci</code> (on interfaces)</td>
</tr>
<tr>
<td></td>
<td>• <code>match qos-group</code></td>
</tr>
<tr>
<td>Marking</td>
<td>Supports the following commands:</td>
</tr>
<tr>
<td></td>
<td>• <code>frame-relay congestion management</code> (output)</td>
</tr>
<tr>
<td></td>
<td>• <code>set discard-class</code></td>
</tr>
<tr>
<td></td>
<td>• <code>set fr-de</code> (output policy)</td>
</tr>
<tr>
<td></td>
<td>• <code>set fr-fecn-been</code> (output)</td>
</tr>
<tr>
<td></td>
<td>• <code>set mpls experimental</code></td>
</tr>
<tr>
<td></td>
<td>• <code>set qos-group</code></td>
</tr>
<tr>
<td></td>
<td>• <code>threshold ecn</code> (output)</td>
</tr>
</tbody>
</table>
QoS Features Supported with ATM Cell Relay and AAL5 over MPLS

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>Frame Relay over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policing</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• Color-aware policing</td>
</tr>
<tr>
<td></td>
<td>• Multiple-action policing</td>
</tr>
<tr>
<td></td>
<td>• Single-rate policing</td>
</tr>
<tr>
<td></td>
<td>• Two-rate policing</td>
</tr>
<tr>
<td>Queueing and shaping</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• Byte-based WRED</td>
</tr>
<tr>
<td></td>
<td>• Class-based weighted fair queueing (CBWFQ)</td>
</tr>
<tr>
<td></td>
<td>• LLQ</td>
</tr>
<tr>
<td></td>
<td>• random-detect discard-class-based command</td>
</tr>
<tr>
<td></td>
<td>• Traffic shaping</td>
</tr>
<tr>
<td></td>
<td>• WRED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 7: QoS Features Supported with ATM Cell Relay and AAL5 over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Feature</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Service policy</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Classification</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Marking</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
ATM Cell Relay and AAL5 over MPLS QoS Feature

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>ATM Cell Relay and AAL5 over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policing</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• Color-aware policing</td>
</tr>
<tr>
<td></td>
<td>• Multiple-action policing</td>
</tr>
<tr>
<td></td>
<td>• Single-rate policing</td>
</tr>
<tr>
<td></td>
<td>• Two-rate policing</td>
</tr>
<tr>
<td>Queueing and shaping</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• Byte-based WRED</td>
</tr>
<tr>
<td></td>
<td>• CBWFQ</td>
</tr>
<tr>
<td></td>
<td>• Class-based shaping support on ATM PVCs</td>
</tr>
<tr>
<td></td>
<td>• LLQ</td>
</tr>
<tr>
<td></td>
<td>• random-detect discard-class-based command</td>
</tr>
<tr>
<td></td>
<td>• WRED</td>
</tr>
</tbody>
</table>

OAM Cell Emulation for ATM AAL5 over MPLS

If a PE router does not support the transport of Operation, Administration, and Maintenance (OAM) cells across a label switched path (LSP), you can use OAM cell emulation to locally terminate or loop back the OAM cells. You configure OAM cell emulation on both PE routers, which emulates a VC by forming two unidirectional LSPs. You use Cisco software commands on both PE routers to enable OAM cell emulation.

After you enable OAM cell emulation on a router, you can configure and manage the ATM VC in the same manner as you would a terminated VC. A VC that has been configured with OAM cell emulation can send loopback cells at configured intervals toward the local CE router. The endpoint can be either of the following:

• End-to-end loopback, which sends OAM cells to the local CE router.

• Segment loopback, which responds to OAM cells to a device along the path between the PE and CE routers.

The OAM cells include the following cells:

• Alarm indication signal (AIS)
• Remote defect indication (RDI)

These cells identify and report defects along a VC. When a physical link or interface failure occurs, intermediate nodes insert OAM AIS cells into all the downstream devices affected by the failure. When a router receives an AIS cell, it marks the ATM VC down and sends an RDI cell to let the remote end know about the failure.

OAM Cell Emulation for ATM AAL5 over MPLS in VC Class Configuration Mode

You can configure OAM cell emulation as part of a VC class and then apply the VC class to an interface, a subinterface, or a VC. When you configure OAM cell emulation in VC class configuration mode and then
apply the VC class to an interface, the settings in the VC class apply to all the VCs on the interface, unless you specify a different OAM cell emulation value at a lower level, such as the subinterface or VC level. For example, you can create a VC class that specifies OAM cell emulation and sets the rate of AIS cells to every 30 seconds. You can apply the VC class to an interface. Then, for one PVC, you can enable OAM cell emulation and set the rate of AIS cells to every 15 seconds. All the PVCs on the interface use the cell rate of 30 seconds, except for the one PVC that was set to 15 seconds.

Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown

This Cisco IOS XE feature allows a service provider edge (PE) router on the local end of an Ethernet over MPLS (EoMPLS) pseudowire to detect a remote link failure and cause the shutdown of the Ethernet port on the local customer edge (CE) router. Because the Ethernet port on the local CE router is shut down, the router does not lose data by continuously sending traffic to the failed remote link. This is beneficial if the link is configured as a static IP route.

The figure below illustrates a condition in an EoMPLS WAN, with a down Layer 2 tunnel link between a CE router (Customer Edge 1) and the PE router (Provider Edge 1). A CE router on the far side of the Layer 2 tunnel (Customer Edge 2), continues to forward traffic to Customer Edge 1 through the L2 tunnel.

Figure 2: Remote Link Outage in EoMPLS WAN

Previous to this feature, the Provider Edge 2 router could not detect a failed remote link. Traffic forwarded from Customer Edge 2 to Customer Edge 1 would be lost until routing or spanning tree protocols detected the down remote link. If the link was configured with static routing, the remote link outage would be even more difficult to detect.

With this feature, the Provider Edge 2 router detects the remote link failure and causes a shutdown of the local Customer Edge 2 Ethernet port. When the remote L2 tunnel link is restored, the local interface is automatically restored as well. The possibility of data loss is thus diminished.

With reference to the figure above, the Remote Ethernet Shutdown sequence is generally described as follows:

1. The remote link between Customer Edge 1 and Provider Edge 1 fails.
2. Provider Edge 2 detects the remote link failure and disables the transmit laser on the line card interface connected to Customer Edge 2.
3. An RX_LOS error alarm is received by Customer Edge 2 causing Customer Edge 2 to bring down the interface.
4. Provider Edge 2 maintains its interface with Customer Edge 2 in an up state.
5. When the remote link and EoMPLS connection is restored, the Provider Edge 2 router enables the transmit laser.
6. The Customer Edge 2 router brings up its downed interface.

This feature is enabled by default for Ethernet over MPLS (EoMPLS). You can also enable this feature by using the remote link failure notification command in xconnect configuration mode as shown in the following example:
pseudowire-class eompls
 encapsulation mpls
!
interface GigabitEthernet1/0/0
 xconnect 10.13.13.13 1 pw-class eompls
 remote link failure notification
!
This feature can be disabled using the no remote link failure notification command in xconnect configuration mode. Use the show ip interface brief privileged EXEC command to display the status of all remote L2 tunnel links. Use the show interface privileged EXEC command to show the status of the L2 tunnel on a specific interface.

Note
The no remote link failure notification command will not give notification to clients for remote attachment circuit status down.

Note
Remote Ethernet Port Shutdown is supported only on EFP with encapsulation default.

Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown Using Commands Associated with L2VPN Protocol-Based Feature

This Cisco IOS XE feature allows a service provider edge (PE) router on the local end of an Ethernet over MPLS (EoMPLS) pseudowire to detect a remote link failure and cause the shutdown of the Ethernet port on the local customer edge (CE) router. Because the Ethernet port on the local CE router is shut down, the router does not lose data by continuously sending traffic to the failed remote link. This is beneficial if the link is configured as a static IP route.

The figure below illustrates a condition in an EoMPLS WAN, with a down Layer 2 tunnel link between a CE router (Customer Edge 1) and the PE router (Provider Edge 1). A CE router on the far side of the Layer 2 tunnel (Customer Edge 2), continues to forward traffic to Customer Edge 1 through the L2 tunnel.

Figure 3: Remote Link Outage in EoMPLS WAN

Previous to this feature, the Provider Edge 2 router could not detect a failed remote link. Traffic forwarded from Customer Edge 2 to Customer Edge 1 would be lost until routing or spanning tree protocols detected the down remote link. If the link was configured with static routing, the remote link outage would be even more difficult to detect.

With this feature, the Provider Edge 2 router detects the remote link failure and causes a shutdown of the local Customer Edge 2 Ethernet port. When the remote L2 tunnel link is restored, the local interface is automatically restored as well. The possibility of data loss is thus diminished.

With reference to the figure above, the Remote Ethernet Shutdown sequence is generally described as follows:
1. The remote link between Customer Edge 1 and Provider Edge 1 fails.

2. Provider Edge 2 detects the remote link failure and disables the transmit laser on the line card interface connected to Customer Edge 2.

3. An RX_LOS error alarm is received by Customer Edge 2 causing Customer Edge 2 to bring down the interface.

4. Provider Edge 2 maintains its interface with Customer Edge 2 in an up state.

5. When the remote link and EoMPLS connection is restored, the Provider Edge 2 router enables the transmit laser.

6. The Customer Edge 2 router brings up its downed interface.

This feature is enabled by default for Ethernet over MPLS (EoMPLS). You can also enable this feature by using the `remote link failure notification` command in xconnect configuration mode as shown in the following example:

This feature can be disabled using the `no remote link failure notification` command in xconnect configuration mode. Use the `show ip interface brief` privileged EXEC command to display the status of all remote L2 tunnel links. Use the `show interface` privileged EXEC command to show the status of the L2 tunnel on a specific interface.

Note

The `no remote link failure notification` command will not give notification to clients for remote attachment circuit status down.

AToM Load Balancing with Single PW

The AToM Load Balancing with Single PW feature enables load balancing for packets within the same pseudowire by further classifying packets within the same pseudowire into different flows based on certain fields in the packet received on an attachment circuit. For example, for Ethernet this load balancing is based on the source MAC address in the incoming packets.

Flow-Aware Transport (FAT) Load Balancing

The Flow-Aware Transport of MPLS Pseudowires feature enables load balancing of packets within the same pseudowire by further classifying the packets into different flows by adding a flow label at the bottom of the MPLS label stack.

Information About EoMPLS over IPv6 GRE Tunnel

Ethernet over MPLS (EoMPLS) is a tunneling mechanism that allows you to tunnel Layer 2 traffic through a Layer 3 MPLS network. EoMPLS is also known as Layer 2 tunneling.

The EoMPLS over IPv6 GRE Tunnel feature supports tunneling of EoMPLS traffic via an IPv6 network by using GRE tunnels. Effective from Cisco IOS XE Release 3.15s, EoMPLS is supported over IPv6 GRE tunnel.

The following figure shows a deployment model of the EoMPLS over IPv6 GRE Tunnel on a Cisco ASR 1000 Series Aggregation Services Router.
Additional Information on EoMPLS over IPv6 GRE Tunnel

For more information on EoMPLS over IPv6 GRE Tunnel feature, see GRE IPv6 Tunnels chapter of the Interface and Hardware Component Configuration Guide, Cisco IOS XE Release 3S (ASR 1000).

How to Configure Any Transport over MPLS

This section explains how to perform a basic AToM configuration and includes the following procedures:

Configuring the Pseudowire Class

In simple configurations, this task is optional. You need not specify a pseudowire class if you specify the tunneling method as part of the `xconnect` command.

- You must specify the `encapsulation mpls` command as part of the pseudowire class or as part of the `xconnect` command for the AToM VCs to work properly. If you omit the `encapsulation mpls` command as part of the `xconnect` command, you receive the following error:

 % Incomplete command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class name`
4. `encapsulation mpls`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Configuring the Pseudowire Class Using Commands Associated with L2VPN Protocol-Based Feature

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>pseudowire-class name</code></td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# pseudowire-class atom</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>encapsulation mpls</code></td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-pw)# encapsulation mpls</code></td>
<td></td>
</tr>
</tbody>
</table>

Note

In simple configurations, this task is optional. You need not specify a pseudowire class if you specify the tunneling method as part of the `l2vpn xconnect context` command.

- You must specify the `encapsulation mpls` command as part of the pseudowire class or as part of the `l2vpn xconnect context` command for the AToM VCs to work properly. If you omit the `encapsulation mpls` command as part of the `l2vpn xconnect context` command, you receive the following error:

```
% Incomplete command.
```

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface pseudowire name`
4. `encapsulation mpls`
5. `neighbor peer-address vcid-value`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 2**
configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| **Step 3**
interface pseudowire name
Example:
Router(config)# interface pseudowire atom | Establishes an interface pseudowire with a name that you specify and enters pseudowire class configuration mode. |
| **Step 4**
ceapsulation mpls
Example:
Router(config-pw-class)# encapsulation mpls | Specifies the tunneling encapsulation. |
| **Step 5**
neighbor peer-address vcid-value
Example:
Router(config-pw-class)# neighbor 33.33.33.33 1 | Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire. |

Changing the Encapsulation Type and Removing a Pseudowire

Once you specify the `encapsulation mpls` command, you cannot remove it using the `no encapsulation mpls` command.

Those methods result in the following error message:

Encapsulation changes are not allowed on an existing pw-class.

To remove the `encapsulation mpls` command, you must delete the pseudowire with the `no pseudowire-class` command.

To change the type of encapsulation, remove the pseudowire using the `no pseudowire-class` command and reconfigure the pseudowire to specify the new encapsulation type.

Changing the Encapsulation Type and Removing a Pseudowire Using Commands Associated with the L2VPN Protocol-Based Feature

Once you specify the `encapsulation mpls` command, you cannot remove it using the `no encapsulation mpls` command.

Those methods result in the following error message:

To remove the `encapsulation mpls` command, you must delete the pseudowire with the `no interface pseudowire` command.

To change the type of encapsulation, remove the pseudowire using the `no template type pseudowire` command and reconfigure the pseudowire to specify the new encapsulation type.
Configuring ATM AAL5 over MPLS

Configuring ATM AAL5 over MPLS on PVCs

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type slot / subslot / port [subinterface]
4. pvc [name] vpi / vci l2transport
5. encapsulation aal5
6. xconnect peer-router-id vcid encapsulation mpls
7. end
8. show mpls l2transport vc

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

| Step 2 | configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal | |

| Step 3 | interface type slot / subslot / port [subinterface] | Specifies the interface type and enters interface configuration mode. |
| Example: | Router(config)# interface atm1/0/0 | |

| Step 4 | pvc [name] vpi / vci l2transport | Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode. |
| Example: | Router(config-if)# pvc 1/200 l2transport | • The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC. |

| Step 5 | encapsulation aal5 | Specifies ATM AAL5 encapsulation for the PVC. Make sure you specify the same encapsulation type on the PE and customer edge (CE) routers. |
| Example: | Router(config-if-atm-l2trans-pvc)# encapsulation aal5 | |

| Step 6 | xconnect peer-router-id vcid encapsulation mpls | Binds the attachment circuit to a pseudowire VC. |
| Example: | | |
Any Transport over MPLS

Configuring ATM AAL5 over MPLS on PVCs using the commands associated with the L2VPN Protocol-Based CLIs feature

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td><code>Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>8</td>
<td><code>show mpls l2transport vc</code></td>
<td>Displays output that shows ATM AAL5 over MPLS is configured on a PVC.</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show mpls l2transport vc` command that shows that ATM AAL5 over MPLS is configured on a PVC:

```
Router# show mpls l2transport vc
<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM1/0</td>
<td>ATM AAL5 1/100</td>
<td>10.4.4.4</td>
<td>100</td>
<td>UP</td>
</tr>
</tbody>
</table>
```

Configuring ATM AAL5 over MPLS on PVCs using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type slot / subslot / port[, subinterface]`
4. `pvc [name] vpi / vci l2transport`
5. `encapsulation aal5`
6. `end`
7. `interface pseudowire number`
8. `encapsulation mpls`
9. `neighbor peer-address vcid-value`
10. `exit`
11. `l2vpn xconnect context context-name`
12. `member pseudowire interface-number`
13. `member atm interface-number pvc vpi / vci`
14. `end`
15. `show l2vpn atom vc`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type slot / subslot / port[. subinterface]</td>
<td>Specifies the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface atm1/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 pvc [name] vpi / vci l2transport</td>
<td>Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# pvc 1/200 l2transport</td>
<td></td>
</tr>
<tr>
<td>Step 5 encapsulation aal5</td>
<td>Specifies ATM AAL5 encapsulation for the PVC. Make sure you specify the same encapsulation type on the PE and customer edge (CE) routers.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-atm-l2trans-pvc)# encapsulation aal5</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-atm-l2trans-pvc)# end</td>
<td></td>
</tr>
<tr>
<td>Step 7 interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Step 8 encapsulation mpls</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 9 neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# neighbor 10.13.13.13 100</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10</td>
<td>exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>l2vpn xconnect context context-name</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>member pseudowire interface-number</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-xconnect)# member pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>member atm interface-number pvc vpi / vci</td>
<td>Specifies the location of the ATM member interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-xconnect)# member atm 100 pvc 1/200</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-xconnect)# end</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>show l2vpn atom vc</td>
<td>Displays output that shows ATM AAL5 over MPLS is configured on a PVC.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# show l2vpn atom vc</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show l2vpn atom vc` command that shows that ATM AAL5 over MPLS is configured on a PVC:

```
Device# show l2vpn atom vc
Local intf Local circuit Dest address VC ID Status
-------- ----------- ---------------- --- -----
ATM1/0 ATM AAL5 1/100 10.4.4.4 100 UP
```

Configuring ATM AAL5 over MPLS in VC Class Configuration Mode

SUMMARY STEPS

1. enable
2. configure terminal
3. `vc-class atm vc-class-name`
4. `encapsulation layer-type`
5. `exit`
6. `interface type slot / subslot / port [subinterface]`
7. `class-int vc-class-name`
8. `pvc [name] vpi / vci l2transport`
9. `xconnect peer-router-id vcid encapsulation mpls`
10. `end`
11. `show atm class-links`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm vc-class-name</td>
<td>Creates a VC class and enters VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm aal5class</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation layer-type</td>
<td>Configures the AAL and encapsulation type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# encapsulation aal5</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 interface type slot / subslot / port [subinterface]</td>
<td>Specifies the interface type enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm1/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 7 class-int vc-class-name</td>
<td>Applies a VC class to the ATM main interface or subinterface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# class-int aal5class</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>You can also apply a VC class to a PVC.</td>
</tr>
</tbody>
</table>
Any Transport over MPLS

Configuring ATM AAL5 over MPLS in VC Class Configuration Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>pvc [name] vpi / vci l2transport</code></td>
<td>Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# pvc 1/200 l2transport</td>
<td>• The <code>l2transport</code> keyword indicates that the PVC is a switched PVC instead of a terminated PVC.</td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td><code>xconnect peer-router-id vcid encapsulation mpls</code></td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# end</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td><code>show atm class-links</code></td>
<td>Displays the type of encapsulation and that the VC class was applied to an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show atm class-links</td>
<td></td>
</tr>
</tbody>
</table>

Examples

In the following example, the command output from the `show atm class-links` command verifies that ATM AAL5 over MPLS is configured as part of a VC class. The command output shows the type of encapsulation and that the VC class was applied to an interface.

```
Router# show atm class-links 1/100
Displaying vc-class inheritance for ATM1/0/0.0, vc 1/100:
no broadcast - Not configured - using default
encapsulation aal5 - VC-class configured on main interface
```

Configuring ATM AAL5 over MPLS in VC Class Configuration Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vc-class atm vc-class-name`
4. `encapsulation layer-type`
5. `exit`
6. `interface type slot / subslot / port [, subinterface]`
7. `class-int vc-class-name`
8. `pvc [name] vpi / vci l2transport`
9. exit
10. interface pseudowire number
11. encapsulation mpls
12. neighbor peer-address vcid-value
13. exit
14. l2vpn xconnect context context-name
15. member pseudowire interface-number
16. member atm interface-number
17. end
18. show atm class-links

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **1** | enable | Enables privileged EXEC mode.
 Example:
   ```  
   Router> enable  
   ``` |
| **2** | configure terminal | Enters global configuration mode.
 Example:
   ```  
   Router# configure terminal  
   ``` |
| **3** | vc-class atm vc-class-name | Creates a VC class and enters VC class configuration mode.
 Example:
   ```  
   Router(config)# vc-class atm aal5class  
   ``` |
| **4** | encapsulation layer-type | Configures the AAL and encapsulation type.
 Example:
   ```  
   Router(config-vc-class)# encapsulation aal5  
   ``` |
| **5** | exit | Exits VC class configuration mode.
 Example:
   ```  
   Router(config-vc-class)# exit  
   ``` |
| **6** | interface type slot / subslot / port [subinterface] | Specifies the interface type enters interface configuration mode.
 Example:
   ```  
   Router(config)# interface atm1/0/0  
   ``` |
| **7** | class-int vc-class-name | Applies a VC class to the ATM main interface or subinterface.
 Example:
   ```  
   ```  
 Note You can also apply a VC class to a PVC.

Any Transport over MPLS
Configuring ATM AAL5 over MPLS in VC Class Configuration Mode using the commands associated with the L2VPN Protocol-Based CLIs feature.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 8**

Router(config-if)# class-int aal5class

pvc *name* vpi / vci **l2transport**

Example:

Router(config-if)# pvc 1/200 l2transport

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

- The **l2transport** keyword indicates that the PVC is a switched PVC instead of a terminated PVC.

Step 9

Router(config-if)# exit

Example:

Router(config-if)# exit

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

Step 10

Router(config)# interface pseudowire *number*

Example:

Router(config)# interface pseudowire 100

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

Step 11

Router(config)# encapsulation mpls

Example:

Router(config)# encapsulation mpls

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
<td></td>
</tr>
</tbody>
</table>

Step 12

Router(config)# neighbor peer-address vcid-value

Example:

Router(config)# neighbor 10.0.0.1 123

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
</tbody>
</table>

Step 13

Router(config)# exit

Example:

Router(config)# exit

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

Step 14

Router(config)# 12vpn xconnect context **context-name**

Example:

Router(config)# 12vpn xconnect context con1

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

Step 15

Router(config-xconnect)# member pseudowire *interface-number*

Example:

Router(config-xconnect)# member pseudowire 100

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
<td></td>
</tr>
</tbody>
</table>

Step 16

Device(config-xconnect)# member atm *interface-number*

Example:

Device(config-xconnect)# member atm 100

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the location of the ATM member interface.</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 17 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# end</td>
<td></td>
</tr>
<tr>
<td>Step 18 show atm class-links</td>
<td>Displays the type of encapsulation and that the VC class was applied to an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show atm class-links</td>
<td></td>
</tr>
</tbody>
</table>

Examples

In the following example, the command output from the `show atm class-links` command verifies that ATM AAL5 over MPLS is configured as part of a VC class. The command output shows the type of encapsulation and that the VC class was applied to an interface.

```
Router# show atm class-links 1/100
Displaying vc-class inheritance for ATM1/0/0.0, vc 1/100:
no broadcast - Not configured - using default
encapsulation aal5 - VC-class configured on main interface
```

Configuring OAM Cell Emulation for ATM AAL5 over MPLS

Configuring OAM Cell Emulation for ATM AAL5 over MPLS on PVCs

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface** type slot / subslot / port [subinterface]
4. **pvc** [name] vpi / vci l2transport
5. **encapsulation aal5**
6. **xconnect** peer-router-id vcid encapsulation mpls
7. **oam-ac emulation-enable** [ais-rate]
8. **oam-pvc manage** [frequency]
9. **end**
10. **show atm pvc**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** configure terminal
Example:
Router# configure terminal | Specifies the interface type enters interface configuration mode. |
| **Step 3** interface type slot / subslot / port [.subinterface]
Example:
Router(config)# interface atm1/0/0 | |
| **Step 4** pvc [name] vpi / vci l2transport
Example:
Router(config-if)# pvc 1/200 l2transport | Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.
- The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC. |
| **Step 5** encapsulation aal5
Example:
Router(config-if-atm-l2trans-pvc)# encapsulation aal5 | Specifies ATM AAL5 encapsulation for the PVC.
- Specify the same encapsulation type on the PE and CE routers. |
| **Step 6** xconnect peer-router-id vcid encapsulation mpls
Example:
Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls | Binds the attachment circuit to a pseudowire VC. |
| **Step 7** oam-ac emulation-enable [ais-rate]
Example:
Router(config-if-atm-l2trans-pvc)# oam-ac emulation-enable 30 | Enables OAM cell emulation for AAL5 over MPLS. The ais-rate argument lets you specify the rate at which AIS cells are sent. The default is one cell every second. The range is 0 to 60 seconds. |
| **Step 8** oam-pvc manage [frequency]
Example:
Router(config-if-atm-l2trans-pvc)# oam-pvc manage | Enables the PVC to generate end-to-end OAM loopback cells that verify connectivity on the virtual circuit.
The optional frequency argument is the interval between transmission of loopback cells and ranges from 0 to 600 seconds. The default value is 10 seconds. |
| **Step 9** end
Example:
Router(config-if-atm-l2trans-pvc)# end | Exits to privileged EXEC mode. |
Configuring OAM Cell Emulation for ATM AAL5 over MPLS on PVCs using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type slot / subslot / port [, subinterface]
4. `pvc [name] vpi / vci l2transport`
5. `encapsulation aal5`
6. `exit`
7. `interface pseudowire number`
8. `encapsulation mpls`
9. `neighbor peer-address vcid-value`
10. `exit`
11. `l2vpn xconnect context context-name`

Purpose

Displays output that shows OAM cell emulation is enabled on the ATM PVC.

Examples

The following output from the `show atm pvc` command shows that OAM cell emulation is enabled on the ATM PVC:

```
Router# show atm pvc 5/500
ATM4/1.200: VCD: 6, VPI: 5, VCI: 500
UBR, PeakRate: 1
AAL5-LLC/SNAP, etype:0x0, Flags: 0x34000C20, VCMode: 0x0
OAM Cell Emulation: enabled, F5 End2end AIS Xmit frequency: 1 second(s)
OAM frequency: 0 second(s), OAM retry frequency: 1 second(s)
OAM up retry count: 3, OAM down retry count: 5
OAM Loopback status: OAM Disabled
OAM VC state: Not ManagedVerified
ILMI VC state: Not Managed
InProc: 0, OutProc: 0
InFast: 4, OutFast: 0, InAS: 560, OutAS: 560
InPktDrops: 0, OutPktDrops: 0
CrcErrors: 0, SarTimeOuts: 0, OversizedSDUs: 0
Out CLP=1 Pkts: 0
OAM cells received: 26
F5 InEndloop: 0, F5 InSegloop: 0, F5 InAIS: 0, F5 InRDI: 26
OAM cells sent: 77
F5 OutEndloop: 0, F5 OutSegloop: 0, F5 OutAIS: 77, F5 OutRDI: 0
OAM cell drops: 0
Status: UP
```
12. `member pseudowire interface-number`
13. `member atm interface-number pvc vpi / vci`
14. `exit`
15. `pvc [name] vpi / vci l2transport`
16. `oam-ac emulation-enable [ais-rate]`
17. `oam-pvc manage [frequency]`
18. `end`
19. `show atm pvc`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type slot / subslot / port [subinterface]</td>
<td>Specifies the interface type enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm1/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 pvc [name] vpi / vci l2transport</td>
<td>Creates or assigns a name to an ATM PVC and enters</td>
</tr>
<tr>
<td>Example:</td>
<td>L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Router(config-if)# pvc 1/200 l2transport</td>
<td>• The l2transport keyword indicates that the PVC is</td>
</tr>
<tr>
<td></td>
<td>a switched PVC instead of a terminated PVC.</td>
</tr>
<tr>
<td>Step 5 encapsulation aal5</td>
<td>Specifies ATM AAL5 encapsulation for the PVC.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Specify the same encapsulation type on the PE and CE routers.</td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)#</td>
<td>encapsulation aal5</td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)#</td>
<td>exit</td>
</tr>
<tr>
<td>Step 7 interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface</td>
</tr>
<tr>
<td>Example:</td>
<td>configuration mode.</td>
</tr>
<tr>
<td>Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 8 encapsulation mpls</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-if)# encapsulation mpls</td>
<td>Router(config-if)# encapsulation mpls</td>
</tr>
<tr>
<td>Step 9 neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td>Step 11 l2vpn xconnect context context-name</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config)# l2vpn xconnect context con1</td>
<td>Router(config)# l2vpn xconnect context con1</td>
</tr>
<tr>
<td>Step 12 member pseudowire interface-number</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-xconnect)# member pseudowire 100</td>
<td>Router(config-xconnect)# member pseudowire 100</td>
</tr>
<tr>
<td>Step 13 member atm interface-number pvc vpi vci</td>
<td>Specifies the location of the ATM member interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Device(config-xconnect)# member atm 100 pvc 1/200</td>
<td>Device(config-xconnect)# member atm 100 pvc 1/200</td>
</tr>
<tr>
<td>Step 14 exit</td>
<td>Exits xconnect configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-xconnect)# exit</td>
<td>Router(config-xconnect)# exit</td>
</tr>
<tr>
<td>Step 15 pvc [name] vpi vci l2transport</td>
<td>Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-if)# pvc 1/200 l2transport</td>
<td>Router(config-if)# pvc 1/200 l2transport</td>
</tr>
<tr>
<td>Step 16 oam-ac emulation-enable [ais-rate]</td>
<td>Enables OAM cell emulation for AAL5 over MPLS. The ais-rate argument lets you specify the rate at which AIS cells are sent. The default is one cell every second. The range is 0 to 60 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# oam-ac emulation-enable 30</td>
<td>Router(config-if-atm-l2trans-pvc)# oam-ac emulation-enable 30</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 17 <code>oam-pvc manage [frequency]</code></td>
<td>Enables the PVC to generate end-to-end OAM loopback cells that verify connectivity on the virtual circuit. The optional <code>frequency</code> argument is the interval between transmission of loopback cells and ranges from 0 to 600 seconds. The default value is 10 seconds.</td>
</tr>
<tr>
<td>Step 18 <code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 19 <code>show atm pvc</code></td>
<td>Displays output that shows OAM cell emulation is enabled on the ATM PVC.</td>
</tr>
</tbody>
</table>

Examples

The following output from the `show atm pvc` command shows that OAM cell emulation is enabled on the ATM PVC:

```
Router# show atm pvc 5/500
ATM4/1/0.200: VCD: 6, VPI: 5, VCI: 500
UBR, PeakRate: 1
AAL5-LLC/SNAP, etype:0x0, Flags: 0x34000C20, VCMode: 0x0
OAM Cell Emulation: enabled, F5 End2end AIS Xmit frequency: 1 second(s)
OAM frequency: 0 second(s), OAM retry frequency: 1 second(s)
OAM up retry count: 3, OAM down retry count: 5
OAM Loopback status: OAM Disabled
OAM VC state: Not Managed
ILMI VC state: Not Managed
InProc: 0, OutProc: 0
InFast: 4, OutFast: 0, InAS: 560, OutAS: 560
InPktDrops: 0, OutPktDrops: 0
CrcErrors: 0, SarTimeOuts: 0, OversizedSDUs: 0
Out CLP-1 Pkts: 0
OAM cells received: 26
F5 InEndLoop: 0, F5 InSegLoop: 0, F5 InAIS: 0, F5 InRDI: 26
OAM cells sent: 77
F5 OutEndLoop: 0, F5 OutSegLoop: 0, F5 OutAIS: 77, F5 OutRDI: 0
OAM cell drops: 0
Status: UP
```

Configuring OAM Cell Emulation for ATM AAL5 over MPLS in VC Class Configuration Mode

SUMMARY STEPS

1. enable
2. configure terminal
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

| Step 2 | configure terminal | Enters global configuration mode. |
| | **Example:** Router# configure terminal | |

| Step 3 | vc-class atm name | Creates a VC class and enters VC class configuration mode. |
| | **Example:** Router(config)# vc-class atm oamclass | |

| Step 4 | encapsulation layer-type | Configures the AAL and encapsulation type. |
| | **Example:** Router(config-vc-class)# encapsulation aal5 | |

| Step 5 | oam-ac emulation-enable [ais-rate] | Enables OAM cell emulation for AAL5 over MPLS and specifies the rate at which AIS cells are sent. |
| | **Example:** Router(config-vc-class)# oam-ac emulation-enable 30 | |

| Step 6 | oam-pvc manage [frequency] | Enables the PVC to generate end-to-end OAM loopback cells that verify connectivity on the virtual circuit. |
| | **Example:** Router(config-vc-class)# oam-pvc manage | |

<p>| Step 7 | exit | Exits VC class configuration mode. |
| | Example: Router(config-vc-class)# exit | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>interface type slot / subslot / port [.subinterface]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface atm1/0/0</td>
</tr>
<tr>
<td>Step 9</td>
<td>class-int vc-class-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# class-int oamclass</td>
</tr>
<tr>
<td>Step 10</td>
<td>pvc [name] vpi / vci l2transport</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# pvc 1/200 l2transport</td>
</tr>
<tr>
<td>Step 11</td>
<td>xconnect peer-router-id vcid encapsulation mpls</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls</td>
</tr>
</tbody>
</table>

Configuring OAM Cell Emulation for ATM AAL5 over MPLS in VC Class Configuration Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. encapsulation layer-type
5. oam-ac emulation-enable [ais-rate]
6. oam-pvc manage [frequency]
7. exit
8. interface type slot / subslot / port [.subinterface]
9. class-int vc-class-name
10. pvc [name] vpi / vci l2transport
11. end
12. interface pseudowire number
13. encapsulation mpls
14. neighbor peer-address vcid-value
15. exit
16. l2vpn xconnect context context-name
17. member pseudowire interface-number
18. member atm interface-number
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>vc-class atm name</td>
<td>Creates a VC class and enters VC class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# vc-class atm oamclass</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>encapsulation layer-type</td>
<td>Configures the AAL and encapsulation type.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-vc-class)# encapsulation aal5</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>oam-ac emulation-enable [ais-rate]</td>
<td>Enables OAM cell emulation for AAL5 over MPLS and specifies the rate at which AIS cells are sent.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-vc-class)# oam-ac emulation-enable 30</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>oam-pvc manage [frequency]</td>
<td>Enables the PVC to generate end-to-end OAM loopback cells that verify connectivity on the virtual circuit.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-vc-class)# oam-pvc manage</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>exit</td>
<td>Exits VC class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-vc-class)# exit</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>interface type slot / subslot / port [, subinterface]</td>
<td>Specifies the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface atm1/0/0</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>class-int vc-class-name</td>
<td>Applies a VC class to the ATM main interface or subinterface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: You can also apply a VC class to a PVC.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# class-int oamclass</td>
<td>Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

Step 10

pvc [name] vpi / vci l2transport

Example:

Router(config-if)# pvc 1/200 l2transport

- The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.

Step 11

de

Example:

Router(config-if-atm-l2trans-pvc)# end

- Exits to privileged EXEC mode.

Step 12

interface pseudowire *number*

Example:

Router(config)# interface pseudowire 100

- Specifies the pseudowire interface and enters interface configuration mode.

Step 13

encapsulation mpls

Example:

Router(config-if)# encapsulation mpls

- Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.

Step 14

neighbor peer-address vcid-value

Example:

Router(config-if)# neighbor 10.0.0.1 123

- Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.

Step 15

exit

Example:

Router(config-if)# exit

- Exits interface configuration mode.

Step 16

l2vpn xconnect context context-name

Example:

Router(config)# l2vpn xconnect context con1

- Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.

Step 17

member pseudowire interface-number

Example:

Router(config-xconnect)# member pseudowire 100

- Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.

Step 18

member atm interface-number

Example:

Device(config-xconnect)# member atm 100

- Specifies the location of the ATM member interface.
Configuring ATM Cell Relay over MPLS

Configuring ATM Cell Relay over MPLS in VC Mode

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm slot / subslot / port [.subinterface]`
4. `pvc vpi / vci l2transport`
5. `encapsulation aal0`
6. `xconnect peer-router-id vcid encapsulation mpls`
7. `end`
8. `show atm vc`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>interface atm slot / subslot / port [.subinterface]</code></td>
<td>Specifies an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface atm1/0/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>pvc vpi / vci l2transport</code></td>
<td>Assigns a virtual path identifier (VPI) and virtual circuit identifier (VCI) and enters L2transport VC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# pvc 0/100 l2transport</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>encapsulation aal0</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation aal0</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>xconnect peer-router-id vcid encapsulation mpls</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# xconnect peer-router-id 100 encapsulation mpls</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>show atm vc</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# show atm vc</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>encapsulation aal0</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Example: | `Router(config-if-atm-l2trans-pvc)# encapsulation aal0` | For ATM cell relay, specifies raw cell encapsulation for the interface.
 - Make sure you specify the same encapsulation type on the PE and CE routers. |

<table>
<thead>
<tr>
<th>Step 6</th>
<th>xconnect peer-router-id vcid encapsulation mpls</th>
<th>Binds the attachment circuit to a pseudowire VC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>end</th>
<th>Exits to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router(config-if-atm-l2trans-pvc)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>show atm vc</th>
<th>Verifies that OAM cell emulation is enabled on the ATM VC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>Router# show atm vc</code></td>
<td></td>
</tr>
</tbody>
</table>

Example

The following sample output from the `show atm vc` command shows that the interface is configured for VC mode cell relay:

```plaintext
Router# show atm vc 7  
ATM3/0: VCD: 7, VPI: 23, VCI: 100  
UBR, PeakRate: 149760  
AAL0-Cell Relay, etype:0x10, Flags: 0x10000C2D, VCmode: 0x0  
OAM Cell Emulation: not configured  
InBytes: 0, OutBytes: 0  
Status: UP
```

Configuring ATM Cell Relay over MPLS in VC Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot / subslot / port [,subinterface]
4. pvc vpi / vci l2transport
5. encapsulation aal0
6. end
7. interface pseudowire number
8. `encapsulation mpls`
9. `neighbor peer-address vcid-value`
10. `exit`
11. `l2vpn xconnect context context-name`
12. `member pseudowire interface-number`
13. `member atm interface-number`
14. `end`
15. `show atm vc`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface atm slot</td>
</tr>
<tr>
<td>Example:</td>
<td>subslot / port [subinterface]</td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface atm1/0/0</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>pvc vpi / vci l2transport</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# pvc 0/100 l2transport</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>encapsulation aal0</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if-atm-l2trans-pvc)# encapsulation aal0</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if-atm-l2trans-pvc)# end</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>interface pseudowire number</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface pseudowire 100</td>
</tr>
</tbody>
</table>

Enables privileged EXEC mode.
- Enter your password if prompted.

Enters global configuration mode.

For ATM cell relay, specifies raw cell encapsulation for the interface.
- Make sure you specify the same encapsulation type on the PE and CE routers.

Exits to privileged EXEC mode.

Specifies the pseudowire interface and enters interface configuration mode.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>neighbor peer-address vcid-value</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>l2vpn xconnect context context-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>member pseudowire interface-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xconnect)# member pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Specifies the location of the ATM member interface.</td>
</tr>
<tr>
<td>member atm interface-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# member atm 100</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xconnect)# end</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>Verifies that OAM cell emulation is enabled on the ATM VC.</td>
</tr>
<tr>
<td>show atm vc</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show atm vc</td>
<td></td>
</tr>
</tbody>
</table>

Example

The following sample output from the `show atm vc` command shows that the interface is configured for VC mode cell relay:

```
Router# show atm vc 7
```
Configuring ATM Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. encapsulation layer-type
5. exit
6. interface type slot / subslot / port [subinterface]
7. class-int vc-class-name
8. pvc [name] vpi / vci l2transport
9. xconnect peer-router-id vcid encapsulation mpls

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm name</td>
<td>Creates a VC class and enters VC class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# vc-class atm cellrelay</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation layer-type</td>
<td>Configures the AAL and encapsulation type.</td>
</tr>
<tr>
<td>Example: Router(config-vc-class)# encapsulation aal0</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits VC class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-vc-class)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 6 interface type slot / subslot / port [. subinterface] | Specifies the interface type and enters interface configuration mode.

```
Router(config)# interface atm1/0/0
```

Step 7 class-int vc-class-name | Applies a VC class to the ATM main interface or subinterface.

```
Router(config-if)# class-int cellrelay
```

Note You can also apply a VC class to a PVC.

Step 8 pvc [name] vpi / vci l2transport | Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.

```
Router(config-if)# pvc 1/200 l2transport
```

Step 9 xconnect peer-router-id vcid encapsulation mpls | Binds the attachment circuit to a pseudowire VC.

```
Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls
```

Configuring ATM Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. encapsulation layer-type
5. exit
6. interface type slot / subslot / port [. subinterface]
7. class-int vc-class-name
8. pvc [name] vpi / vci l2transport
9. end
10. interface pseudowire number
11. encapsulation mpls
12. neighbor peer-address vcid-value
13. exit
14. l2vpn xconnect context context-name
15. member pseudowire interface-number
16. member atm interface-number
17. end
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 configure terminal

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 3 vc-class atm name

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Creates a VC class and enters VC class configuration mode.</td>
</tr>
<tr>
<td>Router(config)# vc-class atm cellrelay</td>
<td></td>
</tr>
</tbody>
</table>

Step 4 encapsulation layer-type

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Configures the AAL and encapsulation type.</td>
</tr>
<tr>
<td>Router(config-vc-class)# encapsulation aal0</td>
<td></td>
</tr>
</tbody>
</table>

Step 5 exit

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Exits VC class configuration mode.</td>
</tr>
<tr>
<td>Router(config-vc-class)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Step 6 interface type slot / subslot / port [subinterface]

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Specifies the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Router(config)# interface atm1/0/0</td>
<td></td>
</tr>
</tbody>
</table>

Step 7 class-int vc-class-name

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Applies a VC class to the ATM main interface or subinterface.</td>
</tr>
<tr>
<td>Note You can also apply a VC class to a PVC.</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# class-int cellrelay</td>
<td></td>
</tr>
</tbody>
</table>

Step 8 pvc [name] vpi / vci l2transport

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Router(config-if)# pvc 1/200 l2transport</td>
<td></td>
</tr>
</tbody>
</table>

Step 9 end

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring ATM Cell Relay over MPLS in PVP Mode

SUMMARY STEPS

1. `enable`
2. `configure terminal`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Router> enable</td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface atm slot / subslot / port [, subinterface]
Example:
Router(config)# interface atm1/0/0</td>
<td>Defines the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>atm pvp vpi l2transport
Example:
Router(config-if)# atm pvp 1 l2transport</td>
<td>Specifies that the PVP is dedicated to transporting ATM cells and enters L2transport PVP configuration mode.
• The l2transport keyword indicates that the PVP is for cell relay. This mode is for Layer 2 transport only; it is not for regular PVPs.</td>
</tr>
<tr>
<td>Step 5</td>
<td>xconnect peer-router-id vcid encapsulation mpls
Example:
Router(config-if-atm-l2trans-pvp)# xconnect 10.0.0.1 123 encapsulation mpls</td>
<td>Binds the attachment circuit to a pseudowire VC. The syntax for this command is the same as for all other Layer 2 transports.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end
Example:
Router(config-if-atm-l2trans-pvp)# end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show atm vp
Example:
Router# show atm vp</td>
<td>Displays output that shows OAM cell emulation is enabled on the ATM VP.</td>
</tr>
</tbody>
</table>
Examples

The following output from the `show atm vp` command shows that the interface is configured for VP mode cell relay:

```
Router# show atm vp 1
ATM5/0  VPI: 1, Cell Relay, PeakRate: 149760, CesRate: 0, DataVCs: 1, CesVCs: 0, Status: ACTIVE
  VCD  VCI  Type  InPkts  OutPkts  AAL/Encap  Status
    6    3    PVC     0     0     F4 OAM     ACTIVE
    7    4    PVC     0     0     F4 OAM     ACTIVE
TotalInPkts: 0, TotalOutPkts: 0, TotalInFast: 0, TotalOutFast: 0, TotalBroadcasts: 0, TotalInPktDrops: 0, TotalOutPktDrops: 0
```

Configuring ATM Cell Relay over MPLS in PVP Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm slot / subslot / port [subinterface]`
4. `atm pvp vpi l2transport`
5. `end`
6. `interface pseudowire number`
7. `encapsulation mpls`
8. `neighbor peer-address vcid-value`
9. `exit`
10. `l2vpn xconnect context context-name`
11. `member pseudowire interface-number`
12. `member atm interface-number pvp vpi`
13. `end`
14. `show atm vp`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Example: <code>Router> enable</code></td>
<td>Enables privileged EXEC mode. • Enter your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Example: <code>Router# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{interface atm slot \ subslot \ port [, subinterface]}</td>
<td>Defines the interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config)# interface atm1/0/0}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{atm pvp vpi l2transport}</td>
<td>Specifies that the PVP is dedicated to transporting ATM cells and enters L2transport PVP configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config-if)# atm pvp 1 l2transport}</td>
<td>• The \texttt{l2transport} keyword indicates that the PVP is for cell relay. This mode is for Layer 2 transport only; it is not for regular PVPs.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{end}</td>
<td>Exits to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config-if- atm-l2trans-pvc)# end}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{interface pseudowire number}</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config)# interface pseudowire 100}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{encapsulation mpls}</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config-if)# encapsulation mpls}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{neighbor peer-address vcid-value}</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config-if)# neighbor 10.0.0.1 123}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{exit}</td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config-if)# exit}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{l2vpn xconnect context context-name}</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config)# l2vpn xconnect context con1}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{member pseudowire interface-number}</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\texttt{Router(config-xconnect)# member pseudowire 100}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Step 12

`member atm interface-number pvp vpi`

Example:

Device(config-xconnect)# member atm 100 pvp 1

Step 13

`end`

Example:

Router(config-xconnect)# end

Step 14

`show atm vp`

Example:

Router# show atm vp

Examples

The following output from the `show atm vp` command shows that the interface is configured for VP mode cell relay:

```
Router# show atm vp 1
ATM5/0  VPI: 1, Cell Relay, PeakRate: 149760, CesRate: 0, DataVCs: 1, CesVCs: 0, Status: ACTIVE
    VCD VCI Type InPkts OutPkts AAL/Encap Status
     6   3   PVC  0   0     F4 OAM      ACTIVE
     7   4   PVC  0   0     F4 OAM      ACTIVE
TotalInPkts: 0, TotalOutPkts: 0, TotalInFast: 0, TotalOutFast: 0, TotalBroadcasts: 0 TotalInPktDrops: 0, TotalOutPktDrops: 0
```

Configuring Ethernet over MPLS

Configuring Ethernet over MPLS in VLAN Mode to Connect Two VLAN Networks That Are in Different Locations.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot / subslot / port[.subinterface]`
4. `encapsulation dot1q vlan-id`
5. `xconnect peer-router-id vcid encapsulation mpls`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface gigabitethernet slot / subslot / port [subinterface]</td>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Make sure the subinterface on the adjoining CE router is on the same VLAN as this PE router.</td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet4/0/0.1</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation dot1q vlan-id</td>
<td>Enables the subinterface to accept 802.1Q VLAN packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# encapsulation dot1q 100</td>
<td></td>
</tr>
<tr>
<td>Step 5 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# xconnect 10.0.0.1 123 encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Ethernet over MPLS in VLAN Mode to Connect Two VLAN Networks That Are in Different Locations using the commands associated with the L2VPN Protocol-Based CLIs feature

Summary Steps

1. enable
2. configure terminal
3. interface gigabitethernet slot / subslot / port [subinterface]
4. encapsulation dot1q vlan-id
5. end
6. interface pseudowire number
7. encapsulation mpls
8. neighbor peer-address vcid-value
9. exit
10. l2vpn xconnect context context-name
11. member pseudowire interface-number
12. member gigabitethernet interface-number
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.
Example:
`Router> enable`
- Enter your password if prompted. |
| **Step 2** | `configure terminal` | Enters global configuration mode.
Example:
`Router# configure terminal` |
| **Step 3** | `interface gigabitethernet slot / subslot / port [subinterface]` | Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.
Example:
`Router(config)# interface gigabitethernet4/0/0.1`
- Make sure the subinterface on the adjoining CE router is on the same VLAN as this PE router. |
| **Step 4** | `encapsulation dot1q vlan-id` | Enables the subinterface to accept 802.1Q VLAN packets.
Example:
`Router(config-subif)# encapsulation dot1q 100` |
| **Step 5** | `end` | Exits to privileged EXEC mode.
Example:
`Router(config-subif)# end` |
| **Step 6** | `interface pseudowire number` | Specifies the pseudowire interface and enters interface configuration mode.
Example:
`Router(config)# interface pseudowire 100` |
| **Step 7** | `encapsulation mpls` | Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.
Example:
`Router(config-if)# encapsulation mpls` |
| **Step 8** | `neighbor peer-address vcid-value` | Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.
Example:
`Router(config-if)# neighbor 10.0.0.1 123` |
| **Step 9** | `exit` | Exits interface configuration mode.
Example:
`Router(config-if)# exit` |
Configuring Ethernet over MPLS in Port Mode

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot / subslot / port`
4. `xconnect peer-router-id vcid encapsulation mpls`
5. `end`
6. `show mpls l2transport vc`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Ethernet over MPLS in Port Mode Using Commands Associated with the L2VPN Protocol-Based Feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot / subslot / port[, subinterface]`
4. `end`
5. `interface pseudowire number`
6. `encapsulation mpls`
7. `neighbor peer-address vcid-value`
8. `exit`
9. `l2vpn xconnect context context-name`
10. `member pseudowire interface-number`
11. `member gigabitethernet interface-number`
12. `end`
13. `end`
14. `show l2vpn atom vc`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Device> enable |

Step 2 configure terminal
Example:
Device# configure terminal

Step 3
interface gigabitethernet slot/subslot/port [subinterface]
Example:
Device(config)# interface gigabitethernet4/0/0

- Make sure the interface on the adjoining CE router is on the same VLAN as this PE router.

Step 4 end
Example:
Device(config-if)# end

Step 5 interface pseudowire number
Example:
Device(config)# interface pseudowire 100

Step 6 encapsulation mpls
Example:
Device(config-if)# encapsulation mpls

Step 7 neighbor peer-address vcid-value
Example:
Device(config-if)# neighbor 10.0.0.1 123

Step 8 exit
Example:
Device(config-if)# exit

Step 9 l2vpn xconnect context context-name
Example:
Device(config)# l2vpn xconnect context con1

Step 10 member pseudowire interface-number
Example:
Device(config-xconnect)# member pseudowire 100
SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot / subslot / port
4. encapsulation dot1q vlan-id
5. xconnect peer-router-id vcid encapsulation mpls
6. remote circuit id remote-vlan-id
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Ethernet over MPLS with VLAN ID Rewrite Using Commands Associated with the L2VPN Protocol-Based Feature

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>interface gigabitethernet slot / subslot / port</code></td>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>encapsulation dot1q vlan-id</code></td>
<td>Enables the subinterface to accept 802.1Q VLAN packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# encapsulation dot1q 100</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>xconnect peer-router-id vcid encapsulation mpls</code></td>
<td>Binds the attachment circuit to a pseudowire VC and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# xconnect 10.0.0.1 123 encapsulation mpls</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>remote circuit id remote-vlan-id</code></td>
<td>(Optional) Enables you to use VLAN interfaces with different VLAN IDs at both ends of the tunnel.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif-xconn)# remote circuit id 101</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif-xconn)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Ethernet over MPLS with VLAN ID Rewrite Using Commands Associated with the L2VPN Protocol-Based Feature

SUMMARY STEPS

1. enable
2. configure terminal
3. encapsulation dot1q vlan-id
4. end
5. interface pseudowire number
6. encapsulation mpls
7. neighbor peer-address vcid-value
8. exit
9. l2vpn xconnect context context-name
10. member pseudowire interface-number
11. member gigabitethernet interface-number
12. remote circuit id remote-vlan-id
13. end
14. show controllers eompls forwarding-table
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>encapsulation dot1q vlan-id</td>
<td>Enables the subinterface to accept 802.1Q VLAN packets.</td>
</tr>
<tr>
<td></td>
<td>Router(config-subif)# encapsulation dot1q 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Router(config-subif)# end</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>encapsulation mpls</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>l2vpn xconnect context context-name</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>member pseudowire <code>interface-number</code></td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-xconnect)# member pseudowire 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>member gigabitethernet <code>interface-number</code></td>
<td>Specifies the location of the Gigabit Ethernet member interface.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>remote circuit id <code>remote-vlan-id</code></td>
<td>(Optional) Enables you to use VLAN interfaces with different VLAN IDs at both ends of the tunnel.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-xconnect)# remote circuit id 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-xconnect)# end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>show controllers eompls forwarding-table</td>
<td>Displays information about VLAN ID rewrite.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# show controllers eompls forwarding-table</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring per-Subinterface MTU for Ethernet over MPLS

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot / subslot / port [subinterface]`
4. `mtu mtu-value`
5. `interface gigabitethernet slot / subslot / port [subinterface]`
6. `encapsulation dot1q vlan-id`
7. `xconnect peer-router-id vcid encapsulation mpls`
8. `mtu mtu-value`
9. `end`
10. `show mpls l2transport binding`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 2**
configure terminal
Example:
Router# configure terminal | Enters global configuration mode. |
| **Step 3**
interface gigabitethernet slot / subslot / port [subinterface]
Example:
Router(config)# interface gigabitethernet4/0/0 | Specifies the Gigabit Ethernet interface and enters interface configuration mode. |
| **Step 4**
mtu mtu-value
Example:
Router(config-if)# mtu 2000 | Specifies the MTU value for the interface. The MTU value specified at the interface level can be inherited by a subinterface. |
| **Step 5**
interface gigabitethernet slot / subslot / port [subinterface]
Example:
Router(config-if)# interface gigabitethernet4/0/0.1 | Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.
Make sure the subinterface on the adjoining CE router is on the same VLAN as this PE router. |
| **Step 6**
encapsulation dot1q vlan-id
Example:
Router(config-subif)# encapsulation dot1q 100 | Enables the subinterface to accept 802.1Q VLAN packets.
The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet.
All other subinterfaces and backbone routers need not be. |
| **Step 7**
xconnect peer-router-id vcid encapsulation mpls
Example:
Router(config-subif)# xconnect 10.0.0.1 123 encapsulation mpls | Binds the attachment circuit to a pseudowire VC.
The syntax for this command is the same as for all other Layer 2 transports. Enters xconnect subinterface configuration mode. |
| **Step 8**
mtu mtu-value
Example:
Router(config-if-xconn)# mtu 1400 | Specifies the MTU for the VC. |
| **Step 9**
end
Example:
Router(config-if-xconn)# end | Exits to privileged EXEC mode. |
Configuring per-Subinterface MTU for Ethernet over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot/subslot/port[, subinterface]`
4. `mtu mtu-value`
5. `interface gigabitethernet slot/subslot/port[, subinterface]`
6. `encapsulation dot1q vlan-id`
7. `end`
8. `interface pseudowire number`
9. `encapsulation mpls`
10. `neighbor peer-address vcid-value`
11. `mtu mtu-value`
12. `exit`
13. `l2vpn xconnect context context-name`
14. `member pseudowire interface-number`
15. `member gigabitethernet interface-number`
16. `end`
17. `show l2vpn atom binding`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface gigabitethernet slot/subslot/port[, subinterface]</code></td>
<td>Specifies the Gigabit Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface gigabitethernet4/0/0</td>
<td>Specifies the MTU value for the interface. The MTU value specified at the interface level can be inherited by a subinterface.</td>
<td></td>
</tr>
<tr>
<td>Step 4 mtu mtu-value</td>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode. Make sure the subinterface on the adjoining CE router is on the same VLAN as this PE router.</td>
<td></td>
</tr>
<tr>
<td>Step 5 interface gigabitethernet slot / subslot / port[, subinterface]</td>
<td>Enables the subinterface to accept 802.1Q VLAN packets. The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet. All other subinterfaces and backbone routers need not be.</td>
<td></td>
</tr>
<tr>
<td>Step 6 encapsulation dot1q vlan-id</td>
<td>Exits to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
<td></td>
</tr>
<tr>
<td>Step 8 interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 9 encapsulation mpls</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
<tr>
<td>Step 10 neighbor peer-address vcid-value</td>
<td>Specifies the MTU for the VC.</td>
<td></td>
</tr>
<tr>
<td>Step 11 mtu mtu-value</td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 12 exit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any Transport over MPLS
Configuring per-Subinterface MTU for Ethernet over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Device(config-if)# exit</code></td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Step 13 l2vpn xconnect context context-name</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example: <code>Device(config)# l2vpn xconnect context con1</code></td>
<td>Specifies the location of the Gigabit Ethernet member interface.</td>
</tr>
<tr>
<td>Step 14 member pseudowire interface-number</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config-xconnect)# member pseudowire 100</code></td>
<td>Displays Layer 2 VPN (L2VPN) Any Transport over MPLS (AToM) label binding information.</td>
</tr>
<tr>
<td>Step 15 member gigabitethernet interface-number</td>
<td></td>
</tr>
<tr>
<td>Example: <code>Device(config-xconnect)# member GigabitEthernet0/0/0.1</code></td>
<td></td>
</tr>
<tr>
<td>Step 16 end</td>
<td></td>
</tr>
<tr>
<td>Example: <code>Device(config-xconnect)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 17 show l2vpn atom binding</td>
<td></td>
</tr>
<tr>
<td>Example: <code>Device# show l2vpn atom binding</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Frame Relay over MPLS

Configuring Frame Relay over MPLS with DLCI-to-DLCI Connections

SUMMARY STEPS

1. enable
2. configure terminal
3. frame-relay switching
4. interface serial slot / subslot / port [.subinterface]
5. encapsulation frame-relay [cisco | ietf]
6. frame-relay intf-type dce
7. exit
8. connect connection-name interface dlci l2transport
9. xconnect peer-router-id vcid encapsulation mpls
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Router> enable</td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>frame-relay switching
Example:
Router(config)# frame-relay switching</td>
<td>Enables PVC switching on a Frame Relay device.</td>
</tr>
<tr>
<td>Step 4</td>
<td>interface serial slot / subslot / port [. subinterface]
Example:
Router(config)# interface serial3/1/0</td>
<td>Specifies a serial interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>encapsulation frame-relay [cisco</td>
<td>ietf]
Example:
Router(config-if)# encapsulation frame-relay ietf</td>
</tr>
<tr>
<td>Step 6</td>
<td>frame-relay intf-type dce
Example:
Router(config-if)# frame-relay intf-type dce</td>
<td>Specifies that the interface is a DCE switch. You can also specify the interface to support Network-to-Network Interface (NNI) and DTE connections.</td>
</tr>
<tr>
<td>Step 7</td>
<td>exit
Example:
Router(config-if)# exit</td>
<td>Exits from interface configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>connect connection-name interface dlei l2transport
Example:
Router(config)# connect fr1 serial5/0 1000 l2transport</td>
<td>Defines connections between Frame Relay PVCs and enters connect configuration mode. Using the l2transport keyword specifies that the PVC will not be a locally switched PVC, but will be tunneled over the backbone network.
The connection-name argument is a text string that you provide.
The interface argument is the interface on which a PVC connection will be defined.</td>
</tr>
</tbody>
</table>
Confuring Frame Relay over MPLS with DLCI-to-DLCI Connections using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `frame-relay switching`
4. `interface serial slot / subslot / port [., subinterface]`
5. `encapsulation frame-relay [cisco | ietf]`
6. `frame-relay intf-type dce`
7. `exit`
8. `connect connection-name interface dlci l2transport`
9. `end`
10. `interface pseudowire number`
11. `encapsulation mpls`
12. `neighbor peer-address vcid-value`
13. `exit`
14. `l2vpn xconnect context context-name`
15. `member pseudowire interface-number`
16. `member ip-address vc-id encapsulation mpls`
17. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
`enable` | Enables privileged EXEC mode.
* Enter your password if prompted. |
|
Example:
`Router> enable` | |
| **Step 2**
`configure terminal` | Enters global configuration mode. |
|
Example:
`Router# configure terminal` | |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3** frame-relay switching
Example:
Router(config)# frame-relay switching | Enables PVC switching on a Frame Relay device. |
| **Step 4** interface serial slot / subslot / port [, subinterface]
Example:
Router(config)# interface serial3/1/0 | Specifies a serial interface and enters interface configuration mode. |
| **Step 5** encapsulation frame-relay [cisco | ietf]
Example:
Router(config-if)# encapsulation frame-relay ietf | Specifies Frame Relay encapsulation for the interface. You can specify different types of encapsulations. You can set one interface to Cisco encapsulation and the other interface to IETF encapsulation. |
| **Step 6** frame-relay intf-type dce
Example:
Router(config-if)# frame-relay intf-type dce | Specifies that the interface is a DCE switch. You can also specify the interface to support Network-to-Network Interface (NNI) and DTE connections. |
| **Step 7** exit
Example:
Router(config-if)# exit | Exits from interface configuration mode. |
| **Step 8** connect connection-name interface dlci l2transport
Example:
Router(config)# connect fr1 serial5/0 1000 l2transport | Defines connections between Frame Relay PVCs and enters connect configuration mode. Using the l2transport keyword specifies that the PVC will not be a locally switched PVC, but will be tunneled over the backbone network.
The connection-name argument is a text string that you provide.
The interface argument is the interface on which a PVC connection will be defined.
The dlci argument is the DLCI number of the PVC that will be connected. |
| **Step 9** end
Example:
Router(config-xconnect-conn-config)# end | Exits to privileged EXEC mode. |
| **Step 10** interface pseudowire number
Example:
Router(config)# interface pseudowire 100 | Specifies the pseudowire interface and enters interface configuration mode. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>encapsulation mpls</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>l2vpn xconnect context context-name</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>member pseudowire interface-number</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-xconnect)# member pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>member ip-address vc-id encapsulation mpls</td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-xconnect)# member 10.0.0.1 123 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-xconnect)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Frame Relay over MPLS with Port-to-Port Connections

SUMMARY STEPS

1. enable
2. configure terminal
3. interface serial slot / subslot / port [. subinterface]
4. encapsulation hdlc
5. xconnect peer-router-id vcid encapsulation mpls
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies a serial interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>interface serial</td>
<td></td>
</tr>
<tr>
<td>slot / subslot / port [.subinterface]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial5/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies that Frame Relay PDUs will be encapsulated in HDLC packets.</td>
</tr>
<tr>
<td>encapsulation hdlc</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation hdlc</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td>xconnect peer-router-id vcid encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# xconnect 10.0.0.1 123 encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Frame Relay over MPLS with Port-to-Port Connections using the commands associated with the L2VPN Protocol-Based CLIs feature

1. enable
2. configure terminal
3. interface serial slot / subslot / port [.subinterface]
4. encapsulation hdlc
5. end
6. interface pseudowire number
7. encapsulation mpls
8. neighbor peer-address vcid-value
9. exit
10. l2vpn xconnect context context-name
11. member pseudowire interface-number
12. member ip-address vc-id encapsulation mpls
13. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface serial slot/subslot/port [subinterface]</td>
<td>Specifies a serial interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial5/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>encapsulation hdlc</td>
<td>Specifies that Frame Relay PDUs will be encapsulated in HDLC packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation hdlc</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

- **Step 10**: `l2vpn xconnect context context-name`
 Example:
  ```text
  Router(config)# l2vpn xconnect context con1
  ```

 Purpose: Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.

- **Step 11**: `member pseudowire interface-number`
 Example:
  ```text
  Router(config-xconnect)# member pseudowire 100
  ```

 Purpose: Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.

- **Step 12**: `member ip-address vc-id encapsulation mpls`
 Example:
  ```text
  Router(config-xconnect)# member 10.0.0.1 123 encapsulation mpls
  ```

 Purpose: Creates the VC to transport the Layer 2 packets.

- **Step 13**: `end`
 Example:
  ```text
  Router(config-xconnect)# end
  ```

 Purpose: Exits to privileged EXEC mode.

Configuring HDLC or PPP over MPLS

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface serial slot / subslot / port [, subinterface]`
4. Do one of the following:
 - `encapsulation ppp`
 - `encapsulation hdlc`
5. `xconnect peer-router-id vcid encapsulation mpls`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Router# configure terminal | Specifies a serial interface and enters interface configuration mode.

Step 3

interface serial slot / subslot / port [subinterface]

Example:

Router(config)# interface serial5/0/0

Step 4

Do one of the following:

- encapsulation ppp
- encapsulation hdlc

Example:

Router(config-if)# encapsulation ppp

Example:

or

Example:

Router(config-if)# encapsulation hdlc

Step 5

xconnect peer-router-id vcid encapsulation mpls

Example:

Router(config-fr-pw-switching)# xconnect 10.0.0.1 123 encapsulation mpls

Configuring HDLC or PPP over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. enable
2. configure terminal
3. interface serial slot / subslot / port [subinterface]
4. Do one of the following:
 - encapsulation ppp
 - encapsulation hdlc
5. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface serial slot / subslot / port [, subinterface]</td>
<td>Specifies a serial interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface serial5/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Specifies HDLC or PPP encapsulation and enters connect configuration mode.</td>
</tr>
<tr>
<td>• encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>• encapsulation hdlc</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# encapsulation hdlc</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-xconnect-conn-config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 7</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td>Step 8</td>
<td>neighbor peer-address vcid-value</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
</tr>
<tr>
<td></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Step 9</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Step 10</td>
<td>l2vpn xconnect context context-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# l2vpn xconnect context con1</td>
</tr>
<tr>
<td></td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Step 11</td>
<td>member pseudowire interface-number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-xconnect)# member pseudowire 100</td>
</tr>
<tr>
<td></td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Step 12</td>
<td>member ip-address vc-id encapsulation mpls</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-xconnect)# member 10.0.0.1 123 encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td>Step 13</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-xconnect)# end</td>
</tr>
<tr>
<td></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Configuring Tunnel Selection

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class name
4. encapsulation mpls
5. preferred-path {interface tunnel tunnel-number | peer {ip-address | host-name} } [disable-fallback]
6. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# pseudowire-class ts1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>encapsulation mpls</td>
<td>Specifies the tunneling encapsulation. For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>preferred-path {interface tunnel tunnel-number</td>
<td>peer {ip-address</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# preferred path peer 10.18.18.18</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
<td>Exits from pseudowire configuration mode and enables the Tunnel Selection feature.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# exit</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>interface type slot / subslot / port</td>
<td>Specifies an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface atm1/1/0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>encapsulation encapsulation-type</td>
<td>Specifies the encapsulation for the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation aal5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>xconnect peer-router-id vcid pw-class name</td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
</tbody>
</table>
Example:

```plaintext
Router(config-if)# xconnect 10.0.0.1 123 pw-class ts1
```

Examples

In the following sample output from the `show mpls l2transport vc` command includes the following information about the VCs:

- VC 101 has been assigned a preferred path called Tunnel1. The default path is disabled, because the preferred path specified that the default path should not be used if the preferred path fails.

- VC 150 has been assigned an IP address of a loopback address on PE2. The default path can be used if the preferred path fails.

Command output that is in boldface font shows the preferred path information.

```plaintext
Router# show mpls l2transport vc detail
Local interface: Gi0/0/0.1 up, line protocol up, Eth VLAN 222 up
Destination address: 10.16.16.16, VC ID: 101, VC status: up
  Preferred path: Tunnel1, **active**
  Default path: disabled
  Tunnel label: 3, next hop point2point
  Output interface: Tu1, imposed label stack {17 16}
  Create time: 00:27:31, last status change time: 00:27:31
  Signaling protocol: LDP, peer 10.16.16.16:0 up
  MPLS VC labels: local 25, remote 16
  Group ID: local 0, remote 6
  MTU: local 1500, remote 1500
  Remote interface description:
  Sequencing: receive disabled, send disabled
  VC statistics:
  packet totals: receive 10, send 10
  byte totals: receive 1260, send 1300
  packet drops: receive 0, send 0
Local interface: ATM1/0/0 up, line protocol up, ATM AAL5 0/50 up
Destination address: 10.16.16.16, VC ID: 150, VC status: up
  Preferred path: 10.18.18.18, **active**
  Default path: ready
  Tunnel label: 3, next hop point2point
  Output interface: Tu2, imposed label stack {18 24}
  Create time: 00:15:08, last status change time: 00:07:37
  Signaling protocol: LDP, peer 10.16.16.16:0 up
  MPLS VC labels: local 26, remote 24
  Group ID: local 2, remote 0
  MTU: local 4470, remote 4470
  Remote interface description:
  Sequencing: receive disabled, send disabled
  VC statistics:
  packet totals: receive 0, send 0
  byte totals: receive 0, send 0
  packet drops: receive 0, send 0
```
Troubleshooting Tips

To debug ATM cell packing, issue the `debug atm cell-packing` command.

Configuring Tunnel Selection Using Commands Associated with L2VPN Protocol-Based Feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `template type pseudowire name`
4. `encapsulation mpls`
5. `preferred-path {interface tunnel tunnel-number | peer {ip-address | hostname}} [disable-fallback]`
6. `exit`
7. `interface type slot / subslot / port [subinterface]`
8. `encapsulation encapsulation-type`
9. `end`
10. `interface pseudowire number`
11. `source template type pseudowire name`
12. `neighbor peer-address vcid-value`
13. `end`
14. `l2vpn xconnect context context-name`
15. `member pseudowire interface-number`
16. `member ip-address vc-id encapsulation mpls`
17. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates a template pseudowire with a name that you specify and enters pseudowire configuration mode.</td>
</tr>
<tr>
<td><code>template type pseudowire name</code></td>
<td>Creates a template pseudowire with a name that you specify and enters pseudowire configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# template type pseudowire tsl</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# encapsulation mpls</td>
</tr>
<tr>
<td>5</td>
<td>preferred-path {interface tunnel tunnel-number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# preferred path peer 10.18.18.18</td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# exit</td>
</tr>
<tr>
<td>7</td>
<td>interface type slot / subslot / port[. subinterface]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface atm1/1/0</td>
</tr>
<tr>
<td>8</td>
<td>encapsulation encapsulation-type</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation aal5</td>
</tr>
<tr>
<td>9</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>10</td>
<td>interface pseudowire number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface pseudowire 100</td>
</tr>
<tr>
<td>11</td>
<td>source template type pseudowire name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# source template type pseudowire ts1</td>
</tr>
<tr>
<td>12</td>
<td>neighbor peer-address vcid-value</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>13</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# end</code></td>
</tr>
<tr>
<td>14</td>
<td><code>l2vpn xconnect context</code> <code>context-name</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# l2vpn xconnect context con1</code></td>
</tr>
<tr>
<td>15</td>
<td><code>member pseudowire</code> <code>interface-number</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-xconnect)# member pseudowire 100</code></td>
</tr>
<tr>
<td>16</td>
<td><code>member</code> <code>ip-address</code> <code>vc-id</code> <code>encapsulation mpls</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-xconnect)# member 10.0.0.1 123 encapsulation mpls</code></td>
</tr>
<tr>
<td>17</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-xconnect)# end</code></td>
</tr>
</tbody>
</table>

Troubleshooting Tips using the commands associated with the L2VPN Protocol-Based CLIs feature

You can use the `debug l2vpn atom vc event` command to troubleshoot tunnel selection. For example, if the tunnel interface that is used for the preferred path is shut down, the default path is enabled. The `debug l2vpn atom vc event` command provides the following output:

```
AToM SMGR [10.2.2.2, 101]: Processing imposition update, vc_handle 62091860, update_action 3, remote_vc_label 16
AToM SMGR [10.2.2.2, 101]: selected route no parent rewrite: tunnel not up
AToM SMGR [10.2.2.2, 101]: Imposition Programmed, Output Interface: Et3/2
```

Setting Experimental Bits with AToM

Note

Only EoMPLS and CEM is supported.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 class-map class-name</td>
<td>Specifies the user-defined name of the traffic class and enters class map configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map class1</td>
<td></td>
</tr>
<tr>
<td>Step 4 match any</td>
<td>Specifies that all packets will be matched. Use only the any keyword. Other keywords might cause unexpected results.</td>
</tr>
<tr>
<td>Example: Router(config-cmap)# match any</td>
<td></td>
</tr>
<tr>
<td>Step 5 policy-map policy-name</td>
<td>Specifies the name of the traffic policy to configure and enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-cmap)# policy-map policy1</td>
<td></td>
</tr>
<tr>
<td>Step 6 class class-name</td>
<td>Specifies the name of a predefined traffic class, which was configured with the class-map command, used to classify traffic to the traffic policy and enters policy-map class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-pmap)# class class1</td>
<td></td>
</tr>
<tr>
<td>Step 7 set mpls experimental value</td>
<td>Designates the value to which the MPLS bits are set if the packets match the specified policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-pmap-c)# set mpls experimental 7</td>
<td>Enables control word configuration.</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits policy-map class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits policy-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>interface type slot / subslot / port</td>
<td>Specifies the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm1/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>service-policy input policy-name</td>
<td>Attaches a traffic policy to an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# service-policy input policy1</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>show policy-map interface interface-name [vc [vpi]] [dli] [dci] [input</td>
<td>output]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show policy-map interface serial3/0/0</td>
<td></td>
</tr>
</tbody>
</table>

Enabling the Control Word

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class cw_enable
4. encapsulation mpls
5. control-word
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><code>pseudowire-class cw_enable</code></td>
<td>Router(config)# pseudowire-class cw_enable</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td><code>encapsulation mpls</code></td>
<td>• For AToM, the encapsulation type is MPLS.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-pw-class)# encapsulation mpls</td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables the control word.</td>
</tr>
<tr>
<td><code>control-word</code></td>
<td>Router(config-pw-class)# control-word</td>
</tr>
<tr>
<td>Step 6</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Router(config-pw-class)# end</td>
</tr>
</tbody>
</table>

Enabling the Control Word using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface pseudowire number`
4. `encapsulation mpls`
5. `control-word include`
6. `neighbor peer-address vcid-value`
7. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
 Example:
 Router> enable |
 • Enter your password if prompted. |
| Step 2 | configure terminal | Enters global configuration mode.
 Example:
 Router# configure terminal |
| Step 3 | interface pseudowire number | Creates an interface pseudowire with a value that you specify and enters pseudowire configuration mode.
 Example:
 Router(config)# interface pseudowire 1 |
| Step 4 | encapsulation mpls | Specifies the tunneling encapsulation.
 Example:
 Router(config-pw)# encapsulation mpls
 • For AToM, the encapsulation type is mpls. |
| Step 5 | control-word include | Enables the control word.
 Example:
 Router(config-pw)# control-word include |
| Step 6 | neighbor peer-address vcid-value | Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.
 Example:
 Router(config-pw)# neighbor 10.0.0.1 123 |
| Step 7 | end | Exits to privileged EXEC mode.
 Example:
 Router(config-pw)# end |

Configuring MPLS AToM Remote Ethernet Port Shutdown

Note
The Any Transport over MPLS (AToM): Remote Ethernet Port Shutdown feature is automatically enabled by default when an image with the feature supported is loaded on the router.
SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class [pw-class-name]
4. encapsulation mpls
5. exit
6. xconnect peer-ip-address vc-id pw-class pw-class-name
7. no remote link failure notification
8. remote link failure notification
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

| **Step 2** configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal | |

| **Step 3** pseudowire-class [pw-class-name] | Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode. |
| Example: Router(config)# pseudowire-class eompls | |

| **Step 4** encapsulation mpls | Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire. |
| Example: Router(config-pw)# encapsulation mpls | |

| **Step 5** exit | Exits to global configuration mode. |
| Example: Router(config-pw)# exit | |

| **Step 6** xconnect peer-ip-address vc-id pw-class pw-class-name | Binds an attachment circuit to a pseudowire, and configures an Any Transport over MPLS (AToM) static pseudowire. |
| Example: Router(config-if)# xconnect 10.1.1.1 1 pw-class eompls | |

| **Step 7** no remote link failure notification | Disables MPLS AToM remote link failure notification and shutdown. |
| Example: | |
Purpose

Command or Action

```
Router(config-if-xconn)# remote link failure notification
```

Purpose

Enables MPLS AToM remote link failure notification and shutdown.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>remote link failure notification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if-xconn)# remote link failure notification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if-xconn)# end</td>
</tr>
</tbody>
</table>

Configuring MPLS AToM Remote Ethernet Port Shutdown using the commands associated with the L2VPN Protocol-Based CLIs feature

Note

The Any Transport over MPLS (AToM): Remote Ethernet Port Shutdown feature is automatically enabled by default when an image with the feature supported is loaded on the router.

SUMMARY STEPS

1. enable
2. configure terminal
3. template type pseudowire [pseudowire-name]
4. encapsulation mpls
5. exit
6. interface type slot/subslot/port
7. interface pseudowire number
8. source template type pseudowire
9. neighbor peer-address vcid-value
10. end
11. l2vpn xconnect context context-name
12. no remote link failure notification
13. remote link failure notification
14. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:
Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2
configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:
Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3
template type pseudowire [pseudowire-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:
Device(config)# template type pseudowire eompls</td>
<td></td>
</tr>
<tr>
<td>Step 4
encapsulation mpls</td>
<td>Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.</td>
</tr>
<tr>
<td>Example:
Device(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5
exit</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Example:
Device(config-pw)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6
interface type slot / subslot / port</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:
Device(config)# interface GigabitEthernet1/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 7
interface pseudowire number</td>
<td>Specifies the pseudowire interface.</td>
</tr>
<tr>
<td>Example:
Device(config-if)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Step 8
source template type pseudowire</td>
<td>Configures the source template of type pseudowire named eompls.</td>
</tr>
<tr>
<td>Example:
Device(config-if)# source template type pseudowire eompls</td>
<td></td>
</tr>
<tr>
<td>Step 9
neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example:
Device(config-if)# neighbor 10.1.1.1 1</td>
<td></td>
</tr>
<tr>
<td>Step 10
end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Purpose | Command or Action | Example
--- | --- | ---
Device(config-if)# end | |
Step 11 | l2vpn xconnect context context-name | Device(config)# l2vpn xconnect context con1
Example: | Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.

Step 12 | no remote link failure notification | Device(config-xconnect)# no remote link failure notification
Example: | Disables MPLS AToM remote link failure notification and shutdown.

Step 13 | remote link failure notification | Device(config-xconnect)# remote link failure notification
Example: | Enables MPLS AToM remote link failure notification and shutdown.

Step 14 | end | Device(config-xconnect)# end
Example: | Exits to privileged EXEC mode.

Configuring AToM Load Balancing with Single PW

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class pw-class-name
4. encapsulation mpls
5. load-balance flow
6. xconnect url pw-class pw-class-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
* Enter your password if prompted.
Example:
Router> enable |

Step 2 | configure terminal | Enters global configuration mode.
Example:

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td>Establishes a pseudowire class with a name that you specify, and enters pseudowire class configuration mode.</td>
</tr>
</tbody>
</table>

Step 3

pseudowire-class *pw-class-name*

Example:

Router(config)# pseudowire-class ecmp-class

Step 4

encapsulation mpls

Example:

Router(config-pw-class)# encapsulation mpls

Step 5

load-balance flow

Example:

Router(config-pw-class)# load-balance flow

Step 6

xconnect url *pw-class* *pw-class-name*

Example:

Router(config-pw-class)# xconnect 10.0.0.1 pw-class ecmp-class

Configuring AToM Load Balancing with Single PW using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. enable
2. configure terminal
3. template type pseudowire [pseudowire-name]
4. encapsulation mpls
5. load-balance flow
6. end
7. interface pseudowire *number*
8. source template type pseudowire
9. neighbor *peer-address* vc-id-value
10. end
11. l2vpn xconnect context *context-name*
12. member pseudowire *interface-number*
13. member *ip-address* vc-id encapsulation mpls
14. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>template type pseudowire [pseudowire-name]</code></td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# template type pseudowire emplsi</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>encapsulation mpls</code></td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pw-class)# encapsulation mpls</code></td>
<td>• For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>load-balance flow</code></td>
<td>Enables the AToM Load Balancing with Single PW feature so that load balancing is done on a per-flow basis.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pw-class)# load-balance flow</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pw-class)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>interface pseudowire number</code></td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface pseudowire 100</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>source template type pseudowire</code></td>
<td>Configures the source template of type pseudowire named ether-pw.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# source template type pseudowire ether-pw</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>neighbor peer-address vcld-value</code></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# neighbor 10.1.1.1 1</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

- **Step 10**
 - `end`
 - **Example:**
    ```
    Router(config-if)# end
    ```
 - **Purpose:** Exits to privileged EXEC mode.

- **Step 11**
 - `l2vpn xconnect context context-name`
 - **Example:**
    ```
    Router(config)# l2vpn xconnect context con1
    ```
 - **Purpose:** Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.

- **Step 12**
 - `member pseudowire interface-number`
 - **Example:**
    ```
    Router(config-xconnect)# member pseudowire 100
    ```
 - **Purpose:** Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.

- **Step 13**
 - `member ip-address vc id encapsulation mpls`
 - **Example:**
    ```
    Router(config-xconnect)# member 10.0.0.1 1 123 encapsulation mpls
    ```
 - **Purpose:** Creates the VC to transport the Layer 2 packets.

- **Step 14**
 - `end`
 - **Example:**
    ```
    Router(config-xconnect)# end
    ```
 - **Purpose:** Exits to privileged EXEC mode.

Configuring Flow-Aware Transport (FAT) Load Balancing

SUMMARY STEPS

1. enable
2. configure terminal
3. interface pseudowire name
4. encapsulation mpls
5. neighbor peer-address vcid-value
6. signaling protocol ldp
7. load-balance flow-label both
8. end
9. show l2vpn atom vc detail
10. show ssm id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>Purpose: Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface pseudowire name</td>
<td>Establishes a pseudowire with a name that you specify, and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface pseudowire 1001</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example: Device(config-pw-class)# encapsulation mpls</td>
<td>• For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td>Step 5 neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example: Device(config-pw-class)# neighbor 10.1.1.200 200</td>
<td></td>
</tr>
<tr>
<td>Step 6 signaling protocol ldp</td>
<td>Specifies that the Label Distribution Protocol (LDP) is configured for the pseudowire class.</td>
</tr>
<tr>
<td>Example: Device(config-pw-class)# signaling protocol ldp</td>
<td></td>
</tr>
<tr>
<td>Step 7 load-balance flow-label both</td>
<td>Enables the Flow-Aware Transport of MPLS Pseudowire feature and specifies how flow labels are used. It is recommended that you use both as the option for flow-label. However, if you choose not to use both, you can either use load-balance flow-label transmit or load-balance flow-label receive if necessary.</td>
</tr>
<tr>
<td>Example: Device(config-pw-class)# load-balance flow-label both</td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-pw-class)# end</td>
<td></td>
</tr>
<tr>
<td>Step 9 show l2vpn atom vc detail</td>
<td>Displays detailed output that shows information about the flow labels configured for the pseudowire.</td>
</tr>
<tr>
<td>Example: Device# show l2vpn atom vc detail</td>
<td></td>
</tr>
<tr>
<td>Step 10 show ssm id</td>
<td>Displays information for all Segment Switching Manager (SSM) IDs.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# show ssm id</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show mpls l2transport vc 1 detail` command that shows information about the VC details:

```text
Device# show mpls l2transport vc 1 detail

Local interface: Te0/5/2 up, line protocol up, Eth VLAN 1 up
Interworking type is Ethernet
Destination address: 4.4.4.4, VC ID: 1, VC status: up
Output interface: BD12, imposed label stack {23 16}
Preferred path: not configured
Default path: active
Next hop: 12.0.0.2
Create time: 23:12:54, last status change time: 23:09:05
Last label FSM state change time: 23:09:02
Signaling protocol: LDP, peer 4.4.4.4:0 up
Targeted Hello: 1.1.1.1(LDP Id) -> 4.4.4.4, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
   LDP route watch : enabled
   Label/status state machine : established, LruRru
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: No fault
Last local AC circuit status sent: No fault
Last local PW i/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 27, remote 16
Group ID: local 8, remote 8
MTU: local 9216, remote 9216
Remote interface description:
   Sequencing: receive disabled, send disabled
   Control Word: On
   SSO Descriptor: 4.4.4.4/1, local label: 27
Dataplane:
   SSM segment/switch IDs: 32854/4116 (used), PWID: 1
VC statistics:
   transit packet totals: receive 0, send 0
   transit byte totals: receive 0, send 0
   transit packet drops: receive 0, seq error 0, send 0
```

The following is sample output from the `show ssm id` command that shows information for all Segment Switching Manager (SSM) IDs:

```text
Device# show ssm id

SSM Status: 1 switch
   Switch-ID 4096 State: Open
   Segment-ID: 8194 Type: Eth[2]
```
Configuring Flow-Aware Transport (FAT) Load Balancing using a template

SUMMARY STEPS

1. enable
2. configure terminal
3. template type pseudowire [pseudowire-name]
4. encapsulation mpls
5. load-balance flow
6. load-balance flow-label
7. end
8. interface pseudowire number
9. source template type pseudowire
10. encapsulation mpls
11. neighbor peer-address vcid-value
12. signaling protocol ldp
13. end
14. show l2vpn atom vc detail
15. show ssm id
16. show mpls forwarding-table exact-route
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 template type pseudowire [pseudowire-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# template type pseudowire fatpw</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5 load-balance flow</td>
<td>Enables the AToM Load Balancing with Single PW feature so that load balancing is done on a per-flow basis.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-pw-class)# load-balance flow</td>
<td></td>
</tr>
<tr>
<td>Step 6 load-balance flow-label</td>
<td>Enables the Flow-Aware Transport of MPLS Pseudowires feature and specifies how flow labels are to be used.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-pw-class)# load-balance flow-label</td>
<td></td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-pw-class)# end</td>
<td></td>
</tr>
<tr>
<td>Step 8 interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Step 9 source template type pseudowire</td>
<td>Configures the source template of type pseudowire named fatpw.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# source template type pseudowire fatpw</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# encapsulation mpls</td>
</tr>
<tr>
<td>11</td>
<td>neighbor peer-address vcid-value</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# neighbor 10.1.1.1 1</td>
</tr>
<tr>
<td>12</td>
<td>signaling protocol ldp</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# signaling protocol ldp</td>
</tr>
<tr>
<td>13</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# end</td>
</tr>
<tr>
<td>14</td>
<td>show l2vpn atom vc detail</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device# show l2vpn atom vc detail</td>
</tr>
<tr>
<td>15</td>
<td>show ssm id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device# show ssm id</td>
</tr>
<tr>
<td>16</td>
<td>show mpls forwarding-table exact-route</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device# show mpls forwarding-table exact-route label 32 ethernet source 001d.e558.5c1a dest 000e.8379.1c1b detail</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show l2vpn atom vc detail` command that shows information about the flow labels configured for the pseudowire:

```
Device# show l2vpn atom vc detail

pseudowire100001 is up, VC status is up PW type: Ethernet
Create time: 00:01:47, last status change time: 00:01:29
Last label FSM state change time: 00:01:29
Destination address: 10.1.1.151 VC ID: 100
```
Output interface: Se3/0, imposed label stack (1001 100)
Preferred path: not configured
Default path: active
Next hop: point2point
Load Balance: Flow
flow classification: ethernet src-dst-mac
Member of xconnect service Et0/0-2, group right
Associated member Et0/0 is up, status is up
Interworking type is Like2Like
Service id: 0xcf000001
Signaling protocol: LDP, peer 10.1.1.151:0 up
Targeted Hello: 10.1.1.152(LDP Id) -> 10.1.1.151, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
PWid FEC (128), VC ID: 100
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Local dataplane status received : No fault
BFD dataplane status received : Not sent
BFD peer monitor status received : No fault
Status received from access circuit : No fault
Status sent to access circuit : No fault
Status received from pseudowire i/f : No fault
Status sent to network peer : No fault
Status received from network peer : No fault
Adjacency status of remote peer : No fault
Sequencing: receive disabled, send disabled

Bindings
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>Group ID</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTU</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Control word on (configured: autosense)</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>PW type</td>
<td>Ethernet</td>
<td>Ethernet</td>
</tr>
<tr>
<td>VCCV CV type</td>
<td>0x12</td>
<td>0x12</td>
</tr>
<tr>
<td>VCCV CC type</td>
<td>0x07</td>
<td>0x07</td>
</tr>
<tr>
<td>Status TLV</td>
<td>enabled</td>
<td>supported</td>
</tr>
<tr>
<td>Flow label</td>
<td>enabled, T=1, R=0</td>
<td>enabled, T=1, R=1</td>
</tr>
</tbody>
</table>

Dataplane:
SSM segment/switch IDs: 4097/4096 (used), PWID: 1
Rx Counters
28 input transit packets, 2602 bytes
0 drops, 0 seq err
Tx Counters
31 output transit packets, 3694 bytes
0 drops

The following is sample output from the `show ssm id` command that shows information for all Segment Switching Manager (SSM) IDs:

```
Device# show ssm id

SSM Status: 1 switch
Switch-ID 4096 State: Open
Segment-ID: 8194 Type: Eth[2]
Switch-ID: 4096
Physical intf: Local
Allocated By: This CPU
```
The following is sample output from the `show mpls forwarding-table exact-route` command that shows the exact path for the source and destination address pair:

```
Device# show mpls forwarding-table exact-route label 32 ethernet source 001d.e558.5c1a dest 000e.8379.1c1b detail

Local Outgoing Prefix Bytes Label Outgoing Next Hop
Label Label or Tunnel Id Switched interface
32 No Label 12ckt(66) 1163 Gi1/0/4 point2point
MAC/Encaps=0/0, MRU=0, Label Stack{}
No output feature configured
Flow label: 227190
```

Configuration Examples for Any Transport over MPLS

Example: ATM over MPLS

The table below shows the configuration of ATM over MPLS on two PE routers.
Example: ATM over MPLS Using Commands Associated with L2VPN Protocol-Based Feature

The table below shows the configuration of ATM over MPLS on two PE routers.

Table 8: ATM over MPLS Configuration Example

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls ldp router-id Loopback0 force</td>
<td>mpls ldp router-id Loopback0 force</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.16.12.12 255.255.255.255</td>
<td>ip address 10.13.13.13 255.255.255.255</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface ATM4/0/0</td>
<td>interface ATM4/0/0</td>
</tr>
<tr>
<td>pvc 0/100 l2transport</td>
<td>pvc 0/100 l2transport</td>
</tr>
<tr>
<td>encapsulation aal0</td>
<td>encapsulation aal0</td>
</tr>
<tr>
<td>xconnect 10.13.13.13 100 encapsulation mpls</td>
<td>xconnect 10.16.12.12 100 encapsulation mpls</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface ATM4/0/0.300 point-to-point</td>
<td>interface ATM4/0/0.300 point-to-point</td>
</tr>
<tr>
<td>no ip directed-broadcast</td>
<td>no ip directed-broadcast</td>
</tr>
<tr>
<td>no atm enable-ilmi-trap</td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td>pvc 0/300 l2transport</td>
<td>pvc 0/300 l2transport</td>
</tr>
<tr>
<td>encapsulation aal0</td>
<td>encapsulation aal0</td>
</tr>
<tr>
<td>xconnect 10.13.13.13 300 encapsulation mpls</td>
<td>xconnect 10.16.12.12 300 encapsulation mpls</td>
</tr>
</tbody>
</table>
Table 9: ATM over MPLS Configuration Example

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
</table>

Example: ATM over MPLS Using Commands Associated with L2VPN Protocol-Based Feature

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls ldp router-id Loopback0 force</td>
<td>mpls ldp router-id Loopback0 force</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.16.12.12 255.255.255.255</td>
<td>ip address 10.13.13.13 255.255.255.255</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface ATM4/0/0</td>
<td>interface ATM4/0/0</td>
</tr>
<tr>
<td>pvc 0/100 l2transport</td>
<td>pvc 0/100 l2transport</td>
</tr>
<tr>
<td>encapsulation aal0</td>
<td>encapsulation aal0</td>
</tr>
<tr>
<td>interface pseudowire 100</td>
<td>interface pseudowire 100</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>neighbor 10.0.0.1 123</td>
<td>neighbor 10.0.0.1 123</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>l2vpn xconnect context A</td>
<td>l2vpn xconnect context A</td>
</tr>
<tr>
<td>member pseudowire 100</td>
<td>member pseudowire 100</td>
</tr>
<tr>
<td>member atm 100</td>
<td>member atm 100</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface ATM4/0/0.300 point-to-point</td>
<td>interface ATM4/0/0.300 point-to-point</td>
</tr>
<tr>
<td>no atm enable-ilmi-trap</td>
<td>no ip directed-broadcast</td>
</tr>
<tr>
<td>pvc 0/300 l2transport</td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td>encapsulation aal0</td>
<td>pvc 0/300 l2transport</td>
</tr>
<tr>
<td>interface pseudowire 300</td>
<td>encapsulation aal0</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>interface pseudowire 300</td>
</tr>
<tr>
<td>neighbor 10.0.0.1 123</td>
<td>encapsulation mpls</td>
</tr>
</tbody>
</table>
Example: Configuring ATM AAL5 over MPLS in VC Class Configuration Mode

The following example configures ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```
enable
configure terminal
vc-class atm aal5class
encapsulation aal5
interface atm1/0/0
class-int aal5class
pvc 1/200 l2transport
xconnect 10.13.13.13 100 encapsulation mpls
```

The following example configures ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```
enable
configure terminal
vc-class atm aal5class
encapsulation aal5
interface atm1/0/0
pvc 1/200 l2transport
class-vc aal5class
xconnect 10.13.13.13 100 encapsulation mpls
```

Example: Configuring ATM AAL5 over MPLS in VC Class Configuration Mode

Using Commands Associated with L2VPN Protocol-Based Feature

The following example configures ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```
enable
configure terminal
vc-class atm aal5class
encapsulation aal5
interface atm1/0/0
class-int aal5class
pvc 1/200 l2transport
interface pseudowire 100
encapsulation mpls
```
neighbor 10.0.0.1 123
exit
l2vpn xconnect context A
member pseudowire 100
member atm 100
exit

Example: Ethernet over MPLS with MPLS Traffic Engineering Fast Reroute

The following configuration example and the figure show the configuration of Ethernet over MPLS with fast reroute on AToM PE routers.

Routers PE1 and PE2 have the following characteristics:

- A TE tunnel called Tunnel41 is configured between PE1 and PE2, using an explicit path through a link called L1. AToM VCs are configured to travel through the FRR-protected tunnel Tunnel41.
- The link L1 is protected by FRR, the backup tunnel is Tunnel1.
- PE2 is configured to forward the AToM traffic back to PE1 through the L2 link.

Figure 5: Fast Reroute Configuration

PE1 Configuration

```plaintext
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback1 force
!
pseudowire-class T41
encapsulation mpls
  preferred-path interface Tunnel41 disable-fallback
!
pseudowire-class IP1
encapsulation mpls
  preferred-path peer 10.4.0.1 disable-fallback
!
interface Loopback1
  ip address 10.0.0.27 255.255.255.255
!
interface Tunnel1
  ip unnumbered Loopback1
tunnel destination 10.0.0.1
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 1 1
tunnel mpls traffic-eng bandwidth 10000
tunnel mpls traffic-eng path-option 1 explicit name FRR
!
interface Tunnel41
  ip unnumbered Loopback1
tunnel destination 10.0.0.4
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng priority 1 1
tunnel mpls traffic-eng bandwidth 1000
```
tunnel mpls traffic-eng path-option 1 explicit name name-1
tunnel mpls traffic-eng fast-reroute
!
interface POS0/0/0
description pe1name POS8/0/0
ip address 10.1.0.2 255.255.255.252
mpls traffic-eng tunnels
mpls traffic-eng backup-path Tunnel1
crc 16
clock source internal
pos ais-shut
pos report lrdi
ip rsvp bandwidth 155000 155000
!
interface POS0/3/0
description pe1name POS10/1/0
ip address 10.1.0.14 255.255.255.252
mpls traffic-eng tunnels
crc 16
clock source internal
ip rsvp bandwidth 155000 155000
!
interface gigabitethernet3/0/0.1
encapsulation dot1Q 203
xconnect 10.0.0.4 2 pw-class IP1
!
interface gigabitethernet3/0/0.2
encapsulation dot1Q 204
xconnect 10.0.0.4 4 pw-class T41
!
router ospf 1
network 10.0.0.0 0.255.255.255 area 0
mpls traffic-eng router-id Loopback1
mpls traffic-eng area 0
!
ip classless
ip route 10.4.0.1 255.255.255.255 Tunnel41
!
ip explicit-path name xxxx-1 enable
next-address 10.4.1.2
next-address 10.1.0.10

P Configuration

ip cef
mpls traffic-eng tunnels
!
interface Loopback1
ip address 10.0.0.1 255.255.255.255
!
interface FastEthernet1/0/0
ip address 10.4.1.2 255.255.255.0
mpls traffic-eng tunnels
ip rsvp bandwidth 10000 10000
!
interface POS8/0/0
description xxxx POS0/0
ip address 10.1.0.1 255.255.255.252
mpls traffic-eng tunnels
pos ais-shut
pos report lrdi
ip rsvp bandwidth 155000 155000
Example: Ethernet over MPLS with MPLS Traffic Engineering Fast Reroute Using Commands Associated with L2VPN Protocol-Based Feature

The following configuration example and the figure show the configuration of Ethernet over MPLS with fast reroute on AToM PE routers.
Routers PE1 and PE2 have the following characteristics:

- A TE tunnel called Tunnel41 is configured between PE1 and PE2, using an explicit path through a link called L1. AToM VCs are configured to travel through the FRR-protected tunnel Tunnel41.

- The link L1 is protected by FRR, the backup tunnel is Tunnel1.

- PE2 is configured to forward the AToM traffic back to PE1 through the L2 link.

Figure 6: Fast Reroute Configuration

PE1 Configuration

```plaintext
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback1 force

!
template type pseudowire T41
  encapsulation mpls
  preferred-path interface Tunnel41 disable-fallback

!template type pseudowire IP1
  encapsulation mpls
  preferred-path peer 10.4.0.1 disable-fallback

!interface Loopback1
  ip address 10.0.0.27 255.255.255.255

!interface Tunnel1
  ip unnumbered Loopback1
  tunnel destination 10.0.0.1
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng priority 1 1
  tunnel mpls traffic-eng bandwidth 10000
  tunnel mpls traffic-eng path-option 1 explicit name FRR

!interface Tunnel41
  ip unnumbered Loopback1
  tunnel destination 10.0.0.4
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng priority 1 1
  tunnel mpls traffic-eng bandwidth 1000
  tunnel mpls traffic-eng path-option 1 explicit name name-1
  tunnel mpls traffic-eng fast-reroute

!interface POS0/0/0
  description pe1name POS8/0/0
  ip address 10.1.0.2 255.255.255.252
  mpls traffic-eng tunnels
  mpls traffic-eng backup-path Tunnel1
crc 16
clock source internal
pos ais-shut
pos report lrdi
ip rsvp bandwidth 155000 155000
```
interface POS0/3/0
description pe1name POS10/1/0
ip address 10.1.0.14 255.255.255.252
mpls traffic-eng tunnels
crc 16
clock source internal
ip rsvp bandwidth 155000 155000
!
interface gigabitethernet3/0/0.1
capsulation dot1Q 203
interface pseudowire 100
source template type pseudowire T41
neighbor 10.0.0.4 2
!
l2vpn xconnect context con1
!
interface gigabitethernet3/0/0.2
capsulation dot1Q 204
interface pseudowire 100
source template type pseudowire IP1
neighbor 10.0.0.4 4
!
l2vpn xconnect context con2
!
router ospf 1
network 10.0.0.0 0.255.255.255 area 0
mpls traffic-eng router-id Loopback1
mpls traffic-eng area 0
!
ip classless
ip route 10.4.0.1 255.255.255.255 Tunnel41
!
ip explicit-path name xxxx-1 enable
next-address 10.4.1.2
next-address 10.1.0.10

P Configuration

ip cef
mpls traffic-eng tunnels
!
interface Loopback1
ip address 10.0.0.1 255.255.255.255
!
interface FastEthernet1/0/0
ip address 10.4.1.2 255.255.255.0
mpls traffic-eng tunnels
ip rsvp bandwidth 10000 10000
!
interface POS8/0/0
description xxxx POS0/0
ip address 10.1.0.1 255.255.255.252
mpls traffic-eng tunnels
pos ais-shut
pos report lrdi
ip rsvp bandwidth 155000 155000
!
interface POS10/1/0
description xxxx POS0/3
ip address 10.1.0.13 255.255.255.252
mpls traffic-eng tunnels
ip rsvp bandwidth 155000 155000

Any Transport over MPLS

Example: Ethernet over MPLS with MPLS Traffic Engineering Fast Reroute Using Commands Associated with L2VPN Protocol-Based Feature
! router ospf 1
 network 10.0.0.0 0.255.255.255 area 0
 mpls traffic-eng router-id Loopback1
! mpls traffic-eng area 0

PE2 Configuration

ip cef
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback1 force
!
interface Loopback1
 ip address 10.0.0.4 255.255.255.255
!
interface loopback 2
 ip address 10.4.0.1 255.255.255.255
!
interface Tunnel27
 ip unnumbered Loopback1
 tunnel destination 10.0.0.27
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng autoroute announce
 tunnel mpls traffic-eng priority 1 1
 tunnel mpls traffic-eng bandwidth 1000
 tunnel mpls traffic-eng path-option 1 explicit name xxxx-1
!
interface FastEthernet0/0/0.2
 encapsulation dot1Q 203
interface pseudowire 100
 encapsulation mpls
 neighbor 10.0.0.1 123
!
 l2vpn xconnect context A
 member pseudowire 100
 member gigabitethernet 0/0/0.1
!
interface FastEthernet0/0/0.3
 encapsulation dot1Q 204
interface pseudowire 100
 encapsulation mpls
 neighbor 10.0.0.1 123
!
 l2vpn xconnect context A
 member pseudowire 100
 member gigabitethernet 0/0/0.1
!
interface FastEthernet1/1/0
 ip address 10.4.1.1 255.255.255.0
 mpls traffic-eng tunnels
 ip rsvp bandwidth 10000 10000
!
router ospf 1
 network 10.0.0.0 0.255.255.255 area 0
 mpls traffic-eng router-id Loopback1
 mpls traffic-eng area 0
!
 ip explicit-path name xxxx-1 enable
 next-address 10.4.1.2
 next-address 10.1.0.10
Example: Configuring OAM Cell Emulation

The following example shows how to enable OAM cell emulation on an ATM PVC:

```
interface ATM 1/0/0
pvc 1/200 l2transport
encapsulation aal5
xconnect 10.13.13.13 100 encapsulation mpls
oam-ac emulation-enable
oam-pvc manage
```

The following example shows how to set the rate at which an AIS cell is sent every 30 seconds:

```
interface ATM 1/0/0
pvc 1/200 l2transport
encapsulation aal5
xconnect 10.13.13.13 100 encapsulation mpls
oam-ac emulation-enable 30
oam-pvc manage
```

The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
interface atm1/0/0
class-int oamclass
pvc 1/200 l2transport
xconnect 10.13.13.13 100 encapsulation mpls
```

The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
interface atm1/0/0
pvc 1/200 l2transport
class-vc oamclass
xconnect 10.13.13.13 100 encapsulation mpls
```

The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface. One PVC is configured with OAM cell emulation at an AIS rate of 10. That PVC uses the AIS rate of 10 instead of 30.

```
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
```

Any Transport over MPLS
Example: Configuring OAM Cell Emulation using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows how to enable OAM cell emulation on an ATM PVC:

```plaintext
interface ATM 1/0/0
pvc 1/200 l2transport
encapsulation aal5
interface pseudowire 100
encapsulation mpls
neighbor 10.0.0.1 123
! l2vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1
!
oam-ac emulation-enable
oam-pvc manage
```

The following example shows how to set the rate at which an AIS cell is sent every 30 seconds:

```plaintext
interface ATM 1/0/0
pvc 1/200 l2transport
encapsulation aal5
interface pseudowire 100
encapsulation mpls
neighbor 10.0.0.1 123
! l2vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1
!
oam-ac emulation-enable 30
oam-pvc manage
```

The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```plaintext
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
interface atm1/0/0
class-int oamclass
pvc 1/200 l2transport
interface pseudowire 100
encapsulation mpls
neighbor 10.0.0.1 123
!
l2vpn xconnect context A
```
The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
interface atm1/0/0
pvc 1/200 l2transport
class-vc oamclass
interface pseudowire 100
encapsulation mpls
neighbor 10.0.0.1 123
!
l2vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1
```

The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface. One PVC is configured with OAM cell emulation at an AIS rate of 10. That PVC uses the AIS rate of 10 instead of 30.

