MPLS Layer 2 VPNs Configuration Guide, Cisco IOS Release 12.2SR

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883
CONTENTS

Any Transport over MPLS
Finding Feature Information
Prerequisites for Any Transport over MPLS
Restrictions for Any Transport over MPLS
Information About Any Transport over MPLS
 How AToM Transports Layer 2 Packets
 AToM Configuration Commands Prior to Cisco IOS Release 12.0(25)S
 Benefits of AToM
 MPLS Traffic Engineering Fast Reroute
 Maximum Transmission Unit Guidelines for Estimating Packet Size
 Example Estimating Packet Size
 mpls mtu Command Changes
 Frame Relay over MPLS and DTE DCE and NNI Connections
 Local Management Interface and Frame Relay over MPLS
 How LMI Works
 QoS Features Supported with AToM
How to Configure Any Transport over MPLS
 Configuring the Pseudowire Class
 Configuring ATM AAL5 over MPLS on PVCs
 Configuring ATM AAL5 over MPLS in VC Class Configuration Mode
 Configuring OAM Cell Emulation for ATM AAL5 over MPLS
 Configuring OAM Cell Emulation for ATM AAL5 over MPLS on PVCs
 Configuring OAM Cell Emulation for ATM AAL5 over MPLS in VC Class Configuration Mode
 Configuring ATM Cell Relay over MPLS in VC Mode
 Configuring ATM Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode
 Configuring ATM Cell Relay over MPLS in PVP Mode
 Configuring ATM Cell Relay over MPLS in Port Mode
 Troubleshooting Tips
Feature Information for AToM Static Pseudowire Provisioning 127

L2VPN Interworking 129
Finding Feature Information 129
Prerequisites for L2VPN Interworking 129
Restrictions for L2VPN Interworking 130
 General Restrictions 130
 Cisco 7600 Series Routers Restrictions 130
 Cisco 12000 Series Router Restrictions 132
 ATM AAL5 Interworking Restrictions 135
 Ethernet VLAN Interworking Restrictions 135
Restrictions 136
 Frame Relay Interworking Restrictions 138
 PPP Interworking Restrictions 138
Information About L2VPN Interworking 139
 Overview of L2VPN Interworking 139
 L2VPN Interworking Modes 139
 Ethernet (Bridged) Interworking 140
 IP (Routed) Interworking 140
 VLAN Interworking 141
 L2VPN Interworking Support Matrix 141
Static IP Addresses for L2VPN Interworking for PPP 142
How to Configure L2VPN Interworking 142
 Configuring L2VPN Interworking 142
 Verifying the L2VPN Interworking Configuration 143
 Configuring L2VPN Interworking: VLAN Enable-Disable Option for AToM 147
Configuration Examples for L2VPN Interworking 149
 Ethernet to VLAN over L2TPV3 (Bridged) Example 150
 Ethernet to VLAN over AToM (Bridged) Example 151
 Frame Relay to VLAN over L2TPV3 (Routed) Example 152
 Frame Relay to VLAN over AToM (Routed) Example 154
 Frame Relay to ATM AAL5 over AToM (Routed) Example 155
 VLAN to ATM AAL5 over AToM (Bridged) Example 156
 Frame Relay to PPP over L2TPv3 (Routed) Example 157
 Frame Relay to PPP over AToM (Routed) Example 159
 Ethernet VLAN to PPP over AToM (Routed) Example 161
Additional References 163
Feature Information for L2VPN Interworking 164

L2VPN Pseudowire Switching 167
Finding Feature Information 167
Prerequisites for L2VPN Pseudowire Switching 167
Restrictions for L2VPN Pseudowire Switching 168
Information About L2VPN Pseudowire Switching 168
How L2VPN Pseudowire Switching Works 168
How Packets Are Manipulated at the L2VPN Pseudowire Switching Aggregation Point 169
How to Configure L2VPN Pseudowire Switching 169
Examples 171
Configuration Examples for L2VPN Pseudowire Switching 172
L2VPN Pseudowire Switching in an Inter-AS Configuration Example 172
Additional References 177
Feature Information for L2VPN Pseudowire Switching 178

L2VPN Pseudowire Redundancy 181
Finding Feature Information 181
Prerequisites for L2VPN Pseudowire Redundancy 181
Restrictions for L2VPN Pseudowire Redundancy 182
Information About L2VPN Pseudowire Redundancy 182
Introduction to L2VPN Pseudowire Redundancy 182
How to Configure L2VPN Pseudowire Redundancy 184
Configuring the Pseudowire 184
Configuring L2VPN Pseudowire Redundancy 185
Forcing a Manual Switchover to the Backup Pseudowire VC 187
Verifying the L2VPN Pseudowire Redundancy Configuration 188
Configuration Examples for L2VPN Pseudowire Redundancy 189
L2VPN Pseudowire Redundancy and AToM Like to Like Examples 190
L2VPN Pseudowire Redundancy and L2VPN Interworking Examples 190
L2VPN Pseudowire Redundancy with Layer 2 Local Switching Examples 191
Additional References 191
Feature Information for L2VPN Pseudowire Redundancy 192

VPLS Autodiscovery BGP Based 195
Feature Information For 195
Prerequisites for VPLS Autodiscovery BGP Based 195
Additional References 252
Feature Information for QoS Policy Support for L2VPN ATM PVPs 254

L2VPN Pseudowire Preferential Forwarding 255
Finding Feature Information 255
Prerequisites for L2VPN--Pseudowire Preferential Forwarding 255
Restrictions for L2VPN--Pseudowire Preferential Forwarding 256
Information About L2VPN--Pseudowire Preferential Forwarding 256
Overview of L2VPN--Pseudowire Preferential Forwarding 256
How to Configure L2VPN--Pseudowire Preferential Forwarding 257
Configuring the Pseudowire Connection Between PE Routers 257
Configuration Examples for L2VPN--Pseudowire Preferential Forwarding 258
L2VPN--Pseudowire Preferential Forwarding Configuration Example 259
Displaying the Status of the Pseudowires Example 259

Additional References 260
Feature Information for L2VPN: Pseudowire Preferential Forwarding 262

MPLS Pseudowire Status Signaling 263
Finding Feature Information 263
Prerequisites for MPLS Pseudowire Status Signaling 263
Restrictions for MPLS Pseudowire Status Signaling 263
Information About MPLS Pseudowire Status Signaling 264
How MPLS Pseudowire Status Signaling Works 264
When One Router Does Not Support MPLS Pseudowire Status Signaling 264
Status Messages Indicating That the Attachment Circuit Is Down 265
Message Codes in the Pseudowire Status Messages 265
How to Configure MPLS Pseudowire Status Signaling 266
Enabling MPLS Pseudowire Status Signaling 266
Configuration Examples for MPLS Pseudowire Status Signaling 268
MPLS Pseudowire Status Signaling Example 268
Verifying That Both Routers Support Pseudowire Status Messages Example 269

Additional References 269
Any Transport over MPLS

This document describes the Any Transport over MPLS (AToM) feature, which provides the following capabilities:

- Transport data link layer (Layer2) packets over a Multiprotocol Label Switching (MPLS) backbone.
- Enable service providers to connect customer sites with existing Layer 2 networks by using a single, integrated, packet-based network infrastructure—a Cisco MPLS network. Instead of using separate networks with network management environments, service providers can deliver Layer 2 connections over an MPLS backbone.
- Provide a common framework to encapsulate and transport supported Layer 2 traffic types over an MPLS network core.

AToM supports the following like-to-like transport types:

- ATM Adaptation Layer Type-5 (AAL5) over MPLS
- ATM Cell Relay over MPLS
- Ethernet over MPLS (VLAN and port modes)
- Frame Relay over MPLS
- PPP over MPLS
- High-Level Data Link Control (HDLC) over MPLS

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Any Transport over MPLS

Before configuring AToM, ensure that the network is configured as follows:

- Configure IP routing in the core so that the provider edge (PE) routers can reach each other via IP.
- Configure MPLS in the core so that a label-switched path (LSP) exists between the PE routers.
- Enable Cisco Express Forwarding or distributed Cisco Express Forwarding before configuring any Layer 2 circuits.
- Configure a loopback interface for originating and terminating Layer 2 traffic. Make sure the PE routers can access the other router’s loopback interface. Note that the loopback interface is not needed in all cases. For example, tunnel selection does not need a loopback interface when AToM is directly mapped to a traffic engineering (TE) tunnel.
- AToM is supported on the Cisco 7200 and 7500 series routers. For details on supported hardware, see the following documents:
 - Cross-Platform Release Notes for Cisco IOS Release 12.0S
- AToM is supported on the Cisco 7600 routers. For details on supported shared port adapters and line cards, see the following documents:
 - Guide to Supported Hardware for Cisco 7600 Series Routers with Release 12.2SR
 - Cross-Platform Release Notes for Cisco IOS Release 12.2SR for the Cisco 7600 Series Routers
- The Cisco 7600 router has platform-specific instructions for configuring some AToM features. Platform-specific configuration information is included in the following documents:
 - The “Configuring PFC3BXL and PFC3B Mode Multiprotocol Label Switching” module of the Cisco 7600 Series Cisco IOS Software Configuration Guide, Release 12.2SR
 - The “Configuring Multiprotocol Label Switching on the Optical Services Modules” module of the OSM Configuration Note, Release 12.2SR
 - The “Configuring Multiprotocol Label Switching on FlexWAN and Enhanced FlexWAN Modules” module of the FlexWAN and Enhanced FlexWAN Modules Installation and Configuration Guides of Cisco 7600 Series Routers
 - The “Configuring Any Transport over MPLS on a SIP” section of the Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide
 - The “Configuring AToM VP Cell Mode Relay Support” section of the Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide
 - The Cross-Platform Release Notes for Cisco IOS Release 12.2SR
- AToM is supported on the Cisco 10000 series routers. For details on supported hardware, see the “Configuring Any Transport over MPLS” section of the Cisco 10000 Series Router Software Configuration Guide.
- The Cisco 10000 series router has platform-specific instructions for configuring some AToM features. Platform-specific configuration information is contained in the “Configuring Any Transport over MPLS” section of the Cisco 10000 Series Router Broadband Aggregation, Leased-Line, and MPLS Configuration Guide.
- AToM is supported on the Cisco 12000 series routers. For information about hardware requirements, see the Cross-Platform Release Notes for Cisco IOS Release 12.0S.
Restrictions for Any Transport over MPLS

General Restrictions

The following general restrictions pertain to all transport types under AToM:

• Address format: Configure the Label Distribution Protocol (LDP) router ID on all PE routers to be a loopback address with a /32 mask. Otherwise, some configurations might not function properly.
• Layer 2 virtual private networks (L2VPN) features (AToM and Layer 2 Tunnel Protocol Version 3 (L2TPv3)) are not supported on an ATM interface.
• Distributed Cisco Express Forwarding is the only forwarding model supported on the Cisco 12000 series routers and is enabled by default. Disabling distributed Cisco Express Forwarding on the Cisco 12000 series routers disables forwarding.
• Distributed Cisco Express Forwarding mode is supported on the Cisco 7500 series routers for Frame Relay, HDLC, and PPP. In distributed Cisco Express Forwarding mode, the switching process occurs on the Versatile Interface Processors (VIPs) that support switching. When distributed Cisco Express Forwarding is enabled, VIP port adapters maintain identical copies of the Forwarding Information Base (FIB) and adjacency tables. The port adapters perform the express forwarding between port adapters, reliving the Route Switch Processor (RSP) from performing the switching. Distributed Cisco Express Forwarding uses an interprocess communications (IPC) mechanism to ensure synchronization of FIBs and adjacency tables between the RSP and port adapters.
• To convert an interface with L2TPv3 xconnect to AToM xconnect, remove the L2TPv3 configuration from the interface and then configure AToM. Some features may not work if AToM is configured when L2TPv3 configuration is not removed properly.

ATM Cell Relay over MPLS Restrictions

The following restrictions pertain to ATM Cell Relay over MPLS:

• For ATM Cell Relay over MPLS, if you have TE tunnels running between the PE routers, you must enable LDP on the tunnel interfaces.
• Configuring ATM Relay over MPLS with the Cisco 12000 Series Router engine 2 8-port OC-3 STM-1 ATM line card: In Cisco IOS Release 12.0(25)S, there were special instructions for configuring ATM cell relay on the Cisco 12000 series router with an engine 2 8-port OC-3 STM-1 ATM line card. The special configuration instructions do not apply to releases later than Cisco IOS Release 12.0(25)S and you do not need to use the `atm mode cell-relay` command.

In Cisco IOS Release 12.0(25)S, when you configured the Cisco 12000 series 8-port OC-3 STM-1 ATM line card for ATM Cell Relay over MPLS, two ports were reserved. In releases later than Cisco IOS Release 12.0(25)S, only one port is reserved.

In addition, in Cisco IOS Release 12.0(25)S, if you configured an 8-port OC-3 STM-1 ATM port for ATM Adaptation Layer 5 (AAL5) over MPLS and then configured ATM single cell relay over MPLS on that port, the Virtual Circuits (VCs) and Virtual Paths (VPs) for AAL5 on the port and its corresponding port were removed. Starting in Cisco IOS Release 12.0(26)S, this behavior no longer occurs. ATM AAL5 over MPLS and ATM single cell relay over MPLS are supported on the same port. The Cisco 12000 series 8-port OC-3 STM-1 ATM line cards now support, by default, the ATM single cell relay over MPLS feature in both VP and VC modes and ATM AAL5 over MPLS on the same port.
• The F4 end-to-end Operation, Administration, and Maintenance (OAM) cells are transparently transported along with the ATM cells. When a permanent virtual path (PVP) or Permanent Virtual Circuit (PVC) is down on one PE router, the label associated with that PVP or PVC is withdrawn.
Subsequently, the peer PE router detects the label withdrawal and sends an F4 AIS/RDI signal to its corresponding customer edge (CE) router. The PVP or PVC on the peer PE router remains in the up state.

Ethernet over MPLS (EoMPLS) Restrictions

The following restrictions pertain to the Ethernet over MPLS feature:

- Ethernet over MPLS supports VLAN packets that conform to the IEEE 802.1Q standard. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames. The Inter-Switch Link (ISL) protocol is not supported between the PE and CE routers.
- The AToM control word is supported. However, if the peer PE does not support a control word, the control word is disabled. This negotiation is done by LDP label binding.
- Ethernet packets with hardware-level cyclic redundancy check (CRC) errors, framing errors, and runt packets are discarded on input.
- In Cisco IOS Release 12.2(25)S, the behavior of the `mpls mtu` command changed. If the interface MTU is less than 1524 bytes, you can set the maximum MPLS MTU to 24 bytes more than the interface MTU. For example, if the interface MTU is set to 1510 bytes, then you can set the maximum MPLS MTU to 1534 bytes (1510 + 24).

Caution

Although you can set the MPLS MTU to a value greater than the interface MTU, you must set the MPLS MTU to a value less than or equal to the interface MTU to prevent data corruption, dropped packets, and high CPU rates.

If the interface MTU is greater than or equal to 1524 bytes, then you can set the maximum MPLS MTU as high as the interface MTU. For example, if the interface MTU is set to 1600 bytes, then you can set the MPLS MTU to a maximum of 1600 bytes. If you set the MPLS MTU to a value higher than the interface MTU, traffic is dropped.

For interfaces that do not allow you to configure the interface MTU value and for interfaces where the interface MTU is 1500 bytes, the MPLS MTU range is 64 to 1524 bytes.

If you upgrade to Cisco IOS Release 12.2(25)S from an earlier release and you have an MPLS MTU setting that does not conform to these guidelines, the command is rejected. See the Maximum Transmission Unit Guidelines for Estimating Packet Size, page 7 for more information.

Frame Relay over MPLS Restrictions

The following restrictions pertain to the Frame Relay over MPLS feature:

- Frame Relay traffic shaping is not supported with AToM switched VCs.
- If you configure Frame Relay over MPLS on the Cisco 12000 series router and the core-facing interface is an engine 4 or 4+ line card and the edge-facing interface is an engine 0 or 2 line card, then the BECN, FECN, control word (CW), and DE bit information is stripped from the PVC.

Information About Any Transport over MPLS

- How AToM Transports Layer 2 Packets, page 5
- AToM Configuration Commands Prior to Cisco IOS Release 12.0(25)S, page 5
- Benefits of AToM, page 6
- MPLS Traffic Engineering Fast Reroute, page 6
How AToM Transports Layer 2 Packets

AToM encapsulates Layer 2 frames at the ingress PE and sends them to a corresponding PE at the other end of a pseudowire, which is a connection between the two PE routers. The egress PE removes the encapsulation and sends out the Layer 2 frame.

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You can set up the connection, called a pseudowire, between the routers and specify the following information on each PE router:

- The type of Layer 2 data that will be transported across the pseudowire such as Ethernet, Frame Relay, or ATM
- The IP address of the loopback interface of the peer PE router, which enables the PE routers to communicate
- A unique combination of peer PE IP address and VC ID that identifies the pseudowire

The following example shows the basic configuration steps on a PE router that enable the transport of Layer 2 packets. Each transport type has slightly different steps.

Step 1 defines the interface or subinterface on the PE router:

```
Router# interface interface-type interface-number
```

Step 2 specifies the encapsulation type for the interface, such as dot1q:

```
Router(config-if)# encapsulation encapsulation-type
```

Step 3 does the following:

- Makes a connection to the peer PE router by specifying the LDP router ID of the peer PE router.
- Specifies a 32-bit unique identifier, called the VC ID, which is shared between the two PE routers.

The combination of the peer router ID and the VC ID must be unique on the router. Two circuits cannot use the same combination of the peer router ID and VC ID.

- Specifies the tunneling method used to encapsulate data in the pseudowire. AToM uses MPLS as the tunneling method.

```
Router(config-if)# xconnect peer-router-id vc-id encapsulation mpls
```

As an alternative, you can set up a pseudowire class to specify the tunneling method and other characteristics. For more information, see the Configuring the Pseudowire Class, page 15.

AToM Configuration Commands Prior to Cisco IOS Release 12.0(25)S

In releases of AToM before Cisco IOS 12.0(25)S, the `mpls l2 transport route` command was used to configure AToM circuits. This command has been replaced with the `xconnect` command.

No enhancements will be made to the `mpls l2transport route` command. Enhancements will be made to either the `xconnect` command or the `pseudowire-class` command. Therefore, Cisco recommends that you use the `xconnect` command to configure AToM circuits.
Configurations from releases before Cisco IOS 12.0(25)S that use the `mpls l2transport route` command are still supported.

Benefits of AToM

The following list explains some of the benefits of enabling Layer 2 packets to be sent in the MPLS network:

- The AToM product set accommodates many types of Layer 2 packets, including Ethernet and Frame Relay, across multiple Cisco router platforms, such as the Cisco 7200 and Cisco 7500 series routers. This enables the service provider to transport all types of traffic over the backbone and accommodate all types of customers.
- AToM adheres to the standards developed for transporting Layer 2 packets over MPLS. (See the "Standards" section for the specific standards that AToM follows.) This benefits the service provider that wants to incorporate industry-standard methodologies in the network. Other Layer 2 solutions are proprietary, which can limit the service provider’s ability to expand the network and can force the service provider to use only one vendor’s equipment.
- Upgrading to AToM is transparent to the customer. Because the service provider network is separate from the customer network, the service provider can upgrade to AToM without disruption of service to the customer. The customers assume that they are using a traditional Layer 2 backbone.

MPLS Traffic Engineering Fast Reroute

AToM can use MPLS traffic engineering (TE) tunnels with fast reroute (FRR) support. AToM VCs can be rerouted around a failed link or node at the same time as MPLS and IP prefixes.

Enabling fast reroute on AToM does not require any special commands; you can use the standard fast reroute (FRR) commands. At the ingress PE, an AToM tunnel is protected by fast reroute when it is routed to an FRR-protected TE tunnel. Both link and node protection are supported for AToM VCs at the ingress PE. For more information on configuring MPLS TE fast reroute, see the following document:

MPLS Traffic Engineering (TE)--Link and Node Protection, with RSVP Hellos Support

Note

The AToM VC independence feature was introduced in Cisco IOS Release 12.0(31)S. This feature enables the Cisco 12000 series router to perform fast reroute in fewer than 50 milliseconds, regardless of the number of VCs configured. In previous releases, the fast reroute time depended on the number of VCs inside the protected TE tunnel.

For the Cisco 12000 series routers, fast reroute uses three or more labels, depending on where the TE tunnel ends:

- If the TE tunnel is from a PE router to a PE router, three labels are used.
- If the TE tunnel is from a PE router to the core router, four labels are used.

Engine 0 ATM line cards support three or more labels, but the performance degrades. Engine 2 Gigabit Ethernet line cards and engine 3 line cards support three or more labels and can work with the fast reroute feature.

You can issue the `debug mpls l2transport fast-reroute` command to debug fast reroute with AToM.
This command does not display output on platforms where AToM fast reroute is implemented in the forwarding code. The command does display output on Cisco 10720 Internet router line cards and Cisco 12000 series line cards. This command does not display output for the Cisco 7500 (both Route Processor (RP) and Versatile Interface Processor (VIP)) series routers, Cisco 7200 series routers, and Cisco 12000 series RP.

In the following example, the primary link is disabled, which causes the backup tunnel (Tunnel 1) to become the primary path. In the following example, bolded output shows the status of the tunnel:

```
Router# execute-on slot 3 debug mpls l2transport fast-reroute
--------- Line Card (Slot 3) ---------
AToM fast reroute debugging is on
SLOT 3:Sep 16 17:58:56.346: AToM SMGR: Processing TFIB FRR event for 10.4.0.1
SLOT 3:Sep 16 17:58:56.346: AToM SMGR: Finished processing TFIB FRR event for 10.4.0.1
SLOT 3:Sep 16 17:58:56.346: AToM SMGR: Processing TFIB FRR event for Tunnel41
SLOT 3:Sep 16 17:58:56.346: AToM SMGR: Finished processing TFIB FRR event for Tunnel41
Sep 16 17:58:58.342: %LINK-3-UPDOWN: Interface POS0/0, changed state to down
Sep 16 17:58:59.342: %OSPF-5-ADJCHG: Process 1, Nbr 10.0.0.1 on POS0/0 from FULL to DOWN, Neighbor Down: Interface down or detached
Sep 16 17:58:59.342: %LINEPROTO-5-UPDOWN: Line protocol on Interface POS0/0, changed state to down
```

Maximum Transmission Unit Guidelines for Estimating Packet Size

The following calculation helps you determine the size of the packets traveling through the core network. You set the maximum transmission unit (MTU) on the core-facing interfaces of the P and PE routers to accommodate packets of this size. The MTU should be greater than or equal to the total bytes of the items in the following equation:

\[
\text{Core MTU} \geq (\text{Edge MTU} + \text{Transport header} + \text{AToM header} + (\text{MPLS label stack} \times \text{MPLS label size}))
\]

The following sections describe the variables used in the equation:

Edge MTU

The edge MTU is the MTU for customer-facing interfaces.

Transport Header

The Transport header depends on the transport type. The table below lists the specific sizes of the headers.

<table>
<thead>
<tr>
<th>Table 1 Header Size of Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Type</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>AAL5</td>
</tr>
<tr>
<td>Ethernet VLAN</td>
</tr>
<tr>
<td>Ethernet Port</td>
</tr>
<tr>
<td>Frame Relay DLCI</td>
</tr>
<tr>
<td>HDLC</td>
</tr>
</tbody>
</table>
AToM Header

The AToM header is 4 bytes (control word). The control word is optional for Ethernet, PPP, HDLC, and cell relay transport types. However, the control word is required for Frame Relay and ATM AAL5 transport types.

MPLS Label Stack

The MPLS label stack size depends on the configuration of the core MPLS network:

- AToM uses one MPLS label to identify the AToM VCs (VC label). Therefore, the minimum MPLS label stack is one for directly connected AToM PEs, which are PE routers that do not have a P router between them.
- If LDP is used in the MPLS network, the label stack size is two (the LDP label and the VC label).
- If a TE tunnel is used instead of LDP between PE routers in the MPLS network, the label stack size is two (the TE label and the VC label).
- If a TE tunnel and LDP are used in the MPLS network (for example, a TE tunnel between P routers or between P and PE routers, with LDP on the tunnel), the label stack is three (the TE label, LDP label, and VC label).
- If you use MPLS fast reroute in the MPLS network, you add a label to the stack. The maximum MPLS label stack in this case is four (the FRR label, TE label, LDP label, and VC label).
- If AToM is used by the customer carrier in an MPLS VPN Carrier Supporting Carrier environment, you add a label to the stack. The maximum MPLS label stack in the provider carrier network is five (the FRR label, TE label, LDP label, VPN label, and VC label).
- If an AToM tunnel spans different service providers that exchange MPLS labels using IPv4 Border Gateway Protocol (BGP) (RFC 3107), you add a label to the stack. The maximum MPLS label stack is five (the FRR label, TE label, Border Gateway Protocol (BGP) label, LDP label, and VC label).

Other circumstances can increase the MPLS label stack size. Therefore, analyze the complete data path between the AToM tunnel endpoints, determine the maximum MPLS label stack size for your network, and then multiply the label stack size by the size of the MPLS label.

- Example Estimating Packet Size, page 8
- mpls mtu Command Changes, page 9

Example Estimating Packet Size

The size of packets is estimated in the following example, which uses the following assumptions:

- The edge MTU is 1500 bytes.
- The transport type is Ethernet VLAN, which designates 18 bytes for the transport header.
- The AToM header is 0, because the control word is not used.
- The MPLS label stack is 2, because LDP is used. The MPLS label is 4 bytes.

\[
\text{Edge MTU} + \text{Transport header} + \text{AToM header} + (\text{MPLS label stack} \times \text{MPLS label}) = \text{Core MTU}
\]

\[
1500 + 18 + 0 + (2 \times 4) = 1526
\]

You must configure the P and PE routers in the core to accept packets of 1526 bytes.
Once you determine the MTU size to set on your P and PE routers, you can issue the `mtu` command on the routers to set the MTU size. The following example specifies an MTU of 1526 bytes:

```
Router(config-if)# mtu 1526
```

mpls mtu Command Changes

Some interfaces (such as FastEthernet) require the `mpls mtu` command to change the MTU size. In Cisco IOS Release 12.2(25)S, the behavior of the `mpls mtu` command changed.

If the interface MTU is fewer than 1524 bytes, you can set the maximum MPLS MTU to 24 bytes more than the interface MTU. For example, if the interface MTU is set to 1510 bytes, then you can set the maximum MPLS MTU to 1534 bytes (1510 + 24).

Caution

Although you can set the MPLS MTU to a value greater than the interface MTU, you must set the MPLS MTU value to less than or equal to the interface MTU to prevent data corruption, dropped packets, and high CPU rates.

If the interface MTU is greater than or equal to 1524 bytes, then you can set the maximum MPLS MTU value to as high as the interface MTU value. For example, if the interface MTU is set to 1600 bytes, then you can set the MPLS MTU to a maximum of 1600 bytes. If you set the MPLS MTU value to higher than the interface MTU, traffic is dropped.

For interfaces that do not allow you to configure the interface MTU value and for interfaces where the interface MTU is 1500 bytes, the MPLS MTU range is 64 to 1524 bytes.

For GRE tunnel interfaces you can set the MPLS MTU value to either the default value or the maximum value that is supported by the platform for the interface.

You can set the MPLS MTU value to the maximum value by using the `max` keyword along with the `mpls mtu` command. The `mpls mtu max` command allows the previously dropped packets to pass through the GRE tunnel by fragmentation on the underlying physical interface.

Note that the MPLS MTU value cannot be greater than the interface MTU value for non-GRE tunnels.

If you upgrade to Cisco IOS Release 12.2(25)S and you have an MPLS MTU setting that does not conform to these guidelines, the command is rejected.

For Cisco IOS Release 12.2(27)SBC, 12.2(33)SRA, 12.4(11)T, 12.2(33)SXH, and later releases, you cannot set the MPLS MTU to a value greater than the interface MTU. This eliminates problems, such as dropped packets, data corruption, and high CPU rates. See the MPLS MTU Command Changes document for more information.

Frame Relay over MPLS and DTE DCE and NNI Connections

You can configure an interface as a DTE device or a DCE switch, or as a switch connected to a switch with network-to-network interface (NNI) connections. Use the following command in interface configuration mode:

```
frame-relay intf-type [dce | dte | nni]
```

The keywords are explained in the table below.
Table 2
frame-relay intf-type Command Keywords

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dce</td>
<td>Enables the router or access server to function as a switch connected to a router.</td>
</tr>
<tr>
<td>dte</td>
<td>Enables the router or access server to function as a DTE device. DTE is the default.</td>
</tr>
<tr>
<td>nni</td>
<td>Enables the router or access server to function as a switch connected to a switch.</td>
</tr>
</tbody>
</table>

- Local Management Interface and Frame Relay over MPLS, page 10

Local Management Interface and Frame Relay over MPLS

Local Management Interface (LMI) is a protocol that communicates status information about PVCs. When a PVC is added, deleted, or changed, the LMI notifies the endpoint of the status change. LMI also provides a polling mechanism that verifies that a link is up.

- How LMI Works, page 10

How LMI Works

To determine the PVC status, LMI checks that a PVC is available from the reporting device to the Frame Relay end-user device. If a PVC is available, LMI reports that the status is “Active,” which means that all interfaces, line protocols, and core segments are operational between the reporting device and the Frame Relay end-user device. If any of those components is not available, the LMI reports a status of “Inactive.”

Note

Only the DCE and NNI interface types can report the LMI status.

The figure below is a sample topology that helps illustrate how LMI works.

Figure 1
Sample Topology

In the figure above, note the following:

- CE1 and PE1 and PE2 and CE2 are Frame Relay LMI peers.
- CE1 and CE2 can be Frame Relay switches or end-user devices.
- Each Frame Relay PVC comprises multiple segments.
- The DLCI value is local to each segment and is changed as traffic is switched from segment to segment. Two Frame Relay PVC segments exist in the figure; one is between PE1 and CE1 and the other is between PE2 and CE2.

The LMI protocol behavior depends on whether you have DLCI-to-DLCI or port-to-port connections.
DLCI-to-DLCI Connections

If you have DLCI-to-DLCI connections, LMI runs locally on the Frame Relay ports between the PE and CE devices:

- CE1 sends an active status to PE1 if the PVC for CE1 is available. If CE1 is a switch, LMI checks that the PVC is available from CE1 to the user device attached to CE1.
- PE1 sends an active status to CE1 if the following conditions are met:
 - A PVC for PE1 is available.
 - PE1 received an MPLS label from the remote PE router.
 - An MPLS tunnel label exists between PE1 and the remote PE.

For DTE or DCE configurations, the following LMI behavior exists: The Frame Relay device accessing the network (DTE) does not report the PVC status. Only the network device (DCE) or NNI can report the status. Therefore, if a problem exists on the DTE side, the DCE is not aware of the problem.

Port-to-Port Connections

If you have port-to-port connections, the PE routers do not participate in the LMI status-checking procedures. LMI operates only between the CE routers. The CE routers must be configured as DCE-DTE or NNI-NNI.

