VPLS MAC Address Withdrawal

The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. A Label Distribution Protocol (LDP)-based MAC address withdrawal message is used for this purpose. A MAC list Type Length Value (TLV) is part of the MAC address withdrawal message. No configuration is needed.

- Finding Feature Information, page 1
- Information About VPLS MAC Address Withdrawal, page 1
- Additional References for Any Transport over MPLS, page 3
- Feature Information for VPLS MAC Address Withdrawal, page 4

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About VPLS MAC Address Withdrawal

VPLS MAC Address Withdrawal

The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. A Label Distribution Protocol (LDP)-based MAC address withdrawal message is used for this purpose. A MAC list Type Length Value (TLV) is part of the MAC address withdrawal message.

The `debug mpls ldp messages` and `debug mpls ldp session io` commands support monitoring of MAC address withdrawal messages being exchanged between LDP peers. Any Transport over Multiprotocol Label Switching (AToM) might provide other means to display or monitor MAC address withdrawal messages. The Tag
Distribution Protocol (TDP) is not supported because AToM uses only LDP for the MAC address withdrawal message.

PE devices learn the remote MAC addresses and directly attached MAC addresses on customer-facing ports by deriving the topology and forwarding information from packets originating at customer sites. To display the number of MAC address withdrawal messages, enter the `show mpls l2transport vc detail` command, as shown in the following example:

```
Device# show mpls l2transport vc detail

Local interface: VFI TEST VFI up
  MPLS VC type is VFI, interworking type is Ethernet
  Destination address: 10.1.1.1, VC ID: 1000, VC status: up
    Output interface: Se2/0, imposed label stack (17)
    Preferred path: not configured
    Default path: active
    Next hop: point2point
  Create time: 00:04:34, last status change time: 00:04:15
  Signaling protocol: LDP, peer 10.1.1.1:0 up
    Targeted Hello: 10.1.1.1(LDP Id) -> 10.1.1.1
    MPLS VC labels: local 16, remote 17
    Group ID: local 0, remote 0
    MTU: local 1500, remote 1500
    Remote interface description:
      MAC Withdraw: sent 5, received 3
    Sequencing: receive disabled, send disabled
  VC statistics:
    packet totals: receive 0, send 0
    byte totals: receive 0, send 0
    packet drops: receive 0, send 0
```

VPLS MAC Address Withdrawal using the commands associated with the L2VPN Protocol-Based CLIs feature

The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. A Label Distribution Protocol (LDP)-based MAC address withdrawal message is used for this purpose. A MAC list Type Length Value (TLV) is part of the MAC address withdrawal message.

The `debug mpls ldp messages` and `debug mpls ldp session io` commands support monitoring of MAC address withdrawal messages being exchanged between LDP peers. Any Transport over Multiprotocol Label Switching (AToM) might provide other means to display or monitor MAC address withdrawal messages. The Tag Distribution Protocol (TDP) is not supported because AToM uses only LDP for the MAC address withdrawal message.

PE devices learn the remote MAC addresses and directly attached MAC addresses on customer-facing ports by deriving the topology and forwarding information from packets originating at customer sites. To display the number of MAC address withdrawal messages, enter the `show l2vpn atom vc detail` command, as shown in the following example:

```
Device# show l2vpn atom vc detail

Local interface: VFI TEST VFI up
  MPLS VC type is VFI, interworking type is Ethernet
  Destination address: 10.1.1.1, VC ID: 1000, VC status: up
    Output interface: Se2/0, imposed label stack (17)
    Preferred path: not configured
    Default path: active
    Next hop: point2point
  Create time: 00:04:34, last status change time: 00:04:15
  Signaling protocol: LDP, peer 10.1.1.1:0 up
```
How MAC Address Withdrawal Works with H-VPLS N-PE Redundancy with MPLS Access

If the pseudowire between the user provider edge (U-PE) device and network provider edge (N-PE) device fails, the L2VPN Pseudowire Redundancy feature on the U-PE device activates the standby pseudowire. In addition, the U-PE device sends a Label Distribution Protocol (LDP) MAC address withdrawal request to the new N-PE device, which forwards the message to all pseudowires in the virtual private LAN service (VPLS) core and flushes its MAC address table.

If a switched virtual interface (SVI) on the N-PE device fails, the L2VPN Pseudowire Redundancy feature activates the standby pseudowire and the U-PE device sends a MAC withdrawal message to the newly active N-PE device.

How MAC Address Withdrawal Works with H-VPLS N-PE Redundancy with QinQ Access

If a failure occurs in the customer-switched network, a spanning-tree Topology Change Notification (TCN) is issued to the network provider edge (N-PE) device, which issues a Label Distribution Protocol (LDP)-based MAC address withdrawal message to the peer N-PE devices and flushes its MAC address table.

Additional References for Any Transport over MPLS

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for VPLS MAC Address Withdrawal

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for VPLS MAC Address Withdrawal

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLS MAC Address Withdrawal</td>
<td>12.2(33)SX14, 12.2(50)SY, 15.2(1)S, Cisco IOS XE Release 3.5S</td>
<td>The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(33)SX14, this feature was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(50)SY, this feature was integrated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 15.2(1)S, this feature was integrated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.5S, this feature was introduced on the Cisco ASR 1000 Series Aggregation Services Routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.5S, support was added for the Cisco ASR 903 Router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No commands were introduced or modified.</td>
</tr>
</tbody>
</table>