```
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
interface atm1/0/0
class-int oamclass
pvc 1/200 l2transport
oam-ac emulation-enable 10
interface pseudowire 100
encapsulation mpls
neighbor 10.0.0.1 123
!
l2vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1
```

Example: Configuring ATM Cell Relay over MPLS

The following example shows how to configure ATM cell relay over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```
enable
configure terminal
vc-class atm cellrelay
encapsulation aal0
interface atm1/0/0
class-int cellrelay
pvc 1/200 l2transport
xconnect 10.13.13.13 100 encapsulation mpls
```
The following example shows how to configure ATM cell relay over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```bash
enable
cfg-term
vc-class atm cellrelay
encapsulation aal0
interface atm1/0/0
pvc 1/200 l2transport
class-vc cellrelay
xconnect 10.13.13.13 100 encapsulation mpls
```

The following example shows how to configure a pseudowire class to transport single ATM cells over a virtual path:

```bash
pseudowire-class vp-cell-relay
encapsulation mpls
interface atm 5/0
atm pvp 1 l2transport
xconnect 10.0.0.1 123 pw-class vp-cell-relay
```

Example: Configuring ATM Cell Relay over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows how to configure ATM cell relay over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```bash
enable
cfg-term
vc-class atm cellrelay
encapsulation aal0
interface atm1/0/0
class-int cellrelay
pvc 1/200 l2transport
interface pseudowire 100
encapsulation mpls
neighbor 10.13.13.13 100
l2vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1
```

The following example shows how to configure ATM cell relay over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```bash
enable
cfg-term
vc-class atm cellrelay
encapsulation aal0
interface atm1/0/0
pvc 1/200 l2transport
class-vc cellrelay
interface pseudowire 100
encapsulation mpls
neighbor 10.13.13.13 100
l2vpn xconnect context A
```
The following example shows how to configure a pseudowire class to transport single ATM cells over a virtual path:

```
member pseudowire 100
member gigabitethernet 0/0/0.1

template type pseudowire vp-cell-relay
encapsulation mpls
interface atm 5/0
atm pvp 1 l2transport
interface pseudowire 100
   source template type pseudowire ether-pw
   neighbor 10.0.0.1 123
!
12vpn xconnect context con1
```

Example: Configuring per-Subinterface MTU for Ethernet over MPLS

The figure below shows a configuration that enables matching MTU values between VC endpoints.

As shown in the figure, PE1 is configured in xconnect subinterface configuration mode with an MTU value of 1500 bytes in order to establish an end-to-end VC with PE2, which also has an MTU value of 1500 bytes. If PE1 was not set with an MTU value of 1500 bytes, in xconnect subinterface configuration mode, the subinterface would inherit the MTU value of 2000 bytes set on the interface. This would cause a mismatch in MTU values between the VC endpoints, and the VC would not come up.

Figure 7: Configuring MTU Values in xconnect Subinterface Configuration Mode

The following examples show the router configurations in the figure above:

CE1 Configuration

```
interface gigabitethernet0/0/0
mtu 1500
no ip address
!
interface gigabitethernet0/0/0.1
   encapsulation dot1Q 100
   ip address 10.181.182.1 255.255.255.0
```

PE1 Configuration

```
interface gigabitethernet0/0/0
mtu 2000
no ip address
!
interface gigabitethernet0/0/0.1
   encapsulation dot1Q 100
```
xconnect 10.1.1.152 100 encapsulation mpls
 mtu 1500
!
interface gigabitethernet0/0/0.2
 encapsulation dot1Q 200
 ip address 10.151.100.1 255.255.255.0
 mpls ip

PE2 Configuration

interface gigabitethernet1/0/0
 mtu 2000
 no ip address
!
interface gigabitethernet1/0/0.2
 encapsulation dot1Q 200
 ip address 10.100.152.2 255.255.255.0
 mpls ip
!
interface fastethernet0/0/0
 no ip address
!
interface fastethernet0/0/0.1
 description default MTU of 1500 for FastEthernet
 encapsulation dot1Q 100
 xconnect 10.1.1.151 100 encapsulation mpls

CE2 Configuration

interface fastethernet0/0/0
 no ip address
interface fastethernet0/0/0.1
 encapsulation dot1Q 100
 ip address 10.181.182.2 255.255.255.0

The `show mpls l2transport binding` command, issued from router PE1, shows a matching MTU value of 1500 bytes on both the local and remote routers:

Router# show mpls l2transport binding
Destination Address: 10.1.1.152, VC ID: 100
 Local Label: 100
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1500, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2]
 CV Type: LSPV [2]
 Remote Label: 202
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1500, Interface Desc: n/a
 VCCV: CC Type: RA [2]
 CV Type: LSPV [2]

Router# show mpls l2transport vc detail
Local interface: Gi0/0/0.1 up, line protocol up, Eth VLAN 100 up
 Destination address: 10.1.1.152, VC ID: 100, VC status: up
 Output interface: Gi0/0/0.2, imposed label stack {202}
 Preferred path: not configured
 Default path: active
 Next hop: 10.151.152.2
 Create time: 1d11h, last status change time: 1d11h
 Signaling protocol: LDP, peer 10.1.1.152:0 up
Example: Configuring per-Subinterface MTU for Ethernet over MPLS using the commands associated with the L2VPN Protocol-Based CLIs feature

The figure below shows a configuration that enables matching MTU values between VC endpoints.

As shown in the figure, PE1 is configured in xconnect subinterface configuration mode with an MTU value of 1500 bytes in order to establish an end-to-end VC with PE2, which also has an MTU value of 1500 bytes. If PE1 was not set with an MTU value of 1500 bytes, in xconnect subinterface configuration mode, the subinterface would inherit the MTU value of 2000 bytes set on the interface. This would cause a mismatch in MTU values between the VC endpoints, and the VC would not come up.

Figure 8: Configuring MTU Values in xconnect Subinterface Configuration Mode

The following examples show the router configurations in the figure above:

CE1 Configuration

interface gigabitethernet0/0/0
 mtu 1500
 no ip address

interface gigabitethernet0/0/0.1
 encapsulation dot1Q 100
 ip address 10.181.182.1 255.255.255.0

PE1 Configuration

interface gigabitethernet0/0/0
 mtu 2000
 no ip address

interface gigabitethernet0/0/0.1
 encapsulation dot1Q 100
 interface pseudowire 100
 encapsulation mpls
 neighbor 10.0.0.1 123
 mtu 1500
l2vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1
!
interface gigabitethernet0/0/0.2
encapsulation dot1Q 200
ip address 10.151.100.1 255.255.255.0
mpls ip

PE2 Configuration

interface gigabitethernet1/0/0
mtu 2000
no ip address
!
interface gigabitethernet1/0/0.2
encapsulation dot1Q 200
ip address 10.100.152.2 255.255.255.0
mpls ip
!
interface fastethernet0/0/0
no ip address
!
interface fastethernet0/0/0.1
description default MTU of 1500 for FastEthernet
encapsulation dot1Q 100
interface pseudowire 100
encapsulation mpls
neighbor 10.0.0.1 123
mtu 1500
!
l2vpn xconnect context A
member pseudowire 100
member gigabitethernet 0/0/0.1

CE2 Configuration

interface fastethernet0/0/0
no ip address
interface fastethernet0/0/0.1
encapsulation dot1Q 100
ip address 10.181.182.2 255.255.255.0

The show l2vpn atom binding command, issued from router PE1, shows a matching MTU value of 1500 bytes on both the local and remote routers:

Device# show l2vpn atom binding
Destination Address: 10.1.1.152, VC ID: 100
Local Label: 100
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1500, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2]
 CV Type: LSPV [2]
Remote Label: 202
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1500, Interface Desc: n/a
 VCCV: CC Type: RA [2]
 CV Type: LSPV [2]
Example: Configuring Tunnel Selection

The following example shows how to set up two preferred paths for PE1. One preferred path specifies an MPLS traffic engineering tunnel. The other preferred path specifies an IP address of a loopback address on PE2. There is a static route configured on PE1 that uses a TE tunnel to reach the IP address on PE2.

PE1 Configuration

```plaintext
mpls label protocol ldp
mpls traffic-eng tunnels
tag-switching tdp router-id Loopback0
pseudowire-class pw1
    encapsulation mpls
    preferred-path interface Tunnel1 disable-fallback

pseudowire-class pw2
    encapsulation mpls
    preferred-path peer 10.18.18.18

interface Loopback0
    ip address 10.2.2.2 255.255.255.255
    no ip directed-broadcast
    no ip mroute-cache

interface Tunnel1
    ip unnumbered Loopback0
    no ip directed-broadcast
    tunnel destination 10.16.16.16
    tunnel mode mpls traffic-eng
    tunnel mpls traffic-eng priority 7 7
    tunnel mpls traffic-eng bandwidth 1500
    tunnel mpls traffic-eng path-option 1 explicit name path-tu1

interface Tunnel2
    ip unnumbered Loopback0
    no ip directed-broadcast
    tunnel destination 10.16.16.16
    tunnel mode mpls traffic-eng
    tunnel mpls traffic-eng priority 7 7
    tunnel mpls traffic-eng bandwidth 1500
    tunnel mpls traffic-eng path-option 1 dynamic

interface gigabitethernet0/0/0
    no ip address
    no ip directed-broadcast
    no negotiation auto

interface gigabitethernet0/0/0.1
    encapsulation dot1Q 222
    no ip directed-broadcast
    xconnect 10.16.16.16 101 pw-class pw1

interface ATM1/0/0
    no ip address
    no ip directed-broadcast
    no atm enable-ilmi-trap
    no atm ilmi-keepalive
    pvc 0/50 12transport
    encapsulation aal5
    xconnect 10.16.16.16 150 pw-class pw2
```

interface FastEthernet2/0/1
ip address 10.0.0.1 255.255.255.0
no ip directed-broadcast
tag-switching ip
mpls traffic-eng tunnels
ip rsvp bandwidth 15000 15000
!
router ospf 1
log-adjacency-changes
network 10.0.0.0 0.0.0.255 area 0
network 10.2.2.0 0.0.0.0 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
!
ip route 10.18.18.18 255.255.255.255 Tunnel2
!
ip explicit-path name path-tu1 enable
next-address 10.0.0.1
index 3 next-address 10.0.0.1

PE2 Configuration

mpls label protocol ldp
mpls ldp router-id Loopback0
interface Loopback0
ip address 10.16.16.16 255.255.255.255
no ip directed-broadcast
no ip mroute-cache
!
interface Loopback2
ip address 10.18.18.18 255.255.255.255
no ip directed-broadcast
!
interface FastEthernet1/1/0
ip address 10.0.0.2 255.255.255.0
no ip directed-broadcast
mpls traffic-eng tunnels
mpls ip
no cdp enable
ip rsvp bandwidth 15000 15000
!
interface FastEthernet1/1/1
no ip address
no ip directed-broadcast
no cdp enable
!
interface FastEthernet1/1/1.1
encapsulation dot1Q 222
no ip directed-broadcast
no cdp enable
mpls l2transport route 10.2.2.2 101
!
interface ATM5/0/1
no ip address
no ip directed-broadcast
no atm enable-ilmi-trap
no atm ilmi-keepalive
pvc 0/50 l2transport
encapsulation aal5
xconnect 10.2.2.2 150 encapsulation mpls
!
router ospf 1
Example: Configuring Tunnel Selection Using Commands Associated with L2VPN Protocol-Based Feature

The following example shows how to set up two preferred paths for PE1. One preferred path specifies an MPLS traffic engineering tunnel. The other preferred path specifies an IP address of a loopback address on PE2. There is a static route configured on PE1 that uses a TE tunnel to reach the IP address on PE2.

PE1 Configuration

```
mpls label protocol ldp
mpls traffic-eng tunnels
tag-switching tdp router-id Loopback0
template type pseudowire pw1
  encapsulation mpls
  preferred-path interface Tunnel1 disable-fallback
!
template type pseudowire pw2
  encapsulation mpls
  preferred-path peer 10.18.18.18
!
interface Loopback0
  ip address 10.2.2.2 255.255.255.255
  no ip directed-broadcast
  no ip mroute-cache
!
interface Tunnel1
  ip unnumbered Loopback0
  no ip directed-broadcast
  tunnel destination 10.16.16.16
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng priority 7 7
  tunnel mpls traffic-eng bandwidth 1500
  tunnel mpls traffic-eng path-option 1 explicit name path-tu1
!
interface Tunnel2
  ip unnumbered Loopback0
  no ip directed-broadcast
  tunnel destination 10.16.16.16
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng priority 7 7
  tunnel mpls traffic-eng bandwidth 1500
  tunnel mpls traffic-eng path-option 1 dynamic
!
interface gigabitethernet0/0/0
  no ip address
  no ip directed-broadcast
  no negotiation auto
!
interface gigabitethernet0/0/0.1
  encapsulation dot1Q 222
  no ip directed-broadcast
  interface pseudowire 100
  source template type pseudowire pw1
```
neighbor 10.16.16.16 101
! l2vpn xconnect context con1
! interface ATM1/0/0
 no ip address
 no ip directed-broadcast
 no atm enable-ilmi-trap
 no atm ilmi-keepalive
 pvc 0/50 l2transport
 encapsulation aal5
 interface pseudowire 100
 source template type pseudowire pw2
 neighbor 10.16.16.16 150
! l2vpn xconnect context con1
! interface FastEthernet2/0/1
 ip address 10.0.0.1 255.255.255.0
 no ip directed-broadcast
 tag-switching ip
 mpls traffic-eng tunnels
 ip rsvp bandwidth 15000 15000
! router ospf 1
 log-adjacency-changes
 network 10.0.0.0 0.0.0.255 area 0
 network 10.2.2.0 0.0.0.0 area 0
 mpls traffic-eng router-id Loopback0
 mpls traffic-eng area 0
! ip route 10.18.18.18 255.255.255.255 Tunnel2
! ip explicit-path name path-tu1 enable
 next-address 10.0.0.1
 index 3 next-address 10.0.0.1

PE2 Configuration

mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback0
interface Loopback0
 ip address 10.16.16.16 255.255.255.255
 no ip directed-broadcast
 no ip mroute-cache
! interface Loopback2
 ip address 10.18.18.18 255.255.255.255
 no ip directed-broadcast
! interface FastEthernet1/1/0
 ip address 10.0.0.2 255.255.255.0
 no ip directed-broadcast
 mpls traffic-eng tunnels
 mpls ip
 no cdp enable
 ip rsvp bandwidth 15000 15000
! interface FastEthernet1/1/1
 no ip address
 no ip directed-broadcast
 no cdp enable
Example: Configuring MTU Values in xconnect Configuration Mode for L2VPN Interworking

The following example shows an L2VPN Interworking example. The PE1 router has a serial interface configured with an MTU value of 1492 bytes. The PE2 router uses xconnect configuration mode to set a matching MTU of 1492 bytes, which allows the two routers to form an interworking VC. If the PE2 router did not set the MTU value in xconnect configuration mode, the interface would be set to 1500 bytes by default and the VC would not come up.

Note

L2VPN interworking is not supported on Cisco ASR 900 RSP3 Module.

PE1 Configuration

pseudowire-class atom-ipiw
encapsulation mpls
interworking ip
interface Loopback0
 ip address 10.1.1.151 255.255.255.255
interface Serial2/0/0
 mtu 1492
 no ip address
 encapsulation ppp
 no fair-queue
 serial restart-delay 0

Example: Configuring MTU Values in xconnect Configuration Mode for L2VPN Interworking
Example: Configuring MTU Values in xconnect Configuration Mode for L2VPN Interworking

```
xconnect 10.1.1.152 123 pw-class atom-ipiw

interface Serial4/0/0
  ip address 10.151.100.1 255.255.255.252
  encapsulation ppp
  mpls ip
  serial restart-delay 0
!
router ospf 1
  log-adjacency-changes
  network 10.1.1.151 0.0.0.0 area 0
  network 10.151.100.0 0.0.0.3 area 0
!
mls ldp router-id Loopback0
```

PE2 Configuration

```
pseudowire-class atom-ipiw
  encapsulation mpls
  interworking ip
!
interface Loopback0
  ip address 10.1.1.152 255.255.255.255
!
interface FastEthernet0/0/0
  no ip address
  xconnect 10.1.1.151 123 pw-class atom-ipiw
  mtu 1492
!
interface Serial4/0/0
  ip address 10.100.152.2 255.255.255.252
  encapsulation ppp
  mpls ip
  serial restart-delay 0
!
router ospf 1
  log-adjacency-changes
  network 10.1.1.152 0.0.0.0 area 0
  network 10.100.152.0 0.0.0.3 area 0
!
mls ldp router-id Loopback0
```

The `show mpls l2transport binding` command shows that the MTU value for the local and remote routers is 1492 bytes.

PE1

```
Router# show mpls l2transport binding
Destination Address: 10.1.1.152, VC ID: 123
  Local Label: 105
    Cbit: 1, VC Type: PPP, GroupID: 0
    MTU: 1492, Interface Desc: n/a
    VCCV: CC Type: CW [1], RA [2]
      CV Type: LSPV [2]
  Remote Label: 205
    Cbit: 1, VC Type: FastEthernet, GroupID: 0
    MTU: 1492, Interface Desc: n/a
    VCCV: CC Type: RA [2]
      CV Type: LSPV [2]
```

```
Router# show mpls l2transport vc detail
Local interface: Serial2/0/0 up, line protocol up, PPP up
```
Example: Configuring MTU Values in `xconnect` Configuration Mode for L2VPN Interworking

MPLS VC type is PPP, interworking type is IP
Destination address: 10.1.1.152, VC ID: 123, VC status: up
Output interface: Serial4/0/0, imposed label stack {1003 205}
Preferred path: not configured
Default path: active
Next hop: point2point
Create time: 00:25:29, last status change time: 00:24:54
Signaling protocol: LDP, peer 10.1.1.152:0 up
Targeted Hello: 10.1.1.151 (LDP Id) -> 10.1.1.152
Status TLV support (local/remote) : enabled/supported
Label/status state machine : established, LruRru
Last local dataplane status rcvd: no fault
Last local SSS circuit status rcvd: no fault
Last local SSS circuit status sent: no fault
Last local LDP TLV status sent: no fault
Last remote LDP TLV status rcvd: no fault
MPLS VC labels: local 105, remote 205
Group ID: local n/a, remote 0
MTU: local 1492, remote 1492
Remote interface description:
Sequencing: receive disabled, send disabled
VC statistics:
packet totals: receive 30, send 29
byte totals: receive 2946, send 3364
packet drops: receive 0, send 0

PE2

Router# show mpls l2transport binding
Destination Address: 10.1.1.151, VC ID: 123
Local Label: 205
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: RA [2]
 CV Type: LSPV [2]
Remote Label: 105
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: CN [1], RA [2]
 CV Type: LSPV [2]

Router# show mpls l2transport vc detail
Local interface: Fe0/0/0 up, line protocol up, FastEthernet up
MPLS VC type is FastEthernet, interworking type is IP
Destination address: 10.1.1.151, VC ID: 123, VC status: up
Output interface: Se4/0/0, imposed label stack {1002 105}
Preferred path: not configured
Default path: active
Next hop: point2point
Create time: 00:25:19, last status change time: 00:25:19
Signaling protocol: LDP, peer 10.1.1.151:0 up
Targeted Hello: 10.1.1.152 (LDP Id) -> 10.1.1.151
Status TLV support (local/remote) : enabled/supported
Label/status state machine : established, LruRru
Last local dataplane status rcvd: no fault
Last local SSS circuit status rcvd: no fault
Last local SSS circuit status sent: no fault
Last local LDP TLV status sent: no fault
Last remote LDP TLV status rcvd: no fault
MPLS VC labels: local 205, remote 105
Group ID: local n/a, remote 0
MTU: local 1492, remote 1492
Remote interface description:
Sequencing: receive disabled, send disabled
Example: Configuring MTU Values in xconnect Configuration Mode for L2VPN Interworking Using Commands Associated with L2VPN Protocol-Based Feature

The following example shows an L2VPN Interworking example. The PE1 router has a serial interface configured with an MTU value of 1492 bytes. The PE2 router uses xconnect configuration mode to set a matching MTU of 1492 bytes, which allows the two routers to form an interworking VC. If the PE2 router did not set the MTU value in xconnect configuration mode, the interface would be set to 1500 bytes by default and the VC would not come up.

PE1 Configuration

```plaintext
template type pseudowire atom-iiw
  encapsulation mpls
  interworking ip
!
interface Loopback0
  ip address 10.1.1.151 255.255.255.255
!
interface Serial2/0/0
  mtu 1492
  no ip address
  encapsulation ppp
  no fair-queue
  serial restart-delay 0

interface pseudowire 100
  source template type pseudowire atom-iiw
  neighbor 10.1.1.152 123
!
l2vpn xconnect context con1
  member <ac_int>
  member pseudowire 100
!
interface Serial4/0/0
  ip address 10.151.100.1 255.255.255.252
  encapsulation ppp
  mpls ip
  serial restart-delay 0
!
router ospf 1
  log-adjacency-changes
  network 10.1.1.151 0.0.0.0 area 0
  network 10.151.100.0 0.0.0.3 area 0
!
mls ldp router-id Loopback0
```

PE2 Configuration

```plaintext
template type pseudowire atom-iiw
  encapsulation mpls
  interworking ip
!
interface Loopback0
  ip address 10.1.1.152 255.255.255.255
```
interface FastEthernet0/0/0
 no ip address
interface pseudowire 100
 source template type pseudowire atom-ipiw
 neighbor 10.1.1.151 123

l2vpn xconnect context con1
 member <ac_int>
 member pseudowire1

interface Serial4/0/0
 ip address 10.100.152.2 255.255.255.252
 encapsulation ppp
 mpls ip
 serial restart-delay 0

router ospf 1
 log-adjacency-changes
 network 10.1.1.152 0.0.0.0 area 0
 network 10.100.152.0 0.0.0.3 area 0

mpls ldp router-id Loopback0

The `show l2vpn atom binding` command shows that the MTU value for the local and remote routers is 1492 bytes.

PE1

Device# show l2vpn atom binding
Destination Address: 10.1.1.152, VC ID: 123
 Local Label: 105
 Cbit: 1, VC Type: PPP, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2]
 CV Type: LSPV [2]
 Remote Label: 205
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: RA [2]
 CV Type: LSPV [2]

Device# show l2vpn atom vc detail
Local interface: Serial2/0/0 up, line protocol up, PPP up
MPLS VC type is PPP, interworking type is IF
Destination address: 10.1.1.152, VC ID: 123, VC status: up
Output interface: Serial4/0/0, imposed label stack {1003 205}
Preferred path: not configured
Default path: active
Next hop: point2point
Create time: 00:25:29, last status change time: 00:24:54
Signaling protocol: LDP, peer 10.1.1.152:0 up
Targeted Hello: 10.1.1.151(LDP Id) -> 10.1.1.152
Status TLV support (local/remote) : enabled/supported
Label/status state machine : established, LruRru
Last local dataplane status rcvd: no fault
Last local SSS circuit status rcvd: no fault
Last local SSS circuit status sent: no fault
Last local LDP TLV status rcvd: no fault
Last remote LDP TLV status rcvd: no fault
MPLS VC labels: local 105, remote 205
Group ID: local n/a, remote 0
MTU: local 1492, remote 1492
Remote interface description:
Sequencing: receive disabled, send disabled
VC statistics:
 packet totals: receive 30, send 29
 byte totals: receive 2946, send 3364
 packet drops: receive 0, send 0

PE2

Device# show 12vpn atom binding
Destination Address: 10.1.1.151, VC ID: 123
Local Label: 205
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: RA [2]
 CV Type: LSPV [2]
Remote Label: 105
 Cbit: 1, VC Type: FastEthernet, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2]
 CV Type: LSPV [2]

Device# show 12vpn atom vc detail
Local interface: Fe0/0/0 up, line protocol up, FastEthernet up
 MPLS VC type is FastEthernet, interworking type is IP
 Destination address: 10.1.1.151, VC ID: 123, VC status: up
 Output interface: Se4/0/0, imposed label stack {1002 105}
 Preferred path: not configured
 Default path: active
 Next hop: point2point
Create time: 00:25:19, last status change time: 00:25:19
Signaling protocol: LDP, peer 10.1.1.151:0 up
 Targeted Hello: 10.1.1.152(LDP Id) -> 10.1.1.151
Status TLV support (local/remote) : enabled/supported
 Label/status state machine : established, LruRru
 Last local dataplane status rcvd: no fault
 Last local SSS circuit status rcvd: no fault
 Last local SSS circuit status sent: no fault
 Last remote LDP TLV status sent: no fault
 Last remote LDP TLV status rcvd: no fault
MPLS VC labels: local 205, remote 105
 Group ID: local n/a, remote 0
 MTU: local 1492, remote 1492
 Remote interface description:
 Sequencing: receive disabled, send disabled
VC statistics:
 packet totals: receive 29, send 30
 byte totals: receive 2900, send 3426
 packet drops: receive 0, send 0

Examples: Configuring Any Transport over MPLS (AToM) Remote Ethernet Port Shutdown

The following example shows how to enable remote Ethernet port shutdown:

```plaintext
configure terminal
!
pseudowire-class eompls
  encapsulation mpls
!
interface GigabitEthernet1/0/0
```
The following example shows how to disable remote Ethernet port shutdown:

```
configure terminal
!
pseudowire-class eompls
  encapsulation mpls
!
interface GigabitEthernet1/0/0
  xconnect 10.1.1.1 1 pw-class eompls
  no remote link failure notification
```

The related `show` command output reports operational status for all remote L2 Tunnels by interface.

```
Router# show interface G1/0/0
GigabitEthernet1/0/0 is L2 Tunnel remote down, line protocol is up
Hardware is GigMac 4 Port GigabitEthernet, address is 0003.ff4e.12a8 (bia 0003.ff4e.12a8)
  Internet address is 10.9.9.2/16
  MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec, rely 255/255, load 1/255
Router# show ip interface brief
Interface IP-Address OK Method Status Protocol
GigabitEthernet2/0/0 unassigned YES NVRAM L2 Tunnel remote down up
GigabitEthernet2/0/0 unassigned YES NVRAM administratively down down
```

Note
Remote Ethernet port shutdown is enabled by default when EVC "default encapsulation" is configured.

Examples: Configuring Any Transport over MPLS (AToM) Remote Ethernet PortShutdown Using Commands Associated with L2VPN Protocol-Based Feature

The following example shows how to enable remote Ethernet port shutdown:

```
configure terminal
!
template type pseudowire eompls
  encapsulation mpls
!
interface GigabitEthernet1/0/0
interface pseudowire 100
  source template type pseudowire eompls
  neighbor 10.1.1.1 1
!
l2vpn xconnect context con1
  remote link failure notification
```

The following example shows how to disable remote Ethernet port shutdown:

```
configure terminal
!
template type pseudowire eompls
  encapsulation mpls
!
interface GigabitEthernet1/0/0
interface pseudowire 100
  source template type pseudowire eompls
```
neighbor 10.1.1.1 1
!
l2vpn xconnect context con1
 no remote link failure notification

The related `show` command output reports operational status for all remote L2 Tunnels by interface.

```text
Router# show interface G1/0/0
GigabitEthernet1/0/0 is L2 Tunnel remote down, line protocol is up
Hardware is GigMac 4 Port GigabitEthernet, address is 0003.ff4e.12a8 (bia 0003.ff4e.12a8)
    Internet address is 10.9.9.2/16
    MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec, rely 255/255, load 1/255
Router# show ip interface brief
Interface          IP-Address  OK? Method Status Protocol
GigabitEthernet2/0/0 unassigned YES NVRAM L2 Tunnel remote down up
GigabitEthernet2/1/0 unassigned YES NVRAM administratively down down
```

Additional References for Any Transport over MPLS

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to</td>
<td></td>
</tr>
<tr>
<td>install and configure the software and to troubleshoot and resolve</td>
<td></td>
</tr>
<tr>
<td>technical issues with Cisco products and technologies. Access to most</td>
<td></td>
</tr>
<tr>
<td>tools on the Cisco Support and Documentation website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Any Transport over MPLS
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Transport over MPLS (AToM): ATM AAL5 over MPLS (AAL5oMPLS)</td>
<td>Cisco IOS XE Release 3.2S, Cisco IOS XE Release 3.6S</td>
<td>In Cisco IOS XE Release 3.2S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. In Cisco IOS XE Release 3.6S, support was added for the Cisco ASR 903 Router. This feature introduced no new or modified commands.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): ATM Cell Relay over MPLS: Packed Cell Relay</td>
<td>Cisco IOS XE Release 3.5S</td>
<td>In Cisco IOS XE Release 3.5S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. In Cisco IOS XE Release 3.5S, support was added for the Cisco ASR 903 Router. This feature introduced no new or modified commands.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): ATM OAM Emulation</td>
<td>Cisco IOS XE Release 3.2S</td>
<td>In Cisco IOS XE Release 3.2S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. This feature introduced no new or modified commands.</td>
</tr>
<tr>
<td>ETHERNET OVER MPLS (EoMPLS)</td>
<td>Cisco IOS XE Release 2.5</td>
<td>This feature provides capability to support sequencing of AToM data plane packets.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): Ethernet over MPLS (EoMPLS)</td>
<td>Cisco IOS XE Release 2.4, Cisco IOS XE Release 3.5S</td>
<td>This feature allows you to transport Layer 2 Ethernet VLAN packets from various sources over an MPLS backbone. Ethernet over MPLS extends the usability of the MPLS backbone by enabling it to offer Layer 2 services in addition to already existing Layer 3 services. You can enable the MPLS backbone network to accept Layer 2 VLAN packets by configuring the PE routers at the both ends of the MPLS backbone. In Cisco IOS XE Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Routers. In Cisco IOS XE Release 3.5S, support was added for the Cisco ASR 903 Router.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): Ethernet over MPLS: Port Mode (EoMPLS)</td>
<td>Cisco IOS XE Release 2.4</td>
<td>Ethernet over MPLS (EoMPLS) is the transport of Ethernet frames across an MPLS core. It transports all frames received on a particular Ethernet or virtual LAN (VLAN) segment, regardless of the destination Media Access Control (MAC) information. It does not perform MAC learning or MAC look up for forwarding packets from the Ethernet interface. Port mode allows a frame coming into an interface to be packed into an MPLS packet and transported over the MPLS backbone to an egress interface. In Cisco IOS XE Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Routers.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Any Transport over MPLS-Ethernet over MPLS Enhancements: Fast Reroute</td>
<td>Cisco IOS XE</td>
<td>AToM can use MPLS traffic engineering (TE) tunnels with fast reroute (FRR) support. This feature enhances FRR functionality for Ethernet over MPLS (EoMPLS).</td>
</tr>
<tr>
<td></td>
<td>Release 2.4</td>
<td>In Cisco IOS XE Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Routers.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): Frame Relay over MPLS (FRoMPLS)</td>
<td>Cisco IOS XE</td>
<td>In Cisco IOS XE Release 3.2.1S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td></td>
<td>Release 3.2.1S</td>
<td>This feature introduced no new or modified commands.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): HDLC over MPLS (HDLCoMPLS)</td>
<td>Cisco IOS XE</td>
<td>In Cisco IOS XE Release 3.2S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td></td>
<td>Release 3.2S</td>
<td>This feature introduced no new or modified commands.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): Layer 2 Quality of Service (QoS)</td>
<td>Cisco IOS XE</td>
<td>This feature provides support for quality of service (QoS) features such as traffic policing, traffic shaping, packet marking, and mapping of the packets.</td>
</tr>
<tr>
<td></td>
<td>Release 2.3</td>
<td>In Cisco IOS XE Release 2.3, this feature was introduced on the Cisco ASR 1000 Series Routers.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): PPP over MPLS (PPPoMPLS)</td>
<td>Cisco IOS XE</td>
<td>In Cisco IOS XE Release 3.2S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td></td>
<td>Release 3.2S</td>
<td>This feature introduced no new or modified commands.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): Remote Ethernet Port Shutdown</td>
<td>Cisco IOS XE</td>
<td>This feature allows a service provider edge (PE) router on the local end of an Ethernet over MPLS (EoMPLS) pseudowire to detect a remote link failure and cause the shutdown of the Ethernet port on the local customer edge (CE) router. Because the Ethernet port on the local CE router is shut down, the router does not lose data by continuously sending traffic to the failed remote link. This is beneficial if the link is configured as a static IP route.</td>
</tr>
<tr>
<td></td>
<td>Release 2.4</td>
<td>In Cisco IOS XE Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Routers.</td>
</tr>
<tr>
<td>ATM Port Mode Packed Cell Relay over MPLS</td>
<td>Cisco IOS XE</td>
<td>In Cisco IOS XE Release 3.5S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td></td>
<td>Release 3.5S</td>
<td>The ATM VC Class Support feature allows you to specify AAL5 and AAL0 encapsulations as part of a VC class.</td>
</tr>
<tr>
<td>ATM VC Class Support</td>
<td>Cisco IOS XE</td>
<td>In Cisco IOS XE Release 2.3, this feature was introduced on the Cisco ASR 1000 Series Routers.</td>
</tr>
<tr>
<td></td>
<td>Release 2.3</td>
<td></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| AToM Tunnel Selection | Cisco IOS XE Release 2.3 | The AToM Tunnel Selection feature allows you to specify the path that traffic uses. You can specify either an MPLS TE tunnel or destination IP address or domain name server (DNS) name.
You also have the option of specifying whether the VCs should use the default path (the path LDP uses for signaling) if the preferred path is unreachable. This option is enabled by default; you must explicitly disable it.
In Cisco IOS XE Release 2.3, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. |
| AToM: ATN Cell Relay over MPLS: VP Mode | Cisco IOS XE Release 2.3 | The AToM: ATN Cell Relay over MPLS: VP Mode feature allows you to insert one ATM cell in each MPLS packet in VP mode.
In Cisco IOS XE Release 2.3, this feature was introduced on the Cisco ASR 1000 Series Routers. |
| AToM: Single Cell Relay-VC Mode | Cisco IOS XE Release 2.3 | The AToM Single Cell Relay-VC Mode feature allows you to insert one ATM cell in each MPLS packet in VC mode.
In Cisco IOS XE Release 2.3, this feature was introduced on the Cisco ASR 1000 Series Routers. |
| MPLS MTU Command for GRE Tunnels | Cisco IOS XE Release 2.6 | This feature allows you to set the MPLS MTU size in GRE tunnels to the maximum size besides the current default size.
The following command was modified for this release: `mpls mtu`. |
| MPLS L2VPN Clear Xconnect Command | Cisco IOS XE Release 3.11S | These features enable you to:
• Reset a VC associated with an interface, a peer address, or on all the configured xconnect circuit attachments
• Set the control word on dynamic pseudowires (L2VPN pseudowire control word configuration
• Enable ATM cell packing for static pseudowires.
The following commands were introduced or modified by these features: `cell-packing`, `clear xconnect`, `control-word`, `encapsulation` (Any Transport over MPLS), `oam-ac emulation-enable`. |
Feature Information for Any Transport over MPLS

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per-Subinterface MTU for Ethernet over MPLS (EoMPLS)</td>
<td>Cisco IOS XE Release 2.4</td>
<td>This feature provides you with the ability to specify maximum transmission unit (MTU) values in xconnect subinterface configuration mode. When you use xconnect subinterface configuration mode to set the MTU value, you establish a pseudowire connection for situations where the interfaces have different MTU values that cannot be changed. In Cisco IOS XE Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. No commands were new or modified for this release.</td>
</tr>
<tr>
<td>VLAN ID Rewrite</td>
<td>Cisco IOS XE Release 2.4</td>
<td>The VLAN ID rewrite feature enables you to use VLAN interfaces with different VLAN IDs at both ends of the tunnel. In Cisco IOS XE Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Routers.</td>
</tr>
<tr>
<td>AToM Load Balancing with Single PW</td>
<td>Cisco IOS XE Release 3.4S</td>
<td>The AToM Load Balancing with Single PW feature enables load balancing for packets within the same pseudowire by further classifying packets within the same pseudowire into different flows based on some field in the packet received on attachment circuit. In Cisco IOS XE Release 3.4S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td>Flow-Aware Transport of MPLS Pseudowires</td>
<td>Cisco IOS XE Release 3.11S</td>
<td>The Flow-Aware Transport of MPLS Pseudowires feature enables load balancing of packets within the same pseudowire by further classifying the packets into different flows by adding a flow label at the bottom of the MPLS label stack.</td>
</tr>
<tr>
<td>EoMPLS over IPv6 GRE Tunnel</td>
<td>Cisco IOS XE Release 3.15S</td>
<td>The EoMPLS over IPv6 GRE Tunnel feature supports tunneling of EoMPLS traffic via an IPv6 network by using GRE tunnels.</td>
</tr>
</tbody>
</table>
Interworking is a transforming function that is required to interconnect two heterogeneous attachment circuits (ACs). Several types of interworking functions exist. The function that is used would depend on the type of ACs being used, the type of data being carried, and the level of functionality required. The two main Layer 2 Virtual Private Network (L2VPN) interworking functions supported in Cisco IOS XE software are bridged and routed interworking.

Layer 2 (L2) transport over multiprotocol label switching (MPLS) and IP already exists for like-to-like ACs, such as Ethernet-to-Ethernet or Point-to-Point Protocol (PPP)-to-PPP. L2VPN Interworking builds on this functionality by allowing disparate ACs to be connected. An interworking function facilitates the translation between different L2 encapsulations.

- Finding Feature Information, on page 147
- Prerequisites for L2VPN Interworking, on page 147
- Restrictions for L2VPN Interworking, on page 148
- Information About L2VPN Interworking, on page 152
- How to Configure L2VPN Interworking, on page 167
- Configuration Examples for L2VPN Interworking, on page 250
- Additional References for L2VPN Interworking, on page 275
- Feature Information for L2VPN Interworking, on page 277

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN Interworking

Before you configure L2VPN interworking on a device you must enable Cisco Express Forwarding.
HDLC-to-Ethernet Interworking

- Ensure that the serial controller and interface on the High-Level Data Link Control (HDLC) customer edge (CE) and provider edge (PE) devices are configured.

```sh
enable
configure terminal
controller e1 2/0
 channel-group 0 timeslots 1
 no shutdown
!
interface Serial 2/0:0
 no shutdown
end
```

- Before configuring HDLC-to-Ethernet bridged interworking, ensure that bridging is configured on the HDLC CE device.

```sh
enable
configure terminal
bridge irb
 bridge 1 protocol ieee
 bridge 1 route ip
!
interface Serial 2/0:0
 no bridge-group 1
 no ip address
!
interface BVI1
 no ip address
 ip address 192.0.2.1 255.255.255.0
 no shutdown
!
interface Serial 2/0:0
 no ip address
 encapsulation hdlc
 bridge-group 1
 no shutdown
end
```

- Before configuring HDLC-to-Ethernet routed interworking, ensure that an IP address is configured on the HDLC CE device.

```sh
interface Serial 2/0:0
 ip address 192.0.2.1 255.255.255.0
 encapsulation hdlc
 no shutdown
end
```

Restrictions for L2VPN Interworking

General Restrictions for L2VPN Interworking

This section lists general restrictions that apply to L2VPN interworking. Other restrictions that are platform-specific or device-specific are listed in the following sections.

- MTU configured on the AC should not exceed the MTU in the core of the network because fragmentation is not supported.
• The interworking type on one provider edge (PE) router must match the interworking type on the peer PE router.

• IP interworking with native VLANs is not supported.

• Ethernet VLAN (Type 4) interworking is not supported.

• Only the following Quality of Service (QoS) features are supported with L2VPN interworking:
 • Static IP type of service (ToS) or MPLS experimental bit (EXP) setting in tunnel header.
 • One-to-one mapping of VLAN priority bits to MPLS EXP bits.

• VRF-aware Layer 2 Tunneling Protocol Version 3 (L2TPv3) is not supported on Cisco ASR 1000 platforms.

Restrictions for Routed Interworking

Routed interworking has the following restrictions:

• Multipoint Frame Relay (FR) is not supported.

• QoS classification on IP ToS, DSCP and other IP header fields is not supported.

• Security access control list (ACL) and other features based on IP header fields parsing are not supported.

• In routed mode, only one customer edge (CE) router can be attached to an Ethernet PE router.

• There must be a one-to-one relationship between an AC and the pseudowire. Point-to-multipoint or multipoint-to-point configurations are not supported.

• You must configure routing protocols for point-to-point operation on the CE routers when configuring an Ethernet to non-Ethernet setup.

• In the IP interworking mode, the IPv4 (0800) translation is supported. The PE router captures Address Resolution Protocol (ARP) (0806) packets and responds with its own MAC address (proxy ARP). Everything else is dropped.

• The Ethernet must contain only two IP devices: PE router and CE router. The PE router performs proxy ARP and responds to all ARP requests it receives. Therefore, only one CE router and one PE router should be on the Ethernet segment.

• If the CE routers are doing static routing, you can perform the following tasks:
 • The PE router needs to learn the MAC address of the CE router to correctly forward traffic to it. The Ethernet PE router sends an Internet Control Message Protocol (ICMP) Router Discovery Protocol (RDP) solicitation message with the source IP address as zero. The Ethernet CE router responds to this solicitation message. To configure the Cisco CE router’s Ethernet interface to respond to the ICMP RDP solicitation message, issue the `ip irdp` command in interface configuration mode. If you do not configure the CE router, traffic is dropped until the CE router sends traffic toward the PE router.
 • To disable the CE routers from running the router discovery protocol, issue the `ip irdp maxadvertinterval 0` command in interface configuration mode.
Restrictions for PPP Interworking

The following restrictions apply to PPP interworking:

- There must be a one-to-one relationship between a PPP session and the pseudowire. Multiplexing of multiple PPP sessions over the pseudowire is not supported.
- Only IP (IPv4 (0021)) interworking is supported. Link Control Protocol (LCP) packets and Internet Protocol Control Protocol (IPCP) packets are terminated at the PE router. Everything else is dropped.
- By default, the PE router assumes that the CE router knows the remote CE router’s IP address.
- Password Authentication Protocol (PAP) and Challenge-Handshake Authentication Protocol (CHAP) authentication are supported.

Restrictions for Ethernet/VLAN-to-ATM AAL5 Interworking

The Ethernet/VLAN to ATM AAL5 Any Transport over MPLS (AToM) has the following restrictions:

- Only the following translations are supported; other translations are dropped:
 - Ethernet without LAN FCS (AAAA030080C200070000)
 - Spanning tree (AAAA030080C2000E)
- The ATM encapsulation type supported for bridged interworking is aal5snap. However, ATM encapsulation types supported for routed interworking are aal5snap and aal5mux.
- The existing QoS functionality for ATM is supported, including setting the ATM CLP bit.
- Only ATM AAL5 VC mode is supported. ATM VP and port mode are not supported.
- SVCs are not supported.
- Individual AAL5 ATM cells are assembled into frames before being sent across the pseudowire.
- Non-AAL5 traffic, (such as Operation, Administration, and Maintenance (OAM) cells) is punt to be processed at the route processor (RP) level. A VC that has been configured with OAM cell emulation on the ATM PE router (using the oam-ac emulation-enable CLI command) can send end-to-end F5 loopback cells at configured intervals toward the CE router.
- When the pseudowire is down, an F5 end-to-end segment alarm indication signal/remote defect indication (AIS/RDI) is sent from the PE router to the CE router.
- If the Ethernet frame arriving from the Ethernet CE router includes a 802.1Q header (VLAN header), due to the type of endpoint attachment (Ethernet port mode), the VLAN header stays in the frame across the pseudowire (see the figure below).
Restrictions for Ethernet/VLAN-to-Frame Relay Interworking

The Ethernet/VLAN-to-Frame Relay AToM has the following restrictions:

- Only the following translations are supported; other translations are dropped:
 - Ethernet without LAN FCS (0300800080C20007)
 - Spanning tree (0300800080C2000E)

- The PE router automatically supports translation of both Cisco and IETF Frame Relay encapsulation types coming from the CE router, but translates only to IETF when sending to the CE router. This is not a problem for the Cisco CE router, because it can manage IETF encapsulation upon receipt even if it is configured to send a Cisco encapsulation.

- The PVC status signaling works the same way as in the like-to-like case. The PE router reports the PVC status to the CE router based upon the availability of the pseudowire.

- The AC maximum transmission unit (MTU) must be within the supported range of MTUs when connected over MPLS.

- Only Frame Relay DLCI mode is supported. Frame Relay port mode is not supported.

- If the Ethernet frame includes a 802.1Q header (VLAN header), due to the type of endpoint attachment (Ethernet port mode), the VLAN header stays in the frame across the pseudowire (see the figure below).

- Frame Relay encapsulation types supported for routed interworking are Cisco and IETF for incoming traffic. However, IETF is also supported for outgoing traffic traveling to the CE router.
Restrictions for HDLC-to-Ethernet Interworking

- The “none CISCO” High-Level Data Link Control (HDLC) encapsulation is not supported.
- IPv6 is not supported in routed mode.

Information About L2VPN Interworking

Overview of L2VPN Interworking

L2 transport over MPLS and IP already exists for like-to-like ACs, such as Ethernet-to-Ethernet or PPP-to-PPP. L2VPN Interworking builds on this functionality by allowing disparate ACs to be connected. An interworking function facilitates the translation between the different L2 encapsulations.

Only the following interworking combinations are supported:

- ATM-to-Ethernet - Routed interworking
- ATM-to-Ethernet - Bridged interworking
- Frame relay-to-Ethernet - Bridged interworking
- PPP-to-Ethernet - Routed interworking
- HDLC-to-Ethernet - Bridged and Routed interworking

L2VPN Interworking Modes

L2VPN interworking works in either Ethernet (bridged) mode or IP (routed) mode. L2VPN interworking does not support Ethernet VLAN (Type 4) mode. You specify the mode in the following ways:

- If using the older legacy CLI commands, you can use the **interworking {ethernet | ip}** command in pseudowire-class configuration mode.
• If using the newer L2VPN protocol-based CLI commands, you can use the `interworking {ethernet | ip}` command in xconnect configuration mode.

The `interworking` command causes the ACs to be terminated locally. The two keywords perform the following functions:

• The `ethernet` keyword causes Ethernet frames to be extracted from the AC and sent over the pseudowire. Ethernet end-to-end transmission is resumed. AC frames that are not Ethernet are dropped. In the case of VLAN, the VLAN tag is removed, leaving an untagged Ethernet frame.

• The `ip` keyword causes IP packets to be extracted from the AC and sent over the pseudowire. AC frames that do not contain IPv4 packets are dropped.

The following sections explain more about Ethernet and IP interworking modes.

Ethernet or Bridged Interworking

Ethernet interworking is also called bridged interworking. Ethernet frames are bridged across the pseudowire. The CE routers could be natively bridging Ethernet or could be routing using a bridged encapsulation model, such as Bridge Virtual Interface (BVI) or Routed Bridge Encapsulation (RBE). The PE routers operate in Ethernet like-to-like mode.

This mode is used to offer the following services:

• LAN services--An example is an enterprise that has several sites, where some sites have Ethernet connectivity to the service provider (SP) network and others have ATM connectivity. If the enterprise wants LAN connectivity to all its sites, traffic from the Ethernet or VLAN of one site can be sent through the IP/MPLS network and encapsulated as bridged traffic over an ATM VC of another site.

• Connectivity services--An example is an enterprise that has different sites that are running an Internal Gateway Protocol (IGP) routing protocol, which has incompatible procedures on broadcast and nonbroadcast links. The enterprise has several sites that are running an IGP, such as Open Shortest Path First (OSPF) or Intermediate System-to-Intermediate System (IS-IS), between the sites. In this scenario, some of the procedures (such as route advertisement or designated router) depend on the underlying L2 protocol and are different for a point-to-point ATM connection versus a broadcast Ethernet connection. Therefore, the bridged encapsulation over ATM can be used to achieve homogenous Ethernet connectivity between the CE routers running the IGP.

IP or Routed Interworking

IP interworking is also called routed interworking. The CE routers encapsulate the IP on the link between the CE router and PE router. A new VC type is used to signal the IP pseudowire in MPLS. Translation between the L2 and IP encapsulations across the pseudowire is required. Special consideration needs to be given to the address resolution and routing protocol operation, because these are handled differently on different L2 encodings.

This mode is used to provide IP connectivity between sites, regardless of the L2 connectivity to these sites. It is different from a Layer 3 VPN because it is point-to-point in nature and the service provider does not maintain any customer routing information.

Address resolution is encapsulation dependent:

• Ethernet uses Address Resolution Protocol (ARP)

• ATM uses inverse ARP
• PPP uses IP Control Protocol (IPCP)
• HDLC uses Serial Line ARP (SLARP)

Therefore, address resolution must be terminated on the PE router. End-to-end address resolution is not supported. Routing protocols operate differently over broadcast and point-to-point media. For Ethernet, the CE routers must either use static routing or configure the routing protocols to treat the Ethernet side as a point-to-point network.

In routed interworking, IP packets that are extracted from the ACs are sent over the pseudowire. The pseudowire works in the IP Layer 2 transport (VC type 0x000B) like-to-like mode. The interworking function at network service provider’s (NSP) end performs the required adaptation based on the AC technology. Non-IPv4 packets are dropped.

In routed interworking, the following considerations are to be kept in mind:

• Address resolution packets (ARP), inverse ARP, and IPCP are punt to the routing protocol. Therefore, NSP at the PE router must provide the following functionality for address resolution:
 • Ethernet--PE device acts as a proxy-ARP server to all ARP requests from the CE router. The PE router responds with the MAC address of its local interface.
 • ATM and Frame Relay point-to-point--By default, inverse ARP does not run in the point-to-point Frame Relay or ATM subinterfaces. The IP address and subnet mask define the connected prefix; therefore, configuration is not required in the CE devices.

• Interworking requires that the MTUs in both ACs match for the pseudowire to come up. The default MTU in one AC should match with the MTU of other AC. The table below lists the range of MTUs that can be configured for different ACs.

<table>
<thead>
<tr>
<th>AC type</th>
<th>Range of MTUs supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>64 to 17940</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1500 to 4470</td>
</tr>
<tr>
<td>POS</td>
<td>64 to 9102</td>
</tr>
<tr>
<td>Fast Ethernet</td>
<td>64 to 9192</td>
</tr>
</tbody>
</table>

The MTU configured on the AC should not exceed the MTU in the core network. This ensures that the traffic is not fragmented.

Note

• The CE routers with Ethernet attachment VCs running OSPF must be configured with the `ospfIfType` option so that the OSPF protocol treats the underlying physical broadcast link as a P2P link.

Ethernet VLAN-to-ATM AAL5 Interworking

The following topics are covered in this section:
ATM AAL5-to-Ethernet Port AToM--Bridged Interworking

This interworking type provides interoperability between the ATM attachment VC and Ethernet attachment VC connected to different PE routers. Bridged encapsulation corresponding to the bridged (Ethernet) interworking mechanism is used.

The interworking function is performed at the PE router connected to the ATM attachment VC based on multiprotocol encapsulation over ATM AAL5 (see the figure below).

Figure 11: Network Topology for ATM-to-Ethernet AToM Bridged Interworking

The advantage of this architecture is that the Ethernet PE router (connected to the Ethernet segment) operates similarly to Ethernet like-to-like services.

On the PE router with interworking function, in the direction from the ATM segment to MPLS cloud, the bridged encapsulation (ATM/subnetwork access protocol (SNAP) header) is discarded and the Ethernet frame is encapsulated with the labels required to go through the pseudowire using the VC type 5 (Ethernet) (see the figure below).

In the opposite direction, after the label disposition from the MPLS cloud, Ethernet frames are encapsulated over AAL5 using bridged encapsulation.

The figure below shows the protocol stack for ATM-to-Ethernet AToM bridged interworking. The ATM side has an encapsulation type of aal5snap.
ATM AAL5-to-Ethernet VLAN 802.1Q AToM--Bridged Interworking

This interworking type provides interoperability between the ATM attachment VC and Ethernet VLAN attachment VC connected to different PE routers. Bridged encapsulation corresponding to the bridged (Ethernet) interworking mechanism is used.

The interworking function is performed in the same way as for the ATM-to-Ethernet port case, implemented on the PE router connected to the ATM attachment VC. The implementation is based on multiprotocol encapsulation over ATM AAL5 (see the figure below).

For the PE router connected to the Ethernet side, one major difference exists due the existence of the VLAN header in the incoming packet. The PE router discards the VLAN header of the incoming frames from the VLAN CE router, and the PE router inserts a VLAN header into the Ethernet frames traveling from the MPLS cloud. The frames sent on the pseudowire (with VC type 5) are Ethernet frames without the VLAN header. Encapsulation over ATM AAL5 is shown in the figure below.
ATM-to-Ethernet--Routed Interworking

To perform routed interworking, both the ATM PE router and Ethernet PE router must be configured. The figure below shows the routed interworking between ATM to Ethernet. The IP encapsulation over the pseudowire is performed on the ATM packets arriving from the ATM CE router.

The address resolution is done at the ATM PE router; it is required when the ATM CE router does an inverse ARP. It is not required when the ATM CE router is configured using Point-to-Point (P2P) subinterfaces or static maps.

When packets arrive from the Ethernet CE router, the Ethernet PE router removes the L2 frame tag, and then forwards the IP packet to the egress PE router, using IPoMPLS encapsulation over the pseudowire. The Ethernet PE router makes the forwarding decision based on the L2 circuit ID, the VLAN ID, or port ID, of the incoming L2 frame. At the ATM PE router, after label disposition, the IP packets are encapsulated over the AAL5 using routed encapsulation based on RFC 2684.

The address resolution at the Ethernet PE router can be done when the Ethernet CE router configures the static ARP, or by the proxy ARP on the Ethernet PE router. If the proxy ARP is used, the IP address of the remote CE router can be learned dynamically.

Routing protocols need to be configured to operate in the P2P mode on the Ethernet CE router.
Ethernet VLAN-to-Frame Relay Interworking

The following topics are covered in this section:

Frame Relay DLCI-to-Ethernet Port AToM--Bridged Interworking

This interworking type provides interoperability between the Frame Relay attachment VC and Ethernet attachment VC connected to different PE routers. Bridged encapsulation corresponding to the bridged (Ethernet) interworking mechanism is used.

For an FR-to-Ethernet port case, the interworking function is performed at the PE router connected to the FR attachment VC based on multiprotocol interconnect over Frame Relay (see the figure below). The interworking is implemented similar to an ATM-to-Ethernet case.

Ethernet VLAN-to-Frame Relay Interworking

![Figure 14: Protocol Stack for ATM-to-Ethernet--Routed Interworking](image1)

![Figure 15: Network Topology for FR-to-Ethernet AToM Bridged Interworking](image2)

The advantage of this architecture is that the Ethernet PE router (connected to the Ethernet segment) operates similar to Ethernet like-to-like services: a pseudowire label is assigned to the Ethernet port and then the remote Label Distribution Protocol (LDP) session distributes the labels to its peer PE router. Ethernet frames are carried through the MPLS network using Ethernet over MPLS (EoMPLS).
On the PE router with interworking function, in the direction from the Frame Relay segment to the MPLS cloud, the bridged encapsulation (FR/SNAP header) is discarded and the Ethernet frame is encapsulated with the labels required to go through the pseudowire using the VC type 5 (Ethernet) (see the figure below).

In the opposite direction, after the label disposition from the MPLS cloud, Ethernet frames are encapsulated over Frame Relay using bridged encapsulation.

The following translations are supported:

- Ethernet without LAN FCS (0300800080C20007)
- Spanning tree (0300800080C2000E)

The PE router automatically supports translation of both Cisco and IETF Frame Relay encapsulation types coming from the CE, but translates only to IETF when sending to the CE router. This is not a problem for the Cisco CE router, because it can handle IETF encapsulation on receipt even if it is configured to send Cisco encapsulation.

The existing QoS functionality for Frame Relay is supported. The PVC status signaling works the same way as in the like-to-like case. The PE router reports the PVC status to the CE router, based on the availability of the pseudo wire.

The AC MTU must match when connected over MPLS. Only Frame Relay DLCI mode is supported; Frame Relay port mode is not supported in the bridged interworking.

The figure below shows the protocol stack for FR-to-Ethernet bridged interworking.

Figure 16: Protocol Stack for FR-to-Ethernet AToM Bridged Interworking--without VLAN Header

Frame Relay DLCI-to-Ethernet VLAN 802.1Q AToM--Bridged Interworking

This interworking type provides interoperability between the Frame Relay attachment VC and Ethernet VLAN Attachment VC connected to different PE routers. The bridged encapsulation corresponding to the bridged (Ethernet) interworking mechanism is used.

The interworking function is performed in the same way as it is done for the Frame Relay to Ethernet port case; it is implemented on the PE router connected to the Frame Relay attachment VC, based upon a multiprotocol interconnect over Frame Relay (see the figure above).
As in the ATM-to-VLAN case, one difference exists on the Ethernet side due to the existence of the VLAN header in the incoming packet. The PE router on the VLAN side discards the VLAN header of the incoming frames from the VLAN CE router, and the PE router inserts a VLAN header into the Ethernet frames traveling from the MPLS cloud. The frames sent on the pseudowire (with VC type 5) are Ethernet frames without the VLAN header.

The figure below shows the protocol stack for FR-to-VLAN AToM bridged interworking.

Figure 17: Protocol Stack for FR-to-VLAN AToM Bridged Interworking

This interworking type provides interoperability between the Frame Relay Attachment VC and Ethernet VLAN Attachment VC connected to different PE routers. The bridged encapsulation corresponding to bridged (Ethernet) interworking mechanism is used.

The interworking function is done in the same way as it is done for FR-to-Ethernet port case; it is implemented on the PE router connected to the Frame Relay attachment VC, based on RFC 2427 (Multiprotocol Interconnect over Frame Relay).

When compared with Frame Relay DLCI-to-Ethernet port AToM, there is one major difference on the Ethernet access side, due to the existence of the VLAN header in the incoming packet. The PE router on the VLAN side will discard the VLAN header of the incoming frames form the VLAN CE router, and it will insert a VLAN header into the Ethernet frames coming from the MPLS cloud. So the frames sent on the pseudo wire (with VC type 5) will be Ethernet frames without the VLAN header.

The following translations are supported on the Frame Relay PE router:

- Ethernet without LAN FCS (0300800080C20007)
- Spanning tree (0300800080C2000E)

Frame Relay encapsulation types supported for bridged interworking: Cisco and IETF for incoming traffic, IETF only for outgoing traffic towards CE router.
HDLC-to-Ethernet Interworking

High-Level Data Link Control (HDLC) and Ethernet are two independent data link layer transport protocols that utilize the Any Transport over MPLS (AToM) framework to communicate with each other. The interworking function enables translation between two heterogeneous Layer 2 encodings over a Multiprotocol Label Switching (MPLS) backbone.

The figure below depicts a simple HDLC-to-Ethernet interworking topology.

Figure 18: HDLC-to-Ethernet interworking topology

HDLC-to-Ethernet interworking supports the following:

- Ethernet or bridged interworking
- IP or routed interworking
- HDLC encapsulation type: CISCO
- Ethernet encapsulation types: IEEE 802.1Q, QinQ, port mode

The HDLC pass-through feature is not affected in any way by HDLC-to-Ethernet interworking.

HDLC-to-Ethernet interworking supports two interworking modes:

- HDLC-to-Ethernet — Ethernet or Bridged interworking
- HDLC-to-Ethernet — IP or Routed interworking

HDLC-to-Ethernet — Ethernet or Bridged Interworking

HDLC-to-Ethernet bridged interworking provides interoperability between the HDLC attachment virtual circuit (VC) and Ethernet VLAN attachment VC connected to different provider edge (PE) devices. Bridged encapsulation corresponding to the bridged (Ethernet) interworking mechanism is used.

When packets arrive from the HDLC customer edge (CE) device, they consist of the HDLC header, the Ethernet MAC header, and the payload. At the HDLC PE device, the HDLC header is removed, and MPLS labels are inserted. The frames are then routed over the pseudowire to the Ethernet PE device, where the MPLS labels are removed. On the Ethernet side, there are two possibilities. The attachment circuit (AC) is either Ethernet or VLAN.

For an Ethernet attachment circuit (AC), the packets are forwarded to the Ethernet CE device, as is. For a VLAN AC, VLAN headers are added at the VLAN/QinQ subinterface’s AC. The Ethernet VLAN frame is then forwarded to the VLAN CE device.

In the opposite direction (Ethernet / VLAN to HDLC), the VLAN header is present in the incoming packet, if the AC is VLAN. So, when packets arrive from the VLAN CE device, they consist of the VLAN header, the Ethernet MAC header, and the payload. At the Ethernet PE device, the VLAN header is removed at the VLAN/QinQ subinterface's AC, and MPLS labels are inserted. The frames are then routed over the pseudowire...
to the HDLC PE device, where the MPLS labels are removed. The HDLC header is added before the Ethernet MAC header. The HDLC frame is then forwarded to the HDLC CE device.

If the AC is Ethernet, packets arriving from the Ethernet CE device consist of the Ethernet MAC header and the payload. At the Ethernet PE device, MPLS labels are inserted at the VLAN/QinQ subinterface's AC. The frames are then routed over the pseudowire to the HDLC PE device, where the MPLS labels are removed. The HDLC header is added before the Ethernet MAC header. The HDLC frame is then forwarded to the HDLC CE device.

The figure below shows the bridged interworking mode of HDLC-to-Ethernet interworking, with a VLAN AC on the Ethernet side.

Figure 19: HDLC-to-Ethernet — Ethernet or Bridged Interworking

Figure 19: HDLC-to-Ethernet — Ethernet or Bridged Interworking

HDLC-to-Ethernet — IP or Routed Interworking

To perform routed interworking, both the HDLC PE device and Ethernet PE device must be configured. The IP encapsulation over the pseudowire is performed on HDLC packets that arrive from the HDLC CE device. The address resolution is done at the HDLC PE device.

When packets arrive from the HDLC CE device, they consist of the HDLC header, the IPv4 header, and the payload. At the HDLC PE device, the HDLC header is removed, and MPLS labels are inserted. The frames are then routed over the pseudowire to the Ethernet PE device, where the MPLS labels are removed. On the Ethernet side, there are two possibilities. The attachment circuit (AC) is either Ethernet or VLAN.

For an Ethernet attachment circuit (AC), the packets are forwarded to the Ethernet CE device, as is. For a VLAN AC, VLAN headers are added at the VLAN/QinQ subinterface's AC. The Ethernet VLAN frame is then forwarded to the VLAN CE device.

In the opposite direction (Ethernet / VLAN to HDLC), the VLAN header is present in the incoming packet, if the AC is VLAN. So, when packets arrive from the VLAN CE device, they consist of the VLAN header, the Ethernet MAC header, and the payload. At the Ethernet PE device, the MAC header is removed, the VLAN header is removed at the VLAN/QinQ subinterface's AC, and MPLS labels are inserted. The frames are then routed over the pseudowire to the HDLC PE device, where the MPLS labels are removed. The HDLC header is added before the IPv4 header. The HDLC frame is then forwarded to the HDLC CE device.

If the AC is Ethernet, packets arriving from the Ethernet CE device consist of the Ethernet MAC header and the payload. At the Ethernet PE device, the MAC header is removed, and MPLS labels are inserted. The frames are then routed over the pseudowire to the HDLC PE device, where the MPLS labels are removed. The HDLC header is added before the IPv4 header. The HDLC frame is then forwarded to the HDLC CE device.

The figure below shows the routed interworking mode of HDLC-to-Ethernet interworking, with a VLAN AC on the Ethernet side.
ATM Local Switching

- ATM like-to-like local switching allows switching data between two physical interfaces where both the segments are of ATM type. The two interfaces must be on the same PE router. The table below lists the supported ATM local switching combinations.

<table>
<thead>
<tr>
<th>Table 12: ATM local switching - supported combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Mode</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>VC-to-VC AAL0</td>
</tr>
<tr>
<td>VP-to-VP AAL0</td>
</tr>
</tbody>
</table>

VC-to-VC Local Switching

VC-to-VC local switching transports cells between two ATM attachment VCs on the same or different port on the PE router. The cells coming to the PE router can be AAL0 or AAL5 encapsulated ATM packets. ATM VC-to-VC local switching can be configured either on point-to-point interface or on multipoint interface.

There are two operation modes for managing OAM cells over ATM local switching interfaces:

- OAM transparent mode: In this mode, the PE router transports F5 OAM cells transparently across local switching interfaces.
- OAM local emulation mode: In this mode, the PE router does not transport OAM cells across local switching interfaces. Instead, the interfaces locally terminate and process F5 OAM cells.

In ATM single cell relay AAL0, the ATM virtual path identifier/virtual channel identifier (VPI/VCI) values of the ingress and egress ATM interfaces of a router must match. If L2 local switching is desired between two ATM VPIs and VCIs, which are on two different interfaces and have values that do not match, ATM AAL5 should be selected. However, if ATM AAL5 uses OAM transparent mode, the VPI and VCI values must match.
ATM OAM can be configured on ATM VC mode local switching AC using the `oam-ac emulation-enable` and `oam-pvc manage` commands. When emulation is enabled on the AC, all OAM cells going through the AC are punted to RP for local processing. The ATM common component processes OAM cells and forwards the cells towards the local CE router. This helps to detect the failures on the PE router by monitoring the response at the CE router end. When the `oam-pvc manage` command is enabled on the AC, the PVC generates end-to-end OAM loopback cells that verify connectivity on the VC.

The following example shows a sample configuration on the ATM PE router:

```
configure terminal
interface atm 4/0.50 multipoint
  no ip address
  no atm enable-ilmi-trap
  pvc 100/100 l2transport
  encapsulation aal5
  oam-ac emulation-enable
  oam-pvc manage
interface atm 5/0.100 multipoint
  no ip address
  no atm enable-ilmi-trap
  pvc 100/100 l2transport
  encapsulation aal5
  oam-ac emulation-enable
  oam-pvc manage
connect atm_ls atm 4/0 100/100 atm 5/0 100/100
```

VP-to-VP Local Switching

VP-to-VP local switching transports cells between two VPs on the same port or different ports on the PE router. The cells coming to the PE router can be AAL0 encapsulated ATM packets only. ATM VP-to-VP local switching can be configured only on multipoint interfaces.

There are two operation modes for managing OAM cells over ATM local switching interfaces:

- **OAM transparent mode**: In this mode, the PE router transports F4 OAM cells transparently across local switching interfaces.

- **OAM local emulation mode**: In this mode, the PE router do not transport OAM cells across local switching interfaces. Instead, the interfaces locally terminate and process F4 OAM cells.

In ATM single cell relay AAL0, the ATM VPI values of the ingress and egress ATM interfaces on a router must match. If L2 switching is desired between two ATM VPIs which are on two different interfaces and have values that do not match, ATM AAL5 should be selected. If ATM AAL5 uses OAM transparent mode, the VPI value must match. Currently, the ATM VP-to-VP local switching supports only AAL0 encapsulation.

The following example shows a sample configuration on the ATM PE router:

```
configure terminal
interface atm 4/0.100 multipoint
  no ip address
  no atm enable-ilmi-trap
  atm pvp 100 l2transport
interface atm 5/0.100 multipoint
  no ip address
  no atm enable-ilmi-trap
  atm pvp 100 l2transport
connect atm_ls atm 4/0 100 atm 5/0 100
```
PPP-to-Ethernet AToM-Routed Interworking

In this interworking type, one of the ACs is Ethernet and the other is PPP. Each link is terminated locally on the corresponding PE routers and the extracted layer 3 (L3) packets are transported over a pseudowire. The PE routers connected to Ethernet and PPP ACs terminate their respective L2 protocols. The PPP session is terminated for both the LCP and the Network Control Protocol (NCP) layers. On the ingress PE router, after extracting L3 packets, each PE router forwards the packets over the already established pseudowire using MPoMPLS encapsulation. On the egress PE router, after performing label disposition, the packets are encapsulated based on the corresponding link layer and are sent to the respective CE router. This interworking scenario requires the support of MPoMPLS encapsulation by the PE routers.

In PPP-to-Ethernet AToM routed interworking mode IPCP is supported. Proxy IPCP is automatically enabled on the PE router when IP interworking is configured on the pseudowire. By default, the PE router gets the IP address it needs to use from the CE router. The PE router accomplishes this by sending an IPCP configreq with the IP address 0.0.0.0. The local CE router has the remote CE router's IP address configured on it. The following example shows a sample configuration on the PPP PE router:

```plaintext
interface serial2/0
  ip address 168.65.32.13 255.255.255.0
  encapsulation ppp
  peer default ip address 168.65.32.14 *

If the remote CE router's IP address cannot be configured on the local CE router, then the remote CE router's IP address can be configured on the PE router using the `ppp ipcp address proxy ip address` command on the xconnect PPP interface of PE router. The following example shows a sample configuration on the PPP PE router:

```plaintext
pseudowire-class mp
 encapsulation mpls
 protocol ldp
 interworking ip
!
int se2/0
 encaps ppp
 xconnect 10.0.0.2 200 pw-class mp
 ppp ipcp address proxy 168.65.32.14
```

PPP-to-Ethernet AToM-Routed Interworking using the commands associated with the L2VPN Protocol-Based CLIs feature

In this interworking type, one of the ACs is Ethernet and the other is PPP. Each link is terminated locally on the corresponding PE routers and the extracted layer 3 (L3) packets are transported over a pseudowire. The PE routers connected to Ethernet and PPP ACs terminate their respective L2 protocols. The PPP session is terminated for both the LCP and the Network Control Protocol (NCP) layers. On the ingress PE router, after extracting L3 packets, each PE router forwards the packets over the already established pseudowire using MPoMPLS encapsulation. On the egress PE router, after performing label disposition, the packets are encapsulated based on the corresponding link layer and are sent to the respective CE router. This interworking scenario requires the support of MPoMPLS encapsulation by the PE routers.

In PPP-to-Ethernet AToM routed interworking mode IPCP is supported. Proxy IPCP is automatically enabled on the PE router when IP interworking is configured on the pseudowire. By default, the PE router gets the IP address it needs to use from the CE router. The PE router accomplishes this by sending an IPCP configreq with
the IP address 0.0.0.0. The local CE router has the remote CE router’s IP address configured on it. The following example shows a sample configuration on the PPP CE router:

```
interface serial2/0
 ip address 168.65.32.13 255.255.255.0
 encapsulation ppp
 peer default ip address 168.65.32.14 *
```

If the remote CE router’s IP address cannot be configured on the local CE router, then the remote CE router’s IP address can be configured on the PE router using the ppp ipcp address proxy ip address command on the xconnect PPP interface of PE router. The following example shows a sample configuration on the PPP PE router:

```
template type pseudowire mp
 encapsulation mpls
 protocol ldp
 interworking ip
 !
int se2/0
encap ppp
interface pseudowire 100
 source template type pseudowire mp
 neighbor 33.33.33.33 1
 !
l2vpn xconnect context con1
 ppp ipcp address proxy 168.65.32.14
```

### Static IP Addresses for L2VPN Interworking for PPP

If the PE router needs to perform address resolution with the local CE router for PPP, configure the remote CE router’s IP address on the PE router. Use the ppp ipcp address proxy command with the remote CE router’s IP address on the PE router’s xconnect PPP interface. The following example shows a sample configuration:

```
pseudowire-class ip-interworking
 encapsulation mpls
 interworking ip
 interface Serial2/0
 encapsulation ppp
 xconnect 10.0.0.2 200 pw-class ip-interworking
 ppp ipcp address proxy 10.65.32.14
```

You can also configure the remote CE router’s IP address on the local CE router with the peer default ip address command if the local CE router performs address resolution.

### Static IP Addresses for L2VPN Interworking for PPP using the commands associated with the L2VPN Protocol-Based CLIs feature

If the PE router needs to perform address resolution with the local CE router for PPP, configure the remote CE router’s IP address on the PE router. Use the ppp ipcp address proxy command with the remote CE router’s IP address on the PE router’s xconnect PPP interface. The following example shows a sample configuration:

```
template type pseudowire ip-interworking
```
encapsulation mpls
interworking ip
interface Serial2/0
  encapsulation ppp
  interface pseudowire 100
    source template type pseudowire ip-interworking
    neighbor 10.0.0.2 200
! 12vpn xconnect context con1
    ppp ipcp address proxy 10.65.32.14

You can also configure the remote CE router’s IP address on the local CE router with the peer default ip address command if the local CE router performs address resolution.

How to Configure L2VPN Interworking

Configuring L2VPN Interworking

L2VPN interworking allows you to connect disparate ACs. Configuring L2VPN interworking feature requires that you add the interworking command to the list of commands that make up the pseudowire. The steps for configuring the pseudowire for L2VPN interworking are included in this section. You use the interworking command as part of the overall AToM configuration. For specific instructions on configuring AToM, see the Any Transport over MPLS document.

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class name
4. encapsulation {mpls | l2tpv3}
5. interworking {ethernet | ip}
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: enable</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# pseudowire-class class1</td>
<td>Specifies the tunneling encapsulation, which is either mpls or l2tpv3.</td>
</tr>
</tbody>
</table>

**Step 4**
```
encapsulation {mpls | l2tpv3}
```

*Example:*
```
Router(config-pw)# encapsulation mpls
```

**Step 5**
```
interworking {ethernet | ip}
```

*Example:*
```
Router(config-pw)# interworking ip
```

**Step 6**
```
end
```

*Example:*
```
Router(config-pw)# end
```

**Verifying the L2VPN Configuration**

You can verify L2VPN configuration using the following steps:

- You can issue the `show arp` command between the CE routers to ensure that data is being sent:

  ```
 Router# show arp
 Protocol Address Age (min) Hardware Addr Type Interface
 Internet 10.1.1.5 134 0005.0032.0854 ARPA FastEthernet0/0/0
 Internet 10.1.1.7 - 0005.0032.0000 ARPA FastEthernet0/0/0
  ```

- You can issue the `ping` command between the CE routers to ensure that data is being sent:

  ```
 Router# ping 10.1.1.5
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 10.1.1.5, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
  ```

- You can verify the AToM configuration by using the `show mpls l2transport vc detail` command.

**Configuring L2VPN Interworking using the commands associated with the L2VPN Protocol-Based CLIs feature**

L2VPN Interworking allows you to connect disparate attachment circuits. Configuring the L2VPN Interworking feature requires that you add the `interworking` command to the list of commands that make up the pseudowire. The steps for configuring the pseudowire for L2VPN Interworking are included in this section. You use the `interworking` command as part of the overall AToM or L2TPv3 configuration. For specific instructions on configuring AToM or L2TPv3, see the following documents:

- Layer 2 Tunnel Protocol Version 3
SUMMARY STEPS

1. enable
2. configure terminal
3. hw-module slot slot-number np mode feature
4. interface pseudowire number
5. encapsulation \{mpls | l2tpv3\}
6. interworking \{ethernet | ip\}
7. neighbor peer-address vcid-value

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> hw-module slot slot-number np mode feature</td>
<td>(Optional) Enables L2VPN Interworking functionality on the Cisco 12000 series router.</td>
</tr>
<tr>
<td>Example: Router(config)# hw-module slot 3 np mode feature</td>
<td><strong>Note</strong> Enter this command only on a Cisco 12000 series Internet router if you use L2TPv3 for L2VPN Interworking on an ISE (Engine 3) or Engine 5 interface. In this case, you must first enable the L2VPN feature bundle on the line card by entering the <strong>hw-module slot slot-number np mode feature</strong> command.</td>
</tr>
<tr>
<td><strong>Step 4</strong> interface pseudowire number</td>
<td>Establishes an interface pseudowire with a value that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface pseudowire 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> encapsulation {mpls</td>
<td>l2tpv3}</td>
</tr>
<tr>
<td>Example: Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the L2VPN Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

You can verify L2VPN configuration using the following commands:

- You can issue the `show arp` command between the CE routers to ensure that data is being sent:

  ```
 Device# show arp
 Protocol Address Age (min) Hardware Addr Type Interface
 Internet 10.1.1.5 134 0005.0032.0854 ARPA FastEthernet0/0/0
 Internet 10.1.1.7 - 0005.0032.0000 ARPA FastEthernet0/0/0
  ```

- You can issue the `ping` command between the CE routers to ensure that data is being sent:

  ```
 Device# ping 10.1.1.5
 Type escape sequence to abort.
 Sending 5, 100-byte ICMP Echos to 10.1.1.5, timeout is 2 seconds:
 !!!!!
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
  ```

- You can verify the AToM configuration by using the `show l2vpn atom vc detail` command.

### Configuring Ethernet VLAN-to-ATM AAL5 Interworking

This section explains the following AToM configurations:

**ATM AAL5-to-Ethernet Port**

You can configure the ATM AAL5-to-Ethernet Port feature on a PE1 router using the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. mpls label protocol ldp
4. interface type number
5. ip address ip-address mask
6. pseudowire-class [pw-class-name]
7. encapsulation mpls
8. interworking {ethernet | ip}
9. interface atm slot / subslot / port . subinterface number
10. pvc [name] vpi / vci transport
11. encapsulation aal5snap
12. xconnect ip-address vc-id pw-class pw-class-name
13. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password, if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface loopback 100</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Configure an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>ip address ip-address mask</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.0.0.100 255.255.255.255</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>pseudowire-class [pw-class-name]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# pseudowire-class atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 8</strong> interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# interworking ip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> interface atm slot / subslot / port . subinterface number</td>
<td>Configures an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# interface atm 2/0/0.1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> pvc [name] vpi / vci 12transport</td>
<td>Assigns a name to an ATM permanent virtual circuit (PVC) and enters ATM virtual circuit configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# pvc 0/200 12transport</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> encapsulation aal5snap</td>
<td>Configures the ATM AAL and encapsulation type for an ATM VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-member)# encapsulation aal5snap</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> xconnect ip-address vc-id pw-class pw-class-name</td>
<td>Binds an AC to a pseudowire and configures an AToM static pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-member)# xconnect 10.0.0.200 140 pw-class atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> end</td>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-xconn)# end</td>
<td></td>
</tr>
</tbody>
</table>

**ATM AAL5-to-Ethernet Port using the commands associated with the L2VPN Protocol-Based CLIs feature**

You can configure the ATM AAL5-to-Ethernet Port feature on a PE1 router using the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. mpls label protocol ldp
4. interface type number
5. ip address ip-address mask
6. template type pseudowire [pw-class-name]
7. encapsulation mpls
### L2VPN Interworking

ATM AALS-to-Ethernet Port using the commands associated with the L2VPN Protocol-Based CLIs feature

8. `interworking {ethernet | ip}`
9. `interface atm slot / subslot / port . subinterface number`
10. `pvc [name] vpi / vci 12transport`
11. `encapsulation aal5snap`
12. `end`
13. `interface pseudowire number`
14. `source template type pseudowire template-name`
15. `neighbor peer-address vcid-value`
16. `exit`
17. `exit`
18. `l2vpn xconnect context context-name`
19. `member pseudowire interface-number`
20. `member ip-address vc-id encapsulation mpls`
21. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
| | `Router> enable` | | `- Enter your password, if prompted.`
<p>| <strong>Step 2</strong> | <code>configure terminal</code> | Enters global configuration mode. |
| | <strong>Example:</strong> | |
| | <code>Router# configure terminal</code> | |
| <strong>Step 3</strong> | <code>mpls label protocol ldp</code> | Establishes the label distribution protocol for the platform. |
| | <strong>Example:</strong> | |
| | <code>Router(config)# mpls label protocol ldp</code> | |
| <strong>Step 4</strong> | <code>interface type number</code> | Configure an interface type and enters interface configuration mode. |
| | <strong>Example:</strong> | |
| | <code>Router(config)# interface loopback 100</code> | |
| <strong>Step 5</strong> | <code>ip address ip-address mask</code> | Sets the primary or secondary IP address for an interface. |
| | <strong>Example:</strong> | |
| | <code>Router(config-if)# ip address 10.0.0.100 255.255.255.255</code> | |
| <strong>Step 6</strong> | <code>template type pseudowire [pw-class-name]</code> | Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode. |
| | <strong>Example:</strong> | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Router(config-if)# template type pseudowire atm-eth</strong></td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td><strong>Step 7</strong> encapsulation mpls</td>
<td>Specifies the type of pseudowire and the type of traffic that can flow across it.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pw)# interworking ip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> interface atm slot / subslot / port . subinterface number</td>
<td>Configures an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-pw)# interface atm 2/0/0.1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> pvc [name] vpi / vci l2transport</td>
<td>Assigns a name to an ATM permanent virtual circuit (PVC) and enters ATM virtual circuit configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-subif)# pvc 0/200 l2transport</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> encapsulation aal5snap</td>
<td>Configures the ATM AAL and encapsulation type for an ATM VC.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if-atm-member)# encapsulation aal5snap</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if-atm-member)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> source template type pseudowire template-name</td>
<td>Configures the source template of type pseudowire named atm-eth.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# source template type pseudowire atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
### ATM AAL5-to-Ethernet Port on a PE2 Router

You can configure the ATM AAL5-to-Ethernet Port feature on a PE2 router using the following steps:

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `mpls label protocol ldp`
4. `interface type number`
5. `ip address ip-address mask`
6. `pseudowire-class [pw-class-name]`
7. `encapsulation mpls`
8. `interworking {ethernet | ip}`
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> mpls label protocol ldp</td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td>Example: Router(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interface type number</td>
<td>Configure an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface loopback 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ip address ip-address mask</td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip address 10.0.0.100 255.255.255.255</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> pseudowire-class [pw-class-name]</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# pseudowire-class atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example: Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td>Example: Router(config-pw)# interworking ip</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Configure an interface and enters interface configuration mode.**

**Example:**

```bash
Router(config-pw)# interface gigabitethernet 5/1/0
```

### Command or Action

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>interface</code></td>
<td>Configure an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>type slot / subslot / port</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-pw)# interface gigabitethernet 5/1/0</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>xconnect</code></td>
<td>Binds an AC to a pseudowire and configures an AToM static pseudowire.</td>
</tr>
<tr>
<td></td>
<td><code>ip-address vc-id pw-class pw-class-name</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# xconnect 10.0.0.100 140 pw-class atm-eth</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>end</code></td>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-xconn)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

### What to do next

**Note**

When configuring bridged interworking, the PE2 router configuration does not include the `interworking ethernet` command because it is treated as like-to-like, and also because the AC is already an Ethernet port. However, when configuring routed interworking, the `interworking ip` command is required.

### ATM AAL5-to-Ethernet Port on a PE2 Router using the commands associated with the L2VPN Protocol-Based CLIs feature

You can configure the ATM AAL5-to-Ethernet Port feature on a PE2 router using the following steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `mpls label protocol ldp`
4. `interface type number`
5. `ip address ip-address mask`
6. `template type pseudowire [pseudowire-name]`
7. `encapsulation mpls`
8. `interworking {ethernet | ip}`
9. `interface type slot / subslot / port`
10. `end`
11. `interface pseudowire number`
12. `source template type pseudowire template-name`
13. `neighbor peer-address vcid-value`
14. `exit`
15. `l2vpn xconnect context context-name`
### Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mpls label protocol ldp</td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>interface type number</td>
<td>Configure an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface loopback 100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ip address ip-address mask</td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip address 10.0.0.100 255.255.255.255</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>template type pseudowire [pseudowire-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# template type pseudowire atm-eth</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# interworking ip</td>
<td></td>
</tr>
</tbody>
</table>
## ATM AAL5-to-Ethernet Port on a PE2 Router using the commands associated with the L2VPN Protocol-Based CLIs feature

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9  <strong>interface type slot / subslot / port</strong></td>
<td>Configure an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-pw)# interface gigabitethernet 5/1/0</td>
<td></td>
</tr>
<tr>
<td>Step 10 <strong>end</strong></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-pw)# end</td>
<td></td>
</tr>
<tr>
<td>Step 11 <strong>interface pseudowire number</strong></td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Step 12 <strong>source template type pseudowire template-name</strong></td>
<td>Configures the source template of type pseudowire named atm-eth</td>
</tr>
<tr>
<td>Example: Router(config-if)# source template type pseudowire atm-eth</td>
<td></td>
</tr>
<tr>
<td>Step 13 <strong>neighbor peer-address vcid-value</strong></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example: Router(config-if)# neighbor 10.0.0.100 140</td>
<td></td>
</tr>
<tr>
<td>Step 14 <strong>exit</strong></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 15 <strong>l2vpn xconnect context context-name</strong></td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td>Step 16 <strong>member pseudowire interface-number</strong></td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example: Router(config-xconnect)# member pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>Step 17 <strong>member ip-address vc-id encapsulation mpls</strong></td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td>Example: Router(config-xconnect)# member 10.0.0.100 140 encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
**Step 18**       | **end** |
Example:          |         |
Router(config-xconnect)# end |

Exits xconnect configuration mode and returns to privileged EXEC mode.

**What to do next**

When configuring bridged interworking, the PE2 router configuration does not include the **interworking ethernet** command because it is treated as like-to-like, and also because the AC is already an Ethernet port. However, when configuring routed interworking, the **interworking ip** command is required.

---

**ATM AAL5-to-Ethernet VLAN 802.1Q on a PE1 Router**

You can configure the ATM AAL5-to-Ethernet VLAN 802.1Q feature on a PE1 router using the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. mpls label protocol ldp
4. interface type number
5. ip address ip-address mask
6. pseudowire-class [pw-class-name]
7. encapsulation mpls
8. interworking {ethernet | ip}
9. interface atm slot / subslot / port . subinterface number
10. pvc [name] vpi / vci 12transport
11. encapsulation aal5snap
12. xconnect ip-address vc-id pw-class pw-class-name
13. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
</tbody>
</table>
Example:          |         |
Router> enable |

Enables privileged EXEC mode.
- Enter your password if prompted.

| Step 2 | configure terminal |
Example:          |         |

Enters global configuration mode.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
</tbody>
</table>
| **Step 3** mpls label protocol ldp  
Example:  
Router(config)# mpls label protocol ldp | Configure an interface type and enters interface configuration mode. |
| **Step 4** interface type number  
Example:  
Router(config)# interface loopback 100 | Sets the primary or secondary IP address for an interface. |
| **Step 5** ip address ip-address mask  
Example:  
Router(config-if)# ip address 10.0.0.100 255.255.255.255 | Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode. |
| **Step 6** pseudowire-class [pw-class-name]  
Example:  
Router(config-if)# pseudowire-class atm-eth | Specifies the tunneling encapsulation. |
| **Step 7** encapsulation mpls  
Example:  
Router(config-pw)# encapsulation mpls | Specifies the type of pseudowire and the type of traffic that can flow across it. |
| **Step 8** interworking {ethernet | ip}  
Example:  
Router(config-pw)# interworking ip | Configure an ATM interface and enters interface configuration mode. |
| **Step 9** interface atm slot / subslot / port . subinterface number  
Example:  
Router(config-pw)# interface atm 2/0/0.1 | Assigns a name to an ATM permanent virtual circuit (PVC) and enters ATM virtual circuit configuration mode. |
| **Step 10** pvc [name] vpi / vci l2transport  
Example:  
Router(config-subif)# pvc 0/200 l2transport | Configures the ATM AAL and encapsulation type for an ATM VC. |
### ATM AAL5-to-Ethernet VLAN 802.1Q on a PE1 Router using the commands associated with the L2VPN Protocol-Based CLIs feature

You can configure the ATM AAL5-to-Ethernet VLAN 802.1Q feature on a PE1 router using the following steps:

#### SUMMARY STEPS

1. enable
2. configure terminal
3. mpls label protocol ldp
4. interface type number
5. ip address ip-address mask
6. template type pseudowire [pseudowire-name]
7. encapsulation mpls
8. interworking {ethernet | ip}
9. interface atm slot / subslot / port . subinterface number
10. pvc [name] vpi / vci 12transport
11. encapsulation aal5snap
12. end
13. interface pseudowire number
14. source template type pseudowire template-name
15. neighbor peer-address vcid-value
16. exit
17. l2vpn xconnect context context-name
18. member pseudowire interface-number
19. member ip-address vc-id encapsulation mpls
20. end

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if-atm-member)# encapsulation aal5snap</td>
<td>Binds an AC to a pseudowire and configures an AToM static pseudowire.</td>
</tr>
</tbody>
</table>

**Step 12**

**xconnect ip-address vc-id pw-class pw-class-name**

**Example:**

Router(config-if-atm-member)# xconnect 10.0.0.200 140 pw-class atm-eth

**Step 13**

**end**

**Example:**

Router(config-if-xconn)# end
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>mpls label protocol ldp</td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>interface type number</td>
<td>Configure an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface loopback 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>ip address ip-address mask</td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip address 10.0.0.100 255.255.255.255</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>template type pseudowire [pseudowire-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# template type pseudowire atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# interworking ip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>interface atm slot / subslot / port . subinterface number</td>
<td>Configure an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# interface atm 2/0/0.1</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>10</td>
<td><code>pvc [name] vpi/vci 12transport</code></td>
<td>Assigns a name to an ATM permanent virtual circuit (PVC) and enters ATM virtual circuit configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-subif)# pvc 0/200 12transport</code></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><code>encapsulation aal5snap</code></td>
<td>Configures the ATM AAL and encapsulation type for an ATM VC.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-atm-member)# encapsulation aal5snap</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-atm-member)# end</code></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>interface pseudowire number</code></td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface pseudowire 100</code></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><code>source template type pseudowire template-name</code></td>
<td>Configures the source template of type pseudowire named atm-eth</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# source template type pseudowire atm-eth</code></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td><code>neighbor peer-address vcid-value</code></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# neighbor 10.0.0.200 140</code></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td><code>exit</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# exit</code></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td><code>l2vpn xconnect context context-name</code></td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# l2vpn xconnect context con1</code></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td><code>member pseudowire interface-number</code></td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-xconnect)# member pseudowire 100</code></td>
<td></td>
</tr>
</tbody>
</table>
### ATM AAL5-to-Ethernet VLAN 802.1Q on a PE2 router

You can configure the ATM AAL5-to-Ethernet VLAN 802.1Q feature on a PE2 router using the following steps:

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `mpls label protocol ldp`
4. `interface type number`
5. `ip address ip-address mask`
6. `pseudowire-class [pw-class-name]`
7. `encapsulation mpls`
8. `interworking {ethernet | ip}`
9. `interface type slot / subslot / port , subinterface-number`
10. `encapsulation dot1q vlan-id`
11. `xconnect ip-address vc-id pw-class pw-class-name`
12. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td><code>mpls label protocol ldp</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# mpls label protocol ldp</td>
<td>Configure an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> interface type number</td>
<td>Configure an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface loopback 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ip address ip-address mask</td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.0.0.100 255.255.255</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> pseudowire-class [pw-class-name]</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# pseudowire-class atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# interworking ip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> interface type slot / subslot / port . subinterface-number</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# interface gigabitethernet 5/1/0.3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> encapsulation dot1q vlan-id</td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified sub interface in a VLAN.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation dot1q 1525</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> xconnect ip-address vc-id pw-class pw-class-name</td>
<td>Binds an AC to a pseudowire and configures an AToM static pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# xconnect 10.0.0.100 140 pw-class atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> end</td>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-if-xconn)# end</td>
<td></td>
</tr>
</tbody>
</table>

**What to do next**

**Note**
In the case of ATM AAL5-to-VLAN, the PE2 router configuration includes the `interworking` command for both bridged and routed interworking.

**Note**
To verify the L2VPN interworking status and check the statistics, refer to the Verifying L2VPN Interworking, on page 249.

**ATM AAL5-to-Ethernet VLAN 802.1Q on a PE2 router using the commands associated with the L2VPN Protocol-Based CLIs feature**

You can configure the ATM AAL5-to-Ethernet VLAN 802.1Q feature on a PE2 router using the following steps:

**SUMMARY STEPS**

1.  enable
2.  configure terminal
3.  mpls label protocol ldp
4.  interface type number
5.  ip address ip-address mask
6.  template type pseudowire [pseudowire-name]
7.  encapsulation mpls
8.  interworking {ethernet | ip}
9.  interface type slot / subslot / port . subinterface-number
10. encapsulation dot1q vlan-id
11. end
12. interface pseudowire number
13. source template type pseudowire template-name
14. neighbor peer-address vcid-value
15. exit
16. l2vpn xconnect context context-name
17. member pseudowire interface-number
18. member ip-address vc-id encapsulation mpls
19. end
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> mpls label protocol ldp</td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> interface type number</td>
<td>Configure an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface loopback 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ip address ip-address mask</td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.0.0.100 255.255.255.255</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> template type pseudowire [pseudowire-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# template type pseudowire atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# interworking ip</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> interface type slot / subslot / port . subinterface-number</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-pw)# interface gigabitethernet 5/1/0.3</td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified sub interface in a VLAN.</td>
</tr>
<tr>
<td><strong>Step 10</strong> encapsulation dot1q vlan-id</td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified sub interface in a VLAN.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation dot1q 1525</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> source template type pseudowire template-name</td>
<td>Configures the source template of type pseudowire named atm-eth</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# source template type pseudowire atm-eth</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# neighbor 10.0.0.100 140</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> exit</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong> l2vpn xconnect context context-name</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 17</strong> member pseudowire interface-number</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xconnect)# member pseudowire 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 18</strong> member ip-address vc-id encapsulation mpls</td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-xconnect)# member 10.0.0.100 140 encapsulation mpls</td>
<td>Exit xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Step 19**

**end**

**Example:**

Router(config-xconnect)# end

---

**What to do next**

**Note**

In the case of ATM AAl5-to-VLAN, the PE2 router configuration includes the `interworking` command for both bridged and routed interworking.

**Note**

To verify the L2VPN interworking status and check the statistics, refer to the Verifying L2VPN Interworking, on page 249.

---

### Configuring Ethernet VLAN-to-Frame Relay Interworking

This section explains the following AToM configurations and provides examples. The Network Topology for FR-to-Ethernet AToM Bridged Interworking figure above illustrates different AToM configurations.

### Frame Relay DLCI-to-Ethernet Port on a PE1 Router

You can configure the Frame Relay DLCI-to-Ethernet Port feature on a PE1 router using the following steps:

**SUMMARY STEPS**

1. enable
2. configure terminal
3. mpls label protocol ldp
4. interface type number
5. ip address ip-address mask
6. pseudowire-class [pw-class-name]
7. encapsulation mpls
8. interworking ethernet
9. interface type slot / subslot / port
10. encapsulation frame-relay
11. connect connection-name interface dlei {interface dlei | l2transport}
12. xconnect ip-address vc-id pw-class pw-class-name
13. end
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable  | Enables privileged EXEC mode.  
| Example: Router> enable | • Enter your password if prompted. |
| **Step 2** configure terminal  | Enters global configuration mode. |
| Example: Router# configure terminal | |
| **Step 3** mpls label protocol ldp  | Establishes the label distribution protocol for the platform. |
| Example: Router(config)# mpls label protocol ldp | |
| **Step 4** interface type number  | Configures an interface type and enters interface configuration mode. |
| Example: Router(config)# interface loopback 100 | |
| **Step 5** ip address ip-address mask  | Sets the primary or secondary IP address for an interface. |
| Example: Router(config-if)# ip address 10.0.0.100 255.255.255.255 | |
| **Step 6** pseudowire-class [pw-class-name]  | Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode. |
| Example: Router(config-if)# pseudowire-class fr-eth | |
| **Step 7** encapsulation mpls  | Specifies the tunneling encapsulation. |
| Example: Router(config-pw)# encapsulation mpls | |
| **Step 8** interworking ethernet  | Specifies the type of pseudowire and the type of traffic that can flow across it. |
| Example: Router(config-pw)# interworking ethernet | |
| **Step 9** interface type slot / subslot / port  | Configures an interface and enters interface configuration mode. |
| Example: Router(config-pw)# interface serial 2/0/0 | |
### Frame Relay DLCI-to-Ethernet Port on a PE1 Router using the commands associated with the L2VPN Protocol-Based CLIs feature

You can configure the Frame Relay DLCI-to-Ethernet Port feature on a PE1 router using the following steps:

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `mpls label protocol ldp`
4. `interface type number`
5. `ip address ip-address mask`
6. `template type pseudowire [pseudowire-name]`
7. `encapsulation type pseudowire [pseudowire-name]`
8. `interworking ethernet`
9. `interface type slot / subslot / port`
10. `encapsulation frame-relay`
11. `connect connection-name interface dlc i {interface dlc i | l2transport}
12. `end`
13. `interface pseudowire number`
14. `source template type pseudowire template-name`
15. `neighbor peer-address vcid-value`
16. `exit`

#### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10</td>
<td><code>encapsulation frame-relay</code></td>
<td>Enables Frame Relay encapsulation.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# encapsulation frame-relay</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>`connect connection-name interface dlc i {interface dlc i</td>
<td>l2transport}`</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# connect fr-vlan-1 POS2/3/1 151 l2transport</code></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td><code>xconnect ip-address vc-id pw-class pw-class-name</code></td>
<td>Binds an AC to a pseudowire and configures an AToM static pseudowire.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# xconnect 10.0.0.200 151 pw-class pw-class-bridge</code></td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td><code>end</code></td>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-xconn)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt;</td>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router#</td>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>mpls label protocol ldp</code></td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>interface type number</code></td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>interface loopback 100</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ip address ip-address mask</code></td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td>ip address 10.0.0.100 255.255.255.255</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>template type pseudowire [pseudowire-name]</code></td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>template type pseudowire fr-eth</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>encapsulation mpls</code></td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)#</td>
<td>encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>interworking ethernet</code></td>
<td>Specifies the type of pseudowire and the type of traffic that can flow across it.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)#</td>
<td>interworking ethernet</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>interface type slot / subslot / port</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-pw)# interface serial 2/0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Configures an interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>encapsulation frame-relay</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# encapsulation frame-relay</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enables Frame Relay encapsulation.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>**connect connection-name interface dlci {interface dlci</td>
<td>l2transport}**</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# connect fr-vlan-1 POS2/3/1 151 l2transport</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Defines the connection between Frame Relay PVCs.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td><strong>end</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Exits to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td><strong>interface pseudowire number</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td><strong>source template type pseudowire template-name</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# source template type pseudowire pwclass-bridge</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Configures the source template of type pseudowire named pwclass-bridge.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong></td>
<td><strong>neighbor peer-address vcid-value</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# neighbor 10.0.0.200 151</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong></td>
<td><strong>exit</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Exits to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 17</strong></td>
<td><strong>l2vpn xconnect context context-name</strong></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>
Frame Relay DLCI-to-Ethernet Port on a PE2 router

You can configure the Frame Relay DLCI-to-Ethernet Port feature on a PE2 router using the following steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `mpls label protocol ldp`
4. `interface type number`
5. `ip address ip-address mask`
6. `pseudowire-class [pw-class-name]`
7. `encapsulation mpls`
8. `interworking ethernet`
9. `interface type slot / subslot / port`
10. `xconnect ip-address vc-id pw-class pw-class-name`
11. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Establishes the label distribution protocol for the platform.</td>
<td></td>
</tr>
<tr>
<td>mpls label protocol ldp&lt;br&gt;Example: Router(config)# mpls label protocol ldp</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Configures an interface type and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>interface type number&lt;br&gt;Example: Router(config)# interface loopback 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Sets the primary or secondary IP address for an interface.</td>
<td></td>
</tr>
<tr>
<td>ip address ip-address mask&lt;br&gt;Example: Router(config-if)# ip address 10.0.0.100 255.255.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>pseudowire-class [pw-class-name]&lt;br&gt;Example: Router(config-if)# pseudowire-class atm-eth</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Specifies the tunneling encapsulation.</td>
<td></td>
</tr>
<tr>
<td>encapsulation mpls&lt;br&gt;Example: Router(config-pw)# encapsulation mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Specifies the type of pseudowire and the type of traffic that can flow across it.</td>
<td></td>
</tr>
<tr>
<td>interworking ethernet&lt;br&gt;Example: Router(config-pw)# interworking ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Configures an interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>interface type slot / subslot / port&lt;br&gt;Example: Router(config-pw)# interface gigabitethernet 2/0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Binds an AC to a pseudowire and configures an AToM static pseudowire.</td>
<td></td>
</tr>
<tr>
<td>xconnect ip-address vc-id pw-class pw-class-name&lt;br&gt;Example: Router(config-if)# xconnect 10.0.0.200 140 pw-class atm-eth</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>end&lt;br&gt;Example: Router(config-if-xconn)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frame Relay DLCI-to-Ethernet Port on a PE2 router using the commands associated with the L2VPN Protocol-Based CLIs feature

You can configure the Frame Relay DLCI-to-Ethernet Port feature on a PE2 router using the following steps:

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `mpls label protocol ldp`
4. `interface type number`
5. `ip address ip-address mask`
6. `template type pseudowire [pseudowire-name]`
7. `encapsulation mpls`
8. `interworking ethernet`
9. `interface type slot / subslot / port`
10. `end`
11. `interface pseudowire number`
12. `source template type pseudowire template-name`
13. `neighbor peer-address vcid-value`
14. `exit`
15. `l2vpn xconnect context context-name`
16. `member pseudowire interface-number`
17. `member ip-address ve-id encapsulation mpls`
18. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 3    | mpls label protocol ldp  
| Example: | Router(config)# mpls label protocol ldp | Establishes the label distribution protocol for the platform. |
| 4    | interface  
| type number | Configures an interface type and enters interface configuration mode. |
| Example: | Router(config)# interface loopback 100 |
| 5    | ip address  
| ip-address mask | Sets the primary or secondary IP address for an interface. | |
| Example: | Router(config-if)# ip address 10.0.0.100 255.255.255.255 |
| 6    | template type pseudowire [pseudowire-name] | Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode. |
| Example: | Router(config)# template type pseudowire atm-eth |
| 7    | encapsulation mpls | Specifies the tunneling encapsulation. |
| Example: | Router(config-pw)# encapsulation mpls |
| 8    | interworking ethernet | Specifies the type of pseudowire and the type of traffic that can flow across it. |
| Example: | Router(config-pw)# interworking ethernet |
| 9    | interface  
| type slot / subslot / port | Configures an interface and enters interface configuration mode. | |
| Example: | Router(config-pw)# interface gigabitethernet 2/0/0 |
| 10   | end | Exits to privileged EXEC mode. |
| Example: | Router(config-pw)# end |
| 11   | interface pseudowire number | Specifies the pseudowire interface and enters interface configuration mode. |
| Example: | Router(config)# interface pseudowire 100 |
### Command or Action

| Step 12 | source template type pseudowire *template-name*  
Example:  
Router(config-if)# source template type pseudowire atm-eth | Configure the source template of type pseudowire named atm-eth |
|---------|-----------------------------------------------------|--------------------------------------------------|
| Step 13 | neighbor *peer-address*  *vcid-value*  
Example:  
Router(config-if)# neighbor 10.0.0.200 140 | Specify the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire. |
| Step 14 | exit  
Example:  
Router(config-if)# exit | Exit to privileged EXEC mode. |
| Step 15 | l2vpn xconnect context *context-name*  
Example:  
Router(config)# l2vpn xconnect context con1 | Create a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode. |
| Step 16 | member pseudowire *interface-number*  
Example:  
Router(config-xconnect)# member pseudowire 100 | Specify a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect. |
| Step 17 | member *ip-address*  *vc-id*  *encapsulation mpls*  
Example:  
Router(config-xconnect)# member 10.0.0.200 140 encapsulation mpls | Create the VC to transport the Layer 2 packets. |
| Step 18 | end  
Example:  
Router(config-xconnect)# end | Exit xconnect configuration mode and return to privileged EXEC mode. |

### What to do next

When configuring bridged interworking, the PE2 router configuration does not include the *interworking ethernet* command because it is treated as like-to-like, and also because the AC is already an Ethernet port. However, when configuring routed interworking, the PE2 router configuration does include the *interworking ip* command.
Frame Relay DLCI-to-Ethernet VLAN 802.1Q on a PE1 Router

To configure the Frame Relay DLCI-to-Ethernet VLAN 802.1Q feature on a PE1 router, use the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. mpls label protocol ldp
4. interface type number
5. ip address ip-address mask
6. pseudowire-class [pw-class-name]
7. encapsulation mpls
8. interworking {ethernet | ip}
9. frame-relay switching
10. interface type slot / subslot / port
11. encapsulation frame-relay
12. frame-relay intf-type [dce]
13. connect connection-name interface dlci {interface dlci | l2transport}
14. xconnect ip-address vc-id pw-class pw-class-name
15. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mpls label protocol ldp</td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>interface type number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface loopback 100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ip address ip-address mask</td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.0.0.100 255.255.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> pseudowire-class [pw-class-name]</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# pseudowire-class atm-eth</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-pw)# encapsulation mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> interworking {ethernet</td>
<td>ip}</td>
<td>Specifies the type of pseudowire and the type of traffic that can flow across it.</td>
</tr>
<tr>
<td>Example: Router(config-pw)# interworking ip</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> frame-relay switching</td>
<td>Enables PVC switching on a Frame Relay DCE device.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-pw)# frame-relay switching</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> interface type slot / subslot / port</td>
<td>Configures an interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-pw)# interface serial 2/0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> encapsulation frame-relay</td>
<td>Enables Frame Relay encapsulation.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# encapsulation frame-relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> frame-relay intf-type [dce]</td>
<td>Configures a Frame Relay switch type.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# frame-relay intf-type dce</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> connect connection-name interface dlc i {interface dlc i</td>
<td>l2transport}</td>
<td>Defines the connection between Frame Relay PVCs.</td>
</tr>
<tr>
<td>Example: Router(config-if)# connect one serial0 16 serial1 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> xconnect ip-address vc-id pw-class pw-class-name</td>
<td>Binds an AC to a pseudowire and configures an AToM static pseudowire.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frame Relay DLCI-to-Ethernet VLAN 802.1Q on a PE1 Router using the commands associated with the L2VPN Protocol-Based CLIs feature

To configure the Frame Relay DLCI-to-Ethernet VLAN 802.1Q feature on a PE1 router, use the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. mpls label protocol ldp
4. interface type number
5. ip address ip-address mask
6. template type pseudowire [pseudowire-name]
7. encapsulation mpls
8. interworking {ethernet | ip}
9. frame-relay switching
10. interface type slot / subslot / port
11. encapsulation frame-relay
12. frame-relay intf-type [dce]
13. connect connection-name interface dlci {interface dlci | l2transport}
14. end
15. interface pseudowire number
16. source template type pseudowire template-name
17. neighbor peer-address vcid-value
18. exit
19. l2vpn xconnect context context-name
20. member pseudowire interface-number
21. member ip-address vc-id encapsulation mpls
22. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Router(config-if)# xconnect 10.0.0.200 140
pw-class atm-eth

Step 15

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-xconn)# end</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Router&gt; enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>configure terminal</td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td>4</td>
<td>interface type number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>5</td>
<td>ip address ip-address mask</td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>6</td>
<td>template type pseudowire [pseudowire-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>7</td>
<td>encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>8</td>
<td>interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td>9</td>
<td>frame-relay switching</td>
<td>Enables PVC switching on a Frame Relay DCE device.</td>
</tr>
<tr>
<td>10</td>
<td>interface type slot / subslot / port</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>11</td>
<td>encapsulation frame-relay</td>
<td>Enables Frame Relay encapsulation.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation frame-relay</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>frame-relay intf-type [dce]</td>
<td>Configures a Frame Relay switch type.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# frame-relay intf-type dce</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>connect connection-name interface dlc1 {interface dlc1</td>
<td>Defines the connection between Frame Relay PVCs.</td>
</tr>
<tr>
<td></td>
<td>l2transport}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# connect one serial0 16 serial1 100</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>source template type pseudowire template-name</td>
<td>Configures the source template of type pseudowire named atm-eth</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# source template type pseudowire atm-eth</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# neighbor 10.0.0.200 140</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>exit</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>l2vpn xconnect context context-name</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 20</th>
<th>member pseudowire interface-number Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router(config-xconnect)# member pseudowire 100</td>
</tr>
</tbody>
</table>

Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.

**Step 21**

**member ip-address vc-id encapsulation mpls**

Example:

Router(config-xconnect)# member 10.0.0.200 140 encapsulation mpls

Creates the VC to transport the Layer 2 packets.

**Step 22**

**end**

Example:

Router(config-xconnect)# end

Exits xconnect configuration mode and returns to privileged EXEC mode.

### Frame Relay DLCI-to-Ethernet VLAN 802.1Q on a PE2 Router

To configure the Frame Relay DLCI-to-Ethernet VLAN 802.1Q feature on a PE2 router, use the following steps:

#### SUMMARY STEPS

1. enable
2. configure terminal
3. mpls label protocol ldp
4. interface type number
5. ip address ip-address mask
6. pseudowire-class [pw-class-name]
7. encapsulation mpls
8. interworking {ethernet | ip}
9. interface type slot / subslot / port / subinterface-number
10. encapsulation dot1q vlan-id
11. xconnect ip-address vc-id pw-class pw-class-name
12. end

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Establishes the label distribution protocol for the platform.</td>
</tr>
<tr>
<td><strong>Step 3</strong> mpls label protocol ldp <strong>Example:</strong> Router(config)# mpls label protocol ldp</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> interface type number <strong>Example:</strong> Router(config)# interface loopback 100</td>
<td>Sets the primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td><strong>Step 5</strong> ip address ip-address mask <strong>Example:</strong> Router(config-if)# ip address 10.0.0.100 255.255.255.255</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td><strong>Step 6</strong> pseudowire-class [pw-class-name] <strong>Example:</strong> Router(config-if)# pseudowire-class atm-eth</td>
<td>Specifies the type of pseudowire and the type of traffic that can flow across it.</td>
</tr>
<tr>
<td><strong>Step 7</strong> encapsulation mpls <strong>Example:</strong> Router(config-pw)# encapsulation mpls</td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.</td>
</tr>
<tr>
<td><strong>Step 8</strong> interworking {ethernet</td>
<td>ip} <strong>Example:</strong> Router(config-pw)# interworking ip</td>
</tr>
<tr>
<td><strong>Step 9</strong> interface type slot / subslot / port . subinterface-number <strong>Example:</strong> Router(config-pw)# interface gigabitethernet 5/1/0.3</td>
<td></td>
</tr>
</tbody>
</table>
Frame Relay DLCI-to-Ethernet VLAN 802.1Q on a PE2 Router using the commands associated with the L2VPN Protocol-Based CLIs feature

To configure the Frame Relay DLCI-to-Ethernet VLAN 802.1Q feature on a PE2 router, use the following steps:

**SUMMARY STEPS**

1.  enable
2.  configure terminal
3.  mpls label protocol ldp
4.  interface type number
5.  ip address ip-address mask
6.  pseudowire-class [pw-class-name]
7.  encapsulation mpls
8.  interworking {ethernet | ip}
9.  interface type slot / subslot / port . subinterface-number
10.  encapsulation dot1q vlan-id
11.  end
12.  interface pseudowire number
13.  source template type pseudowire template-name
14.  exit
15.  l2vpn xconnect context context-name
16.  member pseudowire interface-number
17.  member ip-address ve-id encapsulation mpls
### Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1    | enable            | Enables privileged EXEC mode.  
  **Example:**  
  Router> enable  
  • Enter your password if prompted. |
| 2    | configure terminal | Enters global configuration mode.  
  **Example:**  
  Router# configure terminal |
| 3    | mpls label protocol ldp | Establishes the label distribution protocol for the platform.  
  **Example:**  
  Router(config)# mpls label protocol ldp |
| 4    | interface type number | Configures an interface type and enters interface configuration mode.  
  **Example:**  
  Router(config)# interface loopback 100 |
| 5    | ip address ip-address mask | Sets the primary or secondary IP address for an interface.  
  **Example:**  
  Router(config-if)# ip address 10.0.0.100 255.255.255.255 |
| 6    | pseudowire-class [pw-class-name] | Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.  
  **Example:**  
  Router(config-if)# pseudowire-class atm-eth |
| 7    | encapsulation mpls | Specifies the tunneling encapsulation.  
  **Example:**  
  Router(config-pw)# encapsulation mpls |
| 8    | interworking {ethernet | ip} | Specifies the type of pseudowire and the type of traffic that can flow across it.  
  **Example:**  
  Router(config-pw)# interworking ip |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td><code>interface type slot / subslot / port . subinterface-number</code></td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw)# interface gigabitethernet 5/1/0.3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>encapsulation dot1q vlan-id</code></td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation dot1q 1525</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>interface pseudowire number</code></td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>source template type pseudowire template-name</code></td>
<td>Configures the source template of type pseudowire named ether-pw.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# source template type pseudowire ether-pw</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><code>exit</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td><code>l2vpn xconnect context context-name</code></td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td><code>member pseudowire interface-number</code></td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-xconnect)# member pseudowire 100</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td><code>member ip-address vc-id encapsulation mpls</code></td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-xconnect)# member 10.0.0.100 140 encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring HDLC-to-Ethernet Interworking

#### HDLC-to-Ethernet Bridged Interworking on a HDLC PE Device

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `pseudowire-class [pw-class-name]`
4. `encapsulation mpls`
5. `interworking ethernet`
6. `interface type slot/subslot/port [subinterface]`
7. `no ip address [ip-address mask] [secondary]`
8. `xconnect peer-router-id vc-id pseudowire-class [pw-class-name]`
9. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device&gt; enable</code></td>
<td></td>
</tr>
</tbody>
</table>

---

**Note**
In the case of an Frame Relay DLCI-to-VLAN, the PE2 router configuration includes the `interworking` command for both bridged and routed interworking.

---

**Note**
To verify the L2VPN interworking status and check the statistics, refer to the Verifying L2VPN Interworking, on page 249.