For information about LMI, including configuration instructions, see the “Configuring the LMI” section of the Configuring Frame Relay document.

QoS Features Supported with AToM

For information about configuring QoS features on Cisco 12000 series routers, see the following feature module:

Any Transport over MPLS (AToM): Layer 2 QoS for the Cisco 12000 Series Router (Quality of Service)

The tables below list the QoS features supported by AToM on the Cisco 7200 and 7500 series routers.

Table 3 QoS Features Supported with Ethernet over MPLS on the Cisco 7200 and 7500 Series Routers

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>Ethernet over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service policy</td>
<td>Can be applied to:</td>
</tr>
<tr>
<td></td>
<td>- Interface (input and output)</td>
</tr>
<tr>
<td></td>
<td>- Subinterface (input and output)</td>
</tr>
<tr>
<td>Classification</td>
<td>Supports the following commands:</td>
</tr>
<tr>
<td></td>
<td>- <code>match cos</code> (on interfaces and subinterfaces)</td>
</tr>
<tr>
<td></td>
<td>- <code>match mpls experimental</code> (on interfaces and subinterfaces)</td>
</tr>
<tr>
<td></td>
<td>- <code>match qos-group</code> (on interfaces) (output policy)</td>
</tr>
<tr>
<td>QoS Feature</td>
<td>Ethernet over MPLS</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Marking</td>
<td>Supports the following commands:</td>
</tr>
<tr>
<td></td>
<td>• set cos (output policy)</td>
</tr>
<tr>
<td></td>
<td>• set discard-class (input policy)</td>
</tr>
<tr>
<td></td>
<td>• set mpls experimental (input policy) (on interfaces and subinterfaces)</td>
</tr>
<tr>
<td></td>
<td>• set qos-group (input policy)</td>
</tr>
<tr>
<td>Policing</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• Single-rate policing</td>
</tr>
<tr>
<td></td>
<td>• Two-rate policing</td>
</tr>
<tr>
<td></td>
<td>• Color-aware policing</td>
</tr>
<tr>
<td></td>
<td>• Multiple-action policing</td>
</tr>
<tr>
<td>Queueing and shaping</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• Distributed Low Latency Queueing (dLLQ)</td>
</tr>
<tr>
<td></td>
<td>• Distributed Weighted Random Early Detection (dWRED)</td>
</tr>
<tr>
<td></td>
<td>• Byte-based WRED</td>
</tr>
</tbody>
</table>

Table 4 QoS Features Supported with Frame Relay over MPLS on the Cisco 7200 and 7500 Series Routers

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>Frame Relay over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service policy</td>
<td>Can be applied to:</td>
</tr>
<tr>
<td></td>
<td>• Interface (input and output)</td>
</tr>
<tr>
<td></td>
<td>• PVC (input and output)</td>
</tr>
<tr>
<td>Classification</td>
<td>Supports the following commands:</td>
</tr>
<tr>
<td></td>
<td>• match fr-de (on interfaces and VCs)</td>
</tr>
<tr>
<td></td>
<td>• match fr-dlci (on interfaces)</td>
</tr>
<tr>
<td></td>
<td>• match qos-group</td>
</tr>
<tr>
<td>Marking</td>
<td>Supports the following commands:</td>
</tr>
<tr>
<td></td>
<td>• frame-relay congestion management (output)</td>
</tr>
<tr>
<td></td>
<td>• set discard-class</td>
</tr>
<tr>
<td></td>
<td>• set fr-de (output policy)</td>
</tr>
<tr>
<td></td>
<td>• set fr-fecn-becn (output)</td>
</tr>
<tr>
<td></td>
<td>• set mpls experimental</td>
</tr>
<tr>
<td></td>
<td>• set qos-group</td>
</tr>
<tr>
<td></td>
<td>• threshold ecn (output)</td>
</tr>
</tbody>
</table>
QoS Feature

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>Frame Relay over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policing</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• Single-rate policing</td>
</tr>
<tr>
<td></td>
<td>• Two-rate policing</td>
</tr>
<tr>
<td></td>
<td>• Color-aware policing</td>
</tr>
<tr>
<td></td>
<td>• Multiple-action policing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>Queueing and shaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• dLLQ</td>
</tr>
<tr>
<td></td>
<td>• dWRED</td>
</tr>
<tr>
<td></td>
<td>• Distributed traffic shaping</td>
</tr>
<tr>
<td></td>
<td>• Distributed class-based weighted fair queueing</td>
</tr>
<tr>
<td></td>
<td>(dCBWFQ)</td>
</tr>
<tr>
<td></td>
<td>• Byte-based WRED</td>
</tr>
<tr>
<td></td>
<td>• random-detect discard-class-based</td>
</tr>
<tr>
<td></td>
<td>command</td>
</tr>
</tbody>
</table>

Table 5 QoS Features Supported with ATM Cell Relay and AAL5 over MPLS on the Cisco 7200 and 7500 Series Routers

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>ATM Cell Relay and AAL5 over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service policy</td>
<td>Can be applied to:</td>
</tr>
<tr>
<td></td>
<td>• Interface (input and output)</td>
</tr>
<tr>
<td></td>
<td>• Subinterface (input and output)</td>
</tr>
<tr>
<td></td>
<td>• PVC (input and output)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classification</th>
<th>Supports the following commands:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• match mpls experimental (on VCs)</td>
</tr>
<tr>
<td></td>
<td>• match qos-group (output)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marking</th>
<th>Supports the following commands:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• random-detect discard-class-based (input)</td>
</tr>
<tr>
<td></td>
<td>• set clp (output) (on interfaces, subinterfaces, and VCs)</td>
</tr>
<tr>
<td></td>
<td>• set discard-class (input)</td>
</tr>
<tr>
<td></td>
<td>• set mpls experimental (input) (on interfaces, subinterfaces, and VCs)</td>
</tr>
<tr>
<td></td>
<td>• set qos-group (input)</td>
</tr>
</tbody>
</table>
How to Configure Any Transport over MPLS

This section explains how to perform a basic AToM configuration and includes the following procedures:

- Configuring the Pseudowire Class, page 15
- Configuring ATM AAL5 over MPLS on PVCs, page 16
- Configuring ATM AAL5 over MPLS in VC Class Configuration Mode, page 18
- Configuring OAM Cell Emulation for ATM AAL5 over MPLS, page 21
- Configuring ATM Cell Relay over MPLS in VC Mode, page 27
- Configuring ATM Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode, page 29
- Configuring ATM Cell Relay over MPLS in PVP Mode, page 31
- Configuring ATM Cell Relay over MPLS in Port Mode, page 34
- Configuring ATM Single Cell Relay over MPLS, page 36
- Configuring ATM Packed Cell Relay over MPLS, page 38
- Configuring Ethernet over MPLS in VLAN Mode, page 51
- Configuring Ethernet over MPLS in Port Mode, page 52
- Configuring Ethernet over MPLS with VLAN ID Rewrite, page 54
- Configuring Ethernet over MPLS with VLAN ID Rewrite for Cisco 12k Routers for 12.0(29)S and Earlier Releases, page 54
- Configuring Ethernet over MPLS with VLAN ID Rewrite for Cisco 12k Routers for 12.0(30)S and Later Releases, page 55
- Configuring per-Subinterface MTU for Ethernet over MPLS, page 58
- Configuring Frame Relay over MPLS with DLCI-to-DLCI Connections, page 61
- Configuring Frame Relay over MPLS with Port-to-Port Connections, page 63
- Configuring HDLC and PPP over MPLS, page 64
- Configuring Tunnel Selection, page 66
- Setting Experimental Bits with AToM, page 70
- Setting the Frame Relay Discard Eligibility Bit on the Cisco 7200 and 7500 Series Routers, page 75

<table>
<thead>
<tr>
<th>QoS Feature</th>
<th>ATM Cell Relay and AAL5 over MPLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policing</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• Single-rate policing</td>
</tr>
<tr>
<td></td>
<td>• Two-rate policing</td>
</tr>
<tr>
<td></td>
<td>• Color-aware policing</td>
</tr>
<tr>
<td></td>
<td>• Multiple-action policing</td>
</tr>
<tr>
<td>Queueing and shaping</td>
<td>Supports the following:</td>
</tr>
<tr>
<td></td>
<td>• dLLQ</td>
</tr>
<tr>
<td></td>
<td>• dWRED</td>
</tr>
<tr>
<td></td>
<td>• dCBWFQ</td>
</tr>
<tr>
<td></td>
<td>• Byte-based WRED</td>
</tr>
<tr>
<td></td>
<td>• random-detect discard-class-based command</td>
</tr>
<tr>
<td></td>
<td>• Class-based shaping support on ATM PVCs</td>
</tr>
</tbody>
</table>
Configuring the Pseudowire Class

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You set up the connection, called a pseudowire, between the routers.

Note

In simple configurations, this task is optional. You do not need to specify a pseudowire class if you specify the tunneling method as part of the `xconnect` command.

The pseudowire-class configuration group specifies the following characteristics of the tunneling mechanism:

- Encapsulation type
- Control protocol
- Payload-specific options

For more information about the `pseudowire-class` command, see the following feature module: Layer 2 Tunnel Protocol Version 3.

You must specify the `encapsulation mpls` command as part of the pseudowire class or as part of the `xconnect` command for the AToM VCs to work properly. If you omit the `encapsulation mpls` command as part of the `xconnect` command, you will receive the following error:

% Incomplete command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class name`
4. `encapsulation mpls`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# pseudowire-class atom</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits pseudowire class configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw-class)# end</td>
<td></td>
</tr>
</tbody>
</table>

To change the type of encapsulation, remove the pseudowire with the **no pseudowire-class** command, reestablish the pseudowire, and specify the new encapsulation type.

Once you specify the **encapsulation mpls** command, you can neither remove it using the **no encapsulation mpls** command nor change the command setting using the **encapsulation l2tpv3** command. If you try to remove or change the encapsulation type using the above-mentioned commands, you will get the following error message:

Encapsulation changes are not allowed on an existing pw-class.

To remove a pseudowire, use the **clear xconnect** command in privileged EXEC mode. You can remove all pseudowires or specific pseudowires on an interface or peer router.

Configuring ATM AAL5 over MPLS on PVCs

ATM AAL5 over MPLS for PVCs encapsulates ATM AAL5 service data unit (SDUs) in MPLS packets and forwards them across the MPLS network. Each ATM AAL5 SDU is transported as a single packet.

Note

ATM AAL5 over MPLS is supported only in SDU mode.

>
SUMMARY STEPS

1. enable
2. configure terminal
3. interface typeslot/port
4. pvc [name] vpi/vci l2transport
5. encapsulation aal5
6. xconnect peer-router-id vcid encapsulation mpls
7. exit
8. exit
9. exit
10. show mpls l2transport vc

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode.
 | **Example:**
 | Router# configure terminal |
| **Step 3** interface typeslot/port | Specifies the interface by type, slot, and port number, and enters interface configuration mode.
 | **Example:**
 | Router(config)# interface atm1/0 |
| **Step 4** pvc [name] vpi/vci l2transport | Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.
 • The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.
 | **Example:**
 | Router(config-if)# pvc 1/200 l2transport |
| **Step 5** encapsulation aal5 | Specifies the ATM ALL5 encapsulation for the PVC.
 • Make sure that you specify the same encapsulation type on the PE and CE routers.
 | **Example:**
<p>| Router(config-if-atm-l2trans-pvc)# encapsulation aal5 |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10 show mpls l2transport vc</td>
<td>Displays output that shows ATM AAL5 over MPLS is configured on a PVC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show mpls l2transport vc</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the show mpls l2transport vc command, which shows that ATM AAL5 over MPLS is configured on a PVC:

<table>
<thead>
<tr>
<th>Router# show mpls l2transport vc</th>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATM1/0</td>
<td>ATM AAL5 1/100</td>
<td>10.4.4.4</td>
<td>100</td>
<td>UP</td>
</tr>
</tbody>
</table>

Configuring ATM AAL5 over MPLS in VC Class Configuration Mode

You can create a VC class that specifies the AAL5 encapsulation and then attach the encapsulation type to an interface, subinterface, or PVC. The following task creates a VC class and attaches it to a main interface.
AAL5 over MPLS is supported only in SDU mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm vc-class-name
4. encapsulation layer-type
5. exit
6. interface typeslot/port
7. class-int vc-class-name
8. pvc [name] vpi/vci l2transport
9. xconnect peer-router-id vcid encapsulation mpls
10. exit
11. exit
12. exit
13. show atm class-links

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:**
Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:**
Router# configure terminal | |
| **Step 3** vc-class atm vc-class-name | Creates a VC class and enters VC class configuration mode. |
| **Example:**
Router(config)# vc-class atm aal5class | |
Command or Action | Purpose
---|---
Step 4 encapsulation *layer-type* | Configures AAL and the encapsulation type.

Example:
```
Router(config-vc-class)# encapsulation aal5
```

Step 5 exit | Exits VC class configuration mode.

Example:
```
Router(config-vc-class)# exit
```

Step 6 interface *typeslot/port* | Specifies the interface by type, slot, and port number, and enters interface configuration mode.

Example:
```
Router(config)# interface atm1/0
```

Step 7 class-int *vc-class-name* | Applies a VC class to the ATM main interface or subinterface.

Example:
```
Router(config-if)# class-int aal5class
```

Note You can also apply a VC class to a PVC.

Step 8 pvc [*name*] vpi/vci l2transport | Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.

Example:
```
Router(config-if)# pvc 1/200 l2transport
```

- The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.

Step 9 xconnect peer-router-id *vcid* encapsulation mpls | Binds the attachment circuit to a pseudowire VC.

Example:
```
Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls
```

Step 10 exit | Exits L2transport PVC configuration mode.

Example:
```
Router(config-if-atm-l2trans-pvc)# exit
```
### Command or Action	Purpose
Step 11 exit | Exits interface configuration mode.

Example:
```
Router(config-if)# exit
```

Step 12 exit | Exits global configuration mode.

Example:
```
Router(config)# exit
```

Step 13 show atm class-links | Shows the type of encapsulation and that the VC class was applied to an interface.

Example:
```
Router# show atm class-links
```

Examples

In the following example, the command output of the `show atm class-links` command verifies that ATM AAL5 over MPLS is configured as part of a VC class. The command output shows the type of encapsulation and that the VC class was applied to an interface.

```
Router# show atm class-links 1/100
Displaying vc-class inheritance for ATM1/
 0.0, vc 1/
 100: no broadcast - Not configured - using default
  encapsulation aal5 - VC-class configured on main interface
```

Configuring OAM Cell Emulation for ATM AAL5 over MPLS

If a PE router does not support the transport of Operation, Administration, and Maintenance (OAM) cells across a label switched path (LSP), you can use OAM cell emulation to locally terminate or loop back the OAM cells. You configure OAM cell emulation on both PE routers, which emulates a VC by forming two unidirectional LSPs. You use the `oam-ac emulation-enable` and `oam-pvc manage` commands on both PE routers to enable OAM cell emulation.

After you enable OAM cell emulation on a router, you can configure and manage the ATM VC in the same manner as you would a terminated VC. A VC that has been configured with OAM cell emulation can send loopback cells at configured intervals toward the local CE router. The endpoint can be either of the following:

- **End-to-end loopback**, which sends OAM cells to the local CE router.
- **Segment loopback**, which responds to OAM cells to a device along the path between the PE and CE routers.

The OAM cells include the following cells:

- **Alarm indication signal (AIS)**
• Remote defect indication (RDI)

These cells identify and report defects along a VC. When a physical link or interface failure occurs, intermediate nodes insert OAM AIS cells into all the downstream devices affected by the failure. When a router receives an AIS cell, it marks the ATM VC down and sends an RDI cell to let the remote end know about the failure.

This section contains two tasks:
• Configuring OAM Cell Emulation for ATM AAL5 over MPLS on PVCs, page 22
• Configuring OAM Cell Emulation for ATM AAL5 over MPLS in VC Class Configuration Mode, page 25

Configuring OAM Cell Emulation for ATM AAL5 over MPLS on PVCs

Perform this task to configure OAM cell emulation for ATM AAL5 over MPLS on a PVC.

Note
For AAL5 over MPLS, you can configure the oam-pvc manage command only after you issue the oam-ac emulation-enable command.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface typeslot/port
4. pvc [name] vpi/vci l2transport
5. encapsulation aal5
6. xconnect peer-router-id vid encapsulation mpls
7. oam-ac emulation-enable [ais-rate]
8. oam-pvc manage [frequency]
9. exit
10. exit
11. exit
12. show atm pvc

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| **Example:**
 Router> enable | |
<p>| | • Enter your password if prompted. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface typeslot/port</td>
<td>Specifies the interface by type, slot, and port number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface atm1/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 pvc [name] vpi/vci l2transport</td>
<td>Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# pvc 1/200 l2transport</td>
<td>• The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.</td>
</tr>
<tr>
<td>Step 5 encapsulation aal5</td>
<td>Specifies ATM AAL5 encapsulation for the PVC.</td>
</tr>
<tr>
<td>Example: Router(config-if-atm-l2trans-pvc)# encapsulation aal5</td>
<td>• Make sure you specify the same encapsulation type on the PE and CE routers.</td>
</tr>
<tr>
<td>Step 6 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td>Example: Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 7 oam-ac emulation-enable [ais-rate]</td>
<td>Enables OAM cell emulation for AAL5 over MPLS.</td>
</tr>
<tr>
<td>Example: Router(config-if-atm-l2trans-pvc)# oam-ac emulation-enable 30</td>
<td>• The ais-rate argument lets you specify the rate at which AIS cells are sent. The default is one cell every second. The range is 0 to 60 seconds.</td>
</tr>
<tr>
<td>Step 8 oam-pvc manage [frequency]</td>
<td>Enables the PVC to generate end-to-end OAM loopback cells that verify connectivity on the virtual circuit.</td>
</tr>
<tr>
<td>Example: Router(config-if-atm-l2trans-pvc)# oam-pvc manage</td>
<td>• The optional frequency argument is the interval between transmission of loopback cells and ranges from 0 to 600 seconds. The default value is 10 seconds.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>exit</td>
<td>Exits L2transport PVC configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if-atm-l2trans-pvc)# exit</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>show atm pvc</td>
<td>Displays output that shows OAM cell emulation is enabled on</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>the ATM PVC.</td>
</tr>
<tr>
<td></td>
<td>Router# show atm pvc</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The output of the `show atm pvc` command in the following example shows that OAM cell emulation is enabled on the ATM PVC:

```plaintext
Router# show atm pvc 5/500
ATM4/1/0.200: VCD: 6, VPI: 5, VCI: 500
UBR, PeakRate: 1
AAL5-LLC/SNAP, etype:0x0, Flags: 0x34000C20, VCMode: 0x0
OAM Cell Emulation: enabled, F5 End2end AIS Xmit frequency: 1 second(s)
OAM frequency: 0 second(s), OAM retry frequency: 1 second(s)
OAM up retry count: 3, OAM down retry count: 5
OAM Loopback status: OAM Disabled
OAM VC state: Not Managed
ILMI VC state: Not Managed
InProc: 0, OutProc: 0
InFast: 4, OutFast: 0, InAS: 560, OutAS: 560
InPktDrops: 0, OutPktDrops: 0
CrcErrors: 0, SarTimeOuts: 0, OverSizedSDUs: 0
Out CLP=1 Pkts: 0
OAM cells received: 26
F5 InEndloop: 0, F5 InSegloop: 0, F5 InAIS: 0, F5 InRDI: 26
OAM cells sent: 77
F5 OutEndloop: 0, F5 OutSegloop: 0, F5 OutAIS: 77, F5 OutRDI: 0
OAM cell drops: 0
Status: UP
```
Configuring OAM Cell Emulation for ATM AAL5 over MPLS in VC Class Configuration Mode

The following steps explain how to configure OAM cell emulation as part of a VC class. You can then apply the VC class to an interface, a subinterface, or a VC. When you configure OAM cell emulation in VC class configuration mode and then apply the VC class to an interface, the settings in the VC class apply to all the VCs on the interface, unless you specify a different OAM cell emulation value at a lower level, such as the subinterface or VC level. For example, you can create a VC class that specifies OAM cell emulation and sets the rate of AIS cells to every 30 seconds. You can apply the VC class to an interface. Then, for one PVC, you can enable OAM cell emulation and set the rate of AIS cells to every 15 seconds. All the PVCs on the interface use the cell rate of 30 seconds, except for the one PVC that was set to 15 seconds.

Perform this task to enable OAM cell emulation as part of a VC class and apply it to an interface.

Note
For AAL5 over MPLS, you can configure the oam-pvc manage command only after you issue the oam-ac emulation-enable command.

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. encapsulation layer-type
5. oam-ac emulation-enable [ais-rate]
6. oam-pvc manage [frequency]
7. exit
8. interface typeslot/port
9. class-int vc-class-name
10. pvc [name] vpi/vci l2transport
11. xconnect peer-router-id vcid encapsulation mpls
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>vc-class atm name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# vc-class atm oamclass</td>
</tr>
<tr>
<td>Creates a VC class and enters VC class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>encapsulation layer-type</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vc-class)# encapsulation aal5</td>
</tr>
<tr>
<td>Configures the AAL and encapsulation type.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>oam-ac emulation-enable [ais-rate]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vc-class)# oam-ac emulation-enable 30</td>
</tr>
<tr>
<td>Enables OAM cell emulation for AAL5 over MPLS.</td>
<td></td>
</tr>
<tr>
<td>• The ais-rate argument lets you specify the rate at which AIS cells are sent. The default is one cell every second. The range is 0 to 60 seconds.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>oam-pvc manage [frequency]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vc-class)# oam-pvc manage</td>
</tr>
<tr>
<td>Enables the PVC to generate end-to-end OAM loopback cells that verify connectivity on the virtual circuit.</td>
<td></td>
</tr>
<tr>
<td>• The optional frequency argument is the interval between transmission of loopback cells and ranges from 0 to 600 seconds. The default value is 10 seconds.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vc-class)# exit</td>
</tr>
<tr>
<td>Exits VC class configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>interface typeslot/port</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface atm1/0</td>
</tr>
<tr>
<td>Specifies the interface by type, slot, and port number, and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>class-int vc-class-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# class-int oamclass</td>
</tr>
<tr>
<td>Applies a VC class to the ATM main interface or subinterface.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>You can also apply a VC class to a PVC.</td>
</tr>
</tbody>
</table>
Configuring ATM Cell Relay over MPLS in VC Mode

Perform this task to configure ATM cell relay on the permanent virtual circuits.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/port
4. pvc vpi/vci l2transport
5. encapsulation aal0
6. xconnect peer-router-id vcid encapsulation mpls
7. exit
8. exit
9. exit
10. show atm vc
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Example:** | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** interface atm slot/port | Specifies an ATM interface and enters interface configuration mode. |
| **Example:** | Router(config)# interface atm1/0 |
| **Step 4** pvc vpi/vci l2transport | Assigns a virtual path identifier (VPI) and virtual circuit identifier (VCI) and enters L2transport PVC configuration mode.
• The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC. |
| **Example:** | Router(config-if)# pvc 0/100 l2transport |
| **Step 5** encapsulation aal0 | For ATM cell relay, specifies raw cell encapsulation for the interface.
• Make sure you specify the same encapsulation type on the PE and CE routers. |
| **Example:** | Router(config-if-atm-l2trans-pvc)# encapsulation aal0 |
| **Step 6** xconnect peer-router-id vcid encapsulation mpls | Binds the attachment circuit to a pseudowire VC. |
| **Example:** | Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls |
| **Step 7** exit | Exits L2transport PVC configuration mode. |
| **Example:** | Router(config-if-atm-l2trans-pvc)# exit |
Command or Action | Purpose
--- | ---
Step 8 | exit
Example:
Router(config-if)# exit
| Exits interface configuration mode.

Step 9 | exit
Example:
Router(config)# exit
| Exits global configuration mode.

Step 10 | show atm vc
Example:
Router# show atm vc
| Verifies that OAM cell emulation is enabled on the ATM VC.

Examples

The output of the `show atm vc` command shows that the interface is configured for VC mode cell relay:

```
Router# show atm vc 7
ATM3/0: VCD: 7, VPI: 23, VCI: 100
UBR, PeakRate: 149760
AAL0-Cell Relay, etype:0x10, Flags: 0x10000C2D, VCmode: 0x0
OAM Cell Emulation: not configured
InBytes: 0, OutBytes: 0
Status: UP
```

Configuring ATM Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode

You can create a VC class that specifies the ATM cell relay encapsulation and then attach the VC class to an interface, subinterface, or VC. The following task creates a VC class that specifies the ATM cell relay encapsulation and attaches it to a main interface.

Note

You can configure VC class configuration mode only in VC mode. VC class configuration mode is not supported on VP or port mode.
SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. encapsulation layer-type
5. exit
6. interface typeslot /port
7. class-int vc-class-name
8. pvc [name] vpi/vci l2transport
9. xconnect peer-router-id vcid encapsulation mpls
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 vc-class atm name</td>
<td>Creates a VC class and enters VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# vc-class atm cellrelay</td>
</tr>
<tr>
<td>Step 4 encapsulation layer-type</td>
<td>Configures the AAL and encapsulation type.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vc-class)# encapsulation aal0</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vc-class)# exit</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface typeslot /port</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface atm1/0</td>
</tr>
<tr>
<td>Specifies the interface by type, slot, and port number, and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>class-int vc-class-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# class-int cellrelay</td>
</tr>
<tr>
<td>Applies a VC class to the ATM main interface or subinterface.</td>
<td></td>
</tr>
<tr>
<td>Note You can also apply a VC class to a PVC.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>pvc [name] vpi/vci l2transport</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# pvc 1/200 l2transport</td>
</tr>
<tr>
<td>Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.</td>
<td></td>
</tr>
<tr>
<td>• The l2transport keyword indicates that the PVC is a switched PVC instead of a terminated PVC.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>xconnect peer-router-id vcid encapsulation mpls</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls</td>
</tr>
<tr>
<td>Binds the attachment circuit to a pseudowire VC.</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-l2trans-pvc)# end</td>
</tr>
<tr>
<td>Exits L2transport PVC configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

Configuring ATM Cell Relay over MPLS in PVP Mode

VP mode allows cells coming into a predefined PVP on the ATM interface to be transported over the MPLS backbone to a predefined PVP on the egress ATM interface. You can use VP mode to send single cells or packed cells over the MPLS backbone.

To configure VP mode, you must specify the following:

- The VP for transporting cell relay cells.
- The IP address of the peer PE router and the VC ID.

When configuring ATM cell relay over MPLS in VP mode, use the following guidelines:

- You do not need to enter the encapsulation aal0 command in VP mode.
- One ATM interface can accommodate multiple types of ATM connections. VP cell relay, VC cell relay, and ATM AAL5 over MPLS can coexist on one ATM interface. On the Cisco 12000 series router, this is true only on the engine 0 ATM line cards.
• If a VPI is configured for VP cell relay, you cannot configure a PVC using the same VPI.
• VP trunking (mapping multiple VPs to one emulated VC label) is not supported. Each VP is mapped to one emulated VC.
• Each VP is associated with one unique emulated VC ID. The AToM emulated VC type is ATM VP cell transport.
• The AToM control word is supported. However, if a peer PE does not support the control word, it is disabled. This negotiation is done by LDP label binding.
• VP mode (and VC mode) drop idle cells.

Perform this task to configure ATM cell relay in PVP mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/port
4. atm pvp vpi l2transport
5. xconnect peer-router-id vcid encapsulation mpls
6. exit
7. exit
8. exit
9. show atm vp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
</tbody>
</table>

| **Step 2** | configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal | |

<p>| Step 3 | interface atm slot/port | Defines the interface and enters interface configuration mode. |
| Example: | Router(config)# interface atm1/0 | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 atm pvp vpi l2transport</td>
<td>Specifies that the PVP is dedicated to transporting ATM cells and enters L2 transport PVP configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# atm pvp 1 l2transport</td>
<td>• The l2transport keyword indicates that the PVP is for cell relay. This mode is for Layer 2 transport only; it is not for regular PVPs.</td>
</tr>
<tr>
<td>Step 5 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td>Example: Router(config-if-atm-l2trans-pvp)# xconnect 10.0.0.1 123 encapsulation mpls</td>
<td>• The syntax for this command is the same as for all other Layer 2 transports.</td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits L2 transport PVP configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if-atm-l2trans-pvP)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 show atm vp</td>
<td>Displays output that shows OAM cell emulation is enabled on the ATM VP.</td>
</tr>
<tr>
<td>Example: Router# show atm vp</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following **show atm vp** command in the following example shows that the interface is configured for VP mode cell relay:

```
Router# show atm vp 1
ATM5/0 VP1: 1, Cell Relay, PeakRate: 149760, CesRate: 0, DataVCs: 1, CesVCs: 0, Status: ACTIVE
VCD VCI Type InPkts OutPkts AAL/Encap Status
 6  3  PVC  0   0  F4 OAM  ACTIVE
 7  4  PVC  0   0  F4 OAM  ACTIVE
```
Configuring ATM Cell Relay over MPLS in Port Mode

Port mode cell relay allows cells coming into an ATM interface to be packed into an MPLS packet and transported over the MPLS backbone to an egress ATM interface.

To configure port mode, issue the `xconnect` command from an ATM main interface and specify the destination address and the VC ID. The syntax of the `xconnect` command is the same as for all other transport types. Each ATM port is associated with one unique pseudowire VC label.

When configuring ATM cell relay over MPLS in port mode, use the following guidelines:

- The pseudowire VC type is set to ATM transparent cell transport (AAL0).
- The AToM control word is supported. However, if the peer PE does not support a control word, the control word is disabled. This negotiation is done by LDP label binding.

Note

The AToM control word is not supported for port mode cell relay on Cisco 7600 series routers.

- Port mode and VP and VC mode are mutually exclusive. If you enable an ATM main interface for cell relay, you cannot enter any PVP or PVC commands.
- If the pseudowire VC label is withdrawn due to an MPLS core network failure, the PE router sends a line AIS to the CE router.
- For the Cisco 7600 series routers, you must specify the interface ATM slot, bay, and port for the SIP400 or SIP200.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm slot/port`
4. `xconnect peer-router-id vcid encapsulation mpls`
5. `exit`
6. `exit`
7. `show atm route`
8. `show mpls l2transport vc`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>- Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Router> enable
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm slot/port</td>
<td>Specifies an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>or interface atm slot/bay/port</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm1/0</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm4/3/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Binds the attachment circuit to the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# xconnect 10.0.0.1 123 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
Step 7 show atm route | Displays output that shows ATM cell relay in port mode has been enabled.

Example:

Router# show atm route

Step 8 show mpls l2transport vc | Displays the attachment circuit and the interface.

Example:

Router# show mpls l2transport vc

Examples

The `show atm route` command in the following example displays port mode cell relay state. The following example shows that atm interface 1/0 is for cell relay, the VC ID is 123 and the tunnel is down.

```
Router# show atm route
Input Intf   Output Intf   Output VC   Status
ATM1/0       ATOM Tunnel   123       DOWN
```

The `show mpls l2transport vc` command in the following example also shows configuration information:

```
Router# show mpls l2transport vc
Local intf   Local circuit  Dest address   VC ID   Status
-------------  ----------------  ---------------  ------  ----
AT1/0         ATM CELL ATM1/0  10.1.1.121     1121  UP
```

Troubleshooting Tips, page 36

- Troubleshooting Tips

Configuring ATM Single Cell Relay over MPLS

The single cell relay feature allows you to insert one ATM cell in each MPLS packet. You can use single cell relay in both VP and VC mode. The configuration steps show how to configure single cell relay in VC mode. For VP mode, see the Configuring ATM Cell Relay over MPLS in PVP Mode, page 31.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/port
4. pvc vpi/vci l2transport
5. encapsulation aal0
6. xconnect peer-router-id vcid encapsulation mpls
7. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface atm slot/port</code></td>
<td>Specifies an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm1/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>pvc vpi/vci l2transport</code></td>
<td>Assigns a VPI and VCI and enters L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# pvc 1/100 l2transport</td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>encapsulation aal0</code></td>
<td>Specifies raw cell encapsulation for the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)#</td>
<td></td>
</tr>
<tr>
<td>encapsulation aal0</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>xconnect peer-router-id vcid encapsulation mpls</code></td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)#</td>
<td></td>
</tr>
<tr>
<td>xconnect 10.0.0.1 123 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 7 <code>end</code></td>
<td>Exits L2transport PVC configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)#</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring ATM Packed Cell Relay over MPLS

The packed cell relay feature allows you to insert multiple concatenated ATM cells in an MPLS packet. The packed cell relay feature is more efficient than single cell relay, because each ATM cell is 52 bytes, and each ATM packet is at least 64 bytes.

At a high level, packed cell relay configuration consists of the following steps:

1. You specify the amount of time a PE router can wait for cells to be packed into an MPLS packet. You can set up three timers by default with different amounts of time attributed to each timer.
2. You enable packed cell relay, specify how many cells should be packed into each MPLS packet, and choose which timer to use during the cell packing process.

Restrictions

- The cell-packing command is available only if you use AAL0 encapsulation in VC mode. If the command is configured with ATM AAL5 encapsulation, the command is not valid.
- Only cells from the same VC, VP, or port can be packed into one MPLS packet. Cells from different connections cannot be concatenated into the same MPLS packet.
- When you change, enable, or disable the cell-packing attributes, the ATM VC, VP, or port and the MPLS emulated VC are reestablished.
- If a PE router does not support packed cell relay, the PE router sends only one cell per MPLS packet.
- The number of packed cells does not need to match between the PE routers. The two PE routers agree on the lower of the two values. For example, if PE1 is allowed to pack 10 cells per MPLS packet and PE2 is allowed to pack 20 cells per MPLS packet, the two PE routers would agree to send no more than 10 cells per packet.
- If the number of cells packed by the peer PE router exceeds the limit, the packet is dropped.
- Issue the atm mcpt-timers command on an ATM interface before issuing the cell-packing command.

See the following sections for configuration information:

Configuring ATM Packed Cell Relay over MPLS in VC Mode

Perform this task to configure the ATM packed cell relay over MPLS feature in VC mode.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm `slot/port`
4. shutdown
5. atm mcpt-timers `[timer1-timeout timer2-timeout timer3-timeout]`
6. no shutdown
7. `pvc vpi/vci l2transport`
8. encapsulation aal0
9. `xconnect peer-router-id vcid encapsulation mpls`
10. `cell-packing cells mcpt-timer timer`
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm <code>slot/port</code></td>
<td>Defines the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm1/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 shutdown</td>
<td>Shuts down the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# shutdown</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5 atm mcpt-timers [timer1-timeout timer2-timeout timer3-timeout]</td>
<td>Sets up the cell-packing timers, which specify how long the PE router can wait for cells to be packed into an MPLS packet.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# atm mcpt-timers 100 200 250</code></td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td></td>
</tr>
<tr>
<td>• You can set up to three timers. For each timer, you specify the maximum cell-packing timeout (MCPT). This value gives the cell-packing function a limited amount of time to complete. If the timer expires before the maximum number of cells are packed into an AToM packet, the packet is sent anyway. The timeout’s default and range of acceptable values depends on the ATM link speed.</td>
<td></td>
</tr>
<tr>
<td>• The respective default values for the PA-A3 port adapters are:</td>
<td></td>
</tr>
<tr>
<td>◦ OC-3: 30, 60, and 90 microseconds</td>
<td></td>
</tr>
<tr>
<td>◦ T3: 100, 200, and 300 microseconds</td>
<td></td>
</tr>
<tr>
<td>◦ E3: 130, 260, and 390 microseconds</td>
<td></td>
</tr>
<tr>
<td>• You can specify either the number of microseconds or use the default.</td>
<td></td>
</tr>
<tr>
<td>• The respective range of values for the PA-A3 port adapters are:</td>
<td></td>
</tr>
<tr>
<td>◦ OC-3: 10 to 4095 microseconds</td>
<td></td>
</tr>
<tr>
<td>◦ T3: 30 to 4095 microseconds</td>
<td></td>
</tr>
<tr>
<td>◦ E3: 40 to 4095 microseconds</td>
<td></td>
</tr>
<tr>
<td>Step 6 no shutdown</td>
<td>Enables the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# no shutdown</code></td>
<td></td>
</tr>
<tr>
<td>Step 7 pvc vpi/vci l2transport</td>
<td>Assigns a VPI and VCI and enters L2transport PVC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# pvc 1/100 l2transport</code></td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td></td>
</tr>
<tr>
<td>• The <code>l2transport</code> keyword indicates that the PVC is a switched PVC instead of a terminated PVC.</td>
<td></td>
</tr>
<tr>
<td>Step 8 encapsulation aal0</td>
<td>Specifies raw cell encapsulation for the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if-atm-l2trans-pvc)# encapsulation aal0</code></td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td></td>
</tr>
<tr>
<td>• Make sure you specify the same encapsulation type on the PE routers.</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 9</th>
<th>xconnect peer-router-id vcid encapsulation mpls</th>
</tr>
</thead>
</table>

Purpose
Binds the attachment circuit to a pseudowire VC.

Example:
```
Router(config-if-atm-l2trans-pvc)# xconnect 10.0.0.1 123 encapsulation mpls
```

<table>
<thead>
<tr>
<th>Step 10</th>
<th>cell-packing cells mcpt-timer timer</th>
</tr>
</thead>
</table>

Purpose
Enables cell packing and specifies the cell-packing parameters.

Example:
```
Router(config-if-atm-l2trans-pvc)# cell-packing 10 mcpt-timer 1
```

- The `cells` argument represents the maximum number of cells to be packed into an MPLS packet. The range is from 2 to the MTU of the interface divided by 52. The default is MTU/52.
- The `timer` argument allows you to specify which timer to use. The default is timer 1.
- See the `cell-packing` command page for more information.

<table>
<thead>
<tr>
<th>Step 11</th>
<th>end</th>
</tr>
</thead>
</table>

Purpose
Exits L2transport PVC configuration mode and returns to privileged EXEC mode.

Example:
```
Router(config-if-atm-l2trans-pvc)# end
```

Configuring ATM Packed Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode

You can create a VC class that specifies the ATM cell relay encapsulation and the cell packing parameters and then attach the VC class to an interface, subinterface, or VC. The following task creates a VC class that specifies the ATM cell relay encapsulation and cell packing and attaches it to a main interface.

Note

You can configure VC class configuration mode only in VC mode. VC class configuration mode is not supported on VP or port mode.

When you configure cell packing in VC class configuration mode and then apply the VC class to an interface, the settings in the VC class apply to all the VCs on the interface, unless you specify a different cell packing value at a lower level, such as the subinterface or VC level. For example, you can create a VC class that specifies three cells to be packed. You can apply the VC class to an interface. Then, for one PVC, you can specify two cells to be packed. All the PVCs on the interface pack three cells, except for the one PVC that was set to set two cells.
SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. encapsulation layer-type
5. cell-packing cells mcpt-timer timer
6. exit
7. interface typeslot /port
8. shutdown
9. atm mcpt-timers [timer1-timeout timer2-timeout timer3-timeout]
10. no shutdown
11. class-int vc-class-name
12. pvc [name] vpi/vci l2transport
13. xconnect peer-router-id vcid encapsulation mpls
14. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm name</td>
<td>Creates a VC class and enters VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm cellpacking</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation layer-type</td>
<td>Configures the AAL and encapsulation type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# encapsulation aal0</td>
<td></td>
</tr>
</tbody>
</table>
Any Transport over MPLS

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cell-packing cells mcpt-timer timer</td>
<td>Enables cell packing and specifies the cell-packing parameters.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-vc-class)# cell-packing 10 mcpt-timer 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The cells argument represents the maximum number of cells to be packed into an MPLS packet. The range is from 2 to the MTU of the interface divided by 52. The default is MTU/52.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The timer argument allows you to specify which timer to use. The default is timer 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• See the cell-packing command page for more information.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
<td>Exits VC class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-vc-class)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>interface typeslot /port</td>
<td>Specifies the interface by type, slot, and port number, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface atm1/0</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>shutdown</td>
<td>Shuts down the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# shutdown</td>
<td></td>
</tr>
</tbody>
</table>

Configuring ATM Packed Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS Release 12.2SR
Command or Action

<table>
<thead>
<tr>
<th>Step 9</th>
<th>atm mcpt-timers [timer1-timeout timer2-timeout timer3-timeout]</th>
</tr>
</thead>
</table>

Purpose
Sets up the cell-packing timers, which specify how long the PE router can wait for cells to be packed into an MPLS packet.

- You can set up to three timers. For each timer, you specify the MCPT. This value gives the cell-packing function a limited amount of time to complete. If the timer expires before the maximum number of cells are packed into an AToM packet, the packet is sent anyway. The timeout’s default and range of acceptable values depends on the ATM link speed.
- The respective default values for the PA-A3 port adapters are:
 - OC-3: 30, 60, and 90 microseconds
 - T3: 100, 200, and 300 microseconds
 - E3: 130, 260, and 390 microseconds
- You can specify either the number of microseconds or use the default.
- The respective range of values for the PA-A3 port adapters are:
 - OC-3: 10 to 4095 microseconds
 - T3: 30 to 4095 microseconds
 - E3: 40 to 4095 microseconds

Example:
```plaintext
Router(config-if)# atm mcpt-timers 100 200 250
```

Step 10 no shutdown

Purpose
Enables the interface.

Example:
```plaintext
Router(config-if)# no shutdown
```

Step 11 class-int vc-class-name

Purpose
Applies a VC class to the ATM main interface or subinterface.

Note You can also apply a VC class to a PVC.

Example:
```plaintext
Router(config-if)# class-int cellpacking
```

Step 12 pvc [name] vpi/vci l2transport

Purpose
Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.

- The `l2transport` keyword indicates that the PVC is a switched PVC instead of a terminated PVC.

Example:
```plaintext
Router(config-if)# pvc 1/200 l2transport
```
### Command or Action	Purpose
Step 13 xconnect peer-router-id vcid encapsulation mpls | Binds the attachment circuit to a pseudowire VC.

Example:

```
Router(config-if-atm-l2trans-pvc)# xconnect 10.13.13.13 100 encapsulation mpls
```

Step 14 end | Exits L2transport PVC configuration mode and returns to privileged EXEC mode.

Example:

```
Router(config-if-atm-l2trans-pvc)# end
```

Configuring ATM Packed Cell Relay over MPLS in VP Mode

Perform this task to configure the ATM cell-packing feature in VP mode.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot /port
4. shutdown
5. atm mcpt-timers [timer1-timeout timer2-timeout timer3-timeout]
6. no shutdown
7. atm pvp vpi l2transport
8. xconnect peer-router-id vcid encapsulation mpls
9. cell-packing cells mcpt-timer timer
10. end

DETAILED STEPS

Command or Action	**Purpose**
Step 1 enable | Enables privileged EXEC mode.

- Enter your password if prompted.

Example:

```
Router> enable
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm slot/port</td>
<td>Defines the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm1/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 shutdown</td>
<td>Shuts down the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# shutdown</td>
<td></td>
</tr>
<tr>
<td>Step 5 atm mcpt-timers [timer1-timeout timer2-timeout timer3-timeout]</td>
<td>Sets up the cell-packing timers, which specify how long the PE router can wait for cells to be packed into an MPLS packet.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# atm mcpt-timers 100 200 250</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sets up the cell-packing timers, which specify how long the PE router can wait for cells to be packed into an MPLS packet.</td>
</tr>
<tr>
<td></td>
<td>• You can set up to three timers. For each timer, you specify the MCPT.</td>
</tr>
<tr>
<td></td>
<td>• The respective default values for the PA-A3 port adapters are:</td>
</tr>
<tr>
<td></td>
<td>• The respective range of values for the PA-A3 port adapters are:</td>
</tr>
<tr>
<td></td>
<td>• OC-3: 30 to 4095 microseconds</td>
</tr>
<tr>
<td></td>
<td>• T3: 30 to 4095 microseconds</td>
</tr>
<tr>
<td></td>
<td>• E3: 40 to 4095 microseconds</td>
</tr>
<tr>
<td>Step 6 no shutdown</td>
<td>Enables the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# no shutdown</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 7</th>
<th>atm pvp vpi l2transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# atm pvp 1 l2transport</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Specifies that the PVP is dedicated to transporting ATM cells and enters L2transport PVP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• The l2transport keyword indicates that the PVP is for cell relay. This mode is for Layer 2 transport only; it is not for regular PVPs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>xconnect peer-router-id vcid encapsulation mpls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-l2trans-pvp)# xconnect 10.0.0.1 123 encapsulation mpls</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td></td>
<td>• The syntax for this command is the same as for all other Layer 2 transports.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>cell-packing cells mcpt-timer timer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-l2trans-pvp)# cell-packing 10 mcpt-timer 1</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Enables cell packing and specifies the cell-packing parameters.</td>
</tr>
<tr>
<td></td>
<td>• The cells argument represents the maximum number of cells to be packed into an MPLS packet. The range is from 2 to the MTU of the interface divided by 52. The default is MTU/52.</td>
</tr>
<tr>
<td></td>
<td>• The timer argument allows you to specify which timer to use. The default is timer 1.</td>
</tr>
<tr>
<td></td>
<td>• See the cell-packing command page for more information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-l2trans-pvc)# end</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Exits L2transport PVC configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Configuring ATM Packed Cell Relay over MPLS in Port Mode

Perform this task to configure ATM packed cell relay over MPLS in port mode.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/port
4. shutdown
5. atm mcpt-timers [timer1-timeout timer2-timeout timer3-timeout]
6. no shutdown
7. cell-packing cells mcpt-timer timer
8. xconnect peer-router-id vcid encapsulation mpls
9. exit
10. exit
11. show atm cell-packing
12. show atm vp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm slot/port</td>
<td>Specifies an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm1/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 shutdown</td>
<td>Shuts down the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# shutdown</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5 atm mcpt-timers [timer1-timeout timer2-timeout timer3-timeout]</td>
<td>Sets up the cell-packing timers, which specify how long the PE router can wait for cells to be packed into an MPLS packet.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# atm mcpt-timers 100 200 250</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• You can set up to three timers. For each timer, you specify the MCPT. This value gives the cell-packing function a limited amount of time to complete. If the timer expires before the maximum number of cells are packed into an AToM packet, the packet is sent anyway. The timeout’s default and range of acceptable values depends on the ATM link speed.</td>
</tr>
<tr>
<td></td>
<td>• The respective default values for the PA-A3 port adapters are:</td>
</tr>
<tr>
<td></td>
<td>◦ OC-3: 30, 60, and 90 microseconds</td>
</tr>
<tr>
<td></td>
<td>◦ T3: 100, 200, and 300 microseconds</td>
</tr>
<tr>
<td></td>
<td>◦ E3: 130, 260, and 390 microseconds</td>
</tr>
<tr>
<td></td>
<td>• You can specify either the number of microseconds or use the default.</td>
</tr>
<tr>
<td></td>
<td>• The respective range of values for the PA-A3 port adapters are:</td>
</tr>
<tr>
<td></td>
<td>◦ OC-3: 10 to 4095 microseconds</td>
</tr>
<tr>
<td></td>
<td>◦ T3: 30 to 4095 microseconds</td>
</tr>
<tr>
<td></td>
<td>◦ E3: 40 to 4095 microseconds</td>
</tr>
<tr>
<td>Step 6 no shutdown</td>
<td>Enables the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# no shutdown</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 7 cell-packing cells mcpt-timer timer</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# cell-packing 10 mcpt-timer 1</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The <code>cells</code> argument represents the maximum number of cells to be packed into an MPLS packet. The range is from 2 to the MTU of the interface divided by 52. The default is MTU/52.</td>
</tr>
<tr>
<td></td>
<td>• The <code>timer</code> argument allows you to specify which timer to use. The default is timer 1.</td>
</tr>
<tr>
<td></td>
<td>• See the cell-packing command page for more information.</td>
</tr>
<tr>
<td>Step 8 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Binds the attachment circuit to the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# xconnect 10.0.0.1 123 encapsulation mpls</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11 show atm cell-packing</td>
<td>Displays cell-packing statistics.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show atm cell-packing</td>
<td></td>
</tr>
<tr>
<td>Step 12 show atm vp</td>
<td>Displays cell-packing information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show atm vp</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The **show atm cell-packing** command in the following example displays the following statistics:

- The number of cells that are to be packed into an MPLS packet on the local and peer routers
- The average number of cells sent and received
- The timer values associated with the local router

```
Router# show atm cell-packing

circuit  local  nbr of cells  peer  nbr of cells  MCPT
      type    MNCP  rcvd in one pkt  MNCP  sent in one pkt  (us)
-----------------------------------------------
atm 1/0 vc 1/200  20     15              30              20       60
atm 1/0 vp 2      25     21              30              24      100
```

The **show atm vp** command in the following example displays the cell packing information at the end of the output:

```
Router# show atm vp 12

ATM5/0 VPI: 12, Cell Relay, PeakRate: 149760, CesRate: 0, DataVCs: 1, CesVCs: 0, Status: ACTIVE
   VCD VCI  Type  InPkts  OutPkts  AAL/Encap  Status
     6  3  PVC  0     0      F4 OAM  ACTIVE
TotalInPkts: 0, TotalOutPkts: 0, TotalInFast: 0, TotalOutFast: 0,
TotalBroadcasts: 0 TotalInPktDrops: 0, TotalOutPktDrops: 0
Local MNCP: 5, average number of cells received: 3
```
Troubleshooting Tips

To debug ATM cell packing, issue the `debug atm cell-packing` command.

Configuring Ethernet over MPLS in VLAN Mode

A VLAN is a switched network that is logically segmented by functions, project teams, or applications regardless of the physical location of users. Ethernet over MPLS allows you to connect two VLAN networks that are in different locations. You configure the PE routers at each end of the MPLS backbone and add a point-to-point VC. Only the two PE routers at the ingress and egress points of the MPLS backbone know about the VCs dedicated to transporting Layer 2 VLAN traffic. All other routers do not have table entries for those VCs. Ethernet over MPLS in VLAN mode transports Ethernet traffic from a source 802.1Q VLAN to a destination 802.1Q VLAN over a core MPLS network.

Note

You must configure Ethernet over MPLS (VLAN mode) on the subinterfaces.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot interface.subinterface
4. encapsulation dot1q vlan-id
5. xconnect peer-router-id vcid encapsulation mpls
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"Router# configure terminal"</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 3** interface gigabitethernet slot / interface.subinterface | Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.
• Make sure the subinterface on the adjoining CE router is on the same VLAN as this PE router. |
| Example:
Router(config)# interface gigabitethernet4/0.1 | Enables the subinterface to accept 802.1Q VLAN packets.
• The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet. All other subinterfaces and backbone routers do not. |
| **Step 4** encapsulation dot1q vlan-id | Binds the attachment circuit to a pseudowire VC.
• The syntax for this command is the same as for all other Layer 2 transports. |
| Example:
Router(config-subif)# encapsulation dot1q 100 | Exits L2transport PVC configuration mode and returns to privileged EXEC mode. |
| **Step 5** xconnect peer-router-id vcid encapsulation mpls | |
| Example:
Router(config-subif)# xconnect 10.0.0.1 123 encapsulation mpls | |
| **Step 6** end | |
| Example:
Router(config-if-atm-l2trans-pvc)# end | |

Configuring Ethernet over MPLS in Port Mode

Port mode allows a frame coming into an interface to be packed into an MPLS packet and transported over the MPLS backbone to an egress interface. The entire Ethernet frame without the preamble or FCS is transported as a single packet. To configure port mode, use the `xconnect` command in interface configuration mode and specify the destination address and the VC ID. The syntax of the `xconnect` command is the same as for all other transport types. Each interface is associated with one unique pseudowire VC label.

When configuring Ethernet over MPLS in port mode, use the following guidelines:

• The pseudowire VC type is set to Ethernet.
• Port mode and Ethernet VLAN mode are mutually exclusive. If you enable a main interface for port-to-port transport, you cannot also enter commands on a subinterface.
• In Cisco IOS Release 12.2(33)SRE and later releases, L2VPN Routed Interworking using Ethernet over MPLS (EOMPLS) is no longer supported. When you configure the `interworking ip` command in pseudowire configuration mode, the `xconnect` command is disabled. To configure L2VPN Routed Interworking, use either Ethernet over MPLS (EOMPLS) or SVI (Switched Virtual Interface) based EOMPLS.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot/interface
4. xconnect peer-router-id vcid encapsulation mpls
5. exit
6. exit
7. show mpls l2transport vc

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** interface gigabitethernet slot/interface | Specifies the Gigabit Ethernet interface and enters interface configuration mode.
 • Make sure the interface on the adjoining CE router is on the same VLAN as this PE router. |
| **Example:** | |
| Router(config)# interface gigabitethernet4/0 | |
| **Step 4** xconnect peer-router-id vcid encapsulation mpls | Binds the attachment circuit to a pseudowire VC.
 • The syntax for this command is the same as for all other Layer 2 transports. |
| **Example:** | |
| Router(config-if)# xconnect 10.0.0.1 123 encapsulation mpls | |
| **Step 5** exit | Exits interface configuration mode. |
| **Example:** | |
| Router(config-if)# exit | |
Command or Action | Purpose
---|---
Step 6 exit | Exits router configuration mode.

Example:
Router(config)# exit

Step 7 show mpls l2transport vc | Displays information about Ethernet over MPLS port mode.

Example:
Router# show mpls l2transport vc

Examples

In the following example, the output of the `show mpls l2transport vc detail` command is displayed:

```plaintext
Router# show mpls l2transport vc detail
Local interface: Gi4/0.1 up, line protocol up, Eth VLAN 2 up
Destination address: 10.1.1.1, VC ID: 2, VC status: up

Local interface: Gi8/0/1 up, line protocol up, Ethernet up
Destination address: 10.1.1.1, VC ID: 8, VC status: up
```

Configuring Ethernet over MPLS with VLAN ID Rewrite

The VLAN ID rewrite feature enables you to use VLAN interfaces with different VLAN IDs at both ends of the tunnel.

The Cisco 12000 series router requires you to configure VLAN ID rewrite manually, as described in the following sections.

The following routers automatically perform VLAN ID rewrite on the disposition PE router. No configuration is required:

- Cisco 7200 series routers.
- Cisco 7500 series routers.
- Cisco 10720 series routers.
- Routers supported on Cisco IOS Release 12.4(11)T. (Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support.)

The following sections explain how to configure the VLAN ID rewrite feature:

Configuring Ethernet over MPLS with VLAN ID Rewrite for Cisco 12k Routers for 12.0(29)S and Earlier Releases

Use the following guidelines for the VLAN ID rewrite feature for the Cisco 12000 series routers in Cisco IOS releases earlier than 12.0(29)S:

- The IP Service Engine (ISE) 4-port Gigabit Ethernet line card performs the VLAN ID rewrite on the disposition side at the edge-facing line card.
The engine 2 3-port Gigabit Ethernet line card performs the VLAN ID rewrite on the imposition side at the edge-facing line card.

The VLAN ID rewrite functionality requires that both ends of the Ethernet over MPLS connections be provisioned with the same line cards. Make sure that both edge-facing ends of the virtual circuit use either the engine 2 or ISE Ethernet line card. The following example shows the system flow with the VLAN ID rewrite feature:

- The ISE 4-port Gigabit Ethernet line card:

Traffic flows from VLAN1 on CE1 to VLAN2 on CE2. As the frame reaches the edge-facing line card of the disposition router PE2, the VLAN ID in the dot1Q header changes to the VLAN ID assigned to VLAN2.

- The engine 2 3-port Gigabit Ethernet line card:

Traffic flows from VLAN1 on CE1 to VLAN2 on CE2. As the frame reaches the edge-facing line card of the imposition router PE1, the VLAN ID in the dot1Q header changes to the VLAN ID assigned to VLAN2.

For the Cisco 12000 series router engine 2 3-port Gigabit Ethernet line card, you must issue the `remote circuit id` command as part of the Ethernet over MPLS VLAN ID rewrite configuration.

Configuring Ethernet over MPLS with VLAN ID Rewrite for Cisco 12k Routers for 12.0(30)S and Later Releases

In Cisco IOS Release 12.0(30)S, the following changes to VLAN ID rewrite were implemented:

- The ISE 4-port Gigabit Ethernet line card can perform VLAN ID rewrite at both the imposition and disposition sides of the edge-facing router.
- The `remote circuit id` command is not required as part of the Ethernet over MPLS VLAN ID rewrite configuration, as long as both PE routers are running Cisco IOS Release 12.0(30)S. The VLAN ID rewrite feature is implemented automatically when you configure Ethernet over MPLS.
- The VLAN ID rewrite feature in Cisco IOS Release 12.0(30)S can interoperate with routers that are running earlier releases. If you have a PE router at one end of the circuit that is using an earlier Cisco IOS release and the `remote circuit id` command, the other PE can run Cisco IOS Release 12.0(30)S and still perform VLAN ID rewrite.
- You can mix the line cards on the PE routers, as shown in the following table

Table 6: Supported Line Cards for VLAN ID Rewrite Feature:

<table>
<thead>
<tr>
<th>If PE1 Has These Line Cards</th>
<th>Then PE2 Can Use These Line Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine 2 3-port Gigabit Ethernet line card or ISE 4-port Gigabit Ethernet line card</td>
<td>Engine 2 3-port Gigabit Ethernet line card or ISE 4-port Gigabit Ethernet line card</td>
</tr>
<tr>
<td>ISE 4-port Gigabit Ethernet line card</td>
<td>Any Cisco 12000 series router line card</td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot linterface.subinterface
4. encapsulation dot1q vlan-id
5. xconnect peer-router-id vcid encapsulation mpls
6. remote circuit id remote-vlan-id
7. exit
8. exit
9. exit
10. show controllers compls forwarding-table

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Enables privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface gigabitethernet slot linterface.subinterface</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet4/0.1</td>
<td></td>
</tr>
<tr>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>• Make sure the subinterfaces between the CE and PE routers that are running Ethernet over MPLS are in the same subnet. All other subinterfaces and backbone routers do not need to be in the same subnet.</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation dot1q vlan-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# encapsulation dot1q 100</td>
<td></td>
</tr>
<tr>
<td>Enables the subinterface to accept 802.1Q VLAN packets.</td>
<td></td>
</tr>
<tr>
<td>• Make sure the subinterface on the adjoining CE router is on the same VLAN as this PE router.</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 5 | `xconnect peer-router-id vcid encapsulation mpls` | Binds the attachment circuit to a pseudowire VC and enters xconnect configuration mode.
 • The syntax for this command is the same as for all other Layer 2 transports. |

Example:

```
Router(config-subif)# xconnect 10.0.0.1 123
```

| Step 6 | `remote circuit id remote-vlan-id` | Enables you to use VLAN interfaces with different VLAN IDs at both ends of the tunnel.
 • This command is required only for the Cisco 12000 series router engine 2 3-port Gigabit Ethernet line card. |

Example:

```
Router(config-subif-xconn)# remote circuit id 101
```

| Step 7 | `exit` | Exits xconnect configuration mode. |

Example:

```
Router(config-subif-xconn)# exit
```

| Step 8 | `exit` | Exits subinterface configuration mode. |

Example:

```
Router(config-subif)# exit
```

| Step 9 | `exit` | Exits global configuration mode. |

Example:

```
Router(config)# exit
```

| Step 10 | `show controllers eompls forwarding-table` | Displays information about VLAN ID rewrite. |

Example:

```
Router# execute slot 0 show controllers eompls forwarding-table
```

Examples

On PE1

On PE2

The command output of the `show controllers eompls forwarding-table` command in the following example shows VLAN ID rewrite configured on the Cisco 12000 series routers with an engine 2 3-port
Gigabit Ethernet line card. In the following example, the bolded command output show the VLAN ID rewrite information.