---

**L2VPN Interworking**

**Command or Action**

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishes an L2VPN cross connect context.</td>
</tr>
<tr>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Example:**

**Step 18**

```
Router(config-xconnect)# interworking ip
```

**Step 19**

```
Router(config-xconnect)# end
```
### HDLC-to-Ethernet Bridged Interworking on a HDLC PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

#### SUMMARY STEPS

1. enable
2. configure terminal
3. template type pseudowire name
4. encapsulation mpls
5. exit
6. interface pseudowire number
7. source template type pseudowire name
8. encapsulation mpls
9. neighbor peer-address vc id-value
10. signaling protocol ldp
11. no shutdown
12. exit
13. l2vpn xconnect context context-name
14. interworking ethernet
15. member interface-type-number
16. member pseudowire interface-number
17. no shutdown
18. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>Example: Device&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>template type pseudowire name</td>
</tr>
<tr>
<td></td>
<td>Example: Device# template type pseudowire temp5</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-template)# encapsulation mpls</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-template)# exit</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>interface pseudowire number</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# interface pseudowire 107</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 7    | `source template type pseudowire name`  
**Example:**  
Device(config-if)# source template type pseudowire temp5 | Configures the source template of type pseudowire named temp5. |
| 8    | `encapsulation mpls`  
**Example:**  
Device(config-if)# encapsulation mpls | Specifies the tunneling encapsulation as MPLS. |
| 9    | `neighbor peer-address vc id-value`  
**Example:**  
Device(config-if)# neighbor 10.0.0.11 107 | Specifies the peer IP address and virtual circuit (VC) ID value of an L2VPN pseudowire. |
| 10   | `signaling protocol ldp`  
**Example:**  
Device(config-if)# signaling protocol ldp | Specifies that the Label Distribution Protocol (LDP) is configured for the pseudowire class. |
| 11   | `no shutdown`  
**Example:**  
Device(config-if)# no shutdown | Restarts the interface pseudowire. |
| 12   | `exit`  
**Example:**  
Device(config-if)# exit | Exits interface configuration mode and returns to global configuration mode. |
| 13   | `l2vpn xconnect context context-name`  
**Example:**  
Device(config)# l2vpn xconnect context con1 | Creates an L2VPN cross-connect context and enters xconnect configuration mode. |
| 14   | `interworking ethernet`  
**Example:**  
Device(config-xconnect)# interworking ethernet | Specifies Ethernet as the type of pseudowire as well as the type of traffic that can flow across the pseudowire. |
| 15   | `member interface-type-number`  
**Example:**  
Device(config-xconnect)# member serial 0/1/0:0 | Specifies the location of the member interface. |
| 16   | `member pseudowire interface-number`  
**Example:**  
Device(config-xconnect)# member pseudowire 107 | Specifies a member pseudowire to form an L2VPN cross connect. |
| 17   | `no shutdown`  
**Example:**  
Device(config-xconnect)# no shutdown | Restarts the member interface. |
### HDLC-to-Ethernet Bridged Interworking (Port Mode) on an Ethernet PE Device

#### SUMMARY STEPS

1. `enable`  
2. `configure terminal`  
3. `pseudowire-class [pw-class-name]`  
4. `encapsulation mpls`  
5. `interworking ethernet`  
6. `interface type slot/subslot /port [subinterface]`  
7. `encapsulation mpls`  
8. `xconnect peer-router-id vc id pseudowire-class [pw-class-name]`  
9. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.  
• Enter your password if prompted. |
| **Step 2** | `configure terminal` | Enters global configuration mode. |
| **Step 3** | `pseudowire-class [pw-class-name]` | Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode. |
| **Step 4** | `encapsulation mpls` | Specifies the tunneling encapsulation as MPLS. |
| **Step 5** | `interworking ethernet` | Specifies Ethernet as the type of pseudowire as well as the type of traffic that can flow across the pseudowire. |
Purpose
Command or Action

Step 6
interface type slot1/subslot /port [. subinterface]
Example:
Device(config-pw-class)# interface gigabitethernet 4/0/0.1

Step 7
encapsulation mpls
Example:
Device(config-subif)# encapsulation mpls

Step 8
xconnect peer-router-id vc id pseudowire-class [pw-class-name]
Example:
Device(config-subif)# xconnect 198.51.100.2 123 pseudowire-class pw-iw-ether

Step 9
end
Example:
Device(config-subif)# end

HDLC-to-Ethernet Bridged Interworking (Port Mode) on an Ethernet PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

SUMMARY STEPS
1. enable
2. configure terminal
3. interface type slot1/subslot /port [. subinterface]
4. encapsulation mpls
5. no ip address
6. no shutdown
7. exit
8. template type pseudowire name
9. encapsulation mpls
10. exit
11. interface pseudowire number
12. source template type pseudowire name
13. encapsulation mpls
14. neighbor peer-address vc id-value
15. signaling protocol ldp
16. no shutdown
17. exit
18. `l2vpn xconnect context context-name`
19. `interworking ethernet`
20. `member interface-type-number`
21. `member pseudowire interface-number`
22. `no shutdown`
23. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.  
| Example: | Device> enable | - Enter your password if prompted. |
| Step 2 | `configure terminal` | Enters global configuration mode. |
| Example: | Device# configure terminal | |
| Step 3 | `interface type slot/subslot/port [subinterface]` | Specifies the subinterface and enters subinterface configuration mode.  
<p>| Example: | Device(config)# interface fastethernet 4/0/0.1 | - Ensure that the subinterface on the adjoining Ethernet CE device is on the same VLAN as this Ethernet PE device. |
| Step 4 | <code>encapsulation mpls</code> | Specifies the tunneling encapsulation as MPLS. |
| Example: | Device(config-subif)# encapsulation mpls | |
| Step 5 | <code>no ip address</code> | Disables IP processing. |
| Example: | Device(config-subif)# no ip address | |
| Step 6 | <code>no shutdown</code> | Restarts the Fast Ethernet subinterface. |
| Example: | Device(config-subif)# no shutdown | |
| Step 7 | <code>exit</code> | Exits subinterface configuration mode and returns to global configuration mode. |
| Example: | Device(config-subif)# exit | |
| Step 8 | <code>template type pseudowire name</code> | Creates a template pseudowire with a name that you specify and enters template configuration mode. |
| Example: | Device(config)# template type pseudowire temp4 | |</p>
<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>encapsulation mpls</strong></td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-template)# encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>exit</strong></td>
<td>Exits template configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-template)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>interface pseudowire number</strong></td>
<td>Establishes an interface pseudowire with a value that you specify and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# interface pseudowire 109</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>source template type pseudowire name</strong></td>
<td>Configures the source template of type pseudowire named temp4.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# source template type pseudowire temp4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 13</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>encapsulation mpls</strong></td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>neighbor peer-address vc id-value</strong></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of an L2VPN pseudowire.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# neighbor 10.0.0.15 109</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 15</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>signaling protocol ldp</strong></td>
<td>Specifies that the Label Distribution Protocol (LDP) is configured for the pseudowire class.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# signaling protocol ldp</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 16</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>no shutdown</strong></td>
<td>Restarts the interface pseudowire.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# no shutdown</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 17</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>exit</strong></td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 18</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>l2vpn xconnect context context-name</strong></td>
<td>Creates an L2VPN cross-connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# l2vpn xconnect context con2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 19</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>interworking ethernet</strong></td>
<td>Specifies Ethernet as the type of pseudowire as well as the type of traffic that can flow across the pseudowire.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
### HDLC-to-Ethernet Bridged Interworking (dot1q and QinQ Modes) on an Ethernet PE Device

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class [pw-class-name]`
4. `encapsulation mpls`
5. `interworking ethernet`
6. `interface type slot/subslot/port [., subinterface]`
7. `encapsulation dot1q vlan-id second dot1q vlan-id`
8. `xconnect peer-router-id vc id pseudowire-class [pw-class-name]`
9. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
  - `enable`
  - **Example:**
    - `Device> enable` | Enables privileged EXEC mode.  
  - *Enter your password if prompted.* |
| **Step 2**
  - `configure terminal`
  - **Example:**
    - `Device# configure terminal` | Enters global configuration mode. |

---

### Device Configuration Script

#### Purpose

- **Step 20**
  - `member interface-type-number`
  - **Example:**
    - `Device(config-xconnect)# member fastethernet 4/0/0.1`
  - Specifies the location of the member interface.

#### Example:

**Step 21**
- `member pseudowire interface-number`
  - **Example:**
    - `Device(config-xconnect)# member pseudowire 109`
  - Specifies a member pseudowire to form an L2VPN cross connect.

**Step 22**
- `no shutdown`
  - **Example:**
    - `Device(config-xconnect)# no shutdown`
  - Restarts the member interface.

**Step 23**
- `end`
  - **Example:**
    - `Device(config-xconnect)# end`
  - Exits xconnect configuration mode and returns to privileged EXEC mode.
## HDLC-to-Ethernet Bridged Interworking (dot1q and QinQ Modes) on an Ethernet PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> pseudowire-class [pw-class-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# pseudowire-class pw-iw-ether</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> interworking ethernet</td>
<td>Specifies Ethernet as the type of pseudowire as well as the type of traffic that can flow across the pseudowire.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pw-class)# interworking ethernet</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> interface type slot/subslot/port [subinterface]</td>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pw-class)# interface gigabitethernet 4/0/0.1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> encapsulation dot1q vlan-id second dot1q vlan-id</td>
<td>Defines the matching criteria to map QinQ ingress frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-subif)# encapsulation dot1q 100 second dot1q 200</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> xconnect peer-router-id vc id pseudowire-class [pw-class-name]</td>
<td>Creates the virtual circuit (VC) to transport the Layer 2 packets.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-subif)# xconnect 198.51.100.2 123 pseudowire-class pw-iw-ether</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> end</td>
<td>Exits subinterface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-subif)# end</td>
<td></td>
</tr>
</tbody>
</table>

### SUMMARY STEPS

1. enable
2. configure terminal
3. interface type slot/subslot/port [subinterface]
4. `encapsulation dot1q vlan-id second dot1q vlan-id`
5. `no ip address`
6. `no shutdown`
7. `exit`
8. `template type pseudowire name`
9. `encapsulation mpls`
10. `exit`
11. `interface pseudowire number`
12. `source template type pseudowire name`
13. `encapsulation mpls`
14. `neighbor peer-address vc id-value`
15. `signaling protocol ldp`
16. `no shutdown`
17. `exit`
18. `l2vpn xconnect context context-name`
19. `interworking ethernet`
20. `member interface-type-number`
21. `member pseudowire interface-number`
22. `no shutdown`
23. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong></td>
</tr>
</tbody>
</table>
| **Example:** | `Device> enable`
| | Enables privileged EXEC mode. |
| | • Enter your password if prompted. |
| **Step 2** | **configure terminal** |
| **Example:** | `Device# configure terminal`
| | Enters global configuration mode. |
| **Step 3** | **interface type slot/subslot/port [., subinterface]** |
| **Example:** | `Device(config)# interface fastethernet 4/0/0.1`
| | Specifies the subinterface and enters subinterface configuration mode. |
| | • Ensure that the subinterface on the adjoining Ethernet CE device is on the same VLAN as this Ethernet PE device. |
| **Step 4** | **encapsulation dot1q vlan-id second dot1q vlan-id** |
| **Example:** | `Device(config-subif)# encapsulation dot1q 100 second dot1q 200`
<p>| | Defines the matching criteria to map QinQ ingress frames on an interface to the appropriate service instance. |
| <strong>Step 5</strong> | <strong>no ip address</strong> |
| <strong>Example:</strong> | | Disables IP processing. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 Device(config-subif)# no ip address</td>
<td>Restarts the Fast Ethernet subinterface.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits subinterface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 8 template type pseudowire name</td>
<td>Creates a template pseudowire with a name that you specify and enters template configuration mode.</td>
</tr>
<tr>
<td>Step 9 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Exits template configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 11 interface pseudowire number</td>
<td>Establishes an interface pseudowire with a value that you specify and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 12 source template type pseudowire name</td>
<td>Configures the source template of type pseudowire named temp4.</td>
</tr>
<tr>
<td>Step 13 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td>Step 14 neighbor peer-address vc id-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of an L2VPN pseudowire.</td>
</tr>
<tr>
<td>Step 15 signaling protocol ldp</td>
<td>Specifies that the Label Distribution Protocol (LDP) is configured for the pseudowire class.</td>
</tr>
</tbody>
</table>
HDLC-to-Ethernet Routed Interworking on a HDLC PE Device

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class [pw-class-name]
4. encapsulation mpls
5. interworking ip
6. interface type slot/subslot/port [ subinterface]
7. no ip address [ip-address mask] [secondary]
## L2VPN Interworking

### HDLC-to-Ethernet Routed Interworking on a HDLC PE Device

8. `xconnect peer-router-id vc id pseudowire-class [pw-class-name]`
9. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.  
*Enter your password if prompted.* |
| **Example:** | Device> enable | |
| **Step 2** | configure terminal | Enters global configuration mode. |
| **Example:** | Device# configure terminal | |
| **Step 3** | pseudowire-class [pw-class-name] | Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode. |
| **Example:** | Device(config)# pseudowire-class pw-iw-ip | |
| **Step 4** | encapsulation mpls | Specifies the tunneling encapsulation as MPLS. |
| **Example:** | Device(config-pw-class)# encapsulation mpls | |
| **Step 5** | interworking ip | Specifies IP as the type of pseudowire as well as the type of traffic that can flow across the pseudowire. |
| **Example:** | Device(config-pw-class)# interworking ip | |
| **Step 6** | interface type slot/subslot/port [ . subinterface] | Specifies a serial interface and enters interface configuration mode. |
| **Example:** | Device(config-pw-class)# interface serial 3/1/0 | |
| **Step 7** | no ip address [ip-address mask] [secondary] | Disables IP processing. |
| **Example:** | Device(config-if)# no ip address | |
| **Step 8** | xconnect peer-router-id vc id pseudowire-class [pw-class-name] | Creates the virtual circuit (VC) to transport the Layer 2 packets. |
| **Example:** | Device(config-if)# xconnect 198.51.100.2 123 pseudowire-class pw-iw-ip | |
| **Step 9** | end | Exits interface configuration mode and returns to privileged EXEC mode. |
| **Example:** | | |
HDLC-to-Ethernet Routed Interworking on a HDLC PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

SUMMARY STEPS

1. enable
2. configure terminal
3. template type pseudowire name
4. encapsulation mpls
5. exit
6. interface pseudowire number
7. source template type pseudowire name
8. encapsulation mpls
9. neighbor peer-address vc id-value
10. signaling protocol ldp
11. no shutdown
12. exit
13. l2vpn xconnect context context-name
14. interworking ip
15. member interface-type-number
16. member pseudowire interface-number
17. no shutdown
18. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Enables privileged EXEC mode.

Example:
Device> enable

- Enter your password if prompted.

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:
Device# configure terminal

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>template type pseudowire name</td>
<td>Creates a template pseudowire with a name that you specify and enters template configuration mode.</td>
</tr>
</tbody>
</table>

Example:
Device# template type pseudowire temp5

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation mpls</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
</tbody>
</table>

Example:
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-template)# encapsulation mpls</td>
<td>Exits template configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example: Device(config-template)# exit</td>
<td>Establishes an interface pseudowire with a value that you specify and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface pseudowire number</td>
</tr>
<tr>
<td>Example: Device(config)# interface pseudowire 107</td>
<td>Configures the source template of type pseudowire named temp5.</td>
</tr>
<tr>
<td>Step 7</td>
<td>source template type pseudowire name</td>
</tr>
<tr>
<td>Example: Device(config-if)# source template type pseudowire temp5</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td>Step 8</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>Example: Device(config-if)# encapsulation mpls</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of an L2VPN pseudowire.</td>
</tr>
<tr>
<td>Step 9</td>
<td>neighbor peer-address vc id-value</td>
</tr>
<tr>
<td>Example: Device(config-if)# neighbor 10.0.0.11 107</td>
<td>Specifies that the Label Distribution Protocol (LDP) is configured for the pseudowire class.</td>
</tr>
<tr>
<td>Step 10</td>
<td>signaling protocol ldp</td>
</tr>
<tr>
<td>Example: Device(config-if)# signaling protocol ldp</td>
<td>Restarts the interface pseudowire.</td>
</tr>
<tr>
<td>Step 11</td>
<td>no shutdown</td>
</tr>
<tr>
<td>Example: Device(config-if)# no shutdown</td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>exit</td>
</tr>
<tr>
<td>Example: Device(config-if)# exit</td>
<td>Creates an L2VPN cross-connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Step 13</td>
<td>l2vpn xconnect context context-name</td>
</tr>
<tr>
<td>Example: Device(config)# l2vpn xconnect context con1</td>
<td>Specifies IP as the type of pseudowire as well as the type of traffic that can flow across the pseudowire.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 15</strong> member interface-type-number</td>
<td>Specifies the location of the member interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-xconnect)# member serial 0/1/0:0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong> member pseudowire interface-number</td>
<td>Specifies a member pseudowire to form an L2VPN cross connect.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-xconnect)# member pseudowire 107</td>
<td></td>
</tr>
<tr>
<td><strong>Step 17</strong> no shutdown</td>
<td>Restarts the member interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-xconnect)# no shutdown</td>
<td></td>
</tr>
<tr>
<td><strong>Step 18</strong> end</td>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-xconnect)# end</td>
<td></td>
</tr>
</tbody>
</table>

### HDLC-to-Ethernet Routed Interworking (Port Mode) on an Ethernet PE Device

#### SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class [pw-class-name]
4. encapsulation mpls
5. interworking ip
6. interface type slot/subslot/port [. subinterface]
7. encapsulation mpls
8. xconnect peer-router-id vc id pseudowire-class [pw-class-name]
9. end

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>- Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> pseudowire-class [pw-class-name]</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>device(config)# pseudowire-class pw-iw-ip</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
</tbody>
</table>

**Step 4**

encapsulation mpls  
Example:  
Device(config-pw-class)# encapsulation mpls  

**Step 5**

interworking ip  
Example:  
Device(config-pw-class)# interworking ip  

**Step 6**

interface type slot/subslot lport [.subinterface]  
Example:  
Device(config-pw-class)# interface gigabitethernet 4/0/0.1  

**Step 7**

encapsulation mpls  
Example:  
Device(config-subif)# encapsulation mpls  

**Step 8**

xconnect peer-router-id vc id pseudowire-class [pw-class-name]  
Example:  
Device(config-subif)# xconnect 198.51.100.2 123 pseudowire-class pw-iw-ip  

**Step 9**

end  
Example:  
Device(config-subif)# end  

---

**HDLC-to-Ethernet Routed Interworking (Port Mode) on an Ethernet PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature**

**SUMMARY STEPS**

1. enable  
2. configure terminal  
3. interface type slot/subslot lport [.subinterface]  
4. encapsulation mpls  
5. no ip address  
6. no shutdown
7. exit
8. template type pseudowire name
9. encapsulation mpls
10. exit
11. interface pseudowire number
12. source template type pseudowire name
13. encapsulation mpls
14. neighbor peer-address vc id-value
15. signaling protocol ldp
16. no shutdown
17. exit
18. l2vpn xconnect context context-name
19. interworking ip
20. member interface-type-number
21. member pseudowire interface-number
22. no shutdown
23. end

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.  
* Enter your password if prompted.  
| **Example:** | Device> enable |
| **Step 2** | configure terminal | Enters global configuration mode.  
| **Example:** | Device# configure terminal |
| **Step 3** | interface type slot/subslot/port [ . subinterface] | Specifies the Fast Ethernet subinterface and enters subinterface configuration mode.  
* Ensure that the subinterface on the adjoining Ethernet CE device is on the same VLAN as this Ethernet PE device.  
| **Example:** | Device(config)# interface fastethernet 4/0/0.1 |
| **Step 4** | encapsulation mpls | Specifies the tunneling encapsulation as MPLS.  
| **Example:** | Device(config-subif)# encapsulation mpls |
| **Step 5** | no ip address | Disables IP processing.  
<p>| <strong>Example:</strong> | Device(config-subif)# no ip address |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>no shutdown</td>
<td>Restarts the Fast Ethernet subinterface.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-subif)# no shutdown</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
<td>Exits subinterface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-subif)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>template type pseudowire <em>name</em></td>
<td>Creates a template pseudowire with a name that you specify and enters template configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# template type pseudowire temp4</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>encapsulation mpls</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-template)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>exit</td>
<td>Exits template configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-template)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>interface pseudowire <em>number</em></td>
<td>Establishes an interface pseudowire with a value that you specify and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# interface pseudowire 109</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>source template type pseudowire <em>name</em></td>
<td>Configures the source template of type pseudowire named temp4.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-if)# source template type pseudowire temp4</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>encapsulation mpls</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-if)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>neighbor peer-address vc id-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of an L2VPN pseudowire.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-if)# neighbor 10.0.0.15 109</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>signaling protocol ldp</td>
<td>Specifies that the Label Distribution Protocol (LDP) is configured for the pseudowire class.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-if)# signaling protocol ldp</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>no shutdown</td>
<td>Restarts the interface pseudowire.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Purpose**

**Command or Action**

Device(config-if)# no shutdown

**Step 17**

exit

*Example:*

Device(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

**Step 18**

l2vpn xconnect context context-name

*Example:*

Device(config)# l2vpn xconnect context con2

Creates an L2VPN cross-connect context and enters xconnect configuration mode.

**Step 19**

interworking ip

*Example:*

Device(config-xconnect)# interworking ip

Specifies IP as the type of pseudowire as well as the type of traffic that can flow across the pseudowire.

**Step 20**

member interface-type-number

*Example:*

Device(config-xconnect)# member fastethernet 4/0/0.1

Specifies the location of the member interface.

**Step 21**

member pseudowire interface-number

*Example:*

Device(config-xconnect)# member pseudowire 109

Specifies a member pseudowire to form an L2VPN cross connect.

**Step 22**

no shutdown

*Example:*

Device(config-xconnect)# no shutdown

Restarts the member interface.

**Step 23**

end

*Example:*

Device(config-xconnect)# end

Exits xconnect configuration mode and returns to privileged EXEC mode.

---

**HDLC-to-Ethernet Routed Interworking (dot1q and QinQ Modes) on an Ethernet PE Device**

**SUMMARY STEPS**

1. enable
2. configure terminal
3. pseudowire-class [pw-class-name]
4. encapsulation mpls
5. interworking ip
6. interface type slot/subslot/port [. subinterface]
7. encapsulation dot1q vlan-id second dot1q vlan-id
8. xconnect peer-router-id vc id pseudowire-class [pw-class-name]
9. end
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.  
  Example:  
  Device> enable  
  • Enter your password if prompted. |
| **Step 2** | configure terminal | Enters global configuration mode.  
  Example:  
  Device# configure terminal |
| **Step 3** | pseudowire-class [pw-class-name] | Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.  
  Example:  
  Device(config)# pseudowire-class pw-iw-ip |
| **Step 4** | encapsulation mpls | Specifies the tunneling encapsulation as MPLS.  
  Example:  
  Device(config-pw-class)# encapsulation mpls |
| **Step 5** | interworking ip | Specifies IP as the type of pseudowire as well as the type of traffic that can flow across the pseudowire.  
  Example:  
  Device(config-pw-class)# interworking ip |
| **Step 6** | interface type slot/subslot [port [.subinterface]] | Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.  
  Example:  
  Device(config-pw-class)# interface gigabitethernet 4/0/0.1  
  • Ensure that the subinterface on the adjoining Ethernet CE device is on the same VLAN as this Ethernet PE device. |
| **Step 7** | encapsulation dot1q vlan-id second dot1q vlan-id | Defines the matching criteria to map QinQ ingress frames on an interface to the appropriate service instance.  
  Example:  
  Device(config-subif)# encapsulation dot1q 100 second dot1q 200 |
| **Step 8** | xconnect peer-router-id vc id pseudowire-class [pw-class-name] | Creates the virtual circuit (VC) to transport the Layer 2 packets.  
  Example:  
  Device(config-subif)# xconnect 198.51.100.2 123 pseudowire-class pw-iw-ip |
| **Step 9** | end | Exits subinterface configuration mode and returns to privileged EXEC mode.  
  Example:  
  Device(config-subif)# end |
HDLC-to-Ethernet Routed Interworking (dot1q and QinQ Modes) on an Ethernet PE Device Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type slot/subslot/port [subinterface]
4. encapsulation dot1q vlan-id second dot1q vlan-id
5. no ip address
6. no shutdown
7. exit
8. template type pseudowire name
9. encapsulation mpls
10. exit
11. interface pseudowire number
12. source template type pseudowire name
13. encapsulation mpls
14. neighbor peer-address vc id-value
15. signaling protocol ldp
16. no shutdown
17. exit
18. l2vpn xconnect context context-name
19. interworking ip
20. member interface-type-number
21. member pseudowire interface-number
22. no shutdown
23. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type slot/subslot/port [subinterface]</td>
<td>Specifies the subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface fastethernet 4/0/0.1</td>
<td>• Ensure that the subinterface on the adjoining Ethernet CE device is on the same VLAN as this Ethernet PE device.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td>**encapsulation dot1q **\textit{vlan-id} <strong>second dot1q</strong> \textit{vlan-id} <strong>Example:</strong> Device(config-subif)# encapsulation dot1q 100 second dot1q 200</td>
</tr>
<tr>
<td>5</td>
<td><strong>no ip address</strong></td>
</tr>
<tr>
<td>6</td>
<td><strong>no shutdown</strong></td>
</tr>
<tr>
<td>7</td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td>8</td>
<td><strong>template type pseudowire</strong> \textit{name}</td>
</tr>
<tr>
<td>9</td>
<td><strong>encapsulation mpls</strong></td>
</tr>
<tr>
<td>10</td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td>11</td>
<td><strong>interface pseudowire</strong> \textit{number}</td>
</tr>
<tr>
<td>12</td>
<td><strong>source template type pseudowire</strong> \textit{name}</td>
</tr>
<tr>
<td>13</td>
<td><strong>encapsulation mpls</strong></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>14</td>
<td><code>neighbor peer-address vc id-value</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# neighbor 10.0.0.15 109</td>
</tr>
<tr>
<td>15</td>
<td><code>signaling protocol ldp</code></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# signaling protocol ldp</td>
</tr>
<tr>
<td>16</td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# no shutdown</td>
</tr>
<tr>
<td>17</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# exit</td>
</tr>
<tr>
<td>18</td>
<td>l2vpn xconnect context <em>context-name</em></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config)# l2vpn xconnect context con2</td>
</tr>
<tr>
<td>19</td>
<td>interworking ip</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-xconnect)# interworking ip</td>
</tr>
<tr>
<td>20</td>
<td>member <em>interface-type-number</em></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-xconnect)# member fastethernet 4/0/0.1</td>
</tr>
<tr>
<td>21</td>
<td>member pseudowire <em>interface-number</em></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-xconnect)# member pseudowire 109</td>
</tr>
<tr>
<td>22</td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-xconnect)# no shutdown</td>
</tr>
<tr>
<td>23</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td>Device(config-xconnect)# end</td>
</tr>
</tbody>
</table>
Verifying HDLC-to-Ethernet Interworking (Port Mode) Configuration on a HDLC PE Device

You can use `show` commands to view information about a HDLC-to-Ethernet interworking (port mode) configuration on a HDLC provider edge (PE) device.

**SUMMARY STEPS**

1. `show mpls l2transport vc`  
2. `show mpls l2transport vc detail`  
3. `show l2vpn atom vc`  
4. `show l2vpn atom vc detail`

**DETAILED STEPS**

**Step 1**  
`show mpls l2transport vc`  
The following is sample output from the `show mpls l2transport vc` command which displays basic information about HDLC-to-Ethernet interworking (port mode) configuration on a HDLC PE device:

**Example:**

```
Device# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
----------- -------------- -------------- ------ -------
Se0/1/0:0 HDLC 10.0.0.1 101 UP
```

**Step 2**  
`show mpls l2transport vc detail`  
The following is sample output from the `show mpls l2transport vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (port mode) configuration on a HDLC PE device:

**Example:**

```
Device# show mpls l2transport vc detail
Local interface: Se0/1/0:0 up, line protocol up, HDLC up
Interworking type is Ethernet
Destination address: 10.0.0.1, VC ID: 101, VC status: up
Output interface: Fa0/0/1, imposed label stack (20 22)
Preferred path: not configured
Default path: active
Next hop: 10.0.0.10
Create time: 00:00:19, last status change time: 00:00:15
Last label FSM state change time: 00:00:15
Signaling protocol: LDP, peer 10.0.0.1:0 up
Targeted Hello: 203.0.113.1(LDP Id) -> 10.0.0.1, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRu
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: No fault
Last local AC circuit status sent: No fault
Last local PW i/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
```
Verifying HDLC-to-Ethernet Interworking (Port Mode) Configuration on a HDLC PE Device

Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 33, remote 22
Group ID: local 0, remote 0
MTU: local 1500, remote 1500
Remote interface description: Connect to CE2
Sequencing: receive disabled, send disabled
Control Word: On
SSO Descriptor: 10.0.0.1/101, local label: 33
Dataplane:
SSM segment/switch IDs: 4274/4273 (used), PWID: 26
VC statistics:
  transit packet totals: receive 3, send 6
  transit byte totals: receive 162, send 366
  transit packet drops: receive 0, seq error 0, send 0

Step 3  show l2vpn atom vc
The following is sample output from the show l2vpn atom vc command which displays basic information about HDLC-to-Ethernet interworking (port mode) configuration on a HDLC PE device:

Example:
Device# show l2vpn atom vc
<table>
<thead>
<tr>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>pw101</td>
</tr>
</tbody>
</table>

Step 4  show l2vpn atom vc detail
The following is sample output from the show l2vpn atom vc detail command which displays detailed information about HDLC-to-Ethernet interworking (port mode) configuration on a HDLC PE device:

Example:
Device# show l2vpn atom vc detail
pseudowire101 is up, VC status is up PW type: Ethernet
Create time: 00:00:18, last status change time: 00:00:14
Last label FSM state change time: 00:00:14
Destination address: 10.0.0.1 VC ID: 101
Output interface: Fa0/0/1, imposed label stack {16 17}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.10
Member of xconnect service hdlc101
Associated member Se0/1/0 is up, status is up
Interworking type is Ethernet
Service id: Oxde0000002
Signaling protocol: LDP, peer 10.0.0.1:0 up
Targeted Hello: 203.0.113.1(LDP Id) -> 10.0.0.1, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
PWid FEC (128), VC ID: 101
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Local dataplane status received : No fault
BFD dataplane status received : Not sent
BFD peer monitor status received : No fault
Status received from access circuit : No fault
Status sent to access circuit : No fault
Status received from pseudowire i/f : No fault
Status sent to network peer : No fault
Verifying HDLC-to-Ethernet Interworking (Port Mode) Configuration on an Ethernet PE Device

You can use show commands to view information about a HDLC-to-Ethernet interworking (port mode) configuration on an Ethernet PE device.

**SUMMARY STEPS**

1. show mpls l2transport vc
2. show l2vpn atom vc
3. show l2vpn atom vc detail

**DETAILED STEPS**

**Step 1** **show mpls l2transport vc**

The following is sample output from the **show mpls l2transport vc** command which displays basic information about HDLC-to-Ethernet interworking (port mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show mpls l2transport vc

Local interface: Gi1/0/0 up, line protocol up, Ethernet up
Destination address: 203.0.113.1, VC ID: 101, VC status: up
Output interface: Fa0/0/1, imposed label stack {19 33}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.11
Create time: 00:00:22, last status change time: 00:00:19
Last label FSM state change time: 00:00:19
```
Verifying HDLC-to-Ethernet Interworking (Port Mode) Configuration on an Ethernet PE Device

**Signaling protocol:** LDP, peer 203.0.113.1:0 up
**Targeted Hello:** 10.0.0.1(LDP Id) -> 203.0.113.1, LDP is UP
**Graceful restart:** configured and enabled
**Non stop routing:** not configured and not enabled
**Status TLV support (local/remote):** enabled/supported
**LDP route watch:** enabled
**Label/status state machine:** established, LruRru
**Last local dataplane status received:** No fault
**Last BFD dataplane status received:** Not sent
**Last local AC circuit status received:** No fault
**Last local AC circuit status sent:** No fault
**Last local PW i/f circuit status received:** No fault
**Last local LDP TLV status sent:** No fault
**Last remote LDP TLV status received:** No fault
**Last remote LDP ADJ status received:** No fault
**MPLS VC labels:** local 22, remote 33
**Group ID:** local 0, remote 0
**MTU:** local 1500, remote 1500
**Remote interface description:** Connect to CE1
**Sequencing:** receive disabled, send disabled
**Control Word:** On
**SSO Descriptor:** 203.0.113.1/101, local label: 22
**Dataplane:**
  - SSM segment/switch IDs: 4574/4573 (used), PWID: 80
**VC statistics:**
  - transit packet totals: receive 9, send 5
  - transit byte totals: receive 315, send 380
  - transit packet drops: receive 0, seq error 0, send 0

**Step 2**

show l2vpn atom vc

The following is sample output from the `show l2vpn atom vc` command which displays basic information about HDLC-to-Ethernet interworking (port mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show l2vpn atom vc

Service Interface Peer ID VC ID Type Name Status
--------------------------- --------- ------ ------ ------ -----
pw101 10.0.0.1 101 p2p 101 UP
```

**Step 3**

show l2vpn atom vc detail

The following is sample output from the `show l2vpn atom vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (port mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show l2vpn atom vc detail

pseudowire101 is up, VC status is up PW type: Ethernet
Create time: 00:00:18, last status change time: 00:00:14
Last label FSM state change time: 00:00:14
Destination address: 10.0.0.1 VC ID: 101
Output interface: Fa0/0/1, imposed label stack {16 17}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.10
Member of xconnect service eth101
Associated member Seo/1/0:0 is up, status is up
Interworking type is Ethernet
Service id: 0xde000002
```
Verifying HDLC-to-Ethernet Interworking (dot1q Mode) Configuration on a HDLC PE Device

You can use `show` commands to view information about a HDLC-to-Ethernet interworking (dot1q mode) configuration on a HDLC PE device.

**SUMMARY STEPS**

1. `show mpls l2transport vc`
2. `show mpls l2transport vc detail`
3. `show l2vpn atom vc`
4. `show l2vpn atom vc detail`
**DETAILED STEPS**

**Step 1**  
`show mpls l2transport vc`  
The following is sample output from the `show mpls l2transport vc` command which displays basic information about HDLC-to-Ethernet interworking (dot1q mode) configuration on a HDLC PE device:

**Example:**
```
Device# show mpls l2transport vc

Local intf | Local circuit | Dest address | VC ID | Status
-----------|---------------|--------------|-------|--------
Se0/1/0:0 | HDLC | 10.0.0.1 | 101 | UP
```

**Step 2**  
`show mpls l2transport vc detail`  
The following is sample output from the `show mpls l2transport vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (dot1q mode) configuration on a HDLC PE device:

**Example:**
```
Device# show mpls l2transport vc detail

Local interface: Se0/1/0:0 up, line protocol up, HDLC up
Interworking type is Ethernet
Destination address: 10.0.0.1, VC ID: 101, VC status: up
Output interface: Fa0/0/1, imposed label stack {20 22}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.10
Create time: 00:00:19, last status change time: 00:00:15
Last label FSM state change time: 00:00:15
Signaling protocol: LDP, peer 10.0.0.1:0 up
Targeted Hello: 203.0.113.1(LDP Id) --> 10.0.0.1, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled-supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: No fault
Last local AC circuit status sent: No fault
Last local PW i/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 33, remote 22
Group ID: local 0, remote 0
MTU: local 1500, remote 1500
Remote interface description: Connect to CE2
Sequencing: receive disabled, send disabled
Control Word: On
SSO Descriptor: 10.0.0.1/101, local label: 33
Dataplane:
SSM segment/switch IDs: 4274/4273 (used), PWID: 26
VC statistics:
transit packet totals: receive 3, send 6
transit byte totals: receive 162, send 366
transit packet drops: receive 0, seq error 0, send 0
```
Step 3  show l2vpn atom vc

The following is sample output from the `show l2vpn atom vc` command which displays basic information about HDLC-to-Ethernet interworking (dot1q mode) configuration on a HDLC PE device:

**Example:**
```
Device# show l2vpn atom vc

<table>
<thead>
<tr>
<th>Service</th>
<th>Interface</th>
<th>Peer ID</th>
<th>VC ID</th>
<th>Type</th>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>pw101</td>
<td>10.0.0.1</td>
<td>101</td>
<td>p2p</td>
<td>101</td>
<td>UP</td>
<td></td>
</tr>
</tbody>
</table>
```

Step 4  show l2vpn atom vc detail

The following is sample output from the `show l2vpn atom vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (dot1q mode) configuration on a HDLC PE device:

**Example:**
```
Device# show l2vpn atom vc detail

pseudowire101 is up, VC status is up PW type: Ethernet
Create time: 00:00:18, last status change time: 00:00:14
Last label FSM state change time: 00:00:14
Destination address: 10.0.0.1 VC ID: 101
Output interface: Fa0/0/1, imposed label stack (16 17)
Preferred path: not configured
Default path: active
Next hop: 10.0.0.10
Member of xconnect service hdlc101
Associated member Se0/1/0:0 is up, status is up
Interworking type is Ethernet
Service id: Oxde000002
Signaling protocol: LDP, peer 10.0.0.1:0 up
Targeted Hello: 203.0.113.1(LDP Id) -> 10.0.0.1, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
PWid FEC (128), VC ID: 101
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Local dataplane status received : No fault
BFD dataplane status received : Not sent
BFD peer monitor status received : No fault
Status received from access circuit : No fault
Status sent to access circuit : No fault
Status received from pseudowire i/f : No fault
Status sent to network peer : No fault
Status received from network peer : No fault
Adjacency status of remote peer : No fault
Sequencing: receive disabled, send disabled

Bindings
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Group ID</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Interface</td>
<td>Connect to CE1</td>
<td>Connect to CE2</td>
</tr>
<tr>
<td>MTU</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Control word on (configured: autosense)</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>PW type</td>
<td>Ethernet</td>
<td>Ethernet</td>
</tr>
<tr>
<td>VCCV CV type</td>
<td>0x02</td>
<td>0x02</td>
</tr>
<tr>
<td>VCCV CC type</td>
<td>0x07</td>
<td>0x07</td>
</tr>
</tbody>
</table>

```
Verifying HDLC-to-Ethernet Interworking (dot1q Mode) Configuration on an Ethernet PE Device

You can use `show` commands to view information about a HDLC-to-Ethernet interworking (dot1q mode) configuration on an Ethernet PE device.

**SUMMARY STEPS**

1. `show mpls l2transport vc`
2. `show mpls l2transport vc detail`
3. `show l2vpn atom vc`
4. `show l2vpn atom vc detail`

**DETAILED STEPS**

---

**Step 1**

`show mpls l2transport vc`

The following is sample output from the `show mpls l2transport vc` command which displays basic information about HDLC-to-Ethernet interworking (dot1q mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show mpls l2transport vc

Local intf Local circuit Dest address VC ID Status
------------------- -------------- -------------- ----- ----
Gi1/0/0.10 Eth VLAN 10 203.0.113.1 138 UP
```

**Step 2**

`show mpls l2transport vc detail`

The following is sample output from the `show mpls l2transport vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (dot1q mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show mpls l2transport vc detail

Local interface: Gi1/0/0.10 up, line protocol up, Eth VLAN 10 up
Interworking type is Ethernet
Destination address: 203.0.113.1, VC ID: 138, VC status: up
Output interface: Fa0/0/1, imposed label stack {19 35}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.11
Create time: 00:00:22, last status change time: 00:00:20
Last label FSM state change time: 00:00:20
```
Step 3  
**show l2vpn atom vc**

The following is sample output from the `show l2vpn atom vc` command which displays basic information about HDLC-to-Ethernet interworking (dot1q mode) configuration on an Ethernet PE device:

**Example:**
```plaintext
Device# show l2vpn atom vc
Service
Interface Peer ID VC ID Type Name Status
--------- ---------- ------ ------ ----- ----------
pw138 203.0.113.1 138 p2p 138 UP
```

Step 4  
**show l2vpn atom vc detail**

The following is sample output from the `show l2vpn atom vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (dot1q mode) configuration on an Ethernet PE device:

**Example:**
```plaintext
Device# show l2vpn atom vc detail
pseudowire138 is up, VC status is up FW type: Ethernet
Create time: 00:00:23, last status change time: 00:00:20
Last label FSM state change time: 00:00:20
Destination address: 203.0.113.1 VC ID: 138
Output interface: Fa0/0/1, imposed label stack {18 20}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.11
Member of xconnect service eth138
Associated member Gi1/0/0.10 is up, status is up
Interworking type is Ethernet
Service id: 0x7b000029
```
Verifying HDLC-to-Ethernet Interworking (QinQ Mode) Configuration on a HDLC PE Device

You can use `show` commands to view information about a HDLC-to-Ethernet interworking (QinQ mode) configuration on a HDLC PE device.

SUMMARY STEPS

1. `show mpls l2transport vc`
2. `show mpls l2transport vc detail`
3. `show l2vpn atom vc`
4. `show l2vpn atom vc detail`
**DETAILED STEPS**

**Step 1**  
*show mpls l2transport vc*

The following is sample output from the `show mpls l2transport vc` command which displays basic information about HDLC-to-Ethernet interworking (QinQ mode) configuration on a HDLC PE device:

**Example:**

```
Device# show mpls l2transport vc

Local intf Local circuit Dest address VC ID Status
------------- -------------- --------------- ---------- ----------
Se0/1/0:0 HDLC 10.0.0.1 145 UP
```

**Step 2**  
*show mpls l2transport vc detail*

The following is sample output from the `show mpls l2transport vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (QinQ mode) configuration on a HDLC PE device:

**Example:**

```
Device# show mpls l2transport vc detail

Local interface: Se0/1/0:0 up, line protocol up, HDLC up
Interworking type is Ethernet
Destination address: 10.0.0.1, VC ID: 101, VC status: up
Output interface: Fa0/0/1, imposed label stack (20 22)
Preferred path: not configured
Default path: active
Next hop: 10.0.0.10
Create time: 00:00:19, last status change time: 00:00:15
Last label FSM state change time: 00:00:15
Targeted Hello: 203.0.113.1 (LDP Id) -> 10.0.0.1, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Last local dataplane status rcvd: No fault
Last BFD dataplane status rcvd: Not sent
Last BFD peer monitor status rcvd: No fault
Last local AC circuit status rcvd: No fault
Last local AC circuit status sent: No fault
Last local PW i/f circ status rcvd: No fault
Last local LDP TLV status sent: No fault
Last remote LDP TLV status rcvd: No fault
Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 33, remote 22
Group ID: local 0, remote 0
MTU: local 1500, remote 1500
Remote interface description: Connect to CE2
Sequencing: receive disabled, send disabled
Control Word: On
SSO Descriptor: 10.0.0.1/101, local label: 33
Dataplane:
SSM segment/switch IDs: 4274/4273 (used), PWID: 26
VC statistics:
transit packet totals: receive 3, send 6
transit byte totals: receive 162, send 366
transit packet drops: receive 0, seq error 0, send 0
```
Verifying HDLC-to-Ethernet Interworking (QinQ Mode) Configuration on a HDLC PE Device

Step 3  show l2vpn atom vc

The following is sample output from the show l2vpn atom vc command which displays basic information about HDLC-to-Ethernet interworking (QinQ mode) configuration on a HDLC PE device:

Example:

```
Device# show l2vpn atom vc
Service
Interface Peer ID VC ID Type Name Status
--------- ---------- ------ ------ ----- ----------
pw145 10.0.0.1 145 p2p 145 UP
```

Step 4  show l2vpn atom vc detail

The following is sample output from the show l2vpn atom vc detail command which displays detailed information about HDLC-to-Ethernet interworking (QinQ mode) configuration on a HDLC PE device:

Example:

```
Device# show l2vpn atom vc detail
pw145 is up, VC status is up PW type: Ethernet
Create time: 00:00:18, last status change time: 00:00:13
Last label FSM state change time: 00:00:13
Destination address: 10.0.0.1 VC ID: 145
Output interface: Fa0/0/1, imposed label stack {16 33}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.10
Member of xconnect service hdlc145
Associated member Se0/1/0:0 is up, status is up
Interworking type is Ethernet
Service id: 0x2e
Signaling protocol: LDP, peer 10.0.0.1:0 up
Targeted Hello: 203.0.113.1 (LDP Id) -> 10.0.0.1, LDP is UP
Graceful restart: configured and enabled
PWid FEC (128), VC ID: 145
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Local dataplane status received : No fault
BFD dataplane status received : Not sent
BFD peer monitor status received : No fault
Status received from access circuit : No fault
Status received from pseudowire i/f : No fault
Status sent to network peer : No fault
Status received from network peer : No fault
Adjacency status of remote peer : No fault
Sequencing: receive disabled, send disabled
Bindings
Parameter Local Remote
----------------- ------------------------------ ------------------------------
Label 33 33
Group ID 0 0
Interface Connect to CE1 Connect to CE2
MTU 1500 1500
Control word on (configured: autosense) on
PW type Ethernet Ethernet
VCCV CV type 0x02 0x02
VCCV CC type 0x07 0x07
```
Verifying HDLC-to-Ethernet Interworking (QinQ Mode) Configuration on an Ethernet PE Device

You can use `show` commands to view information about a HDLC-to-Ethernet interworking (QinQ mode) configuration on an Ethernet PE device.

**SUMMARY STEPS**

1. `show mpls l2transport vc`
2. `show mpls l2transport vc detail`
3. `show l2vpn atom vc`
4. `show l2vpn atom vc detail`

**DETAILED STEPS**

**Step 1  show mpls l2transport vc**

The following is sample output from the `show mpls l2transport vc` command which displays basic information about HDLC-to-Ethernet interworking (QinQ mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
---------- -------------- -------------- ------ -------
Gi1/0/0.10 Eth VLAN 10/20 203.0.113.1 145 UP
```

**Step 2  show mpls l2transport vc detail**

The following is sample output from the `show mpls l2transport vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (QinQ mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show mpls l2transport vc detail
Local interface: Gi1/0/0.10 up, line protocol up, Eth VLAN 10/20 up
Interworking type is Ethernet
Destination address: 203.0.113.1, VC ID: 145, VC status: up
Output interface: Fa0/0/1, imposed label stack {19 27}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.11
Create time: 00:00:23, last status change time: 00:00:21
Last label FSM state change time: 00:00:21
```
Verifying HDLC-to-Ethernet Interworking (QinQ mode) Configuration on an Ethernet PE Device

Step 3

show l2vpn atom vc

The following is sample output from the `show l2vpn atom vc` command which displays basic information about HDLC-to-Ethernet interworking (QinQ mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show l2vpn atom vc

Service Interface Peer ID VC ID Type Name Status
----------------- ---------- ------- ------ ------- -------
pw145 203.0.113.1 145 p2p 145 UP
```

Step 4

show l2vpn atom vc detail

The following is sample output from the `show l2vpn atom vc detail` command which displays detailed information about HDLC-to-Ethernet interworking (QinQ mode) configuration on an Ethernet PE device:

**Example:**

```
Device# show l2vpn atom vc detail

pseudowire145 is up, VC status is up PW type: Ethernet
Create time: 00:00:23, last status change time: 00:00:19
Last label FSM state change time: 00:00:19
Destination address: 203.0.113.1 VC ID: 145
Output interface: Fa0/0/1, imposed label stack {18 33}
Preferred path: not configured
Default path: active
Next hop: 10.0.0.11
Member of xconnect service eth145
Associated member Gi1/0/0.10 is up, status is up
Interworking type is Ethernet
Service id: 0xed000030
```
Verifying L2VPN Interworking

To verify the L2VPN status (in the AToM configuration), use the following commands:

- show connection [all | name | id | elements | port]
- show xconnect [all | interface | peer]
- show mpls l2transport [binding | checkpoint | hw-capability | summary | vc]
- show mpls infrastructure lfd pseudowire vcid
Verifying L2VPN Interworking using the commands associated with the L2VPN Protocol-Based CLIs feature

To verify the L2VPN status (in the AToM configuration), use the following commands:

- `show connection [all | name | id | elements | port]`
- `show l2vpn service [all | interface | peer]`
- `show l2vpn atom [binding | checkpoint | hw-capability | summary | vc]`
- `show mpls infrastructure lfd pseudowire vcid`

Configuration Examples for L2VPN Interworking

Frame Relay DLCI-to-Ethernet VLAN 802.1Q Using Bridged Internetworking Example

The following example shows how to configure the Frame Relay DLCI-to-Ethernet VLAN 802.1Q feature using bridged interworking:

<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td>config t</td>
<td>config t</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>interface Loopback100</td>
<td>interface Loopback200</td>
</tr>
<tr>
<td>ip address 10.0.0.100 255.255.255.255</td>
<td>ip address 10.0.0.200 255.255.255.255</td>
</tr>
<tr>
<td>pseudowire-class fr-vlan</td>
<td>pseudowire-class fr-vlan</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>interworking ethernet</td>
<td>interworking ethernet</td>
</tr>
<tr>
<td>frame-relay switching</td>
<td>interface gigabitethernet 5/1/0.3</td>
</tr>
<tr>
<td>interface serial 2/0/0:1</td>
<td>encapsulation dot1q 1525</td>
</tr>
<tr>
<td>encapsulation frame-relay</td>
<td>xconnect 10.0.0.100 150 pw-class fr-vlan</td>
</tr>
<tr>
<td>frame-relay intf-type dce</td>
<td>xconnect 10.0.0.200 150 pw-class fr-vlan</td>
</tr>
<tr>
<td>connect mpls serial 2/0/0:1 567 l2transport</td>
<td></td>
</tr>
<tr>
<td>xconnect 10.0.0.200 150 pw-class fr-vlan</td>
<td></td>
</tr>
</tbody>
</table>

Frame Relay DLCI-to-Ethernet VLAN 802.1Q Using Bridged Internetworking Example using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows how to configure the Frame Relay DLCI-to-Ethernet VLAN 802.1Q feature using bridged interworking:
### ATM AAL5-to-Ethernet VLAN 802.1Q Using Bridged Internetworking Example

The following example shows how to configure the ATM AAL5-to-Ethernet VLAN 802.1Q feature using bridged interworking:

<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td>config t</td>
<td>config t</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>interface Loopback100</td>
<td>interface Loopback200</td>
</tr>
<tr>
<td>ip address 10.0.0.100 255.255.255.255</td>
<td>ip address 10.0.0.200 255.255.255.255</td>
</tr>
<tr>
<td>template type pseudowire fr-vlan</td>
<td>template type pseudowire fr-vlan</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>interworking ethernet</td>
<td>interworking ethernet</td>
</tr>
<tr>
<td>frame-relay switching</td>
<td>interface gigabitethernet 5/1/0.3</td>
</tr>
<tr>
<td>interface serial 2/0/0:1</td>
<td>encapsulation dot1q 1525</td>
</tr>
<tr>
<td>encapsulation frame-relay</td>
<td></td>
</tr>
<tr>
<td>frame-relay intf-type dce</td>
<td></td>
</tr>
<tr>
<td>connect mpls serial 2/0/0:1 567 l2transport</td>
<td></td>
</tr>
<tr>
<td>interface pseudowire 100</td>
<td>interface pseudowire 100</td>
</tr>
<tr>
<td>source template type pseudowire fr-vlan</td>
<td>source template type pseudowire fr-vlan</td>
</tr>
<tr>
<td>neighbor 10.0.0.100 150</td>
<td>neighbor 10.0.0.100 150</td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>l2vpn xconnect context con1</td>
<td>l2vpn xconnect context con1</td>
</tr>
<tr>
<td>member pseudowire 100</td>
<td>member pseudowire 100</td>
</tr>
<tr>
<td>member 10.0.0.200 150 encapsulation mpls</td>
<td>member 10.0.0.100 150 encapsulation mpls</td>
</tr>
</tbody>
</table>

### ATM AAL5-to-Ethernet VLAN 802.1Q Using Bridged Internetworking Example using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows how to configure the ATM AAL5-to-Ethernet VLAN 802.1Q feature using bridged interworking:

<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td>config t</td>
<td>config t</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>interface Loopback100</td>
<td>interface Loopback200</td>
</tr>
<tr>
<td>ip address 10.0.0.100 255.255.255.255</td>
<td>ip address 10.0.0.200 255.255.255.255</td>
</tr>
<tr>
<td>pseudowire-class atm-vlan</td>
<td>pseudowire-class atm-vlan</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>interworking ethernet</td>
<td>interworking ethernet</td>
</tr>
<tr>
<td>interface atm 2/0/0</td>
<td>interface gigabitethernet 5/1/0.3</td>
</tr>
<tr>
<td>pvc 0/200 12transport</td>
<td>encapsulation dot1q 1525</td>
</tr>
<tr>
<td>encapsulation aal5snap</td>
<td></td>
</tr>
<tr>
<td>xconnect 10.0.0.200 140 pw-class atm-vlan</td>
<td>xconnect 10.0.0.100 140 pw-class atm-vlan</td>
</tr>
</tbody>
</table>
ATM AAL5-to-Ethernet Port Using Routed Interworking Example

The following example shows how to configure the ATM AAL5-to-Ethernet Port feature using routed interworking:

<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td>config t</td>
<td>config t</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>interface Loopback100</td>
<td>interface Loopback100</td>
</tr>
<tr>
<td>ip address 10.0.0.100 255.255.255.255</td>
<td>ip address 10.0.0.200 255.255.255.255</td>
</tr>
<tr>
<td>template type pseudowire atm-vlan</td>
<td>template type pseudowire atm-vlan</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>interworking ethernet</td>
<td>interworking ethernet</td>
</tr>
<tr>
<td>interface atm 2/0/0</td>
<td>interface gigabitethernet 5/1/0.3</td>
</tr>
<tr>
<td>pvc 0/200 l2transport</td>
<td>encapsulation dot1q 1525</td>
</tr>
<tr>
<td>encapsulation aal5snap</td>
<td></td>
</tr>
<tr>
<td>interface pseudowire 100</td>
<td>interface pseudowire 100</td>
</tr>
<tr>
<td>source template type pseudowire atm-vlan</td>
<td>source template type pseudowire atm-vlan</td>
</tr>
<tr>
<td>neighbor 10.0.0.200 140</td>
<td>neighbor 10.0.0.100 140</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>l2vpn xconnect context con1</td>
<td>l2vpn xconnect context con1</td>
</tr>
<tr>
<td>member pseudowire 100</td>
<td>member pseudowire 100</td>
</tr>
<tr>
<td>member 10.0.0.200 140 encapsulation mpls</td>
<td>member 10.0.0.200 140 encapsulation mpls</td>
</tr>
</tbody>
</table>

Frame Relay DLCI-to-Ethernet Port Using Routed Interworking Example

The following example shows how to configure the Frame Relay DLCI-to-Ethernet Port feature using routed interworking:
Frame Relay DLCI-to-Ethernet Port Using Routed Interworking Example using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows how to configure the Frame Relay DLCI-to-Ethernet Port feature using routed interworking:

<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td>config t</td>
<td>config t</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>interface Loopback100</td>
<td>interface Loopback200</td>
</tr>
<tr>
<td>ip address 10.0.0.100 255.255.255.255</td>
<td>ip address 10.0.0.200 255.255.255.255</td>
</tr>
<tr>
<td>pseudowire-class fr-eth</td>
<td>pseudowire-class fr-eth</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>interworking ip</td>
<td>interworking ip</td>
</tr>
<tr>
<td>frame-relay switching</td>
<td>interface gigabitethernet 5/1/0</td>
</tr>
<tr>
<td>interface serial 2/0/0:1</td>
<td>xconnect 10.0.0.100 150 pw-class fr-eth</td>
</tr>
<tr>
<td>encapsulation frame-relay</td>
<td></td>
</tr>
<tr>
<td>frame-relay intf-type dce</td>
<td></td>
</tr>
<tr>
<td>frame-relay interface-dlci 567 switched</td>
<td></td>
</tr>
<tr>
<td>connect fr-vlan-1 POS2/3/1 151 l2transport</td>
<td></td>
</tr>
<tr>
<td>pseudowire 100</td>
<td>source template type pseudowire fr-eth</td>
</tr>
<tr>
<td>source template type pseudowire fr-eth neighbor 10.0.0.200 140</td>
<td>neighbor 10.0.0.200 140</td>
</tr>
<tr>
<td>l2vpn xconnect context con1</td>
<td>l2vpn xconnect context con1</td>
</tr>
<tr>
<td>member pseudowire 100</td>
<td>member pseudowire 100</td>
</tr>
<tr>
<td>member 10.0.0.200 140 encapsulation mpls</td>
<td>member 10.0.0.200 140 encapsulation mpls</td>
</tr>
</tbody>
</table>

Ethernet-to-VLAN over AToM--Bridged Example

The following example shows how to configure Ethernet-to-VLAN over AToM in a PE router:
### Ethernet to VLAN over AToM (Bridged) Example using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows the configuration of Ethernet to VLAN over AToM:

<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef</td>
<td>ip cef</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls ldp router-id Loopback0 force</td>
<td>mpls ldp router-id Loopback0 force</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>pseudowire-class atom</td>
<td>pseudowire-class atom-eth-iw</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.9.9.9 255.255.255.255</td>
<td>ip address 10.8.8.8 255.255.255.255</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>interface FastEthernet0/0</td>
<td>!</td>
</tr>
<tr>
<td>no ip address</td>
<td>interface FastEthernet1/0.1</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface FastEthernet1/0</td>
<td>xconnect 10.9.9.9 123 pw-class atom-eth-iw</td>
</tr>
<tr>
<td>xconnect 10.8.8.8 123 pw-class atom</td>
<td>!</td>
</tr>
</tbody>
</table>
VLAN-to-ATM AAL5 over ATOM (Bridged) Example

The following example shows the configuration of VLAN-to-ATM AAL5 over ATOM:
### VLAN-to-ATM AAL5 over AToM (Bridged) Example

<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
</table>

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>mpls ip</td>
<td></td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td>mpls ldp router-id Loopback0</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>pseudowire-class inter-ether</td>
<td></td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>interworking ethernet</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>interface Loopback0</td>
<td></td>
</tr>
<tr>
<td>ip address 10.9.9.9 255.255.255.255</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>interface FastEthernet0/0</td>
<td></td>
</tr>
<tr>
<td>no ip address</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>interface FastEthernet0/0.1</td>
<td></td>
</tr>
<tr>
<td>encapsulation dot1Q 10</td>
<td></td>
</tr>
<tr>
<td>xconnect 10.8.8.8 123 pw-class inter-ether</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>router ospf 10</td>
<td></td>
</tr>
<tr>
<td>log-adjacency-changes</td>
<td></td>
</tr>
<tr>
<td>network 10.9.9.9 0.0.0.0 area 0</td>
<td></td>
</tr>
<tr>
<td>network 10.1.1.2 0.0.0.0 area 0</td>
<td></td>
</tr>
</tbody>
</table>
### PE1 router

```
ip cef
!
mls ip
mls label protocol ldp
mls ldp router-id Loopback0
!
pseudowire-class inter-ether
encapsulation mpls
interworking ethernet
!
interface Loopback0
 ip address 10.8.8.8 255.255.255.255
!
interface ATM1/0.1 point-to-point
 pvc 0/100 l2transport
 encapsulation aal5snap
 xconnect 10.9.9.9 123 pw-class inter-ether
!
interface FastEthernet1/0
 xconnect 10.9.9.9 1 pw-class inter-ether
!
router ospf 10
 log-adjacency-changes
 network 10.8.8.8 0.0.0.0 area 0
```

### PE2 router

<table>
<thead>
<tr>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

---

**VLAN-to-ATM AAL5 over AToM (Bridged) Example**

**MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x**
VLAN-to-ATM AAL5 over AToM (Bridged) Example using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows the configuration of VLAN-to-ATM AAL5 over AToM:
<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
</table>

VLAN-to-ATM AAL5 over AToM (Bridged) Example using the commands associated with the L2VPN Protocol-Based CLIs feature
PE1 router

```
ip cef
!
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0
!
template type pseudowire inter-ether
encapsulation mpls
interworking ethernet
!
interface Loopback0
ip address 10.8.8.8 255.255.255.255
!
interface ATM1/0.1 point-to-point
pvc 0/100 l2transport
encapsulation aal5snap
!
interface pseudowire 100
source template type pseudowire inter-ether
neighbor 10.9.9.9 123
!
12vpn xconnect context con1
!
interface FastEthernet1/0
```

PE2 router

```
ip cef
!
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0
!
template type pseudowire inter-ether
encapsulation mpls
interworking ethernet
!
interface Loopback0
ip address 10.9.9.9 255.255.255.255
!
interface FastEthernet0/0
!
interface FastEthernet0/0.1
encapsulation dot1Q 10
source template type pseudowire inter-ether
neighbor 10.9.9.9 123
!
12vpn xconnect context con1
!
interface FastEthernet1/0
member pseudowire 100
```
### Ethernet VLAN-to-PPP over AToM (Routed) Example

The following example shows the configuration of Ethernet VLAN-to-PPP over AToM.
<table>
<thead>
<tr>
<th>PE1 router</th>
<th>PE2 router</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls ldp router-id Loopback0</td>
<td>mpls ldp router-id Loopback0</td>
</tr>
<tr>
<td>mpls ip</td>
<td>mpls ip</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>pseudowire-class ppp-ether</td>
<td>pseudowire-class ppp-ether</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>interworking ip</td>
<td>interworking ip</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.8.8.8 255.255.255.255</td>
<td>ip address 10.9.9.9 255.255.255.255</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>interface POS2/0/1</td>
<td>interface GigabitEthernet6/2</td>
</tr>
<tr>
<td>no ip address</td>
<td>xconnect 10.8.8.8 300 pw-class ppp-ether</td>
</tr>
<tr>
<td>encapsulation ppp</td>
<td>no shutdown</td>
</tr>
<tr>
<td>no peer default ip address</td>
<td></td>
</tr>
<tr>
<td>ppp ipcp address proxy 10.10.10.1</td>
<td></td>
</tr>
<tr>
<td>xconnect 10.9.9.9 300 pw-class ppp-ether</td>
<td></td>
</tr>
<tr>
<td>no shutdown</td>
<td></td>
</tr>
</tbody>
</table>
Ethernet VLAN to PPP over AToM (Routed) Example using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows the configuration of Ethernet VLAN to PPP over AToM:
L2VPN Interworking

Ethernet VLAN to PPP over AToM (Routed) Example using the commands associated with the L2VPN Protocol-Based CLIs feature

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls ldp router-id Loopback0</td>
<td>mpls ldp router-id Loopback0</td>
</tr>
<tr>
<td>mpls ip</td>
<td>mpls ip</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>template type pseudowire ppp-ether</td>
<td>template type pseudowire ppp-ether</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>interworking ip</td>
<td>interworking ip</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.8.8.8 255.255.255.255</td>
<td>ip address 10.9.9.9 255.255.255.255</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface POS2/0/1</td>
<td>interface vlan 300</td>
</tr>
<tr>
<td>no ip address</td>
<td>mtu 4470</td>
</tr>
<tr>
<td>encapsulation ppp</td>
<td>no ip address</td>
</tr>
<tr>
<td>no peer default ip address</td>
<td>interface pseudowire 100</td>
</tr>
<tr>
<td>ppp ipcp address proxy 10.10.10.1</td>
<td>source template type pseudowire ppp-ether</td>
</tr>
<tr>
<td>interface pseudowire 100</td>
<td>neighbor 10.8.8.8 300</td>
</tr>
<tr>
<td>source template type pseudowire ppp-ether</td>
<td>!</td>
</tr>
<tr>
<td>neighbor 10.9.9.9 300</td>
<td>12vpn xconnect context con1</td>
</tr>
<tr>
<td>!</td>
<td>member pseudowire 100</td>
</tr>
<tr>
<td>12vpn xconnect context con1</td>
<td>member 10.8.8.8 300 encapsulation mpls</td>
</tr>
<tr>
<td>member pseudowire 100</td>
<td>no shutdown</td>
</tr>
</tbody>
</table>
ATM VC-to-VC Local Switching (Different Port) Example

The following example shows the configuration of ATM VC-to-VC local switching:

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>member 10.9.9.9 300 encapsulation mpls</td>
<td>!</td>
</tr>
<tr>
<td>no shutdown</td>
<td>interface GigabitEthernet6/2</td>
</tr>
<tr>
<td></td>
<td>switchport</td>
</tr>
<tr>
<td></td>
<td>switchport trunk encapsulation dot1q</td>
</tr>
<tr>
<td></td>
<td>switchport trunk allowed vlan 300</td>
</tr>
<tr>
<td></td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td></td>
<td>no shutdown</td>
</tr>
</tbody>
</table>
### ATM VC-to-VC Local Switching (Different Port) Example

<table>
<thead>
<tr>
<th>CE1 router</th>
<th>CE2 router</th>
<th>PE router</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface ATM1/0</td>
<td>interface ATM3/0</td>
<td>interface ATM0/1/0</td>
</tr>
<tr>
<td>no ip address</td>
<td>no ip address</td>
<td>no ip address</td>
</tr>
<tr>
<td>atm clock INTERNAL</td>
<td>atm clock INTERNAL</td>
<td>atm clock INTERNAL</td>
</tr>
<tr>
<td>no atm ilmi-keepalive</td>
<td>no atm ilmi-keepalive</td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td>no atm enable-ilmi-trap</td>
<td>no atm enable-ilmi-trap</td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>interface ATM0/1/0.50 point-to-point</td>
</tr>
<tr>
<td>interface ATM1/0</td>
<td>interface ATM3/0.1</td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td>ip address 10.1.1.1</td>
<td>ip address 10.1.1.2</td>
<td>pvc 0/50 l2transport</td>
</tr>
<tr>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>encapsulation aal5</td>
</tr>
<tr>
<td>no atm enable-ilmi-trap</td>
<td>no atm enable-ilmi-trap</td>
<td>!</td>
</tr>
<tr>
<td>pvc 0/100</td>
<td>pvc 0/50</td>
<td>!</td>
</tr>
<tr>
<td>encapsulation aal5snap</td>
<td>protocol ip 10.1.1.1</td>
<td>interface ATM0/1/1</td>
</tr>
<tr>
<td></td>
<td>encapsulation aal5snap</td>
<td>no ip address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>atm clock INTERNAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interface ATM0/1/1.100 point-to-point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pvc 0/100 l2transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>encapsulation aal5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connect con_atm ATM0/1/1 0/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATM0/1/0 0/50</td>
</tr>
</tbody>
</table>
ATM VP-to-VP Local Switching (Different Port) Example

The following example shows the configuration of ATM VP-to-VP local switching:

<table>
<thead>
<tr>
<th>CE1 router</th>
<th>CE2 router</th>
<th>PE router</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface ATM1/0</td>
<td>interface ATM3/0</td>
<td>interface ATM0/1/0</td>
</tr>
<tr>
<td>no ip address</td>
<td>no ip address</td>
<td>no ip address</td>
</tr>
<tr>
<td>atm clock INTERNAL</td>
<td>atm clock INTERNAL</td>
<td>atm clock INTERNAL</td>
</tr>
<tr>
<td>no atm enable-ilmi-trap</td>
<td>no atm ilmi-keepalive</td>
<td>no atm ilmi-keepalive</td>
</tr>
<tr>
<td>!</td>
<td>no atm enable-ilmi-trap</td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td>interface ATM1/0.1</td>
<td>interface ATM3/0.1</td>
<td>!</td>
</tr>
<tr>
<td>point-to-point</td>
<td>point-to-point</td>
<td>!</td>
</tr>
<tr>
<td>ip address 10.1.1.1</td>
<td>ip address 10.1.1.2</td>
<td>interface ATM0/1/0.50 multipoint</td>
</tr>
<tr>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>atm pvp 100 l2transport</td>
</tr>
<tr>
<td>no atm enable-ilmi-trap</td>
<td>no atm enable-ilmi-trap</td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td>pvc 100/100</td>
<td>pvc 100/100</td>
<td>!</td>
</tr>
<tr>
<td>encapsulation aal5snap</td>
<td>encapsulation aal5snap</td>
<td>interface ATM0/1/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>no ip address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>atm clock INTERNAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no atm ilmi-keepalive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>interface ATM0/1/1.100 multipoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>atm pvp 100 l2transport</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connect atm_con ATM0/1/1 100 ATM0/1/0 100</td>
</tr>
</tbody>
</table>
Example: Configuring HDLC-to-Ethernet Interworking: Controller Slot on HDLC Devices

The following example shows how to configure the serial controller and interface on HDLC devices:

<table>
<thead>
<tr>
<th>HDLC CE device</th>
<th>HDLC PE device</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>enable</td>
</tr>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>controller E1 2/0</td>
<td>controller E1 0/0</td>
</tr>
<tr>
<td>channel-group 0 timeslots 1</td>
<td>channel-group 0 timeslots 1</td>
</tr>
<tr>
<td>! no shutdown</td>
<td>! no shutdown</td>
</tr>
<tr>
<td>interface serial 2/0:0</td>
<td>interface serial 0/1/0:0</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td>end</td>
<td>end</td>
</tr>
</tbody>
</table>

Example: Configuring HDLC-to-Ethernet Bridged Interworking on HDLC Devices

The following example shows how to configure HDLC-to-Ethernet bridged interworking on HDLC devices:

<table>
<thead>
<tr>
<th>HDLC CE device</th>
<th>HDLC PE device</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>enable</td>
</tr>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>bridge irb</td>
<td>pseudowire-class pw-iw-eth</td>
</tr>
<tr>
<td>bridge 1 protocol ieee</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>bridge 1 route ip</td>
<td>interworking Ethernet</td>
</tr>
<tr>
<td>! interface BVI1</td>
<td>! interface serial 0/1/0:0</td>
</tr>
<tr>
<td>ip address 192.0.2.1 255.255.255.0</td>
<td>encapsulation hdlc</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no ip address</td>
</tr>
<tr>
<td>! interface serial 2/0:0</td>
<td>xconnect 203.0.113.10 100 pw-class pw-iw-eth</td>
</tr>
<tr>
<td>encapsulation hdlc</td>
<td>no shutdown</td>
</tr>
<tr>
<td>bridge-group 1</td>
<td>end</td>
</tr>
<tr>
<td>no shutdown</td>
<td></td>
</tr>
</tbody>
</table>

Example: Configuring HDLC-to-Ethernet Bridged Interworking on HDLC Devices Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

The following example shows how to configure HDLC-to-Ethernet bridged interworking on HDLC devices using the commands associated with the L2VPN protocol-based CLIs feature:
Example: Configuring HDLC-to-Ethernet Bridged Interworking on Ethernet Devices

The following example shows how to configure HDLC-to-Ethernet bridged interworking on Ethernet devices:

### HDLC CE device
- `enable`
- `configure terminal`
- `bridge irb`
- `bridge 1 protocol ieee`
- `bridge 1 route ip`
  ```
 !
 interface BVI 1
 ip address 192.0.2.1 255.255.255.0
 !
 interface serial 2/0:0
 encapsulation hdlc
 bridge-group 1
 no shutdown
 end
  ```

### HDLC PE device
- `enable`
- `configure terminal`
- `interface serial 0/1/0:0`
- `encapsulation hdlc`
- `no ip address`
- `no shutdown`
  ```
 !
 interface pseudowire 101
 encapsulation mpls
 neighbor 203.0.113.10 100
 signaling protocol ldp
 no shutdown
 !
 l2vpn xconnect context hdlc
 interworking ethernet
 member Serial 0/1/0:0
 member pseudowire 101
 no shutdown
 end
  ```

Example: Configuring HDLC-to-Ethernet Bridged Interworking on Ethernet Devices Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

The following example shows how to configure HDLC-to-Ethernet bridged interworking on Ethernet devices using the commands associated with the L2VPN protocol-based CLIs feature:

### Ethernet CE device
- `enable`
- `configure terminal`
- `pseudowire-class pw-iw-eth`
- `encapsulation mpls`
- `interworking Ethernet`
  ```
 !
 interface GigabitEthernet 1/0/0
 ip address 198.51.100.19 255.255.255.0
 ip irdp
 ip irdp maxadvertinterval 4
 no shutdown
 end
  ```

### Ethernet PE device
- `enable`
- `configure terminal`
- `pseudowire-class pw-iw-eth`
- `encapsulation mpls`
- `interworking Ethernet`
  ```
 !
 interface GigabitEthernet 1/0/0
 no ip address
 xconnect 203.0.113.20 100 pseudowire-class pw-iw-eth
 no shutdown
 end
  ```
### Example: Configuring HDLC-to-VLAN Bridged Interworking (Port Mode) on Ethernet Devices

The following example shows how to configure HDLC-to-VLAN bridged interworking (port mode) on Ethernet devices:

<table>
<thead>
<tr>
<th>Ethernet CE device</th>
<th>Ethernet PE device</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>enable</td>
</tr>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>interface GigabitEthernet 0/1</td>
<td>interface GigabitEthernet 1/0/0</td>
</tr>
<tr>
<td>ip address 198.51.100.19 255.255.255.0</td>
<td>no ip address</td>
</tr>
<tr>
<td>ip irdp</td>
<td>no shutdown</td>
</tr>
<tr>
<td>ip irdp maxadvertinterval 4</td>
<td>!</td>
</tr>
<tr>
<td>no shutdown</td>
<td>interface pseudowire 101</td>
</tr>
<tr>
<td></td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>neighbor 203.0.113.20 100</td>
</tr>
<tr>
<td></td>
<td>signaling protocol ldp</td>
</tr>
<tr>
<td></td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td></td>
<td>l2vpn xconnect context eth</td>
</tr>
<tr>
<td></td>
<td>interworking ethernet</td>
</tr>
<tr>
<td></td>
<td>member GigabitEthernet 1/0/0</td>
</tr>
<tr>
<td></td>
<td>member pseudowire101</td>
</tr>
<tr>
<td></td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Example: Configuring HDLC-to-VLAN Bridged Interworking on Ethernet Devices Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

The following example shows how to configure HDLC-to-VLAN bridged interworking on Ethernet devices using the commands associated with the L2VPN protocol-based CLIs feature:
### Example: Configuring HDLC-to-VLAN Bridged Interworking (dot1q Mode) Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

The following example shows how to configure HDLC-to-VLAN bridged interworking (dot1q mode) using the commands associated with the L2VPN protocol-based CLIs feature:

<table>
<thead>
<tr>
<th>Ethernet CE device</th>
<th>Ethernet PE device</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>enable</td>
</tr>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>interface GigabitEthernet 0/1</td>
<td>interface GigabitEthernet 1/0/0</td>
</tr>
<tr>
<td>no ip address</td>
<td>no ip address</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet 0/1.10</td>
<td>interface GigabitEthernet 1/0/0.10</td>
</tr>
<tr>
<td>encapsulation dot1q 10</td>
<td>encapsulation dot1q 10</td>
</tr>
<tr>
<td>ip address 198.51.100.19 255.255.255.0</td>
<td>no ip address</td>
</tr>
<tr>
<td>ip irdp</td>
<td>no shutdown</td>
</tr>
<tr>
<td>ip irdp maxadvertinterval 4</td>
<td>!</td>
</tr>
<tr>
<td>end</td>
<td>interface pseudowire 101</td>
</tr>
<tr>
<td></td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>neighbor 203.0.113.20 100</td>
</tr>
<tr>
<td></td>
<td>signaling protocol ldp</td>
</tr>
<tr>
<td></td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>l2vpn xconnect context vlan</td>
<td>l2vpn xconnect context vlan</td>
</tr>
<tr>
<td>interworking ethernet</td>
<td>interworking ethernet</td>
</tr>
<tr>
<td>member GigabitEthernet 1/0/0.10</td>
<td>member pseudowire 101</td>
</tr>
<tr>
<td>member pseudowire 101</td>
<td>no shutdown</td>
</tr>
<tr>
<td>no shutdown</td>
<td>end</td>
</tr>
</tbody>
</table>

---

**Example: Configuring HDLC-to-VLAN Bridged Interworking (dot1q Mode) Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature**

The following example shows how to configure HDLC-to-VLAN bridged interworking (dot1q mode) using the commands associated with the L2VPN protocol-based CLIs feature:
Example: Configuring HDLC-to-VLAN Bridged Interworking (QinQ Mode) on Ethernet Devices

The following example shows how to configure HDLC-to-VLAN bridged interworking (QinQ mode) on Ethernet devices:

<table>
<thead>
<tr>
<th>Ethernet CE device</th>
<th>Ethernet PE device</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>enable</td>
</tr>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>interface GigabitEthernet 0/1</td>
<td>interface GigabitEthernet 0/1</td>
</tr>
<tr>
<td>no ip address</td>
<td>no ip address</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet 0/1.10</td>
<td>interface GigabitEthernet 1/0/0</td>
</tr>
<tr>
<td>encapsulation dot1q 10 second-dot1q 20</td>
<td>encapsulation dot1q 10 second-dot1q 20</td>
</tr>
<tr>
<td>ip address 198.51.100.19 255.255.255.0</td>
<td>no ip address</td>
</tr>
<tr>
<td>ip irdp</td>
<td>no shutdown</td>
</tr>
<tr>
<td>ip irdp maxadvertinterval 4</td>
<td>xconnect 203.0.113.20 100 pseudowire-class pw-lw-eth</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td>end</td>
<td>end</td>
</tr>
</tbody>
</table>
Example: Configuring HDLC-to-VLAN Bridged Interworking (QinQ Mode) on Ethernet Devices Using the Commands Associated with the L2VPN Protocol-Based CLIs Feature

The following example shows how to configure HDLC-to-VLAN bridged interworking (QinQ mode) on Ethernet devices using the commands associated with the L2VPN protocol-based CLIs feature:

<table>
<thead>
<tr>
<th>Ethernet CE device</th>
<th>Ethernet PE device</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>enable</td>
</tr>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>interface GigabitEthernet 0/1</td>
<td>interface GigabitEthernet 1/0/0</td>
</tr>
<tr>
<td>no ip address</td>
<td>no ip address</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet 0/1.10</td>
<td>interface GigabitEthernet 1/0/0.10</td>
</tr>
<tr>
<td>encapsulation dot1q 10 second-dot1q 20</td>
<td>encapsulation dot1q 10 second-dot1q 20</td>
</tr>
<tr>
<td>ip address 198.51.100.19 255.255.255.0</td>
<td>no ip address</td>
</tr>
<tr>
<td>ip irdp</td>
<td>no shutdown</td>
</tr>
<tr>
<td>ip irdp maxadvertinterval 4</td>
<td>!</td>
</tr>
<tr>
<td>no shutdown</td>
<td>interface pseudowire 101</td>
</tr>
<tr>
<td>end</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>neighbor 203.0.113.20 100 signaling protocol ldp</td>
</tr>
<tr>
<td></td>
<td>no shutdown</td>
</tr>
<tr>
<td></td>
<td>!</td>
</tr>
<tr>
<td>12vpn xconnect context qinq interworking ethernet</td>
<td>12vpn xconnect context qinq interworking ethernet</td>
</tr>
<tr>
<td>member GigabitEthernet 1/0/0.10</td>
<td>member GigabitEthernet 1/0/0.10</td>
</tr>
<tr>
<td>member pseudowire 101</td>
<td>member pseudowire 101</td>
</tr>
<tr>
<td>no shutdown</td>
<td>no shutdown</td>
</tr>
<tr>
<td>end</td>
<td>end</td>
</tr>
</tbody>
</table>

Additional References for L2VPN Interworking

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-l2tpext-l2tp-base-03.txt</td>
<td>Layer Two Tunneling Protocol (Version 3) 'L2TPv3'</td>
</tr>
</tbody>
</table>
### Standard/RFC

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-martini-l2circuit-trans-mpls-09.txt</td>
<td>Transport of Layer 2 Frames Over MPLS</td>
</tr>
<tr>
<td>draft-ietf-pwe3-frame-relay-03.txt</td>
<td>Encapsulation Methods for Transport of Frame Relay over MPLS Networks</td>
</tr>
<tr>
<td>draft-martini-l2circuit-encap-mpls-04.txt</td>
<td>Encapsulation Methods for Transport of Layer 2 Frames Over IP and MPLS Networks</td>
</tr>
<tr>
<td>draft-ietf-pwe3-ethernet-encap-08.txt</td>
<td>Encapsulation Methods for Transport of Ethernet over MPLS Networks</td>
</tr>
<tr>
<td>draft-ietf-pwe3-hdlc-ppp-encap-mpls-03.txt</td>
<td>Encapsulation Methods for Transport of PPP/HDLC over MPLS Networks</td>
</tr>
<tr>
<td>draft-ietf-ppvpn-l2vpn-00.txt</td>
<td>An Architecture for L2VPNs</td>
</tr>
<tr>
<td>RFC 4618</td>
<td>Encapsulation Methods for Transport of PPP/High-Level Data Link Control (HDLC) over MPLS Networks</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
| No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature. | To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:  
http://www.cisco.com/go/mibs |

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. If you have a valid service contract but do not have a user ID or password, you can register on Cisco.com.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>
## Feature Information for L2VPN Interworking

### Table 13: Feature Information for L2VPN Interworking

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN Interworking</td>
<td>Cisco IOS XE Release 2.4 Cisco IOS XE Release 3.3S</td>
<td>This feature allows disparate ACs to be connected. An interworking function facilitates the translation between the different Layer 2 encapsulations. The following commands were introduced or modified: <code>debug frame-relay pseudowire</code>, <code>debug ssm</code>, <code>interworking</code>, <code>mtu</code>, <code>pseudowire-class</code>, <code>show l2tun session</code>, <code>show l2tun tunnel</code>, <code>show mpls l2transport vc</code>, <code>show platform</code>.</td>
</tr>
<tr>
<td>L2VPN Interworking: Ethernet to VLAN Interworking</td>
<td>Cisco IOS XE Release 2.4</td>
<td>This feature allows interworking by stripping the VLAN tags and sending them as untagged frames on the remote end.</td>
</tr>
<tr>
<td>L2VPN Interworking: Ethernet VLAN to Frame Relay</td>
<td>Cisco IOS XE Release 3.3S</td>
<td>This feature allows interworking of Ethernet VLANs with Frame Relay DLCIs. The following command was modified: <code>interworking</code>.</td>
</tr>
<tr>
<td>L2VPN Interworking: Ethernet VLAN to PPP</td>
<td>Cisco IOS XE Release 3.3S</td>
<td>The L2VPN interworking - Ethernet VLAN-to-PPP feature allows disparate ACs to be connected. An interworking function facilitates the translation between the following Layer 2 encapsulations.</td>
</tr>
<tr>
<td>L2VPN Interworking: Frame Relay to ATM (Bridged Mode)</td>
<td>Cisco IOS XE Release 3.6S</td>
<td>This feature allows Frame Relay to ATM Interworking using bridged and routed mode encapsulation.</td>
</tr>
<tr>
<td>L2VPN Interworking: HDLC to Ethernet Interworking</td>
<td>Cisco IOS XE Release 3.13S</td>
<td>High-Level Data Link Control (HDLC) and Ethernet are two independent data link layer transport protocols that utilize the Any Transport over MPLS (AToM) framework to communicate with each other. The interworking function enables translation between two heterogeneous Layer 2 encapsulations over a Multiprotocol Label Switching (MPLS) backbone. In Cisco IOS XE Release 3.13S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. This feature introduced no new or modified commands.</td>
</tr>
</tbody>
</table>
CHAPTER 5

L2VPN Pseudowire Preferential Forwarding

The L2VPN: Pseudowire Preferential Forwarding feature allows you to configure the pseudowires so that you can use `ping` and `show` commands to find status information for the pseudowires before, during, and after a switchover.

- Finding Feature Information, on page 279
- Prerequisites for L2VPN—Pseudowire Preferential Forwarding, on page 279
- Guidelines and Limitations for L2VPN—Pseudowire Preferential Forwarding, on page 280
- Information About L2VPN—Pseudowire Preferential Forwarding, on page 280
- How to Configure L2VPN—Pseudowire Preferential Forwarding, on page 281
- Configuration Examples for L2VPN—Pseudowire Preferential Forwarding, on page 284
- Additional References, on page 287
- Feature Information for L2VPN—Pseudowire Preferential Forwarding, on page 288

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN—Pseudowire Preferential Forwarding

- Before configuring the L2VPN: Pseudowire Preferential Forwarding feature, you should understand the concepts in the following documents:
  - Preferential Forwarding Status Bit Definition (draft-ietf-pwe3-redundancy-bit-xx.txt)
  - MPLS Pseudowire Status Signaling
  - L2VPN Pseudowire Redundancy
  - NSF/SSO—Any Transport over MPLS and AToM Graceful Restart
  - MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV

- The PE routers must be configured with the following features:
The L2VPN: Pseudowire Preferential Forwarding feature requires that the following mechanisms be in place to enable you to detect a failure in the network:

- Label switched paths (LSPs) Ping/Traceroute and Any Transport over MPLS Virtual Circuit Connection Verification (AToM VCCV)
- Local Management Interface (LMI)
- Operation, Administration, and Maintenance (OAM)

Guidelines and Limitations for L2VPN--Pseudowire Preferential Forwarding

- Only ATM attachment circuits are supported.
- The following features are not supported:
  - Port mode cell relay
  - Any Transport over MPLS: AAL5 over MPLS
  - VC cell packing
  - OAM emulation
  - ILMI/PVC-D
  - Permanent virtual circuit (PVC) Range
  - L2TPv3 Pseudowire Redundancy
  - Local switching
  - Multiple backup pseudowires
  - Static pseudowires

Information About L2VPN--Pseudowire Preferential Forwarding

Overview of L2VPN--Pseudowire Preferential Forwarding

The L2VPN: Pseudowire Preferential Forwarding feature allows you to configure pseudowires so that you can use `ping`, `traceroute`, and `show` commands to find status information before, during, and after a switchover. The implementation of this feature is based on Preferential Forwarding Status Bit Definition (draft-ietf-pwe3-redundancy-bit-xx.txt). The L2VPN: Pseudowire Preferential Forwarding feature provides the following enhancements for displaying information about the pseudowires:

- You can issue `ping mpls` commands on the backup pseudowires.
- You can display status of the pseudowires before, during, and after a switchover using the `show xconnect` and `show mpls l2transport vc` commands.
Overview of L2VPN—Pseudowire Preferential Forwarding using the commands associated with the L2VPN Protocol-Based CLIs feature

The L2VPN: Pseudowire Preferential Forwarding feature allows you to configure pseudowires so that you can use `ping`, `traceroute`, and `show` commands to find status information before, during, and after a switchover. The implementation of this feature is based on `Preferential Forwarding Status Bit Definition` (draft-ietf-pwe3-redundancy-bit-xx.txt). The L2VPN: Pseudowire Preferential Forwarding feature provides the following enhancements for displaying information about the pseudowires:

- You can issue `ping mpls` commands on the backup pseudowires.
- You can display status of the pseudowires before, during, and after a switchover using the `show l2vpn service` and `show l2vpn atom vc` commands.

How to Configure L2VPN—Pseudowire Preferential Forwarding

Configuring the Pseudowire Connection Between PE Routers

You set up a connection called a pseudowire between the routers to transmit Layer 2 frames between PE routers.

As part of the pseudowire configuration, issue the `status redundancy master` command to make it the master. This enables the L2VPN: Pseudowire Preferential Forwarding feature to display the status of the active and backup pseudowires. By default, the PE router is in slave mode.

One pseudowire must be the master, and the other must be the slave. You cannot configure both pseudowires as master or slave.

You must specify the `encapsulation mpls` command as part of the pseudowire class in order for the AToM VCs to work properly. If you omit the `encapsulation mpls` command, you receive the following error: `% Incomplete command.
Before you begin

The PE routers must be configured for the L2VPN Pseudowire Redundancy and NSF/SSO--Any Transport over MPLS and AToM Graceful Restart features. See the following documents for configuration instructions.

- **L2VPN Pseudowire Redundancy**
- **NSF/SSO--Any Transport over MPLS and AToM Graceful Restart**

### SUMMARY STEPS

1. `configure terminal`
2. `pseudowire-class name`
3. `encapsulation mpls`
4. `status redundancy {master|slave}`
5. `interworking {ethernet | ip}`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> switch# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** `pseudowire-class name` | Establishes a pseudowire class with a name that you specify, and enters pseudowire class configuration mode. |
| **Example:** switch(config)# pseudowire-class atom | |

| **Step 3** `encapsulation mpls` | Specifies the tunneling encapsulation. |
| **Example:** switch(config-pw)# encapsulation mpls | • For AToM, the encapsulation type is mpls. |

| **Step 4** `status redundancy {master|slave}` | Configures the pseudowire as the master or slave. This enables the L2VPN: Pseudowire Preferential Forwarding feature to display the status of the active and backup pseudowires. |
| **Example:** switch(config-pw)# status redundancy master | • By default, the PE router is in slave mode. |

**Note** One pseudowire must be the master, and the other must be the slave. You cannot configure both pseudowires as master or slave.

| **Step 5** `interworking {ethernet | ip}` | (Optional) Enables the translation between the different Layer 2 encapsulations. |
| **Example:** switch(config-pw)# interworking ip | |
Configuring the Pseudowire Connection Between PE Routers

You set up a connection called a pseudowire between the routers to transmit Layer 2 frames between PE routers.

As part of the pseudowire configuration, issue the `status redundancy master` command to make it the master. This enables the L2VPN: Pseudowire Preferential Forwarding feature to display the status of the active and backup pseudowires. By default, the PE router is in slave mode.

**Note**

One pseudowire must be the master, and the other must be the slave. You cannot configure both pseudowires as master or slave.

**Note**

You must specify the `encapsulation mpls` command as part of the pseudowire class in order for the AToM VCs to work properly. If you omit the `encapsulation mpls` command, you receive the following error: `%Incomplete command.`

**Before you begin**

The PE routers must be configured for the L2VPN Pseudowire Redundancy and NSF/SSO--Any Transport over MPLS and AToM Graceful Restart features. See the following documents for configuration instructions.

- L2VPN Pseudowire Redundancy
- NSF/SSO--Any Transport over MPLS and AToM Graceful Restart

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface pseudowire number`
4. `encapsulation mpls`
5. `neighbor peer-address vcid-value`
6. `status redundancy {master|slave}`
7. `interworking {ethernet | ip}`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# configure terminal</td>
<td>Establishes an interface pseudowire with a value that you specify, and enters pseudowire class configuration mode.</td>
</tr>
</tbody>
</table>

**Step 3**

**interface pseudowire** *number*

**Example:**
Device(config)# interface pseudowire 1

**Step 4**

**encapsulation mpls**

**Example:**
Device(config-pw)# encapsulation mpls

**Step 5**

**neighbor** *peer-address* *vcid-value*

**Example:**
Router(config-pw)# neighbor 10.0.0.1 123

**Step 6**

**status redundancy** {master|slave}

**Example:**
Device(config-pw)# status redundancy master

**Note**
One pseudowire must be the master, and the other must be the slave. You cannot configure both pseudowires as master or slave.

**Step 7**

**interworking** {ethernet | ip}

**Example:**
Device(config-pw)# interworking ip

**Configuration Examples for L2VPN--Pseudowire Preferential Forwarding**

**Example: L2VPN--Pseudowire Preferential Forwarding Configuration**

The following commands configure a PE router with the L2VPN: Pseudowire Preferential Forwarding feature:

```
 mpls ldp graceful-restart
 mpls ip
 mpls label protocol ldp
 mpls ldp router-id Loopback0 force
 mpls ldp advertise-labels
```
Example: L2VPN--Pseudowire Preferential Forwarding Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

The following commands configure a PE router with the L2VPN: Pseudowire Preferential Forwarding feature:

```plaintext
! pseudowire-class mpls
 encapsulation mpls
 status redundancy master
 interface ATM0/2/0.1 multipoint
 logging event subif-link-status
 atm pvp 50 l2transport
 xconnect 10.1.1.2 100 pw-class mpls
 backup peer 10.1.1.3 100 encap mpls
end
```

Example: Displaying the Status of the Pseudowires

The following examples show the status of the active and backup pseudowires before, during, and after a switchover.

The **show mpls l2transport vc** command on the active PE router displays the status of the pseudowires:

```plaintext
Router# show mpls l2transport vc
```

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM0/2/0.1</td>
<td>ATM VPC CELL 50</td>
<td>10.1.1.2</td>
<td>100</td>
<td>UP</td>
</tr>
<tr>
<td>ATM0/2/0.1</td>
<td>ATM VPC CELL 50</td>
<td>10.1.1.3</td>
<td>100</td>
<td>STANDBY</td>
</tr>
</tbody>
</table>

The **show mpls l2transport vc** command on the backup PE router displays the status of the pseudowires. The active pseudowire on the backup PE router has the HOTSTANDBY status.

```plaintext
Router1-standby# show mpls l2transport vc
```

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM0/2/0.1</td>
<td>ATM VPC CELL 50</td>
<td>10.1.1.2</td>
<td>100</td>
<td>HOTSTANDBY</td>
</tr>
<tr>
<td>ATM0/2/0.1</td>
<td>ATM VPC CELL 50</td>
<td>10.1.1.3</td>
<td>100</td>
<td>STANDBY</td>
</tr>
</tbody>
</table>
During a switchover, the status of the active and backup pseudowires changes:

```
Router# show mpls l2transport vc
```

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT0/2/0/0.1 ATM VPC CELL 50</td>
<td>10.1.1.2</td>
<td>100</td>
<td>HOTSTANDBY</td>
<td></td>
</tr>
<tr>
<td>AT0/2/0/0.1 ATM VPC CELL 50</td>
<td>10.1.1.3</td>
<td>100</td>
<td>DOWN</td>
<td></td>
</tr>
</tbody>
</table>

After the switchover is complete, the recovering pseudowire shows a status of UP:

```
Router# show mpls l2transport vc
```

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT0/2/0/0.1 ATM VPC CELL 50</td>
<td>10.1.1.2</td>
<td>100</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>AT0/2/0/0.1 ATM VPC CELL 50</td>
<td>10.1.1.3</td>
<td>100</td>
<td>STANDBY</td>
<td></td>
</tr>
</tbody>
</table>

The `show xconnect` command displays the standby (SB) state for the backup pseudowire, which is independent of the stateful switchover mode of the router:

```
Router# show xconnect all
```

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
UP=Up DN=Down AD=Admin Down IA=Inactive
SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware
XC ST Segment 1 S1 Segment 2

```
UP pri ac AT1/1/0/0.1/1/1:220/220(ATM V UP mpls 10.193.193.3:330 UP
IA sec ac AT1/1/0/0.1/1/1:220/220(ATM V UP mpls 10.193.193.3:331 SB
```

The `ping mpls` and `traceroute mpls` commands show that the dataplane is active on the backup pseudowire:

```
Router# ping mpls pseudowire 10.193.193.22 331
```

%Total number of MS-PW segments is less than segment number; Adjusting the segment number to 1
Sending 5, 100-byte MPLS Echos to 10.193.193.22, timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlv, 'N' - no label entry,
'P' - no tx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

```
Router# traceroute mpls pseudowire 10.193.193.22 331 segment 1
```

Tracing MS-PW segments within range [1-1] peer address 10.193.193.22 and timeout 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of commands associated with MPLS and</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>MPLS applications</td>
<td></td>
</tr>
<tr>
<td>L2VPN Pseudowires</td>
<td>• L2VPN Pseudowire Redundancy</td>
</tr>
<tr>
<td></td>
<td>• MPLS Pseudowire Status Signaling</td>
</tr>
<tr>
<td>NSF/SSO for L2VPNs</td>
<td>NSF/SSO--Any Transport over MPLS and AToM Graceful Restart</td>
</tr>
<tr>
<td>Ping and Traceroute for L2VPNs</td>
<td>MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-pwe3-redundancy-bit-xx.txt</td>
<td>Preferential Forwarding Status Bit Definition</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you</td>
<td></td>
</tr>
<tr>
<td>can subscribe to various services, such as the Product Alert Tool (accessed</td>
<td></td>
</tr>
<tr>
<td>from Field Notices), the Cisco Technical Services Newsletter, and Really</td>
<td></td>
</tr>
<tr>
<td>Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for L2VPN--Pseudowire Preferential Forwarding

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 14: Feature Information for L2VPN: Pseudowire Preferential Forwarding

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN: Pseudowire Preferential Forwarding</td>
<td>Cisco IOS XE</td>
<td>This feature allows you to configure the pseudowires so that you can use ping and show commands to find status information of the pseudowires before, during, and after a switchover.</td>
</tr>
<tr>
<td></td>
<td>Release 2.3</td>
<td>The following commands were introduced or modified: show mpls l2transport vc, show xconnect, status redundancy.</td>
</tr>
</tbody>
</table>


L2VPN Multisegment Pseudowires

The L2VPN Multisegment Pseudowires feature enables you to configure two or more Layer 2 pseudowire segments that function as a single pseudowire. The L2VPN Multisegment Pseudowires feature span multiple cores or autonomous systems of the same or different carrier networks.

- Finding Feature Information, on page 289
- Prerequisites for L2VPN Multisegment Pseudowires, on page 289
- Restrictions for L2VPN Multisegment Pseudowires, on page 290
- Information About L2VPN Multisegment Pseudowires, on page 290
- How to Configure L2VPN Multisegment Pseudowires, on page 291
- Additional References, on page 299
- Feature Information for L2VPN Multisegment Pseudowires, on page 300

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN Multisegment Pseudowires

Before configuring this feature, see the following documents:

- Any Transport over MPLS
- L2VPN Pseudowire Switching
- MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV
- Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP) (RFC 4447)
Restrictions for L2VPN Multisegment Pseudowires

- Only Mutliprotocol (MPLS) Layer 2 pseudowires are supported.
- Only manual configuration of the pseudowires (including S-PE and T-PE routers) is supported.
- The L2VPN Pseudowire Switching feature is supported for pseudowires advertised with FEC 128. FEC 129 is not supported.
- The S-PE router is limited to 1600 pseudowires.

Information About L2VPN Multisegment Pseudowires

L2VPN Pseudowire Defined

An L2VPN pseudowire (PW) is a tunnel established between two provider edge (PE) routers across the core carrying the Layer 2 payload encapsulated as MPLS data, as shown in the figure below. This helps carriers migrate from traditional Layer 2 networks such as Frame Relay and ATM to an MPLS core. In the L2VPN pseudowire shown in the figure, the PWs between two PE routers are located within the same autonomous system. Routers PE1 and PE2 are called terminating PE routers (T-PEs). Attachment circuits are bounded to the PW on these PE routers.

L2VPN Multisegment Pseudowire Defined

An L2VPN multisegment pseudowire (MS-PW) is a set of two or more PW segments that function as a single PW. It is also known as switched PW. MS-PWs span multiple cores or autonomous systems of the same or different carrier networks. A L2VPN MS-PW can include up to 254 PW segments.

The figure below is an example of a Multisegment Pseudowire topology.
The end routers are called terminating PE routers (T-PEs), and the switching routers are called S-PE routers. The S-PE router terminates the tunnels of the preceding and succeeding PW segments in an MS-PW. The S-PE router can switch the control and data planes of the preceding and succeeding segments of the MS-PW. An MS-PW is declared to be up when all the single-segment PWs are up. For more information, see the L2VPN Pseudowire Switching document.

How to Configure L2VPN Multisegment Pseudowires

Configuring L2VPN Multisegment Pseudowires

Perform the following steps on the S-PE routers to create L2VPN Multisegment Pseudowires.

SUMMARY STEPS

1. enable
2. configure terminal
3. mpls label protocol ldp
4. mpls ldp router-id interface force
5. pseudowire-class name
6. encapsulation mpls
7. switching tlv
8. exit
9. l2 vfi name point-to-point
10. description string
11. neighbor ip-address vcid { encapsulation mpls pw-class pw-class-name}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
### Configuring L2VPN Multisegment Pseudowires

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router&gt; enable</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 2**

configure terminal  
**Example:**  
Router# configure terminal

**Step 3**

mpls label protocol ldp  
**Example:**  
Router(config)# mpls label protocol ldp

**Step 4**

mpls ldp router-id interface force  
**Example:**  
Router(config)# mpls ldp router-id loopback0 force

**Step 5**

pseudowire-class name  
**Example:**  
Router(config)# pseudowire-class atom

**Step 6**

capsulation mpls  
**Example:**  
Router(config-pw-class)# encapsulation mpls

**Step 7**

switching tlv  
**Example:**  
Router(config-pw-class)# switching tlv

**Step 8**

exit  
**Example:**  
Router(config-pw-class)# exit

**Step 9**

l2 vfi name point-to-point  
**Example:**  
Router(config)# l2 vfi atomtunnel point-to-point

**Step 10**

description string  
**Example:**  
Router(config-vfi)# description segment1

---

*MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x*
Configuring L2VPN Multisegment Pseudowires using the commands associated with the L2VPN Protocol-Based CLIs feature

Perform this task on the S-PE routers to create L2VPN multisegment pseudowires.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. mpls label protocol ldp
4. mpls ldp router-id *interface* force
5. interface pseudowire number
6. encapsulation mpls
7. switching tlv
8. neighbor peer-address vcid-value
9. exit
10. l2vpn xconnect context *context-name*
11. description *string*
12. member ip-address vcid encapsulation mpls

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
<th>Purpose Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> mpls label protocol ldp</td>
<td>Configures the use of Label Distribution Protocol (LDP) on all interfaces.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Device(config)# mpls label protocol ldp</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> mpls ldp router-id [interface force]</td>
<td>Specifies the preferred interface for determining the LDP router ID.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# mpls ldp router-id loopback0 force</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> interface pseudowire [number]</td>
<td>Establishes an interface pseudowire with a value that you specify, and enters pseudowire configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface pseudowire 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-pw)# encapsulation mpls</td>
<td>• For MPLS L2VPNs, the encapsulation type is <strong>mpls</strong>.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> switching tlv</td>
<td>(Optional) Enables the advertisement of the switching point type-length variable (TLV) in the label binding.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• This command is enabled by default.</td>
<td></td>
</tr>
<tr>
<td>Device(config-pw)# switching tlv</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> neighbor peer-address [vcid-value]</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# neighbor 10.0.0.1 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> exit</td>
<td>Exits pseudowire configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-pw)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> l2vpn xconnect context [context-name]</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# l2vpn xconnect context con1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> description [string]</td>
<td>Provides a description of the switching provider edge router for a multisection pseudowire.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# description segment1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> member ip-address [vcid] encapsulation mpls</td>
<td>Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Note Only two <strong>member</strong> commands are allowed for each <strong>l2vpn xconnect context</strong> command.</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# member 10.10.10.1 1 encapsulation mpls</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Displaying Information About the L2VPN Multisegment Pseudowires

SUMMARY STEPS

1. show mpls l2transport binding
2. show mpls l2transport vc detail

DETAILED STEPS

Step 1 show mpls l2transport binding

Use the show mpls l2transport binding command to display information about the pseudowire switching point, as shown in bold in the output. (In the following examples PE1 and PE4 are the T-PE routers.)

Example:

Router# show mpls l2transport binding

Destination Address: 10.1.1.1, VC ID: 102
Local Label: 17
  Cbit: 1, VC Type: FastEthernet, GroupID: 0
  MTU: 1500, Interface Desc: n/a
  VCCV: CC Type: CW [1], RA [2], TTL [3]
  CV Type: LSPV [2]
Remote Label: 16
  Cbit: 1, VC Type: FastEthernet, GroupID: 0
  MTU: 1500, Interface Desc: n/a
  VCCV: CC Type: CW [1], RA [2], TTL [3]
  CV Type: LSPV [2]

PW Switching Point:
  Vcid  local IP addr  remote IP addr  Description
  101  10.11.11.11  10.20.20.20  PW Switching Point PE3
  100  10.20.20.20  10.11.11.11  PW Switching Point PE2

Step 2 show mpls l2transport vc detail

Use the show mpls l2transport vc detail command to display status of the pseudowire switching point. In the following example, the output (shown in bold) displays the segment that is the source of the fault of the multisegment pseudowire:

Example:

Router# show mpls l2transport vc detail

Local interface: Se3/0/0 up, line protocol up, HDLC up
Destination address: 12.1.1.1, VC ID: 100, VC status: down
  Output interface: Se2/0, imposed label stack {23}
  Preferred path: not configured
  Default path: active
  Next hop: point2point
Create time: 00:03:02, last status change time: 00:01:41
Signaling protocol: LDP, peer 10.1.1.1:0 up
  Targeted Hello: 10.1.1.1.4(LDP Id) -> 10.1.1.1, LDP is UP
  Status TLV support (local/remote) : enabled/supported
  LDP route watch : enabled
  Label/status state machine : established, LruRrd
  Last local dataplane  status rcvd: No fault
  Last local SSS circuit status rcvd: No fault
  Last local SSS circuit status sent: DOWN(FW-tx-fault)
  Last local LDP TLV  status sent: No fault
Displaying Information About the L2VPN Multisegment Pseudowires using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. show l2vpn atom binding
2. show l2vpn atom vc detail

DETAILED STEPS

Step 1
show l2vpn atom binding

Use the `show l2vpn atom binding` command to display information about the pseudowire switching point, as shown in bold in the output. (In the following examples PE1 and PE4 are the T-PE routers.)

Example:

```
Device# show l2vpn atom binding

Destination Address: 10.1.1.1, VC ID: 102
Local Label: 17
Cbit: 1, VC Type: FastEthernet, GroupID: 0
MTU: 1500, Interface Desc: n/a
VCCV: CC Type: CW [1], RA [2], TTL [3]
CV Type: LSPV [2]
Remote Label: 16
Cbit: 1, VC Type: FastEthernet, GroupID: 0
MTU: 1500, Interface Desc: n/a
VCCV: CC Type: CW [1], RA [2], TTL [3]
CV Type: LSPV [2]
```

Step 2
show l2vpn atom vc detail

Use the `show l2vpn atom vc detail` command to display status of the pseudowire switching point. In the following example, the output (shown in bold) displays the segment that is the source of the fault of the multisegment pseudowire:
Example:

Device# show l2vpn atom vc detail
Local interface: Se3/0/0 up, line protocol up, HDLC up
   Destination address: 12.1.1.1, VC ID: 100, VC status: down
   Output interface: Se2/0, imposed label stack {23}
   Preferred path: not configured
   Default path: active
   Next hop: point2point
Create time: 00:03:02, last status change time: 00:01:41
   Signaling protocol: LDP, peer 10.1.1.1:0 up
   Targeted Hello: 10.1.1.1.4(LDP Id) -> 10.1.1.1, LDP is UP
   Status TLV support (local/remote) : enabled/supported
   LDP route watch : enabled
   Label/status state machine : established, LruRrd
   Last local dataplane status rcvd: No fault
   Last local SSS circuit status rcvd: No fault
   Last local LDP TLV status sent: DOWN(PW-tx-fault)
   Last remote LDP TLV status rcvd: DOWN(PW-tx-fault)

   PW Switching Point:
   Fault type   Vcid   local IP addr   remote IP addr   Description
   FW-tx-fault 101   10.1.1.1   10.1.1.1   S-PE2

   Last remote LDP ADJ status rcvd: No fault
   MPLS VC labels: local 19, remote 23
   Group ID: local 0, remote 0
   MTU: local 1500, remote 1500
   Remote interface description:
   Sequencing: receive disabled, send disabled
   VC statistics:
      packet totals: receive 16, send 27
      byte totals: receive 2506, send 3098
      packet drops: receive 0, seq error 0, send 0

Performing ping mpls and trace mpls Operations on the L2VPN Multisegment Pseudowires

You can use the ping mpls and trace mpls commands to verify that all the segments of the MPLS multisegment pseudowire are operating.

You can use the ping mpls command to verify connectivity at the following pseudowire points:

- From one end of the pseudowire to the other
- From one of the pseudowires to a specific segment
- The segment between two adjacent S-PE routers

You can use the trace mpls command to verify connectivity at the following pseudowire points:

- From one end of the pseudowire to the other
- From one of the pseudowires to a specific segment
- The segment between two adjacent S-PE routers
- A range of segments
SUMMARY STEPS

1. ping mpls pseudowire destination-address vc-id [segment segment-number]
2. trace mpls pseudowire destination-address vc-id segment segment-number segment-number

DETAILED STEPS

Step 1

ping mpls pseudowire destination-address vc-id [segment segment-number]

Where:

- *destination-address* is the address of the S-PE router, which is the end of the segment from the direction of the source.
- *vc-id* is the VC ID of the segment from the source to the next PE router.
- *segment segment-number* is optional and specifies the segment you want to ping.

The following examples use the topology shown in the second figure above:

- To perform an end-to-end ping operation from T-PE1 to T-PE2, enter the following command:

  ping mpls pseudowire <addr-of-S-PE1> <vc-id between T-PE1 and S-PE1>

- To perform a ping operation from T-PE1 to segment 2, enter the following command:

  ping mpls pseudowire <addr-of-S-PE1> <vc-id between T-PE1 and S-PE1> segment 2

Example:

Step 2

trace mpls pseudowire destination-address vc-id segment segment-number segment-number

Where:

- *destination-address* is the address of the next S-PE router from the original of the trace.
- *vc-id* is the VC ID of the segment from which the *trace* command is issued.
- *segment-number* indicates the segment upon which the trace operation will act. If you enter two segment numbers, the traceroute operation will perform a trace on that range of routers.

The following examples use the topology shown in the second figure above:

- To perform a trace operation from T-PE1 to segment 2 of the multisegment pseudowire, enter the following command:

  trace mpls pseudowire <addr-of-S-PE1> <vc-id between T-PE1 and S-PE1> segment 2

This example performs a trace from T-PE1 to S-PE2.

- To perform a trace operation on a range of segments, enter the following command. This example performs a trace from S-PE2 to T-PE2:

  trace mpls pseudowire <addr-of-S-PE1> <vc-id between T-PE1 and S-PE1> segment 2 4

The following command performs a trace operation on S-PE router 10.10.10.9, on segment 1 and then on segment 2:

Example:
router# trace mpls pseudowire 10.10.10.9 220 segment 1
Tracing MS-PW segments within range [1-1] peer address 10.10.10.9 and timeout 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
L 1 10.10.9.9 0 ms [Labels: 18 Exp: 0]
  local 10.10.10.22 remote 10.10.10.9 vc id 220
router# trace mpls pseudowire 10.10.10.9 220 segment 2
Tracing MS-PW segments within range [1-2] peer address 10.10.10.9 and timeout 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
L 1 10.10.9.9 4 ms [Labels: 18 Exp: 0]
  local 10.10.10.22 remote 10.10.10.9 vc id 220
! 2 10.10.3.3 4 ms [Labels: 16 Exp: 0]
  local 10.10.10.9 remote 10.10.10.3 vc id 220

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Description of commands associated with</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>MPLS and MPLS applications</td>
<td></td>
</tr>
<tr>
<td>Layer 2 VPNS</td>
<td>• Any Transport over MPLS</td>
</tr>
<tr>
<td></td>
<td>• L2VPN Pseudowire Switching</td>
</tr>
<tr>
<td></td>
<td>• MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4777</td>
<td>Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for L2VPN Multisegment Pseudowires

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.
Table 15: Feature Information for L2VPN Multisegment Pseudowires

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS OAM Support for Multisegment Pseudowires</td>
<td>Cisco IOS XE Release 2.3</td>
<td>The L2VPN Multisegment Pseudowires feature enables you to configure two or more Layer 2 pseudowire segments that function as a single pseudowire. The L2VPN Multisegment Pseudowires feature span multiple cores or autonomous systems of the same or different carrier networks. In isco IOS XE Release 2.3, this feature was introduced and implemented on the Cisco ASR 1000 Series Routers. In Cisco IOS XE Release 3.5S, support was added for the Cisco ASR 903 Router. The following commands were introduced or modified: description (l2 vfi), ping mpls, show mpls l2transport binding, show mpls l2transport vc, switching tlv, trace mpls.</td>
</tr>
</tbody>
</table>
CHAPTER 7

MPLS Quality of Service

The MPLS Quality of Service feature (formerly named as the MPLS CoS feature) enables you to provide differentiated services across an MPLS network. To satisfy a wide range of networking requirements, you can specify the class of service applicable to each transmitted IP packet. Different classes of service can be established for IP packets by setting the IP precedence bit in the header of each packet.

- Prerequisites for MPLS Quality of Service, on page 303
- Information About MPLS Quality of Service, on page 304
- How to Configure MPLS Quality of Service, on page 308
- Configuration Examples for MPLS Quality of Service, on page 314
- Additional References for MPLS Quality of Service, on page 320
- Feature Information for MPLS Quality of Service, on page 321

Prerequisites for MPLS Quality of Service

To use MPLS CoS to full advantage in your network, the following functionality must be supported:

- Multiprotocol Label Switching (MPLS)—MPLS is the standardized label switching protocol defined by the Internet Engineering Task Force (IETF).
- Cisco Express Forwarding—Cisco Express Forwarding is an advanced Layer 3 IP switching technology that optimizes performance and scalability in networks that handle large volumes of traffic and that exhibit dynamic traffic patterns.
- Asynchronous Transfer Mode (ATM)—ATM signaling support is required if you are using ATM interfaces in your network.

If you are using only packet interfaces in your network, ATM functionality is not needed.

- QoS features:
  - Weighted fair queueing (WFQ)—Used on non-GSR platforms, WFQ is a dynamic scheduling method that allocates bandwidth fairly to all network traffic.
    WFQ applies priorities, or weights, to traffic to classify the traffic into flows and determine how much bandwidth to allow each flow. WFQ moves interactive traffic to the front of a queue to reduce response time and fairly shares the remaining bandwidth among high-bandwidth flows.
  - Weighted random early detection (WRED)—WRED is a congestion avoidance mechanism that extends RED functionality by allowing different RED parameters to be configured per IP precedence value.
IP precedence bits, contained in the type of service (ToS) octet in the IP packet header, are used to denote the relative importance or priority of an IP packet. WRED uses these IP precedence values to classify packets into different discard priorities or classes of service.

- Modified deficit round robin (MDRR)—Used only on GSR platforms, MDRR is a traffic class prioritization mechanism that incorporates emission priority as a facet of quality of service. MDRR is similar in function to WFQ on non-GSR platforms.