```bash
Router# execute slot 0 show controllers eompls forwarding-table 0 2
Port # 0, VLAN-ID # 2, Table-index 2
EoMPLS configured: 1
  tag_rew_ptr = D001BB58
  Leaf entry?  = 1
  FCR index   = 20
    **tagrew_psa_addr = 0006ED60
    **tagrew_vir_addr = 7006ED60
    *tagrew_phy_addr = F006ED60
[0-7] log 8800 mtu 4458 oq 4000 ai 3 oi 04019110 (encaps size 4)
  cw-size 4  vlanid-rew 3
  gather A30 (buhdr size 32 EoMPLS (Control Word) Imposition profile 81)
  2 tag: 18 18
  counters 1182, 10 reported 1182, 10.
Local OutputQ (Unicast):    Slot:2  Port:0  RED queue:0  COS queue:0
Output Q (Unicast):         Port:0          RED queue:0  COS queue:0
```

```bash
Router# execute slot 0 show controllers eompls forwarding-table 0 3
Port # 0, VLAN-ID # 3, Table-index 3
EoMPLS configured: 1
  tag_rew_ptr = D0027B90
  Leaf entry?  = 1
  FCR index   = 20
    **tagrew_psa_addr = 0009EE40
    **tagrew_vir_addr = 7009EE40
    *tagrew_phy_addr = F009EE40
[0-7] log 9400 mtu 4458 oq 4000 ai 8 oi 84000002 (encaps size 4)
  cw-size 4  vlanid-rew 2
  gather A30 (buhdr size 32 EoMPLS (Control Word) Imposition profile 81)
  2 tag: 17 18
  counters 1182, 10 reported 1182, 10.
Local OutputQ (Unicast):    Slot:5  Port:0  RED queue:0  COS queue:0
Output Q (Unicast):         Port:0          RED queue:0  COS queue:0
```

Configuring per-Subinterface MTU for Ethernet over MPLS

Cisco IOS Release 12.2(33)SRC introduces the ability to specify MTU values in xconnect subinterface configuration mode. When you use xconnect subinterface configuration mode to set the MTU value, you establish a pseudowire connection for situations where the interfaces have different MTU values that cannot be changed.

If you specify an MTU value in xconnect subinterface configuration mode that is outside the range of supported MTU values (64 bytes to the maximum number of bytes supported by the interface), the command might be rejected. If you specify an MTU value that is out of range in xconnect subinterface configuration mode, the router enters the command in subinterface configuration mode.
Configuring the MTU value in xconnect subinterface configuration mode has the following restrictions:

- The following features do not support MTU values in xconnect subinterface configuration mode:
 - Layer 2 Tunnel Protocol Version 3 (L2TPv3)
 - Virtual Private LAN services (VPLS)
 - L2VPN Pseudowire Switching
- The MTU value can be configured in xconnect subinterface configuration mode only on the following interfaces and subinterfaces:
 - Ethernet
 - FastEthernet
 - Gigabit Ethernet
- The router uses an MTU validation process for remote VCs established through LDP, which compares the MTU value configured in xconnect subinterface configuration mode to the MTU value of the remote customer interface. If an MTU value has not been configured in xconnect subinterface configuration mode, then the validation process compares the MTU value of the local customer interface to the MTU value of the remote xconnect, either explicitly configured or inherited from the underlying interface or subinterface.
- When you configure the MTU value in xconnect subinterface configuration mode, the specified MTU value is not enforced by the dataplane. The dataplane enforces the MTU values of the interface (port mode) or subinterface (VLAN mode).
- Ensure that the interface MTU is larger than the MTU value configured in xconnect subinterface configuration mode. If the MTU value of the customer-facing subinterface is larger than the MTU value of the core-facing interface, traffic may not be able to travel across the pseudowire.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface gigabitethernet slot /interface
4. mtu mtu-value
5. interface gigabitethernet slot /interface.subinterface
6. encapsulation dot1q vlan-id
7. xconnect peer-router-id vcid encapsulation mpls
8. mtu mtu-value
9. end
10. show mpls l2transport binding
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface gigabitethernet slot interface</td>
<td>Specifies the Gigabit Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet4/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 mtu mtu-value</td>
<td>Specifies the MTU value for the interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# mtu 2000</td>
<td>• The MTU value specified at the interface level can be inherited by a subinterface.</td>
</tr>
<tr>
<td>Step 5 interface gigabitethernet slot/interface.subinterface</td>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# interface gigabitethernet4/0.1</td>
<td>• Make sure the subinterface on the adjoining CE router is on the same VLAN as this PE router.</td>
</tr>
<tr>
<td>Step 6 encapsulation dot1q vlan-id</td>
<td>Enables the subinterface to accept 802.1Q VLAN packets.</td>
</tr>
<tr>
<td>Example: Router(config-subif)# encapsulation dot1q 100</td>
<td>• The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet. All other subinterfaces and backbone routers need not be.</td>
</tr>
<tr>
<td>Step 7 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td>Example: Router(config-subif)# xconnect 10.0.0.1 123 encapsulation mpls</td>
<td>• The syntax for this command is the same as for all other Layer 2 transports. Enters xconnect subinterface configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Frame Relay over MPLS with DLCI-to-DLCI Connections

Frame Relay over MPLS encapsulates Frame Relay PDUs in MPLS packets and forwards them across the MPLS network. For Frame Relay, you can set up data-link connection identifier (DLCI)-to-DLCI connections or port-to-port connections. With DLCI-to-DLCI connections, the PE routers manipulate the packet by removing headers, adding labels, and copying control word elements from the header to the PDU.

Perform this task to configure Frame Relay over MPLS with DLCI-to-DLCI connections.

SUMMARY STEPS

1. enable
2. configure terminal
3. frame-relay switching
4. interface serial slot/port
5. encapsulation frame-relay [cisco | ietf]
6. frame-relay intf-type dce
7. exit
8. connect connection-name interface dlci l2transport
9. xconnect peer-router-id vcid encapsulation mpls
10. end

### Command or Action	Purpose
Step 8 mtu *mtu-value* | Specifies the MTU for the VC.
Example:
Router(config-if-xconn)# mtu 1400

Step 9 end | Exits xconnect subinterface configuration mode and returns to privileged EXEC mode.
Example:
Router(config-if-xconn)# end

Step 10 show mpls l2transport binding | Displays the MTU values assigned to the local and remote interfaces.
Example:
Router# show mpls l2transport binding
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| Example: | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal |
| **Step 3** frame-relay switching | Enables PVC switching on a Frame Relay device. |
| Example: | Router(config)# frame-relay switching |
| **Step 4** interface serial slot/port | Specifies a serial interface and enters interface configuration mode. |
| Example: | Router(config)# interface serial3/1 |
| **Step 5** encapsulation frame-relay [cisco | ietf] | Specifies Frame Relay encapsulation for the interface.
- You can specify different types of encapsulations. You can set one interface to Cisco encapsulation and the other interface to IETF encapsulation. |
| Example: | Router(config-if)# encapsulation frame-relay ietf |
| **Step 6** frame-relay intf-type dce | Specifies that the interface is a DCE switch.
- You can also specify the interface to support Network-to-Network Interface (NNI) and DTE connections. |
| Example: | Router(config-if)# frame-relay intf-type dce |
| **Step 7** exit | Exits from interface configuration mode. |
| Example: | Router(config-if)# exit |
Configuring Frame Relay over MPLS with Port-to-Port Connections

Frame Relay over MPLS encapsulates Frame Relay PDUs in MPLS packets and forwards them across the MPLS network. For Frame Relay, you can set up DLCI-to-DLCI connections or port-to-port connections. With port-to-port connections, you use HDLC mode to transport the Frame Relay encapsulated packets. In HDLC mode, the whole HDLC packet is transported. Only the HDLC flags and FCS bits are removed. The contents of the packet are not used or changed, including the backward explicit congestion notification (BECN), forward explicit congestion notification (FECN) and discard eligibility (DE) bits.

Perform this task to set up Frame Relay port-to-port connections.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface serial slot/port
4. encapsulation hdlc
5. xconnect peer-router-id vcid encapsulation mpls
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface serial slot/port</td>
<td>Specifies a serial interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial5/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation hdlc</td>
<td>Specifies that Frame Relay PDUs will be encapsulated in HDLC packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation hdlc</td>
<td></td>
</tr>
<tr>
<td>Step 5 xconnect peer-router-id vcid encapsulation mpls</td>
<td>Creates the VC to transport the Layer 2 packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# xconnect 10.0.0.1 123 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Exits interface configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring HDLC and PPP over MPLS

With HDLC over MPLS, the whole HDLC packet is transported. The ingress PE router removes only the HDLC flags and FCS bits. The contents of the packet are not used or changed.

With PPP over MPLS, the ingress PE router removes the flags, address, control field, and the FCS.
The following restrictions pertain to the HDLC over MPLS feature:

- Asynchronous interfaces are not supported.
- You must configure HDLC over MPLS on router interfaces only. You cannot configure HDLC over MPLS on subinterfaces.

The following restrictions pertain to the PPP over MPLS feature:

- Zero hops on one router is not supported. However, you can have back-to-back PE routers.
- Asynchronous interfaces are not supported. The connections between the CE and PE routers on both ends of the backbone must have similar link layer characteristics. The connections between the CE and PE routers must both be synchronous.
- Multilink PPP (MLP) is not supported.
- You must configure PPP on router interfaces only. You cannot configure PPP on subinterfaces.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface serial slot/port**
4. Do one of the following:
 - **encapsulation ppp**
 - **encapsulation hdlc**
5. **xconnect peer-router-id vcid encapsulation mpls**
6. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 3 interface serial slot/port | Specifies a serial interface and enters interface configuration mode.

Example:
```
Router(config)# interface serial5/0
```

- You must configure HDLC and PPP over MPLS on router interfaces only. You cannot configure HDLC over MPLS on subinterfaces.

Step 4 Do one of the following:

- encapsulation ppp
- encapsulation hdlc

Example:
```
Router(config-if)# encapsulation ppp
```

Example:
```
Router(config-if)# encapsulation hdlc
```

Step 5 xconnect peer-router-id vcid encapsulation mpls | Creates the VC to transport the Layer 2 packets.

Example:
```
Router(config-fr-pw-switching)# xconnect 10.0.0.1 123 encapsulation mpls
```

Step 6 end | Exits connect configuration mode and returns to privileged EXEC mode.

Configuring Tunnel Selection

The tunnel selection feature allows you to specify the path that traffic uses. You can specify either an MPLS TE tunnel or destination IP address or domain name server (DNS) name.
You also have the option of specifying whether the VCs should use the default path (the path LDP uses for signaling) if the preferred path is unreachable. This option is enabled by default; you must explicitly disable it.

You configure tunnel selection when you set up the pseudowire class. You enable tunnel selection with the preferred-path command. Then, you apply the pseudowire class to an interface that has been configured to transport AToM packets.

The following guidelines provide more information about configuring tunnel selection:

- The preferred-path command is available only if the pseudowire encapsulation type is MPLS.
- This tunnel selection feature is enabled when you exit from pseudowire mode.
- The selected path should be an LSP destined to the peer PE router.
- The selected tunnel must be an MPLS TE tunnel.
- If you select a tunnel, the tunnel tailend must be on the remote PE router.
- If you specify an IP address, that address must be the IP address of the loopback interface on the remote PE router. The address must have a /32 mask. There must be an LSP destined to that selected address. The LSP need not be a TE tunnel.

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class name
4. encapsulation mpls
5. preferred-path [interface tunnel tunnel-number | peer {ip-address | host-name}] [disable-fallback]
6. exit
7. interface slot /port
8. encapsulation encapsulation-type
9. xconnect peer-router-id vcid pw-class name
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td></td>
<td>• For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 5 preferred-path {interface tunnel tunnel-number</td>
<td>peer {ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits from pseudowire configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 7 interface slot / port</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 8 encapsulation encapsulation-type</td>
<td>Specifies the encapsulation for the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 9 xconnect peer-router-id vcid pw-class name</td>
<td>Binds the attachment circuit to a pseudowire VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | **Purpose**
--- | ---
Step 10 end | Exits interface configuration mode and returns to Privileged EXEC mode.

Example:

Router(config-if)# end

Examples

In the following example, the `show mpls l2transport vc` command shows the following information about the VCs:

- VC 101 has been assigned a preferred path called Tunnel1. The default path is disabled, because the preferred path specified that the default path should not be used if the preferred path fails.
- VC 150 has been assigned an IP address of a loopback address on PE2. The default path can be used if the preferred path fails.

In the following example, command output that is bolded shows the preferred path information.

```
Router# show mpls l2transport vc detail
Local interface: Gi0/0/0.1 up, line protocol up, Eth VLAN 222 up
Destination address: 10.16.16.16, VC ID: 101, VC status: up
  Preferred path: Tunnel1, active
  Default path: disabled
  Tunnel label: 3, next hop point2point
  Output interface: Tu1, imposed label stack {17 16}
Create time: 00:27:31, last status change time: 00:27:31
Signaling protocol: LDP, peer 10.16.16.16:0 up
  MPLS VC labels: local 25, remote 16
  Group ID: local 0, remote 6
  MTU: local 1500, remote 1500
  Remote interface description:
  Sequencing: receive disabled, send disabled
  VC statistics:
    packet totals: receive 10, send 10
    byte totals: receive 1260, send 1300
    packet drops: receive 0, send 0
Local interface: AT1/0/0 up, line protocol up, ATM AAL5 0/50 up
Destination address: 10.16.16.16, VC ID: 150, VC status: up
  Preferred path: 10.18.18.18, active
  Default path: ready
  Tunnel label: 3, next hop point2point
  Output interface: Tu2, imposed label stack {18 24}
Create time: 00:15:08, last status change time: 00:07:37
Signaling protocol: LDP, peer 10.16.16.16:0 up
  MPLS VC labels: local 26, remote 24
  Group ID: local 2, remote 0
  MTU: local 4470, remote 4470
  Remote interface description:
  Sequencing: receive disabled, send disabled
  VC statistics:
    packet totals: receive 0, send 0
    byte totals: receive 0, send 0
    packet drops: receive 0, send 0
```

- Troubleshooting Tips, page 69

Troubleshooting Tips
You can use the `debug mpls l2transport vc event` command to troubleshoot tunnel selection. For example, if the tunnel interface that is used for the preferred path is shut down, the default path is enabled. The `debug mpls l2transport vc event` command provides the following output:

```
AToM SMGR [10.2.2.2, 101]: Processing imposition update, vc_handle 62091860, update_action 3, remote_vc_label 16
AToM SMGR [10.2.2.2, 101]: selected route no parent rewrite: tunnel not up
AToM SMGR [10.2.2.2, 101]: Imposition Programmed, Output Interface: Et3/2
```

Setting Experimental Bits with AToM

MPLS AToM uses the three experimental bits in a label to determine the queue of packets. You statically set the experimental bits in both the VC label and the LSP tunnel label, because the LSP tunnel label might be removed at the penultimate router. The following sections explain the transport-specific implementations of the EXP bits.

Note

For information about setting EXP bits on the Cisco 12000 series router for Cisco IOS Release 12.0(30)S, see the AToM: L2 QoS feature module.
The following restrictions apply to ATM AAL5 over MPLS with EXP bits:

- ATM AAL5 over MPLS allows you to statically set the experimental bits.
- If you do not assign values to the experimental bits, the priority bits in the header’s “tag control information” field are set to zero.
- On the Cisco 7500 series routers, distributed Cisco Express Forwarding must be enabled before you set the experimental bits.

The following restrictions apply to ATM Cell Relay over MPLS with EXP bits:

- ATM Cell Relay over MPLS allows you to statically set the experimental bits in VC, PVP, and port modes.
- If you do not assign values to the experimental bits, the priority bits in the header’s “tag control information” field are set to zero.
- On the Cisco 7500 series routers, distributed Cisco Express Forwarding must be enabled before you set the experimental bits.

The following restrictions apply to Ethernet over MPLS with EXP bits:

On the Cisco 7200 and 7500 Series Routers

- Ethernet over MPLS allows you to set the EXP bits by using either of the following methods:
 - Writing the priority bits into the experimental bit field, which is the default.
 - Using the `match any` command with the `set mpls exp` command.
- If you do not assign values to the experimental bits, the priority bits in the 802.1Q header’s “tag control information” field are written into the experimental bit fields.
- On the Cisco 7500 series routers, distributed Cisco Express Forwarding must be enabled before you set the experimental bits.

On the Cisco 10720 Internet Router

The table below lists the commands that are supported on the Cisco 10720 Internet router for Ethernet over MPLS. The letter Y means that the command is supported on that interface. A dash (--) means that command is not supported on that interface.

| Note | The `match cos` command is supported only on subinterfaces, not main interfaces. |

Table 7	Commands Supported on the Cisco 10720 Router for Ethernet over MPLS						
Commands	Traffic Matching Commands	Disposition	Imposition	In	Out	In	Out
Traffic Matching Commands							
match any	Y	Y	Y	Y			
match cos	Y	--	--	--			
The following restrictions apply to Frame Relay over MPLS and EXP bits:

- If you do not assign values to the experimental bits, the priority bits in the header’s “tag control information” field are set to zero.
- On the Cisco 7500 series routers, distributed Cisco Express Forwarding must be enabled before you set the experimental bits.

The following restrictions apply to HDLC over MPLS and PPP over MPLS and EXP bits:

- If you do not assign values to the experimental bits, zeros are written into the experimental bit fields.
- On the Cisco 7500 series routers, enable distributed Cisco Express Forwarding before setting the experimental bits.

Set the experimental bits in both the VC label and the LSP tunnel label. You set the experimental bits in the VC label, because the LSP tunnel label might be removed at the penultimate router. Perform this task to set the experimental bits.

<table>
<thead>
<tr>
<th>Commands</th>
<th>Imposition</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>match input-</td>
<td>--</td>
<td>Y</td>
</tr>
<tr>
<td>interface</td>
<td>--</td>
<td>Y</td>
</tr>
<tr>
<td>match mpls exp</td>
<td>--</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>--</td>
</tr>
<tr>
<td>match qos-group</td>
<td>--</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>-- Y</td>
</tr>
<tr>
<td>Traffic Action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>set cos</td>
<td>--</td>
<td>-- Y</td>
</tr>
<tr>
<td>set mpls exp</td>
<td>Y</td>
<td>--</td>
</tr>
<tr>
<td>set qos-group</td>
<td>Y</td>
<td>-- Y</td>
</tr>
<tr>
<td>set srp-priority</td>
<td>--</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Any Transport over MPLS
SUMMARY STEPS

1. enable
2. configure terminal
3. class-map class-name
4. match any
5. exit
6. policy-map policy-name
7. class class-name
8. set mpls experimental value
9. exit
10. exit
11. interface slot/port
12. service-policy input policy-name
13. exit
14. exit
15. show policy-map interface interface-name [vc [vpi] vci] [dlci dlci] [input | output]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 class-map class-name</td>
<td>Specifies the user-defined name of the traffic class and enters class map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# class-map class1</td>
<td></td>
</tr>
<tr>
<td>Step 4 match any</td>
<td>Specifies that all packets will be matched.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-cmap)# match any</td>
<td>• Use only the any keyword. Other keywords might cause unexpected results.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits class map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-cmap)#</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6 policy-map policy-name</td>
<td>Specifies the name of the traffic policy to configure and enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>policy-map policy1</td>
</tr>
<tr>
<td>Step 7 class class-name</td>
<td>Specifies the name of the predefined traffic that was configured with the class-map command and was used to classify traffic to the traffic policy specified, and enters policy-map class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap)#</td>
<td>class class1</td>
</tr>
<tr>
<td>Step 8 set mpls experimental value</td>
<td>Designates the value to which the MPLS bits are set if the packets match the specified policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)#</td>
<td>set mpls experimental 7</td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Exits policy-map class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)#</td>
<td>exit</td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Exits policy-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap)#</td>
<td>exit</td>
</tr>
<tr>
<td>Step 11 interface slot /port</td>
<td>Specifies the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td>interface atm4/0</td>
</tr>
</tbody>
</table>
Setting the Frame Relay Discard Eligibility Bit on the Cisco 7200 and 7500 Series Routers

You can use the DE bit in the address field of a Frame Relay frame to prioritize frames in congested Frame Relay networks. The Frame Relay DE bit has only one bit and can therefore only have two settings, 0 or 1. If congestion occurs in a Frame Relay network, frames with the DE bit set to 1 are discarded before frames with the DE bit set to 0. Therefore, important traffic should have the DE bit set to 0, and less important traffic should be forwarded with the DE bit set at 1. The default DE bit setting is 0. You can change the DE bit setting to 1 with the `set fr-de` command.

Note: The `set fr-de` command can be used only in an output service policy.

Perform this task to set the Frame Relay DE bit on the Cisco 7200 and 7500 series routers.
SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map policy-name
4. class class-name
5. set fr-de
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| Example: | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: | |
| Router# configure terminal | |
| **Step 3** policy-map policy-name | Specifies the name of the traffic policy to configure and enters policy-map configuration mode.
 - Names can be a maximum of 40 alphanumeric characters. |
| Example: | |
| Router(config)# policy-map policy1 | |
| **Step 4** class class-name | Specifies the name of a predefined traffic class and enters policy-map class configuration mode. |
| Example: | |
| Router(config-pmap)# class class1 | |
| **Step 5** set fr-de | Sets the Frame Relay DE bit setting for all packets that match the specified traffic class from 0 to 1. |
| Example: | |
| Router(config-pmap-c)# set fr-de | |
Matching the Frame Relay DE Bit on the Cisco 7200 and 7500 Series Routers

You can use the `match fr-de` command to enable frames with a DE bit setting of 1 to be considered a member of a defined class and forwarded according to the specifications set in the service policy.

Perform this task to match frames with the FR DE bit set to 1.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `class-map class-map-name`
4. `match fr-de`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>class-map class-map-name</code></td>
<td>Specifies the name of a predefined traffic class and enters class-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# <code>class-map de-bits</code></td>
<td></td>
</tr>
</tbody>
</table>
Enabling the Control Word

You can enable the control word for dynamic and static pseudowires under a pseudowire class. Use the `control-word` command to enable, disable, or set a control word to autosense mode. If you do not enable a control word, autosense is the default mode for the control word. Perform this task to enable a control word.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class cw_enable`
4. `encapsulation mpls`
5. `control-word`
6. `exit`
7. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3 pseudowire-class cw_enable</td>
<td>Enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# pseudowire-class cw_enable</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5 control-word</td>
<td>Enables the control word.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw-class)# control-word</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits pseudowire class configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw-class)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Any Transport over MPLS

- Example ATM AAL5 over MPLS, page 80
- Example OAM Cell Emulation for ATM AAL5 over MPLS, page 80
- Example ATM Cell Relay over MPLS, page 81
- Example ATM Single Cell Relay over MPLS, page 82
- Example Ethernet over MPLS, page 84
- Example Tunnel Selection, page 84
- Example Setting Frame Relay Discard Eligibility Bit on the Cisco 7200 and 7500 Series Routers, page 86
- Example Matching Frame Relay DE Bit on the Cisco 7200 and 7500 Series Routers, page 87
- Example ATM over MPLS, page 87
- Example Ethernet over MPLS with MPLS Traffic Engineering Fast Reroute, page 88
Example ATM AAL5 over MPLS

ATM AAL5 over MPLS on PVCs

The following example shows how to enable ATM AAL5 over MPLS on an ATM PVC:

```
enable
configure terminal
interface atm1/0
  pvc 1/200 l2transport
    encapsulation aal5
    xconnect 10.13.13.13 100 encapsulation mpls
```

ATM AAL5 over MPLS in VC Class Configuration Mode

The following example shows how to configure ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```
enable
configure terminal
vc-class atm aal5class
  encapsulation aal5
interface atm1/0
  class-int aal5class
    pvc 1/200 l2transport
      xconnect 10.13.13.13 100 encapsulation mpls
```

The following example shows how to configure ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```
enable
configure terminal
vc-class atm aal5class
  encapsulation aal5
interface atm1/0
  pvc 1/200 l2transport
    class-vc aal5class
      xconnect 10.13.13.13 100 encapsulation mpls
```

Example OAM Cell Emulation for ATM AAL5 over MPLS

OAM Cell Emulation for ATM AAL5 over MPLS on PVCs

The following example shows how to enable OAM cell emulation on an ATM PVC:

```
interface ATM 1/0/0
pvc 1/200 l2transport
encapsulation aal5
```
The following example shows how to set the rate at which an AIS cell is sent every 30 seconds:

```
interface ATM 1/0/0
pvc 1/200 l2transport
encapsulation aal5
xconnect 10.13.13.13 100 encapsulation mpls
oam-ac emulation-enable 30
oam-pvc manage
```

OAM Cell Emulation for ATM AAL5 over MPLS in VC Class Configuration Mode

The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
interface atm1/1
class-int oamclass
pvc 1/200 l2transport
xconnect 10.13.13.13 100 encapsulation mpls
```

The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
interface atm1/1
class-vc oamclass
pvc 1/200 l2transport
xconnect 10.13.13.13 100 encapsulation mpls
```

The following example shows how to configure OAM cell emulation for ATM AAL5 over MPLS in VC class configuration mode. The VC class is then applied to an interface. One PVC is configured with OAM cell emulation at an AIS rate of 10. That PVC uses the AIS rate of 10 instead of 30.

```
enable
configure terminal
vc-class atm oamclass
encapsulation aal5
oam-ac emulation-enable 30
oam-pvc manage
interface atm1/1
class-int oamclass
pvc 1/200 l2transport
oam-ac emulation-enable 10
xconnect 10.13.13.13 100 encapsulation mpls
```

Example ATM Cell Relay over MPLS
ATM Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode

The following example shows how to configure ATM cell relay over MPLS in VC class configuration mode. The VC class is then applied to an interface.

```
enable
configure terminal
vc-class atm cellrelay
encapsulation aal0
interface atm1/0
class-int cellrelay
pvc 1/200 l2transport
xconnect 10.13.13.13 100 encapsulation mpls
```

The following example shows how to configure ATM cell relay over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```
enable
configure terminal
vc-class atm cellrelay
encapsulation aal0
interface atm1/0
pvc 1/200 l2transport
class-vc cellrelay
xconnect 10.13.13.13 100 encapsulation mpls
```

ATM Cell Relay over MPLS in PVP Mode

The following example shows how to transport single ATM cells over a virtual path:

```
pseudowire-class vp-cell-relay
encapsulation mpls
interface atm 5/0
atm pvp 1 l2transport
xconnect 10.0.0.1 123 pw-class vp-cell-relay
```

ATM Cell Relay over MPLS in Port Mode

The following example shows how to configure interface ATM 5/0 to transport ATM cell relay packets:

```
pseudowire-class atm-cell-relay
encapsulation mpls
interface atm 5/0
xconnect 10.0.0.1 123 pw-class atm-cell-relay
```

The following example shows how to configure interface ATM 9/0/0 to transport ATM cell relay packets on a Cisco 7600 series router, where you must specify the interface ATM slot, bay, and port:

```
pseudowire-class atm-cell-relay
encapsulation mpls
interface atm 9/0/0
xconnect 10.0.0.1 500 pw-class atm-cell-relay
```

Example ATM Single Cell Relay over MPLS

ATM Packed Cell Relay over MPLS in VC Mode

The following example shows that ATM PVC 1/100 is an AToM cell relay PVC. There are three timers set up, with values of 1000 milliseconds, 800 milliseconds, and 500 milliseconds, respectively. The cell-
packing command specifies that five ATM cells are to be packed into an MPLS packet. The cell-packing command also specifies that timer 1 is to be used.

```
interface atm 1/0
shutdown
atm mcpt-timer 1000 800 500
no shutdown
pvc 1/100 l2transport
encapsulation aal0
xconnect 10.0.0.1 123 encapsulation mpls
cell-packing 5 mcpt-timer 1
```

ATM Packed Cell Relay over MPLS in VC Mode Using VC Class Configuration Mode

The following example shows how to configure ATM cell relay over MPLS with cell packing in VC class configuration mode. The VC class is then applied to an interface.

```
enable
configure terminal
vc-class atm cellpacking
encapsulation aal0
cell-packing 10 mcpt-timer 1
interface atm1/0
shutdown
atm mcpt-timers 100 200 250
no shutdown
class-int cellpacking
pvc 1/200 l2transport
xconnect 10.13.13.13 100 encapsulation mpls
```

The following example shows how to configure ATM cell relay over MPLS in VC class configuration mode. The VC class is then applied to a PVC.

```
enable
configure terminal
vc-class atm cellpacking
encapsulation aal0
cell-packing 10 mcpt-timer 1
interface atm1/0
shutdown
atm mcpt-timers 100 200 250
no shutdown
pvc 1/200 l2transport
class-vc cellpacking
xconnect 10.13.13.13 100 encapsulation mpls
```

ATM Packed Cell Relay over MPLS in VP Mode

The following example shows packed cell relay enabled on an interface configured for PVP mode. The cell-packing command specifies that 10 ATM cells are to be packed into an MPLS packet. The cell-packing command also specifies that timer 2 is to be used.

```
interface atm 1/0
shutdown
atm mcpt-timer 1000 800 500
no shutdown
atm pvp 100 l2transport
xconnect 10.0.0.1 234 encapsulation mpls
cell-packing 10 mcpt-timer 2
```
ATM Packed Cell Relay over MPLS in Port Mode

The following example shows packed cell relay enabled on an interface set up for port mode. The `cell-packing` command specifies that 10 ATM cells are to be packed into an MPLS packet. The `cell-packing` command also specifies that timer 2 is to be used.

```
interface atm 5/0
  shutdown
  atm mcpt-timer 1000 800 500
  no shutdown
cell-packing 10 mcpt-timer 2
  xconnect 10.0.0.1 123 encapsulation mpls
```

Example Ethernet over MPLS

Ethernet over MPLS in Port Mode

The following example shows how to configure VC 123 in Ethernet port mode:

```
pseudowire-class ethernet-port
  encapsulation mpls
int gigabitethernet1/0
  xconnect 10.0.0.1 123 pw-class ethernet-port
```

Ethernet over MPLS with VLAN ID Rewrite

The following example shows how to configure VLAN ID rewrite on peer PE routers with Cisco 12000 series router engine 2 3-port Gigabit Ethernet line cards.

```
PE1
  interface GigabitEthernet0/0.2
    encapsulation dot1Q 2
    no ip directed-broadcast
    no cdp enable
    xconnect 10.5.5.5 2 encapsulation mpls
    remote circuit id 3
PE2
  interface GigabitEthernet3/0.2
    encapsulation dot1Q 3
    no ip directed-broadcast
    no cdp enable
    xconnect 10.3.3.3 2 encapsulation mpls
    remote circuit id 2
```

Example Tunnel Selection

The following example shows how to set up two preferred paths for PE1. One preferred path specifies an MPLS traffic engineering tunnel. The other preferred path specifies an IP address of a loopback address on PE2. There is a static route configured on PE1 that uses a TE tunnel to reach the IP address on PE2.

```
PE1 Configuration

  mpls label protocol ldp
  mpls traffic-eng tunnels
tag-switching tdp router-id Loopback0
  pseudowire-class pw1
    encapsulation mpls
      preferred-path interface Tunnel1 disable-fallback
    !
pseudowire-class pw2
      encapsulation mpls
        preferred-path peer 10.18.18.18
    !
```

Example Ethernet over MPLS
interface Loopback0
 ip address 10.2.2.2 255.255.255.255
 no ip directed-broadcast
 no ip mroute-cache
!
interface Tunnel1
 ip unnumbered Loopback0
 no ip directed-broadcast
 tunnel destination 10.16.16.16
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng priority 7 7
 tunnel mpls traffic-eng bandwidth 1500
 tunnel mpls traffic-eng path-option 1 explicit name path-tu1
!
interface Tunnel2
 ip unnumbered Loopback0
 no ip directed-broadcast
 tunnel destination 10.16.16.16
 tunnel mode mpls traffic-eng
 tunnel mpls traffic-eng priority 7 7
 tunnel mpls traffic-eng bandwidth 1500
 tunnel mpls traffic-eng path-option 1 dynamic
!
interface gigabitethernet0/0/0
 no ip address
 no ip directed-broadcast
 no negotiation auto
!
interface gigabitethernet0/0/0.1
 encapsulation dot1Q 222
 no ip directed-broadcast
 xconnect 10.16.16.16 101 pw-class pw1
!
interface ATM1/0/0
 no ip address
 no ip directed-broadcast
 no atm enable-ilmi-trap
 no atm ilmi-keepalive
 pvc 0/50 12transport
 encapsulation aal5
 xconnect 10.16.16.16 150 pw-class pw2
!
interface Ethernet2/0/1
 ip address 10.0.0.1 255.255.255.0
 no ip directed-broadcast
 tag-switching ip
 mpls traffic-eng tunnels
 ip rsvp bandwidth 15000 150000
!
router ospf 1
 log-adjacency-changes
 network 10.0.0.0 0.0.0.255 area 0
 network 10.2.2.2 0.0.0.0 area 0
 mpls traffic-eng router-id Loopback0
 mpls traffic-eng area 0
!
ip route 10.18.18.18 255.255.255.255 Tunnel2
!
ip explicit-path name path-tu1 enable
 next-address 10.0.0.1
 index 3 next-address 10.0.0.1

PE2 Configuration

mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback0
interface Loopback0
 ip address 10.16.16.16 255.255.255.255
 no ip directed-broadcast
 no ip mroute-cache
!
Example Setting Frame Relay Discard Eligibility Bit on the Cisco 7200 and 7500 Series Routers

The following example shows how to configure the service policy called set-de and attach it to an interface. In this example, the class map called data evaluates all packets exiting the interface for an IP precedence value of 1. If the exiting packet has been marked with the IP precedence value of 1, the packet’s DE bit is set to 1.

class-map data
match ip precedence 1
policy-map set-de
class data
set fr-de
interface Serial0/0/0
encapsulation frame-relay
interface Serial0/0.1 point-to-point
ip address 192.168.249.194 255.255.255.252
frame-relay interface-dlci 100
service output set-de
Example Matching Frame Relay DE Bit on the Cisco 7200 and 7500 Series Routers

The following example shows how to configure the service policy called match-de and attach it to an interface. In this example, the class map called data evaluates all packets entering the interface for a DE bit setting of 1. If the entering packet has been a DE bit value of 1, the packet’s EXP bit setting is set to 3.

```
class-map data
match fr-de
policy-map match-de
class data
set mpls exp 3
ip routing
ip cef distributed
mpls label protocol ldp
interface Loopback0
  ip address 10.20.20.20 255.255.255.255
interface Ethernet1/0/0
  ip address 10.0.0.2 255.255.255.0
mpls ip
interface Serial4/0/0
  encapsulation frame-relay
service input match-de
connect 100 Serial4/0/0 100 l2transport
xconnect 10.10.10.10 100 encapsulation mpls
```

Example ATM over MPLS

The table below shows the configuration of ATM over MPLS on two PE routers.
Table 8
ATM over MPLS Configuration Example

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls ldp router-id Loopback0 force</td>
<td>mpls ldp router-id Loopback0 force</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.16.12.12 255.255.255.255</td>
<td>ip address 10.13.13.13 255.255.255.255</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface ATM4/0</td>
<td>interface ATM4/0</td>
</tr>
<tr>
<td>pvc 0/100 l2transport</td>
<td>pvc 0/100 l2transport</td>
</tr>
<tr>
<td>encapsulation aal0</td>
<td>encapsulation aal0</td>
</tr>
<tr>
<td>xconnect 10.13.13.13 100 encapsulation mpls</td>
<td>xconnect 10.13.13.13 100 encapsulation mpls</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface ATM4/0.300 point-to-point</td>
<td>interface ATM4/0.300 point-to-point</td>
</tr>
<tr>
<td>no ip directed-broadcast</td>
<td>no ip directed-broadcast</td>
</tr>
<tr>
<td>no atm enable-ilmi-trap</td>
<td>no atm enable-ilmi-trap</td>
</tr>
<tr>
<td>pvc 0/300 l2transport</td>
<td>pvc 0/300 l2transport</td>
</tr>
<tr>
<td>encapsulation aal0</td>
<td>encapsulation aal0</td>
</tr>
<tr>
<td>xconnect 10.13.13.13 300 encapsulation mpls</td>
<td>xconnect 10.13.13.13 300 encapsulation mpls</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
</tbody>
</table>

Example Ethernet over MPLS with MPLS Traffic Engineering Fast Reroute

The following configuration example and the figure below show the configuration of Ethernet over MPLS with fast reroute on AToM PE routers.

Routers PE1 and PE2 have the following characteristics:

- A TE tunnel called Tunnel41 is configured between PE1 and PE2, using an explicit path through a link called L1. AToM VCs are configured to travel through the FRR-protected tunnel Tunnel41.
- The link L1 is protected by FRR, the backup tunnel is Tunnel1.
• PE2 is configured to forward the AToM traffic back to PE1 through the L2 link.

PE1 Configuration

```
mpls label protocol ldp
mpls traffic-eng tunnels
mpls ldp router-id Loopback1 force

! pseudowire-class T41
encapsulation mpls
  preferred-path interface Tunnel41 disable-fallback
!
! pseudowire-class IP1
encapsulation mpls
  preferred-path peer 10.4.0.1 disable-fallback
!
interface Loopback1
  ip address 10.0.0.27 255.255.255.255
!
interface Tunnel1
  ip unnumbered Loopback1
tunnel destination 10.0.0.1
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng priority 1 1
  tunnel mpls traffic-eng bandwidth 10000
  tunnel mpls traffic-eng path-option 1 explicit name FRR
!
interface Tunnel41
  ip unnumbered Loopback1
tunnel destination 10.0.0.4
  tunnel mode mpls traffic-eng
  tunnel mpls traffic-eng priority 1 1
  tunnel mpls traffic-eng bandwidth 1000
  tunnel mpls traffic-eng path-option 1 explicit name-1
  tunnel mpls traffic-eng fast-reroute
!
interface POS0/0
description pe1name POS8/0/0
  ip address 10.1.0.2 255.255.255.252
  mpls traffic-eng tunnels
  mpls traffic-eng backup-path Tunnel1
crc 16
clock source internal
pos ais-shut
pos report lrdi
  ip rsvp bandwidth 155000 155000
!
interface POS0/3
description pe1name POS10/1/0
  ip address 10.1.0.14 255.255.255.252
  mpls traffic-eng tunnels
crc 16
clock source internal
  ip rsvp bandwidth 155000 155000
!
interface gigabitethernet3/0.1
crc 16
xconnect 10.0.0.4 2 pw-class IP1
```

Figure 2 Fast Reroute Configuration
interface gigabitethernet3/0.2
 encapsulation dot1Q 204
 xconnect 10.0.0.4 4 pw-class T41
! router ospf 1
 network 10.0.0.0 0.255.255.255 area 0
 mpls traffic-eng router-id Loopback1
 mpls traffic-eng area 0
! ip classless
 ip route 10.4.0.1 255.255.255.255 Tunnel41
! ip explicit-path name xxxx-1 enable
 next-address 10.4.1.2
 next-address 10.1.0.10

P Configuration

 ip cef
 mpls traffic-eng tunnels
! interface Loopback1
 ip address 10.0.0.1 255.255.255.255
! interface FastEthernet1/0/0
 ip address 10.4.1.2 255.255.255.0
 mpls traffic-eng tunnels
 ip rsvp bandwidth 10000 10000
! interface POS8/0/0
 description xxxx POS0/0
 ip address 10.1.0.1 255.255.255.252
 mpls traffic-eng tunnels
 pos ais-shut
 pos report lrdi
 ip rsvp bandwidth 155000 155000
! interface POS10/1/0
 description xxxx POS0/3
 ip address 10.1.0.13 255.255.255.252
 mpls traffic-eng tunnels
 ip rsvp bandwidth 155000 155000
! router ospf 1
 network 10.0.0.0 0.255.255.255 area 0
 mpls traffic-eng router-id Loopback1
 mpls traffic-eng area 0

PE2 Configuration

 ip cef
 mpls label protocol ldp
 mpls traffic-eng tunnels
 mpls ldp router-id Loopback1 force
! interface Loopback1
 ip address 10.0.0.4 255.255.255.255
! interface Loopback 2
 ip address 10.4.0.1 255.255.255.255
! interface Tunnel27
 ip unnumbered Loopback1
tunnel destination 10.0.0.27
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 1 1
tunnel mpls traffic-eng bandwidth 1000
tunnel mpls traffic-eng path-option 1 explicit name xxxx-1
Example Configuring per-Subinterface MTU for Ethernet over MPLS

The figure below shows a configuration that enables matching MTU values between VC endpoints.

As shown in the figure below, PE1 is configured in xconnect subinterface configuration mode with an MTU value of 1500 bytes in order to establish an end-to-end VC with PE2, which also has an MTU value of 1500 bytes. If PE1 was not set with an MTU value of 1500 bytes, in xconnect subinterface configuration mode, the subinterface would inherit the MTU value of 2000 bytes set on the interface. This would cause a mismatch in MTU values between the VC endpoints, and the VC would not come up.

The following examples show the router configurations in the figure above:

CE1 Configuration

```
interface gigabitethernet0/0
  mtu 1500
  no ip address
!
interface gigabitethernet0/0.1
  encapsulation dot1q 100
  ip address 10.181.182.1 255.255.255.0
```

PE1 Configuration

```
interface gigabitethernet0/0
  mtu 2000
  no ip address
```
! interface gigabitethernet0/0.1
 encapsulation dot1q 100
 xconnect 10.1.1.152 100 encapsulation mpls
 mtu 1500
!
interface gigabitethernet0/0.2
 encapsulation dot1q 200
 ip address 10.151.100.1 255.255.255.0
 mpls ip

PE2 Configuration

interface gigabitethernet1/0
 mtu 2000
 no ip address
!
interface gigabitethernet1/0.2
 encapsulation dot1q 200
 ip address 10.100.152.2 255.255.255.0
 mpls ip
!
interface fastethernet0/0
 no ip address
!
interface fastethernet0/0.1
 description default MTU of 1500 for FastEthernet
 encapsulation dot1q 100
 xconnect 10.1.1.151 100 encapsulation mpls

CE2 Configuration

interface fastethernet0/0
 no ip address
!
interface fastethernet0/0.1
 encapsulation dot1q 100
 ip address 10.181.182.2 255.255.255.0

The show mpls l2transport binding command, issued from router PE1, shows a matching MTU value of 1500 bytes on both the local and remote routers:

Router# show mpls l2transport binding
Destination Address: 10.1.1.152, VC ID: 100
 Local Label: 100
 Cbit: 1, VC Type: Ethernet, GroupID: 0
 MTU: 1500, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2]
 CV Type: LSPV [2]
 Remote Label: 202
 Cbit: 1, VC Type: Ethernet, GroupID: 0
 MTU: 1500, Interface Desc: n/a
 VCCV: CC Type: RA [2]
 CV Type: LSPV [2]

Router# show mpls l2transport vc detail
Local interface: Gi0/0.1 up, line protocol up, Eth VLAN 100 up
 Destination address: 10.1.1.152, VC ID: 100, VC status: up
 Output interface: Gi0/0.2, imposed label stack {202}
 Preferred path: not configured
 Default path: active
 Next hop: 10.1.1.152
 Create time: 1d11h, last status change time: 1d11h
 Signaling protocol: LDP, peer 10.1.1.152:0 up
 Targeted Hello: 10.1.1.151(LDP Id) -> 10.1.1.152
 MPLS VC labels: local 100, remote 202
 Group ID: local 0, remote 0
 MTU: local 1500, remote 1500
 Remote interface description:
Example Configuring MTU Values in xconnect Configuration Mode for L2VPN Interworking

The following example shows an L2VPN Interworking example. The PE1 router has a serial interface configured with an MTU value of 1492 bytes. The PE2 router uses xconnect configuration mode to set a matching MTU of 1492 bytes, which allows the two routers to form an interworking VC. If the PE2 router did not set the MTU value in xconnect configuration mode, the interface would be set to 1500 bytes by default and the VC would not come up.

PE1 Configuration

```
pseudowire-class atom-iplw
    encapsulation mpls
    interworking ip
    
    interface Loopback0
    ip address 10.1.1.151 255.255.255.255
    
    interface Serial2/0
    mtu 1492
    no ip address
    encapsulation ppp
    no fair-queue
    serial restart-delay 0
    xconnect 10.1.1.152 123 pw-class atom-iplw
    
    interface Serial4/0
    ip address 10.1.1.151 255.255.255.252
    encapsulation ppp
    mpls ip
    serial restart-delay 0
    
    router ospf 1
    log-adjacency-changes
```
network 10.1.1.151 0.0.0.0 area 0
network 10.151.100.0 0.0.0.3 area 0

mpls ldp router-id Loopback0

PE2 Configuration

pseudowire-class atom-ipiw
encapsulation mpls
interworking ip

interface Loopback0
ip address 10.1.1.152 255.255.255.255

interface Ethernet0/0
no ip address
xconnect 10.1.1.151 123 pw-class atom-ipiw
mtu 1492

interface Serial4/0
ip address 10.100.152.2 255.255.255.252
encapsulation ppp
mpls ip
serial restart-delay 0

router ospf 1
log-adjacency-changes
network 10.1.1.152 0.0.0.0 area 0
network 10.100.152.0 0.0.0.3 area 0

mpls ldp router-id Loopback0

The `show mpls l2transport binding` command shows that the MTU value for the local and remote routers is 1492 bytes.

PE1 Configuration

Router# show mpls l2transport binding

Destination Address: 10.1.1.152, VC ID: 123
Local Label: 105
 Cbit: 1, VC Type: PPP, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2]
 CV Type: LSPV [2]
Remote Label: 205
 Cbit: 1, VC Type: Ethernet, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: RA [2]
 CV Type: LSPV [2]

Router# show mpls l2transport vc detail
Local interface: Se2/0 up, line protocol up, PPP up
 MPLS VC type is PPP, interworking type is IP
 Destination address: 10.1.1.152, VC ID: 123, VC status: up
 Output interface: Se4/0, imposed label stack (1003 205)
 Preferred path: not configured
 Default path: active
 Next hop: point2point
 Create time: 00:25:29, last status change time: 00:24:54
 Signaling protocol: LDP, peer 10.1.1.152:0 up
 Targeted Hello: 10.1.1.151(LDP Id) -> 10.1.1.152
 Status TLV support (local/remote) : enabled/supported
 Label/state state machine : established, LruRru
 Last local dataplane status rcvd: no fault
 Last local SSS circuit status rcvd: no fault
 Last local LDP TLV status sent: no fault
 Last local LDP TLV status sent: no fault
 Last remote LDP TLV status rcvd: no fault
 MPLS VC labels: local 105, remote 205
 Group ID: local n/a, remote 0

Any Transport over MPLS
MTU: local 1492, remote 1492
Remote interface description:
Sequencing: receive disabled, send disabled
VC statistics:
packet totals: receive 30, send 29
byte totals: receive 2946, send 3364
packet drops: receive 0, send 0

PE2 Configuration

Router# show mpls l2transport binding
Destination Address: 10.1.1.151, VC ID: 123
Local Label: 205
 Cbit: 1, VC Type: Ethernet, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: RA [2]
 CV Type: LSPV [2]
Remote Label: 105
 Cbit: 1, VC Type: Ethernet, GroupID: 0
 MTU: 1492, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2]
 CV Type: LSPV [2]

Router# show mpls l2transport vc detail
Local interface: Et0/0 up, line protocol up, Ethernet up
MPLS VC type is Ethernet, interworking type is IP
Destination address: 10.1.1.151, VC ID: 123, VC status: up
Output interface: Se4/0, imposed label stack {1002 105}
Preferred path: not configured
Default path: active
Next hop: point2point
Create time: 00:25:19, last status change time: 00:25:19
Signaling protocol: LDP, peer 10.1.1.151:0 up
Targeted Hello: 10.1.1.152(LDP Id) -> 10.1.1.151
Status TLV support (local/remote) : enabled/supported
 Last local dataplane status rcvd: no fault
 Last local SSS circuit status rcvd: no fault
 Last local SSS circuit status sent: no fault
 Last local LDP TLV status sent: no fault
 Last remote LDP TLV status rcvd: no fault
MPLS VC labels: local 205, remote 105
Group ID: local n/a, remote 0
MTU: local 1492, remote 1492
Remote interface description:
Sequencing: receive disabled, send disabled
VC statistics:
packet totals: receive 29, send 30
byte totals: receive 2900, send 3426
packet drops: receive 0, send 0

Example Removing a Pseudowire

The following example shows how to remove all xconnects:

Router# clear xconnect all
02:13:56: Xconnect[ac:Et1/0.1(Eth VLAN)]: provisioning fwder with fwd_type=1, sss_role=1
02:13:56: Xconnect[mpls:10.1.1.2:1234000]: provisioning fwder with fwd_type=2, sss_role=2
02:13:56: Xconnect[ac:Et1/0.2(Eth VLAN)]: provisioning fwder with fwd_type=1, sss_role=2
02:13:56: Xconnect[mpls:10.1.1.2:1234001]: provisioning fwder with fwd_type=2, sss_role=1
02:13:56: Xconnect[ac:Et1/0.3(Eth VLAN)]: provisioning fwder with fwd_type=1, sss_role=2
02:13:56: Xconnect[mpls:10.1.2.2:1234002]: provisioning fwder with fwd_type=2, sss_role=1
02:13:56: Xconnect[ac:Et1/0.4(Eth VLAN)]: provisioning fwder with fwd_type=1, sss_role=2
02:13:56: Xconnect[mpls:10.1.2.2:1234003]: provisioning fwder with fwd_type=2, sss_role=1
02:13:56: MPLS peer 10.1.1.2 vcld 1234002, VC DOWN, VC state DOWN
02:13:56: MPLS peer 10.1.1.2 vcld 1234003, VC DOWN, VC state DOWN
02:13:56: MPLS peer 10.1.2.2 vcld 1234001, VC DOWN, VC state DOWN
02:13:56: MPLS peer 10.1.2.2 vcld 1234003, VC DOWN, VC state DOWN
02:13:56: XC AUTH [Et1/0.1, 1001]: Event: start xconnect authorization, state changed
from IDLE to AUTHORIZING
02:13:56: XC AUTH [Et1/0.1, 1001]: Event: found xconnect authorization, state changed from AUTHORIZING to DONE
02:13:56: XC AUTH [Et1/0.3, 1003]: Event: found xconnect authorization, state changed from AUTHORIZING to DONE
02:13:56: XC AUTH [10.1.1.2, 1234001]: Event: start xconnect authorization, state changed from IDLE to AUTHORIZING
02:13:56: XC AUTH [10.1.1.2, 1234001]: Event: found xconnect authorization, state changed from AUTHORIZING to DONE
02:13:56: XC AUTH [10.1.2.2, 1234003]: Event: start xconnect authorization, state changed from IDLE to AUTHORIZING
02:13:56: XC AUTH [10.1.2.2, 1234003]: Event: found xconnect authorization, state changed from AUTHORIZING to DONE
02:13:56: XC AUTH [Et1/0.1, 1001]: Event: free xconnect authorization request, state changed from DONE to END
02:13:56: XC AUTH [Et1/0.3, 1003]: Event: free xconnect authorization request, state changed from DONE to END
02:13:56: XC AUTH [10.1.1.2, 1234001]: Event: free xconnect authorization request, state changed from DONE to END
02:13:56: XC AUTH [10.1.2.2, 1234003]: Event: free xconnect authorization request, state changed from DONE to END
02:13:56: MPLS peer 10.1.1.2 vcid 1234001, VC UP, VC state UP
02:13:56: MPLS peer 10.1.1.2 vcid 1234000, VC UP, VC state UP
02:13:56: MPLS peer 10.1.2.2 vcid 1234002, VC UP, VC state UP
02:13:56: MPLS peer 10.1.2.2 vcid 1234000, VC UP, VC state UP
02:13:56: MPLS peer 10.1.1.2 vcid 1234001, VC DOWN, VC state DOWN

The following example shows how to remove all the xconnects associated with peer router 10.1.1.2:

Router# clear xconnect peer 10.1.1.2 all
02:14:08: Xconnect[ac:Et1/0.1(Eth VLAN)]: provisioning fwdr with fwd_type=1, sss_role=1
02:14:08: Xconnect[mpls:10.1.1.2:1234000]: provisioning fwdr with fwd_type=2, sss_role=2
02:14:08: Xconnect[ac:Et1/0.2(Eth VLAN)]: provisioning fwdr with fwd_type=1, sss_role=2
02:14:08: Xconnect[mpls:10.1.1.2:1234001]: provisioning fwdr with fwd_type=2, sss_role=1
02:14:08: MPLS peer 10.1.1.2 vcid 1234000, VC DOWN, VC state DOWN
02:14:08: MPLS peer 10.1.1.2 vcid 1234001, VC DOWN, VC state DOWN
02:14:08: XC AUTH [Et1/0.1, 1001]: Event: start xconnect authorization, state changed from IDLE to AUTHORIZING
02:14:08: XC AUTH [Et1/0.1, 1001]: Event: found xconnect authorization, state changed from AUTHORIZING to DONE
02:14:08: XC AUTH [Et1/0.2, 1002]: Event: start xconnect authorization, state changed from IDLE to AUTHORIZING
02:14:08: XC AUTH [Et1/0.2, 1002]: Event: found xconnect authorization, state changed from AUTHORIZING to DONE
02:14:08: XC AUTH [Et1/0.1, 1001]: Event: free xconnect authorization request, state changed from DONE to END
02:14:08: XC AUTH [Et1/0.1, 1001]: Event: free xconnect authorization request, state changed from DONE to END
02:14:08: MPLS peer 10.1.1.2 vcid 1234001, VC UP, VC state UP
02:14:08: MPLS peer 10.1.1.2 vcid 1234000, VC UP, VC state UP
02:14:08: MPLS peer 10.1.1.2 vcid 1234002, VC UP, VC state UP
02:14:08: MPLS peer 10.1.1.2 vcid 1234000, VC DOWN, VC state DOWN
02:14:08: MPLS peer 10.1.1.2 vcid 1234001, VC DOWN, VC state DOWN

The following example shows how to remove the xconnects associated with peer router 10.1.1.2 and VC ID 1234001:

Router# clear xconnect peer 10.1.1.2 vcid 1234001
02:14:23: Xconnect[ac:Et1/0.1(Eth VLAN)]: provisioning fwdr with fwd_type=1, sss_role=1
02:14:23: Xconnect[mpls:10.1.1.2:1234000]: provisioning fwdr with fwd_type=2, sss_role=2
02:14:23: MPLS peer 10.1.1.2 vcid 1234000, VC DOWN, VC state DOWN
02:14:23: XC AUTH [Et1/0.2, 1002]: Event: start xconnect authorization, state changed from IDLE to AUTHORIZING
02:14:23: XC AUTH [Et1/0.2, 1002]: Event: found xconnect authorization, state changed from AUTHORIZING to DONE
02:14:23: XC AUTH [Et1/0.1, 1001]: Event: free xconnect authorization request, state changed from DONE to END
02:14:23: XC AUTH [Et1/0.1, 1001]: Event: free xconnect authorization request, state changed from DONE to END
02:14:23: MPLS peer 10.1.1.2 vcid 1234001, VC UP, VC state UP
02:14:23: MPLS peer 10.1.1.2 vcid 1234000, VC UP, VC state UP
02:14:23: MPLS peer 10.1.1.2 vcid 1234002, VC UP, VC state UP
02:14:23: MPLS peer 10.1.1.2 vcid 1234000, VC DOWN, VC state DOWN
02:14:23: MPLS peer 10.1.1.2 vcid 1234001, VC DOWN, VC state DOWN

The following example shows how to remove the xconnects associated with interface Ethernet 1/0.1:

Router# clear xconnect interface eth1/0.1
02:14:48: Xconnect[ac:Et1/0.1(Eth VLAN)]: provisioning fwdr with fwd_type=1, sss_role=2
02:14:48: Xconnect[mpls:10.1.1.2:1234000]: provisioning fwder with fwd_type=2, sss_role=1
02:14:48: MPLS peer 10.1.1.2 vcid 1234000, VC DOWN, VC state DOWN
02:14:48: XC AUTH [10.1.1.2, 1234000]: Event: start xconnect authorization, state changed from IDLE to AUTHORIZING
02:14:48: XC AUTH [10.1.1.2, 1234000]: Event: found xconnect authorization, state changed from AUTHORIZING to DONE
02:14:48: XC AUTH [10.1.1.2, 1234000]: Event: free xconnect authorization request, state changed from DONE to END

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Any Transport over MPLS</td>
<td>“Overview” section of Cisco Any Transport over MPLS</td>
</tr>
<tr>
<td>Any Transport over MPLS for the Cisco 10000 series router</td>
<td>Cisco 10000 Series Router Broadband Aggregation, Leased-Line, and MPLS Configuration Guide</td>
</tr>
<tr>
<td>Layer 2 Tunnel Protocol Version 3 (L2TPv3)</td>
<td>Layer 2 Tunnel Protocol Version 3 (L2TPv3)</td>
</tr>
<tr>
<td>L2VPN interworking</td>
<td>L2VPN Interworking</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-martini-l2circuit-trans-mpls-08.txt</td>
<td>Transport of Layer 2 Frames Over MPLS</td>
</tr>
<tr>
<td>draft-martini-l2circuit-encap-mpls-04.txt</td>
<td>Encapsulation Methods for Transport of Layer 2 Frames Over MPLS</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM AAL5 over MPLS and ATM Cell Relay over MPLS:</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>• MPLS LDP MIB (MPLS-LDP-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• ATM MIB (ATM-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• CISCO AAL5 MIB (CISCO-AAL5-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• Cisco Enterprise ATM Extension MIB (CISCO-ATM-EXT-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• Supplemental ATM Management Objects (CISCO-IETF-ATM2-PVCTRAP-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• Interfaces MIB (IF-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>Ethernet over MPLS:</td>
<td></td>
</tr>
<tr>
<td>• CISCO-ETHERLIKE-CAPABILITIES.my</td>
<td></td>
</tr>
<tr>
<td>• Ethernet MIB (ETHERLIKE-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• Interfaces MIB (IF-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• MPLS LDP MIB (MPLS-LDP-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>Frame Relay over MPLS:</td>
<td></td>
</tr>
<tr>
<td>• Cisco Frame Relay MIB (CISCO-FRAME-RELAY-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• Interfaces MIB (IF-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• MPLS LDP MIB (MPLS-LDP-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>HDLC and PPP over MPLS:</td>
<td></td>
</tr>
<tr>
<td>• MPLS LDP MIB (MPLS-LDP-MIB.my)</td>
<td></td>
</tr>
<tr>
<td>• Interfaces MIB (IF-MIB.my)</td>
<td></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3032</td>
<td>MPLS Label Stack Encoding</td>
</tr>
<tr>
<td>RFC 3036</td>
<td>LDP Specification</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Any Transport over MPLS

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Transport over MPLS</td>
<td>12.0(10)ST 12.0(21)ST 12.0(22)S</td>
<td>In Cisco IOS Release 12.0(10)ST, Any Transport over MPLS: ATM AAL5 over MPLS was introduced on the Cisco 12000 series routers.</td>
</tr>
<tr>
<td></td>
<td>12.0(23)S 12.0(25)S 12.0(26)S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.0(27)S 12.0(29)S 12.0(30)S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.0(31)S 12.0(32)S 12.1(8a)E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(14)S 12.2(15)T 12.2(28)SB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRB 12.2(33)SXH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRC 12.2(33)SRD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(1)SRE 12.4(11)T 15.0(1)S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.1(3)S</td>
<td></td>
</tr>
</tbody>
</table>

In Cisco IOS Release 12.0(21)ST, Any Transport over MPLS: Ethernet over MPLS was introduced on the Cisco 12000 series routers. ATM AAL5 over MPLS was updated. In Cisco IOS Release 12.0(22)S, Ethernet over MPLS was integrated into this release. Support for the Cisco 10720 Internet router was added. ATM AAL5 over MPLS was integrated into this release for the Cisco 12000 series routers.

In Cisco IOS Release 12.0(23)S, the following new features were introduced and support was added for them on the Cisco 7200 and 7500 series routers:

- ATM Cell Relay over MPLS (single cell relay, VC mode)
- Frame Relay over MPLS
- HDLC over MPLS
- PPP over MPLS

Cisco IOS Release 12.0(23)S also added support on the Cisco 12000, 7200, and 7500 series routers for the following features:

- ATM AAL5 over MPLS
- Ethernet over MPLS (VLAN mode)

The AToM features were integrated into Cisco IOS Release 12.2(14)S.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The AToM features were integrated into Cisco IOS Release 12.2(15)T.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.0(25)S, the following new features were introduced:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New commands for configuring AToM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ethernet over MPLS: port mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ATM Cell Relay over MPLS: packed cell relay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ATM Cell Relay over MPLS: VP mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ATM Cell Relay over MPLS: port mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Distributed Cisco Express Forwarding mode for Frame Relay, PPP, and HDLC over MPLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Fast reroute with AToM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tunnel selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Traffic policing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• QoS support</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Support for connecting disparate attachment circuits. See L2VPN Interworking for more information.</td>
<td>In Cisco IOS Release 12.0(26)S, the following new features were introduced:</td>
<td>• QoS functionality with AToM for the Cisco 7200 series routers. Support for FECN and BECN marking with Frame Relay over MPLS. (See BECN and FECN Marking for Frame Relay over MPLS for more information.)</td>
</tr>
<tr>
<td>ATM Cell Relay over MPLS: Packed Cell Relay for VC, PVP, and port mode for the Cisco 12000 series router.</td>
<td>In Cisco IOS Release 12.0(27)S, the following new features were introduced:</td>
<td>• Support for ATM over MPLS on the Cisco 12000 series 4-port OC-12X/STM-4 ATM ISE line card. This feature was integrated into Cisco IOS Release 12.2(25)S for the Cisco 7200 and 7500 series routers.</td>
</tr>
<tr>
<td>“Any Transport over MPLS Sequencing Support” feature was added for the Cisco 7200 and 7500 series routers.</td>
<td>In Cisco IOS Release 12.0(29)S, the following new features were introduced:</td>
<td>In Cisco IOS Release 12.0(30)S, the following new features were introduced:</td>
</tr>
<tr>
<td>The Cisco 12000 series router introduced the following enhancements:</td>
<td>In Cisco IOS Release 12.0(31)S, the Cisco 12000 series router introduced the following enhancements:</td>
<td>• AToM VC Independence--With this enhancement, fast</td>
</tr>
</tbody>
</table>
Feature Information for Any Transport over MPLS

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>reroute is accomplished in less than 50 milliseconds, regardless of the number of VCs configured.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Support for ISE line cards on the 2.5G ISE SPA Interface Processor (SIP).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Cisco IOS Release 12.0(32)S, the Cisco 12000 series router added engine 5 line card support for the following transport types:

- Ethernet over MPLS
- Frame Relay over MPLS
- HDLC over MPLS
- PPP over MPLS
This feature was integrated into Cisco IOS Release 12.2(28)SB on the Cisco 10000 series routers. Platform-specific configuration information is contained in the “Configuring Any Transport over MPLS” section of the Cisco 10000 Series Router Broadband Aggregation, Leased-Line, and MPLS Configuration Guide.