In MDRR, IP traffic is mapped to different classes of service queues. A group of queues is assigned to each traffic destination. On the transmit side of the platform, a group of queues is defined on a per-interface basis; on the receive side of the platform, a group of queues is defined on a per-destination basis. IP packets are then mapped to these queues, based on their IP precedence value.

These queues are serviced on a round-robin basis, except for a queue that has been defined to run in either of two ways: strict priority mode or alternate priority mode.

In strict priority mode, the high priority queue is serviced whenever it is not empty; this ensures the lowest possible delay for high priority traffic. In this mode, however, the possibility exists that other traffic might not be serviced for long periods of time if the high priority queue is consuming most of the available bandwidth.

In alternate priority mode, the traffic queues are serviced in turn, alternating between the high priority queue and the remaining queues.

- Committed access rate (CAR)—CAR is a QoS feature that limits the input or output transmission rate on an interface and classifies packets by setting the IP precedence value or the QoS group in the IP packet header.

Information About MPLS Quality of Service

MPLS Quality of Service Overview

MPLS CoS functionality enables network administrators to provide differentiated services across an MPLS network. Network administrators can satisfy a wide range of networking requirements by specifying the class of service applicable to each transmitted IP packet. Different classes of service can be established for IP packets by setting the IP precedence bit in the header of each packet.

MPLS CoS supports the following differentiated services in an MPLS network:

- Packet classification
- Congestion avoidance
- Congestion management

The table below describes the MPLS CoS services and functions.
### Table 16: MPLS CoS Services and Functions

<table>
<thead>
<tr>
<th>Service</th>
<th>CoS Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet classification</td>
<td>Committed access rate (CAR). Packets are classified at the edge of the network before labels are assigned.</td>
<td>CAR uses the type of service (ToS) bits in the IP header to classify packets according to input and output transmission rates. CAR is often configured on interfaces at the edge of a network in order to control traffic flowing into or out of the network. You can use CAR classification commands to classify or reclassify a packet.</td>
</tr>
<tr>
<td>Congestion avoidance</td>
<td>Weighted random early detection (WRED). Packet classes are differentiated based on drop probability.</td>
<td>WRED monitors network traffic to anticipate and prevent congestion at common network and internetwork bottlenecks. WRED can selectively discard lower priority traffic when an interface becomes congested; WRED can also provide differentiated performance characteristics for different classes of service.</td>
</tr>
<tr>
<td>Congestion management</td>
<td>Weighted fair queueing WFQ) for non-GSR platform. Packet classes are differentiated based on bandwidth requirements and finite delay characteristics. Modified deficit round robin (MDRR) for GSR platforms.</td>
<td>WFQ is an automated scheduling system that ensures fair bandwidth allocation to all network traffic. WFQ uses weights (priorities) to determine how much bandwidth each class of traffic is allocated. MDRR, similar in function to WFQ for non-GSR platforms, is a traffic prioritization scheme that maps IP traffic to different classes of service queues, based on the IP precedence value of each packet. The queues are then serviced on a round-robin basis.</td>
</tr>
</tbody>
</table>

MPLS CoS enables you to duplicate Cisco IP CoS (Layer 3) features as closely as possible in MPLS devices, including label edge switch routers (edge LSRs) and label switch routers (LSRs). MPLS CoS functions map nearly one-for-one to IP CoS functions on all types of interfaces.

### Tag Switching and MPLS Terminology

The table below lists the existing legacy tag switching terms and the new, equivalent Multiprotocol Label Switching (MPLS) IETF terms used in this document and other related Cisco publications.
### LSRs Used at the Edge of an MPLS Network

Label switching routers (LSRs) used at the edge of a Multiprotocol Label Switching (MPLS) network backbone are devices running MPLS software. The edge LSRs can be at the ingress or the egress of the network.

At the ingress of an MPLS network, devices process packets as follows:

1. IP packets enter the edge of the MPLS network at the edge LSR.
2. The edge LSR uses a classification mechanism such as the Modular Quality of Service Command-Line Interface (CLI) (MQC) to classify incoming IP packets and set the IP precedence value. Alternatively, IP packets can be received with the IP precedence value already set.
3. For each packet, the device performs a lookup on the IP address to determine the next-hop LSR.
4. The appropriate label is inserted into the packet, and the IP precedence bits are copied into the MPLS EXP bits in the label header.
5. The labeled packets are forwarded to the appropriate output interface for processing.
6. The packets are differentiated by class according to one of the following:
   - Drop probability—Weighted random early detection (WRED)
   - Bandwidth allocation and delay—Class-based weighted fair queueing (CBWFQ)

In either case, LSRs enforce the defined differentiation by continuing to employ WRED or CBWFQ on every ingress device.

### Table 17: Tag Switching Terms and Equivalent MPLS Terms

<table>
<thead>
<tr>
<th>Old Designation</th>
<th>New Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag switching</td>
<td>Multiprotocol Label Switching</td>
</tr>
<tr>
<td>Tag (short for tag switching)</td>
<td>MPLS</td>
</tr>
<tr>
<td>Tag (item or packet)</td>
<td>Label</td>
</tr>
<tr>
<td>TDP (Tag Distribution Protocol)</td>
<td>LDP (Label Distribution Protocol). Cisco TDP and LDP (MPLS Label Distribution Protocol) closely parallel each other in function, but differ in detail, such as message formats and the commands required to configure the respective protocols and to monitor their operation</td>
</tr>
<tr>
<td>Tag switched</td>
<td>Label switched</td>
</tr>
<tr>
<td>TFIB (tag forwarding information base)</td>
<td>LFIB (label forwarding information base)</td>
</tr>
<tr>
<td>TSR (tag switching router)</td>
<td>LSR (label switching router)</td>
</tr>
<tr>
<td>TVC (tag VC, tag virtual circuit)</td>
<td>LVC (label VC, label virtual circuit)</td>
</tr>
<tr>
<td>TSP (tag switch path)</td>
<td>LSP (label switch path)</td>
</tr>
</tbody>
</table>
At the egress of an MPLS network, devices process packets as follows:

1. MPLS-labeled packets enter the edge LSR from the MPLS network backbone.
2. The MPLS labels are removed and IP packets may be (re)classified.
3. For each packet, the device performs a lookup on the IP address to determine the packet’s destination and forwards the packet to the destination interface for processing.
4. The packets are differentiated by the IP precedence values and treated appropriately, depending on the WRED or CBWFQ drop probability configuration.

**LSRs Used at the Core of an MPLS Network**

Label switching routers (LSRs) used at the core of a Multiprotocol Label Switching (MPLS) network are devices running MPLS software. These devices at the core of an MPLS network process packets as follows:

1. MPLS labeled packets coming from the edge devices or other core devices enter the core device.
2. A lookup is done at the core device to determine the next hop LSR.
3. An appropriate label is placed (swapped) on the packet and the MPLS EXP bits are copied.
4. The labeled packet is then forwarded to the output interface for processing.
5. The packets are differentiated by the MPLS EXP field marking and treated appropriately, depending on the weighted early random detection (WRED) and class-based weighted fair queueing (CBWFQ) configuration.

**Benefits of MPLS CoS in IP Backbones**

You realize the following benefits when you use MPLS CoS in a backbone consisting of IP devices running Multiprotocol Label Switching (MPLS):

- Efficient resource allocation—Weighted fair queueing (WFQ) is used to allocate bandwidth on a per-class and per-link basis, thereby guaranteeing a percentage of link bandwidth for network traffic.

- Packet differentiation—When IP packets traverse an MPLS network, packets are differentiated by mapping the IP precedence bits of the IP packets to the MPLS CoS bits in the MPLS EXP field. This mapping of bits enables the service provider to maintain end-to-end network guarantees and meet the provisions of customer service level agreements (SLAs).

- Future service enhancements—MPLS CoS provides building blocks for future service enhancements (such as virtual leased lines) by meeting bandwidth requirements.
How to Configure MPLS Quality of Service

Configuring WRED

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface` type `number`
4. `random-detect`
5. `random-detect precedence` min-threshold max-threshold mark-probability
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device&gt;</code> <code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>interface</code> type <code>number</code></td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config)# gigabitethernet0/0/0</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>random-detect</code></td>
<td>Configures the interface to use weighted random early detection/distributed weighted random early detection (WRED/DWRED).</td>
</tr>
<tr>
<td>Example: <code>Device(config-if)# random-detect</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> <code>random-detect precedence</code> min-threshold max-threshold mark-probability</td>
<td>Configures WRED/DWRED parameters per precedence value.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if)# random-detect precedence 0 32 256 100</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
**Verifying WRED**

To verify weighted random early detection (WRED), use a command of the form shown in the following table. This example is based on “Device2” in the network topology shown in the figure in the configuration examples section.

**SUMMARY STEPS**

1. show queueing interface *subinterface*

**DETAILED STEPS**

```plaintext
show queueing interface *subinterface*
```

**Example:**

```plaintext
Device2# show queueing interface gigabitethernet6/0/0
```

Verifies the WRED configuration on the specified interface.

```plaintext
Device2# show queueing interface gigabitethernet6/0/0
```

Interface Gig6/0/0 queueing strategy:random early detection (WRED)
Exp-weight-constant:9 (1/512)
Mean queue depth:0

<table>
<thead>
<tr>
<th>Class</th>
<th>Random drop</th>
<th>Tail drop</th>
<th>Minimum threshold</th>
<th>Maximum threshold</th>
<th>Mark probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>85</td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
<td>0</td>
<td>22</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>31</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>35</td>
<td>40</td>
<td>1/10</td>
</tr>
<tr>
<td>rsvp</td>
<td>0</td>
<td>0</td>
<td>37</td>
<td>40</td>
<td>1/10</td>
</tr>
</tbody>
</table>
```

Configuring CAR

SUMMARY STEPS

1. enable
2. configure terminal
3. interface name
5. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td><code>- Enter your password if prompted.</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Designates the input interface, and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface name</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# interface gigabitethernet</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies the action to take on packets during label imposition.</td>
</tr>
<tr>
<td><code>rate-limit input [access-group [rate-limit] acl-index] bps burst-normal burst-max conform-action conform-action exceed-action exceed-action</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# rate-limit input access-group 101 496000 32000 64000 conform-action set-prec-transmit 4</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Verifying the CAR Configuration

SUMMARY STEPS

1. `show interfaces slot/port rate-limit`

DETAILED STEPS

show interfaces slot/port rate-limit

Example:

`Device2# show interfaces fe1/1/1 rate-limit`

Verifies the CAR configuration, use a command of the following form.

`Device2# show interfaces fe1/1/1 rate-limit`

FastEthernet1/1/1

Input

matches:access-group 101
params: 496000 bps, 32000 limit, 64000 extended limit
conformed 2137 packets, 576990 bytes; action:set-prec-transmit 4
Configuring CBWFQ

SUMMARY STEPS

1. enable
2. configure terminal
3. class-map class-map-name
4. match type number
5. policy-map policy-map-name
6. class class-map-name
7. bandwidth number
8. interface type number
9. service-policy output policy-map-name
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 class-map class-map-name</td>
<td>Creates a class map, and enters class-map configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# class-map class-map-1</td>
<td></td>
</tr>
<tr>
<td>Step 4 match type number</td>
<td>Specifies the traffic on which the class map is to match.</td>
</tr>
<tr>
<td>Example: Device(config-cmap)# match ip precedence 0 1</td>
<td></td>
</tr>
<tr>
<td>Step 5 policy-map policy-map-name</td>
<td>Creates a policy map, and enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-cmap)# policy-map outputmap</td>
<td></td>
</tr>
<tr>
<td>Step 6 class class-map-name</td>
<td>Associates the class map with the policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-pmap)# class class-map-1</td>
<td>Associates the bandwidth (CBWFQ) action to act on traffic matched by the class map, and enters policy-map class configuration mode.</td>
</tr>
<tr>
<td>Step 7 bandwidth number</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-pmap-c)# bandwidth 10000</td>
<td>Assigns the policy map to an interface.</td>
</tr>
<tr>
<td>Step 8 interface type number</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-pmap-c)# interface gigabitethernet0/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 9 service-policy output policy-map-name</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# service-policy output outputmap</td>
<td></td>
</tr>
<tr>
<td>Step 10 end</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verifying the CBWFQ Configuration

SUMMARY STEPS

1. `show policy-map interface type number`

DETAILED STEPS

```plaintext
show policy-map interface type number

Example:
Device5# show policy-map interface fe5/1/0

Verifies the class-based weighted fair queueing (CBWFQ) configuration, use a command of the following form. This example is based on “Device 5” in the network topology shown in the figure in the configuration examples section.

Device5# show policy-map interface fe5/1/0

FastEthernet5/1/0
service-policy output:outputmap
class-map:prec_01 (match-all)
  522 packets, 322836 bytes
  5 minute rate 1000 bps
  match:ip precedence 0 1
  queue size 0, queue limit 1356
  packet output 522, packet drop 0
tail/random drop 0, no buffer drop 0, other drop 0
bandwidth:class-based wq, weight 10
random-detect:
  Exp-weight-constant:9 (1/512)
  Mean queue depth:9
```
<table>
<thead>
<tr>
<th>Class</th>
<th>Random</th>
<th>Tail</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mark</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>drop</td>
<td>drop</td>
<td>threshold</td>
<td>threshold</td>
<td>probability</td>
<td>packets</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3390</td>
<td>6780</td>
<td>1/10</td>
<td>522</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3813</td>
<td>6780</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4236</td>
<td>6780</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4659</td>
<td>6780</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5082</td>
<td>6780</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5505</td>
<td>6780</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>5928</td>
<td>6780</td>
<td>1/10</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>6351</td>
<td>6780</td>
<td>1/10</td>
<td>0</td>
</tr>
</tbody>
</table>

class-map:prec_23 (match-all)
0 packets, 0 bytes
5 minute rate 0 bps
match:ip precedence 2 3
queue size 0, queue limit 0
packet output 0, packet drop 0
tail/random drop 0, no buffer drop 0, other drop 0
bandwidth: class-based wfq, weight 15
random-detect:
Mean queue depth:0

class-map:prec_45 (match-all)
2137 packets, 576990 bytes
5 minute rate 16000 bps
match:ip precedence 4 5
queue size 0, queue limit 2712
packet output 2137, packet drop 0
tail/random drop 0, no buffer drop 0, other drop 0
bandwidth: class-based wfq, weight 20
random-detect:
Mean queue depth:0

class-map:prec_67 (match-all)
0 packets, 0 bytes
5 minute rate 0 bps
match:ip precedence 6 7
queue size 0, queue limit 0
packet output 0, packet drop 0
tail/random drop 0, no buffer drop 0, other drop 0
bandwidth: class-based wfq, weight 25
random-detect:
What to do next

Configuration Examples for MPLS Quality of Service

The configuration examples are based on the sample network topology shown in the figure below.
Example: Configuring Cisco Express Forwarding

Cisco Express Forwarding must be running on all devices in the Multiprotocol Label Switching (MPLS) network for MPLS CoS to work. To enable Cisco Express Forwarding, use one of the following commands:

```
Device(config)# ip cef
```

or

```
Device(config)# ip cef distributed
```

Example: Running IP on Device 1

The following commands enable IP routing on Device 1. All devices in the figure must have IP enabled. Device 1 is not part of the Multiprotocol Label Switching (MPLS) network.

```bash
! ip routing
! hostname R1
! interface Loopback0
  ip address 10.1.1.1 255.255.255.255
! interface FastEthernet0/0/1
  ip address 10.0.0.1 255.0.0.0
! router ospf 100
  network 10.0.0.0 0.255.255.255 area 100
  network 10.0.0.1 0.255.255.255 area 100
```
Example: Running MPLS on Device 2

Device 2 is a label edge router. Cisco Express Forwarding and Multiprotocol Label Switching (MPLS) must be enabled on this device. Committed access rate (CAR) is also configured on Device 2 and Fast Ethernet interface 1/1/3. The CAR policy used at Fast Ethernet interface 1/1/0 acts on incoming traffic matching access-list 101. If the traffic rate is less than the committed information rate (in this example, 496000), the traffic will be sent with IP precedence 4. Otherwise, this traffic will be sent with IP precedence 0.

```plaintext
! ip routing
! hostname R2
! ip cef
mpls ip
tag-switching advertise-tags
! interface Loopback0
 ip address 10.10.10.10 255.255.255.255
!
interface FastEthernet1/1/0
 ip address 10.0.0.2 255.0.0.0
 rate-limit input access-group 101 496000 32000 64000 conform-action set-prec-transmit 4
 exceed-action set-prec-transmit 0
!
interface POS6/0/0
 ip address 10.0.0.1 255.0.0.0
 mpls label protocol ldp
 mpls ip
 random-detect
clock source internal
!
routing ospf 100
 network 10.0.0.0 0.255.255.255 area 100
 network 10.1.0.0 0.255.255.255 area 100
 network 11.0.1.0 0.255.255.255 area 100
!
access-list 101 permit ip host 10.10.1.1 any
```

Example: Running MPLS on Device 3

Device 3 is running Multiprotocol Label Switching (MPLS). Cisco Express Forwarding and MPLS must be enabled on this device.

```plaintext
! ip routing
mpls ip
tag-switching advertise-tags
! hostname R3
! interface Loopback0
 ip address 10.10.10.10 255.255.255.255
!
interface POS0/1/0
 ip address 10.0.0.2 255.0.0.0
 mpls label protocol ldp
 mpls ip
```
Example: Running MPLS on Device 4

Device 4 is running Multiprotocol Label Switching (MPLS). Cisco Express Forwarding and MPLS must be enabled on this device.

```plaintext
! ip routing
mpls ip
tag-switching advertise-tags
!
hostname R4
!
interface Loopback0
  ip address 10.0.0.0 255.255.255.255
!
interface POS1/2/1
  ip address 10.0.0.1 255.0.0.0
mpls label protocol ldp
mpls ip
crc 16
clock source internal
tx-cos stm16-rx
!
router ospf 100
  network 10.0.0.0 0.255.255.255 area 100
  network 10.0.0.1 0.255.255.255 area 100
  network 10.1.0.0 0.255.255.255 area 100
!
cos-queue-group stm16-rx
  precedence 0 random-detect-label 1
  precedence 1 queue 0
  precedence 1 queue 1
  precedence 2 queue 2
  precedence 3 random-detect-label 2
  precedence 4 random-detect-label 2
  precedence 5 random-detect-label 2
  precedence 6 random-detect-label 2
  precedence 7 queue low-latency
  precedence 7 random-detect-label 2
  random-detect-label 0 250 1000 1
  random-detect-label 1 500 1250 1
  random-detect-label 2 750 1500 1
  queue 0 50
  queue 1 100
  queue 2 150
  queue low-latency alternate-priority 500
```

MPLS Quality of Service
Example: Running MPLS on Device 5

Device 5 is running Multiprotocol Label Switching (MPLS). Cisco Express Forwarding and MPLS must be enabled on this device. Device 5 has class-based weighted fair queueing (CBWFQ) enabled on Fast Ethernet interface 5/1/0. In this example, class maps are created, matching packets with various IP precedence values. These class maps are then used in a policy map named “outputmap,” where CBWFQ is assigned to each class. Finally, the policy map is assigned to the outbound Fast Ethernet interface 5/1/0.

!
ip routing
mpls ip
tag-switching advertise-tags
!
hostname R5
!
class-map match-all prec_01
 match ip precedence 0 1
class-map match-all prec_23
 match ip precedence 2 3
class-map match-all prec_45
 match ip precedence 4 5
class-map match-all prec_67
 match ip precedence 6 7
!
policy-map outputmap
 class prec_01
 bandwidth 10000
 random-detect
 class prec_23
 bandwidth 15000
 random-detect
 class prec_45
 bandwidth 20000
 random-detect

MPLS Quality of Service
Example: Running IP on Device 6

Device 6 is running IP. Cisco Express Forwarding must be enabled on this device. Device 6 is not part of the Multiprotocol Label Switching (MPLS) network.

! ip routing
! hostname R6
! ip cef distributed
!
interface Loopback0
 ip address 10.0.0.0 255.255.255.255
!
interface FastEthernet2/0/0
 ip address 10.0.0.2 255.0.0.0
 ip route-cache distributed
 full-duplex
 service-policy output outputmap
!
router ospf 100
 network 10.0.0.0 0.255.255.255 area 100
 network 10.1.0.0 0.255.255.255 area 100
 network 10.0.1.0 0.255.255.255 area 100

Additional References for MPLS Quality of Service

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS QoS commands</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

MIBs

- CISCOMREDMIB
- CISCO-CAR-MIB

To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Feature Information for MPLS Quality of Service

Table 18: Feature Information for MPLS Quality of Service

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Quality of Service</td>
<td>12.0(5)T</td>
<td>The MPLS Quality of Service feature (formerly named as the MPLS CoS feature) enables you to provide differentiated services across an MPLS network.</td>
</tr>
<tr>
<td></td>
<td>12.0(11)T</td>
<td>To satisfy a wide range of networking requirements, you can specify the class of service applicable to each transmitted IP packet. Different classes</td>
</tr>
<tr>
<td></td>
<td>12.0(22)S</td>
<td>of service can be established for IP packets by setting the IP precedence bit in the header of each packet.</td>
</tr>
<tr>
<td></td>
<td>12.2(17b)SXA</td>
<td>No new or modified commands were introduced.</td>
</tr>
<tr>
<td></td>
<td>12.2(8)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 2.1</td>
<td></td>
</tr>
</tbody>
</table>
QoS Policy Support on L2VPN ATM PVPs

This feature enables you to configure Quality of Service (QoS) service policies in ATM permanent virtual path (PVP) mode for Layer 2 Virtual Private Networks (L2VPNs).

- Finding Feature Information, on page 323
- Prerequisites for QoS Policy Support on L2VPN ATM PVPs, on page 323
- Restrictions for QoS Policy Support on L2VPN ATM PVPs, on page 324
- Information About QoS Policy Support on L2VPN ATM PVPs, on page 324
- How to Configure QoS Policy Support on L2VPN ATM PVPs, on page 325
- Configuration Examples for QoS Policy Support on L2VPN ATM PVPs, on page 334
- Additional References, on page 335
- Feature Information for QoS Policy Support on L2VPN ATM PVPs, on page 336

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for QoS Policy Support on L2VPN ATM PVPs

Before configuring QoS policies on L2VPN ATM PVPs, you should understand the concepts and configuration instructions in the following documents:

- Any Transport over MPLS
- Applying QoS Features Using the MQC
Restrictions for QoS Policy Support on L2VPN ATM PVPs

- Queueing-based policies are not supported in ATM PVP mode and virtual circuit (VC) mode at the same time under the same main interface. However, nonqueueing policies can be mixed. For example, you can configure a nonqueueing policy in PVP mode and configure queueing policies on in VC mode under the same main interface. Similarly, you can configure a queueing policy in PVP mode and configure nonqueueing policies in VC mode in the input or output direction.
- ATM PVP mode does not support sessions.
- When you enable a policy in PVP mode, do not configure ATM rates on the VCs that are part of the PVP. The VCs should be unspecified bit rate (UBR) VC only.
- If VCs are part of a PVP that has a policy configured, you cannot configure ATM VC traffic shaping.
- You cannot configure a queueing policy on an ATM PVP with UBR.
- You cannot configure queueing-based policies with UBR traffic shaping.

Information About QoS Policy Support on L2VPN ATM PVPs

The MQC Structure

The MQC structure allows you to define a traffic class, create a traffic policy, and attach the traffic policy to an interface.

The MQC structure consists of the following three high-level steps.

SUMMARY STEPS

1. Define a traffic class by using the `class-map` command. A traffic class is used to classify traffic.
2. Create a traffic policy by using the `policy-map` command. (The terms traffic policy and policy map are often synonymous.) A traffic policy (policy map) contains a traffic class and one or more QoS features that will be applied to the traffic class. The QoS features in the traffic policy determine how to treat the classified traffic.
3. Attach the traffic policy (policy map) to the interface by using the `service-policy` command.

DETAILED STEPS

Step 1
Define a traffic class by using the `class-map` command. A traffic class is used to classify traffic.

Step 2
Create a traffic policy by using the `policy-map` command. (The terms traffic policy and policy map are often synonymous.) A traffic policy (policy map) contains a traffic class and one or more QoS features that will be applied to the traffic class. The QoS features in the traffic policy determine how to treat the classified traffic.

Step 3
Attach the traffic policy (policy map) to the interface by using the `service-policy` command.
Elements of a Traffic Class

A traffic class contains three major elements: a traffic class name, a series of match commands, and, if more than one match command is used in the traffic class, instructions on how to evaluate these match commands. The match commands are used for classifying packets. Packets are checked to determine whether they meet the criteria specified in the match commands; if a packet meets the specified criteria, that packet is considered a member of the class. Packets that fail to meet the matching criteria are classified as members of the default traffic class.

Elements of a Traffic Policy

A traffic policy contains three elements: a traffic policy name, a traffic class (specified with the class command), and the command used to enable the QoS feature.

The traffic policy (policy map) applies the enabled QoS feature to the traffic class once you attach the policy map to the interface (by using the service-policy command).

Note

A packet can match only one traffic class within a traffic policy. If a packet matches more than one traffic class in the traffic policy, the first traffic class defined in the policy will be used.

How to Configure QoS Policy Support on L2VPN ATM PVPs

Enabling a Service Policy in ATM PVP Mode

You can enable a service policy in ATM PVP mode. You can also enable a service policy on PVP on a multipoint subinterface.

Note

The `show policy-map interface` command does not display service policy information for ATM interfaces.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/subslot/port [subinterface]
4. atm pvp vpi l2transport
5. service-policy [input | output] policy-map-name
6. xconnect peer-router-id vcid encapsulation mpls
7. end
Enabling a Service Policy in ATM PVP Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

You can enable a service policy in ATM PVP mode. You can also enable a service policy on PVP on a multipoint subinterface.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | Enables privileged EXEC mode.
- **Example:**
  ```
  Router> enable
  ``` |
| **Step 2** | Enters global configuration mode.
- **Example:**
  ```
  Router# configure terminal
  ``` |
| **Step 3** | Defines the interface and enters interface configuration mode.
- **Example:**
  ```
  Router(config)# interface atm 1/0/0
  ``` |
| **Step 4** | Specifies that the PVP is dedicated to transporting ATM cells and enters l2transport PVP configuration mode.
- **Example:**
  ```
  Router(config-if)# atm pvp 1 l2transport
  ``` |
| **Step 5** | Enables a service policy on the specified PVP.
- **Example:**
  ```
  Router(config-if-atm-l2trans-pvp)# service policy input pol1
  ``` |
| **Step 6** | Binds the attachment circuit to a pseudowire VC.
- **Example:**
  ```
  Router(config-if-atm-l2trans-pvp)# xconnect 10.0.0.1 123 encapsulation mpls
  ``` |
| **Step 7** | Exits l2transport PVP configuration mode and returns to privileged EXEC mode.
- **Example:**
  ```
  Router(config-if-atm-l2trans-pvp)# end
  ``` |
The show policy-map interface command does not display service policy information for ATM interfaces.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot / subslot / port [. subinterface]
4. atm pvp vpi l2transport
5. service-policy [input | output] policy-map-name
6. end
7. interface pseudowire number
8. encapsulation mpls
9. neighbor peer-address vcid-value
10. exit
11. l2vpn xconnect context context-name
12. member pseudowire interface-number
13. member gigabitethernet interface-number
14. end
15. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.
 Example:
 `Router> enable` |
| **Step 2** | configure terminal | Enters global configuration mode.
 Example:
 `Router# configure terminal` |
| **Step 3** | interface atm slot / subslot / port [. subinterface] | Defines the interface and enters interface configuration mode.
 Example:
 `Router(config)# interface atm1/0/0` |
| **Step 4** | atm pvp vpi l2transport | Specifies that the PVP is dedicated to transporting ATM
 cells and enters l2transport PVP configuration mode.
 Example:
 `Router(config-if)# atm pvp 1 l2transport`
 • The l2transport keyword indicates that the PVP is
 for cell relay. This mode is for Layer 2 transport only;
 it is not for regular PVPs. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 5 | service-policy [input | Enables a service policy on the specified PVP.
| | output] policy-map-name | |
| | Example:
| |
| | Router(config-if-atm-l2trans-pvp)# service policy input poll | |
| 6 | end | Exits to privileged EXEC mode.
| | Example:
| |
| | Router(config-if-atm-l2trans-pvp)# end | |
| 7 | interface pseudowire number | Specifies the pseudowire interface and enters interface configuration mode.
| | Example:
| |
| | Router(config)# interface pseudowire 100 | |
| 8 | encapsulation mpls | Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.
| | Example:
| |
| | Router(config-if)# encapsulation mpls | |
| 9 | neighbor peer-address vcid-value | Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.
| | Example:
| |
| | Router(config-if)# neighbor 10.0.0.1 123 | |
| 10 | exit | Exits interface configuration mode.
| | Example:
| |
| | Router(config-if)# exit | |
| 11 | l2vpn xconnect context context-name | Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.
| | Example:
| |
| | Router(config)# l2vpn xconnect context con1 | |
| 12 | member pseudowire interface-number | Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.
| | Example:
| |
| | Router(config-xconnect)# member pseudowire 100 | |
| 13 | member gigabitethernet interface-number | Specifies the location of the Gigabit Ethernet member interface.
| | Example:
| |
| | Router(config-xconnect)# member GigabitEthernet0/0/0.1 | |
Enabling Traffic Shaping in ATM PVP Mode

Traffic shaping commands are supported in PVP mode. For egress VP shaping, one configuration command is supported for each ATM service category. The supported service categories are constant bit rate (CBR), UBR, variable bit rate-nonreal time (VBR-NRT), and variable bit rate real-time (VBR-RT).

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm slot / subslot / port [subinterface]`
4. `atm pvp vpi l2transport`
5. Do one of the following:
 - `ubr pcr`
 - `cbr pcr`
 - `or`
 - `vbr-nrt pcr scr mbs`
 - `or`
 - `vbr-rt pcr scr mbs`
6. `xconnect peer-router-id vc-id encapsulation mpls`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Enabling Traffic Shaping in ATM PVP Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

Traffic shaping commands are supported in PVP mode. For egress VP shaping, one configuration command is supported for each ATM service category. The supported service categories are constant bit rate (CBR), UBR, variable bit rate-nonreal time (VBR-NRT), and variable bit rate real-time (VBR-RT).

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot / subslot / port [, subinterface]
4. atm pvp vpi l2transport

Command or Action

Step 3

interface atm slot / subslot / port [, subinterface]

Example:

Router(config)# interface atm1/0/0

Defines the interface and enters interface configuration mode.

Step 4

atm pvp vpi l2transport

Example:

Router(config-if)# atm pvp 1 l2transport

Specifies that the PVP is dedicated to transporting ATM cells and enters l2transport PVP configuration mode.

- The l2transport keyword indicates that the PVP is for cell relay. This mode is for Layer 2 transport only; it is not for regular PVPs.

Step 5

Do one of the following:

- **ubr** pcr
- **cbr** pcr
- **vbr-nrt** pcr scr mbs
- **vbr-rt** pcr scr mbs

Example:

Router(config-if-atm-l2trans-pvp)# cbr 1000

Enables traffic shaping in ATM PVP mode.

- **pcr** = peak cell rate
- **scr** = sustain cell rate
- **mbs** = maximum burst size

Step 6

xconnect peer-router-id vcid encapsulation mpls

Example:

Router(config-if-atm-l2trans-pvp)# xconnect 10.0.0.1 123 encapsulation mpls

Binds the attachment circuit to a pseudowire VC.

- The syntax for this command is the same as for all other Layer 2 transports.
5. Do one of the following:
 - ubr pcr
 - cbr pcr
 - or
 - vbr-nrt pcr scr mbs
 - or
 - vbr-rt pcr scr mbs

6. end
7. interface pseudowire number
8. encapsulation mpls
9. neighbor peer-address vcid-value
10. exit
11. l2vpn xconnect context context-name
12. member pseudowire interface-number
13. member gigabitethernet interface-number
14. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Step 2</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 3</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• cbr pc</td>
<td>* mbs = maximum burst size</td>
</tr>
<tr>
<td>• or</td>
<td></td>
</tr>
<tr>
<td>• vbr-nrt pc or scr mbs</td>
<td></td>
</tr>
<tr>
<td>• or</td>
<td></td>
</tr>
<tr>
<td>• vbr-rt pc or scr mbs</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router(config-if-atm-l2trans-pvp)# cbr 1000

Step 6

end

Example:

Router(config-if-atm-l2trans-pvp)# end

Step 7

interface pseudowire number

Example:

Router(config)# interface pseudowire 100

Step 8

encapsulation mpls

Example:

Router(config-if)# encapsulation mpls

Step 9

neighbor peer-address vc-id-value

Example:

Router(config-if)# neighbor 10.0.0.1 123

Step 10

exit

Example:

Router(config-if)# exit

Step 11

l2vpn xconnect context context-name

Example:

Router(config)# l2vpn xconnect context con1

Step 12

member pseudowire interface-number

Example:

Router(config-xconnect)# member pseudowire 100

Step 13

member gigabitethernet interface-number

Example:

Specifies the pseudowire interface and enters interface configuration mode.

Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.

Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.

Exits interface configuration mode.

Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.

Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.

Specifies the location of the Gigabit Ethernet member interface.
Enabling Traffic Shaping in ATM PVP Mode Example using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example enables traffic shaping in ATM PMP mode.

```
interface atm 1/0
  atm pvp 100 12transport
  ubr 1000
  xconnect 10.11.11.11 777 encapsulation mpls
  atm pvp 101 12transport
  cbr 1000
  xconnect 10.11.11.11 888 encapsulation mpls
  atm pvp 102 12transport
  vbr-nrt 1200 000 128
  xconnect 10.11.11.11 999 encapsulation mpls
```

Enabling Matching of ATM VCLs

You can match on an ATM VCI or range of VCIs, using the `match atm-vci` command in class-map configuration mode.

```
When you configure the `match atm-vci` command in class-map configuration mode, you can add this class map to a policy map that can be attached only to an ATM VP.
```

SUMMARY STEPS

1. enable
2. configure terminal
3. class-map class-map-name [match-all | match-any]
4. match atm-vci vc-id [- vc-id]
5. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 class-map class-map-name [match-all</td>
<td>match-any]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# class-map class1</td>
</tr>
<tr>
<td>Step 4 match atm-vci vc-id [- vc-id]</td>
<td>Enables packet matching on an ATM VCI or range of VCIs. The range is 32 to 65535.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note: You can use the match not command to remove the match criteria.</td>
</tr>
<tr>
<td></td>
<td>Router(config-cmap)# match atm-vci 50</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>(Optional) Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-cmap)# end</td>
</tr>
</tbody>
</table>

Configuration Examples for QoS Policy Support on L2VPN ATM PVPs

Example Enabling Traffic Shaping in ATM PVP Mode

The following example enables traffic shaping in ATM PMP mode.

```
int atm 1/0/0
  atm pvp 100 l2transport
  ubr 1000
  xconnect 10.11.11.11 777 encapsulation mpls
  atm pvp 101 l2transport
cbr 1000
  xconnect 10.11.11.11 888 encapsulation mpls
atm pvp 102 l2transport
  vbr-nrt 1200 800 128
  xconnect 10.11.11.11 999 encapsulation mpls
```
Example Enabling Traffic Shaping in ATM PVP Mode using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example enables traffic shaping in ATM PMP mode.

```
int atm 1/0/0
  atm pvp 100 l2transport
  ubr 1000
  interface pseudowire 100
  encapsulation mpls
  neighbor 10.0.0.1 123
!
12vpn xconnect context A
  member pseudowire 100
  member g0/0/0.1
  atm pvp 101 l2transport
  cbr 1000
  interface pseudowire 100
  encapsulation mpls
  neighbor 10.0.0.1 123
!
12vpn xconnect context A
  member pseudowire 100
  member g0/0/0.1
  atm pvp 102 l2transport
  vbr-nrt 1200 800 128
  interface pseudowire 100
  encapsulation mpls
  neighbor 10.0.0.1 123
!
12vpn xconnect context A
  member pseudowire 100
  member g0/0/0.1
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Description of commands associated with MPLS and MPLS applications</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Modular Quality of Service (QoS) Command-Line Interface (CLI) (MQC)</td>
<td>Applying QoS Features Using the MQC</td>
</tr>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for QoS Policy Support on L2VPN ATM PVPs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 19: Feature Information for QoS Policy Support on L2VPN ATM PVPs

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Policy Support on L2VPN ATM PVPs</td>
<td>Cisco IOS XE Release 2.3</td>
<td>This feature enables you to configure Quality of Service (QoS) service policies in ATM permanent virtual path (PVP) mode for Layer 2 Virtual Private Networks (L2VPNs). The following commands were introduced or modified: cbr, match atm-vci, service-policy, ubr, vbr-nrt, vbr-rt.</td>
</tr>
<tr>
<td>Cell-Based ATM Shaping per PVP</td>
<td>Cisco IOS XE Release 2.3</td>
<td>This feature was introduced for Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
</tbody>
</table>
CHAPTER 9

MPLS Pseudowire Status Signaling

The MPLS Pseudowire Status Signaling feature enables you to configure the router so it can send pseudowire status to a peer router, even when the attachment circuit is down.

- Finding Feature Information, on page 339
- Prerequisites for MPLS Pseudowire Status Signaling, on page 339
- Restrictions for MPLS Pseudowire Status Signaling, on page 339
- Information About MPLS Pseudowire Status Signaling, on page 340
- How to Configure MPLS Pseudowire Status Signaling, on page 344
- Configuration Examples for MPLS Pseudowire Status Signaling, on page 347
- Additional References, on page 349
- Feature Information for MPLS Pseudowire Status Signaling, on page 351

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS Pseudowire Status Signaling

- Before configuring this feature, make sure that both peer routers are capable of sending and receiving pseudowire status messages.

Restrictions for MPLS Pseudowire Status Signaling

- Both peer routers must support the ability to send and receive pseudowire status messages in label advertisement and label notification messages. If both peer routers do not support pseudowire status messages, Cisco recommends that you disable the messages with the no status command.
• This feature is not integrated with Any Transport over MPLS (AToM) Virtual Circuit Connection Verification (VCCV).
• This feature is not integrated with Bidirectional Forwarding Detection (BFD).
• The standby and required switchover values from IETF draft-muley-pwe3-redundancy-02.txt are not supported.

Information About MPLS Pseudowire Status Signaling

How MPLS Pseudowire Status Switching Works

The pseudowire status messages are sent in label advertisement and label notification messages if the peer also supports the MPLS Pseudowire Status Signaling feature. You can issue the `show mpls l2transport vc detail` command to show that both the local and remote routers support pseudowire status messages. The following example shows the line of output to look for:

```
Router# show mpls l2transport vc detail
.
.
.
status TLV support (local/remote): enabled/supported
```

How MPLS Pseudowire Status Switching Works using the commands associated with the L2VPN Protocol-Based CLIs feature

The pseudowire status messages are sent in label advertisement and label notification messages if the peer also supports the MPLS Pseudowire Status Signaling feature. You can issue the `show l2vpn atom vc detail` command to show that both the local and remote routers support pseudowire status messages. The following example shows the line of output to look for:

```
Device# show l2vpn atom vc detail
.
.
.
status TLV support (local/remote): enabled/supported
```
When One Router Does Not Support MPLS Pseudowire Status Signaling

The peer routers must support the ability to send and receive pseudowire status messages in label advertisement and label notification messages. If one router does not support pseudowire status messages, Cisco recommends that you disable the messages with the `no status` command. This returns the router to label withdraw mode.

If the peer does not support the MPLS Pseudowire Status Signaling feature, the local router changes its mode of operation to label withdraw mode. You can issue the `show mpls l2transport vc detail` command to show that the remote router does not support pseudowire status messages. The following example shows the line of output to look for:

```
Router# show mpls l2transport vc detail

status TLV support (local/remote): enabled/not supported
```

When you issue the following `debug mpls l2transport vc` commands, the messages show that the peer router does not support the MPLS Pseudowire Status Signaling feature and that the local router is changing to withdraw mode, as shown in bold in the following example:

```
Router# debug mpls l2transport vc event Router# debug mpls l2transport vc status event Router# debug mpls l2transport vc status fsm Router# debug mpls l2transport vc ldp

```

When One Router Does Not Support MPLS Pseudowire Status Signaling using the commands associated with the L2VPN Protocol-Based CLIs feature

The peer routers must support the ability to send and receive pseudowire status messages in label advertisement and label notification messages. If one router does not support pseudowire status messages, we recommend that you disable the messages with the `no status` command. This returns the router to label withdraw mode.

If the peer does not support the MPLS Pseudowire Status Signaling feature, the local router changes its mode of operation to label withdraw mode. You can issue the `show l2vpn atom vc detail` command to show that the remote router does not support pseudowire status messages. The following example shows the line of output to look for:

```
Device# show l2vpn atom vc detail

..
```

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
When you issue the following `debug l2vpn atom vc` commands, the messages show that the peer router does not support the MPLS Pseudowire Status Signaling feature and that the local router is changing to withdraw mode, as shown in the following example:

```
Device# debug l2vpn atom vc event
Device# debug l2vpn atom vc status event
Device# debug l2vpn atom vc status fsm
Device# debug l2vpn atom vc ldp

*Feb 26 13:41:40.707: AToM LDP [110.1.1.2]: Sending label withdraw msg
*Feb 26 13:41:40.707: AToM LDP [110.1.1.2]: VC Type 5, mtu 1500
*Feb 26 13:41:40.707: AToM LDP [110.1.1.2]: VC ID 100, label 18
*Feb 26 13:41:40.707: AToM LDP [110.1.1.2]: Status 0x0000000A [PW Status NOT supported]
```

Status Messages Indicating That the Attachment Circuit Is Down

When the attachment circuit is down between the two routers, the output of the `show mpls l2transport vc detail` command shows the following status:

```
Router# show mpls l2transport vc detail

Last remote LDP TLV status rcvd: AC DOWN(rx,tx faults)
```

The debug messages also indicate that the attachment circuit is down, as shown in bold in the command output:

```
Router# debug mpls l2transport vc event Router# debug mpls l2transport vc status event Router# debug mpls l2transport vc status fsm Router# debug mpls l2transport vc ldp

*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: Received notif msg, id 88
*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: Status 0x00000007 [PW Status]
*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: PW Status 0x00000006 [AC DOWN(rx,tx faults)]
```

Other pseudowire status messages include not-forwarding, pw-tx-fault, and pw-rx-fault.

Status Messages Indicating That the Attachment Circuit Is Down using the commands associated with the L2VPN Protocol-Based CLIs feature

When the attachment circuit is down between the two routers, the output of the `show l2vpn atom vc detail` command shows the following status:
Device# show l2vpn atom vc detail

Last remote LDP TLV status rcvd: AC DOWN(rx,tx faults)

The debug messages also indicate that the attachment circuit is down, as shown in bold in the command output:

Device# debug l2vpn atom vc event
Device# debug l2vpn atom vc status event
Device# debug l2vpn atom vc status fsm
Device# debug l2vpn atom vc ldp

*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: Received notif msg, id 88
*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: Status 0x00000007 [PW Status]
*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: PW Status 0x00000006 [AC DOWN(rx,tx faults)]

Other pseudowire status messages include not-forwarding, pw-tx-fault, and pw-rx-fault.

Message Codes in the Pseudowire Status Messages

The debug mpls l2transport vc and the show mpls l2transport vc detail commands show output that contains message codes. For example:

Label/status state machine: established, LruRru

AToM MSR [10.9.9.9, 100]: S:Evt local up, LndRru->LnuRru

The message codes (LruRru, LndRru, and LnuRru) indicate the status of the local and remote routers. You can use the following key to interpret the message codes:

- L--local router
- R--remote router
- r or n--ready (r) or not ready (n)
- u or d--up (u) or down (d) status

The output also includes other values:

- D--Dataplane
- S--Local shutdown
Message Codes in the Pseudowire Status Messages using the commands associated with the L2VPN Protocol-Based CLIs feature

The `debug l2vpn atom vc` and the `show l2vpn atom vc detail` commands show output that contains message codes. For example:

```
Label/status state machine: established, LruRru
AToM MGR [10.9.9.9, 100]: S:Evt local up, LndRru->LnuRru
```

The message codes (LruRru, LndRru, and LnuRru) indicate the status of the local and remote routers. You can use the following key to interpret the message codes:

- **L**—local router
- **R**—remote router
- **r** or **n**—ready (r) or not ready (n)
- **u** or **d**—up (u) or down (d) status

The output also includes other values:

- **D**—Dataplane
- **S**—Local shutdown

How to Configure MPLS Pseudowire Status Signaling

Enabling MPLS Pseudowire Status Signaling

Perform the following task to enable the router to send pseudowire status to a peer router even when the attachment circuit is down. If both routers do not support pseudowire status messages, then disable the messages with the `no status` command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class name`
4. `status`
5. `encapsulation mpls`
6. `exit`
7. `exit`
8. `show mpls l2transport vc detail`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# pseudowire-class atom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>status</td>
<td>(Optional) Enables the router to send pseudowire status messages to the peer router through label advertisement and label notification messages.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits pseudowire class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>show mpls l2transport vc detail</td>
<td>Validates that pseudowire messages can be sent and received.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# show mpls l2transport vc detail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enabling MPLS Pseudowire Status Signaling using the commands associated with the L2VPN Protocol-Based CLIs feature

Perform this task to enable the router to send pseudowire status to a peer router even when the attachment circuit is down. If both routers do not support pseudowire status messages, then disable the messages with the no status command.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface pseudowire number
4. status
5. encapsulation mpls
6. neighbor peer-address vcid-value
7. exit
8. exit
9. show l2vpn atom vc detail

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>* Enter your password if prompted.</td>
</tr>
</tbody>
</table>
| ```
Router> enable
``` |

| **Step 2** | enters global configuration mode. |
| **Example:** | |
| ```
Device# configure terminal
``` |

| **Step 3** | establishes an interface pseudowire with a value that you specify and enters pseudowire configuration mode. |
| **Example:** | |
| ```
Device(config)# interface pseudowire 1
``` |

| **Step 4** | (optional) enables the router to send pseudowire status messages to the peer router through label advertisement and label notification messages. |
| **Example:** | \* By default, status messages are enabled. This step is included only in case status messages have been disabled. |
| ```
Device(config-pw)# status
``` |
<p>| Note | If you need to disable status messages because both peer routers do not support this functionality, enter the no status command. |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><code>encapsulation mpls</code>
<code>Example:</code>
Device(config-pw)# encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>6</td>
<td><code>neighbor peer-address vcid-value</code>
<code>Example:</code>
Device(config-pw)# neighbor 10.0.0.1 123</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>7</td>
<td><code>exit</code>
<code>Example:</code>
Device(config-pw)# exit</td>
<td>Exits pseudowire class configuration mode.</td>
</tr>
<tr>
<td>8</td>
<td><code>exit</code>
<code>Example:</code>
Device(config)# exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>9</td>
<td><code>show l2vpn atom vc detail</code>
<code>Example:</code>
Device# show l2vpn atom vc detail</td>
<td>Validates that pseudowire messages can be sent and received.</td>
</tr>
</tbody>
</table>

Configuration Examples for MPLS Pseudowire Status Signaling

Example MPLS Pseudowire Status Signaling

The following example configures the MPLS Pseudowire Status Signaling feature on two PE routers. By default, status messages are enabled. The `status` command is included in this example in case status messages have been disabled.

PE1

```plaintext
interface Loopback0
  ip address 10.1.1.1 255.255.255.255
!
peudowire-class atomstatus
  encapsulation mpls
  status
!
interface GigabitEthernet0/0/1
  xconnect 10.1.1.2 123 pw-class atomstatus
```
Example MPLS Pseudowire Status Signaling using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example configures the MPLS Pseudowire Status Signaling feature on two PE routers. By default, status messages are enabled. The status command is included in this example in case status messages have been disabled.

PE1

interface Loopback0
 ip address 10.1.1.1 255.255.255.255
!
 template type pseudowire atomstatus
 encapsulation mpls
 status
!
interface pseudowire 100
 source template type pseudowire atomstatus
 interface GigabitEthernet0/0/1
 service instance 300 ethernet
 l2vpn xconnect context con1
 member GigabitEthernet2/1/1 service-instance 300
 member Pseudowire 100

PE2

interface Loopback0
 ip address 10.1.1.2 255.255.255.255
!
 template type pseudowire atomstatus
 encapsulation mpls
 status
!
interface Pseudowire 100
 source template type pseudowire atomstatus
 interface GigabitEthernet3/3/0
 service instance 300 ethernet
 l2vpn xconnect context con1
 member GigabitEthernet2/1/1 service-instance 300
 member Pseudowire 100
Example Verifying That Both Routers Support Pseudowire Status Messages

You can issue the `show mpls l2transport vc detail` command to show that both the local and remote routers support pseudowire status messages. The following example shows the line of output to look for:

```
Router# show mpls l2transport vc detail

status TLV support (local/remote): enabled/supported
```

Example Verifying That Both Routers Support Pseudowire Status Messages using the commands associated with the L2VPN Protocol-Based CLIs feature

You can issue the `show l2vpn atom vc detail` command to show that both the local and remote routers support pseudowire status messages. The following example shows the line of output to look for:

```
Device# show l2vpn atom vc detail

status TLV support (local/remote): enabled/supported
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Description of commands associated with MPLS and MPLS applications</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-pwe3-control-protocol-15.txt</td>
<td>Pseudowire Setup and Maintenance Using LDP</td>
</tr>
<tr>
<td>draft-ietf-pwe3-iana-allocation-08.txt</td>
<td>IANA Allocations for Pseudo Wire Edge to Edge Emulation (PWE3)</td>
</tr>
<tr>
<td>draft-martini-pwe3-pw-switching-03.txt</td>
<td>Pseudo Wire Switching</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowire Emulation Edge-to-Edge MIBs for Ethernet, Frame Relay, and ATM Services</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for MPLS Pseudowire Status Signaling

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Pseudowire Status Signaling</td>
<td>Cisco IOS XE Release 2.3</td>
<td>The MPLS Pseudowire Status Signaling feature enables you to configure the router so it can send pseudowire status to a peer router, even when the attachment circuit is down. The following commands were introduced or modified: <code>debug mpls l2transport vc</code>, <code>show mpls l2transport vc, status</code> (pseudowire class).</td>
</tr>
</tbody>
</table>
Feature Information for MPLS Pseudowire Status Signaling
L2VPN VPLS Inter-AS Option B

The L2VPN VPLS Inter-AS Option B feature expands the existing features of VPLS autodiscovery to operate across multiple Border Gateway Protocol (BGP) autonomous systems. Using BGP-based autodiscovery as the underlying framework, the L2VPN VPLS Inter-AS Option B feature creates a dynamic multisegmented pseudowire (PW) configuration between neighboring Autonomous System Boundary Routers (ASBRs.)

- Finding Feature Information, on page 353
- Prerequisites for L2VPN VPLS Inter-AS Option B, on page 353
- Restrictions for L2VPN VPLS Inter-AS Option B, on page 354
- Information About L2VPN VPLS Inter-AS Option B, on page 354
- How to Configure L2VPN VPLS Inter-AS Option B, on page 356
- Configuration Examples for L2VPN VPLS Inter-AS Option B, on page 369
- Additional References for L2VPN VPLS Inter-AS Option B, on page 383
- Feature Information for L2VPN VPLS Inter-AS Option B, on page 384
- Glossary, on page 385

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN VPLS Inter-AS Option B

The L2VPN VPLS Inter-AS Option B feature extends the functionality of the VPLS Autodiscovery: BGP Based feature. For example, as a result of L2VPN VPLS Inter-AS Option B feature, stateful switchover (SSO) and nonstop forwarding (NSF) are supported in a standard VPLS Autodiscovery configuration.

Before you configure the L2VPN VPLS Inter-AS Option B feature, enable the VPLS Autodiscovery: BGP Based feature and complete the steps described in the Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B, on page 356.
For more information about the VPLS Autodiscovery: BGP Based feature, see the “VPLS Autodiscovery: BGP” module.

Restrictions for L2VPN VPLS Inter-AS Option B

Introduced in Cisco IOS Release 15.1(1)S, the L2VPN VPLS Inter-AS Option B feature is supported only on a Cisco 7600 series router that is equipped with a line card capable of running Virtual Private LAN Switching (VPLS).

Information About L2VPN VPLS Inter-AS Option B

VPLS Functionality and L2VPN VPLS Inter-AS Option B

VPLS is a multipoint Layer 2 VPN (L2VPN) that connects two or more customer devices using Ethernet over Multiprotocol Label Switching (EoMPLS) bridging techniques.

VPLS Inter-AS support exists in a number of variations or options (for example, Option A, B, C, and D). The L2VPN VPLS Inter-AS Option B feature supports Option B only and is in compliance with RFC 4364, BGP/MPLS IP Virtual Private Networks (VPNs).

For more information about VPLS, see the “VPLS Overview” section in the Configuring Multiprotocol Label Switching on the Optical Services Modules document.

L2VPN VPLS Inter-AS Option B Description

The L2VPN VPLS Inter-AS Option B feature extends VPLS across multiple autonomous system boundaries by dynamically creating multisegment pseudowires across the ASBRs.

When a router with external BGP (eBGP) advertises routes to its BGP neighbors, the router uses the source IP address as the next hop of the advertised routes.

When a router with internal BGP (iBGP) advertises routes to its BGP neighbors, the router does not change the next hop designation of the route advertised. For the L2VPN VPLS Inter-AS Option B feature, enter the neighbor next-hop-self command at the ASBRs. This forces the pseudowires to be targeted to the ASBR and not targeted to the provider edge (PE) routers. The net result is that a pseudowire for the first autonomous system is stitched to a pseudowire for the second autonomous system by means of a third pseudowire between the ASBRs. This creates a multisegmented pseudowire. For more information about multisegmented pseudowires, see the “L2VPN Multisegment Pseudowires” module.

Note

The L2VPN VPLS Inter-AS Option B feature supports Route Processors (RPs), SSO, and NSF.

L2VPN VPLS Inter-AS Option B Sample Topology

The figure below illustrates a simplified L2VPN VPLS Inter-AS Option B topology. In this topology, AS1 and AS2 are the autonomous systems. ASBR1 and ASBR2 are ASBRs. A customer edge (CE) router is attached to both AS1 and AS2.
Each autonomous system consists of an ASBR and a PE router. PE1 belongs to a virtual forwarding instance (VFI) in AS1. PE2 belongs to a VFI in AS2. PE1 and PE2 are terminating PEs (TPEs).

Multisegmented pseudowires are created to establish dual connections between the TPE in the local ASBR to the TPE in the neighboring ASBR. The first segment establishes a path between the TPE in AS1 to ASBR1. The next segment establishes a path between the ASBR1 and ASBR2, and the final segment establishes a path between ASBR2 to the TPE in AS2.

Figure 22: Sample L2VPN VPLS Inter-AS Option B Topology

Active and Passive PEs in an L2VPN VPLS Inter-AS Option B Configuration

A TPE terminates a multisegment pseudowire. By default, the TPEs on both ends of a multisegmented pseudowire are in active mode. The L2VPN VPLS Inter-AS Option B feature requires that one of the TPEs be in passive mode. The system determines which PE is the passive TPE based on a comparison of the Target Attachment Individual Identifier (TAII) received from BGP and the Source Attachment Individual Identifier (SAII) of the local router. The TPE with the numerically higher identifier assumes the active role.

When you are configuring the PEs for the L2VPN VPLS Inter-AS Option B feature, use the `terminating-pe tie-breaker` command to negotiate the mode of the TPE. Then use the `mpls ldp discovery targeted-hello accept` command to ensure that a passive TPE can accept Label Distribution Protocol (LDP) sessions from the LDP peers.

For more information about configuring the PEs, see the Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router, on page 365.

Benefits of L2VPN VPLS Inter-AS Option B

Private IP Addresses

While a large number of pseudowires are required, IPv4 reachability is maintained within the ASBR and, therefore, IP addresses are private.

One Targeted LDP Session

With the L2VPN VPLS Inter-AS Option B feature, only one targeted Label Distribution Protocol (LDP) session is created between the autonomous systems. Since only one targeted LDP session between autonomous systems is created, service providers can apply tighter security policies for control plane traffic going across the autonomous system.
How to Configure L2VPN VPLS Inter-AS Option B

Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B

Before you configure the L2VPN VPLS Inter-AS Option B feature, you must enable the VPLS Autodiscovery: BGP Based feature. Make sure you have enabled the VPLS Autodiscovery: BGP Based feature before proceeding with this task.

For the L2VPN VPLS Inter-AS Option B feature to function properly, you must configure the VPLS ID value and the route-target value for each PE router in the virtual forwarding instance (VFI). To modify these values, complete the following steps at each PE router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2 vfi vfi-name autodiscovery`
4. `vpn id vpn-id`
5. `vpls-id {autonomous-system-number : nn | ip-address : nn}`
6. `route-target [import | export | both] {autonomous-system-number : nn | ip-address : nn}`
7. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 l2 vfi vfi-name autodiscovery</td>
<td>Enables the VPLS Autodiscovery: BGP Based feature on the PE router and enters L2 VFI configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# l2 vfi vpls1 autodiscovery</td>
<td></td>
</tr>
<tr>
<td>Step 4 vpn id vpn-id</td>
<td>Configures a VPN ID for the VPLS domain.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter a VPN ID value.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-vfi)# vpn id 10</td>
<td>Specifies the VPLS ID.</td>
</tr>
<tr>
<td>Step 5 vpls-id {autonomous-system-number : nn</td>
<td>ip-address : nn}</td>
</tr>
<tr>
<td>Example: Router(config-vfi)# vpls-id 5:300</td>
<td>There are two formats for configuring the VPLS ID argument. It can be configured in the autonomous-system-number : network number (ASN : nn) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address : nn).</td>
</tr>
<tr>
<td>Step 6 route-target [import</td>
<td>export</td>
</tr>
<tr>
<td>Example: Router(config-vfi)# route-target 600:2222</td>
<td>The VPLS Autodiscovery feature automatically generates a route target using the lower 6 bytes of the RD and VPN ID. Use this command to change the automatically generated route target for the PE in the VFI.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits L2 VFI configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-vfi)# exit</td>
<td>Commands take effect after the router exits L2 VFI configuration mode.</td>
</tr>
</tbody>
</table>

What to Do Next

Repeat the steps in the Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B, on page 356 at each PE in the autonomous system. Then proceed to the Enabling L2VPN VPLS Inter-AS Option B on the ASBR, on page 360.
Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B using the commands associated with the L2VPN Protocol-Based CLIs feature

Before you configure the L2VPN VPLS Inter-AS Option B feature, you must enable the VPLS Autodiscovery: BGP Based feature. Make sure you have enabled the VPLS Autodiscovery: BGP Based feature before proceeding with this task.

For the L2VPN VPLS Inter-AS Option B feature to function properly, you must configure the VPLS ID value and the route-target value for each PE router in the virtual forwarding instance (VFI). To modify these values, complete the following steps at each PE router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2vpn vfi context vfi-name`
4. `vpn id vpn-id`
5. `autodiscovery bgp signaling ldp`
6. `vpls-id {autonomous-system-number : nn | ip-address : nn}`
7. `route-target [import | export | both] {autonomous-system-number : nn | ip-address : nn}`
8. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 l2vpn vfi context vfi-name</td>
<td>Establishes an L2VPN VFI context and enters L2 VFI configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# l2vpn vfi context vpls1</td>
<td></td>
</tr>
<tr>
<td>Step 4 vpn id vpn-id</td>
<td>Configures a VPN ID for the VPLS domain.</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# vpn id 10</td>
<td>• Enter a VPN ID value.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 5** autodiscovery bgp signaling ldp**
 Example:
 Device(config-vfi)# autodiscovery bgp signaling ldp | Enables the VPLS Autodiscovery: BGP Based feature on the PE router. |
| **Step 6** vpls-id `{autonomous-system-number : nn | ip-address : nn}`**
 Example:
 Device(config-vfi)# vpls-id 5:300 | Specifies the VPLS ID.
 • The VPLS Autodiscovery: BGP Based feature automatically generates a VPLS ID using the BGP autonomous system number and the configured VFI VPN ID. Use this command to change the automatically generated VPLS ID for the PE in the VFI.
 • There are two formats for configuring the VPLS ID argument. It can be configured in the `autonomous-system-number : network number (ASN : nn)` format, as shown in the example, or it can be configured in the `IP-address:network number` format (`IP-address : nn`). |
| **Step 7** route-target `[import | export | both]`
 `{autonomous-system-number : nn | ip-address : nn}`**
 Example:
 Device(config-vfi)# route-target 600:2222 | Specifies the route target (RT).
 • The VPLS Autodiscovery feature automatically generates a route target using the lower 6 bytes of the RD and VPN ID. Use this command to change the automatically generated route target for the PE in the VFI.
 • There are two formats for configuring the route target argument. It can be configured in the `autonomous-system-number : network number (ASN : nn)` format, as shown in the example, or it can be configured in the `IP-address:network number` format (`IP-address : nn`). |
| **Step 8** exit**
 Example:
 Device(config-vfi)# exit | Exits L2 VFI configuration mode.
 • Commands take effect after the router exits L2 VFI configuration mode. |

What to Do Next

Repeat the steps in the Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B, on page 356 at each PE in the autonomous system. Then proceed to the Enabling L2VPN VPLS Inter-AS Option B on the ASBR, on page 360.
Enabling L2VPN VPLS Inter-AS Option B on the ASBR

To enable the L2VPN VPLS Inter-AS Option B feature on the ASBR, complete the following steps on each ASBR in the autonomous system.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **router bgp autonomous-system-number**
4. **neighbor \{ip-address | peer-group-name\} next-hop-self**
5. **address-family l2vpn vpls**
6. **no bgp default route-target filter**
7. **exit**
8. **exit**
9. **mpls ldp discovery targeted-hello accept**
10. Complete Steps 11 through 13, only if you are changing the range of VC IDs reserved for switching pseudowires. Otherwise, advance to Step 14.
11. **l2 pseudowire routing**
12. **switching-point vcid minimum-vcid-value maximum-vcid-value**
13. **exit**
14. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable
Example:
Router> enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Step 2** | **configure terminal**
Example:
Router# configure terminal | Enters global configuration mode. |
| **Step 3** | **router bgp autonomous-system-number**
Example:
Router(config)# router bgp 1 | Configures the BGP routing process and enters router configuration mode.
- Enter the number of the autonomous system. |
| **Step 4** | **neighbor \{ip-address | peer-group-name\} next-hop-self**
Example:
Router(config-router)# neighbor 10.10.0.1 next-hop-self | Configures the ASBR as the next hop for a BGP-speaking neighbor or peer group.
- Enter the IP address or the peer group name.
Note Use this command to identify each PE in the autonomous system. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 address-family l2vpn vpls</td>
<td>Configures a routing session using L2VPN endpoint provisioning address information and enters address family configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-router)# address-family l2vpn vpls</td>
<td></td>
</tr>
<tr>
<td>Step 6 no bgp default route-target filter</td>
<td>Enables pseudowire switching at the ASBR.</td>
</tr>
<tr>
<td>Example: Router(config-router-af)# no bgp default route-target filter</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits address family configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-router-af) exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Exits router configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-router) exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 mpls ldp discovery targeted-hello accept</td>
<td>Configures the routers from which LDP sessions will be accepted.</td>
</tr>
<tr>
<td>Example: Router(config)# mpls ldp discovery targeted-hello accept</td>
<td></td>
</tr>
<tr>
<td>• With the targeted-hello accept keywords, LDP sessions from any router will be accepted.</td>
<td></td>
</tr>
<tr>
<td>• For the other keyword choices available for this command, see the Cisco IOS Multiprotocol Label Switching Command Reference.</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Complete Steps 11 through 13, only if you are changing the range of VC IDs reserved for switching pseudowires. Otherwise, advance to Step 14.</td>
</tr>
<tr>
<td>Step 11 l2 pseudowire routing</td>
<td>(Optional) Enters Layer 2 pseudowire routing configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# l2 pseudowire routing</td>
<td></td>
</tr>
<tr>
<td>Step 12 switching-point vcid minimum-vcid-value maximum-vcid-value</td>
<td>(Optional) Configures a switching point and specifies a virtual circuit (VC) ID range.</td>
</tr>
<tr>
<td>Example: Router(config-l2_pw_rtg)# switching-point vcid 200 3500</td>
<td>Note With the L2VPN VPLS Inter-AS Option B feature, VC IDs in the VC ID range of 1001 to 2147483647 are reserved for switching pseudowires. This command allows you to change this range if, for example, an existing xconnect VC is using one of the reserved VC IDs.</td>
</tr>
</tbody>
</table>
What to Do Next

Repeat the steps in the Enabling L2VPN VPLS Inter-AS Option B on the ASBR, on page 360 at each ASBR in the autonomous system. Then proceed to the Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router, on page 365.

Enabling L2VPN VPLS Inter-AS Option B on the ASBR using the commands associated with the L2VPN Protocol-Based CLIs feature

To enable the layer 2 virtual private network virtual private LAN services (L2VPN VPLS) Inter-AS Option B feature on the autonomous system boundary router (ASBR), perform this task on each ASBR in the autonomous system.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router bgp autonomous-system-number`
4. `neighbor {ip-address | peer-group-name} next-hop-self`
5. `address-family l2vpn vpls`
6. `no bgp default route-target filter`
7. `exit`
8. `exit`
9. `mpls ldp discovery targeted-hello accept`
10. Complete Steps 11 through 13, only if you are changing the range of VC IDs reserved for switching pseudowires. Otherwise, advance to Step 14.
11. `l2vpn`
12. `pseudowire routing`
13. `switching-point vcid minimum-vcid-value maximum-vcid-value`
14. `exit`
15. `end`

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 13</td>
<td>Exits Layer 2 pseudowire routing configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-l2_pw_rtg)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router bgp autonomous-system-number</td>
<td>Configures the BGP routing process and enters router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter the number of the autonomous system.</td>
</tr>
<tr>
<td>Device(config)# router bgp 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 neighbor {ip-address</td>
<td>peer-group-name} next-hop-self</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter the IP address or the peer group name.</td>
</tr>
<tr>
<td>Device(config-router)# neighbor 10.10.0.1 next-hop-self</td>
<td></td>
</tr>
<tr>
<td>Step 5 address-family l2vpn vpls</td>
<td>Configures a routing session using L2VPN endpoint provisioning address information and enters address family configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router)# address-family l2vpn vpls</td>
<td></td>
</tr>
<tr>
<td>Step 6 no bgp default route-target filter</td>
<td>Enables pseudowire switching at the ASBR.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router-af)# no bgp default route-target filter</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits address family configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router-af) exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Exits router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router) exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 mpls ldp discovery targeted-hello accept</td>
<td>Configures the routers from which LDP sessions will be accepted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Device(config)# mpls ldp discovery targeted-hello</td>
<td>• With the targeted-hello accept keywords, LDP sessions from any router will be accepted.</td>
</tr>
<tr>
<td></td>
<td>• For the other keyword choices available for this command, see the Cisco IOS Multiprotocol Label Switching Command Reference.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Complete Steps 11 through 13, only if you are changing the range of VC IDs reserved for switching pseudowires. Otherwise, advance to Step 14.</td>
</tr>
<tr>
<td>Step 11</td>
<td>l2vpn</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enters Layer 2 VPN configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# l2vpn</td>
</tr>
<tr>
<td>Step 12</td>
<td>pseudowire routing</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enters Layer 2 pseudowire routing configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(l2vpn-config)# pseudowire routing</td>
</tr>
<tr>
<td>Step 13</td>
<td>switching-point vcid minimum-vcid-value maximum-vcid-value</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configures a switching point and specifies a virtual circuit (VC) ID range.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-12_pw_rtg)# switching-point vcid 200 3500</td>
</tr>
<tr>
<td>Step 14</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Exits Layer 2 pseudowire routing configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-12_pw_rtg)# exit</td>
</tr>
<tr>
<td>Step 15</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# end</td>
</tr>
</tbody>
</table>

What to Do Next

Repeat the steps in the *Enabling L2VPN VPLS Inter-AS Option B on the ASBR*, on page 360 at each ASBR in the autonomous system. Then proceed to the *Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router*, on page 365.
Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router

To enable the L2VPN VPLS Inter-AS Option B on the PE router, complete the following steps on each PE in the autonomous system.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2 pseudowire routing`
4. `terminating-pe tie-breaker`
5. `exit`
6. `mpls ldp discovery targeted-hello accept`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>l2 pseudowire routing</code></td>
<td>Enters Layer 2 pseudowire routing configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# l2 pseudowire routing</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>terminating-pe tie-breaker</code></td>
<td>Negotiates the behavior mode (either active or passive) for a terminating provider edge (TPE) route.</td>
</tr>
<tr>
<td>Example: Router(config-l2_pw_rtg)# terminating-pe tie-breaker</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-l2_pw_rtg)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>mpls ldp discovery targeted-hello accept</code></td>
<td>Configures the routers from which LDP sessions will be accepted.</td>
</tr>
<tr>
<td>Example: Router(config)# mpls ldp discovery targeted-hello accept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• With the targeted-hello accept keywords, LDP sessions from any router will be accepted.</td>
</tr>
</tbody>
</table>
What to Do Next

Repeat the steps in the Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router, on page 365 at each PE in the autonomous system. Then proceed to the Verifying the L2VPN VPLS Inter-AS Option B Configuration, on page 367.

Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router using the commands associated with the L2VPN Protocol-Based CLIs feature

To enable the L2VPN VPLS Inter-AS Option B on the PE router, perform this task on each PE in the autonomous system.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2vpn`
4. `pseudowire routing`
5. `terminating-pe tie-breaker`
6. `end`
7. `mpls ldp discovery targeted-hello accept`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 3 l2vpn</td>
<td>(Optional) Enters Layer 2 VPN configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# l2vpn</td>
<td></td>
</tr>
</tbody>
</table>

Step 4 pseudowire routing

Example:

```
Device(l2vpn-config)# pseudowire routing
```

(Optional) Enters Layer 2 pseudowire routing configuration mode.

Step 5 terminating-pe tie-breaker

Example:

```
Device(config-l2_pw_rtg)# terminating-pe tie-breaker
```

Negotiates the behavior mode (either active or passive) for a terminating provider edge (TPE) route.

Step 6 end

Example:

```
Device(config-l2_pw_rtg)# exit
```

Returns to global configuration mode.

Step 7 mpls ldp discovery targeted-hello accept

Example:

```
Device(config)# mpls ldp discovery targeted-hello accept
```

Configures the routers from which LDP sessions will be accepted.

- With the **targeted-hello accept** keywords, LDP sessions from any router will be accepted.
- For the other keyword choices available for this command, see the Cisco IOS Multiprotocol Label Switching Command Reference.

Step 8 end

Example:

```
Device(config)# end
```

Exits global configuration mode.

What to Do Next

Repeat the steps in the Enabling L2VPN VPLS Inter-AS Option B on the Provider Edge (PE) Router, on page 365 at each PE in the autonomous system. Then proceed to the Verifying the L2VPN VPLS Inter-AS Option B Configuration, on page 367.

Verifying the L2VPN VPLS Inter-AS Option B Configuration

To verify the L2VPN VPLS Inter-AS Option B configuration, use one or more of the following commands at any router.
Verifying the L2VPN VPLS Inter-AS Option B Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

To verify the L2VPN VPLS Inter-AS Option B configuration, use one or more of the following commands on any router.

SUMMARY STEPS

1. enable
2. show xconnect rib detail
3. show mpls l2transport vc [detail] [pwid pw-identifier] [vpls-id vpls-identifier] [stitch endpoint endpoint]
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 show xconnect rib detail</td>
<td>(Optional) Displays the information about the pseudowire Routing Information Base (RIB).</td>
</tr>
<tr>
<td>Example: Router# show xconnect rib detail</td>
<td></td>
</tr>
<tr>
<td>Step 3 show mpls l2transport vc [detail] [pwid pw-identifier] [vpls-id vpls-identifier] [stitch endpoint endpoint]</td>
<td>(Optional) Displays the information about Multiprotocol Label Switching (MPLS) Any Transport over ATM (AToM) VCs and static pseudowires that have been enabled to route Layer 2 packets on a router.</td>
</tr>
<tr>
<td>Example: Router# show mpls l2transport vc</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# end</td>
<td></td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show l2vpn rib detail</td>
<td>(Optional) Displays the information about the pseudowire Routing Information Base (RIB).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# show l2vpn rib detail</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show l2vpn atom vc [pwid pw-identifier] [vpls-id vpls-identifier] [stitch endpoint endpoint][detail]</td>
<td>(Optional) Displays the information about Multiprotocol Label Switching (MPLS) Any Transport over ATM (AToM) VCs and static pseudowires that have been enabled to route Layer 2 packets on a router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Use the optional keywords and arguments, as applicable.</td>
</tr>
<tr>
<td></td>
<td>Device# show l2vpn atom vc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Exits privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for L2VPN VPLS Inter-AS Option B

Example Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B

In the following example, the VPLS Autodiscovery: BGP Based feature is modified for use with the L2VPN VPLS Inter-AS Option B feature:

```
Router> enable

Router# configure terminal

Router(config)# l2 vfi vpls1 autodiscovery

Router(config-vfi)# vpn id 10

Router(config-vfi)# vpls-id 5:300

Router(config-vfi)# route-target 600:2222
```
Router(config-vfi)# exit

Example: Modifying the VPLS Autodiscovery Settings for Use with L2VPN VPLS Inter-AS Option B using the commands associated with the L2VPN Protocol-Based CLIs feature

In the following example, the VPLS Autodiscovery: BGP Based feature is modified for use with the L2VPN VPLS Inter-AS Option B feature:

Device# enable
Device# configure terminal
Device(config)# l2vpn vfi context vpls1
Device(config-vfi)# vpn id id
Device(config-vfi)# autodiscovery bgp signaling ldp
Device(config-vfi)# vpls-id 5:300
Device(config-vfi)# route-target 600:2222
Device(config-vfi)# exit

Example Enabling L2VPN VPLS Inter-AS Option B on the ASBR

In the following example, the L2VPN VPLS Inter-AS Option B feature has been configured on one ASBR:

Router> enable
Router# configure terminal
Router(config)# router bgp 1
Router(config-router)# neighbor 10.10.0.1 next-hop-self
Router(config-router)# address-family l2vpn vpls
Router(config-router-af)# no bgp default route-target filter
Router(config-router-af)# exit
Router(config-router)# exit
Router(config)# mpls ldp discovery targeted-hello accept
Router(config)# end
Example Enabling L2VPN VPLS Inter-AS Option B on the PE Router

In the following example, the L2VPN VPLS Inter-AS Option B feature is configured on a PE router. The PE is also a TPE.

Router> enable

Router# configure terminal

Router(config)# l2 pseudowire routing

Router(config-l2_pw_rtg)# terminating-pe tie-breaker

Router(config-l2_pw_rtg)# exit

Router(config)# mpls ldp discovery targeted-hello accept

Router(config)# end

Example Enabling L2VPN VPLS Inter-AS Option B on the PE Device using the commands associated with the L2VPN Protocol-Based CLIs feature

In the following example, the L2VPN VPLS Inter-AS Option B feature is configured on a provider edge (PE) router. The PE is also a terminating provider edge (TPE).

Device> enable
Device# configure terminal
Device(config)# l2vpn
Device(l2vpn-config)# pseudowire routing
Device(config-l2_pw_rtg)# terminating-pe tie-breaker
Device(config-l2_pw_rtg)# exit
Device(config)# mpls ldp discovery targeted-hello accept
Device(config)# end

Example Verifying the L2VPN VPLS Inter-AS Option B Configuration

The output of the show xconnect rib detail command can be used to verify the L2VPN VPLS Inter-AS Option B configuration.

The following is sample output from the show xconnect rib detail command when used in an ASBR configuration. On an ASBR, the show xconnect rib detail command displays the Layer 2 VPN BGP Network Layer Reachability Information (NLRI) received from the BGP peers. The display also shows the signaling messages received from the targeted LDP sessions for a given TAI.

Router# show xconnect rib detail
Local Router ID: 10.1.1.3
VPLS-ID: 1:1, Target ID: 10.1.1.1
Next-Hop: 10.1.1.1
Hello-Source: 10.1.1.3
Route-Target: 2:2
Incoming RD: 10.0.0.0:1
Forwarder:
Origin: BGP
Provisioned: Yes
SAII: 10.0.0.1, LDP Peer Id: 10.255.255.255, VC Id: 1001 ***
SAII: 10.1.0.1, LDP Peer Id: 10.255.255.255, VC Id: 1002 ***

After the passive TPE router receives the BGP information (and before the passive TPE router receives the LDP label), the peer information will be displayed in the output of the `show xconnect rib` command. The peer information will not be displayed in the `show mpls l2transport vc` command because the VFI AToM xconnect has not yet been provisioned.

Therefore, for passive TPEs, the entry “Passive: Yes” is added to the output of the `show xconnect rib detail` command. In addition, the entry “Provisioned: Yes” is displayed after the neighbor xconnect is successfully created (without any retry attempts).

In the sample output, the two lines beginning with “SAII” show that this ASBR is stitching two provider PE routers (10.0.0.1 and 10.1.0.1) to the TAI 10.1.1.1.

Example Verifying the L2VPN VPLS Inter-AS Option B Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

The output of the `show l2vpn rib detail` command can be used to verify the L2VPN VPLS Inter-AS Option B configuration.

The following is sample output from the `show l2vpn rib detail` command when used in an autonomous system boundary router (ASBR) configuration. On an ASBR, the `show l2vpn rib detail` command displays the Layer 2 VPN BGP Network Layer Reachability Information (NLRI) received from the BGP peers. The display also shows the signaling messages received from the targeted label distribution protocol (LDP) sessions for a given TAI.

```
Device# show l2vpn rib detail
Local Router ID: 10.1.1.3
VPLS-ID: 1:1, Target ID: 10.1.1.1
    Next-Hop: 10.1.1.1
    Hello-Source: 10.1.1.3
    Route-Target: 2:2
    Incoming RD: 10.0.0.0:1
    Forwarder:
    Origin: BGP
    Provisioned: Yes
    SAII: 10.0.0.1, LDP Peer Id: 10.255.255.255, VC Id: 1001 ***
    SAII: 10.1.0.1, LDP Peer Id: 10.255.255.255, VC Id: 1002 ***
```

After the passive terminating provider edge (TPE) router receives the BGP information (and before the passive TPE router receives the LDP label), the peer information will be displayed in the output of the `show l2vpn rib` command. The peer information will not be displayed in the `show l2vpn atom vc` command because the VFI AToM xconnect has not yet been provisioned.

Therefore, for passive TPEs, the entry “Passive: Yes” is added to the output of the `show l2vpn rib detail` command. In addition, the entry “Provisioned: Yes” is displayed after the neighbor xconnect is successfully created (without any retry attempts).

In the sample output, the two lines beginning with “SAII” show that this ASBR is stitching two provider PE routers (10.0.0.1 and 10.1.0.1) to the TAI 10.1.1.1.
Example Sample L2VPN VPLS Inter-AS Option B Configuration

The following is a sample L2VPN VPLS Inter-AS Option B configuration based on the topology shown in the figure below.

Figure 23: L2VPN VPLS Inter-AS Option B Topology Used for Configuration Example

The topology shown in the figure above consists of two PE routers connected across an autonomous system boundary using two ASBRs. Routes are shared within each autonomous system using BGP route reflectors (RRs). (The RRs are included only for the purpose of showing a complete configuration. RRs are not a requirement for the L2VPN Inter-AS Option B configuration.)

The specific configurations for each of the elements in this topology are shown below. The text in bold indicates the additions needed to the standard VPLS Autodiscovery: BGP Based configuration.

PE_A1 Router

```plaintext
mpls ldp discovery targeted-hello accept
mpls label protocol ldp
! l2 router-id 10.1.1.1
! l2 pseudowire routing
    terminating-pe tie-breaker
! l2 vfi vfiA autodiscovery
    vpn id 111
    vpls-id 111:111
    rd 111:111
    route-target 111:111
    no auto-route-target
!
interface Loopback0
    ip address 10.1.1.1 255.255.255.255
!
interface GigabitEthernet2/0/9
    description AS-10.10-Backbone-LAN
    ip address 10.100.100.1 255.255.255.0
    mpls ip
!
router ospf 10
    network 10.1.1.1 0.0.0.0 area 0
    network 10.100.100.1 0.0.0.0 area 0
!
router bgp 10.10
```

Example Sample L2VPN VPLS Inter-AS Option B Configuration
mpls ldp discovery targeted-hello accept
mpls label protocol ldp

interface Loopback0
 ip address 10.4.4.4 255.255.255.255

interface GigabitEthernet1/10
 description AS-10.10-backbone-Lan
 ip address 10.100.100.4 255.255.255.0
 mpls ip

interface GigabitEthernet2/0/1
 description B2B-AS-20-ASBR-B1
 ip address 10.12.1.4 255.255.255.0
 mpls ip

router ospf 10
 passive-interface GigabitEthernet1/12
 passive-interface GigabitEthernet2/0/1
 passive-interface GigabitEthernet2/0/2
 network 10.4.4.4 0.0.0.0 area 0
 network 10.100.100.4 0.0.0.0 area 0
 network 10.12.0.0 0.0.255.255 area 0

router bgp 10.10
 bgp router-id 10.4.4.4
 bgp asnotation dot
 bgp log-neighbor-changes
 no bgp default route-target filter
 no bgp default ipv4-unicast
 timers bgp 10 30
 neighbor AS20 peer-group
 neighbor AS20 remote-as 20
 neighbor 10.3.3.3 remote-as 10.10
 neighbor 10.3.3.3 update-source Loopback0
 neighbor 10.12.1.6 peer-group AS20

 address-family ipv4
 no auto-summary
 exit-address-family

 address-family l2vpn vpls
 neighbor 10.3.3.3 activate
 neighbor 10.3.3.3 send-community extended
 exit-address-family

 mpls ldp router-id Loopback0

ASBR_A Router

mpls ldp discovery targeted-hello accept
mpls label protocol ldp

interface Loopback0
 ip address 10.4.4.4 255.255.255.255

interface GigabitEthernet1/10
 description AS-10.10-backbone-Lan
 ip address 10.100.100.4 255.255.255.0
 mpls ip

interface GigabitEthernet2/0/1
 description B2B-AS-20-ASBR-B1
 ip address 10.12.1.4 255.255.255.0
 mpls ip

router ospf 10
 passive-interface GigabitEthernet1/12
 passive-interface GigabitEthernet2/0/1
 passive-interface GigabitEthernet2/0/2
 network 10.4.4.4 0.0.0.0 area 0
 network 10.100.100.4 0.0.0.0 area 0
 network 10.12.0.0 0.0.255.255 area 0

router bgp 10.10
 bgp router-id 10.4.4.4
 bgp asnotation dot
 bgp log-neighbor-changes
 no bgp default route-target filter
 no bgp default ipv4-unicast
 timers bgp 10 30
 neighbor AS20 peer-group
 neighbor AS20 remote-as 20
 neighbor 10.3.3.3 remote-as 10.10
 neighbor 10.3.3.3 update-source Loopback0
 neighbor 10.12.1.6 peer-group AS20

 address-family ipv4
 no auto-summary
 exit-address-family

 address-family l2vpn vpls
 neighbor 10.3.3.3 activate
 neighbor 10.3.3.3 send-community extended
 exit-address-family
address-family l2vpn vpls
neighor AS20 send-community extended

neighbor AS20 next-hop-self
neighor 10.3.3.3 activate
neighor 10.3.3.3 send-community extended

neighbor 10.3.3.3 next-hop-self
neighor 12.12.1.6 activate
exit-address-family

ip route 10.6.6.6 255.255.255.255 10.12.1.6
ip route 10.9.9.9 255.255.255.255 10.12.3.9

mpls ldp router-id Loopback0

RR_A Router

interface Loopback0
ip address 10.3.3.3 255.255.255.255

interface Ethernet2/0
ip address 10.100.100.3 255.255.255.0
duplex half

router ospf 10
network 10.3.3.3 0.0.0.0 area 0
network 10.100.100.3 0.0.0.0 area 0

router bgp 10.10
bgp asnotation dot
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor rr-client peer-group
neighbor rr-client remote-as 10.10
neighbor rr-client update-source Loopback0
neighbor 10.1.1.1 peer-group rr-client
neighbor 10.4.4.4 peer-group rr-client

address-family ipv4
no auto-summary
exit-address-family

address-family l2vpn vpls
neighor rr-client send-community extended
neighor rr-client route-reflector-client
neighor 10.1.1.1 activate
neighor 10.4.4.4 activate
exit-address-family

PE_B1 Router

mpls ldp discovery targeted-hello accept
mpls label protocol ldp

l2 router-id 10.5.5.5
l2 pseudowire routing
terminating-pe tie-breaker
l2 vfi vfIA autodiscovery
vpn id 111
vpls-id 111:111
rd 111:111
route-target 111:111
no auto-route-target
!
interface Loopback0
 ip address 10.5.5.5 255.255.255.255
!
interface GigabitEthernet2/0/7
description AS20-Backbone-LAN
ip address 10.100.100.5 255.255.255.0
mpls ip
!
router ospf 20
 network 10.5.5.5 0.0.0.0 area 0
 network 10.100.100.5 0.0.0.0 area 0
!
router bgp 20
 bgp router-id 10.5.5.5
 bgp asnotation dot
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 10.8.8.8 remote-as 20
 neighbor 10.8.8.8 update-source Loopback0
 address-family ipv4
 no auto-summary
 exit-address-family
 address-family l2vpn vpls
 neighbor 10.8.8.8 activate
 neighbor 10.8.8.8 send-community extended
 exit-address-family
 mpls ldp router-id Loopback0
!

ASBR_B1 Router

mpls ldp discovery targeted-hello accept
mpls label protocol ldp
!
l2 router-id 10.6.6.6
l2 pseudowire routing
 terminating-pe tie-breaker
!
interface Loopback0
 ip address 10.6.6.6 255.255.255.255
!
interface Ethernet1/3
description B2B-AS-10.10-ASBR-A
ip address 10.12.1.6 255.255.255.0
duplex half
mpls ip
!
interface Ethernet2/1
description AS-20-backbone-Lan
ip address 10.100.100.6 255.255.255.0
duplex half
mpls ip
!
router ospf 20
 passive-interface Ethernet1/3
 network 10.12.1.6 0.0.0.0 area 0
network 10.6.6.6 0.0.0.0 area 0
network 10.100.100.6 0.0.0.0 area 0
!
router bgp 20
 bgp router-id 10.6.6.6
 bgp asnotation dot
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 timers bgp 10 30
 neighbor 10.12.1.4 remote-as 10.10
 neighbor 10.12.1.4 ebgp-multihop 255
 neighbor 10.8.8.8 remote-as 20
 neighbor 10.8.8.8 update-source Loopback0
!
 address-family ipv4
 no auto-summary
 exit-address-family
!
 address-family l2vpn vpls
 no bgp default route-target filter
 neighbor 10.12.1.4 activate
 neighbor 10.12.1.4 send-community extended
 neighbor 10.12.1.4 next-hop-self
 neighbor 10.8.8.8 activate
 neighbor 10.8.8.8 send-community extended
 neighbor 10.8.8.8 next-hop-self
 exit-address-family
!
RR_B Router

interface Loopback0
 ip address 10.8.8.8 255.255.255.255
!
interface Ethernet2/1
 ip address 10.100.100.8 255.255.255.0
 duplex half
!
router ospf 20
 network 10.8.8.8 0.0.0.0 area 0
 network 10.100.100.8 0.0.0.0 area 0
!
router bgp 20
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor rrc peer-group
 neighbor rrc remote-as 20
 neighbor rrc update-source Loopback0
 neighbor 10.5.5.5 peer-group rrc
 neighbor 10.6.6.6 peer-group rrc
 neighbor 10.9.9.9 peer-group rrc
 neighbor 10.9.9.9 shutdown
!
 address-family ipv4
 no auto-summary
 exit-address-family
!
 address-family l2vpn vpls
 neighbor rrc send-community extended
 neighbor rrc route-reflector-client
 neighbor 10.5.5.5 activate
 neighbor 10.6.6.6 activate
 neighbor 10.9.9.9 activate
Example Sample L2VPN VPLS Inter-AS Option B Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

The example below is a sample L2VPN VPLS Inter-AS Option B configuration based on the topology shown in the following figure.

Figures 24: L2VPN VPLS Inter-AS Option B Topology Used for Configuration Example

The topology shown in the figure above consists of two provider edge (PE) routers connected across an autonomous system boundary using two ASBRs. Routes are shared within each autonomous system using BGP route reflectors (RRs). (The RRs are included only for the purpose of showing a complete configuration. RRs are not a requirement for the L2VPN Inter-AS Option B configuration.)

The specific configurations for each of the elements in this topology are shown below. The commands highlighted in bold indicate the additions needed to the standard VPLS Autodiscovery: BGP Based configuration.

PE_A1 Router

```bash
mpls ldp discovery targeted-hello accept
mpls label protocol ldp

l2vpn
router-id 10.1.1.1
pseudowire routing
terminating-pe tie-breaker

l2vpn vfi context vfiA
vpn id 111
autodiscovery bgp signaling ldp
vpls-id 111:111
rd 111:111
route-target 111:111
no auto-route-target

interface Loopback0
ip address 10.1.1.1 255.255.255.255

interface GigabitEthernet2/0/9
description AS-10.10-Backbone-LAN
```

exit-address-family
ip address 10.100.100.1 255.255.255.0
mpls ip
!
router ospf 10
 network 10.1.1.1 0.0.0.0 area 0
 network 10.100.100.1 0.0.0.0 area 0
!
router bgp 10.10
 bgp asnotation dot
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 10.3.3.3 remote-as 10.10
 neighbor 10.3.3.3 description RR-AS-10.10
 neighbor 10.3.3.3 update-source Loopback0
 !
 address-family ipv4
 no auto-summary
 exit-address-family
 !
 address-family l2vpn vpls
 neighbor 10.3.3.3 activate
 neighbor 10.3.3.3 send-community extended
 exit-address-family
!
mpls ldp router-id Loopback0
!

ASBR_A Router

mpls ldp discovery targeted-hello accept
mpls label protocol ldp
!
!
interface Loopback0
 ip address 10.4.4.4 255.255.255.255
!
interface GigabitEthernet1/10
 description AS-10.10-backbone-Lan
 ip address 10.100.100.4 255.255.255.0
mpls ip
!
interface GigabitEthernet2/0/1
 description B2B-AS-20-ASBR-B1
 ip address 10.12.1.4 255.255.255.0
mpls ip
!
router ospf 10
 passive-interface GigabitEthernet1/12
 passive-interface GigabitEthernet2/0/1
 passive-interface GigabitEthernet2/0/2
 network 10.4.4.4 0.0.0.0 area 0
 network 10.100.100.4 0.0.0.0 area 0
 network 10.12.0.0 0.0.255.255 area 0
!
router bgp 10.10
 bgp router-id 10.4.4.4
 bgp asnotation dot
 bgp log-neighbor-changes
 no bgp default route-target filter
 no bgp default ipv4-unicast
 timers bgp 10 30
 neighbor AS20 peer-group
 neighbor AS20 remote-as 20
neighbor 10.3.3.3 remote-as 10.10
neighbor 10.3.3.3 update-source Loopback0
neighbor 10.12.1.6 peer-group AS20
!
address-family ipv4
 no auto-summary
exit-address-family
!
address-family l2vpn vpls
 neighbor AS20 send-community extended
 neighbor AS20 next-hop-self
 neighbor 10.3.3.3 activate
 neighbor 10.3.3.3 send-community extended
 neighbor 10.3.3.3 next-hop-self
 exit-address-family
!
ip route 10.6.6.6 255.255.255.255 10.12.1.6
ip route 10.9.9.9 255.255.255.255 10.12.3.9
!
mpls ldp router-id Loopback0
!
RR_A Router

interface Loopback0
 ip address 10.3.3.3 255.255.255.255
!
interface Ethernet2/0
 ip address 10.100.100.3 255.255.255.0
duplex half
!
routing ospf 10
 network 10.3.3.3 0.0.0.0 area 0
 network 10.100.100.3 0.0.0.0 area 0
!
routing bgp 10
 bgp asnotation dot
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor rr-client peer-group
 neighbor rr-client remote-as 10.10
 neighbor rr-client update-source Loopback0
 neighbor 10.1.1.1 peer-group rr-client
 neighbor 10.4.4.4 peer-group rr-client
 !
 address-family ipv4
 no auto-summary
.exit-address-family
!
address-family l2vpn vpls
 neighbor rr-client send-community extended
 neighbor rr-client route-reflector-client
 neighbor 10.1.1.1 activate
 neighbor 10.4.4.4 activate
.exit-address-family
!
PE_B1 Router

mpls ldp discovery targeted-hello accept
mpls label protocol ldp
!
l2vpn
 router-id 10.5.5.5
 pseudowire routing
 terminating-pe tie-breaker
l2vpn vfi context vfiA
 vpn id 111
 autodiscovery bgp signaling ldp
 vpls-id 111:111
 rd 111:111
 route-target 111:111
 no auto-route-target
!
interface Loopback0
 ip address 10.5.5.5 255.255.255.255
!
interface GigabitEthernet2/0/7
 description AS20-Backbone-LAN
 ip address 10.100.100.5 255.255.255.0
 mpls ip
!
router ospf 20
 network 10.5.5.5 0.0.0.0 area 0
 network 10.100.100.5 0.0.0.0 area 0
!
router bgp 20
 bgp router-id 10.5.5.5
 bgp asnotation dot
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 10.8.8.8 remote-as 20
 neighbor 10.8.8.8 update-source Loopback0
 !
 address-family ipv4
 no auto-summary
 exit-address-family
 !
 address-family l2vpn vpls
 neighbor 10.8.8.8 activate
 neighbor 10.8.8.8 send-community extended
 exit-address-family
 !
 mpls ldp router-id Loopback0
!

ASBR_B1 Router

mpls ldp discovery targeted-hello accept
mpls label protocol ldp
!
l2vpn
 router-id 10.6.6.6
 pseudowire routing
 terminating-pe tie-breaker
!
interface Loopback0
 ip address 10.6.6.6 255.255.255.255
!
interface Ethernet1/3
 description B2B-AS-10.10-ASBR-A
 ip address 10.12.1.6 255.255.255.0
 duplex half
mpls ip
!
interface Ethernet2/1
description AS-20-backbone-Lan
ip address 10.100.100.6 255.255.255.0
duplex half
mpls ip
!
router ospf 20
passive-interface Ethernet1/3
network 10.12.1.6 0.0.0.0 area 0
network 10.6.6.6 0.0.0.0 area 0
network 10.100.100.6 0.0.0.0 area 0
!
router bgp 20
bgp router-id 10.6.6.6
bgp asnotation dot
bgp log-neighbor-changes
no bgp default ipv4-unicast
timers bgp 10 30
neighbor 10.12.1.4 remote-as 10.10
neighbor 10.12.1.4 ebgp-multihop 255
neighbor 10.8.8.8 remote-as 20
neighbor 10.8.8.8 update-source Loopback0
t
address-family ipv4
no auto-summary
exit-address-family
!
address-family l2vpn vpls
no bgp default route-target filter
neighbor 10.12.1.4 activate
neighbor 10.12.1.4 send-community extended
neighbor 10.12.1.4 next-hop-self
neighbor 10.8.8.8 activate
neighbor 10.8.8.8 send-community extended
neighbor 10.8.8.8 next-hop-self
exit-address-family
!
RR_B Router

interface Loopback0
ip address 10.8.8.8 255.255.255.255
!
interface Ethernet2/1
ip address 10.100.100.8 255.255.255.0
duplex half
!
router ospf 20
network 10.8.8.8 0.0.0.0 area 0
network 10.100.100.8 0.0.0.0 area 0
!
router bgp 20
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor rrc peer-group
neighbor rrc remote-as 20
neighbor rrc update-source Loopback0
neighbor 10.5.5.5 peer-group rrc
neighbor 10.6.6.6 peer-group rrc
neighbor 10.9.9.9 peer-group rrc
neighbor 10.9.9.9 shutdown
Additional References for L2VPN VPLS Inter-AS Option B

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>IP Routing (BGP) commands</td>
<td>Cisco IOS IP Routing: BGP Command Reference</td>
</tr>
<tr>
<td>Concepts and tasks related to configuring the VPLS Autodiscovery: BGP Based feature.</td>
<td>VPLS Autodiscovery BGP Based</td>
</tr>
<tr>
<td>BGP support for the L2VPN address family</td>
<td>BGP Support for the L2VPN Address Family</td>
</tr>
<tr>
<td>VPLS</td>
<td>“VPLS Overview” section in the Configuring Multiprotocol Label Switching on the Optical Services Modules document</td>
</tr>
<tr>
<td>L2VPN multisegment pseudowires, MPLS OAM support for L2VPN multisegment pseudowires, MPLS OAM support for L2VPN inter-AS option B</td>
<td>L2VPN Multisegment Pseudowires</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported, and support for existing standards has not been modified.</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported, and support for existing standards has not been modified.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4360</td>
<td>BGP Extended Communities Attribute</td>
</tr>
<tr>
<td>RFC 4364</td>
<td>BGP/MPLS IP Virtual Private Networks (VPNs)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for L2VPN VPLS Inter-AS Option B

Table 21: Feature Information for L2VPN VPLS Inter-AS Option B

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN VPLS Inter-AS Option B</td>
<td>15.1(1)S Cisco IOS XE Release 3.8S</td>
<td>The L2VPN VPLS Inter-AS Option B feature expands the existing features of VPLS autodiscovery to operate across multiple BGP autonomous systems. Using BGP-based autodiscovery as the underlying framework, the L2VPN VPLS Inter-AS Option B features creates a dynamic multisegmented pseudowire configuration between neighboring ASBRs. The following commands were introduced or modified: bgp default route-target filter, debug xconnect, l2 pseudowire routing, show ip bgp neighbors, show mpls forwarding-table, show mpls l2transport vc, show xconnect, switching-point vcid, and terminating-pe tie-breaker.</td>
</tr>
</tbody>
</table>
Glossary

AGI — Attachment Group Identifier. An identifier common to a group of pseudowires that may be connected.

AII — Attachment individual identifier.

ASBR — Autonomous System Boundary Router.

PE — provider edge router.

NLRI — Network Layer Reachability Information.

SAII — Source Attachment Individual Identifier.

SPE — switching PE.

TAII — Target Attachment Individual Identifier.

TPE — terminating PE.

VFI — virtual forwarding instance. This identifies a group of pseudowires that are associated with a VSI.

VSI — virtual switching instance. This identifies the bridge domain within a single PE. In a single VPLS network, each participating PE has a VSI.
IEEE 802.1Q Tunneling (QinQ) for AToM

This feature allows you to configure IEEE 802.1Q Tunneling (QinQ) for AToM. It also permits the rewriting of QinQ tags for Multiple Protocol Label Switching (MPLS) Layer 2 VPNs (L2VPNs).

- Finding Feature Information, on page 387
- Prerequisites for IEEE 802.1Q Tunneling (QinQ) for AToM, on page 387
- Restrictions for IEEE 802.1Q Tunneling (QinQ) for AToM, on page 388
- Information About IEEE 802.1Q Tunneling (QinQ) for AToM, on page 388
- How to Configure IEEE 802.1Q Tunneling (QinQ) for AToM, on page 390
- Configuration Examples for IEEE 801.2 Tunneling (QinQ) for ATM, on page 398
- Additional References, on page 399
- Feature Information for IEEE 802.1Q Tunneling (QinQ) for AToM, on page 400

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for IEEE 802.1Q Tunneling (QinQ) for AToM

The QinQ (short for 802.1Q-in-802.1Q) tunneling and tag rewrite feature is supported on the following line cards:

- 8-port Fast Ethernet line card (ESR-HH-8FE-TX)
- 2-port half-height Gigabit Ethernet line card (ESR-HH-1GE)
- 1-port full-height Gigabit Ethernet line card (ESR-1GE)
Restrictions for IEEE 802.1Q Tunneling (QinQ) for AToM

- Up to a maximum of 447 outer-VLAN IDs and up to 4095 inner VLAN IDs can be supported by this feature.

- Only Unambiguous VLAN tagged Ethernet QinQ interfaces are supported in this release. That is, the Ethernet VLAN QinQ rewrite of both VLAN Tags capability is supported only on Ethernet subinterfaces with a QinQ encapsulation and explicit pair of VLAN IDs defined.

Note

Ambiguous inner VLAN IDs are not supported in this release.

Information About IEEE 802.1Q Tunneling (QinQ) for AToM

Ethernet VLAN QinQ AToM

In Metro Ethernet deployment, in which CE routers and PE routers are connected through an Ethernet switched access network, packets that arrive at PE routers can contain up to two IEEE 802.1q VLAN tags (one inner VLAN tag which identifies the customer; and another outer VLAN tag which denotes the customer's service provider). This technique of allowing multiple VLAN tagging on the same Ethernet packet and creating a stack of VLAN IDs is known as QinQ (short for 802.1Q-in-802.1Q). The figure below shows how different edge devices can do L2 switching on the different levels of the VLAN stack.

Figure 25: Ethernet VLAN QinQ

When the outer VLAN tag is the service-delimiting VLAN tag, QinQ packets are processed similar to the ones with one VLAN tag (case previously named Ethernet VLAN Q-in-Q modified, which is already supported in the 12.2(31) SB release). However, when a customer must use a combination of the outer and inner VLAN tags to delimit service for customers, the edge device should be able to choose a unique pseudowire based on a combination of the inner and outer VLAN IDs on the packet shown in the figure below. The customer may want to be able to rewrite both the inner and the outer VLAN IDs on the traffic egress side.
QinQ Tunneling Based on Inner and Outer VLAN Tags

When handling incoming QinQ Ethernet traffic, the edge router allows a customer to choose a unique pseudowire endpoint to switch the traffic based on the combination of inner and outer VLAN IDs. For example, the figure below shows how a unique pseudowire is selected depending upon the combination of inner (customer edge) and outer (service provider) VLAN IDs. Thus, traffic for different customers can be kept separate.

Rewritten Inner and Outer VLAN Tags on QinQ Frames

When managing incoming AToM Ethernet QinQ traffic, the edge router does the following tasks:

1. Strips off the MPLS labels.
2. Allows the customer to rewrite both the inner and outer VLAN IDs before sending the packets to the egress QinQ interface. Note this capability is provided only for AToM like-to-like Ethernet QinQ traffic.

The QinQ AToM feature is a like-to-like interworking case over AToM. This feature requires changes to the microcode to allow it to overwrite two layers of VLAN tags on Ethernet QinQ traffic, transported across AToM pseudowires.

- On the ingress side--The packets preserve their L2 header with the two VLAN tags, and it is sent across the pseudowire with VC type of 4.
- On the egress side--The MPLS label is stripped, and up to two levels of VLAN tags are rewritten per the configuration.

Only Unambiguous VLAN tagged Ethernet QinQ interfaces are supported in this release. The Ethernet VLAN Q-in-Q rewrite of both VLAN Tags capability is supported only on Ethernet subinterfaces with a QinQ encapsulation and explicit pair of VLAN IDs defined.
How to Configure IEEE 802.1Q Tunneling (QinQ) for AToM

This section explains how to configure IEEE 802.1Q Tunneling (QinQ) for AToM and includes the following procedures. While all of the procedures are listed as optional, you must choose one of the first two listed.

Configuring Unambiguous IEEE 802.1Q Tunneling (QinQ) for AToM

SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot / subslot / port . [subinterface]
4. encapsulation dot1q vlan-id second-dot1q {any | vlan-id[vlan-id[-vlan-id]]}
5. xconnect peer-router-id vcid encapsulation mpls

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface gigabitethernet slot / subslot / port . [subinterface]</td>
<td>Specifies the Gigabit Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface GigabitEthernet1/0/0.100</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id[vlan-id[-vlan-id]]}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation dot1q 100 second-dot1q 200</td>
<td></td>
</tr>
<tr>
<td>Step 5 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# xconnect 10.0.0.16 410 encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Unambiguous IEEE 802.1Q Tunneling (QinQ) for AToM using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot / subslot / port . [subinterface]
4. encapsulation dot1q vlan-id second-dot1q {any | vlan-id[vlan-id[-vlan-id]]}
5. interface pseudowire number
6. encapsulation mpls
7. neighbor peer-address vcid-value
8. exit
9. l2vpn xconnect context context-name
10. member pseudowire interface-number
11. member gigabitethernet interface-number
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface gigabitethernet slot / subslot / port . [subinterface]</td>
<td>Specifies the Gigabit Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface GigabitEthernet1/0/0.100</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id[vlan-id[-vlan-id]]}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation dot1q 100 second-dot1q 200</td>
<td></td>
</tr>
<tr>
<td>Step 5 interface pseudowire number</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Ambiguous IEEE 802.1Q Tunneling (QinQ) for AToM

SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot / subslot / port [subinterface]
4. encapsulation dot1q vlan-id second-dot1q {any | vlan-id[vlan-id[-vlan-id]]}

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# interface pseudowire 100</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
</tbody>
</table>

Step 6

encapsulation mpls

Example:

```
Router(config-if)# encapsulation mpls
```

Step 7

neighbor peer-address vc-id-value

Example:

```
Router(config-if)# neighbor 10.0.0.1 123
```

Step 8

exit

Example:

```
Router(config-if)# exit
```

Step 9

l2vpn xconnect context context-name

Example:

```
Router(config)# l2vpn xconnect context con1
```

Step 10

member pseudowire interface-number

Example:

```
Router(config-xconnect)# member pseudowire 100
```

Step 11

member gigabitethernet interface-number

Example:

```
Router(config-xconnect)# member GigabitEthernet1/0/0.100
```

Step 12

end

Example:

```
Router(config-xconnect)# end
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
| Example:
Router> enable |
• Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example:
Router# configure terminal | |
| **Step 3** interface gigabitethernet slot / subslot / port . [subinterface] | Specifies the Gigabit Ethernet subinterface and enters interface configuration mode. |
| Example:
Router(config)# interface GigabitEthernet1/0/0.200 | |
| **Step 4** encapsulation dot1q vlan-id second-dot1q {any | vlan-id[vlan-id][-vlan-id]} | Defines the matching criteria to map Q-in-Q ingress frames on an interface to the appropriate service instance. |
| Example:
Router(config-if)# encapsulation dot1q 200 second-dot1q 1000-2000,3000,3500-4000 | |
| **Step 5** xconnect peer-router-id vcid encapsulation mpls | Creates the VC to transport the Layer 2 packets. |
| Example:
Router(config-if)# xconnect 10.0.0.16 420 encapsulation mpls | |
| **Step 6** exit | Exits interface configuration mode. |
| Example:
Router(config-if)# exit | |
| **Step 7** interface gigabitethernet slot / subslot / port . [subinterface] | Specifies the next Gigabit Ethernet interface and enters interface configuration mode. |
| Example:
Router(config)# interface GigabitEthernet1/0/0.201 | |
Purpose

Command or Action

Step 8 encapsulation dot1q vlan-id second-dot1q {any | vlan-id[.,vlan-id[-vlan-id]]}

Example:
Router(config-if)# encapsulation dot1q 201 second-dot1q any

Step 9 xconnect peer-router-id vcid encapsulation mpls

Example:
Router(config-if)# xconnect 10.0.0.16 430 encapsulation mpls

Configuring Ambiguous IEEE 802.1Q Tunneling (QinQ) for AToM using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot / subslot / port .[subinterface]
4. encapsulation dot1q vlan-id second-dot1q {any | vlan-id[.,vlan-id[-vlan-id]]}
5. interface pseudowire number
6. encapsulation mpls
7. neighbor peer-address vcid-value
8. exit
9. interface gigabitethernet slot / subslot / port .[subinterface]
10. encapsulation dot1q vlan-id second-dot1q {any | vlan-id[.,vlan-id[-vlan-id]]}
11. interface pseudowire number
12. encapsulation mpls
13. neighbor peer-address vcid-value
14. exit
15. l2vpn xconnect context context-name
16. member pseudowire interface-number
17. member gigabitethernet interface-number
18. end

DETAILED STEPS

Command or Action

Step 1 enable

Example:

Purpose

Enables privileged EXEC mode.

• Enter your password if prompted.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 configure terminal Example: Router# configure terminal</td>
<td>Specifies the Gigabit Ethernet subinterface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 interface gigabitethernet slot / subslot / port . [subinterface] Example: Router(config)# interface GigabitEthernet1/0/0.200</td>
<td>Specifies the matching criteria to map Q-in-Q ingress frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Step 4 encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id[],vlan-id[-vlan-id][]} Example: Router(config-if)# encapsulation dot1q 200 second-dot1q 1000-2000,3000,3500-4000</td>
</tr>
<tr>
<td>Step 5 interface pseudowire number Example: Router(config-if)# interface pseudowire 100</td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td>Step 6 encapsulation mpls Example: Router(config-if)# encapsulation mpls</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Step 7 neighbor peer-address vcid-value Example: Router(config-if)# neighbor 10.0.0.1 123</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Step 8 exit Example: Router(config-if)# exit</td>
<td>Specifies the next Gigabit Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 9 interface gigabitethernet slot / subslot / port . [subinterface] Example: Router(config)# interface GigabitEthernet1/0/0.201</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>10</td>
<td>encapsulation dot1q vlan-id second-dot1q {any</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation dot1q 201 second-dot1q any</td>
</tr>
<tr>
<td>11</td>
<td>interface pseudowire number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# interface pseudowire 100</td>
</tr>
<tr>
<td>12</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation mpls</td>
</tr>
<tr>
<td>13</td>
<td>neighbor peer-address vcid-value</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
</tr>
<tr>
<td>14</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td>15</td>
<td>l2vpn xconnect context context-name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# l2vpn xconnect context con1</td>
</tr>
<tr>
<td>16</td>
<td>member pseudowire interface-number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-xconnect)# member pseudowire 100</td>
</tr>
<tr>
<td>17</td>
<td>member gigabitethernet interface-number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-xconnect)# member GigabitEthernet1/0/0.201</td>
</tr>
<tr>
<td>18</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-xconnect)# end</td>
</tr>
</tbody>
</table>
Verifying the IEEE 802.1Q Tunneling (QinQ) for ATM Configuration

SUMMARY STEPS
1. enable
2. show mpls l2transport vc

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>show mpls l2transport vc</td>
<td>Displays information about Any Transport over MPLS (AToM) virtual circuits (VCs) and static pseudowires that have been enabled to route Layer 2 packets on a router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router# show mpls l2transport vc</td>
</tr>
</tbody>
</table>

Verifying the IEEE 802.1Q Tunneling (QinQ) for ATM Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

SUMMARY STEPS
1. enable
2. show l2vpn atom vc

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>show l2vpn atom vc</td>
<td>Displays information about Any Transport over MPLS (AToM) virtual circuits (VCs) and static pseudowires that have been enabled to route Layer 2 packets on a router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device# show l2vpn atom vc</td>
</tr>
</tbody>
</table>
Configuration Examples for IEEE 801.2 Tunneling (QinQ) for ATM

Example Configuring Unambiguous IEEE 802.1Q Tunneling (QinQ) for ATM

Router> enable
Router# configure terminal
Router(config)# interface GigabitEthernet1/0/0.100
Router(config-if)# encapsulation dot1q 100 second-dot1q 200
Router(config-if)# xconnect 10.0.0.16 410 encapsulation mpls

Example Configuring Unambiguous IEEE 802.1Q Tunneling (QinQ) for ATM using the commands associated with the L2VPN Protocol-Based CLIs feature

Router> enable
Router# configure terminal
Router(config)# interface GigabitEthernet1/0/0.100
Router(config-if)# encapsulation dot1q 100 second-dot1q 200
Router(config-if)# interface pseudowire 100
Router(config-if)# encapsulation mpls
Router(config-if)# neighbor 10.0.0.1 123
Router(config-if)# exit
Router(config)# l2vpn xconnect context A
Router(config-xconnect)# member pseudowire 100
Router(config-xconnect)# member GigabitEthernet1/0/0.100

Example Configuring Ambiguous IEEE 802.1Q Tunneling (QinQ) for ATM

The following is an example of an ambiguous IEEE 802.1Q Tunneling (QinQ) for ATM configuration.