Any Transport over MPLS was integrated into Cisco IOS Release 12.4(11)T with support for the following features:

- Any Transport over MPLS: Ethernet over MPLS: Port Mode
- Any Transport over MPLS: Ethernet over MPLS: VLAN Mode
- Any Transport over MPLS: Ethernet over MPLS: VLAN ID Rewrite
- Any Transport over MPLS: Frame Relay over MPLS
- Any Transport over MPLS: AAL5 over MPLS
- Any Transport over MPLS: ATM OAM Emulation

This feature was integrated into Cisco IOS Release 12.2(33)SRB to support the following features on the Cisco 7600 router:

- Any Transport over MPLS: Frame Relay over MPLS
- Any Transport over MPLS: ATM Cell Relay over MPLS: Packed Cell Relay
- Any Transport over MPLS: Ethernet over MPLS
- AToM Static Pseudowire Provisioning

Platform-specific configuration information is contained in the following documents:
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The “Configuring PFC3BXL and PFC3B Mode Multiprotocol Label Switching” module of the Cisco 7600 Series Cisco IOS Software Configuration Guide, Release 12.2SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The “Configuring Multiprotocol Label Switching on the Optical Services Modules” module of the OSM Configuration Note, Release 12.2SR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The “Configuring Multiprotocol Label Switching on FlexWAN and Enhanced FlexWAN Modules” module of the FlexWAN and Enhanced FlexWAN Modules Configuration Guide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The “Configuring Any Transport over MPLS on a SIP” section of the Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The “Configuring AToM VP Cell Mode Relay Support” section of the Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The Cross-Platform Release Notes for Cisco IOS Release 12.2SR for the Cisco 7600 Series Routers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature was integrated into Cisco IOS Release 12.2(33)SXH and supports the following features:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any Transport over MPLS: Ethernet over MPLS: Port Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any Transport over MPLS: AAL5 over MPLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any Transport over MPLS: ATM OAM Emulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any Transport over MPLS: Single Cell Relay--VC Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any Transport over MPLS: ATM Cell Relay over MPLS--VP Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any Transport over MPLS: Packed Cell Relay--VC/VP Mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any Transport over MPLS: Ethernet over MPLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ATM Port Mode Packed Cell Relay over AToM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AToM Tunnel Selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following features were integrated into Cisco IOS Release 12.2(33)SRC:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• AToM Tunnel Selection for the Cisco 7200 and Cisco 7300 routers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Per-Subinterface MTU for Ethernet over MPLS (EoMPLS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(33)SRD, support for ATM Cell Relay over MPLS in port mode on Cisco 7600 series routers was added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Per Subinterface MTU for Ethernet over MPLS (EoMPLS) was integrated into Cisco IOS Release 15.1(3)S.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>MPLS L2VPN Clear Xconnect Command</td>
<td>12.2(1)SRE</td>
<td>These features are supported on Cisco 7600 routers in Cisco IOS Release 12.2(1)SRE and Cisco IOS Release 15.0(1)S. These features enable you to:</td>
</tr>
<tr>
<td></td>
<td>15.0(1)S</td>
<td>• Reset a VC associated with an interface, a peer address, or on all the configured xconnect circuit attachments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Set the control word on dynamic pseudowires.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enable ATM cell packing for static pseudowires.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified by these features: cell-packing, clear xconnect, control-word, encapsulation (Any Transport over MPLS), oam-ac emulation-enable.</td>
</tr>
<tr>
<td>MPLS MTU Command for GRE Tunnels</td>
<td>15.1(1)T</td>
<td>This feature allows you to reset the MPLS MTU size in GRE tunnels from default to the maximum.</td>
</tr>
<tr>
<td></td>
<td>15.1(2)S</td>
<td>The maximum keyword was replaced with the max keyword.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following command was modified by this feature: mpls mtu.</td>
</tr>
<tr>
<td>ATM Port mode Packed Cell Relay over MPLS</td>
<td>15.2(1)S</td>
<td>This feature was integrated into Cisco IOS Release 12.2(1)S.</td>
</tr>
<tr>
<td>Any Transport over MPLS (AToM): ATM Cell Relay over MPLS: Packed Cell Relay</td>
<td>15.2(1)S</td>
<td>This feature was integrated into Cisco IOS Release 12.2(1)S.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
MPLS MTU Command Changes

This document explains the change in the behavior of the `mplsmtu` command for the following Cisco IOS releases:

- 12.2(27)SBC and later
- 12.2(33)SRA and later
- 12.2(33)SXH and later
- 12.4(11)T and later
- 15.0(1)M1
- 15.1(2)S

You cannot set the Multiprotocol Label Switching (MPLS) maximum transmission unit (MTU) to a value larger than the interface MTU value. This eliminates problems such as dropped packets, data corruption, and high CPU rates from occurring when the MPLS MTU value settings are larger than the interface MTU values. Cisco IOS software allows the MPLS MTU value to be higher than the interface MTU value only for interfaces that have a default interface MTU value of 1580 or less.

Note

In Cisco IOS Release 15.0(1)M1, you can configure the interface MTU on PA-1FE and PA-2FE port adapters (PAs). The range of values is from 1500 to 1530. Before this enhancement, the MTU of those interfaces was not configurable, and any attempt to configure the interface MTU displayed the following message: `%Interface{InterfaceName}/doesnotsupportusersettablemtu.`

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About MPLS MTU Command Changes

- MPLS MTU Values During Upgrade, page 110
- Guidelines for Setting MPLS MTU and Interface MTU Values, page 110
- MPLS MTU Values for Ethernet Interfaces, page 111

MPLS MTU Values During Upgrade

If you have configuration files with MPLS MTU values that are larger than the interface MTU values and you upgrade to Cisco IOS Release 12.2(27)SBC, 12.2(33)SRA, 12.4(11)T, 12.2(33)SXH, or later releases, the software does not change the MPLS MTU value. When you reboot the router, the software accepts the values that are set for the MPLS MTU and the interface MTU. The following error message is displayed during system initialization:

Setting the mpls mtu to xxxx on interface x/x, which is higher than the interface MTU xxxx. This could lead to packet forwarding problems including packet drops. You must set the MPLS MTU values equal to or lower than the interface MTU values.

Caution

If you do not set the MPLS MTU less than or equal to the interface MTU, data corruption, dropped packets, and high CPU conditions can occur.

Guidelines for Setting MPLS MTU and Interface MTU Values

When configuring the network to use MPLS, set the core-facing interface MTU values greater than the edge-facing interface MTU values using one of the following methods:

- Set the interface MTU values on the core-facing interfaces to a higher value than the interface MTU values on the customer-facing interfaces to accommodate any packet labels, such as MPLS labels, that an interface might encounter. Make sure that the interface MTUs on the remote end interfaces have the same interface MTU values. The interface MTU values on both ends of the link must match.
- Set the interface MTU values on the customer-facing interfaces to a lower value than the interface MTU on the core-facing interfaces to accommodate any packet labels, such as MPLS labels, that an interface might encounter. When you set the interface MTU on the edge interfaces, ensure that the interface MTUs on the remote end interfaces have the same values. The interface MTU values on both ends of the link must match.

Changing the interface MTU can also modify the IP MTU, Connectionless Network Service (CLNS) MTU, and other MTU values because they depend on the value of the interface MTU. The Open Shortest Path First (OSPF) routing protocol requires that the IP MTU values match on both ends of the link. Similarly, the Intermediate System-to-Intermediate System (IS-IS) routing protocol requires that the CLNS MTU values match on both ends of the link. If the values on both ends of the link do not match, IS-IS or OSPF cannot complete initialization.

If the configuration of the adjacent router does not include the mplsmtu and mtu commands, add these commands to the router.
Note
The MPLS MTU setting is displayed only in the show running-config output if the MPLS MTU value is different from the interface MTU value. If the values match, only the interface MTU value is displayed.

If you attempt to set the MPLS MTU value higher than the interface MTU value, the software displays the following error message, which prompts you to set the interface MTU to a higher value before you set the MPLS MTU value:

```
% Please increase interface mtu to xxxx and then set mpls mtu
```

Note
In Cisco IOS Release 15.1(2)S, the `mplsmtu` command was modified. This command was made available in L3VPN encapsulation configuration mode. The `maximum` keyword was replaced with the `max` keyword. The `override` keyword and the `bytes` argument were removed from the GRE tunnel interface. To set MPLS MTU to the maximum MTU on L3VPN profiles, use the `mplsmtu` command in L3VPN encapsulation configuration mode.

MPLS MTU Values for Ethernet Interfaces

If you have an interface with a default interface MTU value of 1580 or less (such as an Ethernet interface), the `mplsmtu` command provides an `override` keyword, which allows you to set the MPLS MTU to a value higher than the interface MTU value. The `override` keyword is not available for interface types that do not have a default interface MTU value of 1580 or less. For configuration details, see the Setting the MPLS MTU Value on an Ethernet Interface, page 113.

Setting the MPLS MTU value higher than the Ethernet interface MTU value can lead to dropped packets, data corruption, or high CPU rates. When you set the MPLS MTU value higher than the Ethernet interface MTU value, the software displays the following message:

```
%MFI-30-MPLS_MTU_SET: Setting the mpls mtu to xxxx on Ethernet x/x, which is higher than the interface MTU xxxx. This could lead to packet forwarding problems including packet drops.
Most drivers will be able to support baby giants and will gracefully drop packets that are too large. Certain drivers will have packet forwarding problems including data corruption.
Setting the mpls mtu higher than the interface mtu can lead to packet forwarding problems and may be blocked in a future release.
```

Note
The `override` keyword is supported in Cisco IOS Release 12.2(27)SBC, 12.2(33)SRA, 12.4(11)T, 12.2(33)SXH, and later releases, but may not be supported in a future release.

How to Configure MPLS MTU Values

The following sections explain how to configure MPLS MTU and interface MTU values:

- Setting the Interface MTU and MPLS MTU Values, page 112
- Setting the MPLS MTU Value on an Ethernet Interface, page 113
- Setting the MPLS MTU Value to the Maximum on L3VPN Profiles, page 114
Setting the Interface MTU and MPLS MTU Values

Use the following steps to set the interface MTU and the MPLS MTU.

Note

In Cisco IOS Release 15.0(1)M1, you can configure the interface MTU on PA-1FE and PA-2FE port adapters. The range of values is from 1500 to 1530. Before this enhancement, the MTU of those interfaces was not configurable.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type slot / port`
4. `mtu bytes`
5. `mpls mtu bytes`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface type slot / port</code></td>
<td>Enters interface configuration mode to configure the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface Serial 1/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>mtu bytes</code></td>
<td>Sets the interface MTU size.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# mtu 1520</code></td>
<td></td>
</tr>
</tbody>
</table>
Setting the MPLS MTU Value on an Ethernet Interface

Use the following steps to set the MPLS MTU value on an Ethernet interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type slot / port
4. mpls mtu override bytes
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type slot / port</td>
<td>Enters interface configuration mode to configure the Ethernet interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface ethernet 1/0</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>mpls mtu override bytes</td>
<td>Sets the MPLS MTU to a value higher than the interface MTU value.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caution Setting the MPLS MTU to a value higher than the Ethernet interface MTU value can lead to dropped packets, data corruption, or high CPU rates.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Setting the MPLS MTU Value to the Maximum on L3VPN Profiles

Use the following steps to set the MPLS MTU value to the maximum on L3VPN profiles.

SUMMARY STEPS

1. enable
2. configure terminal
3. l3vpn encapsulation ip profile
4. mpls mtu max
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>l3vpn encapsulation ip profile</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
Step 4 mpls mtu max | Sets the MPLS MTU value to the maximum MTU on the L3VPN profile.

Example:

Router(config-l3vpn-encap-ip)# mpls mtu max

Step 5 end | Exits L3VPN encapsulation configuration mode and returns to privileged EXEC mode.

Example:

Router(config-l3vpn-encap-ip)# end

Configuration Examples for Setting the MPLS MTU Values

- Example Setting the Interface MTU and MPLS MTU, page 115
- Example Setting the MPLS MTU Value on an Ethernet Interface, page 116
- Example Setting the MPLS MTU Value to the Maximum MTU on L3VPN profiles, page 117

Example Setting the Interface MTU and MPLS MTU

The following example shows how to set the interface and MPLS MTU values. The serial interface in the following configuration examples is at the default interface MTU value. The MPLS MTU value is not set.

The interface settings are as follows:

```
interface Serial 4/0
ip unnumbered Loopback0
mpls traffic-eng tunnels
mpls ip
serial restart-delay 0
ip rsvp bandwidth 2000 2000
```

The following example attempts to set the MPLS MTU value to 1520. This returns an error because MPLS MTU cannot be set to a value greater than the value of the interface MTU.

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface serial 4/0
Router(config-if)# mpls mtu 1520
% Please increase interface mtu to 1520 and then set mpls mtu
```

The following example first sets the interface MTU to 1520 and then sets the MPLS MTU to 1520:

```
Router(config-if)# mtu 1520
Router(config-if)# mpls mtu 1520
```

The following example shows the new interface MTU value. The MPLS MTU value is not displayed because it is equal to the interface value.

```
Router#```
show running-config interface serial 4/0
Building configuration...
interface Serial4/0
  mtu 1520
  ip unnumbered Loopback0
  mpls traffic-eng tunnels
  mpls ip
  serial restart-delay 0
  ip rsvp bandwidth 2000 2000
end

The following example sets the MPLS MTU value to 1510:

Router(config-if)# mpls mtu 1510

The following example shows the new interface MTU value. The MPLS MTU value is displayed because it is different than the interface MTU value.

Router#
show running-config interface serial 4/0
Building configuration...
interface Serial4/0
  mtu 1520
  ip unnumbered Loopback0
  mpls mtu 1510
  mpls traffic-eng tunnels
  mpls ip
  serial restart-delay 0
  ip rsvp bandwidth 2000 2000
end

Example Setting the MPLS MTU Value on an Ethernet Interface

Caution
Setting the MPLS MTU to a value higher than the Ethernet interface MTU value can lead to dropped packets, data corruption, or high CPU rates.

The following example shows how to set the MPLS MTU values on an Ethernet interface. The Ethernet interface in the following configuration examples is at the default interface MTU value. The MPLS MTU value is not set. The interface settings are as follows:

interface Ethernet 2/0
  ip unnumbered Loopback0
  mpls traffic-eng tunnels
  mpls ip
  serial restart-delay 0
  ip rsvp bandwidth 2000 2000
end

The following example uses the override keyword to set the MPLS MTU to 1520, which is higher than the Ethernet interface’s MTU value:

Router(config-if)# mpls mtu override 1520
%MFI-30-MPLS_MTU_SET: Setting the mpls mtu to 1520 on Ethernet2/0, which is higher than the interface MTU 1500. This could lead to packet forwarding problems including packet drops.

The following example shows the new MPLS MTU value:

Router#
show running-config interface ethernet 2/0
Building configuration...
interface Ethernet 2/0
  mtu 1500
ip unnumbered Loopback0
mpls mtu 1520
mpls traffic-eng tunnels
mpls ip
serial restart-delay 0
ip rsvp bandwidth 2000 2000
end

Example Setting the MPLS MTU Value to the Maximum MTU on L3VPN profiles

The following example shows how to set the MPLS MTU value to the maximum MTU on L3VPN profiles:

Router# configure terminal
Router(config)# l3vpn encapsulation ip profile1
Router(config-l3vpn-encap-ip)# mpls mtu max

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

None.

MIBs Link

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

Technical Assistance

Description

The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

Link

Feature Information for MPLS MTU Command Changes

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 10  Feature Information for MPLS MTU Command Changes

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS MTU Command Changes</td>
<td>12.2(27)SBC 12.2(28)SB</td>
<td>This document explains the changes to the mplsmtu command. You cannot set the MPLS MTU value larger than the interface MTU value, except for Ethernet interfaces.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRA 12.2(33)SXH</td>
<td>In 12.2(28)SB, support was added for the Cisco 10000 router.</td>
</tr>
<tr>
<td></td>
<td>12.4(11)T 15.0(1)M1 15.1(2)S</td>
<td>In 12.2(33)SRA, support was added for the Cisco 7600 series router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature was integrated into Cisco IOS Release 12.4(11)T.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature was integrated into Cisco IOS Release 12.2(33)SXH.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In 15.0(1)M1, you can configure the interface MTU on PA-1FE and PA-2FE port adapters.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In 15.1(2)S, the mplsmtu command was made available in L3VPN encapsulation configuration mode. The maximum keyword was replaced with the max keyword. The override keyword and the bytes argument were removed from the GRE tunnel interface.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner
does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP
addresses or phone numbers in illustrative content is unintentional and coincidental.
AToM Static Pseudowire Provisioning

The AToM Static Pseudowire Provisioning feature allows provisioning an Any Transport over Multiprotocol Label Switching (MPLS) (AToM) static pseudowire without the use of a directed control connection. In environments that do not or cannot use directed control protocols, this feature provides a means for provisioning the pseudowire parameters statically at the Cisco IOS command-line interface (CLI).

- Finding Feature Information, page 121
- Restrictions for AToM Static Pseudowire Provisioning, page 121
- Information About AToM Static Pseudowire Provisioning, page 122
- How to Provision an AToM Static Pseudowire, page 122
- Configuration Examples for AToM Static Pseudowire Provisioning, page 125
- Additional References, page 126
- Feature Information for AToM Static Pseudowire Provisioning, page 127

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for AToM Static Pseudowire Provisioning

The following parameters are exchanged using directed control protocol messages on pseudowires, but cannot be changed using the AToM Static Pseudowire Provisioning feature introduced in Cisco IOS Release 12.33(SRB). Instead, the software has preconfigured defaults.

- The Virtual Circuit Connectivity Verification (VCCV) options used for fault detection, isolation, and verification at both ends of the connection are set as follows:
  - Control channel type 1 sets the control word.
  - Control channel type 2 sets the MPLS router alert label.
  - Connectivity verification type 2 sets the label switched path (LSP) ping command.

In Cisco IOS Release 12.2(33)SRE, support for cell packing for static pseudowires was added. This feature has the following restrictions:
• Both provider-edge routers (PEs) must run Cisco IOS Release 12.2(33)SRE, and the maximum number of cells that can be packed must be set to the same value on each PE router.
• Autosensing of the virtual circuit type for Ethernet over MPLS is not supported.

Additionally, the following functionality is not supported for static pseudowires:
• Sequence number resynchronization—configured by the sequencing function in the `pseudowire-class` command—is not supported because the sequence number resynchronization is done when the Label Distribution Protocol (LDP) software sends an LDP Label Release or Withdraw message followed by a Label Request or Mapping message, and static pseudowires do not use LDP.
• Tunnel stitching is not supported because it requires an extension of the `neighbor` command to start the mode that allows configuring static pseudowire parameters such as remote and local labels. Note that a tunnel switch point can be configured using a different static label command. The tunnel switch point will not process control words, but label swapping will occur.
• Pseudowire redundancy is not supported because it requires using a directed control protocol between the peer provider edge routers.

**Information About ATOM Static Pseudowire Provisioning**

• [Pseudowire Provisioning, page 122](#)
• [Benefits of Statically Provisioned Pseudowires, page 122](#)

**Pseudowire Provisioning**

The ATOM Static Pseudowire Provisioning feature allows you to configure static pseudowires in cases where you cannot use directed control protocols. In most cases, pseudowires are dynamically provisioned using LDP or another directed control protocol, such as Resource Reservation Protocol over traffic-engineered tunnels (RSVP-TE), to exchange the various parameters required for these connections.

The ATOM Static Pseudowire Provisioning feature is platform-independent, but has been tested on only the Cisco 7600 series routers.

**Benefits of Statically Provisioned Pseudowires**

This feature allows provisioning an ATOM label switching static pseudowire without the use of a directed control connection. This feature also includes static provisioning of the tunnel label and the pseudowire label.

**How to Provision an ATOM Static Pseudowire**

• [Provisioning an ATOM Static Pseudowire, page 122](#)
• [Verifying the ATOM Static Pseudowire Configuration, page 124](#)

**Provisioning an ATOM Static Pseudowire**

In this configuration task, you use options in the `xconnect` Ethernet interface configuration command to specify a static connection, and `mpls` commands in xconnect mode to statically set the following pseudowire parameters:
• Set the local and remote pseudowire labels
• Enable or disable sending the MPLS control word

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface ethernet-type interface-number
4. xconnect peer-ip-address vcid encapsulation mpls manual pw-class class-name
5. mpls label local-pseudowire-label remote-pseudowire-label
6. [no] mpls control-word
7. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface ethernet-type interface-number</td>
<td>Enters interface configuration mode for the specified interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface Ethernet 1/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> xconnect peer-ip-address vcid encapsulation mpls manual pw-class class-name</td>
<td>Configures a static AToM pseudowire and enters xconnect configuration mode where the local and remote pseudowire labels are set.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# xconnect 10.131.191.252 100 encapsulation mpls manual pw-class mpls</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td><strong>mpls label</strong> <strong>local-pseudowire-label</strong> <strong>remote-pseudowire-label</strong></td>
<td>Sets the local and remote pseudowire labels.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• The label must be an unused static label within the static label range configured using the <code>mpls label range</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>mpls label</code> command checks the validity of the label entered and displays an error message if it is not valid. The label supplied for the <code>remote-pseudowire-label</code> argument must be the value of the peer PE’s local pseudowire label.</td>
</tr>
<tr>
<td>Step 6</td>
<td>[no] <strong>mpls control-word</strong></td>
<td>Sets whether the MPLS control word is sent.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• This command must be set for Frame Relay data-link connection identifier (DLCI) and ATM adaptation layer 5 (AAL5) attachment circuits. For other attachement circuits, the control word is included by default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If you enable inclusion of the control word, it must be enabled on both ends of the connection for the circuit to work properly.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inclusion of the control word can be explicitly disabled using the <code>no mpls control-word</code> command.</td>
</tr>
<tr>
<td>Step 7</td>
<td><strong>exit</strong></td>
<td>Exits the configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Continue entering the <code>exit</code> command at the router prompt until you reach the desired configuration mode.</td>
</tr>
</tbody>
</table>

### Verifying the AToM Static Pseudowire Configuration

To verify the AToM static pseudowire configuration, use the `show running-config` EXEC command. To verify that the AToM static pseudowire was provisioned correctly, use the `show mpls l2transport vc detail` and `ping mpls pseudowire` EXEC commands as described in the following steps.

**SUMMARY STEPS**

1. `show mpls l2transport vc detail`
2. `ping mpls pseudowire ipv4-address vc-id vc-id`

**DETAILED STEPS**

**Step 1**

`show mpls l2transport vc detail`

For non-static pseudowire configurations, this command lists the type of protocol used to send the MPLS labels (such as LDP). For static pseudowire configuration, the value of the signaling protocol field should be Manual. Following is sample output:

**Example:**

```
Router# show mpls l2transport vc detail
```
Local interface: Et1/0 up, line protocol up, Ethernet up
Destination address: 10.0.1.1, VC ID: 200, VC status: up
Output interface: Et3/0, imposed label stack {17}
Preferred path: not configured
Default path:
Next hop: 10.0.0.2
Create time: 00:27:27, last status change time: 00:27:24
Signaling protocol: Manual
MPLS VC labels: local 17, remote 17
Group ID: local 0, remote 0
MTU: local 1500, remote 1500
Sequencing: receive disabled, send disabled
VC statistics:
packet totals: receive 193, send 193
byte totals: receive 19728, send 23554
packet drops: receive 0, send 0

Step 2 ping mpls pseudowire ipv4-address vc-id vc-id
Because there is no directed control protocol exchange of parameters on a static pseudowire, both ends of the connection must be correctly configured. One way to detect mismatch of labels or control word options is to send an MPLS pseudowire LSP ping command as part of configuration task, and then reconfigure the connection if problems are detected. An exclamation point (!) is displayed when the ping command is successfully sent to its destination. An example of command use and output follows:

Example:

Router# ping mpls pseudowire 10.7.1.2 vc-id 1001
Sending 5, 100-byte MPLS Echos to 10.7.1.2, timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlv's, 'N' - no label entry,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms

Configuration Examples for AToM Static Pseudowire Provisioning

- Provisioning an AToM Pseudowire Example, page 125

Provisioning an AToM Pseudowire Example

The following examples show the configuration commands for an AToM static pseudowire connection between two PEs, PE1 and PE2.

The mpls label range static command must be used to configure the static label range prior to provisioning the AToM static pseudowire.

Router# configure terminal
The **mpls ip** command must also be configured on the core-facing interface of both PE1 and PE2 (which is also done for directed control protocol signaled pseudowires). Following is a configuration example:

```
Router(config)# interface Ethernet 0/0
Router(config-if)# description Backbone interface
Router(config-if)# ip address 10.0.0.1 255.255.255.0
Router(config-if)# mpls ip
Router(config-if)# exit
```

Following is an example AToM static pseudowire configuration for PE1:

```
Router(config)# interface Ethernet 1/0
Router(config-if)# no ip address
Router(config-if)# xconnect 10.131.191.251 100 encapsulation mpls manual pw-class mpls
Router(config-if-xconn)# mpls label 100 150
Router(config-if-xconn)# exit
```

Following is an example AToM static pseudowire configuration for PE2:

```
Router(config)# interface Ethernet 1/0
Router(config-if)# no ip address
Router(config-if)# xconnect 10.132.192.252 100 encapsulation mpls manual pw-class mpls
Router(config-if-xconn)# mpls label 150 100
Router(config-if-xconn)# exit
```

This feature also allows tunnel labels to be statically configured using the **mpls static binding ipv4 vrf** command. See the MPLS Static Labels feature module and the Cisco IOS Multiprotocol Label Switching Command Reference for information about static labels and the **mpls static binding ipv4 vrf** command.

### Additional References

The following sections provide references related to the AToM Static Pseudowire Provisioning feature.

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Configuring the pseudowire class</td>
<td>Any Transport over MPLS</td>
</tr>
<tr>
<td>MPLS and xconnect commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Static labels and the <strong>mpls static binding ipv4 vrf</strong> command</td>
<td>“MPLS Static Labels ” section of the Cisco IOS Multiprotocol Label Switching Configuration Guide</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IETF draft-ietf-pwe3-vccv-12.txt</td>
<td>Pseudo Wire Virtual Circuit Connectivity Verification (VCCV)</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3036</td>
<td>LDP Specification</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for AToM Static Pseudowire Provisioning

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 11  Feature Information for AToM Static Pseudowire Provisioning

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>AToM Static Pseudowire Provisioning</td>
<td>12.2(33)SRB</td>
<td>This feature allows provisioning an AToM static pseudowire without the use of a directed control protocol connection.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRE</td>
<td>The AToM Static Pseudowire feature is platform-independent, but has been tested on only the Cisco 7600 series routers for Cisco IOS Release 12.33(SRB).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(33)SRE, the L2VPN Support for Cell Packing on Static PW feature was added.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified by this feature: cell-packing, mpls control-word, mpls label, show mpls l2transport vc, xconnect.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
L2VPN Interworking

Layer 2 Virtual Private Network (L2VPN) Interworking allows you to connect disparate attachment circuits. This feature module explains how to configure the following L2VPN Interworking features:

- Ethernet/VLAN to ATM AAL5 Interworking
- Ethernet/VLAN to Frame Relay Interworking
- Ethernet/VLAN to PPP Interworking
- Ethernet to VLAN Interworking
- Frame Relay to ATM AAL5 Interworking
- Frame Relay to PPP Interworking
- Ethernet/VLAN to ATM virtual channel identifier (VPI) and virtual channel identifier (VCI) Interworking
- L2VPN Interworking: VLAN Enable/Disable Option for AToM

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN Interworking

Before you configure L2VPN Interworking on a router:

- You must enable Cisco Express Forwarding.
On the Cisco 12000 series Internet router, before you configure Layer 2 Tunnel Protocol version 3 (L2TPv3) for L2VPN Interworking on an IP Services Engine (ISE/Engine 3) or Engine 5 interface, you must also enable the L2VPN feature bundle on the line card.

To enable the feature bundle, enter the `hw-module slot np mode feature` command in global configuration mode as follows:

```
Router# configure terminal
Router(config)# hw-module slot slot-number np mode feature
```

## Restrictions for L2VPN Interworking

- General Restrictions, page 130
- Cisco 7600 Series Routers Restrictions, page 130
- Cisco 12000 Series Router Restrictions, page 132
- ATM AAL5 Interworking Restrictions, page 135
- Ethernet VLAN Interworking Restrictions, page 135
- Restrictions, page 136
- Frame Relay Interworking Restrictions, page 138
- PPP Interworking Restrictions, page 138

### General Restrictions

This section lists general restrictions that apply to L2VPN Interworking. Other restrictions that are platform-specific or device-specific are listed in the following sections.

- The interworking type on one provider edge (PE) router must match the interworking type on the peer PE router.
- The following quality of service (QoS) features are supported with L2VPN Interworking:
  - Static IP type of service (ToS) or Multiprotocol Label Switching (MPLS) experimental bit (EXP) setting in tunnel header
  - IP ToS reflection in tunnel header (Layer 2 Tunnel Protocol Version 3 (L2TPv3) only)
  - Frame Relay policing
  - Frame Relay data-link connection identifier (DLCI)-based congestion management (Cisco 7500/ Versatile Interface Processor (VIP))
  - One-to-one mapping of VLAN priority bits to MPLS EXP bits
- Only ATM AAL5 VC mode is supported; ATM VP and port mode are not supported.
- In Cisco IOS Release 12.2(52)SE and Cisco IOS Release 12.2(33)SRE, the `encapsulation` command supports only the `mpls` keyword. The `l2tpv3` keyword is not supported. The `interworking` command supports only the `ethernet` and `vlan` keywords. The `ip` keyword is not supported.

### Cisco 7600 Series Routers Restrictions

The following line cards are supported on the Cisco 7600 series router. The first table below shows the line cards that are supported on the WAN (ATM, Frame Relay, or PPP) side of the interworking link. The second table below shows the line cards that are supported on the Ethernet side of the interworking link.

For more details on the Cisco 7600 routers supported shared port adapters and line cards, see the following document:
• Release Notes for Cisco IOS Release 12.2SR for the Cisco 7600 Series Routers

Table 12  Cisco 7600 Series Routers: Supported Line Cards for the WAN Side

<table>
<thead>
<tr>
<th>Interworking Type</th>
<th>Core-Facing Line Cards</th>
<th>Customer-Edge Line Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet (bridged) (ATM and Frame Relay)</td>
<td>Any</td>
<td>EflexWAN SIP-200 SIP-400</td>
</tr>
<tr>
<td>IP (routed) (ATM, Frame Relay, and PPP)</td>
<td>Any</td>
<td>EflexWAN SIP-200</td>
</tr>
</tbody>
</table>

Table 13  Cisco 7600 Series Routers: Supported Line Cards for the Ethernet Side

<table>
<thead>
<tr>
<th>Interworking Type</th>
<th>Ethernet over MPLS Mode</th>
<th>Core-Facing Line Cards</th>
<th>Customer-Edge Line Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet (bridged)</td>
<td>Policy feature card (PFC) based</td>
<td>Any, except optical service module (OSM) and ES40</td>
<td>Catalyst LAN SIP-600</td>
</tr>
<tr>
<td>Ethernet (bridged)</td>
<td>Switched virtual interface (SVI) based</td>
<td>EflexWAN ES20 ES+40 SIP-200 SIP-400 SIP-600</td>
<td>Catalyst LAN EflexWAN (with MPB) ES20 ES+40 SIP-200 (with MPB) SIP-400 (with MPB) SIP-600</td>
</tr>
<tr>
<td>Ethernet (bridged)</td>
<td>Scalable (with E-MPB)</td>
<td>Any, except OSM</td>
<td>ES20 SIP-600 and SIP-400 with Gigabit Ethernet (GE) SPA</td>
</tr>
<tr>
<td>IP (routed)</td>
<td>PFC-based</td>
<td>Catalyst LAN SIP-600</td>
<td>Catalyst LAN SIP-600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: PFC-based mode is not supported with routed interworking in Cisco IOS Release 12.2(33)SRD. Use SVI, Scalable, or Ethernet virtual connection (EVC) based Ethernet over MPLS (EoMPLS) instead.</td>
<td></td>
</tr>
<tr>
<td>IP (routed)</td>
<td>SVI-based</td>
<td>Any, except Catalyst LAN and OSM.</td>
<td>Catalyst LAN EflexWAN (with MPB) ES20 SIP-200 (with MPB) SIP-400 (with MPB) SIP-600</td>
</tr>
</tbody>
</table>

The following restrictions apply to the Cisco 7600 series routers and L2VPN Interworking:
- OAM Emulation is not required with L2VPN Interworking on the SIP-200, SIP-400, and Flexwan2 line cards.
- Cisco 7600 series routers support the L2VPN Interworking: VLAN Enable/Disable Option for AToM feature starting in Cisco IOS Release 12.2(33)SRE. This feature has the following restrictions:
  - PFC-based EoMPLS is not supported.
  - Scalable and SVI-based EoMPLS are supported with the SIP-400 line card.
- The Cisco 7600 series routers do not support L2VPN Interworking over L2TPv3.
- Cisco 7600 series routers support only the following interworking types:
  - Ethernet/VLAN to Frame Relay (IP and Ethernet modes)
  - Ethernet/VLAN to ATM AAL5SNAP (IP and Ethernet modes)
  - Ethernet/VLAN to PPP (IP only)
  - Ethernet to VLAN Interworking
- Cisco 7600 series routers do not support the following interworking types:
  - Ethernet/VLAN to ATM AAL5MUX
  - Frame Relay to PPP Interworking
  - Frame Relay to ATM AAL5 Interworking
- Both ends of the interworking link must be configured with the same encapsulation and interworking type:
  - If you use Ethernet encapsulation, you must use the Ethernet (bridged) interworking type. If you are not using Ethernet encapsulation, you can use a bridging mechanism, such as routed bridge encapsulation (RBE).
  - If you use an IP encapsulation (such as ATM or Frame Relay), you must use the IP (routed) interworking type. The PE routers negotiate the process for learning and resolving addresses.
  - You must use the same MTU size on the attachment circuits at each end of the pseudowire.
- PFC-based EoMPLS is not supported on ES40 line cards. SVI and EVC/scalable EoMPLS are the alternative options.
- PFC-based EoMPLS is not supported for Routed/IP interworking in Cisco IOS Release 12.2(33)SRD and later releases. The alternative Routed/IP interworking options are SVI and EVC or scalable EoMPLS. However, PFC-based EoMPLS is supported for Ethernet/Bridged interworking and for like-to-like over AToM.

**Cisco 12000 Series Router Restrictions**

For more information about hardware requirements on the Cisco12000 series routers, see the Cross-Platform Release Notes for Cisco IOS Release 12.0S.

For QOS support on the Cisco 12000 series routers, see Any Transport over MPLS (AToM): Layer 2 QoS (Quality of Service) for the Cisco 12000 Series Router

**Frame Relay to PPP and High-Level Data Link Control Interworking**

The Cisco 12000 series Internet router does not support L2VPN Interworking with PPP and high-level data link control (HDLC) transport types in Cisco IOS releases earlier than Cisco IOS Release 12.0(32)S.

In Cisco IOS Release 12.0(32)S and later releases, the Cisco 12000 series Internet router supports L2VPN interworking for Frame Relay over MPLS and PPP and HDLC over MPLS only on the following shared port adapters (SPAs):
- ISE/Engine 3 SPAs:
SPA-2XCT3/DS0 (2-port channelized T3 to DS0)
SPA-4XCT3/DS0 (4-port channelized T3 to DS0)

Engine 5 SPAs:
SPA-1XCHSTM1/OC-3 (1-port channelized STM-1c/OC-3c to DS0)
SPA-8XCHT1/E1 (8-port channelized T1/E1)
SPA-2XOC-48-POS/RPR (2-port OC-48/STM16 POS/RPR)
SPA-OC-192POS-LR (1-port OC-192/STM64 POS/RPR)
SPA-OC-192POS-XFP (1-port OC-192/STM64 POS/RPR)

L2VPN Interworking over L2TPv3

On the Cisco 12000 series Internet router, Ethernet (bridged) interworking is not supported for L2TPv3. Only IP (routed) interworking is supported. IP (routed) interworking is not supported in an L2TPv3 pseudowire that is configured for data sequencing (using the `sequencing` command).

In Cisco IOS Release 12.0(32)SY and later releases, the Cisco 12000 series Internet router supports L2VPN Interworking over L2TPv3 tunnels in IP mode on ISE and Engine 5 line cards as follows:

- On an ISE interface configured for L2TPv3 tunneling, the following Layer 2 encapsulations are supported:
  - ATM adaptation layer type-5 (AAL5)
  - Ethernet
  - 802.1q (VLAN)
  - Frame Relay DLCI
- On an Engine 5 interface configured for L2TPv3 tunneling, the following Layer 2 encapsulations are supported:
  - Ethernet
  - 802.1q (VLAN)
  - Frame Relay DLCI

For more information, refer to Layer 2 Tunnel Protocol Version 3.

The only frame format supported for L2TPv3 interworking on Engine 5 Ethernet SPAs is Ethernet Version 2 (also known as Ethernet II) with the Ether type 0x0800 value set as Internet Protocol Payload and (optionally) 802.1q VLAN. Ethernet packets with other Ethernet frame formats are dropped.

Remote Ethernet Port Shutdown Support

The Cisco Remote Ethernet Port Shutdown feature (which minimizes potential data loss after a remote link failure) is supported only on the following Engine 5 Ethernet SPAs:

- SPA-8XFE (8-port Fast Ethernet)
- SPA-2X1GE (2-port Gigabit Ethernet)
- SPA-5X1GE (5-port Gigabit Ethernet)
- SPA-10X1GE (10-port Gigabit Ethernet)
- SPA-1X10GE (1-port 10-Gigabit Ethernet)

For more information about this feature, refer to Any Transport over MPLS (AToM): Remote Ethernet Port Shutdown.
**L2VPN Any-to-Any Interworking on Engine 5 Line Cards**

The table below shows the different combinations of transport types supported for L2VPN interworking on Engine 3 and Engine 5 SPA interfaces connected through an attachment circuit over MPLS or L2TPv3.

### Table 14  
**Engine 3 and Engine 5 Line Cards/SPAs Supported for L2VPN Interworking**

<table>
<thead>
<tr>
<th>Attachment Circuit 1 (AC1)</th>
<th>Attachment Circuit 2 (AC2)</th>
<th>Interworking Mode</th>
<th>AC1 Engine Type and Line Card/SPA</th>
<th>AC2 Engine Type and Line Card/SPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Relay</td>
<td>Frame Relay</td>
<td>IP</td>
<td>Engine 5 POS and channelized</td>
<td>Engine 3 ATM line cards</td>
</tr>
<tr>
<td>Frame Relay</td>
<td>ATM</td>
<td>Ethernet</td>
<td>Engine 5 POS and channelized</td>
<td>Engine 3 ATM line cards</td>
</tr>
<tr>
<td>Frame Relay</td>
<td>ATM</td>
<td>IP</td>
<td>Engine 5 POS and channelized</td>
<td>Engine 3 ATM line cards</td>
</tr>
<tr>
<td>Frame Relay</td>
<td>Ethernet</td>
<td>Ethernet</td>
<td>Engine 5 POS and channelized</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>Frame Relay</td>
<td>Ethernet</td>
<td>IP</td>
<td>Engine 5 POS and channelized</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>Frame Relay</td>
<td>VLAN</td>
<td>Ethernet</td>
<td>Engine 5 POS and channelized</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>Frame Relay</td>
<td>VLAN</td>
<td>IP</td>
<td>Engine 5 POS and channelized</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Ethernet</td>
<td>Ethernet</td>
<td>Engine 5 Gigabit Ethernet</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Ethernet</td>
<td>IP</td>
<td>Engine 5 Gigabit Ethernet</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>Ethernet</td>
<td>VLAN</td>
<td>Ethernet</td>
<td>Engine 5 Gigabit Ethernet</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>Ethernet</td>
<td>VLAN</td>
<td>IP</td>
<td>Engine 5 Gigabit Ethernet</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>ATM</td>
<td>Ethernet</td>
<td>Ethernet</td>
<td>Engine 3 ATM line cards</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
<tr>
<td>ATM</td>
<td>Ethernet</td>
<td>IP</td>
<td>Engine 3 ATM line cards</td>
<td>Engine 5 Gigabit Ethernet</td>
</tr>
</tbody>
</table>

On the Cisco 12000 series Engine 3 line card, Network Layer Protocol ID (NLPID) encapsulation is not supported in routed mode; and neither NLPID nor AAL5MUX is supported in bridged mode.

- On the Cisco 12000 series Internet router, Ethernet (bridged) interworking is not supported for L2TPv3.
In an L2VPN Interworking configuration, after you configure L2TPv3 tunnel encapsulation for a pseudowire using the `encapsulation l2tpv3` command, you cannot enter the `interworking ethernet` command.

- On Ethernet SPAs on the Cisco 12000 series Internet router, the only frame format supported for L2TPv3 interworking is Ethernet Version 2 (also known as Ethernet II) with the Ether type 0x0800 value set as Internet Protocol Payload and [optionally] 802.1q VLAN.

  Ethernet packets with other Ethernet frame formats are dropped.

**ATM AAL5 Interworking Restrictions**

The following restrictions apply to ATM AAL5 Interworking:

- Switched virtual circuits (SVCs) are not supported.
- Inverse Address Resolution Protocol (ARP) is not supported with IP interworking.
- Customer edge (CE) routers must use point-to-point subinterfaces or static maps.
- Both AAL5MUX and AAL5SNAP encapsulation are supported. In the case of AAL5MUX, no translation is needed.
- In the Ethernet end-to-end over ATM scenario, the following translations are supported:
  - Ethernet without LAN frame check sequence (FCS) (AAAA030080C200070000)
  - Spanning tree (AAAA030080c2000E)
- Everything else is dropped.
- In the IP over ATM scenario, the IPv4 (AAAA030000000800) translation is supported. Everything else is dropped.
- Operation, Administration, and Management (OAM) emulation for L2VPN Interworking is the same as like-to-like. The end-to-end F5 loopback cells are looped back on the PE router. When the pseudowire is down, an F5 end-to-end segment Alarm Indication Signal (AIS)/Remote Defect Identification (RDI) is sent from the PE router to the CE router.
- Interim Local Management Interface (ILMI) can manage virtual circuits (VCs) and permanent virtual circuits (PVCs).
- To enable ILMI management, configure ILMI PVC 0/16 on the PE router’s ATM interface. If a PVC is provisioned or deleted, an ilmiVCCChange trap is sent to the CE router.
- Only the user side of the User-Network Interface (UNI) is supported; the network side of the UNI is not supported.

**Ethernet VLAN Interworking Restrictions**

The following restrictions apply to Ethernet/VLAN interworking:

- When you configure VLAN to Ethernet interworking, VLAN to Frame Relay (routed), or ATM using Ethernet (bridged) interworking, the PE router on the Ethernet side that receives a VLAN tagged frame from the CE router removes the VLAN tag. In the reverse direction, the PE router adds the VLAN tag to the frame before sending the frame to the CE router.

  (If you enable the L2VPN Interworking: VLAN Enable/Disable Option for AToM feature with the `interworking vlan` command, VLAN ID is included as part of the Ethernet frame. See the VLAN Interworking, page 141 for more information.)

- In bridged interworking from VLAN to Frame Relay, the Frame Relay PE router does not strip off VLAN tags from the Ethernet traffic it receives.
• The Cisco 10720 Internet router supports Ethernet to VLAN Interworking Ethernet only over L2TPv3.
• Ethernet interworking for a raw Ethernet port or a VLAN trunk is not supported. Traffic streams are not kept separate when traffic is sent between transport types.
• In routed mode, only one CE router can be attached to an Ethernet PE router.
• There must be a one-to-one relationship between an attachment circuit and the pseudowire. Point-to-multipoint or multipoint-to-point configurations are not supported.
• Configure routing protocols for point-to-point operation on the CE routers when configuring an Ethernet to non-Ethernet setup.
• In the IP interworking mode, the IPv4 (0800) translation is supported. The PE router captures ARP (0806) packets and responds with its own MAC address (proxy ARP). Everything else is dropped.
• The Ethernet or VLAN must contain only two IP devices: PE router and CE router. The PE router performs proxy ARP and responds to all ARP requests it receives. Therefore, only one CE and one PE router should be on the Ethernet or VLAN segment.
• If the CE routers are doing static routing, you can perform the following tasks:
  ◦ The PE router needs to learn the MAC address of the CE router to correctly forward traffic to it. The Ethernet PE router sends an Internet Control Message Protocol (ICMP) Router discovery protocol (RDP) solicitation message with the source IP address as zero. The Ethernet CE router responds to this solicitation message. To configure the Cisco CE router’s Ethernet or VLAN interface to respond to the ICMP RDP solicitation message, issue the `ip irdp` command in interface configuration mode. If you do not configure the CE router, traffic is dropped until the CE router sends traffic toward the PE router.
  ◦ To disable the CE routers from running the router discovery protocol, issue the `ip irdp maxadvertinterval 0` command in interface mode.
• This restriction applies if you configure interworking between Ethernet and VLAN with Catalyst switches as the CE routers. The spanning tree protocol is supported for Ethernet interworking. Ethernet interworking between an Ethernet port and a VLAN supports spanning tree protocol only on VLAN 1. Configure VLAN 1 as a nonnative VLAN.
• When you change the interworking configuration on an Ethernet PE router, clear the ARP entry on the adjacent CE router so that it can learn the new MAC address. Otherwise, you might experience traffic drops.

Restrictions

The following restrictions apply to the L2VPN Interworking: VLAN Enable/Disable Option for AToM feature, which allows the VLAN ID to be included as part of the Ethernet frame:

• The L2VPN Interworking: VLAN Enable/Disable Option for AToM feature is supported on the following releases:
  ◦ Cisco IOS release 12.2(52)SE for the Cisco Catalyst 3750 Metro switches
  ◦ Cisco IOS Release 12.2(33)SRE for the Cisco 7600 series routers
• L2VPN Interworking: VLAN Enable/Disable Option for AToM is not supported with L2TPv3. You can configure the feature only with ATOM.
• If the interface on the PE router is a VLAN interface, it is not necessary to specify the `interworking vlan` command on that PE router.
• The L2VPN Interworking: VLAN Enable/Disable Option for AToM feature works only with the following attachment circuit combinations:
  ◦ Ethernet to Ethernet
  ◦ Ethernet to VLAN
VLAN to VLAN

- If you specify an interworking type on a PE router, that interworking type must be enforced. The interworking type must match on both PE routers. Otherwise, the VC may be in an incompatible state and remain in the down state. If the attachment circuit (AC) is VLAN, the PE router can negotiate (autosense) the VC type using Label Distribution Protocol (LDP).

For example, both PE1 and PE2 use Ethernet interfaces, and VLAN interworking is specified on PE1 only. PE2 is not configured with an interworking type and cannot autosense the interworking type. The result is an incompatible state where the VC remains in the down state.

On the other hand, if PE1 uses an Ethernet interface and VLAN interworking is enabled (which will enforce VLAN as the VC type), and PE2 uses a VLAN interface and interworking is not enabled (which causes PE2 to use Ethernet as its default VC type), PE2 can autosense and negotiate the interworking type and select VLAN as the VC type.

The table below summarizes shows the AC types, interworking options, and VC types after negotiation.

<table>
<thead>
<tr>
<th>Table 15</th>
<th>Negotiating Ethernet and VLAN Interworking Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1 AC Type</td>
<td>Interworking Option</td>
</tr>
<tr>
<td>Ethernet</td>
<td>none</td>
</tr>
<tr>
<td>Vlan</td>
<td>none</td>
</tr>
<tr>
<td>Ethernet</td>
<td>none</td>
</tr>
<tr>
<td>Vlan</td>
<td>none</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Vlan</td>
</tr>
<tr>
<td>Vlan</td>
<td>Vlan</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Vlan</td>
</tr>
<tr>
<td>Vlan</td>
<td>Vlan</td>
</tr>
<tr>
<td>Ethernet</td>
<td>none</td>
</tr>
<tr>
<td>Vlan</td>
<td>none</td>
</tr>
<tr>
<td>Ethernet</td>
<td>none</td>
</tr>
<tr>
<td>Vlan</td>
<td>none</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Vlan</td>
</tr>
<tr>
<td>Vlan</td>
<td>Vlan</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Vlan</td>
</tr>
<tr>
<td>Vlan</td>
<td>Vlan</td>
</tr>
</tbody>
</table>
Frame Relay Interworking Restrictions

The following restrictions apply to Frame Relay interworking:

- The attachment circuit maximum transmission unit (MTU) sizes must match when you connect them over MPLS. By default, the MTU size associated with a Frame Relay DLCI is the interface MTU. This may cause problems, for example, when connecting some DLCIs on a PoS interface (with a default MTU of 4470 bytes) to Ethernet or VLAN (with a default MTU of 1500 bytes) and other DLCIs on the same PoS interface to ATM (with a default MTU of 4470 bytes). To avoid reducing all the interface MTUs to the lowest common denominator (1500 bytes in this case), you can specify the MTU for individual DLCIs using the `mtu` command.
- Only DLCI mode is supported. Port mode is not supported.
- Configure Frame Relay switching to use DCE or Network-to-Network Interface (NNI). DTE mode does not report status in the Local Management Interface (LMI) process. If a Frame Relay over MPLS circuit goes down and the PE router is in DTE mode, the CE router is never informed of the disabled circuit. You must configure the `frame-relay switching` command in global configuration mode in order to configure DCE or NNI.
- Frame Relay policing is non-distributed on the Cisco 7500 series routers. If you enable Frame Relay policing, traffic is sent to the route switch processor for processing.
- Inverse ARP is not supported with IP interworking. CE routers must use point-to-point subinterfaces or static maps.
- The PE router automatically supports translation of both the Cisco encapsulations and the Internet Engineering Task Force (IETF) encapsulations that come from the CE, but translates only to IETF when sending to the CE router. This is not a problem for the Cisco CE router, because it can handle IETF encapsulation on receipt even if it is configured to send Cisco encapsulation.
- With Ethernet interworking, the following translations are supported:
  - Ethernet without LAN FCS (0300800080C20007 or 6558)
  - Spanning tree (0300800080C2000E or 4242)
  All other translations are dropped.
- With IP interworking, the IPv4 (03CC or 0800) translation is supported. All other translations are dropped.
- PVC status signaling works the same way as in like-to-like case. The PE router reports the PVC status to the CE router, based on the availability of the pseudowire. PVC status detected by the PE router will also be reflected into the pseudowire. LMI to OAM interworking is supported when you connect Frame Relay to ATM.

PPP Interworking Restrictions

The following restrictions apply to PPP interworking:

- There must be a one-to-one relationship between a PPP session and the pseudowire. Multiplexing of multiple PPP sessions over the pseudowire is not supported.
- There must be a one-to-one relationship between a PPP session and a Frame Relay DLCI. Each Frame Relay PVC must have only one PPP session.
- Only IP (IPv4) (0021) interworking is supported. Link Control Protocol (LCP) packets and Internet Protocol Control Protocol (IPCP) packets are terminated at the PE router. Everything else is dropped.
- Proxy IPCP is automatically enabled on the PE router when IP interworking is configured on the pseudowire.
- By default, the PE router assumes that the CE router knows the remote CE router’s IP address.
• Password Authentication Protocol (PAP) and Challenge-Handshake Authentication Protocol (CHAP) authentication are supported.

Information About L2VPN Interworking

• Overview of L2VPN Interworking, page 139
• L2VPN Interworking Modes, page 139
• L2VPN Interworking Support Matrix, page 141
• Static IP Addresses for L2VPN Interworking for PPP, page 142

Overview of L2VPN Interworking

Layer 2 transport over MPLS and IP already exists for like-to-like attachment circuits, such as Ethernet-to-Ethernet or PPP-to-PPP. L2VPN Interworking builds on this functionality by allowing disparate attachment circuits to be connected. An interworking function facilitates the translation between the different Layer 2 encapsulations. The figure below is an example of Layer 2 interworking, where ATM and Frame Relay packets travel over the MPLS cloud.

Figure 4  ATM to Frame Relay Interworking Example

![Diagram](image)

The L2VPN Interworking feature supports Ethernet, 802.1Q (VLAN), Frame Relay, ATM AAL5, and PPP attachment circuits over MPLS and L2TPv3. The features and restrictions for like-to-like functionality also apply to L2VPN Interworking.

L2VPN Interworking Modes

L2VPN Interworking works in either Ethernet (“bridged”) mode, IP (“routed”), or Ethernet VLAN mode. You specify the mode by issuing the interworking {ethernet | ip | vlan} command in pseudowire-class configuration mode.

• Ethernet (Bridged) Interworking, page 140
• IP (Routed) Interworking, page 140
• VLAN Interworking, page 141
Ethernet (Bridged) Interworking

The ethernet keyword causes Ethernet frames to be extracted from the attachment circuit and sent over the pseudowire. Ethernet end-to-end transmission is assumed. Attachment circuit frames that are not Ethernet are dropped. In the case of VLAN, the VLAN tag is removed, leaving an untagged Ethernet frame.

Ethernet Interworking is also called bridged interworking. Ethernet frames are bridged across the pseudowire. The CE routers could be natively bridging Ethernet or could be routing using a bridged encapsulation model, such as Bridge Virtual Interface (BVI) or RBE. The PE routers operate in Ethernet like-to-like mode.

This mode is used to offer the following services:

- LAN services--An example is an enterprise that has several sites, where some sites have Ethernet connectivity to the service provider (SP) network and others have ATM connectivity. The enterprise wants LAN connectivity to all its sites. In this case, traffic from the Ethernet or VLAN of one site can be sent through the IP/MPLS network and encapsulated as bridged traffic over an ATM VC of another site.
- Connectivity services--An example is an enterprise that has different sites that are running an Internal Gateway Protocol (IGP) routing protocol, which has incompatible procedures on broadcast and nonbroadcast links. The enterprise has several sites that are running an IGP, such as Open Shortest Path First (OSPF) or Intermediate System to Intermediate System (IS-IS), between the sites. In this scenario, some of the procedures (such as route advertisement or designated router) depend on the underlying Layer 2 protocol and are different for a point-to-point ATM connection versus a broadcast Ethernet connection. Therefore, the bridged encapsulation over ATM can be used to achieve homogenous Ethernet connectivity between the CE routers running the IGP.

IP (Routed) Interworking

The ip keyword causes IP packets to be extracted from the attachment circuit and sent over the pseudowire. Attachment circuit frames that do not contain IPv4 packets are dropped.

IP Interworking is also called routed interworking. The CE routers encapsulate IP on the link between the CE and PE routers. A new VC type is used to signal the IP pseudowire in MPLS and L2TPv3. Translation between the Layer 2 and IP encapsulations across the pseudowire is required. Special consideration needs to be given to address resolution and routing protocol operation, because these are handled differently on different Layer 2 encapsulations.

This mode is used to provide IP connectivity between sites, regardless of the Layer 2 connectivity to these sites. It is different from a Layer 3 VPN because it is point-to-point in nature and the service provider does not maintain any customer routing information.

Address resolution is encapsulation dependent:

- Ethernet uses ARP
- Frame Relay and ATM use Inverse ARP
- PPP uses IPCP

Therefore, address resolution must be terminated on the PE router. End-to-end address resolution is not supported. Routing protocols operate differently over broadcast and point-to-point media. For Ethernet, the CE routers must either use static routing or configure the routing protocols to treat the Ethernet side as a point-to-point network.
VLAN Interworking

The `vlan` keyword allows the VLAN ID to be included as part of the Ethernet frame. In Cisco IOS Release 12.2(52)SE, you can configure Catalyst 3750 Metro switches to use Ethernet VLAN for Ethernet (bridged) interworking. You can specify the Ethernet VLAN (type 4) by issuing the `interworking vlan` command in pseudowire-class configuration mode. This allows the VLAN ID to be included as part of the Ethernet frame. In releases previous to Cisco IOS Release 12.2(52)SE, the only way to achieve VLAN encapsulation is to ensure the CE router is connected to the PE router through an Ethernet VLAN interface/subinterface.

L2VPN Interworking Support Matrix

The supported L2VPN Interworking features are listed in the table below.

<table>
<thead>
<tr>
<th>Feature</th>
<th>MPLS or L2TPv3 Support</th>
<th>IP or Ethernet Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet/VLAN to ATM AAL5</td>
<td>MPLS L2TPv3 (12000 series only)</td>
<td>IP Ethernet</td>
</tr>
<tr>
<td>Ethernet/VLAN to Frame Relay</td>
<td>MPLS L2TPv3</td>
<td>IP Ethernet</td>
</tr>
<tr>
<td>Ethernet/VLAN to PPP</td>
<td>MPLS L2TPv3</td>
<td>IP</td>
</tr>
<tr>
<td>Ethernet to VLAN</td>
<td>MPLS L2TPv3</td>
<td>IP Ethernet</td>
</tr>
<tr>
<td>L2VPN Interworking: VLAN Enable/Disable Option for AToM</td>
<td>MPLS</td>
<td>Ethernet VLAN</td>
</tr>
<tr>
<td>Frame Relay to ATM AAL5</td>
<td>MPLS L2TPv3 (12000 series only)</td>
<td>IP</td>
</tr>
<tr>
<td>Frame Relay to Ethernet or VLAN</td>
<td>MPLS L2TPv3</td>
<td>IP Ethernet</td>
</tr>
<tr>
<td>Frame Relay to PPP</td>
<td>MPLS L2TPv3</td>
<td>IP</td>
</tr>
</tbody>
</table>

**Note**: On the Cisco 12000 series Internet router:

- Ethernet (bridged) interworking is not supported for L2TPv3.
- IP (routed) interworking is not supported in an L2TPv3 pseudowire configured for data sequencing (using the `sequencing` command).

---

1 With the L2VPN Interworking: VLAN Enable/Disable Option for AToM feature, VLAN interworking can also be supported. For more information, see the “VLAN Interworking” section on page 14.
Static IP Addresses for L2VPN Interworking for PPP

If the PE router needs to perform address resolution with the local CE router for PPP, you can configure the remote CE router’s IP address on the PE router. Issue the `ppp ipcp address proxy` command with the remote CE router’s IP address on the PE router’s xconnect PPP interface. The following example shows a sample configuration:

```plaintext
pseudowire-class ip-interworking
 encapsulation mpls
 interworking ip
 interface Serial2/0
 encapsulation ppp
 xconnect 10.0.0.2 200 pw-class ip-interworking
 ppp ipcp address proxy 10.65.32.14
```

You can also configure the remote CE router’s IP address on the local CE router with the `peer default ip address` command if the local CE router performs address resolution.

How to Configure L2VPN Interworking

- Configuring L2VPN Interworking, page 142
- Verifying the L2VPN Interworking Configuration, page 143
- Configuring L2VPN Interworking: VLAN Enable-Disable Option for AToM, page 147

Configuring L2VPN Interworking

L2VPN Interworking allows you to connect disparate attachment circuits. Configuring the L2VPN Interworking feature requires that you add the `interworking` command to the list of commands that make up the pseudowire. The steps for configuring the pseudowire for L2VPN Interworking are included in this section. You use the `interworking` command as part of the overall AToM or L2TPv3 configuration. For specific instructions on configuring AToM or L2TPv3, see the following documents:

- Layer 2 Tunnel Protocol Version 3
- Any Transport over MPLS

SUMMARY STEPS

1. enable
2. configure terminal
3. hw-module slot slot-number np mode feature
4. pseudowire-class name
5. encapsulation {mpls | l2tpv3}
6. interworking {ethernet | ip} | vlan
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |

**Example:**

```
Router> enable
```

| **Step 2** configure terminal | Enters global configuration mode. |

**Example:**

```
Router# configure terminal
```

| **Step 3** hw-module slot *slot-number* np mode feature | (Optional) Enables L2VPN Interworking functionality on the Cisco 12000 series router.  
**Note** Enter this command only on a Cisco 12000 series Internet router if you use L2TPv3 for L2VPN Interworking on an ISE (Engine 3) or Engine 5 interface. In this case, you must first enable the L2VPN feature bundle on the line card by entering the `hw-module slot *slot-number* np mode feature` command. |

**Example:**

```
Router(config)# hw-module slot 3 np mode feature
```

| **Step 4** pseudowire-class *name* | Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode. |

**Example:**

```
Router(config)# pseudowire-class class1
```

| **Step 5** encapsulation {mpls | l2tpv3} | Specifies the tunneling encapsulation, which is either mpls or l2tpv3. |

**Example:**

```
Router(config-pw)# encapsulation mpls
```

| **Step 6** interworking {ethernet | ip} | vlan | Specifies the type of pseudowire and the type of traffic that can flow across it.  
**Note** On the Cisco 12000 series Internet router, Ethernet (bridged) interworking is not supported for L2TPv3. After you configure the L2TPv3 tunnel encapsulation for the pseudowire using the `encapsulation l2tpv3` command, you cannot enter the `interworking ethernet` command. |

**Example:**

```
Router(config-pw)# interworking ip
```

---

### Verifying the L2VPN Interworking Configuration

To verify the L2VPN Interworking configuration, you can use the following commands.
SUMMARY STEPS

1. enable
2. show l2tun session all (L2TPv3 only)
3. show arp
4. ping
5. show l2tun session interworking (L2TPv3 only)
6. show mpls l2transport vc detail (AToM only)

DETAILED STEPS

Step 1  enable
Enables privileged EXEC mode. Enter your password if prompted.

Step 2  show l2tun session all (L2TPv3 only)
For L2TPv3, you can verify the L2VPN Interworking configuration using the show l2tun session all command on the PE routers.