Router> enable
Router# configure terminal
Router(config)# interface GigabitEthernet1/0/0.200
Router(config-if)# encapsulation dot1q 200 second-dot1q 1000-2000,3000-4000
Router(config-if)# xconnect 10.0.0.16 420 encapsulation mpls
Router(config-if)# exit
Router(config)# interface GigabitEthernet1/0/0.201
Router(config-if) encapsulation dot1q 201 second-dot1q any
Router(config-if) xconnect 10.0.0.16 430 encapsulation mpls

Example Configuring Ambiguous IEEE 802.1Q Tunneling (QinQ) for ATM using the commands associated with the L2VPN Protocol-Based CLIs feature

The following is an example of an ambiguous IEEE 802.1Q Tunneling (QinQ) for ATM configuration.

Router> enable
Router# configure terminal
Router(config)# interface GigabitEthernet1/0/0.200
Router(config-if)# encapsulation dot1q 200 second-dot1q 1000-2000,3000-4000
Example Verifying the IEEE 802.1Q Tunneling (QinQ) for ATM Configuration

The following is sample output of the show mpls l2transport vc command, which is used to verify the VC set up in EoMPLS QinQ mode.

```
router# show mpls l2transport vc
Local intf  Local circuit  Dest address  VC ID  Status
----------  ----------------  --------------  ------  --------
Gi1/0/0.1   Eth VLAN:100/200  10.1.1.2   1      UP
```

Example Verifying the IEEE 802.1Q Tunneling (QinQ) for ATM Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

The following is sample output of the show l2vpn atom vc command, which is used to verify the virtual circuit (VC) set up in EoMPLS QinQ mode.

```
Device# show l2vpn atom vc
Local intf  Local circuit  Dest address  VC ID  Status
----------  ----------------  --------------  ------  --------
Gi1/0/0.1   Eth VLAN:100/200  10.1.1.2   1      UP
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Description of commands associated with MPLS and MPLS applications</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>AToM and MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Title</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs Link</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
<td>--</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>Title</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for IEEE 802.1Q Tunneling (QinQ) for AToM

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 22: Feature Information for IEEE 802.1Q Tunneling (QinQ) for AToM

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1Q Tunneling (QinQ) for AToM</td>
<td>Cisco IOS XE Release 2.4</td>
<td>This feature allows you to configure IEEE 802.1Q Tunneling (QinQ) for AToM. It also permits the rewriting of QinQ tags for Multiple Protocol Label Switching (MPLS) layer 2 VPNs (L2VPNs). In Cisco IOS XE Release 2.4, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers. The following commands were introduced or modified: <code>interface</code>, <code>encapsulation dot1q second-dot1q</code>, <code>xconnect</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 12

Configuring the Managed IPv6 Layer 2 Tunnel Protocol Network Server

This document describes how to enable the Managed IPv6 Layer 2 Tunnel Protocol Network Server feature.

- Finding Feature Information, on page 403
- Prerequisites for Configuring the Managed IPv6 LNS, on page 403
- Information About Configuring the Managed IPv6 LNS, on page 404
- How to Configure the Managed LNS, on page 405
- Configuration Examples for the Managed IPv6 Layer 2 Tunnel Protocol Network Server, on page 422
- Additional References, on page 428
- Feature Information for Configuring Managed IPv6 Layer 2 Tunnel Protocol Network Server, on page 429

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring the Managed IPv6 LNS

For the router to function as an LNS, you must enable Authentication, Authorization, and Accounting (AAA) on the Layer 2 Tunnel Protocol Network Server (LNS) and the Layer 2 Access Concentrator (LAC), by entering the `aaa new-model` global configuration command. For more information, see the “Authentication, Authorization, and Accounting” chapter in the Cisco IOS XE Security:Securing User Services Configuration Guide.
Information About Configuring the Managed IPv6 LNS

L2TP Network Server

The router can function as an LNS. The LNS is a peer to the LAC and sits on one side of an L2TP tunnel. The LNS routes packets to and from the LAC and a destination network. When the router functions as an LNS, you can configure the router to terminate the PPP sessions and route the client IP packets onto the ISP or corporate network toward their final destination (see the figure below). The router can use the Managed IPv6 LNS feature to terminate L2TP sessions from the LAC and place each session into the appropriate IPv6 VRF instance based on the VRF applied to the virtual template interface or alternatively, based on the VRF received for the user through AAA. The router then routes each session within the VRF to the destination network.

Figure 28: Terminating and Forwarding Sessions from the LAC

Tunnel Accounting

The tunnel accounting feature enhances AAA accounting by adding the ability to include tunnel-related statistics in the RADIUS information. Before you can collect tunnel usage information, you must configure the following attributes on the RADIUS server:

- **Acct-Tunnel-Connection**—Specifies the identifier assigned to the tunnel session. This attribute and the Tunnel-Client-Endpoint and Tunnel-Server-Endpoint attributes provide a way to uniquely identify a tunnel session for auditing purposes.

- **Acct-Tunnel-Packets-Lost**—Specifies the number of packets lost on a given link.

The table below describes the values for the Acct-Status-Type attribute that support tunnel accounting on the RADIUS server.
Table 23: Acct-Status-Type Values for RADIUS Tunnel Accounting

<table>
<thead>
<tr>
<th>Acct-Status-Type Values</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel-Link-Reject</td>
<td>14</td>
<td>Marks the rejection of the establishment of a new link in an existing tunnel.</td>
</tr>
<tr>
<td>Tunnel-Link-Start</td>
<td>12</td>
<td>Marks the creation of a tunnel link within an L2TP tunnel that carries multiple links.</td>
</tr>
<tr>
<td>Tunnel-Link-Stop</td>
<td>13</td>
<td>Marks the destruction of a tunnel link within an L2TP tunnel that carries multiple links.</td>
</tr>
<tr>
<td>Tunnel-Reject</td>
<td>11</td>
<td>Marks the rejection of the establishment of a tunnel with another device.</td>
</tr>
<tr>
<td>Tunnel-Start</td>
<td>9</td>
<td>Marks the establishment of a tunnel with another device.</td>
</tr>
<tr>
<td>Tunnel-Stop</td>
<td>10</td>
<td>Marks the destruction of a tunnel to or from another device.</td>
</tr>
</tbody>
</table>

For more information about the RADIUS tunnel accounting attributes or the Acct-Status-Type values that support RADIUS tunnel accounting, see RFC 2867, RADIUS Accounting Modifications for Tunnel Protocol Support.

For information about RADIUS accounting attributes supported on the Cisco ASR 1000 Series Aggregation Services Routers, see the “RADIUS Attributes” chapter in the Cisco IOS XE Security Configuration Guide: Securing User Services.

For more information on configuring RADIUS, see your RADIUS user documentation.

How to Configure the Managed LNS

How to Configure the Managed LNS

Configuring a VRF on the LNS

SUMMARY STEPS

1. enable
2. configure terminal
3. vrf definition vrf-name
4. rd route-distinguisher
5. address-family {ipv4|ipv6}
6. route-target {import|export|both} route-target-ext-community
7. exit-address-family
8. address-family {ipv4|ipv6}
9. route-target {import|export|both} route-target-ext-community
10. end
11. show ipv6 route vrf vrf-name
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>vrf definition vrf-name</td>
<td>Configures a VRF routing table and enters VRF configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# vrf definition vrf1</td>
<td>• The <code>vrf-name</code> argument is the name of the VRF.</td>
</tr>
<tr>
<td>4</td>
<td>rd route-distinguisher</td>
<td>Creates routing and forwarding tables for a VRF.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| | Router(config-vrf)# rd 100:1 | • The `route-distinguisher` argument adds an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter a route distinguisher in either of these formats:
 • 16-bit autonomous system number (ASN): your 32-bit number For example, 101:3.
 • 32-bit IP address: your 16-bit number For example, 192.168.122.15:1. |
| 5 | address-family {ipv4|ipv6} | Enters VRF address family configuration mode to specify an address family for a VRF. |
| | Example: | |
| | Router(config-vrf) address-family ipv6 | • The `ipv4` keyword specifies an IPv4 address family for a VRF.
 • The `ipv6` keyword specifies an IPv6 address family for a VRF. |
| 6 | route-target {import|export|both} route-target-ext-community | Creates a route-target extended community for a VRF. |
| | Example: | |
| | Router(config-vrf-af) route-target both 100:2 | • The `import` keyword imports routing information from the target VPN extended community.
 • The `export` keyword exports routing information to the target VPN extended community.
 • The `both` keyword imports both import and export routing information to the target VPN extended community.
 • The `route-target-ext-community` argument adds the route-target extended community attributes to the
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit-address-family</td>
<td>Exits VRF address family configuration mode and enters VRF configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf-af)# exit-address-family</td>
<td></td>
</tr>
<tr>
<td>address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf) address-family ipv6</td>
<td></td>
</tr>
<tr>
<td>route-target {import</td>
<td>export</td>
</tr>
<tr>
<td>route-target-ext-community</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf-af)# route-target both 100:3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits VRF address family configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf-af)# end</td>
<td></td>
</tr>
<tr>
<td>show ipv6 route vrf vrf-name</td>
<td>Displays the IPv6 routing table associated with a VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ipv6 route vrf vrf1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Virtual Template Interface

SUMMARY STEPS

1. enable
2. configure terminal
3. interface virtual-template number
4. vrf forwarding name
5. ppp authentication chap
6. end
7. show interfaces virtual-access number [configuration]
8. debug ppp chap
9. debug ppp negotiation
10. debug ppp negotiation chap

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates a virtual template interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>interface virtual-template number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Maps the virtual template interface to a VRF routing table.</td>
</tr>
<tr>
<td>vrf forwarding name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# vrf forwarding vpn-1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables CHAP authentication on the virtual template interface, which is applied to virtual access interfaces (VAI).</td>
</tr>
<tr>
<td>ppp authentication chap</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ppp authentication chap</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 7**
show interfaces virtual-access number [configuration]
Example:
Router# show interfaces virtual-access number [configuration] | Displays status, traffic data, and configuration information about the VAI you specify. |
| **Step 8**
debug ppp chap
Example:
Router# debug ppp chap | Displays authentication protocol messages for Challenge Authentication Protocol (CHAP) packet exchanges.
• This command is useful when a CHAP authentication failure occurs due to a configuration mismatch between devices. Verifying and correcting any username and password mismatch resolves the problem. |
| **Step 9**
debug ppp negotiation
Example:
Router# debug ppp negotiation | Displays information on traffic and exchanges in an internetwork implementing PPP. |
| **Step 10**
debug ppp negotiation chap
Example:
Router# debug ppp negotiation chap | Deciphers a CHAP negotiation problem due to a connectivity problem between a Cisco and non-Cisco device. |

Assigning a VRF via the RADIUS Server

SUMMARY STEPS

1. enable
2. configure terminal
3. aaa authorization configuration method-name group group-name
4. ipv6 dhcp pool pool-name
5. prefix-delegation aaa [method-list method-list]
6. dns-server ipv6-address
7. exit
8. interface virtual-template number
9. ipv6 nd prefix framed-ipv6-prefix
10. ipv6 dhcp server pool-name rapid-commit
11. end
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Enters global configuration mode.
`configure terminal`	
Example:	
Router# configure terminal	

Step 3	Downloads configuration information from the AAA server using RADIUS.
`aaa authorization configuration method-name group group-name`	
Example:	
Router(config)# aaa authorization configuration DHCPv6-PD group DHCPv6-PD-RADIUS	

Step 4	Configures a DHCP for IPv6 configuration information pool and enters DHCP for IPv6 pool configuration mode.
`ipv6 dhcp pool pool-name`	
Example:	
Router(config)# ipv6 dhcp pool DHCPv6-PD	

Step 5	Specifies that prefixes are to be acquired from AAA servers.
`prefix-delegation aaa [method-list/method-list]`	
Example:	
Router(config-dhcpv6)# prefix-delegation aaa method-list DHCPv6-PD	

Step 6	Specifies the Domain Name System (DNS) IPv6 servers available to a DHCP for IPv6 client.
`dns-server ipv6-address`	
Example:	
Router(config-dhcpv6)# dns-server 2001:0DB8:3000:3000::42	

Step 7	Exits DHCP for IPv6 pool configuration mode and enters global configuration mode.
`exit`	
Example:	
Router(config-dhcpv6)# exit	

Step 8	Creates a virtual template interface that can be configured and applied dynamically in creating VAIs, and enters interface configuration mode.
`interface virtual-template number`	
Example:	
Router(config)# interface virtual-template 1	

Step 9	Adds the prefix in a received RADIUS framed IPv6 prefix attribute to the interface's neighbor discovery prefix queue.
`ipv6 nd prefix framed-ipv6-prefix`	
Example:	
Configuring the Managed IPv6 Layer 2 Tunnel Protocol Network Server

Configuring the LNS to Initiate and Receive L2TP Traffic

SUMMARY STEPS

1. enable
2. configure terminal
3. vpdn enable
4. vpdn-group group-name
5. accept-dialin
6. protocol 12tp
7. virtual-template template-number
8. exit
9. terminate-from hostname hostname
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

```
Router> enable
```

Enters privileged EXEC mode.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2**

```
Router# configure terminal
```

Enters global configuration mode.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3**

```
Router(config-if)# vpdn enable
```

Enters interface configuration mode and returns to privileged EXEC mode.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# vpdn enable</td>
<td>on a remote authorization server (home gateway) if one is present.</td>
</tr>
<tr>
<td>Step 4 vpdn-group group-name</td>
<td>Defines a local group name for which you can assign other VPDN variables.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vpdn-group group1</td>
<td>• Enters VPDN group configuration mode.</td>
</tr>
<tr>
<td>Step 5 accept-dialin</td>
<td>Configures the LNS to accept tunneled PPP connections from the LAC and creates an accept-dialin VPDN subgroup.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn)# accept-dialin</td>
<td>• Enters accept dial-in VPDN subgroup configuration mode.</td>
</tr>
<tr>
<td>Step 6 protocol 12tp</td>
<td>Specifies the Layer 2 Tunnel Protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn-acc-in)# protocol 12tp</td>
<td></td>
</tr>
<tr>
<td>Step 7 virtual-template template-number</td>
<td>Specifies the virtual template to be used to clone VAIs.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn-acc-in)# virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Returns to VPDN group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn-acc-in)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 terminate-from hostname hostname</td>
<td>Specifies the hostname of the remote LAC that is required when accepting a VPDN tunnel.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn)# terminate-from hostname lac1-vpn1</td>
<td></td>
</tr>
<tr>
<td>Step 10 end</td>
<td>Exits VPDN configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn)# end</td>
<td></td>
</tr>
</tbody>
</table>

Limiting the Number of Sessions per Tunnel

SUMMARY STEPS

1. enable
2. configure terminal
3. `vpdn-group group-name`
4. `accept-dialin`
5. `protocol 12tp`
6. `virtual-template template-number`
7. `exit`
8. `terminate-from hostname host-name`
9. `session-limit limit-number`
10. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable
 Example: Router> enable | Enters privileged EXEC mode. |
| **Step 2** configure terminal
 Example: Router# configure terminal | Enters global configuration mode. |
| **Step 3** vpdn-group group-name
 Example: Router(config)# vpdn-group group1 | Defines a local group name for which you can assign other VPDN variables.
 • Enters VPDN group configuration mode. |
| **Step 4** accept-dialin
 Example: Router(config-vpdn)# accept-dialin | Configures the LNS to accept tunneled PPP connections from the LAC and creates an accept-dialin VPDN subgroup.
 • Enters accept dial-in VPDN subgroup configuration mode. |
| **Step 5** protocol 12tp
 Example: Router(config-vpdn-acc-in)# protocol 12tp | Specifies the Layer 2 Tunnel Protocol. |
| **Step 6** virtual-template template-number
 Example: Router(config-vpdn-acc-in)# virtual-template 1 | Specifies the virtual template to be used to clone VAIIs. |
| **Step 7** exit
 Example: Router(config-vpdn-acc-in)# exit | Returns to VPDN group configuration mode. |
Configuring RADIUS Attribute Accept or Reject Lists

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `aaa authentication ppp default group group-name`
4. `aaa authorization network group group-name`
5. `aaa group server radius group-name`
6. `server-private ip-address [acct-port port-number] [timeout seconds] [retransmit retries] [key string]`
7. `authorization [accept|reject] list-name`
8. `exit`
9. `radius-server attribute list listname`
10. `attribute value1 [value2 [value3...]]`
11. `end`
12. `show accounting`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
enable
Example:
Router> enable</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 2
configure terminal
Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td>Specifies one or more AAA authentication methods for use on serial interfaces running PPP.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authentication ppp default group group-name</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# aaa authentication ppp default group radius_authen1</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa authorization network group group-name</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# aaa authorization network group group radius_authen1</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>aaa group server radius group-name</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# aaa group server radius VPDN-Group</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>server-private ip-address [acct-port port-number] [timeout seconds] [retransmit retries] [key string]</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sg-radius)# server-private 10.1.1.2 acct-port 0 timeout 7 retransmit 3 key cisco1</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>authorization [accept</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-sg-radius)# authorization accept vpn1-autho-list</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Purpose and Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>exit</td>
<td>Exits server group RADIUS configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-sg-radius)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>radius-server attribute list listname</td>
<td>Defines the list name given to the set of attributes defined using the <code>attribute</code> command and enters RADIUS attribute list configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# radius-server attribute list vpn1-autho-list</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>attribute value1 [value2 [value3...]]</td>
<td>Adds attributes to the configured accept or reject list.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-radius-atrrl)# attribute 26,200</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>end</td>
<td>Exits RADIUS attribute list configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 11</td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-radius-atrrl)# end</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>show accounting</td>
<td>Displays accounting records for users currently logged in.</td>
</tr>
<tr>
<td>Step 12</td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# show accounting</td>
<td></td>
</tr>
</tbody>
</table>

Configuring AAA Accounting Using Named Method Lists

Note

System accounting does not use named method lists. For system accounting you can define only the default method list. For more information, see the “Configuring Accounting” chapter in the Cisco IOS XE Security Configuration Guide: Securing User Services.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `aaa accounting network *list-name* start-stop group radius`
4. `line [aux | console| vty] [line-number]`
5. `accounting {arap|commands|level|connection|exec|resource} [default | *list-name*]`
6. `end`
7. `debug aaa accounting`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Example:</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Enters global configuration mode.
configure terminal	Example:
Router# configure terminal	

Step 3	Creates an accounting method list and enables accounting.
aaa accounting network list-name start-stop group radius	Example:
Router(config)# aaa accounting network methodlist start-stop group radius	

Step 4	Enters line configuration mode for the line to which you want to apply the accounting method list.		
line [aux	console	vty] [line-number]	Example:
Router(config)# line console 0			

Step 5	Applies the accounting method list to a line or a set of lines.						
accounting {arap	commands	level	connection	exec	resource} [default	list-name]	Example:
Router(config-line)# accounting commands 15 list1							

Step 6	Exits line configuration mode and returns to privileged EXEC mode.
end	Example:
Router(config-line)# end	

Step 7	Displays information on accountable events as they occur.
debug aaa accounting	Example:
Router# debug aaa accounting	

Configuring RADIUS Tunnel Authentication Method Lists on the LNS

SUMMARY STEPS

1. enable
2. configure terminal
Configuring RADIUS Tunnel Authentication Method Lists on the LNS

3. `aaa authorization network list-name method1 [method2...]`
4. `vpdn tunnel authorization network lmethod-ist-name method1 [method2...]`
5. `vpdn tunnel authorization virtual-template viemplate-number`
6. `vpdn tunnel authorization password dummy-password`
7. `debug aaa authorization`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>aaa authorization network list-name method1 [method2...]</code></td>
<td>Sets parameters that restrict user access to a network.</td>
</tr>
<tr>
<td>Example: Router(config)# aaa authorization network mymethodlist group VPDN-Group</td>
<td></td>
</tr>
<tr>
<td>Note The method list is only for VPDN tunnel authorization and termination, not for domain and Digital Number Identification Service (DNIS) authorization. Therefore, the method list applies only on the tunnel terminator device - the LAC for dialout sessions and the LNS for dialin sessions.</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>vpdn tunnel authorization network lmethod-ist-name method1 [method2...]</code></td>
<td>Specifies the AAA method list to use for VPDN remote tunnel hostname-based authorization.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# vpdn tunnel authorization network mymethodlist</td>
<td>• If you do not specify a method list (including a default method list) by using the vpdn tunnel authorization network command, local authorization occurs by using the local VPDN group configuration.</td>
</tr>
</tbody>
</table>

Step 5

vpdn tunnel authorization virtual-template

vtemplate-number

Example:

Router(config)# vpdn tunnel authorization virtual-template 10

Specifies the default virtual template interface used to clone a VAI.

• If you do not specify a virtual template interface in the local VPDN group configuration or in a remote RADIUS configuration, then the default virtual template interface is used.

Step 6

vpdn tunnel authorization password

dummy-password

Example:

Router(config)# vpdn tunnel authorization password mypassword

Specifies the password to use for the RADIUS authorization request to retrieve the tunnel configuration based on the remote tunnel hostname.

Step 7

debug aaa authorization

Example:

Router# debug aaa authorization

Displays information on AAA authorization.

Configuring the LNS for RADIUS Tunnel Authentication

Perform the following tasks to configure LNS for RADIUS Tunnel Authentication:

> **Note**

Cisco ASR 1000 Series Aggregation Services Routers supports L2TP tunnel authorization. However, RADIUS does not provide attributes for such parameter values as L2TP tunnel timeouts, L2TP tunnel hello intervals, and L2TP tunnel receive window size. When the Cisco ASR 1000 Series Aggregation Services Router does not receive a RADIUS attribute for a parameter, the router uses the default value.

Configuring RADIUS Tunnel Authentication Method Lists on the LNS

To configure method lists on the LNS for RADIUS tunnel authentication, perform the following task.

SUMMARY STEPS

1. enable
2. configure terminal
3. aaa authorization network *list-name method1 [method2...]*
4. vpdn tunnel authorization network *method- list-name*
5. vpdn tunnel authorization virtual-template *vtemplate-number*
6. `vpdn tunnel authorization password dummy-password`
7. `end`
8. `debug aaa authorization`

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
| **Step 3** | `aaa authorization network list-name method1 [method2...]` | Sets parameters that restrict user access to a network
 - The `list-name` argument is a character string used to name the list of authentication methods tried when a user logs in.
 - `groupradius`—Uses the list of all RADIUS servers for authentication.
 - `group group-name`—Uses a subset of RADIUS servers for authentication as defined by the `aaagroupserverradius` command.
 - `if-authenticated`—Succeeds if user has been successfully authenticated.
 - `local`—Uses the local username database for authentication.
 - `none`—Uses no authentication.
 |
| | Example: `Router(config)# aaa authorization network mymethodlist group VPDN-Group` | |
| **Step 4** | `vpdn tunnel authorization network method-list-name` | Specifies the AAA method list to use for VPDN remote tunnel hostname-based authorization.
 - If you do not specify a method list (including a default method list) by using the `vpdntunnelauthorizationnetwork` command, local authorization occurs by using the local VPDN group configuration.
 |
| | Example: `Router(config)# vpdn tunnel authorization network mymethodlist` | |
Configuring AAA Authentication Methods

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Specifies the default virtual template interface used to clone a VAI.</td>
</tr>
<tr>
<td><code>vpdn tunnel authorization virtual-template vtemplate-number</code></td>
<td>- If you do not specify a virtual template interface in the local VPDN group configuration or in a remote RADIUS configuration, then the default virtual template interface is used.</td>
</tr>
<tr>
<td>Example:</td>
<td>The <code>vpdntunnelauthorizationvirtual-template</code> command is applicable only on the LNS.</td>
</tr>
<tr>
<td><code>Router(config)# vpdn tunnel authorization virtual-template 10</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Specifies the password to use for the RADIUS authorization request to retrieve the tunnel configuration based on the remote tunnel hostname.</td>
</tr>
<tr>
<td><code>vpdn tunnel authorization password dummy-password</code></td>
<td>- By default, the password is cisco, but you can configure a different password.</td>
</tr>
<tr>
<td>Example:</td>
<td>The <code>vpdntunnelauthorizationpassword</code> command is applicable on both the LAC and LNS.</td>
</tr>
<tr>
<td><code>Router(config)# vpdn tunnel authorization password mypassword</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Displays information on AAA authorization.</td>
</tr>
<tr>
<td><code>debug aaa authorization</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# debug aaa authorization</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring AAA Authentication Methods

SUMMARY STEPS

1. enable
2. configure terminal
3. aaa new-model
5. aaa authentication
6. Apply the authentication method lists to an interface, a line, or a set of lines as required. For more information about authentication method lists, see the “Configuring Authentication” chapter in the Cisco IOS XE Security Configuration Guide: Securing User Services.
7. end
DETAILED STEPS

Step 1 enable
Step 2 configure terminal
Step 3 aaa new-model

Enter this command in global configuration mode to enable AAA.

Step 4 Configure RADIUS security protocol parameters. For more information about RADIUS, see the “Configuring RADIUS” chapter in the Cisco IOS XE Security Configuration Guide: Securing User Services.

Step 5 aaa authentication

Enter this command to define the authentication method lists.

Step 6 Apply the authentication method lists to an interface, a line, or a set of lines as required. For more information about authentication method lists, see the “Configuring Authentication” chapter in the Cisco IOS XE Security Configuration Guide: Securing User Services.

Step 7 end

Configuration Examples for the Managed IPv6 Layer 2 Tunnel Protocol Network Server

Example Managed IPv6 LNS Configuration

The following example shows how to configure Managed IPv6 LNS features on the router. In this example, the router terminates the tunnel from the LAC and associates the VRFs with the interfaces and the virtual template interfaces. This configuration also shows how to configure RADIUS attribute screening and AAA accounting for the VRFs.

```plaintext
! vrf definition Mgmt-intf
  ! address-family ipv4
  exit-address-family
  ! address-family ipv6
  exit-address-family
  ! vrf definition user_vrf1
  rd 1:1
  route-target export 1:1
  route-target import 1:1
  ! address-family ipv6
  exit-address-family
  ! logging buffered 10000000
  enable password lab
```
aaa new-model

aaa group server radius radius_authen1
server-private 10.1.1.2 acct-port 0 timeout 7 retransmit 3 key cisco1
ip radius source-interface Loopback20000

aaa authentication login default none
aaa authentication ppp default group radius_authen1
aaa authorization network default group radius_authen1
aaa authorization configuration DHCPv6-PD group radius_authen1

aaa session-id common
aaa policy interface-config allow-subinterface
ppp hold-queue 80000
clock timezone EST -5 0
ip source-route
no ip gratuitous-arps

no ip domain lookup
ip host mcp-matrix 10.0.0.2
ip host mcp-sun-2 10.0.0.2

ipv6 unicast-routing
ipv6 dhcp binding track ppp
ipv6 dhcp pool ipv6_dhcp_pool1
prefix-delegation aaa method-list DHCPv6-PD

multilink bundle-name authenticated
vpdn enable

vpdn-group VPDN_LNS1
accept-dialin
protocol l2tp
virtual-template 1
terminate-from hostname test_LAC1
source-ip 10.0.0.2
local name test_LNS1
l2tp tunnel password 0 tunnel1
l2tp tunnel receive-window 100
l2tp tunnel timeout no-session 30
l2tp tunnel retransmit retries 7
l2tp tunnel retransmit timeout min 2

no virtual-template snmp

username asifp1@test1 password 0 hello!
!
redundancy
notification-timer 30000
mode none
!
!
ip tftp source-interface GigabitEthernet 0
!
!
interface Loopback1
 no ip address
!
interface Loopback20000
 ip address 209.165.202.131 255.255.255.224
!
interface GigabitEthernet1/1/0
 mac-address 8888.8888.8888
 no ip address
 load-interval 30
 negotiation auto
 hold-queue 4096 in
 hold-queue 4096 out
!
interface GigabitEthernet1/1/0.1
 encapsulation dot1Q 3
 ip address 209.165.202.132 255.255.255.224
!
interface GigabitEthernet1/1/1
 mac-address 4444.4444.4444
 no ip address
 load-interval 30
 no negotiation auto
 hold-queue 4096 in
 hold-queue 4096 out
!
interface GigabitEthernet1/1/1.1
 vrf forwarding user_vrf1
 encapsulation dot1Q 2
 ipv6 address 12::1/72
!
interface GigabitEthernet1/1/2
 no ip address
 negotiation auto
!
interface GigabitEthernet1/1/3
 no ip address
 negotiation auto
!
interface GigabitEthernet1/1/4
 no ip address
 negotiation auto
!
interface GigabitEthernet1/1/5
 no ip address
 negotiation auto
!
interface GigabitEthernet1/1/6
 no ip address
 negotiation auto
!
interface GigabitEthernet1/1/7
 description Connected to RADIUS
 ip address 209.165.201.1 255.255.255.224
 negotiation auto
!
interface GigabitEthernet1/3/0
 no ip address
 media-type sfp
 negotiation auto
!
interface GigabitEthernet1/3/1
 no ip address
 media-type sfp
 negotiation auto
!
interface GigabitEthernet 0
 vrf forwarding Mgmt-intf
 ip address 209.165.201.1 255.255.255.224
 negotiation auto
!
interface Virtual-Template 1
 no ip address
 no logging event link-status
 ipv6 dhcp server ipv6_dhcp_pool1 rapid-commit
 keepalive 30
 ppp mtu adaptive
 ppp authentication pap
!
 ip default-gateway 10.1.0.5
 ip forward-protocol nd
!
 no ip http server
 no ip http secure-server
 ip route vrf Mgmt-intf 209.165.201.1 255.255.255.254 172.16.1.1
 ip route vrf Mgmt-intf 209.165.201.29 255.255.255.224 172.16.0.1
!
 ip radius source-interface GigabitEthernet1/1/7
 logging efm config
 cdp run
 ipv6 route vrf user_vrf1 ::/0 12::2
!
 ipv6 neighbor 12::2 GigabitEthernet1/1/1.1 2222.2222.2222
!
 !
 control-plane
 !
 call admission limit 90
 !
 !
 alias exec call show caller summ
Example LNS Tunnel Accounting Configuration

The following example shows how to configure the LNS to send tunnel accounting records to the RADIUS server:

```
aaa new-model
!
!
aaa accounting network m1 start-stop group radius
aaa accounting network m2 stop-only group radius
aaa session-id common
enable secret 5 $1$f5f.$wE6Q5Vv6hmQiwL9pizPCgl
!
username ENT_LNS password 0 tunnelpass
username user1@example.com password 0 lab
username user2@example.com password 0 lab
spe 1/0 1/7
firmware location system:/ucode/mica_port_firmware
spe 2/0 2/9
firmware location system:/ucode/mica_port_firmware
!
resource-pool disable
!
clock timezone est 2
!
ip subnet-zero
no ip domain-lookup
ip host CALLGEN-SECURITY-V2 10.24.80.28 10.47.0.0
ip host dirt 172.16.1.129
!
vpdn enable
vpdn tunnel accounting network m1
vpdn session accounting network m1
!
vpdn-group 1
accept-dialin
protocol l2tp
virtual-template 1
terminate-from hostname ISP_LAC
local name ENT_LNS
!
isdn switch-type primary-5ess
!
fax interface-type modem
mta receive maximum-recipients 0
!```
interface Loopback 0
ip address 172.16.0.101 255.255.255.0
!
interface Loopback 1
ip address 192.168.0.101 255.255.255.0
!
interface Ethernet 0
ip address 10.1.26.71 255.255.255.0
no ip mroute-cache
no cdp enable
!
interface virtual-template 1
ip unnumbered Loopback 0
peer default ip address pool vpdn-pool1
ppp authentication chap
!
interface virtual-template 2
ip unnumbered Loopback1
peer default ip address pool vpdn-pool2
ppp authentication chap
!
interface fastethernet 0
no ip address
no ip mroute-cache
shutdown
duplex auto
speed auto
no cdp enable
!
ip local pool vpdn-pool1 172.16.5.1 172.16.128.100
ip local pool vpdn-pool2 10.0.0.0 10.0.0.100
ip default-gateway 10.1.26.254
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.26.254
ip route 192.168.1.2 255.255.255.255 10.1.26.254
no ip http server
ip pim bidir-enable
!
!
dialer-list 1 protocol ip permit
no cdp run
!
!
radius-server host 172.16.192.80 auth-port 1645 acct-port 1646 key rad123
radius-server retransmit 3
call rsvp-sync
derend

Example Verifying the User Profile on the RADIUS Server

The following is an example user profile on the RADIUS server. The Cisco ASR 1000 Series Aggregation Services Routers retrieves the information in the user profile from the RADIUS server.

Radius Profile "user1"
Auth-Type = Local, User-Password = "pwd"
User-Service-Type = Framed-User
Framed-Protocol = PPF
cisco-avpair = "lcp:interface-config-vrf forwarding VRF01"
cisco-avpair = "lcp:interface-config-ipv6 unnumbered loopback1"
Framed-IPv6-Prefix = "2001:DB8:4567:1234::/64"
Delegated-IPv6-Prefix = "2001:DB8:AAAA::/48"

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Cisco IOS XE MPLS commands</td>
<td>Cisco IOS MPLS Command Reference</td>
</tr>
<tr>
<td>Authentication, authorization and accounting</td>
<td>Authentication, Authorization, and Accounting (AAA)</td>
</tr>
<tr>
<td>Configuring RADIUS</td>
<td>Configuring RADIUS</td>
</tr>
<tr>
<td>Configuring accounting</td>
<td>Configuring Accounting</td>
</tr>
<tr>
<td>RADIUS attributes</td>
<td>“RADIUS Attributes Overview and RADIUS IETF Attributes” module in the Cisco IOS XE Security Configuration Guide: Securing User Services</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported, and support for existing standards has not been modified.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported, and support for existing MIBs has not been modified.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2867</td>
<td>RADIUS Accounting Modifications for Tunnel Protocol Support</td>
</tr>
</tbody>
</table>
Feature Information for Configuring Managed IPv6 Layer 2 Tunnel Protocol Network Server

Table 24: Feature Information for Managed IPv6 Layer 2 Tunnel Protocol Network Server

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managed IPv6 Layer 2 Tunnel Protocol Network Server</td>
<td>Cisco IOS XE</td>
<td>The Managed IPv6 LNS feature allows the service provider to offer a scalable end-to-end VPN of both IPv4 and IPv6 service to remote users. This feature integrates the Multiprotocol Label Switching (MPLS)-enabled backbone with broadband access capabilities. The following commands were introduced or modified: atm pppatm passive, radius-server attribute list, radius-server key, radius-server retransmit, radius-server vsa send.</td>
</tr>
<tr>
<td>Managed IPv6 Layer 2 Tunnel Protocol Network Server - VRF-Lite only</td>
<td>Release 3.3S</td>
<td>The Managed IPv6 LNS feature allows the service provider to offer a scalable end-to-end VPN of both IPv4 and IPv6 service to remote users. This feature integrates the VRF-Lite enabled backbone with broadband access capabilities.</td>
</tr>
<tr>
<td>Managed IPv6 Layer 2 Tunnel Protocol Network Server - MPLS VPN</td>
<td>Cisco IOS XE</td>
<td>The Managed IPv6 LNS feature allows the service provider to offer a scalable end-to-end VPN of both IPv4 and IPv6 service to remote users. This feature integrates the MPLS enabled backbone with broadband access capabilities.</td>
</tr>
</tbody>
</table>
L2VPN Pseudowire Redundancy

The L2VPN Pseudowire Redundancy feature lets you configure your network to detect a failure in the network and reroute the Layer 2 (L2) service to another endpoint that can continue to provide service. This feature provides the ability to recover from a failure either of the remote provider edge (PE) router or of the link between the PE and customer edge (CE) routers.

- Finding Feature Information, on page 431
- Prerequisites for L2VPN Pseudowire Redundancy, on page 431
- Restrictions for L2VPN Pseudowire Redundancy, on page 432
- Information About L2VPN Pseudowire Redundancy, on page 432
- How to Configure L2VPN Pseudowire Redundancy, on page 434
- Configuration Examples for L2VPN Pseudowire Redundancy, on page 444
- Configuration Examples for L2VPN Pseudowire Redundancy using the commands associated with the L2VPN Protocol-Based CLIs feature, on page 447
- Additional References, on page 451
- Feature Information for L2VPN Pseudowire Redundancy, on page 452

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN Pseudowire Redundancy

- This feature module requires that you understand how to configure basic L2 virtual private networks (VPNs).
  - Any Transport over MPLS
  - L2 VPN Interworking
  - Layer 2 Tunneling Protocol Version 3 (L2TPv3)
• The L2VPN Pseudowire Redundancy feature requires that the following mechanisms be in place to enable you to detect a failure in the network:
  • Label-switched paths (LSP) Ping/Traceroute and Any Transport over MPLS Virtual Circuit Connection Verification (AToM VCCV)
  • Local Management Interface (LMI)
  • Operation, Administration, and Maintenance (OAM)

Restrictions for L2VPN Pseudowire Redundancy

• The default Label Distribution Protocol (LDP) session hold-down timer will enable the software to detect failures in about 180 seconds. That time can be configured so that the software can detect failures more quickly. See the `mpls ldp holdtime` command for more information.

• L2VPN Pseudowire Redundancy does not support pseudowire interworking mode with L2TPv3. The connectivity between CE(s) may be impacted if you have interworking IP configured in the pseudowire class.

• The primary and backup pseudowires must run the same type of transport service. The primary and backup pseudowires must be configured with AToM or L2TPv3.

• The backup peer can only be configured for nonstatic L2TPv3 sessions. The backup L2TPv3 session cannot be static L2TPv3 session. The encapsulation type of primary and backup pseudowire must be the same.

• If you use L2VPN Pseudowire Redundancy with L2VPN Interworking, the interworking method must be the same for the primary and backup pseudowires.

• L2VPN Pseudowire Redundancy does support setting the experimental (EXP) bit on the Multiprotocol Label Switching (MPLS) pseudowire.

• L2VPN Pseudowire Redundancy does not support different pseudowire encapsulation types on the MPLS pseudowire.

• The `mpls l2transport route` command is not supported. Use the `xconnect` command instead.

• The ability to have the backup pseudowire fully operational at the same time that the primary pseudowire is operational is not supported. The backup pseudowire becomes active only after the primary pseudowire fails.

• The AToM VCCV feature is supported only on the active pseudowire.

• More than one backup pseudowire is not supported.

Information About L2VPN Pseudowire Redundancy

Introduction to L2VPN Pseudowire Redundancy

L2VPNs can provide pseudowire resiliency through their routing protocols. When connectivity between end-to-end PE routers fails, an alternative path to the directed LDP session and the user data can take over.
However, there are some parts of the network where this rerouting mechanism does not protect against interruptions in service. The figure below shows those parts of the network that are vulnerable to an interruption in service.

*Figure 29: Points of Potential Failure in an L2VPN Network*

- X1 = End-to-end routing failure
- X2 = PE hardware or software failure
- X3 = Attachment circuit failure from a line break
- X4 = CE hardware or software failure

The L2VPN Pseudowire Redundancy feature provides the ability to ensure that the CE2 router in the figure above can always maintain network connectivity, even if one or all the failures in the figure occur.

The L2VPN Pseudowire Redundancy feature enables you to set up backup pseudowires. You can configure the network with redundant pseudowires and redundant network elements, which are shown in the three figures below.

The figure below shows a network with redundant pseudowires and redundant attachment circuits.

*Figure 30: L2VPN Network with Redundant PWs and Attachment Circuits*

The figure below shows a network with redundant pseudowires, attachment circuits, and CE routers.

*Figure 31: L2VPN Network with Redundant PWs, Attachment Circuits, and CE Routers*

The figure below shows a network with redundant pseudowires, attachment circuits, CE routers, and PE routers.
How to Configure L2VPN Pseudowire Redundancy

The L2VPN Pseudowire Redundancy feature enables you to configure a backup pseudowire in case the primary pseudowire fails. When the primary pseudowire fails, the PE router can switch to the backup pseudowire. You can have the primary pseudowire resume operation after it comes back up.

Configuring the Pseudowire

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You set up the connection, called a pseudowire, between the routers.

The pseudowire-class configuration group specifies the characteristics of the tunneling mechanism, which are:

- Encapsulation type
- Control protocol
- Payload-specific options

You must specify the `encapsulation mpls` command as part of the pseudowire class for the AToM VCs to work properly. If you omit the `encapsulation mpls` command as part of the `xconnect` command, you receive the following error:

```
% Incomplete command.
```

Perform this task to configure a pseudowire class.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `pseudowire-class name`
4. `encapsulation mpls`
5. `interworking {ethernet | ip}`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.  
        Example:  
        Router> enable |  
        • Enter your password if prompted. |
| Step 2 | configure terminal | Enters global configuration mode.  
        Example:  
        Router# configure terminal | |
| Step 3 | pseudowire-class name | Establishes a pseudowire class with a name that you specify.  
        Example:  
        Router(config)# pseudowire-class atom | Enters pseudowire class configuration mode. |
| Step 4 | encapsulation mpls | Specifies the tunneling encapsulation. For AToM, the encapsulation type is mpls.  
        Example:  
        Router(config-pw-class)# encapsulation mpls | |
| Step 5 | interworking \{ethernet | Layer 2 encapsulations.  
        Example:  
        Example:  
        Router(config-pw-class)# interworking ip | (Optional) Enables the translation between the different  
        \ ip\} | |

### Configuring the Pseudowire using the commands associated with the L2VPN Protocol-Based CLIs feature

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You set up the connection, called a pseudowire, between the routers.

The pseudowire-class configuration group specifies the characteristics of the tunneling mechanism, which are:

- Encapsulation type
- Control protocol
- Payload-specific options

You must specify the `encapsulation mpls` command as part of the pseudowire class for the AToM VCs to work properly. If you omit the `encapsulation mpls` command as part of the `l2vpn xconnectcontext` command, you receive the following error:

% Incomplete command.

Perform this task to configure a pseudowire class.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface pseudowire number
4. encapsulation mpls
5. neighbor peer-address vcid-value
6. interworking {ethernet | ip}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><em>Example:</em> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><em>Example:</em> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface pseudowire number</td>
<td>Establishes an interface pseudowire with a value that you specify. Enters pseudowire configuration mode.</td>
</tr>
<tr>
<td><em>Example:</em> Router(config)# interface pseudowire 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation. For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td><em>Example:</em> Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td><em>Example:</em> Router(config-pw)# neighbor 10.0.0.1 123</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> interworking {ethernet</td>
<td>ip}</td>
</tr>
<tr>
<td><em>Example:</em> Router(config-pw)# interworking ip</td>
<td></td>
</tr>
</tbody>
</table>

Configuring L2VPN Pseudowire Redundancy

Perform this task to configure the L2VPN Pseudowire Redundancy feature.
Before you begin

For each transport type, the `xconnect` command is configured slightly differently. The following configuration steps use Ethernet VLAN over MPLS, which is configured in subinterface configuration mode. See *Any Transport over MPLS* to determine how to configure the `xconnect` command for other transport types.

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **interface gigabitethernet slot/subslot/interface.subinterface**
4. **encapsulation dot1q vlan-id**
5. **xconnect peer-router-id vcid {encapsulation mpls|pw-class pw-class-name}**
6. **backup peer peer-router-ip-addr vcid [pw-class pw-class-name]**
7. **backup delay enable-delay {disable-delay | never}**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface gigabitethernet slot/subslot/interface.subinterface</td>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Make sure that the subinterface on the adjoining CE router is on the same VLAN as this PE router.</td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet0/0/0.1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> encapsulation dot1q vlan-id</td>
<td>Enables the subinterface to accept 802.1Q VLAN packets.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet.</td>
</tr>
<tr>
<td>Router(config-subif)# encapsulation dot1q 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> xconnect peer-router-id vcid {encapsulation mpls</td>
<td>pw-class pw-class-name}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• The syntax for this command is the same as for all other Layer 2 transports.</td>
</tr>
<tr>
<td>Router(config-subif)# xconnect 10.0.0.1 123 pw-class atom</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring L2VPN Pseudowire Redundancy using the commands associated with the L2VPN Protocol-Based CLIs feature

Perform this task to configure the L2VPN Pseudowire Redundancy feature.

#### Before you begin

For each transport type, the `l2vpn xconnect context` command is configured slightly differently. The following configuration steps use Ethernet VLAN over MPLS, which is configured in subinterface configuration mode. See Any Transport over MPLS to determine how to configure the `l2vpn xconnect context` command for other transport types.

#### SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet `slot` `/ `subslot` / `interface `. `subinterface`
4. encapsulation dot1q `vlan-id`
5. end
6. interface pseudowire `number`
7. source template type pseudowire `template-name`
8. neighbor `peer-address` `vcid-value`
9. exit
10. l2vpn xconnect context `context-name`
11. member pseudowire `interface-number`
12. member pseudowire `interface-number`
13. member gigabitethernet `interface-number`
14. redundancy delay `enable-delay`

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong></td>
<td>backup peer <code>peer-router-ip-addr</code> <code>vcid</code> <code>[pw-class</code> <code>pw-class-name]</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-xconn)# backup peer 10.0.0.3 125 pw-class atom</td>
</tr>
<tr>
<td>Specifies a redundant peer for the pseudowire VC.</td>
<td></td>
</tr>
<tr>
<td>The pseudowire class name must match the name that you specified when you created the pseudowire class, but you can use a different pw-class in the <code>backup peer</code> command than the name that you used in the primary <code>xconnect</code> command.</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 7** | backup delay `enable-delay` `{disable-delay | never}` |
| Example: | Router(config-if-xconn)# backup delay 5 never |
| Specifies how long (in seconds) the backup pseudowire VC should wait to take over after the primary pseudowire VC goes down. The range is from 0 to 180. |
| Specifies how long the primary pseudowire should wait after it becomes active to take over for the backup pseudowire VC. The range is from 0 to 180 seconds. If you specify the `never` keyword, the primary pseudowire VC never takes over for the backup. |
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device&gt; enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>interface gigabitethernet slot / subslot / interface . subinterface</code></td>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode. Make sure that the subinterface on the adjoining CE router is on the same VLAN as this PE router.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# interface gigabitethernet0/0/0.1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>encapsulation dot1q vlan-id</code></td>
<td>Enables the subinterface to accept 802.1Q VLAN packets. The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet. All other subinterfaces and backbone routers do not.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device(config-subif)# encapsulation dot1q 100</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td><code>interface pseudowire number</code></td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface pseudowire 100</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td><code>source template type pseudowire template-name</code></td>
<td>Configures the source template of type pseudowire named atom</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# source template type pseudowire atom</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td><code>neighbor peer-address vcid-value</code></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# neighbor 10.0.0.1 123</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 10**  l2vpn xconnect context context-name  
Example:  
Router(config)# l2vpn xconnect context con1 | Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode. |

| **Step 11**  member pseudowire interface-number  
Example:  
Device(config-xconnect)# member pseudowire 100 group GR_1 priority 2 | Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect. |

| **Step 12**  member pseudowire interface-number  
Example:  
Device(config-xconnect)# member pseudowire 1001 group GR_1 priority 2 | Specifies a second member pseudowire for redundancy. |

| **Step 13**  member gigabitethernet interface-number  
Example:  
Device(config-xconnect)# member GigabitEthernet0/0/0.1 service instance 1 | Specifies the location of the Gigabit Ethernet member interface. |

| **Step 14**  redundancy delay enable-delay{disable-delay | never}  
Example:  
Device(config-xconnect)# redundancy delay 0 0 group GR_1 | Specifies how long (in seconds) the backup pseudowire VC should wait to take over after the primary pseudowire VC goes down. The range is 0 to 180. Specifies how long the primary pseudowire should wait after it becomes active to take over for the backup pseudowire VC. The range is 0 to 180 seconds. If you specify the never keyword, the primary pseudowire VC never takes over for the backup. |

---

**Forcing a Manual Switchover to the Backup Pseudowire VC**

To force the router switch over to the backup or primary pseudowire, you can enter the xconnect backup force switchover command in privileged EXEC mode. You can specify either the interface of the primary attachment circuit (AC) to switch to or the IP address and VC ID of the peer router.

A manual switchover can be made only if the interface or peer specified in the command is actually available and the xconnect moves to the fully active state when executing the command.

**SUMMARY STEPS**

1. enable
2. xconnect backup force-switchover { interface interface-info | peer ip-address vcid}
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>xconnect backup force-switchover { interface interface-info</td>
<td>Specifies that the router should switch to the backup or to</td>
</tr>
<tr>
<td></td>
<td>peer ip-address vcid}</td>
<td>the primary pseudowire.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# xconnect backup force-switchover peer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.10.10.1 123</td>
<td></td>
</tr>
</tbody>
</table>

**Verifying the L2VPN Pseudowire Redundancy Configuration**

Perform this task to verify that the L2VPN Pseudowire Redundancy feature is correctly configured.

**SUMMARY STEPS**

1. show mpls l2transport vc
2. show xconnect all
3. xconnect logging redundancy

**DETAILED STEPS**

**Step 1** show mpls l2transport vc

The following is sample output from the `show mpls l2transport vc` command. In this example, the primary attachment circuit is up. The backup attachment circuit is available, but not currently selected.

**Example:**

```
Router# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
---------------- ---------------------- -------------- --------- ----------
Et0/0.1 Eth VLAN 101 10.0.0.2 101 UP
Et0/0.1 Eth VLAN 101 10.0.0.3 201 DOWN
Router# show mpls l2transport vc detail
Local interface: Et0/0.1 up, line protocol up, Eth VLAN 101 up
 Destination address 10.0.0.2 VC ID: 101, VC status UP
 .
 .
Local interface: Et0/0.1 down, line protocol down, Eth VLAN 101 down
 Destination address 10.0.0.3 VC ID: 201, VC status down
 .
 .
```

**Step 2** show xconnect all
In this example, the topology is Attachment Circuit 1 to Pseudowire 1 with a Pseudowire 2 as a backup:

Example:

Router# show xconnect all
Legend: XC ST=Xconnect State, S1=Segment1 State, S2=Segment2 State
UP=Up, DN=Down, AD=Admin Down, IA=Inactive, NH=No Hardware

<table>
<thead>
<tr>
<th>XC ST</th>
<th>Segment 1</th>
<th>S1</th>
<th>Segment 2</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>pri ac</td>
<td>Et0/0(Ethernet)</td>
<td>UP</td>
<td>mpls 10.55.55.2:1000</td>
</tr>
<tr>
<td>IA</td>
<td>sec ac</td>
<td>Et0/0(Ethernet)</td>
<td>UP</td>
<td>mpls 10.55.55.3:1001</td>
</tr>
</tbody>
</table>

In this example, the topology is Attachment Circuit 1 to Attachment Circuit 2 with a pseudowire backup for Attachment Circuit 2:

Example:

Router# show xconnect all
Legend: XC ST=Xconnect State, S1=Segment1 State, S2=Segment2 State
UP=Up, DN=Down, AD=Admin Down, IA=Inactive, NH=No Hardware

<table>
<thead>
<tr>
<th>XC ST</th>
<th>Segment 1</th>
<th>S1</th>
<th>Segment 2</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>pri ac</td>
<td>Se6/0:150(FR DLCI)</td>
<td>UP</td>
<td>ac Se8/0:150(FR DLCI)</td>
</tr>
<tr>
<td>IA</td>
<td>sec ac</td>
<td>Se6/0:150(FR DLCI)</td>
<td>UP</td>
<td>mpls 10.55.55.3:7151</td>
</tr>
</tbody>
</table>

Step 3  xconnect logging redundancy

In addition to the `show mpls l2transport vc` command and the `show xconnect` command, you can use the `xconnect logging redundancy` command to track the status of the xconnect redundancy group:

Example:

Router(config)# xconnect logging redundancy

When this command is configured, the following messages are displayed during switchover events:

Activating the primary member:

Example:

00:01:07: %XCONNECT-5-REDUNDANCY: Activating primary member 10.55.55.2:1000

Activating the backup member:

Example:

00:01:05: %XCONNECT-5-REDUNDANCY: Activating secondary member 10.55.55.3:1001

Verifying the L2VPN Pseudowire Redundancy Configuration using the commands associated with the L2VPN Protocol-Based CLIs feature

Use the following commands to verify that the L2VPN Pseudowire Redundancy feature is correctly configured.

**SUMMARY STEPS**

1. `show l2vpn atom vc`
2. show l2vpn service all
3. logging redundancy
4. logging pseudowire status

DETAILED STEPS

Step 1  show l2vpn atom vc

In this example, the primary attachment circuit is up. The backup attachment circuit is available, but not currently selected. The show output displays as follows:

Example:

```
Device# show l2vpn atom vc
Local intf Local circuit Dest address VC ID Status
------------- ----------------------- --------------- ---------- ----------
Et0/0.1 Eth VLAN 101 10.0.0.2 101 UP
Et0/0.1 Eth VLAN 101 10.0.0.3 201 DOWN
```

Router# show l2vpn atom vc detail
Local interface: Et0/0.1 up, line protocol up, Eth VLAN 101 up
   Destination address 10.0.0.2 VC ID: 101, VC status UP
   ...
   ...
Local interface: Et0/0.1 down, line protocol down, Eth VLAN 101 down
   Destination address 10.0.0.3 VC ID: 201, VC status down
   ...
   ...

Step 2  show l2vpn service all

In this example, the topology is attachment circuit 1 to pseudowire 1 with apPseudowire 2 as a backup:

Example:

```
Device# show l2vpn service all
Legend: St=State XC St=State in the L2VPN Service Prio=Priority
UP=Up DN=Down AD=Admin Down IA=Inactive
SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware
m=manually selected
Interface Group Encapsulation Prio St XC St
--------- ----- ------------- ---- -- -----
VPWS name: foo, State: UP
 Eth1/1.1 Eth1/1.1:1:100(Eth VLAN) 0 UP UP
 pw101 blue 102.1.1.1:100(MPLS) 2 UP UP
 pw102 blue 103.1.1.1:100(MPLS) 5 SB IA
 pw103 blue 104.1.1.1:100(MPLS) 8 SB IA
 pw104 blue 105.1.1.1:100(MPLS) 11 SB IA
```

In this example, the topology is attachment circuit 1 to attachment circuit 2 with a pseudowire backup for attachment circuit 2:

Example:

```
Device# show l2vpn service all
Legend: XC St=Xconnect State, S1=Segment1 State, S2=Segment2 State
UP=Up, DN=Down, AD=Admin Down, IA=Inactive, NH=No Hardware
```
Step 3  logging redundancy

In addition to the `show l2vpn atom vc` command and the `show l2vpn service` command, you can use the `logging redundancy` command to enable system message log (syslog) reporting of xconnect redundancy status events:

**Example:**

```
Device(config)# l2vpn
Device(config-l2vpn)# logging redundancy
```

When this command is configured, the messages below will be generated during switchover events:

Activating the primary member:

**Example:**

```
Device(config)# l2vpn
Device(config-l2vpn)# logging pseudowire status
```

When this command is configured, this is configured the status of the pseudowire can be monitored:

Activating the primary member:

**Example:**

```
00:01:07: %XCONNECT-5-REDUNDANCY: Activating primary member 10.55.55.2:1000
```

Activating the backup member:

**Example:**

```
00:01:05: %XCONNECT-5-REDUNDANCY: Activating secondary member 10.55.55.3:1001
```

Step 4  logging pseudowire status

you can use the `logging pseudowire status` command to monitor the status of the pseudowire.

**Example:**

```
Device(config)# l2vpn
Device(config-l2vpn)# logging pseudowire status
```

Configuration Examples for L2VPN Pseudowire Redundancy

Each of the configuration examples refers to one of the following pseudowire classes:

- AToM (like-to-like) pseudowire class:

```
pseudowire-class mpls
 encapsulation mpls
```
• L2VPN IP interworking:

pseudowire-class mpls-ip
encapsulation mpls
interworking ip

**Example L2VPN Pseudowire Redundancy and AToM (Like to Like)**

The following example shows a High-Level Data Link Control (HDLC) attachment circuit xconnect with a backup pseudowire:

```
interface Serial4/0
 xconnect 10.55.55.2 4000 pw-class mpls
 backup peer 10.55.55.3 4001 pw-class mpls
```

The following example shows a Frame Relay attachment circuit xconnect with a backup pseudowire:

```
connect fr-fr-pw Serial6/0 225 l2transport
 xconnect 10.55.55.2 5225 pw-class mpls
 backup peer 10.55.55.3 5226 pw-class mpls
```

**Example L2VPN Pseudowire Redundancy and L2VPN Interworking**

The following example shows an Ethernet attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```
interface Ethernet0/0
 xconnect 10.55.55.2 1000 pw-class mpls-ip
 backup peer 10.55.55.3 1001 pw-class mpls-ip
```

The following example shows an Ethernet VLAN attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```
interface Ethernet1/0.1
 encapsulation dot1Q 200
 no ip directed-broadcast
 xconnect 10.55.55.2 5200 pw-class mpls-ip
 backup peer 10.55.55.3 5201 pw-class mpls-ip
```

The following example shows a Frame Relay attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```
connect fr-ppp-pw Serial6/0 250 l2transport
 xconnect 10.55.55.2 8250 pw-class mpls-ip
 backup peer 10.55.55.3 8251 pw-class mpls-ip
```

The following example shows a PPP attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```
interface Serial7/0
 encapsulation ppp
 xconnect 10.55.55.2 2175 pw-class mpls-ip
 backup peer 10.55.55.3 2176 pw-class mpls-ip
```
Example L2VPN Pseudowire Redundancy with Layer 2 Local Switching

The following example shows an Ethernet VLAN-VLAN local switching xconnect with a pseudowire backup for Ethernet segment E2/0.2. If the subinterface associated with E2/0.2 goes down, the backup pseudowire is activated:

   connect vlan-vlan Ethernet1/0.2 Ethernet2/0.2
   backup peer 10.55.55.3 1101 pw-class mpls

The following example shows a Frame Relay-to-Frame Relay local switching connect with a pseudowire backup for Frame Relay segment S8/0 150. If data-link connection identifier (DLCI) 150 on S8/0 goes down, the backup pseudowire is activated:

   connect fr-fr-ls Serial6/0 150 Serial8/0 150
   backup peer 10.55.55.3 7151 pw-class mpls

Example L2VPN Pseudowire Redundancy and Layer 2 Tunneling Protocol Version 3

The following example shows how to configure a backup peer for an xconnect session:

   pseudowire-class 773
   encapsulation l2tpv3
   ip local interface GigabitEthernet0/0/0.773
   pseudowire-class 774
   encapsulation l2tpv3
   ip local interface GigabitEthernet0/0/1.774
   interface GigabitEthernet0/0/0.780
   encapsulation dot1Q 780
   xconnect 10.22.73.14 100 pw-class 773
   backup peer 10.22.74.14 101 pw-class 774
   backup delay 0 0

The following example shows how to configure a Gigabit Ethernet port with L2VPN pseudowire redundancy and L2TPv3:

   interface GigabitEthernet0/0/2
   xconnect 10.22.70.83 50 pw-class pe1-pw-primary
   backup peer 20.22.70.85 51 pw-class pe1-pw-secondary

The following example shows how to configure a Gigabit Ethernet VLAN with L2VPN pseudowire redundancy and L2TPv3:

   interface GigabitEthernet0/0/0.100
   encapsulation dot1q 100
   xconnect 10.22.70.83 60 pw-class pe1-pw-primary
   backup peer 10.22.70.85 61 pw-class pe1-pw-secondary

The following example shows how to configure a Gigabit Ethernet Q-in-Q with L2VPN pseudowire redundancy and L2TPv3:

   interface GigabitEthernet0/0/0.200
   encapsulation dot1q 200 second-dot1q 400
xconnect 10.22.70.83 70 pw-class pe1-pw-primary
backup peer 10.22.70.85 71 pw-class pe1-pw-secondary

The following example shows how to configure a Gigabit Ethernet Q-in-any with L2VPN pseudowire redundancy and L2TPv3:

interface GigabitEthernet0/0/0.300
encapsulation dot1q 300 second-dot1q any
xconnect 10.22.70.83 80 pw-class pe1-pw-primary
backup peer 10.22.70.85 81 pw-class pe1-pw-secondary

The following example shows how to configure an HDLC with L2VPN pseudowire redundancy and L2TPv3:

interface Serial0/2/0:0
no ip address
xconnect 10.22.71.83 40 pw-class pe1-pw-hdlc
backup peer 10.22.70.85 41 pw-class pe1-pw-hdlc-2

Configuration Examples for L2VPN Pseudowire Redundancy using the commands associated with the L2VPN Protocol-Based CLIs feature

Each of the configuration examples refers to one of the following interface pseudowires:

- AToM (like-to-like) interface pseudowire:

  interface pseudowire 1
  encapsulation mpls
  neighbor 33.33.33.33 1

- L2VPN IP interworking:

  interface pseudowire 1
  encapsulation mpls
  neighbor 33.33.33.33 1
  interworking ip

Example L2VPN Pseudowire Redundancy and AToM (Like to Like) using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows a High-Level Data Link Control (HDLC) attachment circuit xconnect with a backup pseudowire:

interface Serial4/0
interface pseudowire 100
source template type pseudowire ether-pw
neighbor 10.55.55.3 4001
l2vpn xconnect context con1
member pseudowire 100 group GR_1 priority 1
member pseudowire 1001 group GR_1 priority 2
The following example shows a Frame Relay attachment circuit xconnect with a backup pseudowire:

```
connect fr-fr-pw Serial6/0 225 l2transport
interface pseudowire 100
 source template type pseudowire ether-pw
 neighbor 10.55.55.3 5226
! l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
 member pseudowire 1001 group GR_1 priority 2
 member GigabitEthernet0/0/2 service-instance 1
 redundancy delay 0 0 group GR_1
```

Example L2VPN Pseudowire Redundancy and L2VPN Interworking using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows an Ethernet attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```
interface Ethernet0/0
interface pseudowire 100
 source template type pseudowire ether-pw
! l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
 member pseudowire 1001 group GR_1 priority 2
 member GigabitEthernet0/0/2 service-instance 1
 redundancy delay 0 0 group GR_1
 interworking ip
```

The following example shows an Ethernet VLAN attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```
interface Ethernet1/0.1
 encapsulation dot1Q 200
 no ip directed-broadcast
interface pseudowire 100
 source template type pseudowire ether-pw
! l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
 member pseudowire 1001 group GR_1 priority 2
 member GigabitEthernet0/0/2 service-instance 1
 redundancy delay 0 0 group GR_1
 interworking ip
```

The following example shows a Frame Relay attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```
connect fr-ppp-pw Serial6/0 250 l2transport
interface pseudowire 100
 source template type pseudowire ether-pw
! l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
```
member pseudowire 1001 group GR_1 priority 2
member GigabitEthernet0/0/2 service-instance 1
redundancy delay 0 0 group GR_1
interworking ip

The following example shows a PPP attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```
interface Serial7/0
 encapsulation ppp
interface pseudowire 100
 source template type pseudowire ether-pw
 !
 l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
 member pseudowire 1001 group GR_1 priority 2
 member GigabitEthernet0/0/2 service-instance 1
 redundancy delay 0 0 group GR_1
 interworking ip
```

Example L2VPN Pseudowire Redundancy and Layer 2 Tunneling Protocol Version 3 using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows how to configure a backup peer for an xconnect session:

```
interface pseudowire 773
 encapsulation l2tpv3
 ip local interface GigabitEthernet0/0/0.773
 !
 interface pseudowire 774
 encapsulation l2tpv3
 ip local interface GigabitEthernet0/0/1.774
 !
 interface GigabitEthernet0/0/0.780
 encapsulation dot1Q 780
 interface pseudowire 100
 source template type pseudowire ether-pw
 neighbor 10.22.73.14 100
 !
 l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
 member pseudowire 1001 group GR_1 priority 2
 member GigabitEthernet0/0/2 service-instance 1
 redundancy delay 0 0 group GR_1
 interworking ip
```

The following example shows how to configure a Gigabit Ethernet port with L2VPN pseudowire redundancy and L2TPv3:

```
interface GigabitEthernet0/0/2
interface pseudowire 100
source template type pseudowire ether-pw
neighbor 10.22.70.83 50
!
12vpn xconnect context con1
member pseudowire 100 group GR_1 priority 1
member pseudowire 1001 group GR_1 priority 2
```
The following example shows how to configure a Gigabit Ethernet VLAN with L2VPN pseudowire redundancy and L2TPv3:

```
interface GigabitEthernet0/0/0.100
 encapsulation dot1q 100
 interface pseudowire 100
 source template type pseudowire ether-pw
 neighbor 10.22.70.83 60

l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
 member pseudowire 1001 group GR_1 priority 2
 member GigabitEthernet0/0/2 service-instance 1
 redundancy delay 0 0 group GR_1
 interworking ip
```

The following example shows how to configure a Gigabit Ethernet Q-in-Q with L2VPN pseudowire redundancy and L2TPv3:

```
interface GigabitEthernet0/0/0.200
 encapsulation dot1q 200 second-dot1q 400
 interface pseudowire 100
 source template type pseudowire ether-pw
 neighbor 10.22.70.83 70

l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
 member pseudowire 1001 group GR_1 priority 2
 member GigabitEthernet0/0/2 service-instance 1
 redundancy delay 0 0 group GR_1
 interworking ip
```

The following example shows how to configure a Gigabit Ethernet Q-in-any with L2VPN pseudowire redundancy and L2TPv3:

```
interface GigabitEthernet0/0/0.300
 encapsulation dot1q 300 second-dot1q any
 interface pseudowire 100
 source template type pseudowire ether-pw
 neighbor 10.22.70.83 80

l2vpn xconnect context con1
 member pseudowire 100 group GR_1 priority 1
 member pseudowire 1001 group GR_1 priority 2
 member GigabitEthernet0/0/2 service-instance 1
 redundancy delay 0 0 group GR_1
 interworking ip
```

The following example shows how to configure an HDLC with L2VPN pseudowire redundancy and L2TPv3:

```
interface Serial0/2/0:0
 no ip address
 interface pseudowire 100
 source template type pseudowire ether-pw
 neighbor 10.22.71.83 40

l2vpn xconnect context con1
```
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Wide-area networking commands</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td>Cisco IOS XE Multiprotocol Label Switching</td>
<td>Cisco IOS XE Multiprotocol Label Switching Configuration Guide</td>
</tr>
<tr>
<td>configuration tasks</td>
<td>Cisco IOS XE Wide-Area Networking Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS XE Wide-area networking configuration</td>
<td></td>
</tr>
<tr>
<td>tasks</td>
<td></td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
Feature Information for L2VPN Pseudowire Redundancy

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

**Table 25: Feature Information for L2VPN Pseudowire Redundancy**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| L2VPN Pseudowire Redundancy  | XE 2.3 XE 3.3S | This feature enables you to set up your network to detect a failure in the network and reroute the Layer 2 service to another endpoint that can continue to provide service.  
  In Cisco IOS XE Release 2.3, this feature was integrated into the Cisco ASR 1000 Series Aggregation Service Routers.  
  In Cisco IOS XE Release 3.3S, this feature supports Layer 2 Tunneling Protocol Version 3 (L2TPv3).  
  The following commands were introduced or modified: backup delay (L2VPN local switching), backup peer, show xconnect, xconnect backup force-switchover, xconnect logging redundancy. |
| L2VPN Pseudowire Redundancies | Cisco IOS XE Fuji 16.9.1 | In Cisco IOS XE Fuji 16.9.1, this feature is supported on Cisco 1000 Series ISRs.                                                                   |
Pseudowire Group Switchover

The Pseudowire Group Switchover feature allows all pseudowires in a group to be quickly switched over to backup pseudowires. This group switchover is triggered by a single “group down” status message received from a remote peer.

- Finding Feature Information, on page 453
- Prerequisites for Pseudowire Group Switchover, on page 453
- Restrictions for Pseudowire Group Switchover, on page 454
- Information About Pseudowire Group Switchover, on page 454
- How to Configure Predictive Switchover, on page 455
- Verifying a Pseudowire Group Switchover Configuration, on page 456
- Troubleshooting a Pseudowire Group Switchover Configuration, on page 458
- Configuration Examples for Predictive Switchover, on page 458
- Additional References, on page 459
- Feature Information for Pseudowire Group Switchover, on page 459

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Pseudowire Group Switchover

- Label Distribution Protocol (LDP) must be implemented on the network.
- Each xconnect must have a backup pseudowire configured.
Restrictions for Pseudowire Group Switchover

The Pseudowire Group Switchover feature is supported on Cisco IOS XE Release 3.10S and later releases. This feature is supported on Cisco ASR 903 Series routers on the following attachment circuits:

- Ethernet VLAN
- Asynchronous Transfer Mode (ATM)
- Circuit Emulation over MPLS (CEM)

Information About Pseudowire Group Switchover

Introduction to Pseudowire Group Switchover

The Pseudowire Group Switchover feature allows you to reduce the switchover time from main pseudowires to backup pseudowires when a fault is encountered. The reduced switchover time is achieved by grouping Label Distribution Protocol (LDP) status messages and internal interprocess communication (IPC) messages.

When the remote peer detects an attachment circuit failure, it sends an LDP status message. When this status message is received, the designated backup pseudowires take over. Packets are then routed through the backup pseudowires.

Pseudowires can be grouped together by assigning a group ID. When an LDP status message is received by a pseudowire group, the entire group switches over, thus reducing switchover time.

Note

The Pseudowire Group Switchover feature is enabled by default and cannot be disabled.
How to Configure Predictive Switchover

Predictive switchover allows switchovers from a main pseudowire to a backup pseudowire with a remote "standby" status, without waiting for an “up” status from the remote peer.

Predictive switchover is configured by enabling redundancy predictive mode in global configuration mode or xconnect configuration mode.

Configuring Predictive Switchover (Global Configuration Mode)

SUMMARY STEPS

1. enable
2. configure terminal
3. l2vpn
4. redundancy predictive enabled
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 l2vpn</td>
<td>Enters l2vpn configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# l2vpn</td>
<td></td>
</tr>
<tr>
<td>Step 4 redundancy predictive enabled</td>
<td>Enables redundancy predictive mode.</td>
</tr>
<tr>
<td>Example: Device(config-l2vpn)# redundancy predictive enabled</td>
<td>• By default, redundancy predictive mode is disabled.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits l2vpn configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-l2vpn)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Predictive Switchover (Xconnect Configuration Mode)

SUMMARY STEPS

1. enable
2. configure terminal
3. l2vpn xconnect context context-name
4. redundancy predictive enabled
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> l2vpn xconnect context context-name</td>
<td>Creates an L2VPN cross-connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> redundancy predictive enabled</td>
<td>Enables redundancy predictive mode.</td>
</tr>
<tr>
<td>Example: Device(config-xconnect)# redundancy predictive enabled</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Exits xconnect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-xconnect)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verifying a Pseudowire Group Switchover Configuration

You can use `show` commands to view information about a pseudowire group switchover configuration.

The following example shows how to display information about Any Transport over MPLS (AToM) virtual circuits (VCs):

```
Device# show l2vpn atom vc destination 2.1.1.2 group remote 6
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Dest Address</th>
<th>VC ID</th>
<th>Type</th>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>pwl00001</td>
<td>2.1.1.2</td>
<td>1234000</td>
<td>p2p</td>
<td>Et1/0.1-1001</td>
<td>UP</td>
</tr>
</tbody>
</table>
The following example shows how to display the status of the pseudowire switching point:

Device# show l2vpn atom vc destination 2.1.1.2 group remote 6 detail

pseudowire100001 is up, VC status is up PW type: Ethernet
Create time: 5d20h, last status change time: 5d20h
Last label FSM state change time: 5d20h
Destination address: 2.1.1.2 VC ID: 1234000
Output interface: Et0/0, imposed label stack {2001}
Preferred path: not configured
Default path: active
Next hop: 20.0.0.2
Member of xconnect service Et1/0.1-1001, group right
Associated member Et1/0.1 is up, status is up
Interworking type is Ethernet
Service id: 0x6d000002
Signaling protocol: LDP, peer 2.1.1.2:0 up
Targeted Hello: 1.1.1.1(LDP Id) -> 2.1.1.2, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
PWid FEC (128), VC ID: 1234000
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRtu
Local dataplane status received : No fault
BFD dataplane status received : Not sent
BFD peer monitor status received : No fault
Status received from access circuit : No fault
Status sent to access circuit : No fault
Status received from pseudowire i/f : No fault
Status sent to network peer : No fault
Status received from network peer : No fault
Adjacency status of remote peer : No fault
Sequencing: receive disabled, send disabled

Bindings
Parameter | Local | Remote
----------|-------|-------
Label | 2007 | 2001
Group ID | 0 | 6
Interface | | |
MTU | 1500 | 1500
Control word | on (configured: autosense) | on
PW type | Ethernet | Ethernet
VCCV CV type | 0x12 | 0x12
VCCV CC type | 0x07 | 0x07
Status TLV | enabled | supported
Dataplane:
SSM segment/switch IDs: 12309/4115 (used), PWID: 1
Rx Counters
106563 input transit packets, 9803650 bytes
0 drops, 0 seq err
Tx Counters
0 output transit packets, 0 bytes
0 drops

The following example lists the active and standby segment pairs associated with each peer IP address and group identifier:

Device# show ssm group

<table>
<thead>
<tr>
<th>Active IP Address</th>
<th>Active Group ID</th>
<th>Active Segment/Switch</th>
<th>Standby IP Address</th>
<th>Standby Group ID</th>
<th>Standby Segment/Switch</th>
</tr>
</thead>
</table>

Verifying a Pseudowire Group Switchover Configuration

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
The following example displays the number of active and standby segment pairs associated with each peer IP address and group identifier:

Device# show ssm group 2.1.1.2 6 summary

<table>
<thead>
<tr>
<th>IP Address</th>
<th>Group ID</th>
<th>Group Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1.2</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

The following example displays the number of pseudowires programmed in the hardware, with grouping information:

Device# show platform hardware pp active pw eompls group brief

<table>
<thead>
<tr>
<th>IP address</th>
<th>Group ID</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x47474747</td>
<td>100695488</td>
<td>90</td>
</tr>
</tbody>
</table>

Troubleshooting a Pseudowire Group Switchover Configuration

Use the `debug platform software atom brief` command to view information about the following configurations:

- Add Group
- Delete From Group
- Group Switchovers

We recommend that you use the `debug platform software atom brief` command only under Cisco Technical Assistance Center (TAC) supervision.

Configuration Examples for Predictive Switchover

Example: Configuring Predictive Switchover (Global Configuration Mode)

Device> enable
Device# configure terminal
Device(config)# 12vpn
Device(config-12vpn)# redundancy predictive enabled
Device(config-12vpn)# end

Example: Configuring Predictive Switchover (Xconnect Configuration Mode)

Device> enable
Device# configure terminal
Device(config)# 12vpn xconnect context con1
Device(config-xconnect)# redundancy predictive enabled
Device(config-xconnect)# end

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4447</td>
<td>Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Pseudowire Group Switchover

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Table 26: Feature Information for Pseudowire Group Switchover

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowire Group Switchover</td>
<td>Cisco IOS XE</td>
<td>This feature allows all pseudowires in a group to be quickly switched over to backup pseudowires. This group switchover is triggered by a single “group down” status message received from a remote peer. The following commands were introduced or modified: redundancy predictive, show ssm group.</td>
</tr>
</tbody>
</table>
CHAPTER 15

L2VPN Pseudowire Switching

This feature module explains how to configure L2VPN Pseudowire Switching, which extends layer 2 virtual private network (L2VPN) pseudowires across an interautonomous system (inter-AS) boundary or across two separate multiprotocol label switching (MPLS) networks.

• Finding Feature Information, on page 461
• Restrictions for L2VPN Pseudowire Switching, on page 461
• Information About L2VPN Pseudowire Switching, on page 462
• How to Configure L2VPN Pseudowire Switching, on page 463
• How to Configure L2VPN Pseudowire Switching using the commands associated with the L2VPN Protocol-Based CLIs feature, on page 466
• Configuration Examples for L2VPN Pseudowire Switching, on page 471
• Additional References, on page 474
• Feature Information for L2VPN Pseudowire Switching, on page 475

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for L2VPN Pseudowire Switching

• In Cisco IOS XE Release 2.4, Pseudowire Switching is supported on Ethernet over MPLS attachment circuits.

• L2VPN Pseudowire Switching is supported with AToM.

• Only static, on-box provisioning is supported.

• Sequencing numbers in AToM packets are not processed by L2VPN Pseudowire Switching. The feature blindly passes the sequencing data through the xconnect packet paths, a process that is called transparent sequencing. The endpoint PE-CE connections enforce the sequencing.
• You can ping the adjacent next-hop PE router. End-to-end LSP pings are not supported.
• Do not configure IP or Ethernet interworking on a router where L2VPN Pseudowire Switching is enabled. Instead, configure interworking on the routers at the edge PEs of the network.
• The control word negotiation results must match. If either segment does not negotiate the control word, the control word is disabled for both segments.
• AToM Graceful Restart is negotiated independently on each pseudowire segment. If there is a transient loss of the LDP session between two AToM PE routers, packets continue to flow.
• Per-pseudowire quality of service (QoS) is not supported. Traffic Engineering (TE) tunnel selection is supported.
• Attachment circuit interworking is not supported.

Information About L2VPN Pseudowire Switching

How L2VPN Pseudowire Switching Works

L2VPN Pseudowire Switching allows the user to extend L2VPN pseudowires across an inter-AS boundary or across two separate MPLS networks, as shown in the figures below. L2VPN Pseudowire Switching connects two or more contiguous pseudowire segments to form an end-to-end multihop pseudowire. This end-to-end pseudowire functions as a single point-to-point pseudowire.

As shown in the second figure below, L2VPN Pseudowire Switching enables you to keep the IP addresses of the edge PE routers private across inter-AS boundaries. You can use the IP address of the autonomous system boundary routers (ASBRs) and treat them as pseudowire aggregation (PE-agg) routers. The ASBRs join the pseudowires of the two domains.

L2VPN Pseudowire Switching also enables you to keep different administrative or provisioning domains to manage the end-to-end service. At the boundaries of these networks, PE-agg routers delineate the management responsibilities.

Figure 34: L2VPN Pseudowire Switching in an Intra-AS Topology
How Packets Are Manipulated at the Aggregation Point

Switching AToM packets between two AToM pseudowires is the same as switching any MPLS packet. The MPLS switching data path switches AToM packets between two AToM pseudowires. The following list explains exceptions:

- The outgoing virtual circuit (VC) label replaces the incoming VC label in the packet. New Internal Gateway Protocol (IGP) labels and Layer 2 encapsulation are added.
- The incoming VC label time-to-live (TTL) field is decremented by one and copied to the outgoing VC label TTL field.
- The incoming VC label EXP value is copied to the outgoing VC label EXP field.
- The outgoing VC label ‘Bottom of Stack’ $S$ bit in the outgoing VC label is set to 1.
- AToM control word processing is not performed at the L2VPN Pseudowire Switching aggregation point. Sequence numbers are not validated. Use the Router Alert label for LSP Ping; do not require control word inspection to determine an LSP Ping packet.

How to Configure L2VPN Pseudowire Switching

Configuring

Use the following procedure to configure L2VPN Pseudowire Switching on each of the PE-agg routers.

Before you begin

- This procedure assumes that you have configured basic AToM L2VPNs. This procedure does not explain how to configure basic AToM L2VPNs that transport Layer 2 packets over an MPLS backbone. For information on the basic configuration, see Any Transport over MPLS.
- For inter-Autonomous configurations, ASBRs require a labeled interface.
In this configuration, you are limited to two `neighbor` commands after entering the `l2 vfi` command.

> 

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`  
3. `l2 vfi name point-to-point`
4. `neighbor ip-address vcid encapsulation mpls | pw-class pw-class-name`
5. `exit`
6. `exit`
7. `show mpls l2transport vc [vcid [vc-id | [vc-id-min vc-id-max]] [interface name[local-circuit-id]] [destination ip-address | name] [detail]`
8. `show vfi [vfi-name]`
9. `ping [protocol] [tag] {host-name system-address}`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
</tbody>
</table>
| | Enables privileged EXEC mode.  
| | • Enter your password if prompted. | |
| **Step 2** | `configure terminal` |
| **Example:** | Router# configure terminal |
| | Enters global configuration mode. |
| **Step 3** | `l2 vfi name point-to-point` |
| **Example:** | Router(config)# l2 vfi atomtunnel point-to-point |
| | Creates a point-to-point Layer 2 virtual forwarding interface (VFI) and enters VFI configuration mode. |
| **Step 4** | `neighbor ip-address vcid encapsulation mpls | pw-class pw-class-name` |
| **Example:** | Router(config-vfi)# neighbor 10.0.0.1 100 pw-class mpls |
| | Sets up an emulated VC. Specify the IP address and the VC ID of the remote router. Also specify the pseudowire class to use for the emulated VC.  
<p>| | <strong>Note</strong> | Only two <code>neighbor</code> commands are allowed for each <code>l2 vfi point-to-point</code> command. |
| <strong>Step 5</strong> | <code>exit</code> |
| <strong>Example:</strong> | Router(config-vfi)# exit |
| | Exits VFI configuration mode. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><em>exit</em></td>
<td></td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router(config)# exit</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Verifies that the L2VPN Pseudowire Switching session has been established.</td>
</tr>
<tr>
<td>*show mpls l2transport vc [vcid [vc-id</td>
<td>[vc-id-min vc-id-max]] [interface name [local-circuit-id]] [destination ip-address</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router# show mpls l2transport vc</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Verifies that a point-to-point VFI has been established.</td>
</tr>
<tr>
<td><em>show vfi [vfi-name]</em></td>
<td></td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router# show vfi atomtunnel</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>When issued from the CE routers, this command verifies end-to-end connectivity.</td>
</tr>
<tr>
<td>*ping [protocol] [tag] {host-name</td>
<td>system-address}*</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router# ping 10.1.1.1</td>
</tr>
</tbody>
</table>

**Examples**

The following example displays the output of the *show mpls l2transport vc* command:

```
Router# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
----------------- ----------------- ----------------- ----- ----
MPLS PW 10.0.1.1:100 10.0.1.1 100 UP
MPLS PW 10.0.1.1:100 10.0.1.1 100 UP
```

The following example displays the output of the *show vfi* command:

```
Router# show vfi
VFI name: test, type: point-to-point
Neighbors connected via pseudowires:
 Router ID Pseudowire ID
 10.0.1.1 100
 10.0.1.1 100
```
How to Configure L2VPN Pseudowire Switching using the commands associated with the L2VPN Protocol-Based CLIs feature

Perform this task to configure L2VPN Pseudowire Switching on each of the PE-aggr routers. In this configuration, you are limited to two `neighbor` commands after entering the `l2vpn xconnect` command.

**Before you begin**

- This task assumes that you have configured basic AToM L2VPNs. This task does not explain how to configure basic AToM L2VPNs that transport Layer 2 packets over an MPLS backbone. For information on the basic configuration, see the “Any Transport over MPLS” section.
- For interautonomous configurations, autonomous system boundary routers (ASBRs) require a labeled interface.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface pseudowire number`
4. `encapsulation mpls`
5. `neighbor peer-address vcid-value`
6. `exit`
7. `interface pseudowire number`
8. `encapsulation mpls`
9. `neighbor peer-address vcid-value`
10. `exit`
11. `l2vpn xconnect context context-name`
12. `member pseudowire interface-number`
13. `member ip-address vcid encapsulation mpls`
14. `member pseudowire interface-number`
15. `member ip-address vcid encapsulation mpls`
16. `exit`
17. `exit`
18. `show l2vpn atom vc [vcid [vc-id | vc-id-min vc-id-max]] [interface type number [local-circuit-id]] [destination ip-address | name] [detail]`
19. `ping [protocol] [tag] [hostname| system-address]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface pseudowire <em>number</em></td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface pseudowire 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neighbor <em>peer-address vcid-value</em></td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# neighbor 10.0.0.1 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interface pseudowire <em>number</em></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface pseudowire 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>neighbor <em>peer-address vcid-value</em></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# neighbor 10.0.0.2 124</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## How to Configure L2VPN Pseudowire Switching using the commands associated with the L2VPN Protocol-Based CLIs feature

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 11</strong></td>
<td></td>
</tr>
<tr>
<td>l2vpn xconnect context  context-name</td>
<td>Creates a Layer 2 VPN (L2VPN) cross connect context and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# l2vpn xconnect context con1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td></td>
</tr>
<tr>
<td>member pseudowire  interface-number</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xconnect)# member pseudowire 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td></td>
</tr>
<tr>
<td>member ip-address vcid encapsulation mpls</td>
<td>Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# member 10.0.0.1 123 encapsulation mpls</td>
<td>Note Only two member commands are allowed for each l2vpn xconnect context command.</td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td></td>
</tr>
<tr>
<td>member pseudowire  interface-number</td>
<td>Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-xconnect)# member pseudowire 200</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong></td>
<td></td>
</tr>
<tr>
<td>member ip-address vcid encapsulation mpls</td>
<td>Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# member 10.0.0.2 124 encapsulation mpls</td>
<td>Note Only two member commands are allowed for each l2vpn xconnect context command.</td>
</tr>
<tr>
<td><strong>Step 16</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits Xconnect configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 17</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 18</strong></td>
<td></td>
</tr>
<tr>
<td>show l2vpn atom vc [vcid [vc-id</td>
<td>vc-id-min vc-id-max]] [interface type number [local-circuit-id]] [destination ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show l2vpn atom vc</td>
<td></td>
</tr>
<tr>
<td><strong>Step 19</strong></td>
<td></td>
</tr>
<tr>
<td>ping [protocol] [tag] {hostname</td>
<td>system-address}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring

Use the following procedure to configure L2VPN Pseudowire Switching on each of the PE-aggr routers.

Before you begin

- This procedure assumes that you have configured basic AToM L2VPNs. This procedure does not explain how to configure basic AToM L2VPNs that transport Layer 2 packets over an MPLS backbone. For information on the basic configuration, see Any Transport over MPLS.
- For inter-Autonomous configurations, ASBRs require a labeled interface.

Note

In this configuration, you are limited to two `neighbor` commands after entering the `l2 vfi` command.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2 vfi name point-to-point
4. neighbor ip-address vcid encapsulation mpls | pw-class pw-class-name
5. exit
6. exit
7. show mpls l2transport vc [vcid [ve-id | [ve-id-min ve-id-max]] [interface name[local-circuit-id]] [destination ip-address | name] [detail]
8. show vfi [vfi-name]
9. ping [protocol] [tag] {host-name|system-address}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>l2 vfi name point-to-point</code></td>
<td>Creates a point-to-point Layer 2 virtual forwarding interface (VFI) and enters VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config)# l2 vfi atomtunnel point-to-point</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>`neighbor ip-address vcid encapsulation mpls</td>
<td>pw-class pw-class-name`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-vfi)# neighbor 10.0.0.1 100 pw-class mpls</code></td>
<td><strong>Note</strong> Only two <code>neighbor</code> commands are allowed for each <code>l2 vfi point-to-point</code> command.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code></td>
<td>Exits VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-vfi)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>exit</code></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>`show mpls l2transport vc [vc-id</td>
<td>[vc-id-min vc-id-max]] [interface name[local-circuit-id]] [destination ip-address</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router# show mpls l2transport vc</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>show vfi [vfi-name]</code></td>
<td>Verifies that a point-to-point VFI has been established.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router# show vfi atomtunnel</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>`ping [protocol] [tag] {host-name</td>
<td>system-address}`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router# ping 10.1.1.1</code></td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

The following example displays the output of the `show mpls l2transport vc` command:

```plaintext
Router# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
```

---

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
The following example displays the output of the `show vfi` command:

```
Router# show vfi
VFI name: test, type: point-to-point
Neighbors connected via pseudowires:
 Router ID Pseudowire ID
 10.0.1.1 100
 10.0.1.1 100
```

## Configuration Examples for L2VPN Pseudowire Switching

### L2VPN Pseudowire Switching in an Inter-AS Configuration Example

Two separate autonomous systems are able to pass L2VPN packets, because the two PE-agg routers have been configured with L2VPN Pseudowire Switching. This example configuration is shown in the figure below.

*Figure 36: L2VPN Pseudowire Switching in an InterAutonomous System*
<table>
<thead>
<tr>
<th>CE1</th>
<th>CE2</th>
</tr>
</thead>
</table>

L2VPN Pseudowire Switching in an Inter-AS Configuration Example
### CE1

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version 12.0</td>
<td>Set the IOS version</td>
</tr>
<tr>
<td>service timestamps debug uptime</td>
<td>Enable debug timestamps</td>
</tr>
<tr>
<td>service timestamps log uptime</td>
<td>Enable log timestamps</td>
</tr>
<tr>
<td>service password-encryption</td>
<td>Enable password encryption</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>hostname [ce1]</td>
<td>Set the hostname</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>boot-start-marker</td>
<td>Set boot-start marker</td>
</tr>
<tr>
<td>boot-end-marker</td>
<td>Set boot-end marker</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>enable secret 5 $1$5o9N6$LStxHufTn0vjCY0nWbQP</td>
<td>Set the enable secret</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ip subnet-zero</td>
<td>Enable IP subnet-zero</td>
</tr>
<tr>
<td>ip cef</td>
<td>Enable IP CEF</td>
</tr>
<tr>
<td>no ip domain-lookup</td>
<td>Disable domain-lookup</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>interface FastEthernet0/0/0</td>
<td>Configure FastEthernet0</td>
</tr>
<tr>
<td>ip address 10.0.0.1 255.255.255.252</td>
<td>Set IP address</td>
</tr>
<tr>
<td>no ip directed-broadcast</td>
<td>Disable directed-broadcast</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ip classless</td>
<td>Enable IP classless</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>control-plane</td>
<td>Enable control-plane</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### CE2

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version 12.0</td>
<td>Set the IOS version</td>
</tr>
<tr>
<td>service timestamps debug uptime</td>
<td>Enable debug timestamps</td>
</tr>
<tr>
<td>service timestamps log uptime</td>
<td>Enable log timestamps</td>
</tr>
<tr>
<td>service password-encryption</td>
<td>Enable password encryption</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>hostname [ce2]</td>
<td>Set the hostname</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>boot-start-marker</td>
<td>Set boot-start marker</td>
</tr>
<tr>
<td>boot-end-marker</td>
<td>Set boot-end marker</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>enable secret 5 $1$YHo6$LQz4zPdrFS9dnL75Xv</td>
<td>Set the enable secret</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ip subnet-zero</td>
<td>Enable IP subnet-zero</td>
</tr>
<tr>
<td>ip cef</td>
<td>Enable IP CEF</td>
</tr>
<tr>
<td>no ip domain-lookup</td>
<td>Disable domain-lookup</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>interface FastEthernet0/0/0</td>
<td>Configure FastEthernet0</td>
</tr>
<tr>
<td>ip address 10.0.0.2 255.255.255.252</td>
<td>Set IP address</td>
</tr>
<tr>
<td>no ip directed-broadcast</td>
<td>Disable directed-broadcast</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ip classless</td>
<td>Enable IP classless</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>control-plane</td>
<td>Enable control-plane</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>L2VPN pseudowire redundancy</td>
<td>“L2VPN Pseudowire Redundancy” feature module in the MPLS Layer 2 VPNs Configuration Guide.</td>
</tr>
<tr>
<td>H-VPLS</td>
<td>“Configuring VPLS” in the “Configuring Multiprotocol Label Switching on the Optical Services Modules” chapter in the Optical Services Modules Installation and Configuration Notes, 12.2SR document.</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
</table>
## Feature Information for L2VPN Pseudowire Switching

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

### Standard

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Private LAN Services over MPLS</td>
</tr>
<tr>
<td>Segmented Pseudo Wire</td>
</tr>
<tr>
<td>Pseudo Wire Virtual Circuit Connectivity Verification (VCCV)</td>
</tr>
<tr>
<td>Pseudo Wire (PW) OAM Message Mapping</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowire Emulation Edge-to-Edge MIBs for Ethernet, Frame Relay, and ATM Services</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
Table 27: Feature Information for L2VPN Pseudowire Switching

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN Pseudowire Switching</td>
<td>Cisco IOS XE</td>
<td>The L2VPN Pseudowire Switching feature extends layer 2 virtual private network (L2VPN) pseudowires across an interautonomous system (inter-AS) boundary or across two separate multiprotocol label switching (MPLS) networks. In Cisco IOS XE Release 2.4, the L2VPN Pseudowire Switching feature is supported with Ethernet over MPLS. The following commands were introduced or modified: <code>l2 vfi point-to-point, neighbor(L2VPN Pseudowire Switching), show vfi</code>.</td>
</tr>
<tr>
<td></td>
<td>Release 2.4</td>
<td></td>
</tr>
<tr>
<td>L2VPN Pseudowire-Switching</td>
<td>Cisco IOS Fuji 16.9.1</td>
<td>In Cisco IOS XE Fuji 16.9.1, the L2VPN Pseudowire Switching feature is supported on Cisco 1000 Series ISRs.</td>
</tr>
</tbody>
</table>
CHAPTER 16

Xconnect as a Client of BFD

The Xconnect as a Client of Bidirectional Forwarding Detection (BFD) feature provides a trigger for redundant pseudowire switchover based on BFD’s fast failure detection capabilities.

- Finding Feature Information, on page 477
- Information About Xconnect as a Client of BFD, on page 477
- How to Configure Xconnect as a Client of BFD, on page 478
- Configuration Examples for Xconnect as a Client of BFD, on page 479
- Additional References, on page 479
- Feature Information for Xconnect as a Client of BFD, on page 481

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Xconnect as a Client of BFD

Xconnect as a Client of BFD

Redundant pseudowires are deployed to provide fault tolerance and resiliency to L2VPN-backhauled connections. The speed at which a system recovers from failures, especially when scaled to large numbers of pseudowires, is critical to many service providers and service level agreements (SLAs). The configuration of a trigger for redundant pseudowire switchover reduces the time that it takes a large number of pseudowires to failover. A fundamental component of bidirectional forwarding detection (BFD) capability is enabled by fast-failure detection (FFD).

The configuration of this feature refers to a BFD configuration, such as the following (the second URL in the bfd map command is the loopback URL in the monitor peer bfd command):
### How to Configure Xconnect as a Client of BFD

**Configuring Xconnect as a Client of BFD**

Perform this task to configure a trigger for redundant pseudowire switchover.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class mpls-ffd`
   - Enters pseudowire class configuration mode.
4. `encapsulation mpls`
5. `monitor peer bfd [local interface interface-type interface-number]`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>pseudowire-class mpls-ffd</code></td>
<td>Establishes a pseudowire class for MPLS fast-failure detection.</td>
</tr>
<tr>
<td></td>
<td>• Enters pseudowire class configuration mode.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# pseudowire-class mpls-ffd</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>encapsulation mpls</code></td>
<td>Specifies the tunneling encapsulation to be MPLS.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>monitor peer bfd [local interface interface-type interface-number]</code></td>
<td>Enables the pseudowire fast-failure detection capability.</td>
</tr>
</tbody>
</table>
**Xconnect as a Client of BFD**

**Example: Xconnect as a Client of BFD**

**Pseudowire Class Configuration**
The following example shows pseudowire fast-failure detection enabled for a pseudowire class:

```plaintext
pseudowire-class mpls-ffd
 encapsulation mpls
 monitor peer bfd local interface Loopback0
```

**Template Configuration**
The following example shows pseudowire fast-failure detection enabled in a template:

```plaintext
template type pseudowire 1
 encapsulation mpls
 monitor peer bfd local interface Ethernet0/1
```

**Interface Configuration**
The following example shows pseudowire fast-failure detection enabled for an interface:

```plaintext
interface pseudowire100
 encapsulation mpls
 neighbor 10.10.1.1 21190
 monitor peer bfd local interface Ethernet0/1
```

**Additional References**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
<tr>
<td>High Availability for AToM</td>
<td>AToM Graceful Restart</td>
</tr>
<tr>
<td>L2VPN Interworking</td>
<td>L2VPN Interworking</td>
</tr>
</tbody>
</table>
### Related Topic

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 local switching</td>
<td>Layer 2 Local Switching</td>
</tr>
<tr>
<td>PWE3 MIB</td>
<td>Pseudowire Emulation Edge-to-Edge MIBs for Ethernet and Frame Relay Services</td>
</tr>
<tr>
<td>Packet sequencing</td>
<td>Any Transport over MPLS (AToM) Sequencing Support</td>
</tr>
<tr>
<td>BFD configuration</td>
<td>IP Routing BFD Configuration Guide</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
| None   | To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:  
  http://www.cisco.com/go/mibs |

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
</table>
| The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.  
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.  
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. | [http://www.cisco.com/techsupport](http://www.cisco.com/techsupport) |
Feature Information for Xconnect as a Client of BFD

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 28: Feature Information for Xconnect as a Client of BFD

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xconnect as a Client of BFD</td>
<td>Cisco IOS XE Release 3.8S</td>
<td>This feature provides fast-failure detection for L2VPN pseudowire redundancy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following command was introduced: monitor peer bfd.</td>
</tr>
</tbody>
</table>
Feature Information for Xconnect as a Client of BFD
H-VPLS N-PE Redundancy for QinQ Access

The H-VPLS N-PE Redundancy for QinQ Access feature enables two network provider edge (N-PE) devices to provide failover services to a user provider edge (U-PE) device in a hierarchical virtual private LAN service (H-VPLS). Having redundant N-PE devices provides improved stability and reliability against link and node failures.

- Finding Feature Information, on page 483
- Prerequisites for H-VPLS N-PE Redundancy for QinQ Access, on page 483
- Restrictions for H-VPLS N-PE Redundancy for QinQ Access, on page 484
- Information About H-VPLS N-PE Redundancy for QinQ Access, on page 484
- How to Configure H-VPLS N-PE Redundancy for QinQ Access, on page 485
- Configuration Examples for H-VPLS N-PE Redundancy for QinQ Access, on page 490
- Additional References for L2VPN VPLS Inter-AS Option B, on page 493
- Feature Information for H-VPLS N-PE Redundancy for QinQ Access, on page 494
- Glossary, on page 495

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for H-VPLS N-PE Redundancy for QinQ Access

- Before configuring this feature, configure your hierarchical virtual private LAN service (H-VPLS) network and make sure it is operating correctly.
- Make sure that the PE-to-customer edge (CE) interface is configured with a list of allowed VLANs.
- To provide faster convergence, you can enable the MPLS Traffic Engineering—Fast Reroute feature in the Multiprotocol Label Switching (MPLS) core.
• Enable the L2VPN Pseudowire Redundancy feature on the user provider edge (U-PE) devices for MPLS access.

• When configuring Multiple Spanning Tree Protocol (MSTP), specify that one of the network provider edge (N-PE) devices is the root by assigning it the lowest priority using the `spanning-tree mst instance-id priority` command.

• When configuring MSTP, make sure that each device participating in the spanning tree is in the same region and is the same revision by issuing the `revision`, `name`, and `instance` commands in MST configuration mode.

Restrictions for H-VPLS N-PE Redundancy for QinQ Access

• This feature cannot be used with the VPLS Autodiscovery feature on pseudowires that attach to network provider edge (N-PE) devices. When you create the virtual private LAN service (VPLS), you can manually create the virtual forwarding instance (VFI).

• You cannot configure more than one pseudowire to carry the bridge protocol data unit (BPDU) packets between two redundant network provider edge (N-PE) devices on the same Virtual Private LAN service (VPLS) site.

• You cannot configure a local loopback address as a neighbor when you configure the H-VPLS N-PE Redundancy feature on N-PE devices. If you do so, the following error message is displayed:

  VPLS local switching to peer address not supported

  • Only two N-PE devices can be connected to each U-PE device.

  • The spanning-tree mode must be Multiple Spanning Tree Protocol (MSTP) for the H-VPLS N-PE Redundancy feature. If the spanning-tree mode changes, the H-VPLS N-PE Redundancy feature might not work correctly, even though the pseudowire that carries the BPDU packet still exists and the H-VPLS N-PE Redundancy feature is still configured.

Information About H-VPLS N-PE Redundancy for QinQ Access

How H-VPLS N-PE Redundancy for QinQ Access Works

In a network configured with the H-VPLS N-PE Redundancy feature, the user provider edge (U-PE) device is connected to two network provider edge (N-PE) devices. This feature provides a level of redundancy that can tolerate both link and device faults. If a failure occurs in the network that disables one N-PE device from transmitting data, the other N-PE device takes over. This feature works with both QinQ access based on Multiple Spanning Tree Protocol (MSTP) and Multiprotocol Label Switching (MPLS) access based on pseudowire redundancy.

H-VPLS N-PE Redundancy with QinQ Access Based on MSTP

The H-VPLS N-PE Redundancy with QinQ Access feature uses the Multiple Spanning Tree Protocol (MSTP) running on the network provider edge (N-PE) devices and user provider edge (U-PE) devices in a hierarchical...
Virtual Private LAN service (H-VPLS) network. A pseudowire running between N-PE devices carries only MSTP bridge protocol data units (BPDUs). The pseudowire running between the N-PE devices is always up and is used to create a loop path between N-PE devices so that MSTP blocks one of the redundant paths between the U-PE device and the N-PE devices. If the primary N-PE device or the path to it fails, MSTP enables the path to the backup N-PE device.

The figure below shows an H-VPLS network with redundant access. Each U-PE device has two connections, one to each N-PE device. Between the two N-PE devices is a pseudowire to provide a loop path for MSTP BPDUs. The network topology allows for the backup N-PE device to take over if the primary N-PE device or the path to it fails.

*Figure 37: H-VPLS N-PE Redundancy with QinQ Access Based on MSTP*

How to Configure H-VPLS N-PE Redundancy for QinQ Access

Configuring the VPLS Pseudowire Between the N-PE Devices using the commands associated with the L2VPN Protocol-Based CLIs feature

Configuring network provider edge (N-PE) redundancy in a hierarchical Virtual Private LAN service (H-VPLS) network requires that you configure the VPLS pseudowire for transporting bridge protocol data unit (BPU) packets. For the core pseudowire between the N-PE devices, you configure a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) and attach the VFI to a bridge-domain (described here). Then, in the next task, you bind the service instance to the bridge-domain. This configuration provides a redundancy that provides improved reliability against link and node failures.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. l2vpn vfi context name
4. vpn id vpn id
5. member ip-address encapsulation mpls
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> l2vpn vfi context name</td>
<td>Establishes a L2VPN VFI between two or more separate networks, and enters L2VFI configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# l2vpn vfi context VPLS-10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> vpn id vpn id</td>
<td>Sets a VPN ID on the Virtual Private LAN Services (VPLS) instance.</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# vpn id 10</td>
<td>• Use the same VPN ID for the PE devices that belong to the same VPN.</td>
</tr>
<tr>
<td></td>
<td>• Make sure the VPN ID is unique for each VPN in the service provider network. The range is from 1 to 4294967295.</td>
</tr>
<tr>
<td><strong>Step 5</strong> member ip-address encapsulation mpls</td>
<td>Specifies the devices that form a point-to-point L2VPN VFI connection.</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# member 102.102.102.102 encapsulation mpls</td>
<td>• <code>ip-address</code>—IP address of the VFI neighbor.</td>
</tr>
<tr>
<td></td>
<td>• <code>encapsulation mpls</code>—Specifies Multiprotocol Label Switching (MPLS) as the data encapsulation method.</td>
</tr>
<tr>
<td><strong>Step 6</strong> forward permit l2protocol all</td>
<td>Creates a pseudowire that is to be used to transport BPDU packets between the two N-PE devices.</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# forward permit l2protocol all</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> bridge-domain bridge-id</td>
<td>Configures components on a bridge domain, and enters bridge-domain configuration mode.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Device(config)# bridge-domain 10

Step 9

member vfi vfi-name

Example:

Device(config-bdomain)# member vfi VPLS-10

Configures the VFI member in the bridge-domain.

Step 10

date

Example:

Device(config-bdomain)# end

Returns to privileged EXEC mode.

Configuring the VPLS Pseudowire Between the N-PE Devices using the commands associated with the L2VPN Protocol-Based CLIs feature

Configuring network provider edge (N-PE) redundancy in a hierarchical Virtual Private LAN service (H-VPLS) network requires that you configure the VPLS pseudowire for transporting bridge protocol data unit (BPDU) packets. For the core pseudowire between the N-PE devices, you configure a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) and attach the VFI to a bridge-domain (described here). Then, in the next task, you bind the service instance to the bridge-domain. This configuration provides a redundancy that provides improved reliability against link and node failures.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2vpn vfi context name
4. vpn id vpn id
5. member ip-address encapsulation mpls
6. forward permit l2protocol all
7. exit
8. bridge-domain bridge-id
9. member vfi vfi-name
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

H-VPLS N-PE Redundancy for QinQ Access

Configuring the VPLS Pseudowire Between the N-PE Devices using the commands associated with the L2VPN Protocol-Based CLIs feature
### Purpose

- **Establishes a L2VPN VFI between two or more separate networks, and enters L2VFI configuration mode.**

### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>l2vpn vfi context name</code></td>
<td>Establishes a L2VPN VFI between two or more separate networks, and enters L2VFI configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

```sh
Device(config)# l2vpn vfi context VPLS-10
```

| Step 4 | `vpn id vpn id` | Sets a VPN ID on the Virtual Private LAN Services (VPLS) instance. |

**Example:**

```sh
Device(config-vfi)# vpn id 10
```

- **Use the same VPN ID for the PE devices that belong to the same VPN.**
- **Make sure the VPN ID is unique for each VPN in the service provider network. The range is from 1 to 4294967295.**

| Step 5 | `member ip-address encapsulation mpls` | Specifies the devices that form a point-to-point L2VPN VFI connection. |

**Example:**

```sh
Device(config-vfi)# member 102.102.102.102 encapsulation mpls
```

- **ip-address**—IP address of the VFI neighbor.
- **encapsulation mpls**—Specifies Multiprotocol Label Switching (MPLS) as the data encapsulation method.

| Step 6 | `forward permit l2protocol all` | Creates a pseudowire that is to be used to transport BPDU packets between the two N-PE devices. |

**Example:**

```sh
Device(config-vfi)# forward permit l2protocol all
```

| Step 7 | `exit` | Returns to global configuration mode. |

**Example:**

```sh
Device(config-vfi)# exit
```

| Step 8 | `bridge-domain bridge-id` | Configures components on a bridge domain, and enters bridge-domain configuration mode. |

**Example:**

```sh
Device(config)# bridge-domain 10
```

| Step 9 | `member vfi vfi-name` | Configures the VFI member in the bridge-domain. |

**Example:**

```sh
Device(config-bdomain)# member vfi VPLS-10
```

| Step 10 | `end` | Returns to privileged EXEC mode. |

**Example:**

```sh
Device(config-bdomain)# end
```
Binding the Service Instance to the Bridge-Domain

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation dot1q vlan-id
6. exit
7. bridge-domain bridge-id
8. member interface-type-number service-instance service-id
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.  
<p>| Example: | Device&gt; enable | • Enter your password if prompted. |
| Step 2 | configure terminal | Enters global configuration mode. |
| Example: | Device# configure terminal |
| Step 3 | interface type number | Specifies the interface to configure, and enters interface configuration mode. |
| Example: | Device(config)# interface GigabitEthernet0/1/0 |
| Step 4 | service instance id ethernet | Configures an Ethernet service instance on the interface, and enters Ethernet service configuration mode. |
| Example: | Device(config-if)# service instance 10 ethernet |
| Step 5 | encapsulation dot1q vlan-id | Enables IEEE 802.1Q encapsulation of traffic on the specified interface in a VLAN. |
| Example: | Device(config-if-srv)# encapsulation dot1q 10 |
| Step 6 | exit | Returns to global configuration mode. |
| Example: | Device(config-if-srv)# exit |
| Step 7 | bridge-domain bridge-id | Configures components on the bridge domain, and enters bridge-domain configuration mode. |
| Example: | Device(config)# bridge-domain 10 |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong></td>
<td>Binds the service instance to the bridge-domain instance.</td>
</tr>
<tr>
<td>member interface-type-number service-instance service-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-bdomain)# member GigabitEthernet0/1/0 service-instance 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-bdomain)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Configuration Examples for H-VPLS N-PE Redundancy for QinQ Access**

**Example: H-VPLS N-PE Redundancy for QinQ Access**

The figure below shows a configuration that is set up for the H-VPLS N-PE Redundancy with QinQ Access feature.

*Figure 38: H-VPLS N-PE Redundancy with QinQ Access Topology*

The table below shows the configuration of two network provider edge (N-PE) devices.
**Example: H-VPLS N-PE Redundancy for QinQ Access**

<table>
<thead>
<tr>
<th>N-PE1</th>
<th>N-PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2vpn vfi context VPLS-10</td>
<td>l2vpn vfi context VPLS-10</td>
</tr>
<tr>
<td>vpn id 10</td>
<td>vpn id 10</td>
</tr>
<tr>
<td>member 10.4.4.4 encapsulation mpls</td>
<td>member 10.2.2.2 encapsulation mpls</td>
</tr>
<tr>
<td>forward permit l2protocol all</td>
<td>forward permit l2protocol all</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>bridge-domain 10</td>
<td>bridge-domain 10</td>
</tr>
<tr>
<td>member vfi VPLS-10</td>
<td>member vfi VPLS-10</td>
</tr>
<tr>
<td>member GigabitEthernet5/2 service-instance 10</td>
<td>member GigabitEthernet2/0/5 service-instance 10</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet5/2</td>
<td>interface GigabitEthernet2/0/5</td>
</tr>
<tr>
<td>service instance 10 ethernet</td>
<td>service instance 10 ethernet</td>
</tr>
<tr>
<td>encapsulation dot1q 10</td>
<td>encapsulation dot1q 10</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>spanning-tree mode mst</td>
<td>spanning-tree mode mst</td>
</tr>
<tr>
<td>spanning-tree extend system-id</td>
<td>spanning-tree extend system-id</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>spanning-tree mst configuration</td>
<td>spanning-tree mst configuration</td>
</tr>
<tr>
<td>name myMstName</td>
<td>name myMstName</td>
</tr>
<tr>
<td>revision 10</td>
<td>revision 10</td>
</tr>
<tr>
<td>instance 1 vlan 10</td>
<td>instance 1 vlan 20</td>
</tr>
</tbody>
</table>

**Example: H-VPLS N-PE Redundancy for MPLS Access using the commands associated with the L2VPN Protocol-Based CLIs feature**

The figure below shows a configuration that is set up for the H-VPLS N-PE Redundancy with MPLS Access feature. Because there is no option to configure multihoming on access VPLS, the xconnect command is used with priority on uPE1.

*Figure 39: H-VPLS N-PE Redundancy with MPLS Access Topology*

**nPE1 Configuration**

l2vpn vfi context VPLS-10
vpn id 10
member 102.102.102.102 encapsulation mpls
member 103.103.103.103 encapsulation mpls
!
bridge-domain 10
member vfi VPLS-10
member 105.105.105.105 10 encapsulation mpls

nPE2 Configuration

l2vpn vfi context VPLS-10
vpn id 10
member 101.101.101.101 encapsulation mpls
member 102.102.102.102 encapsulation mpls
!
bridge-domain 10
member vfi VPLS-10
member 105.105.105.105 10 encapsulation mpls

nPE3 Configuration

l2vpn vfi context VPLS-10
vpn id 10
member 101.101.101.101 encapsulation mpls
member 102.102.102.102 encapsulation mpls
!
bridge-domain 10
member vfi VPLS-10

uPE1 Configuration

interface GigabitEthernet0/1/0
  service instance 10 ethernet
  encapsulation dot1q 10
!
l2vpn xconnect context XC-10
  member GigabitEthernet0/1/0 service-instance 10
  member 101.101.101.101 10 encapsulation mpls group pwred priority 9
  member 102.102.102.102 10 encapsulation mpls group pwred priority 10

Sample Output on uPE1

Device# show l2vpn service peer 101.101.101.101 vcid 10

<table>
<thead>
<tr>
<th>Interface</th>
<th>Group</th>
<th>Encapsulation</th>
<th>Prio</th>
<th>St</th>
<th>XC St</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eth1/1.1</td>
<td>blue</td>
<td>Eth1/1.1:100(Eth VLAN)</td>
<td>0</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>pw101</td>
<td>blue</td>
<td>102.1.1.1:100(MPLS)</td>
<td>2</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>pw102</td>
<td>blue</td>
<td>103.1.1.1:100(MPLS)</td>
<td>5</td>
<td>SB</td>
<td>IA</td>
</tr>
<tr>
<td>pw103</td>
<td>blue</td>
<td>104.1.1.1:100(MPLS)</td>
<td>8</td>
<td>SB</td>
<td>IA</td>
</tr>
<tr>
<td>pw104</td>
<td>blue</td>
<td>105.1.1.1:100(MPLS)</td>
<td>11</td>
<td>SB</td>
<td>IA</td>
</tr>
</tbody>
</table>

Device# show l2vpn service peer 102.102.102.102 vcid 10

---

H-VPLS N-PE Redundancy for QinQ Access

Example: H-VPLS N-PE Redundancy for MPLS Access using the commands associated with the L2VPN Protocol-Based CLIs feature
Additional References for L2VPN VPLS Inter-AS Option B

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>IP Routing (BGP) commands</td>
<td>Cisco IOS IP Routing: BGP Command Reference</td>
</tr>
<tr>
<td>Concepts and tasks related to configuring the VPLS Autodiscovery: BGP Based feature.</td>
<td>VPLS Autodiscovery BGP Based</td>
</tr>
<tr>
<td>BGP support for the L2VPN address family</td>
<td>BGP Support for the L2VPN Address Family</td>
</tr>
<tr>
<td>“VPLS Overview” section in the Configuring Multiprotocol Label Switching on the Optical Services Modules document</td>
<td></td>
</tr>
<tr>
<td>L2VPN multisegment pseudowires, MPLS OAM support for L2VPN multisegment pseudowires, MPLS OAM support for L2VPN inter-AS option B</td>
<td>L2VPN Multisegment Pseudowires</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported, and support for existing standards has not been modified.</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported, and support for existing standards has not been modified.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4360</td>
<td><em>BGP Extended Communities Attribute</em></td>
</tr>
<tr>
<td>RFC 4364</td>
<td><em>BGP/MPLS IP Virtual Private Networks (VPNs)</em></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for H-VPLS N-PE Redundancy for QinQ Access

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 30: Feature Information for H-VPLS N-PE Redundancy for QinQ Access

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-VPLS N-PE Redundancy for QinQ Access</td>
<td>12.2(33)SRC</td>
<td>The H-VPLS N-PE Redundancy for QinQ Access feature provides the capability to dual-home a given user provider edge (U-PE) device to two network provider edge (N-PE) devices in order to provide protection against link and node failures.</td>
</tr>
<tr>
<td></td>
<td>12.2(50)SY</td>
<td>In Cisco IOS Release 12.2(33)SRC, this feature was introduced on the Cisco 7600 series routers.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE</td>
<td>In Cisco IOS Release 12.2(50)SY, this feature was integrated.</td>
</tr>
<tr>
<td></td>
<td>Release 3.8S</td>
<td>In Cisco IOS XE Release 3.8S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: <code>forward permit l2protocol</code>, <code>show mpls l2transport vc</code>.</td>
</tr>
</tbody>
</table>

Glossary

**CE device**—customer edge device. A device that belongs to a customer network, which connects to a PE device to utilize MPLS VPN network services.

**LAN**—local-area network. High-speed, low-error data network covering a relatively small geographic area. LANs connect workstations, peripherals, terminals, and other devices in a single building or other geographically limited areas.

**MPLS**—Multiprotocol Label Switching. A packet-forwarding technology, used in the network core, that applies data link layer labels to tell switching nodes how to forward data, resulting in faster and more scalable forwarding than network layer routing normally can do.

**MSTP**—Multiple Spanning Tree Protocol. MSTP enables multiple VLANs to be mapped to the same spanning-tree instance, reducing the number of spanning-tree instances needed to support a large number of VLANs.

**N-PE**—network provider edge device. This device acts as a gateway between the MPLS core and edge domains.

**PE device**—provider edge device. The PE device is the entry point into the service provider network. The PE device is typically deployed on the edge of the network and is administered by the service provider.

**pseudowire**—A pseudowire is a virtual connection that, in the context of VPLS, connects two SVIs. It is a mechanism that carries the elements of an emulated service from one PE device to one or more PE devices over a packet switched network (PSN). A pseudowire is bidirectional and consists of a pair of unidirectional MPLS virtual circuits (VCs). A pseudowire can be used to connect a point-to-point circuit.

**QinQ**—An IEEE 802.1Q VLAN tunnel. A mechanism for constructing multipoint Layer 2 VPN using Ethernet switches.

**redundancy**—The duplication of devices, services, or connections so that, in the event of a failure, they can perform the work of those that failed.
**router**—A network layer device that uses one or more metrics to determine the optimal path along which network traffic should be forwarded. Routers forward packets from one network to another based on network layer information.

**spanning tree**—Loop-free subset of a network topology.

**U-PE**—user provider edge device. This device connects CE devices to the service.

**VFI**—virtual forwarding instance. A VFI is a collection of data structures used by the data plane, software-based or hardware-based, to forward packets to one or more VCs.

**VLAN**—Virtual LAN. Group of devices on one or more LANs that are configured (using management software) so that they can communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments.

**VPLS**—Virtual Private LAN Service. VPLS describes an architecture that delivers Layer 2 service that emulates an Ethernet LAN across a wide-area network (WAN) and inherits the scaling characteristics of a LAN.

**VPLS redundancy**—Also called N-PE redundancy. Allows U-PEs to be dual-homed (to their N-PEs) in a loop-free topology with MPLS or QinQ as the access or aggregation domain.

**VPN**—Virtual Private Network. Allows IP traffic to travel securely over public TCP/IP networks and the Internet by encapsulating and encrypting all IP packets. VPN uses a tunnel to encrypt all information at the IP level.
The H-VPLS N-PE Redundancy for MPLS Access feature enables two network provider edge (N-PE) devices to provide failover services to a user provider edge (U-PE) device in a hierarchical virtual private LAN service (H-VPLS). Having redundant N-PE devices provides improved stability and reliability against link and node failures.

- Finding Feature Information, on page 497
- Prerequisites for H-VPLS N-PE Redundancy for MPLS Access, on page 497
- Restrictions for H-VPLS N-PE Redundancy for MPLS Access, on page 498
- Information About H-VPLS N-PE Redundancy for MPLS Access, on page 498
- How to Configure H-VPLS N-PE Redundancy for MPLS Access, on page 499
- Configuration Examples for H-VPLS N-PE Redundancy for MPLS Access, on page 502
- Additional References for L2VPN VPLS Inter-AS Option B, on page 504
- Feature Information for H-VPLS N-PE Redundancy for MPLS Access, on page 505
- Glossary, on page 506

**Finding Feature Information**

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

**Prerequisites for H-VPLS N-PE Redundancy for MPLS Access**

- Before configuring this feature, configure your hierarchical virtual private LAN service (H-VPLS) network and make sure it is operating correctly.

- To provide faster convergence, you can enable the MPLS Traffic Engineering—Fast Reroute feature in the Multiprotocol Label Switching (MPLS) core.

- Enable the L2VPN Pseudowire Redundancy feature on the user provider edge (U-PE) devices for MPLS access.
Restrictions for H-VPLS N-PE Redundancy for MPLS Access

- This feature cannot be used with the VPLS Autodiscovery feature on pseudowires that attach to user provider edge (U-PE) devices. When you create the virtual private LAN service (VPLS), you can manually create the virtual forwarding interface (VFI).
- You cannot configure more than one pseudowire to carry the bridge protocol data unit (BPDU) information between the network provider edge (N-PE) devices.
- You cannot configure a local loopback address as a neighbor when you configure the H-VPLS N-PE Redundancy feature on N-PE devices.
- Only two N-PE devices can be connected to each U-PE device.

Information About H-VPLS N-PE Redundancy for MPLS Access

How H-VPLS N-PE Redundancy for MPLS Access

In a network configured with the H-VPLS N-PE Redundancy feature, the user provider edge (U-PE) device is connected to two network provider edge (N-PE) devices. This feature provides a level of redundancy that can tolerate both link and device faults. If a failure occurs in the network that disables one N-PE device from transmitting data, the other N-PE device takes over.

H-VPLS N-PE Redundancy with MPLS Access Based on Pseudowire Redundancy

For the H-VPLS Redundancy with MPLS Access feature based on pseudowire redundancy, the Multiprotocol Label Switching (MPLS) network has pseudowires to the virtual private LAN service (VPLS) core network provider edge (N-PE) devices.

As shown in the figure below, one pseudowire transports data between the user provider edge (U-PE) device and its peer N-PE devices. When a failure occurs along the path of the U-PE device, the backup pseudowire and the redundant N-PE device become active and start transporting data.
How to Configure H-VPLS N-PE Redundancy for MPLS Access

Specifying the Devices in the Layer 2 VPN VFI

Repeat this task on each N-PE device that is part of the pseudowire redundancy.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2vpn vfi context name
4. vpn id vpn id
5. member ip-address encapsulation mpls
6. exit
7. bridge-domain bridge-id
8. member vfi vfi-name
9. member ip-address [vc-id] encapsulation mpls
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Establishes a L2VPN VFI between two or more separate networks, and enters L2VFI configuration mode.</td>
<td></td>
</tr>
<tr>
<td>l2vpn vfi context name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# l2vpn vfi context VPLS-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Sets a VPN ID on the Virtual Private LAN Services (VPLS) instance.</td>
<td></td>
</tr>
<tr>
<td>vpn id vpn id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# vpn id 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Use the same VPN ID for the PE devices that belong to the same VPN.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Make sure the VPN ID is unique for each VPN in the service provider network. The range is from 1 to 4294967295.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Specifies the device that forms a point-to-point L2VPN VFI connection.</td>
<td></td>
</tr>
<tr>
<td>member ip-address encapsulation mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# member 102.102.102.102 encapsulation mpls</td>
<td>Specifying the Devices in the Layer 2 VPN VFI</td>
<td></td>
</tr>
<tr>
<td>• ip-address—IP address of the VFI neighbor (the N-PE device).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• encapsulation mpls—Specifies Multiprotocol Label Switching (MPLS) as the data encapsulation method.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Returns to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Configures components on a bridge domain, and enters bridge-domain configuration mode.</td>
<td></td>
</tr>
<tr>
<td>bridge-domain bridge-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# bridge-domain 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Configures the VFI member in the bridge-domain.</td>
<td></td>
</tr>
<tr>
<td>member vfi vfi-name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-bdomain)# member vfi VPLS-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Specifies the device that forms a point-to-point Layer 2 VPN (L2VPN) VFI connection.</td>
<td></td>
</tr>
<tr>
<td>member ip-address [vc-id] encapsulation mpls</td>
<td>Specifying the Devices in the Layer 2 VPN VFI</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# member 105.105.105.105 10 encapsulation mpls</td>
<td>• ip-address—IP address of the VFI neighbor (U-PE device).</td>
<td></td>
</tr>
<tr>
<td>• vc-id—Virtual circuit identifier.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• encapsulation mpls—Specifies MPLS as the data encapsulation method.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-bdomain)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Specifying the N-PE Devices That Form the Layer 2 VPN Cross Connection With the U-PE

Perform this task on the U-PE device.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `service instance id ethernet`
5. `encapsulation dot1q vlan-id`
6. `exit`
7. `exit`
8. `l2vpn xconnect context context-name`
9. `member gigabitethernet interface-number [service-instance id]`
10. `member ip-address vc-id encapsulation mpls [group group-name [priority number]]`
11. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1    | `enable`          | Enables privileged EXEC mode.  
  **Example:**  
  `Device> enable`  
  • Enter your password if prompted. |
| 2    | `configure terminal` | Enters global configuration mode.  
  **Example:**  
  `Device# configure terminal` |
| 3    | `interface type number` | Specifies the interface to configure, and enters interface configuration mode.  
  **Example:**  
  `Device(config)# interface GigabitEthernet0/1/0` |
| 4    | `service instance id ethernet` | Configures an Ethernet service instance on the interface, and enters Ethernet service configuration mode.  
  **Example:**  
  `Device(config-if)# service instance 10 ethernet` |
| 5    | `encapsulation dot1q vlan-id` | Defines the matching criteria to map 802.1Q frames ingress on the interface to the appropriate service instance.  
  **Example:**  
  `Device(config-if-srv)# encapsulation dot1q 10` |
| 6    | `exit`            | Returns to interface configuration mode.  
  **Example:**  
  `Device(config-if-srv)# exit` |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td>l2vpn xconnect context context-name</td>
<td>Creates a Layer 2 VPN (L2VPN) cross-connect context, and enters xconnect configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# l2vpn xconnect context XC-10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
</tr>
<tr>
<td>member gigabitethernet interface-number [service-instance id]</td>
<td>Specifies devices that form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# member GigabitEthernet0/1/0 service-instance 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td></td>
</tr>
<tr>
<td>member ip-address vc-id encapsulation mpls [group group-name [priority number]]</td>
<td>Specifies devices that form a Layer 2 VPN (L2VPN) cross connect.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# member 101.101.101.101 10 encapsulation mpls group pwred priority 9</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# member 102.102.102.102 10 encapsulation mpls group pwred priority 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-xconnect)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Configuration Examples for H-VPLS N-PE Redundancy for MPLS Access

#### Example: H-VPLS N-PE Redundancy for MPLS Access

The figure below shows a configuration that is set up for the H-VPLS N-PE Redundancy with MPLS Access feature. Since there is no option to configure multihoming on access VPLS, the `xconnect` command is used with priority on uPE1. Please let me know if you need any other info.
nPE1 Configuration

l2vpn vfi context VPLS-10
  vpn id 10
  member 102.102.102.102 encapsulation mpls
  member 103.103.103.103 encapsulation mpls

  bridge-domain 10
  member vfi VPLS-10
  member 105.105.105.105 10 encapsulation mpls

nPE2 Configuration

l2vpn vfi context VPLS-10
  vpn id 10
  member 101.101.101.101 encapsulation mpls
  member 103.103.103.103 encapsulation mpls

  bridge-domain 10
  member vfi VPLS-10
  member 105.105.105.105 10 encapsulation mpls

nPE3 Configuration

l2vpn vfi context VPLS-10
  vpn id 10
  member 101.101.101.101 encapsulation mpls
  member 102.102.102.102 encapsulation mpls

  bridge-domain 10
  member vfi VPLS-10

uPE1 Configuration

interface GigabitEthernet0/1/0
  service instance 10 ethernet
  encapsulation dot1q 10

  l2vpn xconnect context XC-10
  member GigabitEthernet0/1/0 service-instance 10
  member 101.101.101.101 10 encapsulation mpls group pwred priority 9
  member 102.102.102.102 10 encapsulation mpls group pwred priority 10

Example: H-VPLS N-PE Redundancy for MPLS Access
### Additional References for L2VPN VPLS Inter-AS Option B

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>IP Routing (BGP) commands</td>
<td>Cisco IOS IP Routing: BGP Command Reference</td>
</tr>
<tr>
<td>Concepts and tasks related to configuring the VPLS Autodiscovery: BGP Based feature.</td>
<td>VPLS Autodiscovery BGP Based</td>
</tr>
<tr>
<td>BGP support for the L2VPN address family</td>
<td>BGP Support for the L2VPN Address Family</td>
</tr>
<tr>
<td>VPLS</td>
<td>“VPLS Overview” section in the Configuring Multiprotocol Label Switching on the Optical Services Modules document</td>
</tr>
<tr>
<td>L2VPN multisegment pseudowires, MPLS OAM support for L2VPN multisegment pseudowires, MPLS OAM support for L2VPN inter-AS option B</td>
<td>L2VPN Multisegment Pseudowires</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported, and support for existing standards has not been modified.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported, and support for existing standards has not been modified.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4360</td>
<td>BGP Extended Communities Attribute</td>
</tr>
<tr>
<td>RFC 4364</td>
<td>BGP/MPLS IP Virtual Private Networks (VPNs)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for H-VPLS N-PE Redundancy for MPLS Access

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Glossary

**CE device**—customer edge device. A device that belongs to a customer network, which connects to a PE device to utilize MPLS VPN network services.

**LAN**—local-area network. High-speed, low-error data network covering a relatively small geographic area. LANs connect workstations, peripherals, terminals, and other devices in a single building or other geographically limited areas.

**MPLS**—Multiprotocol Label Switching. A packet-forwarding technology, used in the network core, that applies data link layer labels to tell switching nodes how to forward data, resulting in faster and more scalable forwarding than network layer routing normally can do.

**MSTP**—Multiple Spanning Tree Protocol. MSTP enables multiple VLANs to be mapped to the same spanning-tree instance, reducing the number of spanning-tree instances needed to support a large number of VLANs.

**N-PE**—network provider edge device. This device acts as a gateway between the MPLS core and edge domains.

**PE device**—provider edge device. The PE device is the entry point into the service provider network. The PE device is typically deployed on the edge of the network and is administered by the service provider.

**pseudowire**—A pseudowire is a virtual connection that, in the context of VPLS, connects two SVIs. It is a mechanism that carries the elements of an emulated service from one PE device to one or more PE devices over a packet switched network (PSN). A pseudowire is bidirectional and consists of a pair of unidirectional MPLS virtual circuits (VCs). A pseudowire can be used to connect a point-to-point circuit.

**QinQ**—An IEEE 802.1Q VLAN tunnel. A mechanism for constructing multipoint Layer 2 VPN using Ethernet switches.

---

### Table 31: Feature Information for H-VPLS N-PE Redundancy for MPLS Access

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-VPLS N-PE Redundancy for MPLS Access</td>
<td>Cisco IOS XE Release 3.6S</td>
<td>The H-VPLS N-PE Redundancy for MPLS Access feature enables two network provider edge (N-PE) devices to provide redundancy to a user provider edge (U-PE) device in a hierarchical virtual private LAN service (H-VPLS). Having redundant N-PE devices provides improved stability and reliability against link and node failures. In Cisco IOS XE Release 3.6S, support was added for the Cisco ASR 903 Router. The following commands were introduced or modified: <code>forward permit l2protocol</code>, <code>show mpls l2transport vc</code>.</td>
</tr>
</tbody>
</table>
**redundancy**—The duplication of devices, services, or connections so that, in the event of a failure, they can perform the work of those that failed.

**router**—A network layer device that uses one or more metrics to determine the optimal path along which network traffic should be forwarded. Routers forward packets from one network to another based on network layer information.

**spanning tree**—Loop-free subset of a network topology.

**U-PE**—user provider edge device. This device connects CE devices to the service.

**VFI**—virtual forwarding instance. A VFI is a collection of data structures used by the data plane, software-based or hardware-based, to forward packets to one or more VCs.

**VLAN**—Virtual LAN. Group of devices on one or more LANs that are configured (using management software) so that they can communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments.

**VPLS**—Virtual Private LAN Service. VPLS describes an architecture that delivers Layer 2 service that emulates an Ethernet LAN across a wide-area network (WAN) and inherits the scaling characteristics of a LAN.

**VPLS redundancy**—Also called N-PE redundancy. Allows U-PEs to be dual-honed (to their N-PEs) in a loop-free topology with MPLS or QinQ as the access or aggregation domain.

**VPN**—Virtual Private Network. Allows IP traffic to travel securely over public TCP/IP networks and the Internet by encapsulating and encrypting all IP packets. VPN uses a tunnel to encrypt all information at the IP level.
VPLS MAC Address Withdrawal

The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. A Label Distribution Protocol (LDP)-based MAC address withdrawal message is used for this purpose. A MAC list Type Length Value (TLV) is part of the MAC address withdrawal message. No configuration is needed.

- Finding Feature Information, on page 509
- Information About VPLS MAC Address Withdrawal, on page 509
- Additional References for Any Transport over MPLS, on page 511
- Feature Information for VPLS MAC Address Withdrawal, on page 512

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About VPLS MAC Address Withdrawal

VPLS MAC Address Withdrawal

The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. A Label Distribution Protocol (LDP)-based MAC address withdrawal message is used for this purpose. A MAC list Type Length Value (TLV) is part of the MAC address withdrawal message.

The **debug mpls ldp messages** and **debug mpls ldp session io** commands support monitoring of MAC address withdrawal messages being exchanged between LDP peers. Any Transport over Multiprotocol Label Switching (AToM) might provide other means to display or monitor MAC address withdrawal messages. The Tag Distribution Protocol (TDP) is not supported because AToM uses only LDP for the MAC address withdrawal message.
PE devices learn the remote MAC addresses and directly attached MAC addresses on customer-facing ports by deriving the topology and forwarding information from packets originating at customer sites. To display the number of MAC address withdrawal messages, enter the `show mpls l2transport vc detail` command, as shown in the following example:

```plaintext
Device# show mpls l2transport vc detail
Local interface: VFI TEST VFI up
 MPLS VC type is VFI, interworking type is Ethernet
 Destination address: 10.1.1.1, VC ID: 1000, VC status: up
 Output interface: Se2/0, imposed label stack (17)
 Preferred path: not configured
 Default path: active
 Next hop: point2point
 Create time: 00:04:34, last status change time: 00:04:15
 Targeted Hello: 10.1.1.1(LDP Id) -> 10.1.1.1
 MPLS VC labels: local 16, remote 17
 Group ID: local 0, remote 0
 MTU: local 1500, remote 1500
 Remote interface description:
 MAC Withdraw: sent 5, received 3
 Sequencing: receive disabled, send disabled
 VC statistics:
 packet totals: receive 0, send 0
 byte totals: receive 0, send 0
 packet drops: receive 0, send 0
```

**VPLS MAC Address Withdrawal Using Commands Associated with L2VPN Protocol-Based Feature**

The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. A Label Distribution Protocol (LDP)-based MAC address withdrawal message is used for this purpose. A MAC list Type Length Value (TLV) is part of the MAC address withdrawal message.

The `debug mpls ldp messages` and `debug mpls ldp session io` commands support monitoring of MAC address withdrawal messages being exchanged between LDP peers. Any Transport over Multiprotocol Label Switching (AToM) might provide other means to display or monitor MAC address withdrawal messages. The Tag Distribution Protocol (TDP) is not supported because AToM uses only LDP for the MAC address withdrawal message.

PE devices learn the remote MAC addresses and directly attached MAC addresses on customer-facing ports by deriving the topology and forwarding information from packets originating at customer sites. To display the number of MAC address withdrawal messages, enter the `show l2vpn atom vc detail` command, as shown in the following example:

```plaintext
Device# show l2vpn atom vc detail
Local interface: VFI TEST VFI up
 MPLS VC type is VFI, interworking type is Ethernet
 Destination address: 10.1.1.1, VC ID: 1000, VC status: up
 Output interface: Se2/0, imposed label stack (17)
 Preferred path: not configured
 Default path: active
 Next hop: point2point
 Create time: 00:04:34, last status change time: 00:04:15
```

---

**MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x**

510
How MAC Address Withdrawal Works with H-VPLS N-PE Redundancy with MPLS Access

If the pseudowire between the user provider edge (U-PE) device and network provider edge (N-PE) device fails, the L2VPN Pseudowire Redundancy feature on the U-PE device activates the standby pseudowire. In addition, the U-PE device sends a Label Distribution Protocol (LDP) MAC address withdrawal request to the new N-PE device, which forwards the message to all pseudowires in the virtual private LAN service (VPLS) core and flushes its MAC address table.

If a failure occurs on the N-PE device, the L2VPN Pseudowire Redundancy feature activates the standby pseudowire and the U-PE device sends a MAC withdrawal message to the newly active N-PE device.

How MAC Address Withdrawal Works with H-VPLS N-PE Redundancy with QinQ Access

If a failure occurs in the customer-switched network, a spanning-tree Topology Change Notification (TCN) is issued to the network provider edge (N-PE) device, which issues a Label Distribution Protocol (LDP)-based MAC address withdrawal message to the peer N-PE devices and flushes its MAC address table.

Additional References for Any Transport over MPLS

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>
### Feature Information for VPLS MAC Address Withdrawal

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLS MAC Address Withdrawal</td>
<td>Cisco IOS XE Release 3.5S</td>
<td>The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. In Cisco IOS XE Release 3.5S, support was added for the Cisco ASR 903 Router. No commands were introduced or modified.</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
CHAPTER 20

Configuring Virtual Private LAN Services

Virtual Private LAN Services (VPLS) enables enterprises to link together their Ethernet-based LANs from multiple sites via the infrastructure provided by their service provider.

This module explains VPLS and how to configure it.

- Finding Feature Information, on page 513
- Prerequisites for Virtual Private LAN Services, on page 513
- Restrictions for Virtual Private LAN Services, on page 514
- Information About Virtual Private LAN Services, on page 514
- How to Configure Virtual Private LAN Services, on page 518
- Configuration Examples for Virtual Private LAN Services, on page 546
- Feature Information for Configuring Virtual Private LAN Services, on page 557

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Virtual Private LAN Services

Before you configure Virtual Private LAN Services (VPLS), ensure that the network is configured as follows:

- Configure IP routing in the core so that provider edge (PE) devices can reach each other via IP.
- Configure Multiprotocol Label Switching (MPLS) in the core so that a label switched path (LSP) exists between PE devices.
- Configure a loopback interface for originating and terminating Layer 2 traffic. Ensure that PE devices can access the loopback interface of the other device. Note that the loopback interface is not required in all cases. For example, tunnel selection does not need a loopback interface when VPLS is directly mapped to a traffic engineering (TE) tunnel.
• Identify peer PE devices and attach Layer 2 circuits to VPLS at each PE device.

Restrictions for Virtual Private LAN Services

The following general restrictions apply to all transport types under Virtual Private LAN Services (VPLS):

• If you do not enable the EFP feature template, then there is no traffic flow between EFP and VFI (when EFP is with Split Horizon group and VFI is default). But when you enable the EFP feature template, then there is traffic flow between EFP and VFI because of design limitations.

• Supported maximum values:
  • Total number of virtual forwarding instances (VFIs): 4096 (4 K)

• Software-based data plane is not supported.
• Load sharing and failover on redundant customer-edge-provider-edge (CE-PE) links are not supported.

Information About Virtual Private LAN Services

VPLS Overview

Virtual Private LAN Services (VPLS) enables enterprises to link together their Ethernet-based LANs from multiple sites via the infrastructure provided by their service provider. From the enterprise perspective, the service provider’s public network looks like one giant Ethernet LAN. For the service provider, VPLS provides an opportunity to deploy another revenue-generating service on top of the existing network without major capital expenditures. Operators can extend the operational life of equipment in their network.

VPLS uses the provider core to join multiple attachment circuits together to simulate a virtual bridge that connects the multiple attachment circuits together. From a customer point of view, there is no topology for VPLS. All customer edge (CE) devices appear to connect to a logical bridge emulated by the provider core (see the figure below).

*Figure 42: VPLS Topology*
Full-Mesh Configuration

A full-mesh configuration requires a full mesh of tunnel label switched paths (LSPs) between all provider edge (PE) devices that participate in Virtual Private LAN Services (VPLS). With a full mesh, signaling overhead and packet replication requirements for each provisioned virtual circuit (VC) on a PE can be high.

You set up a VPLS by first creating a virtual forwarding instance (VFI) on each participating PE device. The VFI specifies the VPN ID of a VPLS domain, the addresses of other PE devices in the domain, and the type of tunnel signaling and encapsulation mechanism for each peer PE device.

The set of VFIs formed by the interconnection of the emulated VCs is called a VPLS instance; it is the VPLS instance that forms the logic bridge over a packet switched network. After the VFI has been defined, it needs to be bound to an attachment circuit to the CE device. The VPLS instance is assigned a unique VPN ID.

PE devices use the VFI to establish a full-mesh LSP of emulated VCs to all other PE devices in the VPLS instance. PE devices obtain the membership of a VPLS instance through static configuration using the Cisco IOS CLI.

A full-mesh configuration allows the PE device to maintain a single broadcast domain. When the PE device receives a broadcast, multicast, or unknown unicast packet on an attachment circuit (AC), it sends the packet out on all other ACs and emulated circuits to all other CE devices participating in that VPLS instance. The CE devices see the VPLS instance as an emulated LAN.

To avoid the problem of a packet looping in the provider core, PE devices enforce a “split-horizon” principle for emulated VCs. In a split horizon, if a packet is received on an emulated VC, it is not forwarded on any other emulated VC.

The packet forwarding decision is made by looking up the Layer 2 VFI of a particular VPLS domain.

A VPLS instance on a particular PE device receives Ethernet frames that enter on specific physical or logical ports and populates a MAC table similarly to how an Ethernet switch works. The PE device can use the MAC address to switch these frames into the appropriate LSP for delivery to the another PE device at a remote site.

If the MAC address is not available in the MAC address table, the PE device replicates the Ethernet frame and floods it to all logical ports associated with that VPLS instance, except the ingress port from which it just entered. The PE device updates the MAC table as it receives packets on specific ports and removes addresses not used for specific periods.

Static VPLS Configuration

Virtual Private LAN Services (VPLS) over Multiprotocol Label Switching-Transport Profile (MPLS-TP) tunnels allows you to deploy a multipoint-to-multipoint layer 2 operating environment over an MPLS-TP network for services such as Ethernet connectivity and multicast video. To configure static VPLS, you must specify a static range of MPLS labels using the mpls label range command with the static keyword.

H-VPLS

Hierarchical VPLS (H-VPLS) reduces signaling and replication overhead by using full-mesh and hub-and-spoke configurations. Hub-and-spoke configurations operate with split horizon to allow packets to be switched between pseudowires (PWs), effectively reducing the number of PWs between provider edge (PE) devices.

Note

Split horizon is the default configuration to avoid broadcast packet looping.
Supported Features

Multipoint-to-Multipoint Support

In a multipoint-to-multipoint network, two or more devices are associated over the core network. No single device is designated as the Root node; all devices are considered as Root nodes. All frames can be exchanged directly between the nodes.

Non-Transparent Operation

A virtual Ethernet connection (VEC) can be transparent or non-transparent with respect to Ethernet protocol data units (PDUs). The VEC non-transparency allows users to have a Frame Relay-type service between Layer 3 devices.

Circuit Multiplexing

Circuit multiplexing allows a node to participate in multiple services over a single Ethernet connection. By participating in multiple services, the Ethernet connection is attached to multiple logical networks. Some examples of possible service offerings are VPN services between sites, Internet services, and third-party connectivity for intercompany communications.

MAC-Address Learning, Forwarding, and Aging

Provider edge (PE) devices must learn remote MAC addresses and directly attached MAC addresses on ports that face the external network. MAC address learning accomplishes this by deriving the topology and forwarding information from packets originating at customer sites. A timer is associated with stored MAC addresses. After the timer expires, the entry is removed from the table.

Jumbo Frame Support

Jumbo frame support provides support for frame sizes between 1548 and 9216 bytes. You use the CLI to establish the jumbo frame size for any value specified in the above range. The default value is 1500 bytes in any Layer 2/VLAN interface. You can configure jumbo frame support on a per-interface basis.

Q-in-Q Support and Q-in-Q to EoMPLS Support

With 802.1Q tunneling (Q-in-Q), the customer edge (CE) device issues VLAN-tagged packets and VPLS forwards these packets to a far-end CE device. Q-in-Q refers to the fact that one or more 802.1Q tags may be located in a packet within the interior of the network. As packets are received from a CE device, an additional VLAN tag is added to incoming Ethernet packets to segregate traffic from different CE devices. Untagged packets originating from a CE device use a single tag within the interior of the VLAN switched network, whereas previously tagged packets originating from the CE device use two or more tags.

VPLS Services

Transparent LAN Service

Transparent LAN Service (TLS) is an extension to the point-to-point port-based Ethernet over Multiprotocol Label Switching (EoMPLS), which provides bridging protocol transparency (for example, bridge protocol data units [BPDUs]) and VLAN values. Bridges see this service as an Ethernet segment. With TLS, the PE device forwards all Ethernet packets received from the customer-facing interface (including tagged and untagged packets, and BPDUs) as follows:
To a local Ethernet interface or an emulated virtual circuit (VC) if the destination MAC address is found in the Layer 2 forwarding table.

To all other local Ethernet interfaces and emulated VCs belonging to the same VPLS domain if the destination MAC address is a multicast or broadcast address or if the destination MAC address is not found in the Layer 2 forwarding table.

**Note**

You must enable Layer 2 protocol tunneling to run the Cisco Discovery Protocol (CDP), the VLAN Trunking Protocol (VTP), and the Spanning-Tree Protocol (STP).

**Ethernet Virtual Connection Service**

Ethernet Virtual Connection Service (EVCS) is an extension to the point-to-point VLAN-based Ethernet over MPLS (EoMPLS) that allows devices to reach multiple intranet and extranet locations from a single physical port. With EVCS, the provider edge (PE) device forwards all Ethernet packets with a particular VLAN tag received from the customer-facing interface (excluding bridge protocol data units [BPDUs]) as follows:

- To a local Ethernet interface or to an emulated virtual circuit (VC) if the destination MAC address is found in the Layer 2 forwarding table.
- To all other local Ethernet interfaces and emulated VCs belonging to the same Virtual Private LAN Services (VPLS) domain if the destination MAC address is a multicast or a broadcast address or if the destination MAC address is not found in the Layer 2 forwarding table.

**Note**

Because it has only local significance, the demultiplexing VLAN tag that identifies a VPLS domain is removed before the packet is forwarded to the outgoing Ethernet interfaces or emulated VCs.

**VPLS Integrated Routing and Bridging**

Virtual Private LAN Services (VPLS) integrated routing and bridging routes Layer 3 traffic and switches Layer 2 frames for pseudowire connections between provider edge (PE) devices using a VPLS multipoint PE device. The ability to route frames to and from these interfaces supports the termination of a pseudowire into a Layer 3 network (VPN or global) on the same switch or to tunnel Layer 3 frames over a Layer 2 tunnel (VPLS).

To configure routing support for a pseudowire, configure an IP address and other Layer 3 features for the Layer 3 domain in interface configuration mode.

**Note**

VPLS integrated routing and bridging does not support multicast routing. VPLS integrated routing and bridging is also known as routed pseudowire and routed VPLS.

The following example shows how to assign IP address 10.10.10.1 to a bridge domain interface (BDI).

```
interface bdi 100
ip address 10.10.10.1 255.255.255.0
```
VPLS and Type 4 dummy VLAN Tag

From Cisco IOS XE Everest 16.4.1 release, VPLS VC type 4 mode (with autodiscovery) can be used to configure a dummy VLAN tag. This feature can be used to modify the VLAN ID to filter based on the VLAN ID. The dummy VLAN ID is 0 in default VPLS type 4 mode, and can be set to any value from 1 to 4094. Refer to the section titled "Example: MAC ACL with Dummy VLAN ID" in this chapter for the configuration example.

How to Configure Virtual Private LAN Services

Provisioning a Virtual Private LAN Services (VPLS) link involves provisioning the associated attachment circuit and a virtual forwarding instance (VFI) on a provider edge (PE) device.

In Cisco IOS XE Release 3.7S, the L2VPN Protocol-Based CLIs feature was introduced. This feature provides a set of processes and an improved infrastructure for developing and delivering Cisco IOS software on various Cisco platforms. This feature introduces new commands and modifies or replaces existing commands to achieve a consistent functionality across Cisco platforms and provide cross-Operating System (OS) support.

This section consists of tasks that use the commands existing prior to Cisco IOS XE Release 3.7S and a corresponding task that uses the commands introduced or modified by the L2VPN Protocol-Based CLIs feature.

Configuring PE Layer 2 Interfaces on CE Devices

You can configure the Ethernet flow point (EFP) as a Layer 2 virtual interface. You can also select tagged or untagged traffic from a customer edge (CE) device.

Configuring 802.1Q Access Ports for Tagged Traffic from a CE Device

Note

When Ethernet Virtual Connection Service (EVCS) is configured, a provider edge (PE) device forwards all Ethernet packets with a particular VLAN tag to a local Ethernet interface or emulated virtual circuit (VC) if the destination MAC address is found in the Layer 2 forwarding table.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. no ip address [ip-address mask] [secondary]
5. negotiation auto
6. service instance si-id ethernet
7. encapsulation dot1q vlan-id
8. bridge-domain bd-id
9. end
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Enters global configuration mode.
configure terminal	
Example:	
Device# configure terminal	

**Step 3**	Specifies an interface and enters interface configuration mode.
interface type number	
Example:	
Device(config)# interface gigabitethernet 0/0/1	

**Step 4**	Disables IP processing.
no ip address [ip-address mask] [secondary]	
Example:	
Device(config-if)# no ip address	

**Step 5**	Enables the autonegotiation protocol to configure the speed, duplex, and automatic flow control of the Gigabit Ethernet interface.
negotiation auto	
Example:	
Device(config-if)# negotiation auto	

**Step 6**	Specifies the service instance ID and enters service instance configuration mode.
service instance si-id ethernet	
Example:	
Device(config-if)# service instance 10 ethernet	

**Step 7**	Defines the matching criteria to map 802.1Q frames ingress on an interface to the appropriate service instance. Ensure that the interface on the adjoining customer edge (CE) device is on the same VLAN as this PE device.
encapsulation dot1q vlan-id	
Example:	
Device(config-if-srv)# encapsulation dot1q 200	

**Step 8**	Binds a service instance to a bridge domain instance.
bridge-domain bd-id	
Example:	
Device(config-if-srv)# bridge-domain 100	

**Step 9**	Exits service instance configuration mode and returns to privileged EXEC mode.
end	
Example:	
Device(config-if-srv)# end	
Configuring 802.1Q Access Ports for Tagged Traffic from a CE Device: Alternate Configuration

When Ethernet Virtual Connection Service (EVCS) is configured, the PE device forwards all Ethernet packets with a particular VLAN tag to a local Ethernet interface or an emulated virtual circuit (VC) if the destination MAC address is found in the Layer 2 forwarding table.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. no ip address [ip-address mask] [secondary]
5. negotiation auto
6. service instance si-id ethernet
7. encapsulation dot1q vlan-id
8. exit
9. exit
10. bridge-domain bd-id
11. member interface-type-number service-instance service-id [split-horizon group group-id]
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# interface gigabitethernet 0/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> no ip address [ip-address mask] [secondary]</td>
<td>Disables IP processing.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>negotiation auto</code></td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Device(config-if)# negotiation auto</strong></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>service instance si-id ethernet</code></td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Device(config-if)# service instance 10 ethernet</strong></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>encapsulation dot1q vlan-id</code></td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Device(config-if-srv)# encapsulation dot1q 200</strong></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Device(config-if-srv)# exit</strong></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Device(config-if)# exit</strong></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>bridge-domain bd-id</code></td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Device(config)# bridge-domain 100</strong></td>
</tr>
<tr>
<td>Step 11</td>
<td><code>member interface-type-number service-instance service-id</code> [split-horizon group group-id ]</td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Device(config-bdomain)# member gigabitethernet0/0/1 service-instance 1000</strong></td>
</tr>
<tr>
<td>Step 12</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Device(config-bdomain)# end</strong></td>
</tr>
</tbody>
</table>
Configuring Access Ports for Untagged Traffic from a CE Device

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `no ip address [ip-address mask] [secondary]`
5. `negotiation auto`
6. `service instance si-id ethernet`
7. `encapsulation untagged`
8. `bridge-domain bd-id`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface and enters interface configuration</td>
</tr>
<tr>
<td>Example:</td>
<td>mode.</td>
</tr>
<tr>
<td>Device(config)# interface gigabitethernet 0/0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> no ip address [ip-address mask] [secondary]</td>
<td>Disables IP processing.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> negotiation auto</td>
<td>Enables the autonegotiation protocol to configure the speed,</td>
</tr>
<tr>
<td>Example:</td>
<td>duplex, and automatic flow control of the Gigabit Ethernet</td>
</tr>
<tr>
<td>Device(config-if)# negotiation auto</td>
<td>interface.</td>
</tr>
<tr>
<td><strong>Step 6</strong> service instance si-id ethernet</td>
<td>Specifies a service instance ID and enters service instance</td>
</tr>
<tr>
<td>Example:</td>
<td>configuration mode.</td>
</tr>
<tr>
<td>Device(config-if)# service instance 10 ethernet</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Access Ports for Untagged Traffic from a CE Device: Alternate Configuration

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `no ip address [ip-address mask] [secondary]`
5. `negotiation auto`
6. `service instance si-id ethernet`
7. `encapsulation untagged`
8. `exit`
9. `exit`
10. `bridge-domain bd-id`
11. `member interface-type-number service-instance service-id [split-horizon group group-id]`
12. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

---

**Example:**

**Step 7**

encapsulation untagged

Example:

Device(config-if-srv)# encapsulation untagged

**Purpose**

Defines the matching criteria to map untagged ingress Ethernet frames on an interface to the appropriate service instance.

- Ensure that the interface on the adjoining customer edge (CE) device is on the same VLAN as this provider edge (PE) device.

**Step 8**

bridge-domain *bd-id*

Example:

Device(config-if-srv)# bridge-domain 100

**Purpose**

Binds a service instance or MAC tunnel to a bridge domain instance.

**Step 9**

end

Example:

Device(config-if-srv)# end

**Purpose**

Exits service instance configuration mode and returns to privileged EXEC mode.

---

**Example:**

**Step 1**

- Enteryourpasswordifprompted.

Device> enable

**Step 2**

Entersglobalconfigurationmode.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config)# configure terminal</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

**Step 3**

`interface type number`  
Example:  
Device(config)# interface gigabitethernet 0/4/4

**Step 4**

`no ip address [ip-address mask] [secondary]`  
Example:  
Device(config-if)# no ip address

**Step 5**

`negotiation auto`  
Example:  
Device(config-if)# negotiation auto

**Step 6**

`service instance si-id ethernet`  
Example:  
Device(config-if)# service instance 10 ethernet

**Step 7**

`encapsulation untagged`  
Example:  
Device(config-if-srv)# encapsulation untagged

- Defines the matching criteria to map untagged ingress Ethernet frames on an interface to the appropriate service instance.  
  - Ensure that the interface on the adjoining customer edge (CE) device is on the same VLAN as this provider edge (PE) device.

**Step 8**

`exit`  
Example:  
Device(config-if-srv)# exit

**Step 9**

`exit`  
Example:  
Device(config-if)# exit

**Step 10**

`bridge-domain bd-id`  
Example:  
Device(config)# bridge-domain 100

**Step 11**

`member interface-type-number service-instance service-id [split-horizon group group-id]`  
Binds a service instance to a bridge domain instance.
### Configuring Q-in-Q EFP

When a thread-local storage (TLS) is configured, the provider edge (PE) device forwards all Ethernet packets received from the customer edge (CE) device to all local Ethernet interfaces and emulated virtual circuits (VCs) that belong to the same Virtual Private LAN Services (VPLS) domain if the MAC address is not found in the Layer 2 forwarding table.

### SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. no ip address [ip-address mask] [secondary]
5. negotiation auto
6. service instance si-id ethernet
7. encapsulation dot1q vlan-id second-dot1q vlan-id
8. bridge-domain bd-id
9. end

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config)# interface gigabitethernet 0/0/2</td>
<td>Purpose</td>
</tr>
<tr>
<td><strong>Step 4</strong> no ip address [ip-address mask] [secondary]</td>
<td>Enables the autonegotiation protocol to configure the speed, duplex, and automatic flow control of the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td>Example: Device(config-if)# no ip address</td>
<td>Enables the autonegotiation protocol to configure the speed, duplex, and automatic flow control of the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td><strong>Step 5</strong> negotiation auto</td>
<td>Enables the autonegotiation protocol to configure the speed, duplex, and automatic flow control of the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td>Example: Device(config-if)# negotiation auto</td>
<td>Enables the autonegotiation protocol to configure the speed, duplex, and automatic flow control of the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td><strong>Step 6</strong> service instance si-id ethernet</td>
<td>Specifies a service instance ID and enters service instance configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-if)# service instance 10 ethernet</td>
<td>Specifies a service instance ID and enters service instance configuration mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> encapsulation dot1q vlan-id second-dot1q vlan-id</td>
<td>Defines the matching criteria to map Q-in-Q ingress frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# encapsulation dot1q 200 second-dot1q 400</td>
<td>Defines the matching criteria to map Q-in-Q ingress frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td><strong>Step 8</strong> bridge-domain bd-id</td>
<td>Binds a service instance or a MAC tunnel to a bridge domain instance.</td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# bridge-domain 100</td>
<td>Binds a service instance or a MAC tunnel to a bridge domain instance.</td>
</tr>
<tr>
<td><strong>Step 9</strong> end</td>
<td>Exits service instance configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# end</td>
<td>Exits service instance configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

## Configuring Q-in-Q EFP: Alternate Configuration

### Note

When a thread-local storage (TLS) is configured, the provider edge (PE) device forwards all Ethernet packets received from the customer edge (CE) device to all local Ethernet interfaces and emulated virtual circuits (VCs) belonging to the same Virtual Private LAN Services (VPLS) domain if the MAC address is not found in the Layer 2 forwarding table.

### SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device&gt; enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet 0/0/2</td>
</tr>
<tr>
<td></td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>no ip address [ip-address mask] [secondary]</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# no ip address</td>
</tr>
<tr>
<td></td>
<td>Disables IP processing.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>negotiation auto</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# negotiation auto</td>
</tr>
<tr>
<td></td>
<td>Enables the autonegotiation protocol to configure the speed, duplex, and automatic flow control of the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>service instance si-id ethernet</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 10 ethernet</td>
</tr>
<tr>
<td></td>
<td>Specifies a service instance ID and enters service instance configuration mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>encapsulation dot1q vlan-id second-dot1q vlan-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation dot1q 200 second-dot1q 400</td>
</tr>
<tr>
<td></td>
<td>Defines the matching criteria to map Q-in-Q ingress frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td></td>
<td>• Ensure that the interface on the adjoining CE device is on the same VLAN as this PE device.</td>
</tr>
</tbody>
</table>
### Configuring MPLS on a PE Device

To configure Multiprotocol Label Switching (MPLS) on a provider edge (PE) device, configure the required MPLS parameters.

**Note**

Before configuring MPLS, ensure that IP connectivity exists between all PE devices by configuring Interior Gateway Protocol (IGP), Open Shortest Path First (OSPF), or Intermediate System to Intermediate System (IS-IS) between PE devices.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. mpls label protocol {ldp | tdp}
4. mpls ldp logging neighbor-changes
5. mpls ldp discovery hello holdtime seconds
6. mpls ldp router-id interface-type-number [force]

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits service instance configuration mode and returns to interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>bridge-domain bd-id</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# bridge-domain 100</td>
</tr>
<tr>
<td></td>
<td>Specifies the bridge domain ID and enters bridge-domain configuration mode.</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>member interface-type-number service-instance service-id</strong></td>
</tr>
<tr>
<td>[split-horizon group group-id]</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-bdomain)# member gigabitethernet0/0/2 service-instance 1000</td>
</tr>
<tr>
<td></td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-bdomain)# end</td>
</tr>
<tr>
<td></td>
<td>Exits bridge-domain configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
7. **end**

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>mpls label protocol {ldp</td>
<td>tdp}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>mpls ldp logging neighbor-changes</td>
<td>(Optional) Generates system error logging (syslog) messages when LDP sessions go down.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# mpls ldp logging neighbor-changes</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>mpls ldp discovery hello holdtime seconds</td>
<td>Configures the interval between the transmission of consecutive LDP discovery hello messages or the hold time for an LDP transport connection.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# mpls ldp discovery hello holdtime 5</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>mpls ldp router-id interface-type-number [force]</td>
<td>Specifies a preferred interface for the LDP router ID.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# mpls ldp router-id loopback0 force</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>end</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Configuring a VFI on a PE Device

The virtual forwarding interface (VFI) specifies the VPN ID of a Virtual Private LAN Services (VPLS) domain, the addresses of other provider edge (PE) devices in the domain, and the type of tunnel signaling and encapsulation mechanism for each peer.
Only Multiprotocol Label Switching (MPLS) encapsulation is supported.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. l2 vfi *name* manual
4. vpn id *vpn-id*
5. neighbor *remote-router-id* *vc-id* \{encapsulation *encapsulation-type* | pw-class *pw-name*\} \[no-split-horizon\]
6. bridge-domain *bd-id*
7. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> l2 vfi <em>name</em> manual</td>
<td>Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) between two or more separate networks and enters VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# l2 vfi vfi110 manual</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> vpn id <em>vpn-id</em></td>
<td>Configures a VPN ID for a VPLS domain.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi)# vpn id 110</td>
<td>• The emulated VCs bound to this Layer 2 virtual routing and forwarding (VRF) instance use this VPN ID for signaling.</td>
</tr>
<tr>
<td><strong>Step 5</strong> neighbor <em>remote-router-id</em> <em>vc-id</em> {encapsulation <em>encapsulation-type</em></td>
<td>pw-class <em>pw-name</em>} [no-split-horizon]</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi)# neighbor 172.16.10.2 4 encapsulation mpls</td>
<td><strong>Note</strong> Split horizon is the default configuration to avoid broadcast packet looping and to isolate Layer 2 traffic. Use the no-split-horizon keyword to disable split horizon and to configure multiple VCs per spoke into the same VFI.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------------------------</td>
</tr>
<tr>
<td>Step 6 bridge-domain bd-id</td>
<td>Specifies a bridge domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-vfi)# bridge-domain 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 end</td>
<td>Exits VFI configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-vfi)# end</td>
</tr>
</tbody>
</table>

## Configuring a VFI on a PE Device: Alternate Configuration

### SUMMARY STEPS
1. enable
2. configure terminal
3. l2vpn vfi context name
4. vpn id id
5. member ip-address [vc-id] encapsulation mpls
6. exit
7. bridge-domain bd-id
8. member vfi vfi-name
9. end

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 l2vpn vfi context name</td>
<td>Establishes a L2VPN VFI between two or more separate networks, and enters VFI configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# l2vpn vfi context vfi110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 vpn id id</td>
<td>Configures a VPN ID for a Virtual Private LAN Services (VPLS) domain. The emulated virtual circuits (VCs) bound</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Static Virtual Private LAN Services

To configure static Virtual Private LAN Services (VPLS), perform the following tasks:

- Configuring a Pseudowire for Static VPLS
- Configuring VFI for Static VPLS
- Configuring a VFI for Static VPLS: Alternate Configuration
- Configuring an Attachment Circuit for Static VPLS
- Configuring an Attachment Circuit for Static VPLS: Alternate Configuration
- Configuring an MPLS-TP Tunnel for Static VPLS with TP
- Configuring a VFI for Static VPLS: Alternate Configuration

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Device(config-vfi)# vpn id 110</code></td>
<td>to this Layer 2 virtual routing and forwarding (VRF) instance use this VPN ID for signaling.</td>
</tr>
<tr>
<td><strong>Step 5</strong> member ip-address [vc-id] encapsulation mpls</td>
<td>Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection and Multiprotocol Label Switching (MPLS) as the encapsulation type.</td>
</tr>
<tr>
<td><code>Example:</code> Device(config-vfi)# member 172.16.10.2 4 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> exit</td>
<td>Exits VFI configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code> Device(config-vfi)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> bridge-domain bd-id</td>
<td>Specifies a bridge domain and enters bridge-domain configuration mode.</td>
</tr>
<tr>
<td><code>Example:</code> Device(config)# bridge-domain 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> member vfi vfi-name</td>
<td>Binds a VFI instance to a bridge domain instance.</td>
</tr>
<tr>
<td><code>Example:</code> Device(config-bdomain)# member vfi vfi110</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> end</td>
<td>Exits bridge-domain configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Example:</code> Device(config-bdomain)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Pseudowire for Static VPLS

The configuration of pseudowires between provider edge (PE) devices helps in the successful transmission of the Layer 2 frames between PE devices.

Use the pseudowire template to configure the virtual circuit (VC) type for the virtual path identifier (VPI) pseudowire. In the following task, the pseudowire will go through a Multiprotocol Label Switching (MPLS)-Tunneling Protocol (TP) tunnel.

The pseudowire template configuration specifies the characteristics of the tunneling mechanism that is used by the pseudowires, which are:

- Encapsulation type
- Control protocol
- Payload-specific options
- Preferred path

Perform this task to configure a pseudowire template for static Virtual Private LAN Services (VPLS).

Note

Ensure that you perform this task before configuring the virtual forwarding instance (VFI) peer. If the VFI peer is configured before the pseudowire class, the configuration is incomplete until the pseudowire class is configured. The `show running-config` command displays an error stating that configuration is incomplete.

```
Device# show running-config | sec vfi
l2 vfi config manual
vpn id 1000
! Incomplete point-to-multipoint vfi config
```

SUMMARY STEPS

1. enable
2. configure terminal
3. template type pseudowire name
4. encapsulation mpls
5. signaling protocol none
6. preferred-path interface Tunnel-tp interface-number
7. exit
8. interface pseudowire number
9. source template type pseudowire name
10. neighbor peer-address vcid-value
11. label local-pseudowire-label remote-pseudowire-label
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> template type pseudowire <em>name</em></td>
<td>Specifies the template type as pseudowire and enters template configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(config)# template type pseudowire static-vpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• For Any Transport over MPLS (AToM), the encapsulation type is MPLS.</td>
</tr>
<tr>
<td>Device(config-template)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> signaling protocol none</td>
<td>Specifies that no signaling protocol is configured for the pseudowire class.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(config-template)# signaling protocol none</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> preferred-path interface Tunnel-tp <em>interface-number</em></td>
<td>(Optional) Specifies the path that traffic uses: an MPLS Traffic Engineering (TE) tunnel or destination IP address and Domain Name Server (DNS) name.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(config-template)# preferred-path interface Tunnel-tp 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> exit</td>
<td>Exits template configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(config-template)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> interface pseudowire <em>number</em></td>
<td>Establishes a pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface pseudowire 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> source template type pseudowire <em>name</em></td>
<td>Configures the source template type of the configured pseudowire.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# source template type pseudowire static-vpls</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring VFI for Static VPLS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 10</strong></td>
<td></td>
</tr>
<tr>
<td>Neighbor <code>peer-address vc-id-value</code></td>
<td>Specifies the peer IP address and VC ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# neighbor 10.0.0.1 123</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td></td>
</tr>
<tr>
<td>Label <code>local-pseudowire-label remote-pseudowire-label</code></td>
<td>Configures an Any Transport over MPLS (AToM) static pseudowire connection by defining local and remote circuit labels.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# label 301 17</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

### Configuring VFI for Static VPLS

**Note**

Ensure that you perform this task after configuring the pseudowire. If the VFI peer is configured before the pseudowire, the configuration is incomplete until the pseudowire is configured. The output of the `show running-config` command displays an error stating that configuration is incomplete.

```
Device# show running-config | sec vfi
12 vfi config manual
 vpn id 1000
 ! Incomplete point-to-multipoint vfi config
```

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `mpls label range minimum-value maximum-value [static minimum-static-value maximum-static-value]`
4. `pseudowire-class [pw-class-name]`
5. `encapsulation mpls`
6. `protocol {l2tpv2 | l2tpv3 | none} [l2tp-class-name]`
7. `exit`
8. `l2 vfi vfi-name manual`
9. `vpn id vpn-id`
10. `neighbor ip-address pw-class pw-name`
11. `mpls label local-pseudowire-label remote-pseudowire-label`
12. `mpls control-word`
13. `neighbor ip-address pw-class pw-name`
14. `mpls label local-pseudowire-label remote-pseudowire-label`
15. `mpls control-word`
16. `end`
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable&lt;br&gt;Example: &lt;br&gt;Device&gt; enable</td>
<td>Enables privileged EXEC mode. &lt;br&gt;• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal&lt;br&gt;Example: &lt;br&gt;Device# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>mpls label range minimum-value maximum-value [static minimum-static-value maximum-static-value]&lt;br&gt;Example: &lt;br&gt;Device(config)# mpls label range 16 200 static 300 500</td>
<td>Configures the range of local labels available for use with Multiprotocol Label Switching (MPLS) applications on packet interfaces.</td>
</tr>
<tr>
<td>Step 4</td>
<td>pseudowire-class [pw-class-name]&lt;br&gt;Example: &lt;br&gt;Device(config)# pseudowire-class static_vpls</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>encapsulation mpls&lt;br&gt;Example: &lt;br&gt;Device(config-pw-class)# encapsulation mpls</td>
<td>Specifies the tunneling encapsulation as MPLS.</td>
</tr>
<tr>
<td>Step 6</td>
<td>protocol {l2tpv2</td>
<td>l2tpv3</td>
</tr>
<tr>
<td>Step 7</td>
<td>exit&lt;br&gt;Example: &lt;br&gt;Device(config-pw-class)# exit</td>
<td>Exits pseudowire class configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>l2 vfi vfi-name manual&lt;br&gt;Example: &lt;br&gt;Device(config)# l2 vfi static-vfi manual</td>
<td>Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) between two or more separate networks, and enters Layer 2 VFI manual configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>vpn id vpn-id&lt;br&gt;Example: &lt;br&gt;Device(config-vfi)# vpn id 100</td>
<td>Specifies the VPN ID.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> neighbor ip-address pw-class pw-name</td>
<td>Specifies the IP address of the peer and the pseudowire class.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# neighbor 10.3.4.4 pw-class static_vpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> mpls label local-pseudowire-label remote-pseudowire-label</td>
<td>Configures an Any Transport over MPLS (AToM) static pseudowire connection by defining local and remote circuit labels.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# mpls label 301 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> mpls control-word</td>
<td>(Optional) Enables the MPLS control word in an AToM static pseudowire connection.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# mpls control-word</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> neighbor ip-address pw-class pw-name</td>
<td>Specifies the IP address of the peer and the pseudowire class.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# neighbor 2.3.4.3 pw-class static_vpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> mpls label local-pseudowire-label remote-pseudowire-label</td>
<td>Configures an AToM static pseudowire connection by defining local and remote circuit labels.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# mpls label 302 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> mpls control-word</td>
<td>(Optional) Enables the MPLS control word in an AToM static pseudowire connection.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# mpls control-word</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong> end</td>
<td>Exits Layer 2 VFI manual configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring a VFI for Static VPLS: Alternate Configuration

**Note**
Ensure that you perform this task after configuring the pseudowire. If the VFI peer is configured before the pseudowire, the configuration is incomplete until the pseudowire is configured. The output of the `show running-config` command displays an error stating that configuration is incomplete.

```
Device# show running-config | sec vfi
l2 vfi config manual
vpn id 1000
! Incomplete point-to-multipoint vfi config
```

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `l2vpn vfi context vfi-name`
4. `vpn id vpn-id`
5. `exit`
6. `interface type number`
7. `encapsulation mpls`
8. `neighbor ip-address vc-id`
9. `label local-pseudowire-label remote-pseudowire-label`
10. `control-word {include | exclude}`
11. `exit`
12. `bridge-domain bd-id`
13. `member vfi vfi-name`
14. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Device&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>l2vpn vfi context vfi-name</code></td>
<td>Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) between two or more separate networks and enters VFI configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# l2vpn vfi context vplsl</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>vpn id vpn-id</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-vfi)# vpn id 100</td>
<td>Specifies the VPN ID.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>exit</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-vfi)# exit</td>
<td>Exits VFI configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>interface type number</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config)# interface pseudowire 100</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>encapsulation mpls</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-if)# encapsulation mpls</td>
<td>Specifies an encapsulation type for tunneling Layer 2 traffic over a pseudowire.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>neighbor ip-address vc-id</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-if)# neighbor 10.3.4.4 100</td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>label local-pseudowire-label remote-pseudowire-label</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-if)# label 301 17</td>
<td>Configures an Any Transport over MPLS (AToM) static pseudowire connection by defining local and remote circuit labels.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>**control-word {include</td>
<td>exclude}**&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-if)# control-word include</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>exit</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-if)# exit</td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td><strong>bridge-domain bd-id</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config)# bridge-domain 24</td>
<td>Specifies the bridge domain ID and enters bridge-domain configuration mode.</td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td><strong>member vfi vfi-name</strong>&lt;br&gt;<strong>Example:</strong></td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
</tbody>
</table>
### Configuring an Attachment Circuit for Static VPLS

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot/interface`
4. `service instance si-id ethernet`
5. `encapsulation dot1q vlan-id`
6. `rewrite ingress tag pop number [symmetric]`
7. `bridge-domain bd-id`
8. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| Example: | **Device> enable** | |
| **Step 2** | `configure terminal` | Enters global configuration mode. |
| Example: | **Device# configure terminal** | |
| **Step 3** | `interface gigabitethernet slot/interface` | Specifies an interface and enters interface configuration mode.  
- Ensure that the interfaces between the customer edge (CE) and provider edge (PE) devices that run Ethernet over MPLS (EoMPLS) are in the same subnet. All other interfaces and backbone devices do not need to be in the same subnet. |
| Example: | **Device(config)# interface gigabitethernet 0/0/1** | |
| **Step 4** | `service instance si-id ethernet` | Configures an Ethernet service instance on an interface and enters service instance configuration mode. |
| Example: | **Device(config-if)# service instance 100 ethernet** | |
### Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>encapsulation dot1q vlan-id</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-if-srv)# encapsulation dot1q 200</td>
</tr>
</tbody>
</table>

**Purpose:** Defines the matching criteria to map 802.1Q frames ingress on an interface to the appropriate service instance.

- Ensure that the interface on the adjoining CE device is on the same VLAN as this PE device.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>rewrite ingress tag pop number [symmetric]</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-if-srv)# rewrite ingress tag pop 1 symmetric</td>
</tr>
</tbody>
</table>

**Purpose:** (Optional) Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance and the tag to be removed from a packet.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>bridge-domain bd-id</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-if-srv)# bridge-domain 24</td>
</tr>
</tbody>
</table>

**Purpose:** (Optional) Binds a service instance or a MAC tunnel to a bridge domain instance.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-if-srv)# end</td>
</tr>
</tbody>
</table>

**Purpose:** Exits service instance configuration mode and returns to privileged EXEC mode.

---

## Configuring an Attachment Circuit for Static VPLS: Alternate Configuration

### SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot/interface
4. service instance si-id ethernet
5. encapsulation dot1q vlan-id
6. rewrite ingress tag pop number [symmetric]
7. exit
8. exit
9. bridge-domain bd-id
10. member interface-type-number service-instance service-id [split-horizon group group-id]
11. end

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device&gt; enable</td>
</tr>
</tbody>
</table>

**Purpose:** Enables privileged EXEC mode.

- Enter your password if prompted.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code> <strong>Example:</strong> Device# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 3** | `interface gigabitethernet slot/interface` **Example:** Device(config)# interface gigabitethernet 0/0/1 | Specifies an interface and enters interface configuration mode.  
  - Ensure that the interfaces between the customer edge (CE) and provider edge (PE) devices that are running Ethernet over MPLS (EoMPLS) are in the same subnet. All other interfaces and backbone devices do not need to be in the same subnet. |
| **Step 4** | `service instance si-id ethernet` **Example:** Device(config-if)# service instance 10 ethernet | Specifies a service instance ID and enters service instance configuration mode. |
| **Step 5** | `encapsulation dot1q vlan-id` **Example:** Device(config-if-srv)# encapsulation dot1q 200 | Defines the matching criteria to map 802.1Q frames ingress on an interface to the appropriate service instance.  
  - Ensure that the interface on the adjoining CE device is on the same VLAN as this PE device. |
| **Step 6** | `rewrite ingress tag pop number [symmetric]` **Example:** Device(config-if-srv)# rewrite ingress tag pop 1 symmetric | (Optional) Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance and the tag to be removed from a packet. |
| **Step 7** | `exit` **Example:** Device(config-if-srv)# exit | Exits service instance configuration mode and returns to interface configuration mode. |
| **Step 8** | `exit` **Example:** Device(config-if)# exit | Exits interface configuration mode and returns to global configuration mode. |
| **Step 9** | `bridge-domain bd-id` **Example:** Device(config)# bridge-domain 100 | Specifies the bridge domain ID and enters bridge-domain configuration mode. |
### Configuring an MPLS-TP Tunnel for Static VPLS with TP

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface Tunnel-tp number`
4. `no ip address`
5. `no keepalive`
6. `tp destination ip-address`
7. `bfd bfd-template`
8. `working-lsp`
9. `out-label number out-link number`
10. `lsp-number number`
11. `exit`
12. `protect-lsp`
13. `out-label number out-link number`
14. `in-label number`
15. `lsp-number number`
16. `exit`
17. `exit`
18. `interface type number`
19. `ip address ip-address ip-mask`
20. `mpls tp link link-num {ipv4 ip-address | tx-mac mac-address}`
21. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-bd)# enable</code></td>
<td></td>
</tr>
</tbody>
</table>

- Enter your password if prompted.
### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 2</th>
<th>configure terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Device# configure terminal
```

### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 3</th>
<th>interface Tunnel-tp number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configures a Multiprotocol Label Switching (MPLS) transport profile tunnel and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Device(config)# interface Tunnel-tp 4
```

- Use the same interface as you configured for the pseudowire class.

### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 4</th>
<th>no ip address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disables the IP address configuration.</td>
</tr>
</tbody>
</table>

**Example:**

```
Device(config-if)# no ip address
```

### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 5</th>
<th>no keepalive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disables the keepalive configuration.</td>
</tr>
</tbody>
</table>

**Example:**

```
Device(config-if)# no keepalive
```

### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 6</th>
<th>tp destination ip-address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configures the tunnel destination.</td>
</tr>
</tbody>
</table>

**Example:**

```
Device(config-if)# tp destination 10.22.22.22
```

### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 7</th>
<th>bfd bfd-template</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Binds a single-hop Bidirectional Forwarding Detection (BFD) template to an interface.</td>
</tr>
</tbody>
</table>

**Example:**

```
Device(config-if)# bfd tp
```

### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 8</th>
<th>working-lsp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configures the working label switched path (LSP) and enters working interface configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Device(config-if)# working-lsp
```

### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 9</th>
<th>out-label number out-link number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configures the out link and out label for the working LSP.</td>
</tr>
</tbody>
</table>

**Example:**

```
Device(config-if-working)# out-label 16 out-link 100
```

### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step 10</th>
<th>lsp-number number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configures the ID number for the working LSP.</td>
</tr>
</tbody>
</table>

**Example:**

```
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-if-working)# lsp-number 0</td>
<td>Exits working interface configuration mode and returns to interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits working interface configuration mode and returns to interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-working)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td></td>
</tr>
<tr>
<td>protect-lsp</td>
<td>Enters protection configuration mode for the label switched path (LSP) and enters protect interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# protect-lsp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td></td>
</tr>
<tr>
<td>out-label number out-link number</td>
<td>Configures the out link and out label for the protect LSP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-protect)# out-label 11 out-link 500</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td></td>
</tr>
<tr>
<td>in-label number</td>
<td>Configures the in label for the protect LSP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-protect)# in-label 600</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong></td>
<td></td>
</tr>
<tr>
<td>lsp-number number</td>
<td>Configures the ID number for the working protect LSP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-protect)# lsp-number 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits protect interface configuration mode and returns to interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-protect)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 17</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 18</strong></td>
<td></td>
</tr>
<tr>
<td>interface type number</td>
<td>Configures a interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# interface GigabitEthernet 0/1/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 19</strong></td>
<td></td>
</tr>
<tr>
<td>ip address ip-address ip-mask</td>
<td>(Optional) Configures the IP address and mask if not using an IP-less core.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip address 10.0.0.1 255.255.255.0</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 20 mpls tp link link-num {ipv4 ip-address</td>
<td>tx-mac mac-address}</td>
</tr>
<tr>
<td>Example: Device(config-if)# mpls tp link 10 tx-mac 0100.0c99.8877</td>
<td></td>
</tr>
<tr>
<td>Step 21 end</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Configuration Examples for Virtual Private LAN Services

#### Example: Configuring 802.1Q Access Ports for Tagged Traffic from a CE Device

This example shows how to configure the tagged traffic:

```
Device(config)# interface GigabitEthernet 0/0/1
Device(config-if)# no ip address
Device(config-if)# negotiation auto
Device(config-if)# service instance 10 ethernet
Device(config-if-srv)# encapsulation dot1q 200
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# end
```

#### Example: Configuring 802.1Q Access Ports for Tagged Traffic from a CE Device: Alternate Configuration

The following example shows how to configure the tagged traffic:

```
Device(config)# interface GigabitEthernet 0/0/1
Device(config-if)# no ip address
Device(config-if)# negotiation auto
Device(config-if)# service instance 10 ethernet
Device(config-if-srv)# encapsulation dot1q 200
Device(config-if-srv)# exit
Device(config-if)# exit
Device(config)# bridge-domain 100
Device(config-bdomain)# member gigabitethernet0/0/1 service-instance 1000
Device(config-bdomain)# end
```

#### Example: Configuring Access Ports for Untagged Traffic from a CE Device

The following example shows how to configure access ports for untagged traffic:
Device(config)# interface gigabitethernet 0/0/0
Device(config-if)# no ip address
Device(config-if)# negotiation auto
Device(config-if)# service instance 10 ethernet
Device(config-if-srv)# encapsulation untagged
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# end

The following example shows a virtual forwarding interface (VFI) configuration:

Device(config)# l2 vfi VPLSA manual
Device(config-vfi)# vpn id 110
Device(config-vfi)# neighbor 10.11.11.11 encapsulation mpls
Device(config-vfi)# neighbor 10.33.33.33 encapsulation mpls
Device(config-vfi)# neighbor 10.44.44.44 encapsulation mpls
Device(config-vfi)# bridge-domain 110
Device(config-vfi)# end

The following example shows a VFI configuration for hub and spoke.

Device(config)# l2 vfi VPLSB manual
Device(config-vfi)# vpn id 111
Device(config-vfi)# neighbor 10.99.99.99 encapsulation mpls
Device(config-vfi)# neighbor 10.12.12.12 encapsulation mpls
Device(config-vfi)# neighbor 10.13.13.13 encapsulation mpls no-split-horizon
Device(config-vfi)# bridge-domain 111
Device(config-vfi)# end

The output of the `show mpls l2transport vc` command displays various information related to a provide edge (PE) device. The VC ID in the output represents the VPN ID; the VC is identified by the combination of the destination address and the VC ID as shown in the command output. The output of the `show mpls l2transport vc detail` command displays detailed information about virtual circuits (VCs) on a PE device.

Device# show mpls l2transport vc 201

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFI VPLSA</td>
<td>VFI</td>
<td>10.11.11.11</td>
<td>110</td>
<td>UP</td>
</tr>
<tr>
<td>VFI VPLSA</td>
<td>VFI</td>
<td>10.33.33.33</td>
<td>110</td>
<td>UP</td>
</tr>
<tr>
<td>VFI VPLSA</td>
<td>VFI</td>
<td>10.44.44.44</td>
<td>110</td>
<td>UP</td>
</tr>
</tbody>
</table>

The following sample output from the `show vfi` command displays the VFI status:

Device# show vfi VPLSA

VFI name: VPLSA, state: up
Local attachment circuits:
  Vlan2
Neighbors connected via pseudowires:
Peer Address  VC ID  Split-horizon
10.11.11.11  110  Y
10.33.33.33  110  Y
10.44.44.44  110  Y

Device# show vfi VPLSB
Example: Configuring Access Ports for Untagged Traffic from a CE Device: Alternate Configuration

The following example shows how to configure the untagged traffic:

```
Device(config)# interface GigabitEthernet 0/4/4
Device(config-if)# no ip address
Device(config-if)# negotiation auto
Device(config-if)# service instance 10 ethernet
Device(config-if-srv)# encapsulation untagged
Device(config-if-srv)# exit
Device(config-srv)# bridge-domain 100
Device(config-bridge)# member GigabitEthernet0/4/4 service-instance 10
Device(config-if-srv)# end
```

Example: Configuring Q-in-Q EFP

The following example shows how to configure the tagged traffic:

```
Device(config)# interface GigabitEthernet 0/0/2
Device(config-if)# no ip address
Device(config-if)# negotiate auto
Device(config-if)# service instance 10 ethernet
Device(config-if-srv)# encapsulation dot1q 200 second-dot1q 400
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# end
```

Use the `show spanning-tree vlan` command to verify that the ports are not in a blocked state. Use the `show vlan id` command to verify that a specific port is configured to send and receive specific VLAN traffic.

Example: Configuring Q-in-Q in EFP: Alternate Configuration

The following example shows how to configure the tagged traffic:

```
Device(config)# interface GigabitEthernet 0/4/4
Device(config-if)# no ip address
Device(config-if)# nonegotiate auto
Device(config-if)# service instance 10 ethernet
Device(config-if-srv)# encapsulation dot1q 200 second-dot1q 400
Device(config-if-srv)# exit
Device(config-if)# exit
```
Device(config)# bridge-domain 100
Device(config-bdomain)# member GigabitEthernet0/4/4 service-instance 1000
Device(config-bdomain)# end

Use the `show spanning-tree vlan` command to verify that the port is not in a blocked state. Use the `show vlan id` command to verify that a specific port is configured to send and receive a specific VLAN traffic.

### Example: Configuring MPLS on a PE Device

The following example shows a global Multiprotocol Label Switching (MPLS) configuration:

Device(config)# mpls label protocol ldp
Device(config)# mpls ldp logging neighbor-changes
Device(config)# mpls ldp discovery hello holdtime 5
Device(config)# mpls ldp router-id Loopback0 force

The following sample output from the `show ip cef` command displays the Label Distribution Protocol (LDP) label assigned:

Device# show ip cef 192.168.17.7
192.168.17.7/32, version 272, epoch 0, cached adjacency to POS4/1
0 packets, 0 bytes
tag information set
local tag: 8149
  fast tag rewrite with PO4/1, point2point, tags imposed: {4017}
via 10.3.1.4, POS4/1, 283 dependencies
next hop 10.3.1.4, POS4/1
valid cached adjacency
tag rewrite with PO4/1, point2point, tags imposed: {4017}

### Example: VFI on a PE Device

The following example shows a virtual forwarding instance (VFI) configuration:

Device(config)# 12 vfi vfi110 manual
Device(config-vfi)# vpn id 110
Device(config-vfi)# neighbor 172.16.10.2 4 encapsulation mpls
Device(config-vfi)# neighbor 10.16.33.33 encapsulation mpls
Device(config-vfi)# neighbor 198.51.100.44 encapsulation mpls
Device(config-vfi)# bridge-domain 100
Device(config-vfi)# end

The following example shows a VFI configuration for a hub-and-spoke configuration:

Device(config)# 12 vfi VPLSA manual
Device(config-vfi)# vpn id 110
Device(config-vfi)# neighbor 10.9.9.9 encapsulation mpls
Device(config-vfi)# neighbor 192.0.2.12 encapsulation mpls
Device(config-vfi)# neighbor 203.0.113.4 encapsulation mpls no-split-horizon
Device(config-vfi)# bridge-domain 100
Device(config-vfi)# end
The `show mpls l2transport vc` command displays information about the provider edge (PE) device. The `show mpls l2transport vc detail` command displays detailed information about the virtual circuits (VCs) on a PE device.

```
Device# show mpls l2transport vc 201

Local intf Local circuit Dest address VC ID Status
------------- -------------------- --------------- ---------- ----------
VFI test1 VFI 209.165.201.1 201 UP
VFI test1 VFI 209.165.201.2 201 UP
VFI test1 VFI 209.165.201.3 201 UP
```

The `show vfi vfi-name` command displays VFI status. The VC ID in the output represents the VPN ID; the VC is identified by the combination of the destination address and the VC ID as in the example below.

```
Device# show vfi VPLS-2

VFI name: VPLS-2, state: up
Local attachment circuits:
 Vlan2
Neighbors connected via pseudowires:
 Peer Address VC ID Split-horizon
 10.1.1.1 2 Y
 10.1.1.2 2 Y
 10.2.2.3 2 N
```

**Example: VFI on a PE Device: Alternate Configuration**

The following example shows how to configure a virtual forwarding interface (VFI) on a provider edge (PE) device:

```
Device(config)# l2vpn vfi context vfi110
Device(config-vfi)# vpn id 110
Device(config-vfi)# member 172.16.10.2 4 encapsulation mpls
Device(config-vfi)# member 10.33.33.33 encapsulation mpls
Device(config-vfi)# member 10.44.44.44 encapsulation mpls
Device(config-vfi)# exit
Device(config)# bridge-domain 100
Device(config-bdomain)# member vfi vfi110
Device(config-bdomain)# end
```

The following example shows how to configure a hub-and-spoke VFI configuration:

```
Device(config)# l2vpn vfi context VPLSA
Device(config-vfi)# vpn id 110
Device(config-vfi)# member 10.9.9.9 encapsulation mpls
Device(config-vfi)# member 172.16.10.2 4 encapsulation mpls
Device(config-vfi)# exit
Device(config)# bridge-domain 100
Device(config-bdomain)# member vfi VPLSA
Device(config-bdomain)# member GigabitEthernet0/0/0 service-instance 100
Device(config-bdomain)# member 10.33.33.33 10 encapsulation mpls
Device(config-bdomain)# end
```
The **show l2vpn atom vc** command displays information about the PE device. The command also displays information about Any Transport over MPLS (AToM) virtual circuits (VCs) and static pseudowires that are enabled to route Layer 2 packets on a device.

```
Device# show l2vpn atom vc

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et0/0.1</td>
<td>Eth VLAN 101</td>
<td>10.0.0.2</td>
<td>101</td>
<td>UP</td>
</tr>
<tr>
<td>Et0/0.1</td>
<td>Eth VLAN 101</td>
<td>10.0.0.3</td>
<td>201</td>
<td>DOWN</td>
</tr>
</tbody>
</table>
```

The **show l2vpn vfi** command displays the VFI status. The VC ID in the output represents the VPN ID; the VC is identified by the combination of the destination address and the VC ID as in the example below.

```
Device# show l2vpn vfi VPLS-2

Legend: RT- Route-target

VFI name: serviceCore1, State: UP, Signaling Protocol: LDP
VPN ID: 100, VPLS-ID: 9:10, Bridge-domain vlan: 100
RD: 9:10, RT: 10.10.10.10:150
Pseudo-port Interface: Virtual-Ethernet1000

Neighbors connected via pseudowires:
<table>
<thead>
<tr>
<th>Interface</th>
<th>Peer Address</th>
<th>VC ID</th>
<th>Discovered Router ID</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pw2000</td>
<td>10.0.0.1</td>
<td>10</td>
<td>10.0.0.1</td>
<td>10.0.0.1</td>
</tr>
<tr>
<td>Pw2001</td>
<td>10.0.0.2</td>
<td>10</td>
<td>10.1.1.2</td>
<td>10.0.0.2</td>
</tr>
<tr>
<td>Pw2002</td>
<td>10.0.0.3</td>
<td>10</td>
<td>10.1.1.3</td>
<td>10.0.0.3</td>
</tr>
<tr>
<td>Pw5</td>
<td>10.0.0.4</td>
<td>10</td>
<td>-</td>
<td>10.0.0.4</td>
</tr>
</tbody>
</table>
```

**Example: Full-Mesh VPLS Configuration**

In a full-mesh configuration, each provider edge (PE) device creates a multipoint-to-multipoint forwarding relationship with all other PE devices in the Virtual Private LAN Services (VPLS) domain using a virtual forwarding interface (VFI). An Ethernet or a VLAN packet received from the customer network can be forwarded to one or more local interfaces and/or emulated virtual circuits (VCs) in the VPLS domain. To avoid a broadcast packet loop in the network, packets received from an emulated VC cannot be forwarded to any emulated VC in the VPLS domain on a PE device. Ensure that Layer 2 split horizon is enabled to avoid a broadcast packet loop in a full-mesh network.

**Figure 43: Full-Mesh VPLS Configuration**

**PE 1 Configuration**

The following examples shows how to create virtual switch instances (VSIs) and associated VCs:
The following example shows how to configure the customer edge (CE) device interface (there can be multiple Layer 2 interfaces in a VLAN):

```
interface GigabitEthernet 0/0/0
no ip address
negotiation auto
service instance 10 ethernet
encapsulation dot1q 200
bridge-domain 100
```

### PE 2 Configuration

The following example shows how to create VSIs and associated VCs:

```
l2 vfi PE2-VPLS-A manual
vpn id 100
neighbor 10.1.1.1 encapsulation mpls
neighbor 10.3.3.3 encapsulation mpls
bridge domain 100
!
interface Loopback 0
ip address 10.2.2.2 255.255.0.0
```

The following example shows how to configure the CE device interface (there can be multiple Layer 2 interfaces in a VLAN):

```
interface GigabitEthernet 0/0/0
no ip address
negotiation auto
service instance 10 ethernet
encapsulation dot1q 200
bridge-domain 100
```

### PE 3 Configuration

The following example shows how to create VSIs and associated VCs:

```
l2 vfi PE3-VPLS-A manual
vpn id 112
neighbor 10.1.1.1 encapsulation mpls
neighbor 10.2.2.2 encapsulation mpls
bridge domain 100
!
interface Loopback 0
ip address 10.3.3.3 255.255.0.0
```
The following example shows how to configure the CE device interface (there can be multiple Layer 2 interfaces in a VLAN):

```
interface GigabitEthernet 0/0/1
no ip address
negotiation auto
service instance 10 ethernet
encapsulation dot1q 200
bridge-domain 100
!
```

The following sample output from the `show mpls l2 vc` command provides information about the status of the VC:

```
Device# show mpls l2 vc

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFI PE1-VPLS-A</td>
<td>VFI</td>
<td>10.2.2.2</td>
<td>100</td>
<td>UP</td>
</tr>
<tr>
<td>VFI PE1-VPLS-A</td>
<td>VFI</td>
<td>10.3.3.3</td>
<td>100</td>
<td>UP</td>
</tr>
</tbody>
</table>
```

The following sample output from the `show vfi` command provides information about the VFI:

```
Device# show vfi PE1-VPLS-A

VFI name: VPLSA, state: up
Local attachment circuits:
Vlan200
Neighbors connected via pseudowires:
10.2.2.2 10.3.3.3
```

The following sample output from the `show mpls 12transport vc` command provides information about virtual circuits:

```
Device# show mpls 12transport vc detail

Local interface: VFI PE1-VPLS-A up
Destination address: 10.2.2.2, VC ID: 100, VC status: up
 Tunnel label: imp-null, next hop point2point
 Output interface: Se2/0, imposed label stack {18}
Signaling protocol: LDP, peer 10.2.2.2:0 up
 MPLS VC labels: local 18, remote 18
 Group ID: local 0, remote 0
 MTU: local 1500, remote 1500
 Remote interface description:
 Sequencing: receive disabled, send disabled
VC statistics:
 packet totals: receive 0, send 0
 byte totals: receive 0, send 0
 packet drops: receive 0, send 0
```

**Example: Full-Mesh Configuration : Alternate Configuration**

In a full-mesh configuration, each provider edge (PE) router creates a multipoint-to-multipoint forwarding relationship with all other PE routers in the Virtual Private LAN Services (VPLS) domain using a virtual
forwarding interface (VFI). An Ethernet or virtual LAN (VLAN) packet received from the customer network can be forwarded to one or more local interfaces and/or emulated virtual circuits (VCs) in the VPLS domain. To avoid broadcasted packets looping in the network, no packet received from an emulated VC can be forwarded to any emulated VC of the VPLS domain on a PE router. That is, Layer 2 split horizon should always be enabled as the default in a full-mesh network.

**Figure 44: VPLS Configuration Example**

![Figure 44: VPLS Configuration Example](image)

**PE 1 Configuration**

The following example shows how to create virtual switch instances (VSIs) and associated VCs and to configure the CE device interface (there can be multiple Layer 2 interfaces in a VLAN):

```plaintext
interface gigabitethernet 0/0/0
 service instance 100 ethernet
 encap dot1q 100
 no shutdown

 !
 l2vpn vfi context PE1-VPLS-A
 vpn id 100
 neighbor 10.2.2.2 encapsulation mpls
 neighbor 10.3.3.3 encapsulation mpls

 !
 bridge-domain 100
 member gigabitethernet0/0/0 service-instance 100
 member vfi PE1-VPLS-A
```

**PE 2 Configuration**

The following example shows how to create VSIs and associated VCs and to configure the CE device interface (there can be multiple Layer 2 interfaces in a VLAN):

```plaintext
interface gigabitethernet 0/0/0
 service instance 100 ethernet
 encap dot1q 100
 no shutdown

 !
 l2vpn vfi context PE2-VPLS-A
 vpn id 100
 neighbor 10.1.1.1 encapsulation mpls
 neighbor 10.3.3.3 encapsulation mpls

 !
 bridge-domain 100
 member gigabitethernet0/0/0 service-instance 100
 member vfi PE2-VPLS-A
```
**PE 3 Configuration**

The following example shows how to create the VSIs and associated VCs and to configure the CE device interface (there can be multiple Layer 2 interfaces in a VLAN):

```plaintext
interface gigabitethernet 0/0/0
 service instance 100 ethernet
 encap dot1q 100
 no shutdown
!
l2vpn vfi context PE3-VPLS-A
 vpn id 100
 neighbor 10.1.1.1 encapsulation mpls
 neighbor 10.2.2.2 encapsulation mpls
!
bridge-domain 100
 member gigabitethernet0/0/0 service-instance 100
 member vfi PE3-VPLS-A
```

The following sample output from the `show mpls l2 vc` command provides information on the status of the VC:

```
Device# show mpls l2 vc

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFI PE3-VPLS-A</td>
<td>VFI</td>
<td>10.2.2.2</td>
<td>100</td>
<td>UP</td>
</tr>
<tr>
<td>VFI PE3-VPLS-A</td>
<td>VFI</td>
<td>10.3.3.3</td>
<td>100</td>
<td>UP</td>
</tr>
</tbody>
</table>
```

The following sample output from the `show l2vpn vfi` command provides information about the VFI:

```
Device# show l2vpn vfi VPLS-2

Legend: RT= Route-target

VFI name: serviceCore1, State: UP, Signaling Protocol: LDP
VPN ID: 100, VPLS-ID: 9:10, Bridge-domain vlan: 100
RD: 9:10, RT: 10.10.10.10:150
Pseudo-port Interface: Virtual-Ethernet1000

Neighbors connected via pseudowires:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Peer Address</th>
<th>VC ID</th>
<th>Discovered Router ID</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pw2000</td>
<td>10.0.0.1</td>
<td>10</td>
<td>10.0.0.1</td>
<td></td>
</tr>
<tr>
<td>Pw2001</td>
<td>10.0.0.2</td>
<td>10</td>
<td>10.1.1.2</td>
<td>10.0.0.1</td>
</tr>
<tr>
<td>Pw2002</td>
<td>10.0.0.3</td>
<td>10</td>
<td>10.1.1.3</td>
<td>10.0.0.3</td>
</tr>
<tr>
<td>Pw5</td>
<td>10.0.0.4</td>
<td>10</td>
<td>-</td>
<td>10.0.0.4</td>
</tr>
</tbody>
</table>
```

The following sample output from the `show l2vpn atom vc` command provides information on the virtual circuits:

```
Device# show l2vpn atom vc

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et0/0.1</td>
<td>Eth VLAN 101</td>
<td>10.0.0.2</td>
<td>101</td>
<td>UP</td>
</tr>
<tr>
<td>Et0/0.1</td>
<td>Eth VLAN 101</td>
<td>10.0.0.3</td>
<td>201</td>
<td>DOWN</td>
</tr>
</tbody>
</table>
```
Example: MAC ACL with Dummy VLAN ID

PE basic configuration for VPLS type 4

```bash
router bgp 100
bgp log-neighbor-changes
neighbor 19.0.0.1 remote-as 100
neighbor 19.0.0.1 update-source Loopback0
! address-family ipv4
 neighbor 19.0.0.1 activate
 neighbor 19.0.0.1 send-community extended
exit-address-family
! address-family l2vpn vpls
 neighbor 19.0.0.1 activate
 exit-address-family
l2vpn vfi context vlan_tag
 vpn id 10
 autodiscovery bgp signaling ldp template vlan_tag
!
mpls label protocol ldp
bridge-domain 10
 member GigabitEthernet2/1/0 service-instance 10
 remote circuit id 191
 member vfi vlan_tag
template type pseudowire vlan_tag
 encapsulation mpls
 vc type vlan
 control-word include
interface GigabitEthernet2/1/0
 no ip address
 negotiation auto
 service instance 10 ethernet
 encapsulation dot1q 10
!
interface GigabitEthernet2/1/4
 ip address 108.0.0.2 255.255.255.0
 negotiation auto
 mpls ip
!

//Change the circuit ID and check if the download ID is correct//
bridge-domain 10
 member gigabitEthernet 2/1/0 service-instance 10
 remote circuit id 1982 <<< Set the dummy VLAN
```

Verifying the Configuration

Here's a sample output for the `show` command to verify the configured VLAN ID.

```
Device# show platform hardware qfp active feature bridge-domain client 10 interface

QFP L2BD datapath interface information
Name: GigabitEthernet2/1/0.EFP10
IF handle: 26, Input uidb: 245752
Flags: 0X000038
Split-horizon cfged: No, shg id: 0
STP state: Unknown/Bad
Mac security enabled:
```

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Feature Information for Configuring Virtual Private LAN Services

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 33: Feature Information for Configuring Virtual Private LAN Services

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Private LAN Services (VPLS)</td>
<td>Cisco IOS XE Release 3.5S</td>
<td>This feature enables you to configure dynamic Virtual Private LAN Services (VPLS). VPLS is a class of VPN that supports the connection of multiple sites in a single bridged domain over a managed IP/MPLS network. In Cisco IOS XE Release 3.5S, this feature was introduced on the Cisco ASR 903 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td>L2VPN Protocol-Based CLI(s)</td>
<td>Cisco IOS XE Release 3.7S</td>
<td>In Cisco IOS XE Release 3.7S, the L2VPN Protocol-Based CLI(s) feature was introduced. This feature provides a set of processes and an improved infrastructure for developing and delivering Cisco IOS software on various Cisco platforms. This feature introduces new commands and modifies or replaces existing commands to achieve a consistent functionality across Cisco platforms and provide cross-Operating System support.</td>
</tr>
<tr>
<td>Static VPLS over MPLS-TP</td>
<td>Cisco IOS XE Release 3.6S</td>
<td>This feature enables static VPLS to use MPLS Transport Profile. In Cisco IOS XE Release 3.6S, this feature was introduced on the Cisco ASR 903 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td>Type 4 PWE VLAN Rewrite</td>
<td>Cisco IOS XE Everest Release 16.4.1</td>
<td>From Cisco IOS XE Everest 16.4.1 release, VPLS VC type 4 mode (with autodiscovery) can be used to configure a dummy VLAN tag. This feature can be used to modify the VLAN ID to filter based on the VLAN ID.</td>
</tr>
</tbody>
</table>
CHAPTER 21

Routed Pseudo-Wire and Routed VPLS

This feature module explains how to configure Routed Pseudo-Wire and Routed VPLS.

- Finding Feature Information, on page 559
- Configuring Routed Pseudo-Wire and Routed VPLS, on page 559
- Verifying Routed Pseudo-Wire and Routed VPLS Configuration, on page 560
- Feature Information for Routed Pseudo-Wire and Routed VPLS, on page 561

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Configuring Routed Pseudo-Wire and Routed VPLS

RPW and Routed VPLS can route Layer 3 traffic as well as switch Layer 2 frames for pseudowire connections between provider edge (PE) devices. Both point-to-point PE connections, in the form of Ethernet over MPLS (EoMPLS), and Virtual Private LAN Services (VPLS) multipoint PE connections are supported. The ability to route frames to and from these interfaces supports termination of a pseudowire into a Layer 3 network (VPN or global) on the same switch, or to tunnel Layer 3 frames over a Layer 2 tunnel (EoMPLS or VPLS). The feature supports faster network convergence in the event of a physical interface or device failure through the MPLS Traffic Engineering (MPLS-TE) and Fast Reroute (FRR) features. In particular, the feature enables MPLS TE-FRR protection for Layer 3 multicast over a VPLS domain.

When the RPW is configured in A-VPLS mode, TE/FRR is not supported because A-VPLS runs over ECMP and the ECMP convergence is comparable to TE/FRR.

To configure routing support for the pseudowire, configure an IP address and other Layer 3 features for the Layer 3 domain (VPN or global) in the virtual LAN (VLAN) interface configuration. The following example assigns the IP address 10.10.10.1 to the VLAN 100 interface, and enables Multicast PIM. (Layer 2 forwarding is defined by the VFI VFI100.)
interface bdi 100

ip address 10.10.10.1 255.255.255.0

The following example assigns an IP address 20.20.20.1 of the VPN domain VFI200. (Layer 2 forwarding is defined by the VFI VFI200.)

interface bdi 200

ip address 20.20.20.1 255.255.255.0

Verifying Routed Pseudo-Wire and Routed VPLS Configuration

You can use the `show mpls platform` command to view information about a routed pseudowire and routed VPLS configuration.

The following example shows how to display information about a routed pseudowire and routed VPLS configuration:

**SUMMARY STEPS**

1. `show mpls platform vpls 100`

**DETAILED STEPS**

`show mpls platform vpls 100`

**Example:**

```
Device# show mpls platform vpls 100

VPLS VLAN 100 (BD 100): V4
 VC info (#spoke VCs 0):
 Imp: tcam 224 (68) adj 131076 (0x20004) [peer 1.1.1.1 ID vc_id 100 2:1] \
 stats 0/0 0/0
 Disp: tcam 324 (66) adj 114692 (0x1C004) [in_label 16] stats 0/0

BD Flood Manager: VLAN/BD 100, 3 peers, V4
 CMET handle 0x8 top 8 (0x8) bottom 3280 (0xC00)
 Ingr flood: tcam 64/0x40 (sw 15) adj 196608 (0x30000) elif 0x701C0064 stats 0/0 \n 0/0
 Egr flood: tcam 65/0x41 (sw 72) adj 180228 (0x2C004) elif 0x701C0064 stats 0/0 \n 0/0
 BD ports: adj 32868 (0x8064) elif 0x2000064 stats 3/208
 Ingr local: tcam 32/0x20 (sw 13) adj 180224 (0x2C000) elif 0x2000064 stats 0/0
 Egr local: tcam 33/0x21 (sw 14) adj 180225 (0x2C001) elif 0x2000064 stats 0/0
 IRB Ingr V4 Mcast control 162/0xA2 (sw 79), adj 196609 (0x30001)
 Egr V4 Mcast control 164/0xA4 (sw 84), adj 180229 (0x2C005)
 Ingr V4 Mcast data 192/0xC0 (sw 80), adj 1966 (0x30000)
 Egr V4 Mcast data 194/0xC2 (sw 85), adj 180228 (0x2C004)
```
Feature Information for Routed Pseudo-Wire and Routed VPLS

Table 34: Feature Information for Routed Pseudo-Wire and Routed VPLS

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed Pseudo-Wire and Routed VPLS</td>
<td>12.2(33)SRB, 12.2(33)SXJ1, 15.0(1)SY, 15.2(4)M, Cisco IOS XE Release 3.6S</td>
<td>This feature routes Layer 3 traffic as well as switch Layer 2 frames for pseudowire connections between provider edge (PE) devices. In Cisco IOS Release 12.2(33)SRB, this feature was introduced on the Cisco 7600 series routers. In Cisco IOS Release 12.2(33)SXJ1, this feature was integrated. This feature is supported on WAN cards. The following command was modified: show mpls platform In Cisco IOS Release 15.0(1)SY, this feature was integrated. In Cisco IOS Release 15.2(4)M, this feature was integrated. In Cisco IOS XE Release 3.6S, support was added for the Cisco ASR 1000 Series Routers.</td>
</tr>
</tbody>
</table>
VPLS Autodiscovery BGP Based

VPLS Autodiscovery enables Virtual Private LAN Service (VPLS) provider edge (PE) devices to discover other PE devices that are part of the same VPLS domain. VPLS Autodiscovery also automatically detects when PE devices are added to or removed from a VPLS domain. As a result, with VPLS Autodiscovery enabled, you no longer need to manually configure a VPLS domain and maintain the configuration when a PE device is added or deleted. VPLS Autodiscovery uses the Border Gateway Protocol (BGP) to discover VPLS members and set up and tear down pseudowires in a VPLS domain.

This module describes how to configure BGP-based VPLS Autodiscovery.

- Restrictions for VPLS Autodiscovery BGP Based, on page 563
- Information About VPLS Autodiscovery BGP Based, on page 564
- How to Configure VPLS Autodiscovery BGP Based, on page 567
- Configuration Examples for VPLS Autodiscovery BGP Based, on page 586
- Additional References for VPLS Autodiscovery BGP Based, on page 593
- Feature Information for VPLS Autodiscovery BGP Based, on page 594

Restrictions for VPLS Autodiscovery BGP Based

- Virtual Private LAN Service (VPLS) Autodiscovery supports only IPv4 addresses.

- VPLS Autodiscovery uses Forwarding Equivalence Class (FEC) 129 to convey endpoint information. Manually configured pseudowires use FEC 128.

- VPLS Autodiscovery is not supported with Layer 2 Tunnel Protocol Version 3 (L2TPv3).

- You can configure both autodiscovered and manually configured pseudowires in a single virtual forwarding instance (VFI). However, you cannot configure different pseudowires on the same peer PE device.

- After enabling VPLS Autodiscovery, if you manually configure a neighbor by using the `neighbor` command and both peers are in autodiscovery mode, each peer will receive discovery data for that VPLS. To prevent peers from receiving data for the VPLS domain, manually configure route target (RT) values.

- If you manually configure multiple pseudowires and target different IP addresses on the same PE device for each pseudowire, do not use the same virtual circuit (VC) ID to identify pseudowires that terminate at the same PE device.

- If you manually configure a neighbor on one PE device, you cannot configure the same pseudowire in the other direction by using autodiscovery on another PE device.
• Tunnel selection is not supported with autodiscovered neighbors.

• Up to 16 RTs are supported per VFI.

• The same RT is not allowed in multiple VFIs on the same PE device.

• The Border Gateway Protocol (BGP) autodiscovery process does not support dynamic, hierarchical VPLS. User-facing PE (U-PE) devices cannot discover network-facing PE (N-PE) devices, and N-PE devices cannot discover U-PE devices.

• Pseudowires for autodiscovered neighbors have split horizon enabled. (A split horizon is enabled by default on all interfaces. A split horizon blocks route information from being advertised by a device, irrespective of the interface from which the information originates.) Therefore, manually configure pseudowires for hierarchical VPLS. Ensure that U-PE devices do not participate in BGP autodiscovery for these pseudowires.

• Do not disable split horizon on autodiscovered neighbors. Split horizon is required with VPLS Autodiscovery.

• The provisioned peer address must be a /32 address bound to the peer’s Label Distribution Protocol (LDP) router ID.

• A peer PE device must be able to access the IP address that is used as the local LDP router ID. Even if the IP address is not used in the `xconnect` command on the peer PE device, the IP address must be reachable.

Information About VPLS Autodiscovery BGP Based

How VPLS Works

Virtual Private LAN Service (VPLS) allows Multiprotocol Label Switching (MPLS) networks to provide multipoint Ethernet LAN services, also known as Transparent LAN Services (TLS). All customer sites in a VPLS appear to be on the same LAN, even though these sites might be in different geographic locations.

How the VPLS Autodiscovery BGP Based Feature Works

VPLS Autodiscovery enables each Virtual Private LAN Service (VPLS) provider edge (PE) device to discover other PE devices that are part of the same VPLS domain. VPLS Autodiscovery also tracks PE devices when they are added to or removed from a VPLS domain. Autodiscovery and signaling functions use the Border Gateway Protocol (BGP) to find and track PE devices.

BGP uses the Layer 2 VPN (L2VPN) Routing Information Base (RIB) to store endpoint provisioning information, which is updated each time any Layer 2 virtual forwarding instance (VFI) is configured. The prefix and path information is stored in the L2VPN database, which allows BGP to make decisions about the best path. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, this endpoint information is used to configure a pseudowire mesh to support L2VPN-based services.

The BGP autodiscovery mechanism facilitates the configuration of L2VPN services, which are an integral part of the VPLS feature. VPLS enables flexibility in deploying services by connecting geographically dispersed sites as a large LAN over high-speed Ethernet in a robust and scalable IP Multiprotocol Label Switching.
(MPLS) network. For more information about BGP and the L2VPN address family in relation to VPLS Autodiscovery, see the following chapters in the *IP Routing: BGP Configuration Guide*:

- “BGP Support for the L2VPN Address Family” chapter

### How Enabling VPLS Autodiscovery Differs from Manually Configuring VPLS

With VPLS Autodiscovery enabled, you no longer need to manually set up Virtual Private LAN Service (VPLS). The commands that you use to set up VPLS Autodiscovery are similar to those that you use to manually configure VPLS, as shown in the table below. VPLS Autodiscovery uses `neighbor` commands in L2VPN address family mode to distribute endpoint information to configure a pseudowire.

#### Table 35: Manual VPLS Configuration Versus VPLS Autodiscovery Configuration

<table>
<thead>
<tr>
<th>Manual Configuration of VPLS</th>
<th>VPLS Autodiscovery BGP Based</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>l2 vfi vplsl1 manual</code></td>
<td><code>l2 vfi vplsl1 autodiscovery</code></td>
</tr>
<tr>
<td><code>vpn id 100</code></td>
<td><code>vpn id 100</code></td>
</tr>
<tr>
<td><code>exit</code></td>
<td><code>exit</code></td>
</tr>
<tr>
<td><code>router bgp 1</code></td>
<td><code>router bgp 1</code></td>
</tr>
<tr>
<td><code>no bgp default ipv4-unicast</code></td>
<td><code>no bgp default ipv4-unicast</code></td>
</tr>
<tr>
<td><code>bgp log-neighbor-changes</code></td>
<td><code>bgp log-neighbor-changes</code></td>
</tr>
<tr>
<td><code>bgp update-delay 1</code></td>
<td><code>bgp update-delay 1</code></td>
</tr>
<tr>
<td><code>neighbor 10.1.1.2 remote-as 1</code></td>
<td><code>neighbor 10.1.1.2 remote-as 1</code></td>
</tr>
<tr>
<td><code>neighbor 10.1.1.2 update-source Loopback1</code></td>
<td><code>neighbor 10.1.1.2 update-source Loopback1</code></td>
</tr>
<tr>
<td><code>neighbor 10.1.1.2 activate</code></td>
<td><code>neighbor 10.1.1.2 activate</code></td>
</tr>
<tr>
<td><code>neighbor 10.1.1.2 send-community extended</code></td>
<td><code>neighbor 10.1.1.2 send-community extended</code></td>
</tr>
<tr>
<td><code>exit-address-family</code></td>
<td><code>exit-address-family</code></td>
</tr>
</tbody>
</table>

Configure VPLS Autodiscovery by using the `l2 vfi autodiscovery` command. This command allows a virtual forwarding instance (VFI) to learn and advertise pseudowire endpoints. As a result, you no longer need to enter the `neighbor` command in L2 VFI configuration mode.

However, the `neighbor` command is still supported with VPLS Autodiscovery in L2 VFI configuration mode. You can use the `neighbor` command to allow PE devices that do not participate in the autodiscovery process to join the VPLS domain. You can also use the `neighbor` command with PE devices that have been configured using the Tunnel Selection feature. In addition, you can use the `neighbor` command in hierarchical VPLS configurations that have user-facing PE (U-PE) devices that do not participate in the autodiscovery process and have split-horizon forwarding disabled.

### How Enabling VPLS Autodiscovery Differs from Manually Configuring VPLS using the commands associated with the L2VPN Protocol-Based CLIs feature

With VPLS Autodiscovery enabled, you no longer need to manually set up Virtual Private LAN Service (VPLS). The commands that you use to set up VPLS Autodiscovery are similar to those that you use to manually configure VPLS, as shown in the table below. VPLS Autodiscovery uses `neighbor` commands in L2VPN address family mode to distribute endpoint information to configure a pseudowire.
Table 36: Manual VPLS Configuration Versus VPLS Autodiscovery Configuration

<table>
<thead>
<tr>
<th>Manual Configuration of VPLS</th>
<th>VPLS Autodiscovery BGP Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2vpn vfi context vplsl</td>
<td>l2vpn vfi context vplsl</td>
</tr>
<tr>
<td>vpn id 100</td>
<td>vpn id 100</td>
</tr>
<tr>
<td>neighbor 10.10.10.1 encapsulation mpls</td>
<td>autodiscovery bgp signaling ldp</td>
</tr>
<tr>
<td>neighbor 10.10.10.0 encapsulation mpls</td>
<td>exit</td>
</tr>
<tr>
<td>exit</td>
<td>router bgp 1</td>
</tr>
<tr>
<td></td>
<td>no bgp default ipv4-unicast</td>
</tr>
<tr>
<td></td>
<td>bgp log-neighbor-changes</td>
</tr>
<tr>
<td></td>
<td>bgp update-delay 1</td>
</tr>
<tr>
<td></td>
<td>neighbor 10.1.1.2 remote-as 1</td>
</tr>
<tr>
<td></td>
<td>neighbor 10.1.1.2 update-source Loopback1</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>address-family l2vpn vpls</td>
</tr>
<tr>
<td></td>
<td>neighbor 10.1.1.2 activate</td>
</tr>
<tr>
<td></td>
<td>neighbor 10.1.1.2 send-community extended</td>
</tr>
<tr>
<td></td>
<td>exit-address-family</td>
</tr>
</tbody>
</table>

Configure VPLS Autodiscovery by using the `autodiscovery` command. This command allows a virtual forwarding instance (VFI) to learn and advertise pseudowire endpoints. As a result, you no longer need to enter the `neighbor` command in L2 VFI configuration mode.

However, the `neighbor` command is still supported with VPLS Autodiscovery in L2 VFI configuration mode. You can use the `neighbor` command to allow PE devices that do not participate in the autodiscovery process to join the VPLS domain. You can also use the `neighbor` command with PE devices that have been configured using the Tunnel Selection feature. In addition, you can use the `neighbor` command in hierarchical VPLS configurations that have user-facing PE (U-PE) devices that do not participate in the autodiscovery process and have split-horizon forwarding disabled.

### show Commands Affected by VPLS Autodiscovery BGP Based

The following `show` commands were enhanced for VPLS Autodiscovery:

- The `show mpls l2transport vc detail` command was updated to include Forwarding Equivalence Class (FEC) 129 signaling information for autodiscovered Virtual Private LAN Service (VPLS) pseudowires.

- The `show vfi` command was enhanced to display information related to autodiscovered virtual forwarding instances (VFIs). The new output includes the VPLS ID, the route distinguisher (RD), the route target (RT), and router IDs of discovered peers.

- The `show xconnect` command was updated with the `rib` keyword to provide Routing Information Base (RIB) information about pseudowires.

### BGP VPLS Autodiscovery Support on a Route Reflector

By default, routes received from an internal BGP (iBGP) peer are not sent to another iBGP peer unless a full mesh configuration is formed between all BGP devices within an autonomous system (AS). This results in scalability issues. Using Border Gateway Protocol (BGP) route reflectors leads to much higher levels of scalability. Configuring a route reflector allows a device to advertise or reflect the iBGP learned routes to other iBGP speakers.
Virtual Private LAN Service (VPLS) Autodiscovery supports BGP route reflectors. A BGP route reflector can be used to reflect BGP VPLS prefixes without VPLS being explicitly configured on the route reflector.

A route reflector does not participate in autodiscovery; that is, no pseudowires are set up between the route reflector and the PE devices. A route reflector reflects VPLS prefixes to other PE devices so that these PE devices do not need to have a full mesh of BGP sessions. The network administrator configures only the BGP VPLS address family on a route reflector. For an example configuration of VPLS Autodiscovery support on a route reflector, see the “Example: BGP VPLS Autodiscovery Support on Route Reflector” section.

**N-PE Access to VPLS Using MST**

When a Virtual Private LAN Service (VPLS) network uses multihoming (network-facing PE [N-PE] VPLS redundancy) to prevent a single point of failure of an N-PE device, a bridging loop is introduced. One of the N-PE devices can be set as a Multiple Spanning Tree (MST) root to break the loop. In most cases, the two N-PE devices are also separated by a distance that makes direct physical link impossible. You can configure a virtual link (usually through the same VPLS core network) between the two N-PE devices to pass an MST bridge protocol data unit (BPDU) for path calculation, break the loop, and maintain convergence. The virtual link is created using a special pseudowire between the active and redundant N-PE devices.

While setting up an MST topology for a VPLS PE device, ensure the following:

- The `spanning-tree mode mst` command is enabled on all PE devices (N-PE and user-facing PE [U-PE]) participating in the MST topology.
- A special pseudowire is configured between the two N-PE devices, and these two devices are in the up state.
- The special pseudowire is a manually created virtual forwarding instance (VFI).
- The configuration (including the MST instance, the Ethernet virtual circuit [EVC], and the VLAN) on all PE devices is the same.
- One of the N-PE devices, and not one of the U-PE devices, is the root for the MST instance.
- The name and revision for the MST configuration are configured to synchronize with the standby Route Processor (RP).

**How to Configure VPLS Autodiscovery BGP Based**

**Enabling VPLS Autodiscovery BGP Based**

Perform this task to enable Virtual Private LAN Service (VPLS) PE devices to discover other PE devices that are part of the same VPLS domain.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `l2 vfi vfi-name autodiscovery`
4. `vpn id vpn-id`
5. `end`
### Enabling VPLS Autodiscovery BGP Based using the commands associated with the L2VPN Protocol-Based CLIs feature

Perform this task to enable Virtual Private LAN Service (VPLS) PE devices to discover other PE devices that are part of the same VPLS domain.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2vpn vfi context vfi-name`
4. `vpair id vpn-id`
5. `autodiscovery bgp signaling {ldp | bgp}`
6. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** `enable` | Enables privileged EXEC mode.  
  • Enter your password if prompted. |
| Example: `Device> enable` | |
| **Step 2** `configure terminal` | Enters global configuration mode. |
| Example: `Device# configure terminal` | |
| **Step 3** `l2vpn vfi vfi-name autodiscovery` | Enables VPLS Autodiscovery on a PE device and enters L2 VFI configuration mode. |
| Example: `Device(config)# l2vpn vfi vpls1 autodiscovery` | |
| **Step 4** `vpair id vpn-id` | Configures a VPN ID for the VPLS domain. |
| Example: `Device(config-vfi)# vpair id 10` | |
| **Step 5** `end` | Exits L2 VFI configuration mode and returns to privileged EXEC mode.  
  • Commands take effect after the device exits L2 VFI configuration mode. |
<p>| Example: <code>Device(config-vfi)# end</code> | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device&gt; enable</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 2**

**configure terminal**

**Example:**

```
Device# configure terminal
```

**Step 3**

**l2vpn vfi context vfi-name**

**Example:**

```
Device(config)# l2vpn vfi context vpls1
```

**Step 4**

**vpn id vpn-id**

**Example:**

```
Device(config-vfi)# vpn id 10
```

**Step 5**

**autodiscovery bgp signaling {ldp | bgp}**

**Example:**

```
Device(config-vfi)# autodiscovery bgp signaling ldp
```

**Step 6**

**end**

**Example:**

```
Device(config-vfi)# end
```

---

**Configuring VPLS BGP Signaling**

**SUMMARY STEPS**

1. enable
2. configure terminal
3. l2vpn vfi context name
4. vpn id vpn-id
5. autodiscovery bgp signaling {bgp | ldp} [template template-name]
6. ve id ve-id
7. ve range ve-range
8. exit
9. exit
10. router bgp autonomous-system-number
11. bgp graceful-restart
12. neighbor ip-address remote-as autonomous-system-number
**13.** address-family l2vpn [vpls]

**14.** neighbor ip-address activate

**15.** neighbor ip-address send-community [both | standard | extended]

**16.** neighbor ip-address suppress-signaling-protocol ldp

**17.** end

**18.** show bgp l2vpn vpls {all | rd route-distinguisher}

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> l2vpn vfi context name</td>
<td>Establishes a L2VPN virtual forwarding interface (VFI) between two or more separate networks and enters Layer 2 VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# l2vpn vfi context vfi1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> vpn id vpn-id</td>
<td>Configures a VPN ID for the VPLS domain.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi)# vpn id 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> autodiscovery bgp signaling {bgp</td>
<td>ldp} [template template-name]</td>
</tr>
<tr>
<td><strong>Note</strong> For the VPLS BGP Signaling feature use the autodiscovery bgp signaling bgp command.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi)# autodiscovery bgp signaling bgp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> ve id ve-id</td>
<td>Specifies the VPLS endpoint (VE) device ID value. The VE ID identifies a VFI within a VPLS service. The VE device ID value is from 1 to 16384.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi-autodiscovery)# ve id 1001</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> ve range ve-range</td>
<td>Specifies the VE device ID range value. The VE range overrides the minimum size of VE blocks. The default minimum size is 10. Any configured VE range must be higher than 10.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi-autodiscovery)# ve range 12</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 8</strong> exit</td>
<td>Exits L2VPN VFI autodiscovery configuration mode and enters L2VPN VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi-autodiscovery)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> exit</td>
<td>Exits L2VPN VFI configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> router bgp autonomous-system-number</td>
<td>Enters router configuration mode to create or configure a BGP routing process.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# router bgp 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> bgp graceful-restart</td>
<td>Enables the BGP graceful restart capability and BGP nonstop forwarding (NSF) awareness.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-router)# bgp graceful-restart</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> neighbor ip-address remote-as autonomous-system-number</td>
<td>Configures peering with a BGP neighbor in the specified autonomous system.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-router)# neighbor 10.10.10.1 remote-as 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> address-family l2vpn [vpls]</td>
<td>Specifies the L2VPN address family and enters address family configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-router)# address-family l2vpn vpls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The optional vpls keyword specifies that VPLS endpoint provisioning information is to be distributed to BGP peers.</td>
</tr>
<tr>
<td></td>
<td>In this example, an L2VPN VPLS address family session is created.</td>
</tr>
<tr>
<td><strong>Step 14</strong> neighbor ip-address activate</td>
<td>Enables the neighbor to exchange information for the L2VPN VPLS address family with the local device.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-router-af)# neighbor 10.10.10.1 activate</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> neighbor ip-address send-community [both</td>
<td>standard [extended]</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-router-af)# neighbor 10.10.10.1 send-community extended</td>
<td>- In this example, an extended communities attribute is sent to the neighbor at 10.10.10.1.</td>
</tr>
</tbody>
</table>
### Configuring BGP to Enable VPLS Autodiscovery

The Border Gateway Protocol (BGP) Layer 2 VPN (L2VPN) address family supports a separate L2VPN Routing Information Base (RIB) that contains endpoint provisioning information for Virtual Private LAN Service (VPLS) Autodiscovery. BGP learns the endpoint provisioning information from the L2VPN database, which is updated each time a Layer 2 virtual forwarding instance (VFI) is configured. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, the endpoint information is used to configure a pseudowire mesh to support L2VPN-based services.

#### SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **router bgp autonomous-system-number**
4. **no bgp default ipv4-unicast**
5. **bgp log-neighbor-changes**
6. **neighbor [ip-address | peer-group-name] remote-as autonomous-system-number**
7. **neighbor [ip-address | peer-group-name] update-source interface-type interface-number**
8. Repeat Steps 6 and 7 to configure other BGP neighbors.
9. **address-family l2vpn [vpls]**
10. **neighbor [ip-address | peer-group-name] activate**
11. **neighbor [ip-address | peer-group-name] send-community {both | standard | extended}**
12. Repeat Steps 10 and 11 to activate other BGP neighbors under an L2VPN address family.
13. **exit-address-family**
14. **end**
15. **show vfi**
16. **show ip bgp l2vpn vpls {all | rd route-distinguisher}**


## Command or Action | Purpose
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 16</strong> neighbor ip-address suppress-signaling-protocol ldp</td>
<td>Suppresses LDP signaling and enables BGP signaling.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-router-af)# neighbor 10.10.10.1 suppress-signaling-protocol ldp</td>
<td>• In this example LDP signaling is suppressed (and BGP signaling enabled) for the neighbor at 10.10.10.1.</td>
</tr>
<tr>
<td><strong>Step 17</strong> end</td>
<td>Exits address family configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-router-af)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 18</strong> show bgp l2vpn vpls {all</td>
<td>rd route-distinguisher}</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# show bgp l2vpn vpls all</td>
<td></td>
</tr>
</tbody>
</table>
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code>&lt;br&gt;<code>Example:</code> Device&gt; enable</td>
<td>Enables privileged EXEC mode.&lt;br&gt;• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code>&lt;br&gt;<code>Example:</code> Device# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>router bgp autonomous-system-number</code>&lt;br&gt;<code>Example:</code> Device(config)# router bgp 65000</td>
<td>Enters router configuration mode for the specified routing process.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>no bgp default ipv4-unicast</code>&lt;br&gt;<code>Example:</code> Device(config-router)# no bgp default ipv4-unicast</td>
<td>Disables the IPv4 unicast address family for the BGP routing process. <strong>Note</strong> Routing information for the IPv4 unicast address family is advertised by default for each BGP routing session configured using the <code>neighbor remote-as</code> router configuration command unless you configure the <code>no bgp default ipv4-unicast</code> router configuration command before configuring the <code>neighbor remote-as</code> command. Existing neighbor configurations are not affected.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>bgp log-neighbor-changes</code>&lt;br&gt;<code>Example:</code> Device(config-router)# bgp log-neighbor-changes</td>
<td>Enables logging of BGP neighbor resets.</td>
</tr>
<tr>
<td>Step 6</td>
<td>`neighbor {ip-address</td>
<td>peer-group-name} remote-as autonomous-system-number<code>&lt;br&gt;</code>Example:` Device(config-router)# neighbor 10.10.10.1 remote-as 65000</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **7** | `neighbor {ip-address | peer-group-name} update-source interface-type interface-number` | (Optional) Configures a device to select a specific source or interface to receive routing table updates.  
- This example uses a loopback interface. The advantage of this configuration is that the loopback interface is not affected by the effects of a flapping interface. |
| **8** | Repeat Steps 6 and 7 to configure other BGP neighbors. | — |
| **9** | `address-family l2vpn [vpls]` | Specifies the L2VPN address family and enters address family configuration mode.  
- The optional `vpls` keyword specifies that the VPLS endpoint provisioning information is to be distributed to BGP peers.  
- In this example, an L2VPN VPLS address family session is created. |
| **10** | `neighbor {ip-address | peer-group-name} activate` | Enables the exchange of information with a BGP neighbor. |
| **11** | `neighbor {ip-address | peer-group-name} send-community {both | standard | extended}` | Specifies that a communities attribute should be sent to a BGP neighbor.  
- In this example, an extended communities attribute is sent to the neighbor at 10.10.10.1. |
| **12** | Repeat Steps 10 and 11 to activate other BGP neighbors under an L2VPN address family. | — | |
| **13** | `exit-address-family` | Exits address family configuration mode and returns to router configuration mode. |
| **14** | `end` | Exits router configuration mode and returns to privileged EXEC mode. |
| **15** | `show vfi` | Displays information about the configured VFI instances. |
| **16** | `show ip bgp l2vpn vpls {all | rd route-distinguisher}` | Displays information about the L2VPN VPLS address family. |
### Customizing the VPLS Autodiscovery Settings

Several commands allow you to customize the Virtual Private LAN Service (VPLS) environment. You can specify identifiers for the VPLS domain, the route distinguisher (RD), the route target (RT), and the provider edge (PE) device. Perform this task to customize these identifiers.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2 vfi vfi-name autodiscovery`
4. `vpn id vpn-id`
5. `vpls-id {autonomous-system-number:nn | ip-address:nn}`
6. `rd {autonomous-system-number:nn | ip-address:nn}`
7. `route-target [import | export | both] {autonomous-system-number:nn | ip-address:nn}`
8. `auto-route-target`
9. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>l2 vfi vfi-name autodiscovery</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config)# l2 vfi vpls1 autodiscovery</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>vpn id vpn-id</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-vfi)# vpn id 10</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>**vpls-id {autonomous-system-number:nn</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>rd {(autonomous-system-number:nn</td>
<td>ip-address:nn}</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# rd 2:3</td>
<td>• There are two formats for configuring the VPLS ID argument. It can be configured in the autonomous-system-number:network number (ASN:nn) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address:nn).</td>
</tr>
<tr>
<td>route-target [import</td>
<td>export</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# route-target 600:2222</td>
<td>• This command is optional because VPLS Autodiscovery automatically generates an RT using the BGP autonomous system number and the configured VFI VPN ID. You can use this command to change the automatically generated RT.</td>
</tr>
<tr>
<td>auto-route-target</td>
<td>(Optional) Enables the automatic generation of a RT.</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# auto-route-target</td>
<td>• There are two formats for configuring the route target argument. It can be configured in the autonomous-system-number:network number (ASN:nn) format, as shown in the example, or it can be configured in the IP-address:network number format (IP-address:nn).</td>
</tr>
<tr>
<td>end</td>
<td>Exits L2 VFI configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-vfi)# end</td>
<td>• Commands take effect after the device exits Layer 2 VFI configuration mode.</td>
</tr>
</tbody>
</table>
Configuring BGP to Enable VPLS Autodiscovery using the commands associated with the L2VPN Protocol-Based CLIs feature

The BGP L2VPN address family supports a separate L2VPN Routing Information Base (RIB) that contains endpoint provisioning information for Virtual Private LAN Service (VPLS) Autodiscovery. BGP learns the endpoint provisioning information from the L2VPN database, which is updated each time a Layer 2 virtual forwarding instance (VFI) is configured. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, the endpoint information is used to configure a pseudowire mesh to support L2VPN-based services.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router bgp autonomous-system-number`
4. `no bgp default ipv4-unicast`
5. `bgp log-neighbor-changes`
6. `neighbor {ip-address | peer-group-name} remote-as autonomous-system-number`
7. `neighbor {ip-address | peer-group-name} update-source interface-type interface-number`
8. Repeat Steps 6 and 7 to configure other BGP neighbors.
9. `address-family l2vpn [vpls]`
10. `neighbor {ip-address | peer-group-name} activate`
11. `neighbor {ip-address | peer-group-name} send-community {both | standard | extended}`
12. Repeat Steps 10 and 11 to activate other BGP neighbors under an L2VPN address family.
13. `exit-address-family`
14. `end`
15. `show l2vpn vfi`
16. `show ip bgp l2vpn vpls {all | rd route-distinguisher}`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
**enable**
**Example:**
Device> enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Step 2**
**configure terminal**
**Example:**
Device# configure terminal | Enters global configuration mode. |
| **Step 3**
**router bgp autonomous-system-number**
**Example:**
Device(config)# router bgp 65000 | Enters router configuration mode for the specified routing process. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> no bgp default ipv4-unicast</td>
<td>Enables logging of BGP neighbor resets.</td>
</tr>
<tr>
<td>Example:</td>
<td>Routing information for the IPv4 unicast address family is advertised by default for each BGP routing session configured using the <strong>neighbor remote-as</strong> router configuration command unless you configure the <strong>no bgp default ipv4-unicast</strong> router configuration command before configuring the <strong>neighbor remote-as</strong> command. Existing neighbor configurations are not affected.</td>
</tr>
</tbody>
</table>

| **Step 5** bgp log-neighbor-changes | Enables logging of BGP neighbor resets. |
| Example: | Abbreviated command to **neighbor remote-as** to add the IP address or peer group name of the neighbor in the specified autonomous system to the IPv4 multiprotocol BGP neighbor table of the local device. |

**Step 6** neighbor {ip-address	peer-group-name} remote-as autonomous-system-number	Adds the IP address or peer group name of the neighbor in the specified autonomous system to the IPv4 multiprotocol BGP neighbor table of the local device.
Example:	- If the **autonomous-system-number** argument matches the autonomous system number specified in the **router bgp** command, the neighbor is an internal neighbor.	
	- If the **autonomous-system-number** argument does not match the autonomous system number specified in the **router bgp** command, the neighbor is an external neighbor.	
	- In this example, the neighbor at 10.10.10.1 is an internal BGP neighbor.	

| **Step 7** neighbor {ip-address | peer-group-name} update-source interface-type interface-number | (Optional) Configures a device to select a specific source or interface to receive routing table updates. |
| Example: | - This example uses a loopback interface. The advantage of this configuration is that the loopback interface is not affected by the effects of a flapping interface. |

| **Step 8** | Repeat Steps 6 and 7 to configure other BGP neighbors. |

| **Step 9** address-family l2vpn [vpls] | Specifies the L2VPN address family and enters address family configuration mode. |
| Example: | - The optional **vpls** keyword specifies that the VPLS endpoint provisioning information is to be distributed to BGP peers. |
### Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• In this example, an L2VPN VPLS address family session is created.</td>
</tr>
<tr>
<td>Enables the exchange of information with a BGP neighbor.</td>
</tr>
<tr>
<td>Specifies that a communities attribute should be sent to a BGP neighbor.</td>
</tr>
<tr>
<td>• In this example, an extended communities attribute is sent to the neighbor at 10.10.10.1.</td>
</tr>
</tbody>
</table>

### Step 10

**neighbor [ip-address | peer-group-name] activate**

**Example:**

Device(config-router-af)# neighbor 10.10.10.1 activate

### Step 11

**neighbor [ip-address | peer-group-name]
 send-community {both | standard | extended}**

**Example:**

Device(config-router-af)# neighbor 10.10.10.1 send-community extended

### Step 12

Repeat Steps 10 and 11 to activate other BGP neighbors under an L2VPN address family.

### Step 13

**exit-address-family**

**Example:**

Device(config-router-af)# exit-address-family

### Step 14

**end**

**Example:**

Device(config-router)# end

### Step 15

**show l2vpn vfi**

**Example:**

Device# show l2vpn vfi

### Step 16

**show ip bgp l2vpn vpls {all | rd route-distinguisher}**

**Example:**

Device# show ip bgp l2vpn vpls all

---

**Customizing the VPLS Autodiscovery Settings using the commands associated with the L2VPN Protocol-Based CLIs feature**

Several commands allow you to customize the Virtual Private LAN Service (VPLS) environment. You can specify identifiers for the VPLS domain, the route distinguisher (RD), the route target (RT), and the provider edge (PE) device. Perform this task to customize these identifiers.
### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2vpn vfi context vfi-name`
4. `vpn id vpn-id`
5. `autodiscovery bgp signaling {ldp | bgp}`
6. `vpls-id {autonomous-system-number:nn | ip-address:nn}`
7. `rd {autonomous-system-number:nn | ip-address:nn}`
8. `route-target [import | export | both] {autonomous-system-number:nn | ip-address:nn}`
9. `auto-route-target`
10. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>l2vpn vfi context vfi-name</code></td>
<td>Establishes a L2VPN VFI context and enters L2 VFI configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# l2vpn vfi context vpls1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>vpn id vpn-id</code></td>
<td>Configures a VPN ID for the VPLS domain.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-vfi)# vpn id 10</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>`autodiscovery bgp signaling {ldp</td>
<td>bgp}`</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-vfi)# autodiscovery bgp signaling ldp</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>`vpls-id {autonomous-system-number:nn</td>
<td>ip-address:nn}`</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-vfi)# vpls-id 5:300</td>
<td></td>
</tr>
</tbody>
</table>

This command is optional because VPLS Autodiscovery automatically generates a VPLS ID using the Border Gateway Protocol (BGP) autonomous system (AS) number and the configured
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Purpose</strong></td>
<td>VFI VPN ID. You can use this command to change the automatically generated VPLS ID.</td>
</tr>
<tr>
<td></td>
<td>• There are two formats for configuring the VPLS ID argument. It can be configured in the <em>autonomous-system-number:network number</em> (<em>ASN:nn</em>) format, as shown in the example, or it can be configured in the <em>IP-address:network number</em> format (<em>IP-address:nn</em>).</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>(Optional) Specifies the RD to distribute endpoint information.</td>
</tr>
<tr>
<td>rd {autonomous-system-number:nn</td>
<td>ip-address:nn}</td>
</tr>
<tr>
<td>Example:</td>
<td>• There are two formats for configuring the route distinguisher argument. It can be configured in the <em>autonomous-system-number:network number</em> (<em>ASN:nn</em>) format, as shown in the example, or it can be configured in the <em>IP-address:network number</em> format (<em>IP-address:nn</em>).</td>
</tr>
<tr>
<td>Device(config-vfi)# rd 2:3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>(Optional) Specifies the RT.</td>
</tr>
<tr>
<td>route-target {import</td>
<td>export</td>
</tr>
<tr>
<td>Example:</td>
<td>• There are two formats for configuring the route target argument. It can be configured in the <em>autonomous-system-number:network number</em> (<em>ASN:nn</em>) format, as shown in the example, or it can be configured in the <em>IP-address:network number</em> format (<em>IP-address:nn</em>).</td>
</tr>
<tr>
<td>Device(config-vfi)# route-target 600:2222</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>(Optional) Enables the automatic generation of a RT.</td>
</tr>
<tr>
<td>auto-route-target</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# auto-route-target</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Exits L2 VFI configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td>• Commands take effect after the device exits Layer 2 VFI configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring MST on VPLS N-PE Devices

A network-facing PE (N-PE) device is the root bridge for a Multiple Spanning Tree (MST) instance.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2 vfi vfi-name manual
4. vpn id vpn-id
5. forward permit l2protocol all
6. neighbor peer-N-PE-ip-address encapsulation mpls
7. exit
8. spanning-tree mode [mst | pvst | rapid-pvst]
9. spanning-tree mst configuration
10. name name
11. revision version
12. instance instance-id vlan vlan-range
13. end
14. show spanning-tree mst [instance-id [detail] [interface] | configuration [digest] | detail | interface type number [detail]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> l2 vfi vfi-name manual</td>
<td>Creates a Layer 2 virtual forwarding instance (VFI) and enters Layer 2 VFI manual configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# l2 vfi vpls-mst manual</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> vpn id vpn-id</td>
<td>Sets or updates the VPN ID on a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi)# vpn id 4000</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> forward permit l2protocol all</td>
<td>Defines the VPLS pseudowire that is used to transport the bridge protocol data unit (BPU) information between two N-PE devices.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-vfi)# forward permit l2protocol all</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>neighbor peer-N-PE-ip-address encapsulation mpls</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-vfi)# neighbor 10.76.100.12 encapsulation mpls</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>exit</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-vfi)# exit</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>**spanning-tree mode [mst</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>spanning-tree mst configuration</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config)# spanning-tree mst configuration</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>name name</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-mst)# name cisco</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>revision version</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-mst)# revision 11</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td><strong>instance instance-id vlan vlan-range</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-mst)# instance 1 vlan 100</td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td><strong>end</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Device(config-mst)# end</td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td>**show spanning-tree mst [instance-id [detail] [interface] [configuration [digest]</td>
</tr>
</tbody>
</table>

**Configuring MST on VPLS N-PE Devices using the commands associated with the L2VPN Protocol-Based CLIs feature**

A network-facing PE (N-PE) device is the root bridge for a Multiple Spanning Tree (MST) instance.
### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2vpn vfi context vfi-name`
4. `vpn id vpn-id`
5. `forward permit l2protocol all`
6. `neighbor peer-N-PE-ip-address encapsulation mpls`
7. `exit`
8. `spanning-tree mode [mst | pvst | rapid-pvst]`
9. `spanning-tree mst configuration`
10. `name name`
11. `revision version`
12. `instance instance-id vlan vlan-range`
13. `end`
14. `show spanning-tree mst [instance-id [detail] [interface] | configuration [digest] | detail | interface type number [detail]]`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.  
  **Example:**  
  `Device> enable` |
| Step 2 | `configure terminal` | Enters global configuration mode.  
  **Example:**  
  `Device# configure terminal` |
| Step 3 | `l2vpn vfi context vfi-name` | Establishes an L2VPN VFI context and enters L2 VFI configuration mode.  
  **Example:**  
  `Device(config)# l2vpn vfi context vpls-mst` |
| Step 4 | `vpn id vpn-id` | Sets or updates the VPN ID on a VPN routing and forwarding (VRF) instance.  
  **Example:**  
  `Device(config-vfi)# vpn id 4000` |
| Step 5 | `forward permit l2protocol all` | Defines the VPLS pseudowire that is used to transport the bridge protocol data unit (BPDU) information between two N-PE devices.  
  **Example:**  
  `Device(config-vfi)# forward permit l2protocol all` |
| Step 6 | `neighbor peer-N-PE-ip-address encapsulation mpls` | Specifies the type of tunnel signaling and encapsulation mechanism for each VPLS peer.  
  **Example:**  
  `Device(config-vfi)# neighbor peer-N-PE-ip-address encapsulation mpls` |
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-vfi)# neighbor 10.76.100.12 encapsulation mpls</td>
<td>Exits Layer 2 VFI manual configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> exit</td>
<td>Switches between MST, Per-VLAN Spanning Tree+ (PVST+), and Rapid-PVST+ modes.</td>
</tr>
<tr>
<td><strong>Step 8</strong> spanning-tree mode [mst</td>
<td>pvst</td>
</tr>
<tr>
<td><strong>Step 9</strong> spanning-tree mst configuration</td>
<td>Sets the name for the MST region.</td>
</tr>
<tr>
<td><strong>Step 10</strong> name name</td>
<td>Sets the revision number for the MST configuration.</td>
</tr>
<tr>
<td><strong>Step 11</strong> revision version</td>
<td>Maps a VLAN or a group of VLANs to an MST instance.</td>
</tr>
<tr>
<td><strong>Step 12</strong> instance instance-id vlan vlan-range</td>
<td>Exits MST configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 13</strong> end</td>
<td>Displays information about the MST configuration.</td>
</tr>
<tr>
<td><strong>Step 14</strong> show spanning-tree mst [instance-id [detail] [interface]</td>
<td></td>
</tr>
<tr>
<td>configuration [digest]</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td>Device(config-mst)# exit</td>
<td>Device(config)# spanning-tree mode mst</td>
</tr>
<tr>
<td>Device(config-mst)# revision 11</td>
<td>Device(config-mst)# instance 1 vlan 100</td>
</tr>
</tbody>
</table>
Configuration Examples for VPLS Autodiscovery BGP Based

The following examples show the configuration of a network that uses VPLS Autodiscovery:

Example: Enabling VPLS Autodiscovery BGP Based

Device> enable
Device# configure terminal
Device(config)# l2 vfi vpls1 autodiscovery
Device(config-vfi)# vpn id 10
Device(config-vfi)# exit

Example: Enabling VPLS Autodiscovery BGP Based Using Commands Associated with L2VPN Protocol-Based Feature

Device> enable
Device# configure terminal
Device(config)# l2vpn vfi context vpls1
Device(config-vfi)# vpn id 10
Device(config-vfi)# autodiscovery bgp signaling ldp
Device(config-vfi)# exit

Example: Configuring BGP to Enable VPLS Autodiscovery

PE1
l2 router-id 10.1.1.1
l2 vfi auto autodiscovery
vpn id 100
!
encapsulation mpls
!
interface Loopback1
 ip address 10.1.1.1 255.255.255.255
!
interface GigabitEthernet 0/0/1
description Backbone interface
ip address 192.168.0.1 255.255.255.0
mpls ip
!
routing ospf 1
 log-adjacency-changes
 network 10.1.1.0 0.0.0.255 area 0
 network 172.16.0.0 0.0.0.255 area 0
!
routing bgp 1
 no bgp default ipv4-unicast
bgp log-neighbor-changes
bgp update-delay 1
neighbor 10.1.1.2 remote-as 1
neighbor 10.1.1.2 update-source Loopback1
neighbor 10.1.1.3 remote-as 1
neighbor 10.1.1.3 update-source Loopback1
!
address-family ipv4
no synchronization
no auto-summary
exit-address-family
!
address-family l2vpn vpls
neighbor 10.1.1.2 activate
neighbor 10.1.1.2 send-community extended
neighbor 10.1.1.3 activate
neighbor 10.1.1.3 send-community extended
exit-address-family

PE2

12 router-id 10.1.1.2
12 vfi auto autodiscovery
vpn id 100
!
pseudowire-class mpls
encapsulation mpls
!
interface Loopback1
  ip address 10.1.1.2 255.255.255.255
!
interface GigabitEthernet 0/0/1
  description Backbone interface
  ip address 192.168.0.2 255.255.255.0
  mpls ip
!
router ospf 1
  log-adjacency-changes
  network 10.1.1.0 0.0.0.255 area 0
  network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
  no bgp default ipv4-unicast
  bgp log-neighbor-changes
  bgp update-delay 1
  neighbor 10.1.1.1 remote-as 1
  neighbor 10.1.1.1 update-source Loopback1
  neighbor 10.1.1.3 remote-as 1
  neighbor 10.1.1.3 update-source Loopback1
!
address-family ipv4
no synchronization
no auto-summary
exit-address-family
!
address-family l2vpn vpls
neighbor 10.1.1.1 activate
neighbor 10.1.1.1 send-community extended
neighbor 10.1.1.3 activate
neighbor 10.1.1.3 send-community extended
exit-address-family

PE3

12 router-id 10.1.1.3
12 vfi auto autodiscovery
vpn id 100
Example: Configuring BGP to Enable VPLS Autodiscovery Using Commands Associated with L2VPN Protocol-Based Feature

PE1

l2vpn
  router-id 10.1.1.1
l2vpn vfi context auto
  vpn id 100
  autodiscovery bgp signaling ldp
! interface pseudowire 1
  encapsulation mpls
  neighbor 33.33.33.33 1
! interface Loopback1
  ip address 10.1.1.1 255.255.255.255
! interface GigabitEthernet 0/0/1
description Backbone interface
  ip address 192.168.0.1 255.255.255.0
  mpls ip
! router ospf 1
  log-adjacency-changes
  network 10.1.1.0 0.0.0.255 area 0
  network 172.16.0.0 0.0.0.255 area 0
! router bgp 1
  no bgp default ipv4-unicast
  bgp log-neighbor-changes
  bgp update-delay 1
  neighbor 10.1.1.1 remote-as 1
  neighbor 10.1.1.1 update-source Loopback1
  neighbor 10.1.1.2 remote-as 1
  neighbor 10.1.1.2 update-source Loopback1
! address-family ipv4
  no synchronization
  no auto-summary
  exit-address-family
! address-family l2vpn vpls
  neighbor 10.1.1.1 activate
  neighbor 10.1.1.1 send-community extended
  neighbor 10.1.1.2 activate
  neighbor 10.1.1.2 send-community extended
  exit-address-family
router ospf 1
  log-adjacency-changes
  network 10.1.1.0 0.0.0.255 area 0
  network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
  no bgp default ipv4-unicast
  bgp log-neighbor-changes
  bgp update-delay 1
  neighbor 10.1.1.2 remote-as 1
  neighbor 10.1.1.2 update-source Loopback1
  neighbor 10.1.1.3 remote-as 1
  neighbor 10.1.1.3 update-source Loopback1
  !
  address-family ipv4
  no synchronization
  no auto-summary
  exit-address-family
  !
  address-family 12vpn vpls
  neighbor 10.1.1.2 activate
  neighbor 10.1.1.2 send-community extended
  neighbor 10.1.1.3 activate
  neighbor 10.1.1.3 send-community extended
  exit-address-family

PE2

12vpn
  route-id 10.1.1.2
12vpn vfi context auto
  vpn id 100
  autodiscovery bgp signaling ldp

  interface pseudowire 1
  encapsulation mpls
  neighbor 33.33.33.33 1
  !
  interface Loopback1
  ip address 10.1.1.2 255.255.255.255
  !
  interface GigabitEthernet 0/0/1
  description Backbone interface
  ip address 192.168.0.2 255.255.255.0
  mpls ip
  !
router ospf 1
  log-adjacency-changes
  network 10.1.1.0 0.0.0.255 area 0
  network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
  no bgp default ipv4-unicast
  bgp log-neighbor-changes
  bgp update-delay 1
  neighbor 10.1.1.1 remote-as 1
  neighbor 10.1.1.1 update-source Loopback1
  neighbor 10.1.1.3 remote-as 1
  neighbor 10.1.1.3 update-source Loopback1
  !
  address-family ipv4
  no synchronization
  no auto-summary
Example: Customizing VPLS Autodiscovery Settings

Device> enable
Device# configure terminal
Device(config)# 12 vfi vpls1 autodiscovery
Example: Customizing VPLS Autodiscovery Settings using the commands associated with the L2VPN Protocol-Based CLIs feature

Device> enable
Device# configure terminal
Device(config)# l2vpn vfi context vpls1
Device(config-vfi)# vpn id 10
Device(config-vfi)# vpls-id 5:300
Device(config-vfi)# autodiscovery bgp signaling ldp
Device(config-vfi)# vpls-id 5:300
Device(config-vfi)# rd 2:3
Device(config-vfi)# route-target 600:2222
Device(config-vfi)# end

Example: Configuring MST on VPLS N-PE Devices

Device> enable
Device# configure terminal
Device(config)# l2 vfi vpls-mst manual
Device(config-vfi)# vpn id 4000
Device(config-vfi)# forward permit l2protocol all
Device(config-vfi)# neighbor 10.76.100.12 encapsulation mpls
Device(config-vfi)# exit
Device(config)# spanning-tree mode mst
Device(config)# spanning-tree mst configuration
Device(config-mst)# name cisco
Device(config-mst)# revision 11
Device(config-mst)# instance 1 vlan 100
Device(config-mst)# end

The following is sample output from the show spanning-tree mst command:

Device# show spanning-tree mst 1

### MST1 vlans mapped: 100
Bridge address 0023.3380.f8bb priority 4097 (4096 sysid 1)
Root this switch for MST1 // Root for MST instance 1 with VLAN 100
Interface Role Sts Cost Prio.Nbr Type
----------- --- -- ------ ---- ------------------------------
G1/0/0 Desg FWD 20000 128.18 P2p // Access interface
VPLS-MST Desg FWD 1 128.28 Shr // Forward VFI

The following is sample output from the show spanning-tree mst detail command:

Device# show spanning-tree mst 1 detail

### MST1 vlans mapped: 100
Bridge address 0023.3380.f8bb priority 4097 (4096 sysid 1)
Root this switch for MST1 // Root for MST instance 1 with VLAN 100
GigabitEthernet1/0/0 of MST1 is designated forwarding
Port info port id 128.18 priority 128 cost 20000

VPLS Autodiscovery BGP Based
Example: Configuring MST on VPLS N-PE Devices using the commands associated with the L2VPN Protocol-Based CLIs feature

Example: Configuring MST on VPLS N-PE Devices using the commands associated with the L2VPN Protocol-Based CLIs feature

Device> enable
Device# configure terminal
Device(config)# l2vpn vfi context vpls-mst
Device(config-vfi)# vpn id 4000
Device(config-vfi)# forward permit l2protocol all
Device(config-vfi)# member 10.76.100.12 encapsulation mpls
Device(config-vfi)# exit
Device(config)# spanning-tree mode mst
Device(config)# spanning-tree mst configuration
Device(config-mst)# name cisco
Device(config-mst)# revision 11
Device(config-mst)# instance 1 vlan 100
Device(config-mst)# end

The following is sample output from the show spanning-tree mst command:

Device# show spanning-tree mst 1

MST1 vlans mapped: 100
Bridge address 0023.3380.f8bb priority 4097 (4096 sysid 1)
Root this switch for MST1 with VLAN 100
Interface Role Sts Cost Prio.Nbr Type
----------- --- -- ------ ---- ------------------------------
G1/0/0 Desg FWD 20000 128.18 P2p // Access interface
VPLS-MST Desg FWD 1 128.28 Shr // Forward VFI

The following is sample output from the show spanning-tree mst detail command:

Device# show spanning-tree mst 1 detail

MST1 vlans mapped: 100
Bridge address 0023.3380.f8bb priority 4097 (4096 sysid 1)
Root this switch for MST1 with VLAN 100
GigabitEthernet1/0/0 of MST1 is designated forwarding
Port info port id 128.18 priority 128 cost 20000
Designated root address 0023.3380.f8bb priority 4097 cost 0
Designated bridge address 0023.3380.f8bb priority 4097 port id 128.18
Timers: message expires in 0 sec, forward delay 0, forward transitions 1
Bpdus (MRecords) sent 40, received 5 // BPDU message exchange between N-PE devices
Example: BGP VPLS Autodiscovery Support on Route Reflector

In the following example, a host named PE-RR (indicating Provider Edge-Route Reflector) is configured as a route reflector that is capable of reflecting Virtual Private LAN Service (VPLS) prefixes. The VPLS address family is configured using the `address-family l2vpn vpls` command.

```conf
hostname PE-RR
!
router bgp 1
 bgp router-id 10.1.1.3
 no bgp default route-target filter
 bgp log-neighbor-changes
 neighbor iBGP-PEERS peer-group
 neighbor iBGP-PEERS remote-as 1
 neighbor iBGP-PEERS update-source Loopback1
 neighbor 10.1.1.1 peer-group iBGP-PEERS
 neighbor 10.1.1.2 peer-group iBGP-PEERS
!
address-family l2vpn vpls
 neighbor iBGP-PEERS send-community extended
 neighbor iBGP-PEERS route-reflector-client
 neighbor 10.1.1.1 peer-group iBGP-PEERS
 neighbor 10.1.1.2 peer-group iBGP-PEERS
exit-address-family
```

Additional References for VPLS Autodiscovery BGP Based

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

### Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-l2vpn-signaling-08.txt</td>
<td>Provisioning, Autodiscovery, and Signaling in L2VPNs</td>
</tr>
<tr>
<td>draft-ietf-l2vpn-vpls-bgp-08.8</td>
<td>Virtual Private LAN Service (VPLS) Using BGP for Autodiscovery and Signaling</td>
</tr>
<tr>
<td>draft-ietf-mpls-lsp-ping-03.txt</td>
<td>Detecting MPLS Data Plane Failures</td>
</tr>
<tr>
<td>draft-ietf-pwe3-vccv-01.txt</td>
<td>Pseudo-Wire (PW) Virtual Circuit Connection Verification (VCCV)</td>
</tr>
<tr>
<td>RFC 3916</td>
<td>Requirements for Pseudo-wire Emulation Edge-to-Edge (PWE3)</td>
</tr>
<tr>
<td>RFC 3981</td>
<td>Pseudo Wire Emulation Edge-to-Edge Architecture</td>
</tr>
<tr>
<td>RFC 6074</td>
<td>Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)</td>
</tr>
</tbody>
</table>
### Feature Information for VPLS Autodiscovery BGP Based

**Table 37: Feature Information for VPLS Autodiscovery BGP Based**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLS Autodiscovery BGP Based</td>
<td>Cisco IOS XE Release 3.7S</td>
<td>VPLS Autodiscovery enables each Virtual Private LAN Service (VPLS) provider edge (PE) device to discover other PE devices that are part of the same VPLS domain.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Release 15.1(1)SY</td>
<td></td>
</tr>
</tbody>
</table>

---

**MIBs**

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-IETF-PW-ATM-MIB (PW-ATM-MIB)</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
<tr>
<td>• CISCO-IETF-PW-ENET-MIB (PW-ENET-MIB)</td>
<td></td>
</tr>
<tr>
<td>• CISCO-IETF-PW-FR-MIB (PW-FR-MIB)</td>
<td></td>
</tr>
<tr>
<td>• CISCO-IETF-PW-MIB (PW-MIB)</td>
<td></td>
</tr>
<tr>
<td>• CISCO-IETF-PW-MPLS-MIB (PW-MPLS-MIB)</td>
<td></td>
</tr>
</tbody>
</table>

---

**Technical Assistance**

**Description**

The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. If you have a valid service contract but do not have a user ID or password, you can register on Cisco.com.

**Link**

http://www.cisco.com/techsupport

---

**Standard/RFC**

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4761</td>
<td>Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling</td>
</tr>
</tbody>
</table>
CHAPTER 23

N:1 PVC Mapping to PWE with Nonunique VPIs

The N:1 PVC Mapping to PseudoWire Emulation (PWE) with Nonunique virtual path identifiers (VPIs) feature maps one or more ATM permanent virtual circuits (PVCs) to a single pseudowire (PW). There are two modes of AAL0 encapsulation, N:1 and 1:1 mapping. In N:1 mapping, multiple unrelated virtual path identifier/virtual channel identifier (VPI/VCI) are carried over a single Multiprotocol Label Switching (MPLS) PW. This is an efficient mapping method because less resources are used from the MPLS network. In 1:1 mapping, a single VPI/VCI is carried over a single MPLS PW. Benefits of this feature include the following:

- Aggregate quality of service (QoS) can be applied to related PVCs.
- Bandwidth is conserved with the reduction in the number of pseudowires that are used.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for N:1 PVC Mapping to PWE with Nonunique VPIs

- N:1 permanent virtual circuits (PVC) mapping configuration is supported only on multipoint subinterfaces; it is not supported on main interfaces or point-to-point subinterfaces.
- N:1 PVC mapping mode is not supported on Access Circuit Redundancy subinterfaces.
• Preconfigured PVCs cannot exist on the multipoint subinterface on which you want to configure N:1 PVC mapping.

• An attachment circuit that has been bound to a pseudowire cannot be removed unless all Layer 2 virtual circuits (VCs) have been removed.

• Layer 3 PVCs cannot be configured on N:1 subinterfaces.

• Cell packing values configured under a VC class attached to the PVC, main interface, or subinterface will not be inherited by N:1 PVCs.

• Operation, Administration, and Maintenance (OAM) functionality is not supported on N:1 Layer 2 PVCs. OAM cells coming from the customer edge (CE) network will be treated as normal data traffic and will traverse through the pseudowire.

• Only ATM adaptation layer type 0 (AAL0) encapsulation is supported for N:1 PVCs.

• The service policy configuration can be configured only at the subinterface level for N:1 PVCs.

### Information About N:1 PVC Mapping to PWE with Nonunique VPIs

#### N:1 PVC Mapping to PWE with Nonunique VPIs Feature Description

To transport ATM cells over Multiprotocol Label Switching (MPLS), a VC is established between the provider edge (PE) routers on both ends of the MPLS backbone. With the N:1 permanent virtual circuit (PVC) Mapping to PseudoWire Emulation (PWE) with Nonunique VPIs feature, multiple PVCs irrespective of their Virtual Path Identifiers (VPIs), are transported over a single pseudowire configured on a subinterface. (“N:1” refers to the number of PVCs transported over one pseudowire). ATM cells are packed together in a single frame and sent over the single pseudowire. The ATM cell header information is packed together with the cell payload on a per-cell basis in the packets so that packets received at the egress end are unpacked and the ATM cells are mapped to the respective PVCs.

In N:1 PVC mapping mode, the device can pack cells only from a single PVC in an MPLS packet to transmit over a pseudowire; cells from multiple PVCs cannot be packed in a single MPLS packet and mapped to a single pseudowire for transmission. However, if a device receives an MPLS packet that is packed with cells from multiple PVCs, then those cells will be unpacked and sent to the respective PVCs.

### How to Configure N:1 PVC Mapping to PWE with Nonunique VPIs

#### Configuring N:1 PVC Mapping to PWE with Nonunique VPIs

**SUMMARY STEPS**

1. enable
2. `configure terminal` 
3. `interface atm slot/subslot/port` 
4. `atm mcpt-timers timer1 timer2 timer3` 
5. `exit` 
6. `configure terminal` 
7. `interface atm slot/subslot/port.subslot multipoint` 
8. `no ip address` 
9. `atm enable-ilmi-trap` 
10. `cell-packing maxcells mcpt-timer timer-number` 
11. `xconnect peer-ipaddress vc-id encapsulation mpls` 
12. `pvc vpl/vci l2transport` 
13. Repeat Step 12 for the number of PVCs that you want to configure. 
14. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>interface atm slot/subslot/port</code></td>
<td>Enables the ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device(config)# interface atm 9/1/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>atm mcpt-timers timer1 timer2 timer3</code></td>
<td>Sets the Maximum Cell Packing Timeout (MCPT) values in microseconds.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device(config-if)# atm mcpt-timers 100 200 300</td>
<td>The MCPT timer sets the time for which the device waits for the raw cells (AAL0 encapsulation) to be packed into a single packet for punting to the pseudowire.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>exit</code></td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>7</td>
<td><code>interface atm slot/subslot/port.subslot multipoint</code></td>
<td>Enters subinterface configuration mode and creates a multipoint subinterface on the given port on the specified ATM Shared Port Adapter (SPA).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# interface atm 9/1/1.1 multipoint</code></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>no ip address</code></td>
<td>Removes the interface IP address.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-subif)# no ip address</code></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><code>atm enable-ilmi-trap</code></td>
<td>Generates an Integrated Local Management Interface (ILMI) atmFccChange trap when an ATM interface or subinterface is enabled or shut down.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-subif)# atm enable-ilmi-trap</code></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><code>cell-packing maxcells mcpt-timer timer-number</code></td>
<td>Enables ATM over MPLS to pack multiple ATM cells into each MPLS packet within the MCPT timing.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-subif)# cell-packing 20 mcpt-timer 2</code></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><code>xconnect peer-ipaddress vc-id encapsulation mpls</code></td>
<td>(Optional) Enables the attachment circuit and specifies the IP address of the peer, a VC ID, and the data encapsulation method.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-subif)# xconnect 10.1.1.1 100 encapsulation mpls</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>pvc vpi/vci l2transport</code></td>
<td>Assigns a VPI and virtual channel identifier (VCI).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-subif)# pvc 10/100 l2transport</code></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Repeat Step 12 for the number of PVCs that you want to configure.</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td><code>end</code></td>
<td>Exits subinterface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-subif)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

### Configuring N:1 PVC Mapping to PWE with Nonunique VPIs using the commands associated with the L2VPN Protocol-Based CLIs feature

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm slot/subslot/port`
4. `atm mcpt-timers timer1 timer2 timer3`
5. `exit`
6. configure terminal
7. interface atm slot/subslot/port.subslot multipoint
8. no ip address
9. atm enable-ilmi-trap
10. cell-packing maxcells mcpt-timer timer-number
11. end
12. interface pseudowire number
13. encapsulation mpls
14. neighbor peer-address vcid-value
15. exit
16. l2vpn xconnect context context-name
17. member pseudowire interface-number
18. member gigabitethernet interface-number
19. end
20. pvc vpi/vci l2transport
21. Repeat Step 12 for the number of PVCs that you want to configure.
22. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface atm slot/subslot/port</td>
<td>Enables the ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# interface atm 9/1/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>atm mcpt-timers timer1 timer2 timer3</td>
<td>Sets the Maximum Cell Packing Timeout (MCPT) values in microseconds.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# atm mcpt-timers 100 200 300</td>
<td>• The MCPT timer sets the time for which the device waits for the raw cells (AAL0 encapsulation) to be packed into a single packet for puncting to the pseudowire.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>interface atm slot/subslot/port.subslot multipoint</code></td>
<td>Enters subinterface configuration mode and creates a multipoint subinterface on the given port on the specified ATM Shared Port Adapter (SPA).</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device(config)# <code>interface atm 9/1/1.1 multipoint</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>no ip address</code></td>
<td>Removes the interface IP address.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device(config-subif)# <code>no ip address</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>atm enable-ilmi-trap</code></td>
<td>Generates an Integrated Local Management Interface (ILMI) atmVccChange trap when an ATM interface or subinterface is enabled or shut down.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device(config-subif)# <code>atm enable-ilmi-trap</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>cell-packing maxcells mcpt-timer timer-number</code></td>
<td>Enables ATM over MPLS to pack multiple ATM cells into each MPLS packet within the MCPT timing.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Device(config-subif)# <code>cell-packing 20 mcpt-timer 2</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td><code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-subif)# <code>end</code></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td><code>interface pseudowire number</code></td>
<td>Specifies the pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config)# <code>interface pseudowire 100</code></td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td><code>encapsulation mpls</code></td>
<td>Specifies that Multiprotocol Label Switching (MPLS) is used as the data encapsulation method.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-if)# <code>encapsulation mpls</code></td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td><code>neighbor peer-address vcid-value</code></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of the Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-if)# <code>neighbor 10.1.1.1 100</code></td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td><code>exit</code></td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-if)# <code>exit</code></td>
<td></td>
</tr>
</tbody>
</table>
## Purpose

### Command or Action

**Step 16**

`l2vpn xconnect context context-name`

**Example:**

Router(config)# l2vpn xconnect context con1

- **Purpose:** Creates a Layer 2 VPN (L2VPN) crossconnect context and enters xconnect configuration mode.

**Step 17**

`member pseudowire interface-number`

**Example:**

Router(config-xconnect)# member pseudowire 100

- **Purpose:** Specifies a member pseudowire to form a Layer 2 VPN (L2VPN) cross connect.

**Step 18**

`member gigabitethernet interface-number`

**Example:**

Router(config-xconnect)# member GigabitEthernet0/0/0.1

- **Purpose:** Specifies the location of the Gigabit Ethernet member interface.

**Step 19**

`end`

**Example:**

Router(config-xconnect)# end

- **Purpose:** Exits to privileged EXEC mode.

**Step 20**

`pvc vpi/vci l2transport`

**Example:**

Device(config-subif)# pvc 10/100 l2transport

- **Purpose:** Assigns a VPI and virtual channel identifier (VCI).

**Step 21**

Repeat Step 12 for the number of PVCs that you want to configure.

- **Purpose:** —

**Step 22**

`end`

**Example:**

Device(config-subif)# end

- **Purpose:** Exits subinterface configuration mode and returns to privileged EXEC mode.

---

## Configuration Examples for N:1 PVC Mapping to PWE with Nonunique VPIs

### Example: Configuring N:1 PVC Mapping to PWE with Nonunique VPIs

The following example shows how to configure the N:1 ATM permanent virtual circuit (PVC) mapping to pseudowires with non unique virtual path identifiers (VPIs):

```
Device> enable
Device# configure terminal
Device(config)# interface atm 9/1/1
Device(config-if)# atm mcpt-timers 500 5000 50000
```
Example: Configuring N:1 PVC Mapping to PWE with Nonunique VPIs using the commands associated with the L2VPN Protocol-Based CLIs feature

The following example shows how to configure the N:1 ATM permanent virtual circuit (PVC) mapping to pseudowires with non unique virtual path identifiers (VPIs):

```
Device> enable
Device# configure terminal
Device(config)# interface atm 9/1/1
Device(config-if)# atm mcpt-timers 500 5000 50000
Device(config-if)# exit
Device(config)# configure terminal
Device(config)# interface atm 9/1/1 multipoint
Device(config-subif)# no ip address
Device(config-subif)# atm enable-ilmi-trap
Device(config-subif)# cell packing 20 mcpt-timer 2
Device(config-subif)# xconnect 10.1.1.1 100 encapsulation mpls
Device(config-subif)# pvc 10/100 12transport
Device(config-subif)# pvc 11/122 12transport
Device(config-subif)# pvc 19/231 12transport
Device(config-subif)# end
```

Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Master Command List</td>
</tr>
<tr>
<td>ATM commands</td>
<td>Asynchronous Transfer Mode Command Reference</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to</td>
<td></td>
</tr>
<tr>
<td>install and configure the software and to troubleshoot and resolve</td>
<td></td>
</tr>
<tr>
<td>technical issues with Cisco products and technologies. Access to most</td>
<td></td>
</tr>
<tr>
<td>tools on the Cisco Support and Documentation website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for N:1 PVC Mapping to PWE with Nonunique VPIs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 38: Feature Information for N:1 PVC Mapping to PWE with Nonunique VPIs

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>N:1 PVC Mapping to PWE with Nonunique VPIs</td>
<td>Cisco IOS XE Release 3.7S</td>
<td>The N:1 PVC Mapping to PWE with Nonunique VPIs feature maps one or more ATM PVCs to a single pseudowire. In Cisco IOS XE Release 3.7S, support was added for Cisco ASR 903 Routers. The following command was introduced by this feature: <strong>show atm cell-packaging</strong>.</td>
</tr>
</tbody>
</table>
Feature Information for N:1 PVC Mapping to PWE with Nonunique VPIs
QoS Policies for VFI Pseudowires

- Finding Feature Information, on page 605
- Restrictions for QoS Policies for VFI Pseudowires, on page 605
- Information About QoS Policies for VFI Pseudowires, on page 605
- How to Configure QoS Policies for VFI Pseudowires, on page 606
- Configuration Examples for QoS Policies for VFI Pseudowires, on page 625
- Additional References for QoS Policies for VFI Pseudowires, on page 629
- Feature Information For QoS Policies for VFI Pseudowires, on page 630

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for QoS Policies for VFI Pseudowires

- A maximum of 32K pseudowires.
- A maximum of 4K unique policy maps.
- A maximum of 128 neighbors per VFI context.

Information About QoS Policies for VFI Pseudowires

QoS Policies for VFI Pseudowires

QoS policies are specified on individual pseudowire interfaces and are applied only to the corresponding pseudowires. It is possible to specify different QoS policies on different pseudowire members of the same
virtual forwarding interface (VFI) or on the subset of the pseudowires. There may be one or more pseudowires configured per VFI. Both manually configured and auto discovered pseudowire configurations are supported. QoS policies are specified using a pseudowire template. The template can be applied on multiple pseudowires of the same, or different, VFIs. All those pseudowires get the same QoS policy applied as specified in the template. For auto-discovered pseudowires, QoS policies can only be specified using a pseudowire template. The QoS Policies for VFI Pseudowires feature supports both ingress and egress policies and traffic classification can be done based on different match criteria.

**How to Configure QoS Policies for VFI Pseudowires**

**Configuring QoS Policies for Pseudowires**

Perform this task to configure QoS policies for pseudowires.

**Before you begin**

**SUMMARY STEPS**

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class class-map-name
5. priority bandwidth-kbps
6. exit
7. class class-map-name
8. bandwidth percent percentage
9. exit
10. class class-map-name
11. police cir bps
12. exit
13. class class-map-name
14. shape average bps
15. queue-limit queue-limit size packets
16. random-detect
17. exit
18. exit
19. policy-map policy-map-name
20. class class-map-name
21. shape average bps
22. service-policy policy-map
23. exit
24. exit
25. policy-map policy-map-name
26. class class-map-name
27. `shape average bps`
28. `exit`
29. `exit`
30. `policy-map policy-map-name`
31. `class class-map-name`
32. `shape average bps`
33. `exit`
34. `exit`
35. `exit policy-map policy-map-name`
36. `class class-map-name`
37. `shape average bps`
38. `exit`
39. `exit`
40. `policy-map policy-map-name`
41. `class class-map-name`
42. `police bps`
43. `interface pseudowire number`
44. `encap mpls`
45. `neighbor peer-address vcid-value`
46. `service-policy input policy-map-name`
47. `service-policy output policy-map-name`
48. `interface gigabit ethernet number`
49. `service-policy output policy-map-name`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>policy-map policy-map-name</code></td>
<td>Creates a policy map to specify a service policy.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device# policy-map gold-policy-child</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>class class-map-name</code></td>
<td>Specifies the name of the class map.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device(config-pmap)# class priority-class</code></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring QoS Policies for Pseudowires

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><strong>priority bandwidth-kbps</strong></td>
<td>Gives priority to a class of traffic belonging to a policy map.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# priority 100</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><strong>exit</strong></td>
<td>Exits policy-map class configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# exit</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><strong>class class-map-name</strong></td>
<td>Specifies the name of the class map.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# class guarantee-class</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><strong>bandwidth percent percentage</strong></td>
<td>Specifies or modifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# bandwidth percent 50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><strong>exit</strong></td>
<td>Exits policy-map class configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# exit</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><strong>class class-map-name</strong></td>
<td>Specifies the name of the class map.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# class limited-class</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><strong>police cir bps</strong></td>
<td>Creates a per-interface policer and configures the policy-map class to use it.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# police cir 8000</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><strong>exit</strong></td>
<td>Exits policy-map class configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# exit</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><strong>class class-map-name</strong></td>
<td>Specifies the name of the class map.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap)# class class-default</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><strong>shape average bps</strong></td>
<td>Shapes traffic to the indicated bit rate.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-pmap-c)# shape average 8000</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Step 15** | queue-limit  *queue-limit size packets*  
Example:  
Device(config-pmap-c)# queue-limit 150 packets | Specifies the queue limit size for a class. |
| **Step 16** | random-detect  
Example:  
Device(config-pmap-c)# random-detect | Configures Weighted Random Early Detection (WRED) for a class in a policy map. |
| **Step 17** | exit  
Example:  
Device(config-pmap-c)# exit | Exits policy-map class configuration mode. |
| **Step 18** | exit  
Example:  
Device(config-pmap-c)# exit | Exits policy-map configuration mode. |
| **Step 19** | policy-map  *policy-map-name*  
Example:  
Device(config-pmap)# policy-map gold-policy-hqos | Creates a policy map to specify a service policy. |
| **Step 20** | class  *class-map-name*  
Example:  
Device(config-pmap-c)# class class-default | Specifies the name of the class map. |
| **Step 21** | shape average  *bps*  
Example:  
Device(config-pmap-c)# shape average 10000 | Shapes traffic to the indicated bit rate. |
| **Step 22** | service-policy  *policy-map*  
Example:  
Device(config-pmap-c)# service-policy gold-policy-child | Attaches a policy map to a class. |
| **Step 23** | exit  
Example:  
Device(config-pmap-c)# exit | Exits policy-map class configuration mode. |
<table>
<thead>
<tr>
<th>Step 24</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>exit</strong></td>
<td>Example: Device(config-pmap)# exit</td>
<td>Exits policy-map configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 25</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>policy-map policy-map-name</strong></td>
<td>Example: Device(config)# policy-map pw-shaper</td>
<td>Creates a policy map to specify a service policy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 26</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>class class-map-name</strong></td>
<td>Example: Device(config-pmap)#class class-default</td>
<td>Specifies the name of the class map.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 27</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>shape average bps</strong></td>
<td>Example: Device(config-pmap-c)#shape average 20000</td>
<td>Shapes traffic to the indicated bit rate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 28</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>exit</strong></td>
<td>Example: Device(config-pmap-c)#exit</td>
<td>Exits policy-map class configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 29</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>exit</strong></td>
<td>Example: Device(config-pmap)#exit</td>
<td>Exits policy-map configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 30</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>policy-map policy-map-name</strong></td>
<td>Example: Device(config)# policy-map sub-ifc-shaper</td>
<td>Creates a policy map to specify a service policy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 31</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>class class-map-name</strong></td>
<td>Example: Device(config-pmap)#class class-default</td>
<td>Specifies the name of the class map.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 32</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>shape average bps</strong></td>
<td>Example: Device(config-pmap-c)#shape average 40000</td>
<td>Shapes traffic to the indicated bit rate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 33</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>exit</strong></td>
<td>Example:</td>
<td>Exits policy-map class configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Device(config-pmap-c)#exit</td>
<td>Exits policy-map configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 34</strong> exit</td>
<td>Exits policy-map configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pmap)#exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 35</strong> exit policy-map <em>policy-map-name</em></td>
<td>Creates a policy map to specify a service policy.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# policy-map port-shaper</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 36</strong> class <em>class-map-name</em></td>
<td>Specifies the name of the class map.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pmap)#class class-default</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 37</strong> shape average <em>bps</em></td>
<td>Shapes traffic to the indicated bit rate.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pmap-c)#shape average 60000</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 38</strong> exit</td>
<td>Exits policy-map class configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pmap-c)#exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 39</strong> exit</td>
<td>Exits policy-map configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pmap)#exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 40</strong> policy-map <em>policy-map-name</em></td>
<td>Creates a policy map to specify a service policy.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# policy-map ingress-police</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 41</strong> class <em>class-map-name</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pmap)# class class-default</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 42</strong> police <em>bps</em></td>
<td>Creates a per-interface policer and configures the policy-map class to use it.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pmap-c)# police 10000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Creating a Hierarchical Policy for VFI Pseudowires**

Perform this task to create a hierarchical policy for VFI Pseudowires.

**SUMMARY STEPS**

1. enable
2. configure terminal

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 43</strong></td>
<td></td>
</tr>
<tr>
<td><strong>interface pseudowire number</strong></td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-pmap-c-police)# interface pseudowire 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 44</strong></td>
<td></td>
</tr>
<tr>
<td><strong>encap mpls</strong></td>
<td>Configures MPLS encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# encap mpls</td>
<td></td>
</tr>
<tr>
<td><strong>Step 45</strong></td>
<td></td>
</tr>
<tr>
<td><strong>neighbor peer-address vcid-value</strong></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of an L2VPN pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# neighbor 10.0.0.1 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 46</strong></td>
<td></td>
</tr>
<tr>
<td><strong>service-policy input policy-map-name</strong></td>
<td>Attaches a policy map to an input interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# service-policy input ingress-policy</td>
<td></td>
</tr>
<tr>
<td><strong>Step 47</strong></td>
<td></td>
</tr>
<tr>
<td><strong>service-policy output policy-map-name</strong></td>
<td>Attaches a policy map to an output interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# service-policy output gold-policy-hqos</td>
<td></td>
</tr>
<tr>
<td><strong>Step 48</strong></td>
<td></td>
</tr>
<tr>
<td><strong>interface gigabit ethernet number</strong></td>
<td>Configures an interface type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# interface gigabitethernet 1/1/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 49</strong></td>
<td></td>
</tr>
<tr>
<td><strong>service-policy output policy-map-name</strong></td>
<td>Attaches a policy map to an output interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# service-policy output port-shaper</td>
<td></td>
</tr>
</tbody>
</table>
3. `policy-map policy-map-name`
4. `class class-map-name`
5. `shape average bps`
6. `service-policy policy-map`
7. `exit`
8. `exit`
9. `policy-map policy-map-name`
10. `class class-map-name`
11. `shape average bps`
12. `exit`
13. `exit`
14. `policy-map policy-map-name`
15. `class class-map-name`
16. `shape average bps`
17. `exit`
18. `exit`
19. `exit policy-map policy-map-name`
20. `class class-map-name`
21. `shape average bps`
22. `exit`
23. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>policy-map policy-map-name</code></td>
<td>Creates a policy map to specify a service policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# policy-map gold-policy-hqos</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>class class-map-name</code></td>
<td>Specifies the name of the class map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-pmap)# class class-default</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>5</td>
<td><code>shape average bps</code></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# shape average 10000</td>
</tr>
<tr>
<td>6</td>
<td><code>service-policy policy-map</code></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# service-policy gold-policy-child</td>
</tr>
<tr>
<td>7</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# exit</td>
</tr>
<tr>
<td>8</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap)# exit</td>
</tr>
<tr>
<td>9</td>
<td><code>policy-map policy-map-name</code></td>
</tr>
<tr>
<td></td>
<td>Device(config)# policy-map pw-shaper</td>
</tr>
<tr>
<td>10</td>
<td><code>class class-map-name</code></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap)# class class-default</td>
</tr>
<tr>
<td>11</td>
<td><code>shape average bps</code></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# shape average 20000</td>
</tr>
<tr>
<td>12</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap-c)# exit</td>
</tr>
<tr>
<td>13</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Device(config-pmap)# exit</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 14   | **policy-map** `policy-map-name`  
  Example:  
  Device(config)# policy-map sub-ifc-shaper | Creates a policy map to specify a service policy. |
| 15   | `class` `class-map-name`  
  Example:  
  Device(config-pmap)# class class-default | Specifies the name of the class map. |
| 16   | `shape` `average` `bps`  
  Example:  
  Device(config-pmap-c)# shape average 40000 | Shapes traffic to the indicated bit rate. |
| 17   | `exit`  
  Example:  
  Device(config-pmap-c)# exit | Exits policy-map class configuration mode. |
| 18   | `exit`  
  Example:  
  Device(config-pmap)# exit | Exits policy-map configuration mode. |
| 19   | `exit policy-map` `policy-map-name`  
  Example:  
  Device(config)# policy-map port-shaper | Creates a policy map to specify a service policy. |
| 20   | `class` `class-map-name`  
  Example:  
  Device(config-pmap)# class class-default | Specifies the name of the class map. |
| 21   | `shape` `average` `bps`  
  Example:  
  Device(config-pmap-c)# shape average 60000 | Shapes traffic to the indicated bit rate. |
| 22   | `exit`  
  Example:  
  Device(config-pmap-c)# exit | Exits policy-map class configuration mode. |
| 23   | `exit`  
  Example:  
  Device(config-pmap)# exit | Exits policy-map configuration mode. |
Attaching a Policy Map to a VFI Pseudowire

Perform this task to attach a policy map to a VFI Pseudowire.

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-map-name
4. class class-map-name
5. police bps
6. interface pseudowire number
7. encap mpls
8. neighbor peer-address vcid-value
9. service-policy input policy-map-name
10. service-policy output policy-map-name
11. interface gigabit ethernet number
12. service-policy output policy-map-name
13. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>policy-map policy-map-name</td>
<td>Creates a policy map to specify a service policy.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# policy-map ingress-police</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>class class-map-name</td>
<td>Specifies the name of the class map.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-pmap)# class class-default</td>
<td></td>
</tr>
<tr>
<td><strong>Step</strong></td>
<td><strong>Command or Action</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 5 | `police bps`  
**Example:**  
Device(config-pmap-c)# police 10000 | Creates a per-interface policer and configures the policy-map class to use it. |
| 6 | `interface pseudowire number`  
**Example:**  
Device(config-pmap-c-police)# interface pseudowire 1 | Configures an interface type and enters interface configuration mode. |
| 7 | `encap mpls`  
**Example:**  
Device(config-if)# encap mpls | Configures MPLS encapsulation. |
| 8 | `neighbor peer-address vcid-value`  
**Example:**  
Device(config-if)# neighbor 10.0.0.1 100 | Specifies the peer IP address and virtual circuit (VC) ID value of an L2VPN pseudowire. |
| 9 | `service-policy input policy-map-name`  
**Example:**  
Device(config-if)# service-policy input ingress-policy | Attaches a policy map to an input interface. |
| 10 | `service-policy output policy-map-name`  
**Example:**  
Device(config-if)# service-policy output gold-policy-hqos | Attaches a policy map to an output interface. |
| 11 | `interface gigabit ethernet number`  
**Example:**  
Device(config-if)# interface gigabit ethernet 1/1/0 | Configures an interface type. |
| 12 | `service-policy output policy-map-name`  
**Example:**  
Device(config-if)# service-policy output port-shaper | Attaches a policy map to an output interface. |
| 13 | `exit`  
**Example:** | Exits interface configuration mode. |
Configuring VFI with Two Pseudowire Members with Different QoS Policies

Perform this task to configure VFI with two pseudowire members with different QoS policies.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface pseudowire number
4. encap mpls
5. neighbor peer-address vcid value
6. service-policy output policy-map-name
7. interface pseudowire number
8. encap mpls
9. neighbor peer-address vcid value
10. service-policy output policy-map-name
11. l2vpn vfi context name
12. vpn id vpn-id
13. member pseudowire pw-int-number
14. member pseudowire pw-int-number
15. bridge-domain bridge-domain-id
16. member interface-type-number
17. interface BDI number
18. ip vrf forwarding vrf-name
19. ip address ip-address mask

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface pseudowire number</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><strong>Command or Action</strong></td>
<td><strong>Purpose</strong></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Device# interface pseudowire 1</td>
<td>Configures MPLS encapsulation.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Configures MPLS encapsulation.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# encap mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Specifies the peer IP address and virtual circuit (VC) ID value of an L2VPN pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# neighbor 10.0.0.1 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Attaches a policy map to an output interface.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# service-policy output gold-policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Configures an interface type.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# interface pseudowire 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Configures MPLS encapsulation.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# encap mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Specifies the peer IP address and VCID of an L2VPN pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# neighbor 20.0.0.1 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Attaches a policy map to an output interface.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# service-policy output silver-policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) between two or more separate networks.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# l2vpn vfi context my-vfi</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>Sets a VPN ID on a Virtual Private LAN Services (VPLS) instance.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Device(config-vfi)# vpn id 100 | Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.

**Step 13**

- **member pseudowire pw-int-number**
- **Example:**
  
  Device(config-vfi)# member pseudowire 1

Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.

**Step 14**

- **member pseudowire pw-int-number**
- **Example:**
  
  Device(config-vfi)# member pseudowire 2

Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.

**Step 15**

- **bridge-domain bridge-domain-id**
- **Example:**
  
  Device(config-vfi)# bridge-domain 100

Configures components on a bridge domain.

**Step 16**

- **member interface-type-number**
- **Example:**
  
  Device(config-bdomain)# member vfi my-vfi

Binds a service instance to a bridge domain instance.

**Step 17**

- **interface BDI number**
- **Example:**
  
  Device(config-bdomain)# interface BDI 100

Configures an interface type and enters interface configuration mode.

**Step 18**

- **ip vrf forwarding vrf-name**
- **Example:**
  
  Device(config-if)# ip vrf forwarding MY-VRF

Associates a Virtual Private Network (VPN) routing and forwarding (VRF) instance with an interface or subinterface.

**Step 19**

- **ip address ip-address mask**
- **Example:**
  
  Device(config-if)# ip address 30.0.0.1 255.255.255.0

Sets a primary or secondary IP address for an interface.

---

**Configuring VFI with Two Pseudowire Members with the Same QoS Policy**

Perform this task to configure VFI with two pseudowire members with the same QoS policy.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. template type pseudowire name
4. encaps mpls
5. **service-policy output policy-map-name**
6. **interface pseudowire number**
7. **encap mpls**
8. **neighbor peer-address vcid value**
9. **source template type pseudowire template-name**
10. **interface pseudowire number**
11. **encap mpls**
12. **neighbor peer-address vcid value**
13. **source template type pseudowire template-name**
14. **l2vpn vfi context name**
15. **vpn id vpn-id**
16. **member pseudowire pw-int-number**
17. **member pseudowire pw-int-number**
18. **bridge-domain bridge-domain-id**
19. **member interface-type-number**
20. **interface BDI number**
21. **ip vrf forwarding vrf-name**
22. **ip address ip-address mask**

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><strong>enable</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><strong>Note</strong> Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Device&gt; enable</strong></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><strong>configure terminal</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Device# configure terminal</strong></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><strong>template type pseudowire name</strong></td>
<td>Configures a template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Device(config)# template type pseudowire my_template</strong></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><strong>encap mpls</strong></td>
<td>Configures MPLS encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Device(config-if)# encap mpls</strong></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><strong>service-policy output policy-map-name</strong></td>
<td>Attaches a policy map to a output interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Device(config-template)# service-policy output common-policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Configures an interface type.</td>
<td></td>
</tr>
<tr>
<td><strong>interface pseudowire number</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# interface pseudowire 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Configures MPLS encapsulation.</td>
<td></td>
</tr>
<tr>
<td><strong>encap mpls</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# encap mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Specifies the peer IP address and VCID of an L2VPN pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>neighbor peer-address vcid value</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# neighbor 10.0.0.1 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Configures the name of a source template of type pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>source template type pseudowire template-name</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# source template type pseudowire my_template</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Configures an interface type.</td>
<td></td>
</tr>
<tr>
<td><strong>interface pseudowire number</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# interface pseudowire 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>Configures MPLS encapsulation.</td>
<td></td>
</tr>
<tr>
<td><strong>encap mpls</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# encap mpls</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>Specifies the peer IP address and VCID of an L2VPN pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>neighbor peer-address vcid value</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# neighbor 20.0.0.1 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td>Configures the name of a source template of type pseudowire.</td>
<td></td>
</tr>
<tr>
<td><strong>source template type pseudowire template-name</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# source template type pseudowire my_template</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td>Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) between two or more separate networks.</td>
<td></td>
</tr>
<tr>
<td><strong>l2vpn vfi context name</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# l2vpn vfi context my-vfi</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

Step 15	vpn id vpn-id
	Example:
	Device(config-vfi)# vpn id 100

### Purpose

Sets a VPN ID on a Virtual Private LAN Services (VPLS) instance.

### Step 16

| member pseudowire pw-int-number
|---|---|
|  | Example:
|  | Device(config-vfi)# member pseudowire 1

### Purpose

Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.

### Step 17

| member pseudowire pw-int-number
|---|---|
|  | Example:
|  | Device(config-vfi)# member pseudowire 2

### Purpose

Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.

### Step 18

| bridge-domain bridge-domain-id
|---|---|
|  | Example:
|  | Device(config-vfi)# bridge-domain 100

### Purpose

Configures components on a bridge domain.

### Step 19

| member interface-type-number
|---|---|
|  | Example:
|  | Device(config-bdomain)# member vfi my-vfi

### Purpose

Binds a service instance to a bridge domain instance.

### Step 20

| interface BDI number
|---|---|
|  | Example:
|  | Device(config-bdomain)# interface BDI 100

### Purpose

Configures an interface type and enters interface configuration mode.

### Step 21

| ip vrf forwarding vrf-name
|---|---|
|  | Example:
|  | Device(config-if)# ip vrf forwarding MY-VRF

### Purpose

Associates a Virtual Private Network (VPN) routing and forwarding (VRF) instance with an interface or subinterface.

### Step 22

| ip address ip-address mask
|---|---|
|  | Example:
|  | Device(config-if)# ip address 30.0.0.1 255.255.255.0

### Purpose

Sets a primary or secondary IP address for an interface.

---

### Configuring VFI with Auto Discovered Pseudowires

Perform this task to configure VFI with auto discovered pseudowires.

### SUMMARY STEPS

1. enable
2. configure terminal  
3. template type pseudowire name  
4. encap mpls  
5. service-policy output policy-map-name  
6. l2vpn vfi context name  
7. vpn id vpn-id  
8. autodiscovery bgp signaling ldp template template-name  
9. bridge-domain bridge-domain-id  
10. member interface-type-number  
11. interface BDI number  
12. ip vrf forwarding vrf-name  
13. ip address ip-address mask

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
**Example:**  
Device> enable  
**Note** Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.  
**Example:**  
Device# configure terminal |
| **Step 3** template type pseudowire name | Configures a template.  
**Example:**  
Device(config)# template type pseudowire my_template |
| **Step 4** encap mpls | Configures MPLS encapsulation.  
**Example:**  
Device(config-if)# encap mpls |
| **Step 5** service-policy output policy-map-name | Attaches a policy map to a output interface.  
**Example:**  
Device(config-template)# service-policy output common-policy |
| **Step 6** l2vpn vfi context name | Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) between two or more separate networks.  
**Example:**  
Device(config-if)# l2vpn vfi context my-vfi |
## Command or Action

### Step 7
**vpn id vpn-id**

Example:
```
Device(config-vfi)# vpn id 100
```

**Purpose**
Sets a VPN ID on a Virtual Private LAN Services (VPLS) instance.

### Step 8
**autodiscovery bgp signaling ldp template template-name**

Example:
```
Device(config-vfi)# autodiscovery bgp signaling ldp template my_template
```

**Purpose**
Designates a Layer 2 virtual forwarding interface (VFI) as having Label Distribution Protocol (LDP) autodiscovered pseudowire members.

### Step 9
**bridge-domain bridge-domain-id**

Example:
```
Device(config-vfi)# bridge-domain 100
```

**Purpose**
Configures components on a bridge domain.

### Step 10
**member interface-type-number**

Example:
```
Device(config-bdomain)# member vfi my-vfi
```

**Purpose**
Binds a service instance to a bridge domain instance.

### Step 11
**interface BDI number**

Example:
```
Device(config-bdomain)# interface BDI 100
```

**Purpose**
Configures an interface type and enters interface configuration mode.

### Step 12
**ip vrf forwarding vrf-name**

Example:
```
Device(config-if)# ip vrf forwarding MY-VRF
```

**Purpose**
Associates a Virtual Private Network (VPN) routing and forwarding (VRF) instance with an interface or subinterface.

### Step 13
**ip address ip-address mask**

Example:
```
Device(config-if)# ip address 30.0.0.1 255.255.255.0
```

**Purpose**
Sets a primary or secondary IP address for an interface.

## Configuration Examples for QoS Policies for VFI Pseudowires

### Example: Configuring QoS Policies for Pseudowires

The following example shows how to QoS policies for pseudowires:

```
Device(config)# policy-map GOLD-POLICY-CHILD
Device(config-pmap)# class PRIORITY-CLASS
```
Example: Configuring VFI with Two Pseudowire Members with Different QoS Policies

The following example shows how to configure VFI with two pseudowire members with different QoS policies:

Device(config)# interface pseudowire
Line protocol on Interface pseudowire0, changed state to up
Device(config-if)# encap mpls
Device(config-if)# neighbor 10.0.0.1 100
Device(config-if)# service-policy input INGRESS-POLICY
Device(config-if)# service-policy output GOLD-POLICY-HQOS
Device(config-if)# interface GigabitEthernet 1/1/0
--- Pseudowire is going out through this interface
Device(config-if)# service-policy output PORT-SHAPER
Example: Configuring VFI with Two Pseudowire Members with the Same QoS Policy

The following example shows how to configure VFI with two pseudowire members with the same QoS policy:

Device(config)# template type pseudowire MY_TEMPLATE
Device(config-template)# encapsulation mpls
Device(config-template)# service-policy output COMMON-POLICY
Device(config-template)# interface pseudowire1
Line protocol on Interface pseudowire0, changed state to up
Device(config-if)# encap mpls
Device(config-if)# neighbor 10.0.0.1 100
Device(config-if)# source template type pseudowire MY_TEMPLATE
Device(config-if)# interface pseudowire2
Device(config-if)# encap mpls
Device(config-if)# neighbor 20.0.0.1 100
Device(config-if)# source template type pseudowire MY_TEMPLATE
 Device(config-if)# 12vpn vfi context MY-VFI
Device(config-vfi)# vpn id 100
Device(config-vfi)# member pseudowire1
Device(config-vfi)# member pseudowire2
Device(config-vfi)# bridge-domain 100
Device(config-bdomain)# member vfi MY-VFI
Status of VFI my-vfi changed from DOWN to UP
Device(config-bdomain)# interface BDI 100
Device(config-if)# ip vrf forwarding MY-VRF
Device(config-if)# ip address 30.0.0.1 255.255.255.0

Example: Configuring VFI with Auto Discovered Pseudowires

The following example shows how to configure VFI with auto discovered pseudowires:

Device(config)# template type pseudowire MY_TEMPLATE
Device(config-template)# encapsulation mpls
Device(config-template)# service-policy output COMMON-POLICY
Device(config-template)# 12vpn vfi context MY-VFI
Device(config-vfi)# vpn id 100
Example: Displaying Pseudowire Policy Map Information

The following is sample output from the `show policy-map interface` command which shows class maps and policy maps configured for the pseudowire 2 interface:

```
Device# show policy-map interface pseudowire2
pseudowire2

Service-policy output: pw_brr

Class-map: prec1 (match-all)
 0 packets, 0 bytes
 30 second offered rate 0000 bps, drop rate 0000 bps
 Match: ip precedence 1
 Queueing
 queue limit 4166 packets
 (queue depth/total drops/no-buffer drops) 0/0/0
 (pkts output/bytes output) 0/0
 bandwidth remaining ratio 1

Class-map: prec2 (match-all)
 0 packets, 0 bytes
 30 second offered rate 0000 bps, drop rate 0000 bps
 Match: ip precedence 2
 Queueing
 queue limit 4166 packets
 (queue depth/total drops/no-buffer drops) 0/0/0
 (pkts output/bytes output) 0/0
 bandwidth remaining ratio 2

Class-map: prec3 (match-all)
 0 packets, 0 bytes
 30 second offered rate 0000 bps, drop rate 0000 bps
 Match: ip precedence 3
 Queueing
 queue limit 4166 packets
 (queue depth/total drops/no-buffer drops) 0/0/0
 (pkts output/bytes output) 0/0
 bandwidth remaining ratio 3

Class-map: class-default (match-any)
 0 packets, 0 bytes
 30 second offered rate 0000 bps, drop rate 0000 bps
 Match: any
 Queueing
 queue limit 4166 packets
 (queue depth/total drops/no-buffer drops) 0/0/0
 (pkts output/bytes output) 0/0
 bandwidth remaining ratio 4
```

Device#
### Additional References for QoS Policies for VFI Pseudowires

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>QoS commands</td>
<td>Cisco IOS Quality of Service Solutions Command Reference</td>
</tr>
<tr>
<td>Configuring the pseudowire class</td>
<td>“Any Transport over MPLS”</td>
</tr>
<tr>
<td>Layer 2 VPN</td>
<td>• Any Transport over MPLS</td>
</tr>
<tr>
<td></td>
<td>• L2VPN Pseudowire Switching</td>
</tr>
<tr>
<td></td>
<td>• MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV</td>
</tr>
<tr>
<td>L2VPN pseudowires</td>
<td>• L2VPN Pseudowire Redundancy</td>
</tr>
<tr>
<td></td>
<td>• MPLS Pseudowire Status Signaling</td>
</tr>
</tbody>
</table>

#### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
## Feature Information For QoS Policies for VFI Pseudowires

### Table 39: Feature Information for QoS Policies for VFI Pseudowire

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Policies for VFI Pseudowires</td>
<td>Cisco IOS XE 3.8S</td>
<td>This feature allows you to configure QoS classes and policies for use on VFI pseudowire members. The following commands were introduced or modified: <code>show policy-map interface</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 25

VPLS BGP Signaling L2VPN Inter-AS Option A

The Virtual Private LAN Switching (VPLS) Border Gateway Protocol (BGP) Signaling Layer 2 Virtual Private Network (L2VPN) feature simplifies the auto-discovery and signaling of all known PE devices in a VPLS instance by using BGP.

- Finding Feature Information, on page 631
- Prerequisites for VPLS BGP Signaling L2VPN Inter-AS Option A, on page 631
- Information About VPLS BGP Signaling L2VPN Inter-AS Option A, on page 632
- How to Configure VPLS BGP Signaling L2VPN Inter-AS Option A, on page 633
- VPLS BGP Signaling L2VPN Inter-AS Option A: Example, on page 638
- Additional References for VPLS Autodiscovery BGP Based, on page 639
- Feature Information for VPLS BGP Signaling L2VPN Inter-AS Option A, on page 640

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VPLS BGP Signaling L2VPN Inter-AS Option A

- The Control word must turned off for VPLS BGP signaling by using the no control-word command under a pseudowire class. For example:

  Router> enable
  Router# configure terminal
  Router(config)# pseudowire-class my_pw_class
  Router(config-pw-class)# no control-word

- The Route Distinguisher (RD) must match for all the virtual forwarding instances (VFIs) in a VPLS domain.
Information About VPLS BGP Signaling L2VPN Inter-AS Option A

BGP Auto-discovery and Signaling for VPLS

The Virtual Private LAN Switching (VPLS) control plane is used for auto-discovery and signaling. Auto-discovery involves locating all provider edge (PE) devices that participate in a particular VPLS instance. Signaling is accomplished by configuring pseudowires for a VPLS instance. Prior to the introduction of the VPLS BGP Signaling L2VPN Inter-AS Option B feature, Label Distribution Protocol (LDP) was used for signaling and Border Gateway Protocol (BGP) was used for auto-discovery, as specified in RFC 6074. With the introduction of the VPLS BGP Signaling L2VPN Inter-AS Option B feature, the VPLS BGP Signaling L2VPN feature supports RFC 4761 by simplifying the auto-discovery and signaling of all known PE devices in a VPLS instance by using BGP for both functions. Auto-discovery is defined per VPLS instance.

Internal BGP (IBGP) peers exchange update messages of the L2VPN Address Family Identifier (AFI) and the Subsequent Address Family Identifier (SAFI) numbers with L2VPN information to perform both auto-discovery and signaling, which includes the Network Layer Reachability Information (NLRI).

Both BGP standards (RFC 6074 and RFC 4761) for the auto-discovery protocol for VPLS use the same BGP AFI (25) and SAFI (65) but they have different Network Layer Reachability Information (NLRI) encoding, which makes them incompatible with each other. CLI configuration is needed to distinguish the two encoding types as they are mutually exclusive per neighbor. The difference between the two BGP standards is:

- RFC 6074 provides guidelines for specifying length encoding as bits.
- RFC 4761 provides guidelines for specifying length encoding as bytes.

To detect which NLRI encoding standard is supported, the length encoding needs to be determined.

BGP L2VPN Signaling with NLRI

Network Layer Reachability Information (NLRI) enables Border Gateway Protocol (BGP) to carry supernetting information, as well as perform aggregation. Each NLRI consists of block labels that follow the structure LB, LB+1, ..., LB+VBS-1. The NLRI is exchanged between BGP devices for BGP auto-discovery with BGP signaling. The following fields are configured or auto-generated for each Virtual Private LAN Switching (VPLS) instance:

- **Length (2 Octets)**
- **Route distinguisher (RD)** is usually an auto-generated 8-byte VPN ID that can also be configured. This value must be unique for a VPLS bridge-domain (or instance).
- **VPLS Endpoint ID (VEID) (2 Octets)**. Each PE device is configured with a VEID value.
- **VPLS Endpoint Block Offset (VBO) (2 Octets)**.
- **VPLS Endpoint Block Size (VBS) (2 Octets)**.
- **Label Base (LB) (3 Octets)**.
• Extended Community Type (2 Octets) - 0x800A attributes. The Route Target (RT) specified for a VPLS instance, next-hop and other Layer 2 information is carried in this encoding. An RT-based import and export mechanism similar to L3VPN is performed by BGP to perform filtering on the L2VPN NLRIs of a particular VPLS instance.

• Encapsulation Type (1 Octet) - VPLS = 19

• Control Flags (1 Octet)

• Layer 2 Maximum Transmission Unit (MTU) (2 Octets)

• Reserved (2 Octets)

How to Configure VPLS BGP Signaling L2VPN Inter-AS Option A

Enabling BGP Auto-discovery and BGP Signaling

Perform this task to enable Virtual Private LAN Service (VPLS) PE devices to discover other PE devices by BGP auto-discovery and BGP signaling functions announced through IBGP.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2vpn vfi context vfi-context-name
4. vpn id vpn-id
5. autodiscovery bgp signaling bgp
6. ve id ve-ID-number
7. ve range ve-range-number
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> l2vpn vfi context vfi-context-name</td>
<td>Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) for specifying core-facing pseudowires in</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| `Device(config)# l2vpn vfi context vfi1` | a Virtual Private LAN Services (VPLS) and enters L2VFI configuration mode.  
  • The VFI represents an emulated LAN or a VPLS forwarder from the VPLS architectural model when using an emulated LAN interface. |

**Step 4**  
vpn id *vpn-id*  
*Example:*  
`Device(config-vfi)# vpn id 10`

**Step 5**  
autodiscovery bgp signaling bgp  
*Example:*  
`Device(config-vfi)# autodiscovery bgp signaling bgp`

**Step 6**  
ve id *ve-ID-number*  
*Example:*  
`Device(config-vfi)# ve id 1`

**Step 7**  
ve range *ve-range-number*  
*Example:*  
`Device(config-vfi)# ve range 10`

## Purpose

### Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>vpn id <em>vpn-id</em></strong></td>
<td>Configures a VPN ID for the VPLS domain.</td>
</tr>
</tbody>
</table>

### Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>autodiscovery bgp signaling bgp</strong></td>
<td>Enables BGP auto-discovery and BGP signaling on the device.</td>
</tr>
</tbody>
</table>

### Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **ve id *ve-ID-number*** | Configures a VPLS Endpoint ID (VEID) for the NLRI exchanged between BGP devices for BGP auto-discovery with BGP signaling.  
  • For example, VEID numbering sequences such as 1,2,3 or 501, 502, 503 are preferred because the VEIDs are contiguous.  
  • Avoid a non-contiguous numbering scheme such as 100, 200, 300.  
  Repeat this step to add more VEIDs. The VEID must be unique within the same VPLS domain for all PE devices.  
  **Note** If you change the VEID, then the virtual circuit (VC) reprovisions and traffic is impacted as a result. |

### Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **ve range *ve-range-number*** | Overrides the minimum size of VPLS edge (VE) blocks.  
  • The VE range value should be approximately the same as the number of neighbors (up to 100).  
  • The VE range can be configured based on the number of neighboring PE devices in the network.  
  • For example, if 50 PE devices are in a VPLS domain, then a VE range of 50 is better than 10 because the number of NLRIIs exchanged are less and the convergence time is reduced.  
  **Note** If no VE range is configured or an existing VE range value is removed, then the default VE range of 10 is applied. The default VE range should not be used if the device has many PE neighbors.  
  **Note** If you change the VE range, then the VC reprovisions and traffic is impacted as a result. |
Purpose

Command or Action	Purpose
Step 8 end | Exits L2 VFI configuration mode and returns to privileged EXEC mode.

Note

Commands take effect after the device exits L2VFI configuration mode.

Configuring BGP Signaling for VPLS Autodiscovery

SUMMARY STEPS

1. enable
2. configure terminal
3. router bgp autonomous-system-number
4. bgp graceful-restart
5. neighbor {ip-address | peer-group-name} remote-as autonomous-system-number
6. address-family l2vpn vpls
7. neighbor {ip-address | peer-group-name} activate
8. neighbor {ip-address | peer-group-name} send-community extended
9. neighbor {ip-address | peer-group-name} suppress-signaling-protocol ldp
10. exit-address-family
11. Repeat steps 1 to 10 to configure and activate other BGP neighbors in an L2VPN address family.
12. end
13. show l2vpn vfi
14. show ip bgp l2vpn vpls {all [summary] | rd route-distinguisher}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> router bgp autonomous-system-number</td>
<td>Enters router configuration mode for the specified routing process.</td>
</tr>
<tr>
<td>Example: Device(config)# router bgp 100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> bgp graceful-restart</td>
<td>Enables the Border Gateway Protocol (BGP) graceful restart capability globally for all BGP neighbors.</td>
</tr>
<tr>
<td>Example: Device(config-router)# bgp graceful-restart</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring BGP Signaling for VPLS Autodiscovery

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5**
neighbor {ip-address | peer-group-name} remote-as autonomous-system-number  
*Example:*
Device(config-router)# neighbor 198.51.100.1 remote-as 65000  | Adds the IP address or peer group name of the neighbor in the specified autonomous system to the IPv4 multiprotocol BGP neighbor table of the local router.  
- If the `autonomous-system-number` argument matches the autonomous system number specified in the `router bgp` command, the neighbor is an internal neighbor.  
- If the `autonomous-system-number` argument does not match the autonomous system number specified in the `router bgp` command, the neighbor is an external neighbor.  
- In this example, the neighbor at 10.10.10.1 is an internal BGP neighbor. |
| **Step 6**
address-family l2vpn vpls  
*Example:*
Device(config-router)# address-family l2vpn vpls  | Specifies the L2VPN address family and enters address family configuration mode.  
- The `vpls` keyword specifies that the VPLS endpoint provisioning information is to be distributed to BGP peers and a L2VPN VPLS address family session is created. |
| **Step 7**
neighbor {ip-address | peer-group-name} activate  
*Example:*
Device(config-router-af)# neighbor 198.51.100.1 activate  | Enables the exchange of information with a BGP neighbor. |
| **Step 8**
neighbor {ip-address | peer-group-name} send-community extended  
*Example:*
Device(config-router-af)# neighbor 198.51.100.1 send-community extended  | Specifies that a communities attribute should be sent to a BGP neighbor.  
- In this example, an extended communities attribute is sent to the neighbor at 10.10.10.1. |
| **Step 9**
neighbor {ip-address | peer-group-name} suppress-signaling-protocol ldp  
*Example:*
Device(config-router-af)# neighbor 198.51.100.1 suppress-signaling-protocol ldp  | Suppresses LDP signaling for a BGP neighbor so that BGP signaling for VPLS auto-discovery is used instead.  
- In this example, LDP signaling is suppressed for the neighbor at 10.10.10.1. |
| **Step 10**
exit-address-family  
*Example:*
Device(config-router-af)# exit-address-family  | Exits address family configuration mode and returns to router configuration mode. |
| **Step 11**  | Repeat steps 1 to 10 to configure and activate other BGP neighbors in an L2VPN address family. |
### Purpose

**Command or Action**

**Step 12**  
`end`  
**Example:**  
Device(config-router)# end  

**Exits router configuration mode and returns to privileged EXEC mode.**

**Step 13**  
`show l2vpn vfi`  
**Example:**  
Device# show l2vpn vfi  

**Displays information about the configured VFI instances.**

**Step 14**  
`show ip bgp l2vpn vpls {all [summary] | rd route-distinguisher}`  
**Example:**  
Device# show ip bgp l2vpn vpls all summary

**Displays information about the L2VPN VPLS address family.**
## VPLS BGP Signaling L2VPN Inter-AS Option A: Example

The following example configuration describes Inter-AS Option A for VPLS BGP signaling in an L2VPN. The Autonomous System Boundary Router (ASBR) 1 acts as the Provider Edge (PE) for all VPLS instances that span over Autonomous System (AS) 1 and ASBR 2 are viewed as the CE device. And for the other way around, for AS 2, ASBR 2 acts as the PE and ASBR 1 is viewed as the CE. MPLS is not required between ASBR 1 and ASBR 2 because VPLS is used for layer 2 linking. Each VPLS instance needs to be segregated so that it can be sent in the proper VPLS domain in ASBRs (for example, a switchport interface or Ethernet sub-interface).

### Note
From a BGP signaling perspective, there is no specific change within the AS. From the VPLS perspective, there is no BGP peering between ASBR1 and ASBR2.

The following figure shows a network diagram for the BGP signaling Inter-AS option A BGP configuration:

![Network Diagram](image)

The following example shows the PE 1 BGP configuration for Inter-AS Option A:

```bash
router bgp 100
neighbor 10.0.0.2 remote-as 100
address-family l2vpn vpls
neighbor 10.0.0.2 activate
neighbor 10.0.0.2 send-community extended
neighbor 10.0.0.2 suppress-signaling-protocol ldp
exit-address-family
```

The following example shows the ASBR 1 BGP configuration for Inter-AS Option A:

```bash
router bgp 100
neighbor 10.0.0.1 remote-as 100
address-family l2vpn vpls
neighbor 10.0.0.1 activate
neighbor 10.0.0.1 send-community extended
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes of memory</td>
<td></td>
</tr>
<tr>
<td>0 BGP route-map cache entries using 0 bytes of memory</td>
<td></td>
</tr>
<tr>
<td>0 BGP filter-list cache entries using 0 bytes of memory</td>
<td></td>
</tr>
<tr>
<td>BGP using 3341520 total bytes of memory</td>
<td></td>
</tr>
<tr>
<td>BGP activity 9828/3276 prefixes, 9828/3276 paths, scan interval 60 secs</td>
<td></td>
</tr>
</tbody>
</table>

Neighbor V	AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd								
198.51.101.1	4	65000	90518	90507	14743	0	0	8w0d	1638
198.51.102.2	4	65000	4901	4895	14743	0	0	2d01h	1638
198.51.103.3	4	65000	4903	4895	14743	0	0	2d01h	1638
neighbor 10.0.0.1 suppress-signaling-protocol ldp
exit-address-family

The following example shows the ASBR 2 BGP configuration for Inter-AS Option A:

router bgp 200
neighbor 10.0.1.1 remote-as 100
    address-family 12vpn vpls
        neighbor 10.0.1.1 activate
        neighbor 10.0.1.1 send-community extended
        neighbor 10.0.1.1 suppress-signaling-protocol ldp
exit-address-family

The following example shows the PE 2 BGP configuration for Inter-AS Option A:

router bgp 200
neighbor 10.0.1.2 remote-as 100
    address-family 12vpn vpls
        neighbor 10.0.1.2 activate
        neighbor 10.0.1.2 send-community extended
        neighbor 10.0.1.2 suppress-signaling-protocol ldp
exit-address-family

Additional References for VPLS Autodiscovery BGP Based

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-l2vpn-signaling-08.txt</td>
<td>Provisioning, Autodiscovery, and Signaling in L2VPNs</td>
</tr>
<tr>
<td>draft-ietf-l2vpn-vpls-bgp-08.8</td>
<td>Virtual Private LAN Service (VPLS) Using BGP for Autodiscovery and Signaling</td>
</tr>
<tr>
<td>draft-ietf-mpls-lsp-ping-03.txt</td>
<td>Detecting MPLS Data Plane Failures</td>
</tr>
<tr>
<td>draft-ietf-pwe3-vccv-01.txt</td>
<td>Pseudo-Wire (PW) Virtual Circuit Connection Verification (VCCV)</td>
</tr>
<tr>
<td>RFC 3916</td>
<td>Requirements for Pseudo-wire Emulation Edge-to-Edge (PWE3)</td>
</tr>
<tr>
<td>RFC 3981</td>
<td>Pseudo Wire Emulation Edge-to-Edge Architecture</td>
</tr>
<tr>
<td>RFC 6074</td>
<td>Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)</td>
</tr>
<tr>
<td>RFC 4761</td>
<td>Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-IETF-PW-ATM-MIB (PW-ATM-MIB)</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases,</td>
</tr>
<tr>
<td></td>
<td>and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
<tr>
<td>• CISCO-IETF-PW-ENET-MIB (PW-ENET-MIB)</td>
<td></td>
</tr>
<tr>
<td>• CISCO-IETF-PW-FR-MIB (PW-FR-MIB)</td>
<td></td>
</tr>
<tr>
<td>• CISCO-IETF-PW-MIB (PW-MIB)</td>
<td></td>
</tr>
<tr>
<td>• CISCO-IETF-PW-MPLS-MIB (PW-MPLS-MIB)</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies. Access to most tools on the Cisco</td>
<td></td>
</tr>
<tr>
<td>Support website requires a Cisco.com user ID and password. If you have</td>
<td></td>
</tr>
<tr>
<td>a valid service contract but do not have a user ID or password, you can</td>
<td></td>
</tr>
<tr>
<td>register on Cisco.com.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for VPLS BGP Signaling L2VPN Inter-AS Option A

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
## Table 40: Feature Information for VPLS BGP Signaling L2VPN

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLS BGP Signaling L2VPN</td>
<td>Cisco IOS XE Release 3.8S</td>
<td>This feature simplifies the auto-discovery and signaling of all known provider edge (PE) devices in a VPLS instance by using BGP for both functions. The following commands were introduced or modified: <code>autodiscovery bgp signaling bgp</code>, <code>debug bgp l2vpn vpls updates</code>, <code>neighbor suppress-signaling-protocol ldp</code>, <code>ve id</code>, <code>ve range</code>, <code>show bgp l2vpn vpls</code>.</td>
</tr>
</tbody>
</table>
VPLS BGP Signaling L2VPN Inter-AS Option B

The VPLS BGP Signaling L2VPN Inter-AS Option B feature simplifies the auto-discovery and signaling of all known provider edge (PE) devices in a Virtual Private LAN Switching (VPLS) instance by using Border Gateway Protocol (BGP). This document describes how to configure the VPLS BGP Signaling L2VPN Inter-AS Option B feature.

- Finding Feature Information, on page 643
- Prerequisites for VPLS BGP Signaling L2VPN Inter-AS Option B, on page 643
- Information About VPLS BGP Signaling L2VPN Inter-AS Option B, on page 644
- How to Configure VPLS BGP Signaling L2VPN Inter-AS Option B, on page 645
- Configuration Examples for L2VPN VPLS Inter-AS Option B, on page 650
- Additional References for VPLS BGP Signaling L2VPN Inter-AS Option B, on page 655
- Feature Information for VPLS BGP Signaling L2VPN Inter-AS Option B, on page 656

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VPLS BGP Signaling L2VPN Inter-AS Option B

- Disable control word for Virtual Private LAN Switching (VPLS) Border Gateway Protocol (BGP) signaling by using the no control-word command under a pseudowire class. For example:

  Device> enable
  Device# configure terminal
  Device(config)# pseudowire-class my-pw-class
  Device(config-pw-class)# no control-word
• The route distinguisher (RD) must match for all the virtual forwarding instances (VFIs) in a VPLS domain.

• Ensure that the L2VPN VPLS Inter-AS Option B feature is configured on Autonomous System Boundary Routers (ASBRs) and PE devices.

### Information About VPLS BGP Signaling L2VPN Inter-AS Option B

#### BGP Auto-discovery and Signaling for VPLS

The Virtual Private LAN Switching (VPLS) control plane is used for auto-discovery and signaling. Auto-discovery involves locating all provider edge (PE) devices that participate in a particular VPLS instance. Signaling is accomplished by configuring pseudowires for a VPLS instance. Prior to the introduction of the VPLS BGP Signaling L2VPN Inter-AS Option B feature, Label Distribution Protocol (LDP) was used for signaling and Border Gateway Protocol (BGP) was used for auto-discovery, as specified in RFC 6074. With the introduction of the VPLS BGP Signaling L2VPN Inter-AS Option B feature, the VPLS BGP Signaling L2VPN feature supports RFC 4761 by simplifying the auto-discovery and signaling of all known PE devices in a VPLS instance by using BGP for both functions. Auto-discovery is defined per VPLS instance.

Internal BGP (IBGP) peers exchange update messages of the L2VPN Address Family Identifier (AFI) and the Subsequent Address Family Identifier (SAFI) numbers with L2VPN information to perform both auto-discovery and signaling, which includes the Network Layer Reachability Information (NLRI).

Both BGP standards (RFC 6074 and RFC 4761) for the auto-discovery protocol for VPLS use the same BGP AFI (25) and SAFI (65) but they have different Network Layer Reachability Information (NLRI) encoding, which makes them incompatible with each other. CLI configuration is needed to distinguish the two encoding types as they are mutually exclusive per neighbor. The difference between the two BGP standards is:

• RFC 6074 provides guidelines for specifying length encoding as bits.

• RFC 4761 provides guidelines for specifying length encoding as bytes.

To detect which NLRI encoding standard is supported, the length encoding needs to be determined.

#### BGP L2VPN Signaling with NLRI

Network Layer Reachability Information (NLRI) enables Border Gateway Protocol (BGP) to carry supernetting information, as well as perform aggregation. Each NLRI consists of block labels that follow the structure LB, LB+1, ..., LB+VBS-1. The NLRI is exchanged between BGP devices for BGP auto-discovery with BGP signaling. The following fields are configured or auto-generated for each Virtual Private LAN Switching (VPLS) instance:

• Length (2 Octets)

• Route distinguisher (RD) is usually an auto-generated 8-byte VPN ID that can also be configured. This value must be unique for a VPLS bridge-domain (or instance).

• VPLS Endpoint ID (VEID) (2 Octets). Each PE device is configured with a VEID value.
• VPLS Endpoint Block Offset (VBO) (2 Octets).
• VPLS Endpoint Block Size (VBS) (2 Octets).
• Label Base (LB) (3 Octets).
• Extended Community Type (2 Octets) - 0x800A attributes. The Route Target (RT) specified for a VPLS instance, next-hop and other Layer 2 information is carried in this encoding. An RT-based import and export mechanism similar to L3VPN is performed by BGP to perform filtering on the L2VPN NLRIs of a particular VPLS instance.
• Encapsulation Type (1 Octet) - VPLS = 19
• Control Flags (1 Octet)
• Layer 2 Maximum Transmission Unit (MTU) (2 Octets)
• Reserved (2 Octets)

How to Configure VPLS BGP Signaling L2VPN Inter-AS Option B

Enabling BGP Auto-discovery and BGP Signaling

Perform this task to enable Virtual Private LAN Service (VPLS) PE devices to discover other PE devices by BGP auto-discovery and BGP signaling functions announced through IGBP.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2vpn vfi context vfi-context-name
4. vpn id vpn-id
5. autodiscovery bgp signaling bgp
6. ve id ve-ID-number
7. ve range ve-range-number
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Enabling BGP Auto-discovery and BGP Signaling

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# configure terminal</td>
<td>Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) for specifying core-facing pseudowires in a Virtual Private LAN Services (VPLS) and enters L2VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>l2vpn vfi context <em>vfi-context-name</em></td>
<td>Establishes a VFI representing an emulated LAN or a VPLS forwarder from the VPLS architectural model when using an emulated LAN interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# l2vpn vfi context vfi1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Configures a VPN ID for the VPLS domain.</td>
</tr>
<tr>
<td>vpn id <em>vpn-id</em></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# vpn id 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Enables BGP auto-discovery and BGP signaling on the device.</td>
</tr>
<tr>
<td>autodiscovery bgp signaling bgp</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# autodiscovery bgp signaling bgp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Configures a VPLS Endpoint ID (VEID) for the NLRI exchanged between BGP devices for BGP auto-discovery with BGP signaling.</td>
</tr>
<tr>
<td>ve id <em>ve-ID-number</em></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# ve id 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Overrides the minimum size of VPLS edge (VE) blocks.</td>
</tr>
<tr>
<td>ve range <em>ve-range-number</em></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# ve range 10</td>
<td></td>
</tr>
</tbody>
</table>

- For example, VEID numbering sequences such as 1,2,3 or 501, 502, 503 are preferred because the VEIDs are contiguous.
- Avoid a non-contiguous numbering scheme such as 100, 200, 300.
- Repeat this step to add more VEIDs. The VEID must be unique within the same VPLS domain for all PE devices.

**Note** If you change the VEID, then the virtual circuit (VC) reprovisions and traffic is impacted as a result.

- The VE range value should be approximately the same as the number of neighbors (up to 100).
- The VE range can be configured based on the number of neighboring PE devices in the network.
- For example, if 50 PE devices are in a VPLS domain, then a VE range of 50 is better than 10 because the number of NLRI exchanged are less and the convergence time is reduced.
### Configuring BGP Signaling for VPLS Autodiscovery

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`  
3. `router bgp autonomous-system-number`
4. `bgp graceful-restart`
5. `neighbor {ip-address | peer-group-name} remote-as autonomous-system-number`
6. `address-family l2vpn vpls`  
7. `neighbor {ip-address | peer-group-name} activate`
8. `neighbor {ip-address | peer-group-name} send-community extended`
9. `neighbor {ip-address | peer-group-name} suppress-signaling-protocol ldp`
10. `exit-address-family`
11. Repeat steps 1 to 10 to configure and activate other BGP neighbors in an L2VPN address family.
12. `end`
13. `show l2vpn vfi`
14. `show ip bgp l2vpn vpls {all [summary] | rd route-distinguisher}`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
**enable**  
**Example:**  
Device> enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Step 2**  
`configure terminal`  
**Example:**  
Device# configure terminal | Enters global configuration mode. |
<table>
<thead>
<tr>
<th>Step 3</th>
<th><strong>Command or Action</strong></th>
<th><strong>Purpose</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>router bgp autonomous-system-number</code></td>
<td>Enters router configuration mode for the specified routing process.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# <code>router bgp 100</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th><strong>Command or Action</strong></th>
<th><strong>Purpose</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>bgp graceful-restart</code></td>
<td>Enables the Border Gateway Protocol (BGP) graceful restart capability globally for all BGP neighbors.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-router)# <code>bgp graceful-restart</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th><strong>Command or Action</strong></th>
<th><strong>Purpose</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`neighbor {ip-address</td>
<td>peer-group-name} remote-as autonomous-system-number`</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-router)# <code>neighbor 198.51.100.1 remote-as 65000</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th><strong>Command or Action</strong></th>
<th><strong>Purpose</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>address-family l2vpn vpls</code></td>
<td>Specifies the L2VPN address family and enters address family configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-router)# <code>address-family l2vpn vpls</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th><strong>Command or Action</strong></th>
<th><strong>Purpose</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`neighbor {ip-address</td>
<td>peer-group-name} activate`</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-router-af)# <code>neighbor 198.51.100.1 activate</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th><strong>Command or Action</strong></th>
<th><strong>Purpose</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`neighbor {ip-address</td>
<td>peer-group-name} send-community extended`</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-router-af)# <code>neighbor 198.51.100.1 send-community extended</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th><strong>Command or Action</strong></th>
<th><strong>Purpose</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`neighbor {ip-address</td>
<td>peer-group-name} suppress-signaling-protocol ldp`</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-router-af)# <code>neighbor 198.51.100.1 suppress-signaling-protocol ldp</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>exit-address-family</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-router-af)# exit-address-family</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exits address family configuration mode and returns to router configuration mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>Repeat steps 1 to 10 to configure and activate other BGP neighbors in an L2VPN address family.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>end</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device(config-router)# end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exits router configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td>show l2vpn vfi</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device# show l2vpn vfi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays information about the configured VFI instances.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong></td>
<td>show ip bgp l2vpn vpls {all [summary]</td>
<td>rd route-distinguisher}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Device# show ip bgp l2vpn vpls all summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Displays information about the L2VPN VPLS address family.</td>
<td></td>
</tr>
</tbody>
</table>
### Configuration Examples for L2VPN VPLS Inter-AS Option B

#### Example: VPLS BGP Signaling L2VPN Inter-AS Option B

The following example configuration describes Inter-AS Option B for VPLS BGP signaling in a Layer 2 VPN. BGP MPLS forwarding is required between ASBR 1 and ASBR 2.

From a BGP signaling perspective, there is no specific change within the autonomous system. From the VPLS perspective, there is EBGP peering between ASBR 1 and ASBR 2.

The following figure shows a network diagram for the BGP signaling Inter-AS option B BGP configuration:

**Figure 45: VPLS BGP Signaling L2VPN Inter-AS Option B Sample Topology**

The following example shows the PE 1 BGP configuration for Inter-AS Option B:

```
l2vpn vfi context TEST101
 vpn id 1
 autodiscovery bgp signaling bgp
```
Ve id 1
route-target import 22:22
route-target export 11:11
no auto-route-target

mpls ldp graceful-restart
!
bridge-domain 1
member GigabitEthernet0/0/7 service-instance 101
member vfi TEST101
!
interface Loopback0
ip address 198.51.101.2 255.255.255.255
!
interface GigabitEthernet0/0/1
description - connects to RR1
ip address 200.1.1.1 255.255.255.0
negotiation auto
mpls ip
!
interface GigabitEthernet0/0/7
description - connects to CE1
no ip address
negotiation auto
service instance 101 ethernet
encapsulation dot1q 101
 rewrite ingress tag pop 1 symmetric
!
!
router ospf 10
nsf
network 200.1.1.0 0.0.0.255 area 0
network 198.51.101.2 0.0.0.0 area 0
!
router bgp 10
bgp log-neighbor-changes
bgp update-delay 1
bgp graceful-restart restart-time 120
bgp graceful-restart stalepath-time 360
bgp graceful-restart
no bgp default ipv4-unicast
neighbor 200.1.1.1 remote-as 10
neighbor 200.1.1.1 update-source Loopback0
!
address-family ipv4
exit-address-family
!
address-family 12vpn vpls
neighbor 200.1.1.1 activate
neighbor 200.1.1.1 send-community extended
neighbor 200.1.1.1 suppress-signaling-protocol ldp
exit-address-family
!

The following example shows the ASBR 1 BGP configuration for Inter-AS Option B:

router bgp 10
bgp log-neighbor-changes
bgp update-delay 1
bgp graceful-restart restart-time 120
bgp graceful-restart stalepath-time 360
bgp graceful-restart
no bgp default ipv4-unicast
no bgp default route-target filter
neighbor 192.0.2.1 remote-as 10
neighbor 192.0.2.1 update-source Loopback0
neighbor 203.0.203.1 remote-as 20
neighbor 203.0.203.1 ebgp-multihop 255
neighbor 203.0.203.1 update-source Loopback0

address-family ipv4
  exit-address-family

address-family l2vpn vpls
  neighbor 192.0.2.1 activate
  neighbor 192.0.2.1 send-community extended
  neighbor 192.0.2.1 next-hop-self
  neighbor 192.0.2.1 suppress-signaling-protocol ldp
  neighbor 203.0.203.1 activate
  neighbor 203.0.203.1 send-community extended
  neighbor 203.0.203.1 next-hop-self
  neighbor 203.0.203.1 suppress-signaling-protocol ldp
  exit-address-family

The following example shows the ASBR 2 BGP configuration for Inter-AS Option B:

mpls ldp graceful-restart

interface Loopback0
  ip address 203.0.203.1 255.255.255.255

interface GigabitEthernet0/0/1
  description - connects to RR1
  ip address 192.0.2.2 255.255.255.0
  negotiation auto
  mpls ip
  mpls bgp forwarding

interface GigabitEthernet0/2/1
  description - connects to ASBR3
  ip address 192.0.2.200 255.255.255.0
  negotiation auto
  mpls ip
  mpls bgp forwarding

router ospf 10
  nsf
  network 192.0.2.0 0.0.0.255 area 0
  network 203.0.203.1 0.0.0.0 area 0
  network 0.0.0.0 255.255.255.255 area 0

router bgp 10
  bgp log-neighbor-changes
  bgp update-delay 1
  bgp graceful-restart restart-time 120
  bgp graceful-restart stalepath-time 360
  bgp graceful-restart
  no bgp default ipv4-unicast
  no bgp default route-target filter
  neighbor 203.0.203.3 remote-as 20
  neighbor 203.0.203.3 ebgp-multihop 255
  neighbor 203.0.203.3 update-source Loopback0
  neighbor 203.0.203.2 remote-as 10
  neighbor 203.0.203.2 update-source Loopback0

address-family ipv4
  exit-address-family

address-family l2vpn vpls
  neighbor 203.0.203.3 activate
  neighbor 203.0.203.3 activate

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
The following example shows the PE 2 BGP configuration for Inter-AS Option B:

```
neighbor 203.0.203.3 send-community extended
neighbor 203.0.203.3 next-hop-self
neighbor 203.0.203.3 suppress-signaling-protocol ldp
neighbor 203.0.203.2 activate
neighbor 203.0.203.2 send-community extended
neighbor 203.0.203.2 next-hop-self
neighbor 203.0.203.2 suppress-signaling-protocol ldp
exit-address-family

The following example shows the PE 2 BGP configuration for Inter-AS Option B:

l2vpn vfi context TEST101
vpn id 1
autodiscovery bgp signaling bgp
ve id 2
 route-target import 22:22
 route-target export 11:11
 no auto-route-target
! mpls ldp graceful-restart
!
bridge-domain 1
member GigabitEthernet0/0/7 service-instance 101
member vfi TEST101
!
interface Loopback0
 ip address 192.0.2.3 255.255.255.255
!
interface GigabitEthernet0/0/1
 description - connects to RR1
 ip address 192.0.2.1 255.255.255.0
 negotiation auto
 mpls ip
!
interface GigabitEthernet0/0/7
 description - connects to CE2
 no ip address
 negotiation auto
 service instance 101 ethernet
 encapsulation dot1q 101
 rewrite ingress tag pop 1 symmetric
!
!
router ospf 10
nsf
 network 192.0.2.0 0.0.0.255 area 0
 network 192.0.2.3 0.0.0.0 area 0
!
router bgp 10
 bgp log-neighbor-changes
 bgp update-delay 1
 bgp graceful-restart restart-time 120
 bgp graceful-restart stalepath-time 360
 bgp graceful-restart
 no bgp default ipv4-unicast
 neighbor 211.1.1.1 remote-as 10
 neighbor 211.1.1.1 update-source Loopback0
!
 address-family ipv4
 exit-address-family
!
 address-family l2vpn vpls
 neighbor 211.1.1.1 activate
 neighbor 211.1.1.1 send-community extended
```
neighbor 211.1.1.1 suppress-signaling-protocol ldp
exit-address-family

The following example shows the route reflector device BGP configuration for Inter-AS Option B:
mpls ldp graceful-restart
!
interface Loopback0
  ip address 203.0.203.1 255.255.255.255
!
interface GigabitEthernet1/1
  description - connects to PE1
  ip address 203.0.203.2 255.255.255.0
  mpls ip
!
interface GigabitEthernet1/2
  description - connects to PE2
  ip address 203.0.203.3 255.255.255.0
  mpls ip
!
interface GigabitEthernet1/5
  description - connects to ASBR1
  ip address 203.0.203.4 255.255.255.0
  mpls ip
  mpls bgp forwarding
!
interface GigabitEthernet1/6
  description - connects to ASBR2
  ip address 203.0.203.5 255.255.255.0
  mpls ip
  mpls bgp forwarding
!
router ospf 10
  nsf
  network 203.0.203.6 0.0.0.255 area 0
  network 203.0.203.7 0.0.0.255 area 0
  network 203.0.203.8 0.0.0.255 area 0
  network 203.0.203.9 0.0.0.255 area 0
!
router bgp 10
  bgp log-neighbor-changes
  bgp update-delay 1
  bgp graceful-restart restart-time 120
  bgp graceful-restart stalepath-time 360
  bgp graceful-restart
  no bgp default ipv4-unicast
  neighbor 203.0.203.11 remote-as 10
  neighbor 203.0.203.11 update-source Loopback0
  neighbor 203.0.203.12 remote-as 10
  neighbor 203.0.203.12 update-source Loopback0
  neighbor 203.0.203.13 remote-as 10
  neighbor 203.0.203.13 update-source Loopback0
  neighbor 203.0.203.14 remote-as 10
  neighbor 203.0.203.14 update-source Loopback0
!
  address-family ipv4
  exit-address-family
  !
  address-family l2vpn vpls
  neighbor 203.0.203.11 activate
  neighbor 203.0.203.11 send-community extended
  neighbor 203.0.203.11 route-reflector-client
  neighbor 203.0.203.11 suppress-signaling-protocol ldp
  neighbor 203.0.203.12 activate

Example: VPLS BGP Signaling L2VPN Inter-AS Option B

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
neighbor 203.0.203.12 send-community extended
neighbor 203.0.203.12 route-reflector-client
neighbor 203.0.203.12 suppress-signaling-protocol ldp
neighbor 203.0.203.13 activate
neighbor 203.0.203.13 send-community extended
neighbor 203.0.203.13 route-reflector-client
neighbor 203.0.203.13 suppress-signaling-protocol ldp
neighbor 203.0.203.14 activate
neighbor 203.0.203.14 send-community extended
neighbor 203.0.203.14 route-reflector-client
neighbor 203.0.203.14 suppress-signaling-protocol ldp
exit-address-family

Additional References for VPLS BGP Signaling L2VPN Inter-AS Option B

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>L2VPN VPLS Inter-AS Option B</td>
<td>L2VPN VPLS Inter-AS Option B</td>
</tr>
<tr>
<td>VPLS Autodiscovery: BGP Based</td>
<td>VPLS Autodiscovery BGP Based</td>
</tr>
<tr>
<td>VPLS BGP Signaling L2VPN Inter-AS Option A</td>
<td>VPLS BGP Signaling L2VPN Inter-AS Option A</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard and RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-kothari-l2vpn-auto-site-id-01.txt</td>
<td>Automatic Generation of Site IDs for Virtual Private LAN Service</td>
</tr>
<tr>
<td>draft-ietf-l2vpn-vpls-multihoming-03.txt</td>
<td>BGP based Multi-homing in Virtual Private LAN Service</td>
</tr>
<tr>
<td>RFC 6074</td>
<td>Provisioning, Auto-Discovery, and Signaling in Layer 2 Virtual Private Networks (L2VPNs)</td>
</tr>
<tr>
<td>RFC 4761</td>
<td>Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling</td>
</tr>
</tbody>
</table>

Additional References for VPLS BGP Signaling L2VPN Inter-AS Option B
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-IETF-PW-ATM-MIB (PW-ATM-MIB)</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
<tr>
<td>CISCO-IETF-PW-ENET-MIB (PW-ENET-MIB)</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-FR-MIB (PW-FR-MIB)</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-MIB (PW-MIB)</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-MPLS-MIB (PW-MPLS-MIB)</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for VPLS BGP Signaling L2VPN Inter-AS Option B

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 41: Feature Information for VPLS BGP Signaling L2VPN Inter-AS Option B

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLS BGP Signaling L2VPN Inter-AS Option B</td>
<td>Cisco IOS XE Release 3.12S</td>
<td>This feature simplifies the auto-discovery and signaling of all known provider edge (PE) devices in a VPLS instance by using BGP for both functions. The following command was modified: show mpls forwarding</td>
</tr>
</tbody>
</table>
CHAPTER 27

Frame Relay over L2TPv3

The Frame Relay over L2TPv3 (FRoL2TPv3) feature enables Frame Relay switching over Layer 2 Tunnel Protocol Version 3 (L2TPv3). The feature works with like interfaces and disparate interfaces (L2VPN interworking).

- Finding Feature Information, on page 657
- Prerequisites for Configuring Frame Relay over L2TPv3, on page 657
- Restrictions for Configuring Frame Relay over L2TPv3, on page 657
- Information About Configuring Frame Relay over L2TPv3, on page 658
- How to Configure Frame Relay over L2TPv3, on page 658
- Configuration Examples for Frame Relay over L2TPv3, on page 671
- Additional References for Frame Relay over L2TPv3, on page 672
- Feature Information for Frame Relay over L2TPv3, on page 673

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring Frame Relay over L2TPv3

Before configuring Frame Relay over L2TPv3, you should understand how to configure Layer 2 VPNs and Frame Relay. See the “Additional References” section in this chapter for pointers to the feature modules that explain how to configure and use Layer 2 VPNs and Frame Relay.

Restrictions for Configuring Frame Relay over L2TPv3

The following functionalities are not supported:

- Frame Relay to 802.1Q/QinQ VLAN interworking
Information About Configuring Frame Relay over L2TPv3

Frame Relay over L2TPv3 Overview

Frame Relay over L2TPv3 enables provider edge (PE) devices to forward Frame Relay frames to pseudowires based on the receiving interface and the Data-Link Connection Identifier (DLCI) number. PE devices also provide Local Management Interface (LMI)-based signaling to customer edge (CE) devices, emulating Frame Relay switches.

In Frame Relay over L2TPv3, the Frame Relay header is retained at the ingress PE device. The device does not reconstruct the Frame Relay header before forwarding packets to the CE device.

The figure below shows a Frame Relay over L2TPv3 topology.

Frame Relay over L2TPv3 supports the following functionalities:

- Frame Relay data-link connection identifier (DLCI)-to-Frame Relay DLCI
- Frame Relay DLCI-to-Ethernet port / 802.1Q / QinQ bridged interworking
- Local Management Interface (LMI)
- L2TPv3 sequencing
- L2TPv3 tunnel marking

How to Configure Frame Relay over L2TPv3

Configuring Frame Relay over L2TPv3 without LMI

This section explains how to configure Frame Relay over L2TPv3 without enabling Local Management Interface (LMI).
On CE1

The CE1 device receives the Frame Relay frames forwarded by the PE1 device over the Frame Relay link. On CE1, configure an interface and a DLCI number based on which the PE1 device forwards traffic to the appropriate pseudowire.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `no ip address [ip-address mask] [secondary]`
5. `encapsulation frame-relay [cisco | ietf]`
6. `no keepalive`
7. `frame-relay intf-type dce`
8. `exit`
9. `interface type number point-to-point`
10. `ip address ip-address mask`
11. `frame-relay interface-dlci dlci`
12. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  * Enter your password if prompted. |
| **Example:** | |
| Device> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Device# configure terminal | |
| **Step 3** interface type number | Specifies a serial interface and enters interface configuration mode. |
| **Example:** | |
| Device(config)# interface serial3/1/0 | |
| **Step 4** no ip address [ip-address mask] [secondary] | Disables IP processing. |
| **Example:** | |
| Device(config-if)# no ip address | |
| **Step 5** encapsulation frame-relay [cisco | ietf] | Specifies Frame Relay encapsulation for the interface.  
  * You can specify different types of encapsulations.  
  * You can set one interface to Cisco encapsulation and the other interface to IETF encapsulation. |
<p>| <strong>Example:</strong> | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-if)# encapsulation frame-relay ietf</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>no keepalive</td>
<td>Disables the keepalive configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# no keepalive</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td>frame-relay intf-type dce</td>
<td>Specifies that the interface is a DCE switch.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>• You can also specify the interface to support Network-to-Network Interface (NNI) and DTE connections.</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# frame-relay intf-type dce</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td></td>
</tr>
<tr>
<td>interface type number point-to-point</td>
<td>Specifies a serial interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface serial 3/1/0.1 point-to-point</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td></td>
</tr>
<tr>
<td>ip address ip-address mask</td>
<td>Sets a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# ip address 198.51.100.2 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td></td>
</tr>
<tr>
<td>frame-relay interface-dlci dlci</td>
<td>Assigns a data-link connection identifier (DLCI) to the Frame Relay interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# frame-relay interface-dlci 25</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>After configuring CE1, you can configure CE2 in a similar manner.</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

**On PE1**

The PE1 device forwards Frame Relay frames to the appropriate pseudowire, based on the receiving interface and DLCI number configured on the CE1 device.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. no ip address [ip-address mask] [secondary]
5. encapsulation frame-relay [cisco | ietf]
6. no keepalive
7. pseudowire-class [pw-class-name]
8. encapsulation l2tpv3
9. ip local interface loopback loopback id
10. connect connection-name interface dce i2transport
11. xconnect peer-router-id veid encapsulation l2tpv3 pw-class l2tpv3
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies a serial interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface serial3/1/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> no ip address [ip-address mask] [secondary]</td>
<td>Disables IP processing.</td>
</tr>
<tr>
<td>Example: Device(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> encapsulation frame-relay [cisco</td>
<td>ietf]</td>
</tr>
<tr>
<td>Example: Device(config-if)# encapsulation frame-relay ietf</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> no keepalive</td>
<td>Disables the keepalive configuration.</td>
</tr>
<tr>
<td>Example: Device(config-if)# no keepalive</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>pseudowire-class [pw-class-name]</td>
</tr>
<tr>
<td>Device(config)# pseudowire-class l2tpv3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>encapsulation l2tpv3</td>
</tr>
<tr>
<td>Device(config-pw)# encapsulation l2tpv3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>ip local interface loopback loopback id</td>
</tr>
<tr>
<td>Device(config-pw)# ip local interface Loopback0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>connect connection-name interface dlci l2transport</td>
</tr>
<tr>
<td>Device(config)# connect fr1 serial5/0 1000 l2transport</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td>xconnect peer-router-id vcid encapsulation l2tpv3 pw-class l2tpv3</td>
</tr>
<tr>
<td>Device(config-xconnect-conn-config)# xconnect 198.51.100.2 123 encapsulation l2tpv3 pw-class l2tpv3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td>end</td>
</tr>
<tr>
<td>Device(config-xconnect-conn-config)# end</td>
<td>After configuring PE1, you can configure PE2 in a similar manner.</td>
</tr>
</tbody>
</table>

**Configuring Frame Relay over L2TPv3 with LMI**

This section explains how to configure Frame Relay over L2TPv3 with Local Management Interface (LMI) enabled.
On CE1

The CE1 device receives the Frame Relay frames forwarded by the PE1 device over the Frame Relay link. On CE1, configure an interface and a DLCI number based on which the PE1 device forwards traffic to the appropriate pseudowire. Local Management Interface (LMI) is also tunneled over the pseudowire. Therefore, you need to properly configure the customer edge (CE) device for LMI.

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **interface serial slot/subslot/port [. subinterface]**
4. **no ip address [ip-address mask] [secondary]**
5. **encapsulation frame-relay [cisco | ietf]**
6. **frame-relay intf-type dce**
7. **end**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface serial slot/subslot/port [. subinterface]</td>
<td>Specifies a serial interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# interface serial3/1/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> no ip address [ip-address mask] [secondary]</td>
<td>Disables IP processing.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> encapsulation frame-relay [cisco</td>
<td>ietf]</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# encapsulation frame-relay ietf</td>
<td>• You can specify different types of encapsulations.</td>
</tr>
<tr>
<td></td>
<td>• You can set one interface to Cisco encapsulation and the other interface to IETF encapsulation.</td>
</tr>
<tr>
<td><strong>Step 6</strong> frame-relay intf-type dce</td>
<td>Specifies that the interface is a Data Communications Equipment (DCE) switch.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>Device(config-if)# frame-relay intf-type dce</code></td>
<td><strong>Purpose</strong>&lt;br&gt;• You can also specify the interface to support Network-to-Network Interface (NNI) and Data Transmission Equipment (DTE) connections.</td>
</tr>
</tbody>
</table>

**Step 7**

**Example:**

```
Device(config-if)# end
```

Exits interface configuration mode and returns to privileged EXEC mode.<br>After configuring CE1, you can configure CE2 in a similar manner.

---

### On PE1

The PE1 device forwards Frame Relay frames to the CE1 device over the Frame Relay link. The PE1 device also provides Local Management Interface (LMI) signaling to the CE1 device.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface serial slot/subslot/port [subinterface]`
4. `encapsulation frame-relay [cisco | ietf]`
5. `pseudowire-class [pw-class-name]`
6. `encapsulation l2tpv3`
7. `ip local interface loopback loopback id`
8. `connect connection-name interface dlci l2transport`
9. `xconnect peer-router-id vcid encapsulation l2tpv3 pw-class l2tpv3`
10. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
**Example:**
```
Device> enable
```
| Enables privileged EXEC mode. |
| • Enter your password if prompted. |

| **Step 2**
**Example:**
```
Device# configure terminal
```
| Enters global configuration mode. |

| **Step 3**
**Example:**
```
Device(config)# interface serial slot/subslot/port [subinterface]
```
| Specifies a serial interface and enters interface configuration mode. |

| **Step 4**
**Example:**
```
Device(config)# interface serial 13/1/0
```
<p>| Specifies Frame Relay encapsulation for the interface. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong> Device(config-if)# encapsulation frame-relay ietf</td>
<td>- You can specify different types of encapsulations. - You can set one interface to Cisco encapsulation and the other interface to IETF encapsulation.</td>
</tr>
<tr>
<td><strong>Step 5</strong> pseudowire-class <em>[pw-class-name]</em></td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# pseudowire-class l2tpv3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> encapsulation l2tpv3</td>
<td>Specifies the tunneling encapsulation as L2TPv3.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pw)# encapsulation l2tpv3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> ip local interface loopback loopback id</td>
<td>Specifies the local loopback interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-pw)# ip local interface Loopback0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> connect connection-name interface dlci l2transport</td>
<td>Defines connections between Frame Relay Permanent Virtual Circuits (PVCs) and enters connect configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# connect fr1 serial5/0 1000 l2transport</td>
<td>- Using the l2transport keyword specifies that the PVC is not a locally switched PVC, but is tunneled over the backbone network. - The connection-name argument is a text string that you provide. - The interface argument is the interface on which a PVC connection is defined. - The dlci argument is the DLCI number of the PVC that is connected.</td>
</tr>
<tr>
<td><strong>Step 9</strong> xconnect peer-router-id vcid encapsulation l2tpv3 pw-class l2tpv3</td>
<td>Creates the virtual circuit (VC) to transport the Layer 2 packets.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-fr-pw-switching)# xconnect 198.51.100.2 123 encapsulation l2tpv3 pw-class l2tpv3</td>
<td>- In a DLCI-to-DLCI connection type, Frame Relay over L2TPv3 uses the xconnect command in connect configuration mode.</td>
</tr>
<tr>
<td><strong>Step 10</strong> end</td>
<td>Exits connect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-fr-pw-switching)# end</td>
<td>After configuring PE1, you can configure PE2 in a similar manner.</td>
</tr>
</tbody>
</table>
Configuring Frame Relay L2TPv3 Tunnel Marking

L2TPv3 Tunnel Marking introduces the capability to define and control the quality of service (QoS) for incoming customer traffic on the provider edge (PE) device in a service provider network.

SUMMARY STEPS

1. enable
2. configure terminal
3. class-map class-name
4. match fr-dlci dlci-number
5. policy-map dlci dlci-number
6. class class-name
7. set ip precedence tunnel precedence-value
8. interface serial slot/subslot/port [ subinterface]
9. no ip address [ip-address mask] [secondary]
10. encapsulation frame-relay [cisco | ietf]
11. no keepalive
12. service-policy input policy-name
13. end
14. pseudowire-class [pw-class-name]
15. encapsulation l2tpv3
16. ip local interface loopback loopback id
17. connect connection-name interface dlci l2transport
18. xconnect peer-router-id vcid encapsulation l2tpv3 pw-class l2tpv3
19. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 class-map class-name</td>
<td>Specifies the user-defined name of the traffic class and enters class map configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# class-map class1</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Step 4**  
**Command or Action:** `match fr-dlci dlci-number`  
**Example:**  
```bash  
Device(config-cmap)# match fr-dlci 50
```

Specifies the number of the Data-Link Connection Identifier (DLCI) associated with the packet as a match criterion in the class map.

**Step 5**  
**Command or Action:** `policy-map dlci dlci-number`  
**Example:**  
```bash  
Device(config-cmap)# policy-map dlci 50
```

Specifies the type of policy map as DLCI and enters policy map configuration mode.

**Step 6**  
**Command or Action:** `class class-name`  
**Example:**  
```bash  
Device(config-pmap)# class class1
```

Specifies the name of a predefined traffic class, which was configured with the `class-map` command, used to classify traffic to the traffic policy and enters policy-map class configuration mode.

**Step 7**  
**Command or Action:** `set ip precedence tunnel precedence-value`  
**Example:**  
```bash  
Device(config-pmap-c)# set ip precedence tunnel 2
```

Sets the precedence value in the header of the L2TPv3 tunneled packet for tunnel marking.

**Step 8**  
**Command or Action:** `interface serial slot/subslot/port [ . subinterface]`  
**Example:**  
```bash  
Device(config-pmap-c)# interface serial 3/1/0
```

Specifies a serial interface and enters interface configuration mode.

**Step 9**  
**Command or Action:** `no ip address [ip-address mask] [secondary]`  
**Example:**  
```bash  
Device(config-if)# no ip address
```

Disables IP processing.

**Step 10**  
**Command or Action:** `encapsulation frame-relay [cisco | ietf]`  
**Example:**  
```bash  
Device(config-if)# encapsulation frame-relay ietf
```

Specifies Frame Relay encapsulation for the interface.  
- You can specify different types of encapsulations.  
- You can set one interface to Cisco encapsulation and the other interface to IETF encapsulation.

**Step 11**  
**Command or Action:** `no keepalive`  
**Example:**  
```bash  
Device(config-if)# no keepalive
```

Disables the keepalive configuration.

**Step 12**  
**Command or Action:** `service-policy input policy-name`  
**Example:**  
```bash  
Device(config-if)# service-policy input policy1
```

Attaches a traffic policy to the interface.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td><code>end</code></td>
<td>Exits connect configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>14</td>
<td><code>pseudowire-class [pw-class-name]</code></td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>15</td>
<td><code>encapsulation l2tpv3</code></td>
<td>Specifies the tunneling encapsulation as L2TPv3.</td>
</tr>
<tr>
<td>16</td>
<td><code>ip local interface loopback loopback id</code></td>
<td>Specifies the local loopback interface.</td>
</tr>
<tr>
<td>17</td>
<td><code>connect connection-name interface dlci l2transport</code></td>
<td>Defines connections between Frame Relay Permanent Virtual Circuits (PVCs) and enters connect configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Using the <code>l2transport</code> keyword specifies that the PVC is not a locally switched PVC, but is tunneled over the backbone network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>connection-name</code> argument is a text string that you provide.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>interface</code> argument is the interface on which a PVC connection is defined.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>dlci</code> argument is the DLCI number of the PVC that is connected.</td>
</tr>
<tr>
<td>18</td>
<td><code>xconnect peer-router-id vcid encapsulation l2tpv3 pw-class l2tpv3</code></td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In a DLCI-to-DLCI connection type, Frame Relay over L2TPv3 uses the <code>xconnect</code> command in connect configuration mode.</td>
</tr>
<tr>
<td>19</td>
<td><code>end</code></td>
<td>Exits connect configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Verifying Frame Relay over L2TPv3 Configuration

You can use `show` commands to view information about a Frame Relay over L2TPv3 configuration.

**SUMMARY STEPS**

1. `show xconnect all detail`
2. `show frame-relay pvc`
3. `show connection`

**DETAILED STEPS**

**Step 1**

`show xconnect all detail`

The following example is sample output of the `show xconnect all detail` command:

```
Device# show xconnect all detail
Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
 UP=Up DN=Down AD=Admin Down IA=Inactive
 SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2 S2
-------------------------+-------------------------+-------------------------
UP pri ac Se0/2/0:0:16(FR DLCI) UP l2tp 22.2.2.2:100 UP
 Interworking: L2L
 Session ID: 306532470
 Tunnel ID: 1381396806
 Protocol State: UP
 Remote Circuit State: UP
 pw-class: fr_fr

UP pri ac Se0/2/0:0:17(FR DLCI) UP l2tp 22.2.2.2:101 UP
 Interworking: Eth
 Session ID: 1373339282
 Tunnel ID: 1381396806
 Protocol State: UP
 Remote Circuit State: UP
 pw-class: fr_eth
```

**Step 2**

`show frame-relay pvc`

The following example is sample output of the `show frame-relay pvc` command:

```
Device# show frame-relay pvc
pseudowire100001 is up, VC status is up PW type: Ethernet
Create time: 5d20h, last status change time: 5d20h
 Last label FSM state change time: 5d20h
 Destination address: 2.1.1.2 VC ID: 1234000
 Output interface: Et0/0, imposed label stack {2001}
 Preferred path: not configured
 Default path: active
 Next hop: 20.0.0.2
Member of xconnect service Et1/0.1-1001, group right
 Associated member Et1/0.1 is up, status is up
 Interworking type is Ethernet
 Service id: 0x6d000002
 Signaling protocol: LDP, peer 2.1.1.2:0 up
```
Targeted Hello: 1.1.1.1(LDP Id) -> 2.1.1.2, LDP is UP
Graceful restart: not configured and not enabled
Non stop routing: not configured and not enabled
PWid FEC (128), VC ID: 1234000
Status TLV support (local/remote) : enabled/supported
LDP route watch : enabled
Label/status state machine : established, LruRru
Local dataplane status received : No fault
BFD dataplane status received : Not sent
BFD peer monitor status received : No fault
Status received from access circuit : No fault
Status sent to access circuit : No fault
Status received from pseudowire i/f : No fault
Status sent to network peer : No fault
Status received from network peer : No fault
Adjacent status of remote peer : No fault
Sequencing: receive disabled, send disabled

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>2007</td>
<td>2001</td>
</tr>
<tr>
<td>Group ID</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTU</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Control word</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>Configured: autose: on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td>Ethernet</td>
<td></td>
</tr>
<tr>
<td>Ethernet</td>
<td>Ethernet</td>
<td></td>
</tr>
<tr>
<td>VCCV CV type</td>
<td>0x12</td>
<td>0x12</td>
</tr>
<tr>
<td>Status TLV</td>
<td>enabled</td>
<td>supported</td>
</tr>
</tbody>
</table>

Dataplane:
SSM segment/switch IDs: 12309/4115 (used), PWID: 1
Rx Counters
106563 input transit packets, 9803650 bytes
0 drops, 0 seq err
Tx Counters
0 output transit packets, 0 bytes
0 drops

Step 3
show connection

The following example is sample output of the show connection command:

Example:

Device# show connection

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Segment 1</th>
<th>Segment 2</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>fr_fr</td>
<td>Se0/2/0:0 16</td>
<td>22.2.2.2 100</td>
<td>UP</td>
</tr>
<tr>
<td>2</td>
<td>fr_eth</td>
<td>Se0/2/0:0 17</td>
<td>22.2.2.2 101</td>
<td>UP</td>
</tr>
</tbody>
</table>

Verifying Frame Relay over L2TPv3 Configuration

Verifying Frame Relay over L2TPv3 Configuration
Configuration Examples for Frame Relay over L2TPv3

Example: Frame Relay over L2TPv3 with LMI

The following example shows how to configure Frame Relay over L2TPv3 with Local Management Interface (LMI) enabled:

<table>
<thead>
<tr>
<th>PE1 device</th>
<th>CE1 device</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal interface Serial 0/2/0:0 no ip address encapsulation frame-relay ! keepalive 15 frame-relay lmi-type cisco</td>
<td>configure terminal interface Serial 1/0:0 no ip address encapsulation frame-relay frame-relay intf-type dce ! keepalive 15 frame-relay lmi-type cisco interface Serial 1/0:0.100 point-to-point ip address 198.51.100.33 255.255.255.0 frame-relay interface-dlci 16</td>
</tr>
</tbody>
</table>

Examples: Frame Relay over L2TPv3 without LMI

The following example shows how to configure Frame Relay DLCI-to-Frame Relay DLCI over L2TPv3 without Local Management Interface (LMI) enabled:

<table>
<thead>
<tr>
<th>PE1 device</th>
<th>CE1 device</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal interface Serial 0/1/0 encapsulation frame-relay ! pseudowire-class fr_l2tpv3 encapsulation l2tpv3 ip local interface Loopback0 ! connect FR Serial 0/1/0 100 l2transport xconnect 198.51.100.2 100 encapsulation l2tpv3 pw-class fr_l2tpv3</td>
<td>configure terminal interface Serial 0/0/0 encapsulation frame-relay exit ! interface Serial 0/0/0.100 point-to-point ip address 198.51.100.22 255.255.255.0 frame-relay interface-dlci 100</td>
</tr>
</tbody>
</table>

The following example shows how to configure Frame Relay DLCI-to-Ethernet Interworking over L2TPv3 without LMI enabled:
<table>
<thead>
<tr>
<th>PE1 device</th>
<th>CE1 device</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>configure terminal</td>
</tr>
<tr>
<td>pseudowire-class fr_eth</td>
<td>interface Serial 0/0/0.500 point-to-point</td>
</tr>
<tr>
<td>encapsulation l2tpv3</td>
<td>frame-relay interface-dlci 500</td>
</tr>
<tr>
<td>interworking ethernet</td>
<td>! frame-relay interface-dlci 500</td>
</tr>
<tr>
<td>ip local interface Loopback0</td>
<td>! interface BVI 200</td>
</tr>
<tr>
<td>! connect FR-Eth Serial 0/1/0 500 12transport</td>
<td>ip address 198.51.100.29 255.255.255.0</td>
</tr>
<tr>
<td>xconnect 198.51.100.27 500 encapsulation l2tpv3</td>
<td></td>
</tr>
<tr>
<td>pw-class fr_eth</td>
<td></td>
</tr>
</tbody>
</table>

### Additional References for Frame Relay over L2TPv3

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Configuring Frame Relay over MPLS</td>
<td>Configuring Frame Relay over MPLS</td>
</tr>
<tr>
<td>MPLS Layer 2 VPNs Configuration Guide</td>
<td>MPLS Layer 2 VPNs Configuration Guide</td>
</tr>
</tbody>
</table>

#### Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2427</td>
<td>Multiprotocol Interconnect over Frame Relay</td>
</tr>
<tr>
<td>RFC 4591</td>
<td>Frame Relay over Layer 2 Tunneling Protocol Version 3 (L2TPv3)</td>
</tr>
</tbody>
</table>

#### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco Frame Relay MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases,</td>
</tr>
<tr>
<td>(CISCO-FRAME-RELAY-MIB.my)</td>
<td>feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td>• Interfaces MIB (IF-MIB.my)</td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
Feature Information for Frame Relay over L2TPv3

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 42: Feature Information for Frame Relay over L2TPv3

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Relay over L2TPv3</td>
<td>Cisco IOS XE Release 3.12S</td>
<td>This feature enables Frame Relay switching over Layer 2 Tunnel Protocol Version 3 (L2TPv3). The feature works with like interfaces and disparate interfaces (L2VPN interworking).</td>
</tr>
</tbody>
</table>
Feature Information for Frame Relay over L2TPv3
CHAPTER 28

Loop-Free Alternate Fast Reroute with L2VPN

The Loop-Free Alternate (LFA) Fast Reroute (FRR) with Layer 2 Virtual Private Network (L2VPN) feature minimizes packet loss due to link or node failure.

• Finding Feature Information, on page 675
• Restrictions for Loop-Free Alternate Fast Reroute with L2VPN, on page 675
• Information About Loop-Free Alternate Fast Reroute with L2VPN, on page 676
• How to Configure Loop-Free Alternate Fast Reroute with L2VPN, on page 676
• Configuration Examples for Loop-Free Alternate Fast Reroute with L2VPN, on page 677
• Additional References, on page 684
• Feature Information for Loop-Free Alternate Fast Reroute with L2VPN, on page 684

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Loop-Free Alternate Fast Reroute with L2VPN

• Load balancing is not supported
• Time-division multiplexing (TDM) pseudowire is not supported
• Virtual Private LAN Services (VPLS) is not supported
• The Virtual Private Wire Services (VPWS) scale number might change
Information About Loop-Free Alternate Fast Reroute with L2VPN

L2VPN Over Loop-Free Alternate Fast Reroute

The Loop-Free Alternate (LFA) Fast Reroute (FRR) feature offers an alternative to the MPLS Traffic Engineering Fast Reroute feature to minimize packet loss due to link or node failure. It introduces LFA FRR support for L2VPNs and Virtual Private Wire Services (VPWS), providing the following benefits:

- Same level of protection from traffic loss
- Simplified configuration
- Link and node protection
- Link and path protection
- LFA (loop-free alternate) paths
- Support for both IP and Label Distribution Protocol (LDP) core

LFA FRR enables a backup route to avoid traffic loss if a network fails. The backup routes (repair paths) are precomputed and installed in the router as the backup for the primary paths. After the router detects a link or adjacent node failure, it switches to the backup path to avoid traffic loss.

How to Configure Loop-Free Alternate Fast Reroute with L2VPN

To enable loop-free alternate fast reroute support for L2VPNs and VPWS, you must configure LFA FRR for the routing protocol. No additional configuration tasks are necessary. See one of the following documents, depending on the routing protocol:

- IS-IS Remote Loop-Free Alternate Fast Reroute in the IP Routing: ISIS Configuration Guide
- OSPFv2 Loop-Free Alternate Fast Reroute in the IP Routing: OSPF Configuration Guide
- OSPF IPv4 Remote Loop-Free Alternate IP Fast Reroute in the IP Routing: OSPF Configuration Guide

Verifying Loop-Free Alternate Fast Reroute with L2VPN

Use one or more of the following commands to verify the LFA FRR configuration:

**SUMMARY STEPS**

1. `show ip cef network-prefix internal`
2. `show mpls infrastructure lfd pseudowire internal`
3. `show platform hardware pp active feature cef database ipv4 network-prefix`
DETAILED STEPS

Step 1  show ip cef *network-prefix* internal  
Example:  
show ip cef 16.16.16.16 internal  
Displays entries in the Cisco Express Forwarding (CEF) Forwarding Information Base (FIB).

Step 2  show mpls infrastructure lfd pseudowire internal  
Example:  
show mpls infrastructure lfd pseudowire internal  
Displays information about the Label Forwarding Database (LFD) and pseudowires.

Step 3  show platform hardware pp active feature cef database ipv4 *network-prefix*  
Example:  
show platform hardware pp active feature cef database ipv4 16.16.16.16/32  
Displays information about the CEF database.

Configuration Examples for Loop-Free Alternate Fast Reroute with L2VPN

Example: Verifying LFA FRR with L2VPN

show ip cef internal

The following example shows the configuration of LFA FRR for OSPF:

```
router ospf 1
router-id 17.17.17.17
fast-reroute per-prefix enable prefix-priority low
network 3.3.3.0 0.0.0.255 area 1
network 6.6.6.0 0.0.0.255 area 1
network 7.7.7.0 0.0.0.255 area 1
network 17.17.17.17 0.0.0.0 area 1
```

show ip cef internal

The following is sample output from the show ip cef internal command:

```
Device# show ip cef 16.16.16.16 internal
16.16.16.16/32, epoch 2, RIB[I], refcount 7, per-destination sharing
sources: RIB, RR, LTE
feature space:
IPRM: 0x00028000
Broker: linked, distributed at 1st priority
```
LFD: 16.16.16.16/32 1 local label
    local label info: global/17
    contains path extension list
    disposition chain 0x3A3C1DF0
    label switch chain 0x3A3C1DF0
subblocks:
    1 RR source [no flags]
    non-eos chain [16|44]
ifnums:
    GigabitEthernet0/0/2(9): 7.7.7.2
    GigabitEthernet0/0/7(14): 7.7.17.9
path 35D61070, path list 3A388FA8, share 1/1, type attached nexthop, for IPv4, flags has-repair
    MPLS short path extensions: MDT flags = 0x20 label 16
    nexthop 7.7.7.2 GigabitEthernet0/0/2 label [16|44], adjacency IP adj out of
    GigabitEthernet0/0/2, addr 7.7.7.2 35E88520
    repair: attached-nexthop 7.7.17.9 GigabitEthernet0/0/7 (35D610E0)
    path 35D610E0, path list 3A388FA8, share 1/1, type attached nexthop, for IPv4, flags repair, repair-only
    nexthop 7.7.17.9 GigabitEthernet0/0/7, repair, adjacency IP adj out of GigabitEthernet0/0/7,
    addr 7.7.17.9 3A48A4E0
    output chain: label [16|44]
    FRR Primary (0x35D10F60)
    <primary: TAG adj out of GigabitEthernet0/0/2, addr 7.7.7.2 35E88380>
    <repair: TAG adj out of GigabitEthernet0/0/7, addr 7.7.17.9 3A48A340>
Rudy17#show mpls infrastructure lfd pseudowire internal
PW ID: 1VC ID: 4, Nexthop address: 16.16.16.16
SSM Class: SSS HW
Segment Count: 1
VCCV Types Supported: cw ra ttl
Imposition details:
    Label stack {22 16}, Output interface: Gi0/0/2
    Preferred path: not configured
    Control Word: enabled, Sequencing: disabled
    FIB Non IP entry: 0x35D6CEEC
    Output chain: AToM Imp (locks 4) label 22 label [16|44]
    FRR Primary (0x35D10F60)
    <primary: TAG adj out of GigabitEthernet0/0/2, addr 7.7.7.2 35E88380>
Disposition details:
    Local label: 16
    Control Word: enabled, Sequencing: disabled
    SSS Switch: 3976200193
    Output chain: mpls_eos{ connid router-alert AToM Disp (locks 5)/ drop)

show mpls infrastructure lfd pseudowire internal

The following is sample output from the show mpls infrastructure lfd pseudowire internal command:

Device# show mpls infrastructure lfd pseudowire internal
PW ID: 1VC ID: 4, Nexthop address: 16.16.16.16
SSM Class: SSS HW
Segment Count: 1
VCCV Types Supported: cw ra ttl
Imposition details:
    Label stack {22 16}, Output interface: Gi0/0/2
    Preferred path: not configured
    Control Word: enabled, Sequencing: disabled
    FIB Non IP entry: 0x35D6CEEC
    Output chain: AToM Imp (locks 4) label 22 label [16|44]
    FRR Primary (0x35D10F60)
    <primary: TAG adj out of GigabitEthernet0/0/2, addr 7.7.7.2 35E88380>
show platform hardware pp active feature cef database

The following is sample output from the `show platform hardware pp active feature cef database` command:

```
Device# show platform hardware pp active feature cef database ipv4 16.16.16.16/32
--- CEF Prefix ---
16.16.16.16/32 -- next hop: UEA Label OCE (PI:0x104abee0, PD:0x10e6b9c8)
 Route Flags: (0)
 Handles (PI:0x104ab6e0) (PD:0x10e68140)

 HW Info:
 TCAM handle: 0x00000023f TCAM index: 0x00000000d
 FID index : 0x0000f804 EAID : 0x00000088a
 MET : 0x0000400c FID Count : 0x00000000

--- Label OCE ---
 Label flags: 4
 Num Labels: 1
 Num Bk Labels: 1
 Out Labels: 16
 Out Backup Labels: 44
 Next OCE Type: Fast ReRoute OCE; Next OCE handle: 0x10e6f428

--- FRR OCE ---
 FRR type : IP FRR
 FRR state : Primary
 Primary IF's gid : 3
 Primary FID : 0x0000f801
 FIFC entries : 32
 PPO handle : 0x00000000
 Next OCE : Adjacency (0x10e63b38)
 Bkup OCE : Adjacency (0x10e6e590)

--- Adjacency OCE ---
 Adj State: COMPLETE(0) Address: 7.7.7.2
 Interface: GigabitEthernet0/0/2 Protocol: TAG
 mtu:1500, flags:0x0, fixups:0x0, encap_len:14
 Handles (adj_id:0x00000000) (PI:0x1041d4b0) (PD:0x10e6e590)

 HW Info:
 FID index: 0x0000f486 EL3 index: 0x00001003 EL2 index: 0x00000000
 El2RW : 0x000000107 MET index: 0x00004000c EAID : 0x000008060
 HW ADJ FLAGS: 0x40
 Hardware MAC Rewrite Str: d0:c2:82:17:8a:82:08:00:40:00:0d:02

--- Adjacency OCE ---
 Adj State: COMPLETE(0) Address: 7.7.17.9
 Interface: GigabitEthernet0/0/7 Protocol: TAG
 mtu:1500, flags:0x0, fixups:0x0, encap_len:14
 Handles (adj_id:0x00000000) (PI:0x104acbd0) (PD:0x10e6e590)

 HW Info:
 FID index: 0x0000f49d EL3 index: 0x00001008 EL2 index: 0x00000000
```
Loop-Free Alternate Fast Reroute with L2VPN

Example: Configuring Remote LFA FRR with VPLS

Example: Configuration of Remote LFA FRR with Interior Gateway Protocol (IGP)

```
router isis hp
net 49.0101.0000.0000.0802.00
is-type level-2-only
ispf level-2
metric-style wide
fast-flood
set-overload-bit on-startup 180
max-lsp-lifetime 65535
lsp-refresh-interval 65000
spf-interval 5 50 200
prc-interval 5 50 200
lsp-gen-interval 5 5 200
no hello padding
log-adjacency-changes
nsf cisco
fast-reroute per-prefix level-1 all
fast-reroute per-prefix level-2 all
fast-reroute remote-lfa level-1 mpls-ldp
fast-reroute remote-lfa level-2 mpls-ldp
passive-interface Loopback0
mpls ldp sync
mpls traffic-eng router-id Loopback0
mpls traffic-eng level-2
```

Example: Configuration of Remote LFA FRR with VPLS at the interface level.

```
interface GigabitEthernet0/3/3
ip address 198.51.100.1 255.255.255.0
ip router isis hp
logging event link-status
load-interval 30
negotiation auto
mpls ip
mpls traffic-eng tunnels
isis network point-to-point
end
```

Example: Configuration of remote LFA FRR with VPLS at the global level.

```
l2 vfi Test-2000 manual
vpn id 2010
bridge-domain 2010
neighbor 192.0.2.1 encapsulation mpls
```
Example: Configuration of remote LFA FRR with VPLS at Access side.

! interface TenGigabitEthernet0/2/0
  no ip address
  service instance trunk 1 ethernet
  encapsulation dot1q 12-2012
  rewrite ingress tag pop 1 symmetric
  bridge-domain from-encapsulation

Example: Verifying Remote LFA FRR with VPLS

show ip cef internal

The following is sample output from the show ip cef internal command:

Router# show ip cef 198.51.100.2/32 internal

198.51.100.2/32, epoch 2, RIB[1], refcount 7, per-destination sharing
  sources: RIB, RR, LTE
  feature space:
    IPRM: 0x00028000
    Broker: linked, distributed at 1st priority
    LFD: 198.51.100.2/32 1 local label
    local label info: global/2033
      contains path extension list
      disposition chain 0x46764E68
      label switch chain 0x46764E68
    subblocks:
      1 RR source [heavily shared]
      non-eos chain [explicit-null|70]
  ifnums:
    TenGigabitEthernet0/1/0(15): 192.0.2.10
    MPLS-Remote-Lfa2(46)
  path 44CE1290, path list 433CF8C0, share 1/1, type attached nexthop, for IPv4, flags
    has-repair
      MPLS short path extensions: M2I flags = 0x21 label explicit-null
      nexthop 192.0.2.10 TenGigabitEthernet0/1/0 label [explicit-null|70], adjacency IP adj out
      of TenGigabitEthernet0/1/0, addr 192.0.2.10 404B3960
      repair: attached-nexthop 192.0.2.1 MPLS-Remote-Lfa2 (44CE1300)
        path 44CE1300, path list 433CF8C0, share 1/1, type attached nexthop, for IPv4, flags
        repair, repair-only
          nexthop 192.0.2.1 MPLS-Remote-Lfa2, repair, adjacency IP midchain out of MPLS-Remote-Lfa2
          404B3B00
          output chain: label [explicit-null|70]
          FRR Primary (0x3E25CA00)
            <primary: TAG adj out of TenGigabitEthernet0/1/0, addr 192.168.101.22 404B3CA0>
            <repair: TAG midchain out of MPLS-Remote-Lfa2 404B37C0 label 37 TAG adj out of
              GigabitEthernet0/3/3, addr 192.0.2.14 461B2F20>

show ip cef detail

The following is sample output from the show ip cef detail command:

Router# show ip cef 198.51.100.2/32 detail

198.51.100.2/32, epoch 2
show platform hardware pp active feature cef database

The following is sample output from the `show platform hardware pp active feature cef database` command:

```
Router# show platform hardware pp active feature cef database ipv4 198.51.100.2/32

--- CEF Prefix ---
198.51.100.2/32 -- next hop: UEA Label OCE (PI:0x10936770, PD:0x12dd1cd8)
 Route Flags: (0)
 Handles (PI:0x109099c8) (PD:0x12945968)

 HW Info:
 TCAM handle: 0x00000266 TCAM index: 0x00000000
 FID index : 0x000008e7f EAID : 0x000010d7c
 MET : 0x0000401c FID Count : 0x00000000

--- Label OCE ---
 Label flags: 4
 Num labels: 1
 Num Bk Labels: 1
 Out Labels: 0
 Out Backup Labels: 70

--- FRR OCE ---
 FRR type : IP FRR
 FRR state : Primary
 Primary IF's gid : 52
 FIFC entries : 0, 0
 PPO handle : 0x00000000
 Next OCE : Adjacency (0x130e0df0)
 Bkup OCE : Adjacency (0x130de608)

--- Adjacency OCE ---
 Adj State: COMPLETE(0) Address: 192.168.101.22
 Interface: TenGigabitEthernet0/1/0 Protocol: TAG
 mtu:1500, flags:0x0, fixups:0x0, encap_len:14
 Handles (adj_id:0x0000016ac) (PI:0x1090c1c10) (PD:0x130e0df0)

 HW Info:
 FID index: 0x000008e7e EL3 index: 0x00001034 EL2 index: 0x00000000
 El2RInner : 0x00000100d MET index: 0x000004012 EAID : 0x00001d7c1
 HW Adj Flags: 0x40
 Hardware MAC Rewrite Str: 18:33:9d:3d:83:10:08:00:40:00:0d:10

--- Adjacency OCE ---
 Adj State: COMPLETE(0) Address: 0
 mtu:17940, flags:0x40, fixups:0x0, encap_len:0
 Handles (adj_id:0xf80000028) (PI:0x10da2150) (PD:0x130de608)
 Rewrite Str:

 HW Info:
 FID index: 0x000008ca8 EL3 index: 0x0000101c EL2 index: 0x00000000
 El2RInner : 0x000000003 MET index: 0x000004024 EAID : 0x00001d7cb
 HW Adj Flags: 0x40
```
Hardware MAC Rewrite Str: 00:00:00:00:00:00:00:00:00:00:00:00

--- Label OCE ---
Label flags: 4
Num Labels: 1
Num Bk Labels: 1
Out Labels: 37
Out Backup Labels: 37
Next OCE Type: Adjacency; Next OCE handle: 0x12943a00

--- Adjacency OCE ---
Adj State: COMPLETE(0) Address: 30.1.1.1
Interface: GigabitEthernet0/3/3 Protocol: TAG
mtu:1500, flags:0x0, fixups:0x0, encap_len:14
Handles (adj_id:0x0000378e) (PI:0x10909738) (PD:0x12943a00)

HW Info:
  FID index: 0x00008c78 EL3 index: 0x0000101c EL2 index: 0x00000000
  El2RW : 0x00000109 MET index: 0x0000400e EAID : 0x0001cf4b
  HW ADJ FLAGS: 0x40
  Hardware MAC Rewrite Str: c8:f9:f9:8d:01:b3:08:00:40:00:0d:33

show mpls l2transport detail

The following is sample output from the show mpls l2transport detail command:

Router# show mpls l2transport vc 2000 detail

Local interface: VFI Test-1990 vfi up
Interworking type is Ethernet
Destination address: 192.0.2.1, VC ID: 2000, VC status: up
  Output interface: Te0/1/0, imposed label stack (0 2217)
  Preferred path: not configured
  Default path: active
  Next hop: 192.51.100.22
Create time: 1d08h, last status change time: 1d08h
Last label FSM state change time: 1d08h
Signaling protocol: LDP, peer 192.0.51.1:0 up
  Targeted Hello: 192.51.100.2(LDP Id) -> 192.51.100.200, LDP is UP
Graceful restart: configured and enabled
Non stop routing: not configured and not enabled
Status TLV support (local/remote) : enabled/supported
  LDP route watch : enabled
  Label/status state machine : established, LruRru
Last local dataplane status rcvd: No fault
Last local bfd dataplane status rcvd: No fault
Last local bfd peer monitor status rcvd: No fault
Last local ac circuit status rcvd: No fault
Last local pw i/f circ status rcvd: No fault
Last local ldp tlv status sent: No fault
Last remote ldp tlv status rcvd: No fault
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Loop-Free Alternate Fast Reroute with L2VPN

Table 43: Feature Information for Loop-Free Alternate Fast Reroute with L2VPN

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop-Free Alternate Fast Reroute with L2VPN</td>
<td>15.3(2)S</td>
<td>This feature introduces loop-free alternate (LFA) fast reroute (FRR) support for Layer 2 VPN (L2VPN) and Virtual Private Wire Services (VPWS) to minimize packet loss due to link or node failure.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 3.9S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 3.10 S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No commands were introduced or modified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.9S, support was added for the Cisco ASR 903 Router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.10S, Remote LFA FRR is supported on ATM (IMA) and TDM pseudowires for the Cisco ASR 903 Router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.10S, Remote LFA FRR is supported over VPLS for Cisco ASR 903 Router.</td>
</tr>
</tbody>
</table>
CHAPTER 29

EVPN Single-Homing

The EVPN Single-Homing feature utilizes the functionality defined in RFC 7432 (BGP MPLS-based Ethernet VPN), to achieve single-homing between a Provider Edge (PE) and a Customer Edge (CE) device.

- Information about EVPN Single-Homing, on page 685
- Prerequisites for EVPN Single-Homing, on page 689
- Restrictions for EVPN Single-Homing, on page 689
- How to Configure EVPN Single Homing, on page 690
- Configuration Examples for EVPN Single-Homing, on page 693
- Additional References for EVPN Single-Homing, on page 698
- Feature Information for EVPN Single-Homing, on page 698

Information about EVPN Single-Homing

Ethernet Multipoint Connectivity

To achieve Ethernet multipoint connectivity, MPLS deployments traditionally rely on Virtual Private LAN Services (VPLS). A VPLS service is built with a full-mesh of pseudowires between PE devices which are part of a Layer 2 broadcast domain. A VPLS PE device performs data-plane MAC learning. For MAC learning, the VPLS PE device uses local interfaces for traffic coming from the access network and uses pseudowires for the traffic coming from the core network.

EVPN Multipoint Solution

EVPN is the next generation of multipoint L2VPN solution that aligns operation principles of L3VPN with Ethernet services. Instead of relying solely on data plane for MAC Address learning, EVPN PE devices signal and learn MAC addresses over the core network using BGP, while still using data plane MAC-learning on the access side. Providers can configure BGP as a common VPN control plane for their ethernet offerings and leverage the advantages of Layer 3 VPN over VPLS. In Cisco IOS XE Fuji 16.8.1, only Single Homing functionality is supported from the feature set defined in RFC 7432.

EVPN Building Blocks

There are three fundamental building blocks for EVPN technology, EVPN Instance (EVI), Ethernet Segment (ES), EVPN BGP routes and extended communities:
• EVI is a VPN connection on a PE router. It is the equivalent of IP VPN Routing and Forwarding (VRF) in Layer 3 VPN. It is also known as MAC-VRF.

• ES is a connection with a customer site (device or network) and is associated with access-facing interfaces. They are assigned a unique ID that is referred to as Ethernet Segment Identifier (ESI). A site can be connected to one or more PEs. The ES connection has the same ESI in each of the PEs connected to the site.

• RFC7432 defines four new routes and four new extended communities to enable EPVN support. In Cisco IOS XE Fuji 16.8.x Software Release, Route Type 2 and Route Type 3 are supported.

In BGP MPLS-based EVPN, an EVI is configured for every PE device for each customer associated with the PE device. An example of a customer is the Customer Edge device that is attached to the PE device. Each EVI has a unique Route Distinguisher (RD) and one or more Route Targets (RT). The CE device can be a host, a switch or a router.

For EVPN Single-Homing feature, a CE device is attached to a single PE device and has an Ethernet Segment with ESI=0.

### Service Interfaces

The following types of EVPN VLAN service interfaces:

**VLAN-based Service Interface**

In VLAN-based service interface, each VLAN is associated to one bridge domain and one EVI.

*Figure 47: VLAN-Based Service Interface*

For VLAN-based Service Interface, Type 1 Route Distinguisher, a unique number used to distinguish identical routes in different VRFs, is used for EVIs as recommended by the RFC 7432. The Route Distinguishers and Router Targets, which are used to share routes between different VRFs, are autogenerated to ensure unique Route Distinguisher numbers across EVIs.

**VLAN Bundle Service Interface**

In VLAN Bundle Service Interface, multiple VLANs share the same bridge table.
Each EVPN instance corresponds to multiple broadcast domains maintained in a single bridge table per MAC-VRF. For VLAN Bundle Service Interface service to work, MAC addresses must be unique across all VLANs for an EVI.

**VLAN-Aware Bundle Service Interface**

For VLAN-aware Bundle Service Interface, each VLAN is associated with one bridge domain, but there can be multiple bridge domains associated with one EVI.

An EVPN instance consists of multiple broadcast domains where each VLAN has one bridge table. Multiple bridge tables (one per VLAN) are maintained by a single MAC-VRF that corresponds to the EVPN instance.

**Route Types**

For EVPN Single homing feature, Route Type 2 and Route Type 3 are supported, as defined by RFC 7432.

**Route Type 2 - MAC and IP Advertisement Route**

Type 2 Routes are used to advertise MAC addresses and their associated IP addresses. When a PE router learns the MAC address of a CE device that is connected to it locally, or a MAC address of a device behind the CE device, a MAC and IP advertisement route is created.

Following is the header format for the MAC and IP Advertisement Route packet:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Length (Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Type</td>
<td>0x02</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>Variable</td>
<td>1</td>
</tr>
<tr>
<td>EVI RD</td>
<td>Type 1 (IPv4 address) RD unique across all EVIs on the PE.</td>
<td>8</td>
</tr>
<tr>
<td>ESI</td>
<td>Ethernet Segment Identifier</td>
<td>10</td>
</tr>
<tr>
<td>Ethernet Tag</td>
<td>0 or valid Ethernet Tag</td>
<td>4</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
<td>Length (Octets)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>MAC Addr Len</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Valid MAC address</td>
<td>6</td>
</tr>
<tr>
<td>IP Addr Length</td>
<td>IP address length in bits: 0 or 32 or 128</td>
<td>1</td>
</tr>
<tr>
<td>IP Address</td>
<td>Optional IP address</td>
<td>0 or 4 or 16</td>
</tr>
<tr>
<td>Label1</td>
<td>Valid downstream assigned label to perform forwarding to CE based on the destination MAC address</td>
<td>3</td>
</tr>
<tr>
<td>Label2</td>
<td>Specifies a second label</td>
<td>0-3</td>
</tr>
<tr>
<td>EVI RT</td>
<td>Type 0 (2byte AS) route target</td>
<td>8</td>
</tr>
<tr>
<td>MAC Mobility</td>
<td>0x0600:{1 byte Sticky bit}:0x00:{4 byte sequence number}</td>
<td>8</td>
</tr>
</tbody>
</table>

- MAC Address field is populated with the CE address.
- IP address field is optional with IP Address length set to 0 bits.
- For EVPN Single-Homing feature, ESI value is always set to Zero.
- In the Label field, Per-BD or Per-CE labels can be assigned.
  - Per-BD is used when PE advertises a single label for all MAC addresses learned in a given bridge domain.
  - Per-CE label assigns a separate label to each access port in the bridge domain.

**Route Type 3 - Inclusive Multicast Ethernet Tag Route**

Type 3 routes are used for transporting Broadcast, Unknown Unicast and Multicast (BUM) traffic to other PE devices across a given EVPN network instance.

The following is the header format for Type 3 routes:

**Table 45: Route Type 3 - Inclusive Multicast Ethernet Tag Route Header**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Length (Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Type</td>
<td>0x03</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>26 or 38</td>
<td>1</td>
</tr>
<tr>
<td>EVI RD</td>
<td>Type 1 (IPv4Addr) RD unique across all EVIs on the PE.</td>
<td>8</td>
</tr>
<tr>
<td>Ethernet Tag</td>
<td>0 or valid Ethernet Tag</td>
<td>4</td>
</tr>
</tbody>
</table>
### Prerequisites for EVPN Single-Homing

- EVI and Bridge domains must be in established state with associated MPLS labels.

### Restrictions for EVPN Single-Homing

- Route Type 1 and Route Type 4 are not supported.
- Per-EVI-based labelling is not supported.
- The number of bridge domains that are supported are 16000.
- The number of EFPs or service instances that are supported per physical interface are 8000.
- Stateful Switchover is not supported.
- Single-Homing feature is not supported with port channel interface between Provider Edge and Customer Edge devices.
- MAC mobility with duplicate MAC detection is not supported.

---

**Table: Field, Value, and Length (Octets)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Length (Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Addr Length</td>
<td>IP Address Length - 32 bits or 128 bits</td>
<td>1</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP Address common for all EVIs (for example, loopback address)</td>
<td>4 or 16</td>
</tr>
<tr>
<td>PMSI Tunnel Attr</td>
<td>{1 byte flags = 0}: {1 byte Tunnel Type}: {3 byte label}: {variable length Tunnel Identifier}</td>
<td>Variable</td>
</tr>
<tr>
<td>EVI RT</td>
<td>Type 0 (2 byte AS) route target</td>
<td>8</td>
</tr>
</tbody>
</table>

The PE devices advertise an Inclusive Multicast Ethernet Tag (IMET) Route for every EVI-Ethernet Tag sequence. The Ethernet Tag is set to 0 for VLAN-based and VLAN-bundling service interfaces. The Ethernet Tag is set to a valid VLAN ID for VLAN-aware bundling service interface.

Type 3 route also carries a Provider Multicast Service Interface (PMSI) Tunnel attribute as specified in RFC 6514 (BGP Encodings and Procedures for MVPNs).

For Ingress Replication, the IMET route is used to advertise the label (in the PMSI Tunnel Attribute) that the other PEs can use to send BUM traffic to the originating PE device.
How to Configure EVPN Single Homing

Configuring EVPN

The above figure represents a simple EVPN network. Use the following steps to configure EVPN:

**EVPN Configuration**

```plaintext
enable
configure terminal
l2vpn evpn
 replication-type ingress
 router-id Loopback1
 mpls label mode per-ce

l2vpn evpn instance 10 vlan-based
 route-distinguisher 1.1.1.1:10
 route-target both 10:10
 no auto-route-target

member evpn-instance 10
 member GigabitEthernet 0/0/1 service-instance 10

member GigabitEthernet 0/0/1 service-instance 10
 no ip address
 service instance 10 ethernet
 encapsulation dot1q 200
 !
```
Configuring L2VPN EVPN Globally and EVI on IOS-XE Router

l2vpn evpn
replication-type ingress —> Enables ingress replication label

l2vpn evpn instance 10 vlan-based —> Configures Vlan-based EVI 10

l2vpn evpn instance 20 vlan-bundle —> Configures Vlan-bundled EVI 20

l2vpn evpn instance 30 vlan-aware —> Configures Vlan-aware EVI 30

Configuring Bridge Domains on IOS-XE Router

bridge-domain 10
mac aging-time 30
member GigabitEthernet6 service-instance 10 —> Links SI 10 on interface with Bridge-domain 10
member evpn-instance 10 —> Links EVI 10 with Bridge-domain 10

bridge-domain 20
mac aging-time 30
member GigabitEthernet6 service-instance 20 —> Links SI 20 on interface with Bridge-domain 20
member evpn-instance 20 —> Links EVI 20 with Bridge-domain 20

bridge-domain 30
mac aging-time 30
member GigabitEthernet6 service-instance 30 ethernet-tag 30 —> Links SI 30 on interface with Bridge-domain 30
member evpn-instance 30 ethernet-tag 30 —> Links EVI 30 with Bridge-domain 30

Configuring Access Interface on a Provider Edge

interface GigabitEthernet6
no ip address
negotiation auto
service instance 10 ethernet —> Enables service instance 10 under the physical interface
encapsulation dot1q 10

service instance 20 ethernet —> Enables service instance 20 under the physical interface
encapsulation dot1q 20-21

service instance 30 ethernet —> Enables service instance 30 under the physical interface
encapsulation dot1q 30

Configuring EVPN Single-Homing

Use the following steps to configure EVPN Single-Homing:

Configuring BGP on Provider Edge Device, PE1

enable
configure terminal
Configuring BGP on Route Reflector

```
router bgp 100
 bgp router-id 10.1.1.1
 bgp log-neighbor-changes
 bgp graceful-restart
 neighbor 10.1.1.1 remote-as 100
 neighbor 10.3.3.3 remote-as 100
 neighbor 10.7.7.7 remote-as 100
 neighbor 10.2.2.2 remote-as 100
 neighbor 10.2.2.2 update-source Loopback0
!
address-family ipv4
 neighbor 10.2.2.2 activate
 neighbor 10.2.2.2 send-community both
 neighbor 10.2.2.2 soft-reconfiguration inbound
exit-address-family
!
address-family l2vpn evpn ----> Enables L2VPN EVPN address family
 neighbor 10.2.2.2 activate
 neighbor 10.2.2.2 send-community both
 neighbor 10.2.2.2 soft-reconfiguration inbound
exit-address-family
```

Configuring Customer Edge and Provider Edge Interfaces

**CE1 configuration**

```
interface GigabitEthernet6.10
 encapsulation dot1Q 10
 ip address 203.0.113.1 255.255.255.240
interface GigabitEthernet6.20
 encapsulation dot1Q 20
 ip address 203.0.113.17 255.255.255.240
```
interface GigabitEthernet6.30
  encapsulation dot1Q 30
  ip address 203.0.113.33 255.255.255.240

PE1 Configuration

interface GigabitEthernet6
  no ip address
  negotiation auto
  service instance 10 ethernet
  encapsulation dot1Q 10
  !
  service instance 20 ethernet
  encapsulation dot1Q 20-21
  !
  service instance 30 ethernet
  encapsulation dot1Q 30

Configuration Examples for EVPN Single-Homing

Use the following command to verify that EVI and Bridge domains are in established state and to display associated MPLS labels:

```
show 12vpn evpn evi detail
```

EVPN instance: 10 (VLAN Based) ----> VLAN Based EVI
  RD: 10.1.1.1:10 (auto) ----> RD derived from Loopback0 of PE1
  Import-RTs: 100:10
  Export-RTs: 100:10
  Per-EVI Label: none
  State: Established ----> EVI state
  Encapsulation: mpls
  Bridge Domain: 10
  Ethernet-Tag: 0
  BUM Label: 23 ----> Broadcast/Unknown unicast/Multicast traffic label
  Per-BD Label: 22
  State: Established ----> Bridge-domain state
  Pseudoports:
    GigabitEthernet6 service instance 10 ----> Local interface part of bridge-domain
    GigabitEthernet7 service instance 10 ----> Local interface part of bridge-domain

EVPN instance: 20 (VLAN Bundle) ----> VLAN Bundled EVI
  RD: 10.1.1.1:20 (auto)
  Import-RTs: 100:20
  Export-RTs: 100:20
  Per-EVI Label: none
  State: Established
  Encapsulation: mpls
  Bridge Domain: 20
  Ethernet-Tag: 0
  BUM Label: 20
  Per-BD Label: 21
  State: Established
  Pseudoports:
    GigabitEthernet6 service instance 20
    GigabitEthernet7 service instance 20

EVPN instance: 30 (VLAN Aware) ----> VLAN-Aware EVI
  RD: 10.1.1.1:30 (auto)
  Import-RTs: 100:30
  Export-RTs: 100:30
Per-EVI Label: none
State: Established
Encapsulation: mpls
Bridge Domain: 30
Ethernet-Tag: 30
BUM Label: 18
Per-BD Label: 19
State: Established
Pseudoports:
  GigabitEthernet6 service instance 30
  GigabitEthernet7 service instance 30

Use the following command to verify that bridge domain has learnt the local MAC address:

PE1# show bridge-domain 10
Bridge-domain 10 (3 ports in all)
State: UP  Mac learning: Enabled
Aging-Timer: 30 second(s) ----> MAC aging timer for bridge-domain
  GigabitEthernet6 service instance 10
  GigabitEthernet7 service instance 10
EVPN Instance 10
AED MAC address  Policy  Tag  Age  Pseudoport
  - 000C.29B0.3E16  forward  static_r  0  OCE_PTR:0xe8eb04a0 ----> Remotely learnt MAC
  - 000C.29AF.F904  forward  dynamic_c 29  GigabitEthernet6.EFP10 ----> MAC locally learnt
  - 000C.2993.130E  forward  dynamic_c 26  GigabitEthernet7.EFP10
  - 000C.29EE.EC0D  forward  static_r  0  OCE_PTR:0xe8eb0500

In the above output, MAC addresses with forward dynamic_c tags are locally learned addresses and MAC addresses with forward static_r tags are remote addresses learned through EVPN.

Use the following command to verify that EVPN manager has received the local MACs learned by the bridge domain:

PE1# show 12vpn evpn mac
MAC Address  EVI  BD  ESI  Ether Tag  Next Hop
-----------------  ----  ----  -------------  ------------------
000c.2993.130e  10  10  0000.0000.0000.0000.0000  0  Gi7:10
000c.29af.f904  10  10  0000.0000.0000.0000.0000  0  Gi6:10
000c.29b0.3e16  10  10  0000.0000.0000.0000.0000  0  10.7.7.7
000c.29ee.ec0d  10  10  0000.0000.0000.0000.0000  0  10.3.3.3

PE1# show 12vpn evpn mac detail
MAC Address: 000c.2993.130e
EVPN Instance: 10
Bridge Domain: 10
Ethernet Segment: 0000.0000.0000.0000.0000
Ethernet Tag ID: 0
Next Hop(s): GigabitEthernet7 service instance 10
Label: 22
Sequence Number: 0
MAC only present: Yes
MAC Duplication Detection: Timer not running

MAC Address: 000c.29ee.ec0d
EVPN Instance: 10
Bridge Domain: 10
Ethernet Segment: 0000.0000.0000.0000.0000
In the above output, the next hop address of the remote MAC is the address of the provider edge device, if it is learnt remotely or the local interface if MAC address is learnt locally.

Use the following command to verify that Layer 2 Routing Information Base (RIB) has the required the MAC info:

```
PE1# show l2vpn l2route evpn mac
```

<table>
<thead>
<tr>
<th>EVI</th>
<th>ETag</th>
<th>Prod</th>
<th>Mac Address</th>
<th>Next Hop(s)</th>
<th>Seq Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>L2VPN</td>
<td>000c.2993.130E</td>
<td>Gi7:10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>L2VPN</td>
<td>000c.29af.F904</td>
<td>Gi6:10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>BGP</td>
<td>000c.29b0.3e16</td>
<td>L:19 IP:10.7.7.7</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>BGP</td>
<td>000c.29ee.ec0d</td>
<td>L:19 IP:10.3.3.3</td>
<td>0</td>
</tr>
</tbody>
</table>

Remote MACs are learnt through BGP. In the above command output, the producer is BGP and local MACs are learned through Layer 2 VPN.

Use the following command to verify that Layer 2 FIB has received the MAC information from Layer 2 RIB, and bridge-domain and MFI are configured.

```
PE1# show l2fib bridge-domain 10 detail
```

- Flood List Information:
  - Olist: Id 9225, Port Count 4

- Port Information:
  - Serv Inst: Gi6:10
  - Serv Inst: Gi7:10
  - EVVPN MPLS Encap: pathlist 107
  - EVVPN MPLS Encap: pathlist 101

- Unicast Address table information:
  - Mac: 000c.2993.130e, Adjacency: Serv Inst: Gi7:10
  - Mac: 000c.29af.f904, Adjacency: Serv Inst: Gi6:10
  - Mac: 000c.29b0.3e16, Adjacency: EVVPN MPLS Encap: pathlist 98
  - Mac: 000c.29ee.ec0d, Adjacency: EVVPN MPLS Encap: pathlist 104

- IP Multicast Prefix table information:
  - Source: *, Group: 224.0.0.0/4, IIF: , Adjacency: Olist: 9226, Ports: 0
  - Source: *, Group: 224.0.0.0/24, IIF: , Adjacency: Olist: 9225, Ports: 4
Use the following command to verify that the information on BGP route type 3 is sent to L2RIB:

```
PE1# show l2vpn l2route evpn imet
```

<table>
<thead>
<tr>
<th>EVI</th>
<th>ETAG</th>
<th>Prod</th>
<th>Router IP Addr</th>
<th>Type</th>
<th>Label</th>
<th>Tunnel ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>BGP</td>
<td>10.3.3.3</td>
<td>6</td>
<td>18</td>
<td>10.3.3.3</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>BGP</td>
<td>10.7.7.7</td>
<td>6</td>
<td>18</td>
<td>10.7.7.7</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>L2VPN</td>
<td>10.1.1.1</td>
<td>6</td>
<td>23</td>
<td>10.1.1.1</td>
</tr>
</tbody>
</table>

Use the following command to verify MPLS forwarding:

```
PE1# show mpls forwarding-table
```

<table>
<thead>
<tr>
<th>Local</th>
<th>Outgoing Prefix</th>
<th>Bytes</th>
<th>Label</th>
<th>Outgoing Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>No Label evpn(mc:bd 30)</td>
<td>305042</td>
<td>none</td>
<td>point2point</td>
</tr>
<tr>
<td>19</td>
<td>No Label evpn(uc:bd 30)</td>
<td>7664</td>
<td>none</td>
<td>point2point</td>
</tr>
<tr>
<td>20</td>
<td>No Label evpn(mc:bd 20)</td>
<td>542588</td>
<td>none</td>
<td>point2point</td>
</tr>
<tr>
<td>21</td>
<td>No Label evpn(uc:bd 20)</td>
<td>13786</td>
<td>none</td>
<td>point2point</td>
</tr>
<tr>
<td>22</td>
<td>No Label evpn(uc:bd 10)</td>
<td>6638</td>
<td>none</td>
<td>point2point</td>
</tr>
<tr>
<td>23</td>
<td>No Label evpn(mc:bd 10)</td>
<td>277740</td>
<td>none</td>
<td>point2point</td>
</tr>
<tr>
<td>24</td>
<td>Pop Label 192.0.2.2-A</td>
<td>0</td>
<td>Gi1</td>
<td>192.0.2.2</td>
</tr>
<tr>
<td>25</td>
<td>Pop Label 192.0.2.2-A</td>
<td>0</td>
<td>Gi1</td>
<td>192.0.2.2</td>
</tr>
</tbody>
</table>

```
PE1# show ip bgp l2vpn evpn route-type 2
```

BGP routing table entry for [2][10.1.1.1:10][0][48][000C2993130E][0][*]/20, version 43
Paths: (1 available, best #1, table evi_10)
  Advertised to update-groups:
  2
  Refresh Epoch 1
Local :: (via default) from 0.0.0.0 (10.1.1.1)
  Origin incomplete, localpref 100, weight 32768, valid, sourced, local, best
  EVPNI ESI: 00000000000000000000000000000000, Label2 22
  Extended Community: RT:100:10
  rx pathid: 0, tx pathid: 0x0
BGP routing table entry for [2][10.1.1.1:10][0][48][000C29B03E16][0][*]/20, version 116
Paths: (1 available, best #1, table evi_10)
  Not advertised to any peer
Refresh Epoch 3
Local, (received & used), imported path from [2][10.7.7:10][0][48][000C29B03E16][0][*]/20 (global)
  10.7.7.7 (metric 30) (via default) from 10.2.2.2 (10.2.2.2)
  Origin incomplete, metric 0, localpref 100, valid, internal, best
  EVPNI ESI: 00000000000000000000000000000000, Label1 19
  Extended Community: RT:100:10
  Originator: 10.7.7.7, Cluster list: 10.2.2.2
  rx pathid: 0, tx pathid: 0x0
BGP routing table entry for [2][10.1.1.1:10][0][48][000C29B03E16][0][*]/20, version 116
Paths: (1 available, best #1, table evi_10)
  Not advertised to any peer
Refresh Epoch 3
Local, (received & used), imported path from [2][10.7.7:10][0][48][000C29B03E16][0][*]/20 (global)
  10.7.7.7 (metric 30) (via default) from 10.2.2.2 (10.2.2.2)
  Origin incomplete, metric 0, localpref 100, valid, internal, best
EVPN ESI: 00000000000000000000, Label1 19
Extended Community: RT:100:10
Originator: 10.7.7.7, Cluster list: 10.2.2.2
rx pathid: 0, tx pathid: 0x0

BGP routing table entry for [2][10.1.1.1:10][0][48][000C29EEEC0D][0][*/20, version 134
Paths: (1 available, best #1, table evi_10)
Not advertised to any peer
Refresh Epoch 3
Local, (received & used), imported path from [2][10.3.3.3:10][0][48][000C29EEEC0D][0][*/20
(global)
10.3.3.3 (metric 30) (via default) from 10.2.2.2 (10.2.2.2)
Origin incomplete, metric 0, localpref 100, valid, internal, best
EVPN ESI: 00000000000000000000, Label1 19
Extended Community: RT:100:10
Originator: 10.3.3.3, Cluster list: 10.2.2.2
rx pathid: 0, tx pathid: 0x0

PE1# show ip bgp l2vpn evpn route-type 3
BGP routing table entry for [3][10.1.1.1:10][0][32][10.1.1.1]/17, version 41
Paths: (1 available, best #1, table evi_10)
Advertised to update-groups:
2
Refresh Epoch 1
Local
:: (via default) from 0.0.0.0 (10.1.1.1)
Origin incomplete, localpref 100, weight 32768, valid, sourced, local, best
Extended Community: RT:100:10
PMSI Attribute: for EVPN, Flags: 0x0, Tunnel type: 6, length 4, label: 23 (vni 368)
tunnel parameters: 0101 0101
rx pathid: 0, tx pathid: 0x0

BGP routing table entry for [3][10.1.1.1:10][0][32][10.3.3.3]/17, version 137
Paths: (1 available, best #1, table evi_10)
Not advertised to any peer
Refresh Epoch 3
Local, (received & used), imported path from [3][10.3.3.3:10][0][32][10.3.3.3]/17 (global)
10.3.3.3 (metric 30) (via default) from 10.2.2.2 (10.2.2.2)
Origin incomplete, metric 0, localpref 100, valid, internal, best
Extended Community: RT:100:10
Originator: 10.3.3.3, Cluster list: 10.2.2.2
PMSI Attribute: for EVPN, Flags: 0x0, Tunnel type: 6, length 4, label: 18 (vni 288)
tunnel parameters: 0303 0303
rx pathid: 0, tx pathid: 0x0

BGP routing table entry for [3][10.1.1.1:10][0][32][10.7.7.7]/17, version 122
Paths: (1 available, best #1, table evi_10)
Not advertised to any peer
Refresh Epoch 3
Local, (received & used), imported path from [3][10.7.7.7:10][0][32][10.7.7.7]/17 (global)
10.7.7.7 (metric 30) (via default) from 10.2.2.2 (10.2.2.2)
Origin incomplete, metric 0, localpref 100, valid, internal, best
Extended Community: RT:100:10
Originator: 10.7.7.7, Cluster list: 10.2.2.2
PMSI Attribute: for EVPN, Flags: 0x0, Tunnel type: 6, length 4, label: 18 (vni 288)
tunnel parameters: 0707 0707
rx pathid: 0, tx pathid: 0x0
Additional References for EVPN Single-Homing

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 7432</td>
<td>BGP MPLS-Based Ethernet VPN</td>
</tr>
</tbody>
</table>

Feature Information for EVPN Single-Homing

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVPN Single-Homing</td>
<td>Cisco IOS XE Fuji 16.8.x</td>
<td>The EVPN Single-Homing feature utilizes the BGP MPLS-based Ethernet VPN (EVPN) functionality to achieve single-homing between a Provider Edge and a Customer Edge device. The following command was introduced or modified: address-family l2vpn, l2vpn evpn, member (bridge-domain), show ip bgp l2vpn evpn, show l2vpn evpn, show l2vpn l2route</td>
</tr>
</tbody>
</table>
EVPN Multihoming

The EVPN Multihoming feature utilizes the functionality defined in RFC 7432 (BGP MPLS-based Ethernet VPN) to achieve multihoming between Provider Edge (PE) and Customer Edge (CE) devices.

• Information about EVPN Multihoming, on page 699
• Prerequisites for EVPN Multihoming, on page 705
• Restrictions for EVPN Multihoming, on page 706
• How to Configure EVPN Multihoming, on page 706
• Configuration Examples for EVPN Multihoming, on page 709
• Additional References for EVPN Multihoming, on page 715
• Feature Information for EVPN Multihoming, on page 716

Information about EVPN Multihoming

BGP MPLS-based EVPN

Ethernet VPN (EVPN) is an evolution of the L2VPN VPLS solution that addresses the following requirements:

• PE node redundancy with load-balancing based on Layer 2, Layer 3, or Layer 4 flows from CE to PE.
• Flow-based multi-pathing of traffic from local PE to remote PEs across core and vice-versa.
• Geographically redundant PE nodes with optimum unicast forwarding.
• Flexible redundancy grouping, where a PE can be a member of multiple redundancy groups each containing a different set of CEs.

There are three fundamental building blocks for EVPN technology - EVPN Instance (EVI), Ethernet Segment (ES), and EVPN BGP routes and extended communities. For more information, refer to EVPN Building Blocks section.

In BGP MPLS-based EVPN, an EVI is configured for every PE device for each customer associated with the PE device. An example of a customer is the CE device that is attached to the PE device. Each EVI has a unique Route Distinguisher (RD) and one or more Route Targets (RT). The CE device can be a host, a switch or a router.
For any port involved in a multihoming CE configuration, an ESI must be defined and associated with it. In Cisco IOS XE Fuji 16.9.x software release, only type 3 ESI is supported as defined in section 5 of RFC7432. Type 3 ESI consists of PE System MAC address and local discriminator.

In EVPN multihoming, a customer site is connected to multiple PE devices and can have an Ethernet Segment with ESI value greater than one.

RFC7432 defines four new routes and four new extended communities to enable EPVN support. From Cisco IOS XE Fuji 16.9.x Software Release, all four route types are supported.

**EVPN Multihoming Topology**

The following figure shows a typical deployment involving two CE devices, where each CE device connects to multiple PE devices, to mitigate any single-point failures:

*Figure 51: EVPN Multihoming Topology*

- CE1 uses a port channel consisting of links, L11 and L12, to connect to PE1 and PE2, respectively.
- CE2 uses a port channel consisting of links L21 and L22, to connect to PE1 and PE2, respectively.
- On PE1 and PE2, ESI-1 is used to identify Ethernet Flow Points (EFPs) corresponding to links from P1, and ESI-2 is used to identify EFPs corresponding to links from P2.

*Note* Since CE1 and CE2 are port channels, each port channel can support flow-based load balancing for traffic egress towards PE1 and PE2.

*Note* For each PE, ESI is a property associated to a port.
**All-Active Multihoming**

EVPN Multihoming access gateway enables redundant network connectivity by allowing a CE device to connect to more than one PE device. Disruptions to the network connectivity are prevented by allowing a CE device to be connected to a PE device or several PE devices through multihoming. Ethernet segment is the group of ethernet links through which a CE device is connected to more than one PE devices. The All-Active Link Aggregation Group (LAG) bundle operates as an ethernet segment.

In all-active multihoming scenario, when multihop is configured to the same destination, the access side device load balances traffic on the access side and the PEs load balance traffic to remote PEs on the core side.

**Route Types**

RFC7432 introduces four new BGP route types (1–4) and communities.

- In EVPN multihoming scenarios, route types 1 and 4 are advertised to discover other PEs and their redundancy modes.
- Route type 2 is used for MAC learning. EVPN introduces the concept of BGP MAC routing and uses Multiprotocol-BGP (mBGP) for learning the MAC addresses between the PEs.

**Route Type 1 - Ethernet Auto-Discovery Route**

The route type value for EAD routes is 0x01. This route is originated when a PE is connected to a CE for which multihoming is configured. Two types of EAD routes are supported in this feature: Per-EVI (EVPN Instance) EAD routes and Per-ES (Ethernet Segment) EAD Routes.

Route Type-1 advertisement is used for achieving split-horizon, fast convergence, and aliasing. EAD-ES and EAD-EVI are used to achieve these functionalities. Fast convergence allows PEs to change the next-hop adjacencies for all MACs associated with an ES and aliasing allows balancing traffic across multiple egress points. Route Type 1 is advertised only if ES is set to a non-zero value, that is, type 1 routes are originated only for sites where multihoming is configured. These routes are sent per-ES and carry the combined set of route targets of all of the EVIs that belong to that ES. The per-ES EAD route includes the ESI label extended community which indicates if it is an all-active or a single-active configuration. The ESI label extended community also carries the ESI label that is used for split horizon configuration. The per-ES EAD route is also used for fast convergence when failure occurs at the ES on the access side.

The per-EVI EAD and per-ES EAD routes are used for aliasing, and fast convergence and providing the split horizon label, respectively. In a multihoming group, each PE associated with a CE may learn only a subset of MAC addresses on traffic ingress from CE. The MAC addresses learned by the PEs may not overlap with each other. Aliasing is the ability of a PE to signal that it has reachability to an EVPN instance on a given ES, even when the PE has not learned MAC addresses from that EVI or ES. In an all-active multi-homing configuration, a remote PE that receives a MAC advertisement route considers the advertised MAC address to be reachable through all PEs that have advertised reachability to EVI or ES of the MAC address.

**Table 46: Per-EVI Ethernet Auto-Discovery Route**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Length (Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Type</td>
<td>0x01</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>25</td>
<td>1</td>
</tr>
</tbody>
</table>
The route target is specific to the EVI. It can be automatically derived from EVI and AS numbers, or explicitly configured. As in L2VPN and L3VPN, multiple route targets can be configured for an EVPN instance (EVI) and in this case multiple route target extended communities are attached to the per-EVI EAD route.

Following is the header format of the Per-ES EAD route:

**Table 47: Per-ES Ethernet Auto-Discovery Route**

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Length (Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVI RD</td>
<td>Type 1 (IPv4Addr) RD unique across all EVIs on the PE.</td>
<td>8</td>
</tr>
<tr>
<td>ESI</td>
<td>Ethernet Segment Identifier</td>
<td>10</td>
</tr>
<tr>
<td>Ethernet Tag</td>
<td>0 or valid Ethernet Tag</td>
<td>4</td>
</tr>
<tr>
<td>Label</td>
<td>Valid MPLS label allocated per [EVI, ESI, EtherTag] tuple</td>
<td>3</td>
</tr>
<tr>
<td>EVI RT</td>
<td>Type 0 (2byteAS) route target</td>
<td>8</td>
</tr>
</tbody>
</table>

One per-ES-EAD route is sourced per Ethernet Segment. Per-ES-EAD route carries the route targets of all EVIs the Ethernet Segment belongs to. If the number of EVI route targets is too large to be carried in one per-ES-EAD route, then multiple routes are advertised. Each route is assigned a different Ethernet Segment Route Distinguisher (ES-RD). The per-EVI-EAD route is used along with the per-ES-EAD route for aliasing and backup path. The per-ES-EAD is also used for fast convergence in case of failure in the Ethernet Segment.
Route Type 2 - MAC and IP Advertisement Route

Type 2 routes are used to advertise MAC addresses and their associated IP addresses. When a PE router learns the MAC address of a CE device that is connected to it locally, or a MAC address of a device behind the CE device, a MAC and IP advertisement route is created.

Following is the header format for the MAC and IP Advertisement Route packet:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Length (Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Type</td>
<td>0x02</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>Variable</td>
<td>1</td>
</tr>
<tr>
<td>EVI RD</td>
<td>Type 1 (IPv4 address) RD unique across all EVIs on the PE.</td>
<td>8</td>
</tr>
<tr>
<td>ESI</td>
<td>Ethernet Segment Identifier</td>
<td>10</td>
</tr>
<tr>
<td>Ethernet Tag</td>
<td>0 or valid Ethernet Tag</td>
<td>4</td>
</tr>
<tr>
<td>MAC Addr Len</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Valid MAC address</td>
<td>6</td>
</tr>
<tr>
<td>IP Addr Length</td>
<td>IP address length in bits: 0 or 32 or 128</td>
<td>1</td>
</tr>
<tr>
<td>IP Address</td>
<td>Optional IP address</td>
<td>0 or 4 or 16</td>
</tr>
<tr>
<td>Label1</td>
<td>Valid downstream assigned label to perform forwarding to CE based on the destination MAC address</td>
<td>3</td>
</tr>
<tr>
<td>Label2</td>
<td>Specifies a second label</td>
<td>0-3</td>
</tr>
<tr>
<td>EVI RT</td>
<td>Type 0 (2byte AS) route target</td>
<td>8</td>
</tr>
<tr>
<td>MAC Mobility</td>
<td>0x0600:{1 byte Sticky bit}:0x00:{4 byte sequence number}</td>
<td>8</td>
</tr>
</tbody>
</table>

- MAC Address field is populated with the CE address.
- IP address field is optional with IP Address length set to 0 bits.

Note: IP learning is not supported on Cisco ASR 1000 Series Aggregation Services Routers.

- In the Label field, Per-BD or Per-CE labels can be assigned.
• Per-BD is used when PE advertises a single label for all MAC addresses learned in a given bridge domain.

• Per-CE label assigns a separate label to each access port in the bridge domain.

Route Type 3 - Inclusive Multicast Ethernet Tag Route

Type 3 routes are used for transporting Broadcast, Unknown Unicast and Multicast (BUM) traffic to other PE devices across a given EVPN network instance.

The following is the header format for Type 3 routes:

Table 49: Route Type 3 - Inclusive Multicast Ethernet Tag Route Header

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Length (Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Type</td>
<td>0x03</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>26 or 38</td>
<td>1</td>
</tr>
<tr>
<td>EVI RD</td>
<td>Type 1 (IPv4Addr) RD unique across all EVIs on the PE.</td>
<td>8</td>
</tr>
<tr>
<td>Ethernet Tag</td>
<td>0 or valid Ethernet Tag</td>
<td>4</td>
</tr>
<tr>
<td>IP Addr Length</td>
<td>IP Address Length - 32 bits or 128 bits</td>
<td>1</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP Address common for all EVIs (for example, loopback address)</td>
<td>4 or 16</td>
</tr>
<tr>
<td>PMSI Tunnel Attr</td>
<td>{1 byte flags = 0};{1 byte Tunnel Type};{3 byte label};{variable length Tunnel Identifier}</td>
<td>Variable</td>
</tr>
<tr>
<td>EVI RT</td>
<td>Type 0 (2byteAS) route target</td>
<td>8</td>
</tr>
</tbody>
</table>

The PE devices advertises an Inclusive Multicast Ethernet Tag (IMET) Route for every EVI-Ethernet Tag sequence. The Ethernet Tag is set to 0 for VLAN-based and VLAN-bundling service interfaces. The Ethernet Tag is set to a valid VLAN ID for VLAN-aware bundling service interface.

Type 3 route also carries a Provider Multicast Service Interface (PMSI) Tunnel attribute as specified in RFC 6514 (BGP Encodings and Procedures for MVPNs).

For Ingress Replication, the IMET route is used to advertise the label (in the PMSI Tunnel Attribute) that the other PEs can use to send BUM traffic to the originating PE device.

Route Type 4 - Ethernet Segment Route

Ethernet segment routes are needed in multihomed scenarios to enable the discovery of PE devices connected to the same Ethernet segment. Ethernet segment routes are also used electing the designated forwarder (DF) for BUM traffic to the CE, on a particular Ethernet segment. Once an ESI has been assigned for the Ethernet segment for a multihomed CE, the ESI is advertised to the ES-Import extended community by the PE as BGP route type 4. The PEs where the import community matches with the ESI import community, imports ES route to auto-discover each other.
The route type value for Ethernet Segment Route is 0x04. It is originated only by PEs connected to multihomed CEs. It is imported only by PEs connected to the same Ethernet Segment. This route has the following format:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
<th>Length (Octets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Type</td>
<td>0x04</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>ES RD</td>
<td>Type 1 (IPv4Addr) RD unique across all Ethernet Segments on the PE.</td>
<td>8</td>
</tr>
<tr>
<td>ESI</td>
<td>Ethernet Segment Identifier</td>
<td>10</td>
</tr>
<tr>
<td>IP Addr Length</td>
<td>IP Address Length - 32 bits or 128 bits</td>
<td>1</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP Address of the originating PE</td>
<td>4 or 16</td>
</tr>
<tr>
<td>ES-Import RT</td>
<td>0x0602:{high order 6-octet portion of the 9-octet ESI value}</td>
<td>8</td>
</tr>
</tbody>
</table>

**Core Isolation**

In scenarios where a PE loses connectivity to the core network, either the core-facing interface on the PE goes to DOWN state, or an upstream event results in BGP peering loss. All the BGP routes types 1, 2, 3, and 4 are withdrawn after the timers expire. All other PEs in the same Ethernet segment are alerted and a new DF is elected by the remaining PEs. However, the access side switch or node is not aware of this event since the multihomed access interface on the PE is still in the UP state. This results in traffic being blackholed, since the access side device continues to forward traffic to the PE.

To remedy this scenario, the core isolation solution is implemented in Cisco IOS-XE software. In the event of BGP peering loss on the PE or the core facing interface goes to DOWN state, the multihomed access interfaces on the PE are placed in err-disabled state. There are no configuration changes made on these access interfaces. Since the access port is in DOWN state, the link partner on the access switch is also in DOWN state and the corresponding port-channel, on the switch, detects that this member interface has gone DOWN. Therefore, the switch stops forwarding traffic on this interface and load balances the traffic amongst the remaining member interfaces. Once the BGP peering is restored the error-disabled states are removed from the multi-homed access interfaces.

**Prerequisites for EVPN Multihoming**

- EVI and Bridge domains must be in established state with associated MPLS labels.
Restrictions for EVPN Multihoming

- The number of bridge domains that are supported are 16000.
- The number of EFPs or service instances that are supported per physical interface are 8000.
- Stateful Switchover is not supported.
- IP learning is not supported on Cisco ASR 1000 Series Aggregation Services Routers.
- Only all-active redundancy mode (2 or 2+ PEs in the same redundancy group sharing the same ESI and all forwarding traffic) is supported.
- Single-active mode is not supported.
- Only access-side flow-based load balancing with multihoming LAG ON mode is supported. Any ether-channel signaling (LACP or PAgP) is not supported.
- MAC mobility and duplication detection is not supported.
- Per-EVI and per-MAC labeling is not supported. Only per-BD and per-CE labeling is supported.
- Only type 3 ESI is supported as defined in section 5 of RFC7432. Type 3 ESI consists of PE System MAC address and local discriminator.
- Port-channel signaling is not supported.
- The port-channel should be configured in ON mode only.

How to Configure EVPN Multihoming

Configuring EVPN Multihoming

Figure 52: All-Active Multihoming Topology
The above figure represents L2VPN All-Active Multihoming network. Use the following steps to configure Multihoming:

**Configuring L2VPN EVPN Globally and EVI on IOS-XE Router**

```
enable
configure terminal
l2vpn evpn
 replication-type ingress -> Enables ingress replication label
 router-id Loopback0 -> Configures L2VPN EVPN Router-ID
!
 l2vpn evpn instance 10 vlan-based -> Configures Vlan-based EVI 10
!
 l2vpn evpn instance 20 vlan-bundle -> Configures Vlan-bundled EVI 20
!
 l2vpn evpn instance 30 vlan-aware -> Configures Vlan-aware EVI 30
```

**Configuring access interface on PE for EVPN Multi-homing all-active**

```
enable
configure terminal
 interface Port-channel1
 no ip address
 no negotiation auto
 evpn ethernet-segment 1 -> Configures Ethernet Segment ID
 identifier type 3 system-mac abcd.abcd.abcd1 -> Configures system MAC
 redundancy all-active -> Configures redundancy mode
 (all-active/single-active)
 service instance 10 ethernet -> Enables service instance 10 under the physical interface
 encapsulation dot1q 10
 !
 service instance 20 ethernet -> Enables service instance 20 under the physical interface
 encapsulation dot1q 20-21
 !
 service instance 30 ethernet -> Enables service instance 30 under the physical interface
 encapsulation dot1q 30
 !
 interface GigabitEthernet3
 no ip address
 negotiation auto
 isis network point-to-point
 isis three-way-handshake cisco
 channel-group 1
```

**Configuring Bridge-domain on IOS-XE Router**

```
enable
configure terminal
 bridge-domain 10
 mac aging-time 30 -> Configures aging time for all MACs learnt under bridge-domain
 member Port-channel1 service-instance 10 -> Links SI 10 on Port-channel1 with Bridge-domain 10
 member evpn-instance 10 -> Links EVI 10 with Bridge-domain 10
!
 bridge-domain 20
 mac aging-time 30
```
member Port-channel1 service-instance 20 -> Links SI 20 on Port-channel1 with Bridge-domain 20
member evpn-instance 20 -> Links EVI 20 with Bridge-domain 20
bridge-domain 30
mac aging-time 30
member Port-channel1 service-instance 30 -> Links SI 30 on Port-channel1 with Bridge-domain 30
member evpn-instance 30 ethernet-tag 30 -> Links EVI 30 with Bridge-domain 30

Configuring BGP on Provider Edge

router bgp 100
bgp router-id 192.168.1.1
bgp log-neighbor-changes
bgp graceful-restart
neighbor 192.168.1.4 remote-as 100
neighbor 192.168.1.4 update-source Loopback0
!
address-family ipv4
neighbor 192.168.1.4 activate
exit-address-family
!
address-family l2vpn evpn -> Enables L2vpn evpn address family
neighbor 192.168.1.4 activate
neighbor 192.168.1.4 send-community both
neighbor 192.168.1.4 soft-reconfiguration inbound
exit-address-family

Configuring BGP on Core Router or Route Reflector

router bgp 100
bgp router-id 192.168.1.4
bgp log-neighbor-changes
bgp graceful-restart
neighbor 192.168.1.1 remote-as 100
neighbor 192.168.1.1 update-source Loopback0
neighbor 192.168.1.2 remote-as 100
neighbor 192.168.1.2 update-source Loopback0
neighbor 192.168.1.3 remote-as 100
neighbor 192.168.1.3 update-source Loopback0
neighbor 192.168.1.5 remote-as 100
neighbor 192.168.1.5 update-source Loopback0
neighbor 192.168.1.6 remote-as 100
neighbor 192.168.1.6 update-source Loopback0
!
address-family ipv4
neighbor 192.168.1.1 activate
neighbor 192.168.1.1 route-reflector-client
neighbor 192.168.1.2 activate
neighbor 192.168.1.2 route-reflector-client
neighbor 192.168.1.3 activate
neighbor 192.168.1.3 route-reflector-client
neighbor 192.168.1.5 activate
neighbor 192.168.1.5 route-reflector-client
neighbor 192.168.1.6 activate
neighbor 192.168.1.6 route-reflector-client
exit-address-family
!
address-family l2vpn evpn -> Enables L2vpn evpn address family
neighbor 192.168.1.1 activate
neighbor 192.168.1.1 send-community both
neighbor 192.168.1.1 route-reflector-client
neighbor 192.168.1.1 soft-reconfiguration inbound
neighbor 192.168.1.2 activate
neighbor 192.168.1.2 send-community both
neighbor 192.168.1.2 route-reflector-client
neighbor 192.168.1.2 soft-reconfiguration inbound
neighbor 192.168.1.3 activate
neighbor 192.168.1.3 send-community both
neighbor 192.168.1.3 route-reflector-client
neighbor 192.168.1.3 soft-reconfiguration inbound
neighbor 192.168.1.5 activate
neighbor 192.168.1.5 send-community both
neighbor 192.168.1.5 route-reflector-client
neighbor 192.168.1.5 soft-reconfiguration inbound
neighbor 192.168.1.6 activate
neighbor 192.168.1.6 send-community both
neighbor 192.168.1.6 route-reflector-client
neighbor 192.168.1.6 soft-reconfiguration inbound
exit-address-family

Configuration Examples for EVPN Multihoming

Verifying EVPN Multihoming

Use the following commands to verify that the bridge domains are in established state and that bridge domain has learnt the local MAC address:

PE1# show bridge-domain 10 mac dynamic address
Port MAC Address
Po1 ServInst 10 000c.2911.6d2a -> MAC learnt on port-channel 1 for service instance 10

PE1#show bridge-domain 10
Bridge-domain 10 (2 ports in all)
State: UP Mac learning: Enabled
Aging-Timer: 30 second(s) -> MAC aging timer for bridge-domain
Port-channel1 service instance 10
EVPN Instance 10
AED MAC address Policy Tag Age Pseudoport
- 000c.29F9.5078 forward static_r 0 OCE_PTR:0xe8e5dda0
- 000c.2911.6D2A forward dynamic_c 28 Port-channel1.EFP10

PE1#show bridge-domain 10
Bridge-domain 10 (2 ports in all)
State: UP Mac learning: Enabled
Aging-Timer: 30 second(s)
Port-channel1 service instance 10
EVPN Instance 10
AED MAC address Policy Tag Age Pseudoport
- 000c.29F9.5078 forward static_r 0 OCE_PTR:0xe8e5dda0
- 000c.2911.6D2A forward static_a 0 Port-channel1.EFP10

Note

In the above output, MAC addresses with forward dynamic_c tags are locally learned addresses and MAC addresses with forward static_r tags are remote addresses learned through EVPN.
Use the following command to verify the number and type of EVIs configured on the PE, number of bridge-domains configured, and number of MACs learnt locally and remotely:

PE1#show l2vpn evpn summary
L2VPN EVPN
EVPN Instances (excluding point-to-point): 3
  VLAN Aware: 1
  VLAN Based: 1
  VLAN Bundle: 1
  Bridge Domains: 3
BGP: ASN 100, address-family l2vpn evpn configured
Router ID: 192.168.1.1
Label Allocation Mode: Per-BD
Replication Type: Ingress
Forwarding State: UP
MAC Duplication: seconds 180 limit 5
MAC Addresses: 6
  Local: 3
  Remote: 3
  Duplicate: 0
IP Duplication: seconds 180 limit 5
IP Addresses: 0
  Local: 0
  Remote: 0
  Duplicate: 0
Maximum number of Route Targets per EAD-ES route: 200

Note
In the above output, the remote MAC addresses’ next hops are the addresses of the provider edge devices that these MAC addresses are learned from.

Use the following command to verify ethernet-segments attached to the PE:

PE1#show l2vpn evpn ethernet-segment detail
EVPN Ethernet Segment ID: 03AB.CDAB.CDAB.C100.0001
  Interface: Po1
  Redundancy mode: all-active
  DF election wait time: 3 seconds
  Split Horizon label: 16
  State: Ready
  Ordinal: 0
  RD: 192.168.1.1:1
  Export-RTs: 100:10 100:20 100:30
  Forwarder List: 192.168.1.1 192.168.1.2 192.168.1.3

Use the following command to verify EVPN manager details regarding an EVI:

PE1#show l2vpn evpn evi detail
EVPN instance: 10 (VLAN Based) i VLAN based EVI
  RD: 192.168.1.1:10 (auto) -> RD derived from Loopback0 EVPN Router-ID:EV
  number
  Import-RTs: 100:10
  Export-RTs: 100:10
  Per-EVI Label: none
  State: Established -> EVI state
  Encapsulation: mpls
  Bridge Domain: 10
  Ethernet-Tag: 0
  BUM Label: 18
  Per-BD Label: 19
  State: Established -> BD state
Pseudoports: -> Access interface and DF election status for EVI 10
Port-channel1 service instance 10 (DF state: PE-to-CE BUM blocked)

EVPN instance: 20 (VLAN Bundle) -> VLAN bundled EVI
RD: 192.168.1.1:20 (auto)
Import-RTs: 100:20
Export-RTs: 100:20
Per-EVI Label: none
State: Established
Encapsulation: mpls
Bridge Domain: 20
Ethernet-Tag: 0
BUM Label: 20
Per-BD Label: 22
State: Established
Pseudoports:
  Port-channel1 service instance 20 (DF state: PE-to-CE BUM blocked)

EVPN instance: 30 (VLAN Aware) -> VLAN aware EVI
RD: 192.168.1.1:30 (auto)
Import-RTs: 100:30
Export-RTs: 100:30
Per-EVI Label: none
State: Established
Encapsulation: mpls
Bridge Domain: 30
Ethernet-Tag: 30
BUM Label: 22
Per-BD Label: 23
State: Established
Pseudoports: -> Elected DF for EVI 30
  Port-channel1 service instance 30 (DF state: forwarding)

Designated Forwarder (DF) is responsible for forwarding Broadcast, Unicast and Multicast (BUM) traffic on an ethernet segment. Route-type 4 is used to carry this information.

Use the following command to verify EVPN manager details for bridge-domain 10:

PE1#show l2vpn evpn mac bridge-domain 10 detail
MAC Address: 000c.2911.6d2a
EVPN Instance: 10
Bridge Domain: 10
Ethernet Segment: 03AB.CDAB.C100.0001 -> ESI number assigned to the MAC learnt on this EFP
Ethernet Tag ID: 0
Next Hop(s): Port-channel1 service instance 10 -> MAC learnt locally on port-channel 1
Local Address: 3.3.3.3
Label: 17
Sequence Number: 0
MAC only present: Yes
MAC Duplication Detection: Timer not running
MAC Address: 000c.29f8.5078
EVPN Instance: 10
Bridge Domain: 10
Ethernet Segment: 03AB.CDAB.C200.0002
Ethernet Tag ID: 0
Next Hop(s): 6.6.6.6
Local Address: 1.1.1.1
Use the following command to verify EVPN manager details EVI 10:

```
PE1#show l2vpn evpn mac evi 10 detail
MAC Address: 000c.2911.6d2a
EVPN Instance: 10
Bridge Domain: 10
Ethernet Segment: 03AB.CDAB.CDAB.C100.0001
Ethernet Tag ID: 0
Next Hop(s): Port-channel1 service instance 10 192.168.1.2
Local Address: 0.0.0.0
Label: 19
Sequence Number: 0
MAC only present: Yes
MAC Duplication Detection: Timer not running
```

```
MAC Address: 000c.29f8.5078
EVPN Instance: 10
Bridge Domain: 10
Ethernet Segment: 03AB.CDAB.CDAB.C200.0002
Ethernet Tag ID: 0
Next Hop(s): 192.168.1.5
Local Address: 192.168.1.1
Label: 23
Sequence Number: 0
MAC only present: Yes
MAC Duplication Detection: Timer not running
```

Use the following command to verify that the information on BGP routes is sent to Layer 2 RIB:

```
PE1#show l2rib producers

Producer(ID) Client ID Object Type Admin Dist Purge Time(sec) State
------------- --------- ----------- ---------- --------------- ------------
L2VPN(9) 1 Topology 5 120 Converged
BGP(5) 0 MAC 20 600 Converged
L2VPN(9) 1 MAC 5 1800 Converged
BGP(5) 0 EAD 20 600 Converged
L2VPN(9) 1 EAD 6 120 Converged
BGP(5) 0 IMET_ROUTE 20 600 Converged
L2VPN(9) 1 IMET_ROUTE 6 120 Converged
BGP(5) 0 MAC-IP 20 600 Converged
L2VPN(9) 1 MAC-IP 6 1800 Converged
BGP(5) 0 ES_ROUTE 20 600 Converged
L2VPN(9) 1 ES_ROUTE 6 1800 Converged
```

Use the following command to verify Route Type 3 IMET tunnels created for each EVI:

```
PE1#show l2route evpn imet

EVI ETAG Prod Router IP Addr Type Label Tunnel ID
----- ----- ----- --------------- ------ --------------- -------------
10 0 BGP 192.168.1.2 6 22 192.168.1.2
10 0 BGP 192.168.1.3 6 22 192.168.1.3
10 0 BGP 192.168.1.5 6 22 192.168.1.5
10 0 BGP 192.168.1.6 6 22 192.168.1.6
10 0 L2VPN 192.168.1.1 6 18 192.168.1.1
20 0 BGP 192.168.1.2 6 20 192.168.1.2
20 0 BGP 192.168.1.3 6 20 192.168.1.3
20 0 BGP 192.168.1.5 6 20 192.168.1.5
20 0 BGP 192.168.1.6 6 20 192.168.1.6
20 0 L2VPN 192.168.1.1 6 20 192.168.1.1
30 30 BGP 192.168.1.2 6 18 192.168.1.2
```
Use the following command to verify EAD-EVI route-type 1 for EVI 10 for BGP:

```
PE1# show ip bgp l2vpn evpn evi 10 route-type 1
```

Use the following command to verify EAD-ES route-type 1 output for EVI 10 in BGP database:

```
PE1# show ip bgp l2vpn evpn route-type 1
```
BGP routing table entry for [1]192.168.1.2:10[03ABCDABCDABC1000001][0]/23, version 2
Paths: (1 available, best #1, table EVPN-BGP-Table)
Not advertised to any peer
Refresh Epoch 6
Local, (received & used)
  192.168.1.2 (metric 30) (via default) from 192.168.1.4 (192.168.1.4)
    Origin incomplete, metric 0, localpref 100, valid, internal, best
    Rcvd Label: 23, Local Label: None
    Extended Community: RT:100:10
    Originator: 192.168.1.2, Cluster list: 192.168.1.4
    rx pathid: 0, tx pathid: 0

Use the following command to verify information regarding the PEs with active ESI configuration:

PE1#sh ip bgp 12vpn evpn route-type 4
Paths: (1 available, best #1, table EVPN-BGP-Table)
  Advertised to update-groups: 1
Refresh Epoch 1
Local
  :: (via default) from 0.0.0.0 (192.168.1.1)
    Origin incomplete, localpref 100, weight 32768, valid, sourced, local, best
    Extended Community: EVPN ES-IMPORT:0xABCD:0xABCD:0xABC1
    rx pathid: 0, tx pathid: 0
Paths: (1 available, best #1, table EVPN-BGP-Table)
Not advertised to any peer
Refresh Epoch 5
Local, (received & used)
  192.168.1.2 (metric 30) (via default) from 192.168.1.4 (192.168.1.4)
    Origin incomplete, metric 0, localpref 100, valid, internal, best
    Extended Community: EVPN ES-IMPORT:0xABCD:0xABCD:0xABC1
    Originator: 192.168.1.2, Cluster list: 192.168.1.4
    rx pathid: 0, tx pathid: 0
Paths: (1 available, best #1, table EVPN-BGP-Table)
Not advertised to any peer
Refresh Epoch 5
Local, (received & used)
  192.168.1.3 (metric 30) (via default) from 192.168.1.4 (192.168.1.4)
    Origin incomplete, metric 0, localpref 100, valid, internal, best
    Extended Community: EVPN ES-IMPORT:0xABCD:0xABCD:0xABC1
    Originator: 192.168.1.3, Cluster list: 192.168.1.4
    rx pathid: 0, tx pathid: 0
BGP routing table entry for [4]192.168.1.5:2[03ABCDABCDABC2000002][32][192.168.1.5]/23, version 0
Paths: (1 available, no best path)
Not advertised to any peer
Refresh Epoch 5
Local, (received-only)
  192.168.1.5 (metric 30) (via default) from 192.168.1.4 (192.168.1.4)
    Origin incomplete, metric 0, localpref 100, valid, internal
    Extended Community: EVPN ES-IMPORT:0xABCD:0xABCD:0xABC2
    Originator: 192.168.1.5, Cluster list: 192.168.1.4
    rx pathid: 0, tx pathid: 0
BGP routing table entry for [4]192.168.1.6:2[03ABCDABCDABC2000002][32][192.168.1.6]/23, version 0
Paths: (1 available, no best path)
Not advertised to any peer
Refresh Epoch 5
Local, (received-only)
Use the following ether channel state output on the CE device:

```bash
CE1# show port-channel summary
Flags: D - Down P - Up in port-channel (members)
I - Individual H - Hot-standby (LACP only)
s - Suspended r - Module-removed
b - BFD Session Wait
S - Switched R - Routed
U - Up (port-channel)
p - Up in delay-lacp mode (member)
M - Not in use. Min-links not met
--
Group | Port- Type | Protocol | Member Ports
Channel | |
--
1 | Po1(SU) | Eth | NONE | Eth1/1(P) Eth1/2(P) Eth1/3(P)
```

Use the following Ether Channel state output on the PE device:

```bash
PE1# show etherchannel summary
Flags: D - down P/bndl - bundled in port-channel
I - stand-alone s/susp - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator
M - not in use, minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port
```

Number of channel-groups in use: 1
Number of aggregators: 1

```bash
Group | Port-channel Protocol | Ports
Number of channel-groups in use: 1
Number of aggregators: 1
--
1 | Po1(RU) | Gi3(P)
```

RU - L3 port-channel UP State
SU - L2 port-channel UP state
P/bndl - Bundled
S/susp - Suspended

### Additional References for EVPN Multihoming

#### Standards and RFCs

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 7432</td>
<td>BGP MPLS-Based Ethernet VPN</td>
</tr>
</tbody>
</table>
## Feature Information for EVPN Multihoming

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVPN Multihoming</td>
<td>Cisco IOS XE Fuji 16.9.x</td>
<td>The EVPN Multihoming feature utilizes the BGP MPLS-based Ethernet VPN (EVPN) functionality to achieve Multihoming between a Provider Edge and a Customer Edge device. The following command was introduced or modified: redundancy all-active</td>
</tr>
</tbody>
</table>