In the following example, the interworking type is shown in bold.
PE1  PE2

Router# show l2tun session all  Router# show l2tun session all

Session Information Total tunnels 1 sessions 1  Session Information Total tunnels 1 sessions 1

Session id 15736 is up, tunnel id 35411  Session id 26570 is up, tunnel id 46882
Call serial number is 4035100045  Call serial number is 4035100045
Remote tunnel name is PE2  Remote tunnel name is PE1
Internet address is 10.9.9.9  Internet address is 10.8.8.8
Session is L2TP signalled  Session is L2TP signalled
Session state is established, time since change 1d22h  Session state is established, time since change 1d22h
16 Packets sent, 16 received  16 Packets sent, 16 received
1518 Bytes sent, 1230 received  1230 Bytes sent, 1230 received
Receive packets dropped:  Receive packets dropped:
  out-of-order: 0  out-of-order: 0
  total: 0  total: 0
Send packets dropped:  Send packets dropped:
  exceeded session MTU: 0  exceeded session MTU: 0
  total: 0  total: 0
Session vcid is 123  Session vcid is 123
Session Layer 2 circuit, type is Ethernet, name is FastEthernet1/1/0  Session Layer 2 circuit, type is Ethernet, name is FastEthernet2/0.1:10
Circuit state is UP  Circuit state is UP, interworking type is Ethernet
Remote session id is 26570, remote tunnel id 46882  Remote session id is 15736, remote tunnel id 35411
DF bit off, ToS reflect disabled, ToS value 0, TTL value 255  DF bit off, ToS reflect disabled, ToS value 0, TTL value 255
No session cookie information available  No session cookie information available
FS cached header information:  FS cached header information:
  encap size = 24 bytes  encap size = 24 bytes
    00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
  sequencing is off  sequencing is off
You can issue the `show arp` command between the CE routers to ensure that data is being sent:

**Example:**

```plaintext
Router# show arp
Protocol Address Age (min) Hardware Addr Type Interface
Internet 10.1.1.5 134 0005.0032.0854 ARPA FastEthernet0/0
Internet 10.1.1.7 - 0005.0032.0000 ARPA FastEthernet0/0
```

**Step 4** ping

You can issue the `ping` command between the CE routers to ensure that data is being sent:

**Example:**

```plaintext
Router# ping 10.1.1.5
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.1.1.5, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

**Step 5** show l2tun session interworking (L2TPv3 only)

For L2TPv3, you can verify that the interworking type is correctly set using the `show l2tun session interworking` command. Enter the command on the PE routers that are performing the interworking translation.

- In Example 1, the PE router performs the raw Ethernet translation. The command output displays the interworking type with a dash (-).
- In Example 2, the PE router performs the Ethernet VLAN translation. The command output displays the interworking type as ETH.

**Command Output for Raw Ethernet Translation**

**Example:**

```plaintext
Router# show l2tun session interworking
Session Information Total tunnels 1 sessions 1
LocID TunID Peer-address Type IWrk Username, Intf/Vcid, Circuit
15736 35411 10.9.9.9 ETH - 123, Fa1/1/0
```

**Command Output for Ethernet VLAN Translation**

**Example:**

```plaintext
Router# show l2tun session interworking
Session Information Total tunnels 1 sessions 1
LocID TunID Peer-address Type IWrk Username, Intf/Vcid, Circuit
26570 46882 10.8.8.8 VLAN ETH 123, Fa2/0.1:10
```

**Step 6** show mpls l2transport vc detail (AToM only)

You can verify the AToM configuration by using the `show mpls l2transport vc detail` command. In the following example, the interworking type is shown in bold.

**Example:**

```plaintext
Router# show l2tun session interworking
Session Information Total tunnels 1 sessions 1
LocID TunID Peer-address Type IWrk Username, Intf/Vcid, Circuit
26570 46882 10.8.8.8 VLAN ETH 123, Fa2/0.1:10
```
### Configuring L2VPN Interworking: VLAN Enable-Disable Option for AToM

You can specify the Ethernet VLAN (type 4) by issuing the `interworking vlan` command in pseudowire-class configuration mode. This allows the VLAN ID to be included as part of the Ethernet frame. In releases previous to Cisco IOS Release 12.2(52)SE and Cisco IOS Release 12.2(33)SRE, the only way to

#### PE1

```
Router# show mpls l2transport vc detail

Local interface: Fa1/1/0 up, line protocol up, Ethernet up
 Destination address: 10.9.9.9, VC ID: 123, VC status: up
 Preferred path: not configured
 Default path: active
 Tunnel label: 17, next hop 10.1.1.3
 Output interface: Fa4/0/0, imposed label stack {17 20}
 Create time: 01:43:50, last status change time: 01:43:33
 Signaling protocol: LDP, peer 10.9.9.9:0 up
 MPLS VC labels: local 16, remote 20
 Group ID: local 0, remote 0
 MTU: local 1500, remote 1500
 Remote interface description:
 Sequencing: receive disabled, send disabled

VC statistics:
 packet totals: receive 15, send 4184
 byte totals: receive 1830, send 309248
 packet drops: receive 0, send 0
```

#### PE2

```
Router# show mpls l2transport vc detail

Local interface: Fa2/0.3 up, line protocol up, Eth VLAN 10 up
 Destination address: 10.8.8.8, VC ID: 123, VC status: up
 Preferred path: not configured
 Default path: active
 Tunnel label: 16, next hop 10.1.1.3
 Output interface: Fa6/0, imposed label stack {16 16}
 Create time: 00:00:26, last status change time: 00:00:06
 Signaling protocol: LDP, peer 10.8.8.8:0 up
 MPLS VC labels: local 20, remote 16
 Group ID: local 0, remote 16
 MTU: local 1500, remote 1500
 Remote interface description:
 Sequencing: receive disabled, send disabled

VC statistics:
 packet totals: receive 5, send 0
 byte totals: receive 340, send 0
 packet drops: receive 0, send 0
```
achieve VLAN encapsulation is to ensure the CE router is connected to the PE router through an Ethernet
link.
For complete instructions on configuring AToM, see "Any Transport over MPLS".

**SUMMARY STEPS**

1. enable
2. configure terminal
3. pseudowire-class name
4. encapsulation {mpls | l2tpv3}
5. interworking {ethernet | ip | vlan}
6. end
7. show mpls l2transport vc [vcid vc-id | vcid vc-id-min vc-id-max] [interface type number [local-circuit-id]] [destination ip-address | name] [detail]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong> pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# pseudowire-class class1</td>
</tr>
<tr>
<td><strong>Step 4</strong> encapsulation {mpls</td>
<td>l2tpv3}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-pw)# encapsulation mpls</td>
</tr>
<tr>
<td><strong>Step 5</strong> interworking {ethernet</td>
<td>ip</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-pw)# interworking vlan</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6 <strong>end</strong></td>
<td><strong>Exits pseudowire class configuration mode and enters privileged EXEC mode.</strong></td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-pw)# end
```

<table>
<thead>
<tr>
<th>Step 7 <strong>show mpls l2transport vc</strong></th>
<th>Displays information about AToM VCs.</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>vc-id</em> [vc-id-min vc-id-max]</td>
<td></td>
</tr>
<tr>
<td><em>interface</em> [type number [local-circuit-id]]</td>
<td></td>
</tr>
<tr>
<td><em>destination</em> [ip-address</td>
<td>name] [detail]</td>
</tr>
</tbody>
</table>

**Example:**

```
Router# show mpls l2transport vc detail
```

**Examples**

When the pseudowire on an interface is different from the VC type, the interworking type is displayed in the **show mpls l2transport vc detail** command output. In the following example, the pseudowire is configured on an Ethernet port and VLAN interworking is configured in the pseudowire class. The relevant output is shown in bold:

```
PE1# show mpls l2 vc 34 detail
Local interface: Et0/1 up, line protocol up, Ethernet up
 MPLS VC type is Ethernet, interworking type is Eth VLAN
 Destination address: 10.1.1.2, VC ID: 34, VC status: down
 Output interface: if-?(0), imposed label stack {}
 Preferred path: not configured
 Default path: no route
 No adjacency
 Create time: 00:00:13, last status change time: 00:00:13
 Signaling protocol: LDP, peer unknown
 Targeted Hello: 10.1.1.1(LDP Id) -> 10.1.1.2
 Status TLV support (local/remote) : enabled/None (no remote binding)
 LDP route watch : enabled
 Label/status state machine : local standby, AC-ready, LnuRnd
 Last local dataplane status rcvd: No fault
 Last local SSS circuit status rcvd: No fault
 Last local SSS circuit status sent: Not sent
 Last local LDP TLV status sent: None
 Last remote LDP TLV status rcvd: None (no remote binding)
 Last remote LDP ADJ status rcvd: None (no remote binding)
 MPLS VC labels: local 2003, remote unassigned
 Group ID: local 0, remote unknown
 MTU: local 1500, remote unknown
 Remote interface description:
 Sequencing: receive disabled, send disabled
 VC statistics:
 packet totals: receive 0, send 0
 byte totals: receive 0, send 0
 packet drops: receive 0, seq error 0, send 0
```

**Configuration Examples for L2VPN Interworking**

- Ethernet to VLAN over L2TPV3 (Bridged) Example, page 150
Ethernet to VLAN over L2TPv3 (Bridged) Example

The following example shows the configuration of Ethernet to VLAN over L2TPv3:
### Ethernet to VLAN over AToM (Bridged) Example

The following example shows the configuration of Ethernet to VLAN over AToM:

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef</td>
<td>ip cef</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>l2tp-class interworking-class</td>
<td>l2tp-class interworking-class</td>
</tr>
<tr>
<td>authentication</td>
<td>authentication</td>
</tr>
<tr>
<td>hostname PE1</td>
<td>hostname PE2</td>
</tr>
<tr>
<td>password 0 lab</td>
<td>password 0 lab</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>pseudowire-class inter-ether-vlan</td>
<td>pseudowire-class inter-ether-vlan</td>
</tr>
<tr>
<td>encapsulation l2tpv3</td>
<td>encapsulation l2tpv3</td>
</tr>
<tr>
<td>interworking ethernet</td>
<td>interworking ethernet</td>
</tr>
<tr>
<td>protocol l2tpv3 interworking-class</td>
<td>protocol l2tpv3 interworking-class</td>
</tr>
<tr>
<td>ip local interface Loopback0</td>
<td>ip local interface Loopback0</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.8.8.8 255.255.255.255</td>
<td>ip address 10.9.9.9 255.255.255.255</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface FastEthernet1/0</td>
<td>interface FastEthernet0/0</td>
</tr>
<tr>
<td>xconnect 10.9.9.9 1 pw-class inter-ether-vlan</td>
<td>no ip address</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface FastEthernet0/0.3</td>
<td></td>
</tr>
<tr>
<td>encapsulation dot1Q 10</td>
<td></td>
</tr>
<tr>
<td>xconnect 10.8.8.8 1 pw-class inter-ether-vlan</td>
<td></td>
</tr>
</tbody>
</table>
Frame Relay to VLAN over L2TPV3 (Routed) Example

The following example shows the configuration of Frame Relay to VLAN over L2TPv3:

```
PE1 PE2

ip cef ip cef
!
! !
mpls label protocol ldp mpls label protocol ldp
mpls ldp router-id Loopback0 force mpls ldp router-id Loopback0 force
!
!
pseudowire-class atom-eth-iw pseudowire-class atom
encapsulation mpls encapsulation mpls
interworking ethernet !
!
interface Loopback0 interface Loopback0
ip address 10.8.8.8 255.255.255.255 ip address 10.9.9.9 255.255.255.255
!
!
interface FastEthernet1/0.1 no ip address
encapsulation dot1q 100 !
xconnect 10.9.9.9 123 pw-class atom-eth-iw interface FastEthernet1/0
! xconnect 10.9.9.9 123 pw-class atom
```
PE1

configure terminal
ip cef
frame-relay switching
!
!
interface loopback 0
ip address 10.8.8.8 255.255.255.255
no shutdown
!
pseudowire-class ip
encapsulation l2tpv3
interworking ip
ip local interface loopback0
!
interface POS1/0
encapsulation frame-relay
speed 10
clock source internal
logging event dlcis-status-change
no shutdown
no fair-queue
!
connect fr-vlan POS1/0 206 12transport
xconnect 10.8.8.8 6 pw-class ip
!
router ospf 10

PE2

configure terminal
ip cef
frame-relay switching
!
!
interface loopback 0
ip address 10.9.9.9 255.255.255.255
no shutdown
!
pseudowire-class ip
encapsulation l2tpv3
interworking ip
ip local interface loopback0
!
interface FastEthernet1/0/1
encapsulation frame-relay
speed 10
clock source internal
logging event dlcis-status-change
no shutdown
no fair-queue
!
xconnect 10.8.8.8 6 pw-class ip
!
xconnect 10.9.9.9 6 pw-class ip
!
router ospf 10

network 10.0.0.2 0.0.0.0 area 0
network 10.8.8.8 0.0.0.0 area 0
network 10.9.9.9 0.0.0.0 area 0
# Frame Relay to VLAN over AToM (Routed) Example

The following example shows the configuration of Frame Relay to VLAN over AToM:

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><code>ip cef</code></td>
<td><code>ip cef</code></td>
</tr>
<tr>
<td><code>frame-relay switching</code></td>
<td><code>ip cef</code></td>
</tr>
<tr>
<td>!</td>
<td><code>frame-relay switching</code></td>
</tr>
<tr>
<td><code>mpls label protocol ldp</code></td>
<td><code>mpls label protocol ldp</code></td>
</tr>
<tr>
<td><code>mpls ldp router-id loopback0</code></td>
<td><code>mpls ldp router-id loopback0</code></td>
</tr>
<tr>
<td><code>mpls ip</code></td>
<td><code>mpls ip</code></td>
</tr>
<tr>
<td></td>
<td><code>mpls ip</code></td>
</tr>
<tr>
<td><code>pseudowire-class atom</code></td>
<td><code>pseudowire-class atom</code></td>
</tr>
<tr>
<td><code>encapsulation mpls</code></td>
<td><code>encapsulation mpls</code></td>
</tr>
<tr>
<td><code>interworking ip</code></td>
<td><code>interworking ip</code></td>
</tr>
<tr>
<td></td>
<td><code>interworking ip</code></td>
</tr>
<tr>
<td><code>interface loopback 0</code></td>
<td><code>interface loopback 0</code></td>
</tr>
<tr>
<td><code>ip address 10.8.8.8 255.255.255.255</code></td>
<td><code>interface loopback 0</code></td>
</tr>
<tr>
<td><code>no shutdown</code></td>
<td><code>ip address 10.9.9.9 255.255.255.255</code></td>
</tr>
<tr>
<td>!</td>
<td><code>no shutdown</code></td>
</tr>
<tr>
<td><code>connect fr-vlan POS1/0 206 l2transport</code></td>
<td>!</td>
</tr>
<tr>
<td><code>xconnect 10.9.9.9 6 pw-class atom</code></td>
<td><code>interface FastEthernet1/0/1.6</code></td>
</tr>
<tr>
<td></td>
<td><code>encapsulation dot1Q 6</code></td>
</tr>
<tr>
<td></td>
<td><code>xconnect 10.8.8.8 6 pw-class atom</code></td>
</tr>
<tr>
<td></td>
<td><code>no shutdown</code></td>
</tr>
</tbody>
</table>
Frame Relay to ATM AAL5 over AToM (Routed) Example

Note

Frame Relay to ATM AAL5 is available only with AToM in IP mode.

The following example shows the configuration of Frame Relay to ATM AAL5 over AToM:
**VLAN to ATM AAL5 over AToM (Bridged) Example**

The following example shows the configuration of VLAN to ATM AAL5 over AToM:

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef</td>
<td>ip cef</td>
</tr>
<tr>
<td>frame-relay switching</td>
<td>mpls ip</td>
</tr>
<tr>
<td>mpls ip</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls ldp router-id loopback0 force</td>
</tr>
<tr>
<td>mpls ldp router-id loopback0 force</td>
<td>pseudowire-class fratmip</td>
</tr>
<tr>
<td>pseudowire-class fratmip</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>interworking ip</td>
</tr>
<tr>
<td>interworking ip</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>ip address 10.22.22.22 255.255.255.255</td>
</tr>
<tr>
<td>ip address 10.33.33.33 255.255.255.255</td>
<td>interface ATM 2/0</td>
</tr>
<tr>
<td>interface serial 2/0</td>
<td>pvc 0/203 l2transport</td>
</tr>
<tr>
<td>encapsulation frame-relay ietf</td>
<td>encapsulation aa5snap</td>
</tr>
<tr>
<td>frame-relay intf-type dce</td>
<td>xconnect 10.33.33.33 333 pw-class fratmip</td>
</tr>
<tr>
<td>connect fr-eth serial 2/0 100 l2transport</td>
<td>interface POS1/0</td>
</tr>
<tr>
<td>xconnect 10.22.22.22 333 pw-class fratmip</td>
<td>ip address 10.1.1.2 255.255.255.0</td>
</tr>
<tr>
<td>interface POS1/0</td>
<td>crc 32</td>
</tr>
<tr>
<td>ip address 10.1.7.3 255.255.255.0</td>
<td>clock source internal</td>
</tr>
<tr>
<td>crc 32</td>
<td>mpls ip</td>
</tr>
<tr>
<td>clock source internal</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls ip</td>
<td>router ospf 10</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>passive-interface Loopback0</td>
</tr>
<tr>
<td>router ospf 10</td>
<td>network 10.22.22.22 0.0.0.0 area 10</td>
</tr>
<tr>
<td>passive-interface Loopback0</td>
<td>network 10.1.1.0 0.0.0.255 area 10</td>
</tr>
<tr>
<td>network 10.33.33.33 0.0.0.0 area 10</td>
<td>network 10.1.7.0 0.0.0.255 area 10</td>
</tr>
<tr>
<td>PE1</td>
<td>PE2</td>
</tr>
<tr>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>ip cef</td>
<td>ip cef</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>mpls ip</td>
<td>mpls ip</td>
</tr>
<tr>
<td>mpls label protocol ldp</td>
<td>mpls label protocol ldp</td>
</tr>
<tr>
<td>mpls ldp router-id Loopback0</td>
<td>mpls ldp router-id Loopback0</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>pseudowire-class inter-ether</td>
<td>pseudowire-class inter-ether</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>encapsulation mpls</td>
</tr>
<tr>
<td>interworking ethernet</td>
<td>interworking ethernet</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.8.8.8 255.255.255</td>
<td>ip address 10.9.9.9 255.255.255</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface ATM1/0.1 point-to-point</td>
<td>interface FastEthernet0/0</td>
</tr>
<tr>
<td>pvc 0/100 l2transport</td>
<td>no ip address</td>
</tr>
<tr>
<td>encapsulation aal5snap</td>
<td>!</td>
</tr>
<tr>
<td>xconnect 10.9.9.9 123 pw-class inter-ether</td>
<td>interface FastEthernet0/0.1</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface FastEthernet1/0</td>
<td>encryption dot1Q 10</td>
</tr>
<tr>
<td>xconnect 10.8.8.8 123 pw-class inter-ether</td>
<td>xconnect 10.8.8.8 123 pw-class inter-ether</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>router ospf 10</td>
<td>router ospf 10</td>
</tr>
<tr>
<td>log-adjacency-changes</td>
<td>log-adjacency-changes</td>
</tr>
<tr>
<td>network 10.8.8.8 0.0.0.0 area 0</td>
<td>network 10.9.9.9 0.0.0.0 area 0</td>
</tr>
<tr>
<td>network 10.1.1.1 0.0.0.0 area 0</td>
<td>network 10.1.1.2 0.0.0.0 area 0</td>
</tr>
</tbody>
</table>

Frame Relay to PPP over L2TPv3 (Routed) Example

The following example shows the configuration of Frame Relay to PPP over L2TPv3:
<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip cef</code></td>
<td><code>ip cef</code></td>
</tr>
<tr>
<td><code>ip routing</code></td>
<td><code>ip routing</code></td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>!</td>
<td>frame-relay switching</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>pseudowire-class ppp-fr</td>
<td>pseudowire-class ppp-fr</td>
</tr>
<tr>
<td>encapsulation l2tpv3</td>
<td>encapsulation l2tpv3</td>
</tr>
<tr>
<td>interworking ip</td>
<td>interworking ip</td>
</tr>
<tr>
<td>ip local interface Loopback0</td>
<td>ip local interface Loopback0</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Loopback0</td>
<td>interface Loopback0</td>
</tr>
<tr>
<td>ip address 10.1.1.1 255.255.255.255</td>
<td>ip address 10.2.2.2 255.255.255.255</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface FastEthernet1/0/0</td>
<td>interface FastEthernet1/0/0</td>
</tr>
<tr>
<td>ip address 10.16.1.1 255.255.255.0</td>
<td>ip address 10.16.2.1 255.255.255.0</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Serial3/0/0</td>
<td>interface Serial3/0/0</td>
</tr>
<tr>
<td>no ip address</td>
<td>no ip address</td>
</tr>
<tr>
<td>encapsulation ppp</td>
<td>encapsulation frame-relay</td>
</tr>
<tr>
<td>ppp authentication chap</td>
<td>frame-relay intf-type dce</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>ip route 10.0.0.0 255.0.0.0 10.16.1.2</td>
<td>ip route 10.0.0.0 255.0.0.0 10.16.2.2</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>xconnect 10.2.2.2 1 pw-class ppp-fr</td>
<td>connect ppp-fr Serial3/0/0 100 l2transport</td>
</tr>
<tr>
<td>ppp ipcp address proxy 10.65.32.14</td>
<td>xconnect 10.1.1.1 100 pw-class ppp-fr</td>
</tr>
</tbody>
</table>
Frame Relay to PPP over AToM (Routed) Example

The following example shows the configuration of Frame Relay to PPP over AToM:
### PE1

- `ip cef`
- `ip routing`
- `mpls label protocol ldp`
- `mpls ldp router-id loopback0 force`
- `pseudowire-class ppp-fr`
- `encapsulation mpls`
- `interworking ip`
- `ip local interface Loopback0`
- `interface Loopback0`
- `ip address 10.1.1.1 255.255.255.255`
- `interface FastEthernet1/0/0`
- `ip address 10.16.1.1 255.255.255.0`
- `mpls ip`
- `label protocol ldp`
- `interface Serial3/0/0`
- `no ip address`
- `encapsulation ppp`
- `ppp authentication chap`
- `xconnect 10.2.2.2 1 pw-class ppp-fr`
- `ppp ipcp address proxy 10.65.32.14`
- `ip route 10.0.0.0 255.0.0.0 10.16.1.2`

### PE2

- `ip cef`
- `ip routing`
- `mpls label protocol ldp`
- `mpls ldp router-id loopback0 force`
- `pseudowire-class ppp-fr`
- `encapsulation mpls`
- `interworking ip`
- `ip local interface Loopback0`
- `interface Loopback0`
- `ip address 10.2.2.2 255.255.255.255`
- `interface FastEthernet1/0/0`
- `ip address 10.16.2.1 255.255.255.0`
- `mpls ip`
- `label protocol ldp`
- `interface Serial3/0/0`
- `no ip address`
- `encapsulation frame-relay`
- `frame-relay intf-type dce`
- `connect ppp-fr Serial3/0/0 100 l2transport`
- `xconnect 10.1.1.1 100 pw-class ppp-fr`
Ethernet VLAN to PPP over AToM (Routed) Example

The following example shows the configuration of Ethernet VLAN to PPP over AToM:
<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><code>mpls label protocol ldp</code></td>
<td><code>mpls label protocol ldp</code></td>
</tr>
<tr>
<td><code>mpls ldp router-id Loopback0</code></td>
<td><code>mpls ldp router-id Loopback0</code></td>
</tr>
<tr>
<td><code>mpls ip</code></td>
<td><code>mpls ip</code></td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td><code>pseudowire-class ppp-ether</code></td>
<td><code>pseudowire-class ppp-ether</code></td>
</tr>
<tr>
<td><code>encapsulation mpls</code></td>
<td><code>encapsulation mpls</code></td>
</tr>
<tr>
<td><code>interworking ip</code></td>
<td><code>interworking ip</code></td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td><code>interface Loopback0</code></td>
<td><code>interface Loopback0</code></td>
</tr>
<tr>
<td><code>ip address 10.8.8.8 255.255.255.255</code></td>
<td><code>ip address 10.9.9.9 255.255.255.255</code></td>
</tr>
<tr>
<td><code>no shutdown</code></td>
<td><code>no shutdown</code></td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td><code>interface POS2/0/1</code></td>
<td><code>interface vlan300</code></td>
</tr>
<tr>
<td><code>no ip address</code></td>
<td><code>mtu 4470</code></td>
</tr>
<tr>
<td><code>encapsulation ppp</code></td>
<td><code>no ip address</code></td>
</tr>
<tr>
<td><code>no peer default ip address</code></td>
<td><code>xconnect 10.8.8.8 300 pw-class ppp-ether</code></td>
</tr>
<tr>
<td><code>ppp ipcp address proxy 10.10.10.1</code></td>
<td><code>no shutdown</code></td>
</tr>
<tr>
<td><code>xconnect 10.9.9.9 300 pw-class ppp-ether</code></td>
<td>!</td>
</tr>
<tr>
<td><code>no shutdown</code></td>
<td><code>interface GigabitEthernet6/2</code></td>
</tr>
<tr>
<td></td>
<td><code>switchport</code></td>
</tr>
<tr>
<td></td>
<td><code>switchport trunk encapsulation dot1q</code></td>
</tr>
<tr>
<td></td>
<td><code>switchport trunk allowed vlan 300</code></td>
</tr>
<tr>
<td></td>
<td><code>switchport mode trunk</code></td>
</tr>
<tr>
<td></td>
<td><code>no shutdown</code></td>
</tr>
</tbody>
</table>
# Additional References

The following sections provide references related to the L2VPN Interworking feature.

## Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 Tunnel Protocol Version 3</td>
<td>Layer 2 Tunnel Protocol Version 3</td>
</tr>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
</tbody>
</table>

## Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
</table>
| draft-ietf-l2tpext-l2tp-base-03.txt | *Layer Two Tunneling Protocol (Version 3) ‘L2TPv3’*
| draft-martini-l2circuit-trans-mpls-09.txt | *Transport of Layer 2 Frames Over MPLS*
| draft-ietf-pwe3-frame-relay-03.txt. | *Encapsulation Methods for Transport of Frame Relay over MPLS Networks*
| draft-ietf-pwe3-ethernet-encap-08.txt. | *Encapsulation Methods for Transport of Ethernet over MPLS Networks*
| draft-ietf-pwe3-hdlc-ppp-encap-mpls-03.txt. | *Encapsulation Methods for Transport of PPP/HDLC over MPLS Networks*
| draft-ietf-ppvpn-l2vpn-00.txt. | *An Architecture for L2VPNs* |
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

**Feature Information for L2VPN Interworking**

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.
Table 17  Feature Information for L2VPN Interworking

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN Interworking</td>
<td>12.0(26)S 12.0(30)S 12.0(32)S</td>
<td>This feature allows disparate attachment circuits to be connected. An interworking function facilitates the translation between the different Layer 2 encapsulations.</td>
</tr>
<tr>
<td></td>
<td>12.0(32)SY 12.2(33)SRA</td>
<td>This feature was introduced in Cisco IOS Release 12.0(26)S.</td>
</tr>
<tr>
<td></td>
<td>12.4(11)T 12.2(33)SXH</td>
<td>In Cisco IOS Release 12.0(30)S, support was added for Cisco 12000 series Internet routers.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRD 12.2(52)SE</td>
<td>In Cisco IOS Release 12.0(32)S, support was added on Engine 5 line cards (SIP-401, SIP-501, SIP-600, and SIP-601) in Cisco 12000 series routers for the following four transport types:</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRE</td>
<td>• Ethernet/VLAN to Frame Relay Interworking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ethernet/VLAN to ATM AAL5 Interworking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ethernet to VLAN Interworking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Frame Relay to ATM AAL5 Interworking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On the Cisco 12000 series Internet router, support was added for IP Services Engine (ISE) and Engine 5 line cards that are configured for L2TPv3 tunneling.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(33)SRA, support was added for the Cisco 7600 series routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.4(11)T, support was added for the following transport types:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ethernet to VLAN Interworking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ethernet/VLAN to Frame Relay Interworking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This feature was integrated into Cisco IOS Release 12.2(33)SXH.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(33)SRD, support for routed</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and bridged interworking on SIP-400 was added for the Cisco 7600 series routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(52)SE, the L2VPN Internetworking: VLAN Enable/Disable option for AToM feature was added for the Cisco 3750 Metro switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(33)SRE, the L2VPN Internetworking: VLAN Enable/Disable option for AToM feature was added for the Cisco 7600 series router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: interworking</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
L2VPN Pseudowire Switching

This feature module explains how to configure L2VPN Pseudowire Switching, which extends Layer 2 Virtual Private Network (L2VPN) pseudowires across an interautonomous system (inter-AS) boundary or across two separate Multiprotocol Label Switching (MPLS) networks. The feature supports ATM and time-division multiplexing (TDM) attachment circuits (ACs) and Ethernet ACs.

- Finding Feature Information, page 167
- Prerequisites for L2VPN Pseudowire Switching, page 167
- Restrictions for L2VPN Pseudowire Switching, page 168
- Information About L2VPN Pseudowire Switching, page 168
- How to Configure L2VPN Pseudowire Switching, page 169
- Configuration Examples for L2VPN Pseudowire Switching, page 172
- Additional References, page 177
- Feature Information for L2VPN Pseudowire Switching, page 178

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN Pseudowire Switching

For the Cisco 12000 series routers, the L2VPN Pseudowire Switching feature for Any Transport over MPLS (AToM) is supported on the following engines:

- E2
- E3
- E4+
- E5
- E6

For engines that do not support this feature, the packets are sent to the software and forwarded through the slow path.
Restrictions for L2VPN Pseudowire Switching

- L2VPN Pseudowire Switching is supported with AToM.
- Only static, on-box provisioning is supported.
- Sequencing numbers in AToM packets are not processed by L2VPN Pseudowire Switching. The feature blindly passes the sequencing data through the xconnect packet paths, a process that is called transparent sequencing. The endpoint provider-edge (PE) to customer-edge (CE) connections enforce the sequencing.
- You can ping the adjacent next-hop PE router. End-to-end label switched path (LSP) pings are not supported.
- Do not configure IP or Ethernet interworking on a router where L2VPN Pseudowire Switching is enabled. Instead, configure interworking on the routers at the edge PEs of the network.
- The control word negotiation results must match. If either segment does not negotiate the control word, the control word is disabled for both segments.
- AToM Graceful Restart is negotiated independently on each pseudowire segment. If there is a transient loss of the label distribution protocol (LDP) session between two AToM PE routers, packets continue to flow.
- Per-pseudowire quality of service (QoS) is not supported. Traffic engineering (TE) tunnel selection is supported.
- Attachment circuit interworking is not supported.

Information About L2VPN Pseudowire Switching

- How L2VPN Pseudowire Switching Works, page 168
- How Packets Are Manipulated at the L2VPN Pseudowire Switching Aggregation Point, page 169

How L2VPN Pseudowire Switching Works

L2VPN Pseudowire Switching allows the user to extend L2VPN pseudowires across two separate MPLS networks or across an inter-AS boundary, as shown in the two figures below.

L2VPN Pseudowire Switching connects two or more contiguous pseudowire segments to form an end-to-end multihop pseudowire. This end-to-end pseudowire functions as a single point-to-point pseudowire.

As shown in the second figure below, L2VPN Pseudowire Switching enables you to keep the IP addresses of the edge PE routers private across inter-AS boundaries. You can use the IP address of the Autonomous System Boundary Routers (ASBRs) and treat them as pseudowire aggregation (PE-agg) routers. The ASBRs join the pseudowires of the two domains.
L2VPN Pseudowire Switching also enables you to keep different administrative or provisioning domains to manage the end-to-end service. At the boundaries of these networks, PE-agg routers delineate the management responsibilities.

**Figure 5** L2VPN Pseudowire Switching in an Intra-AS Topology

**Figure 6** L2VPN Pseudowire Switching in an Inter-AS Topology

How Packets Are Manipulated at the L2VPN Pseudowire Switching Aggregation Point

Switching AToM packets between two AToM pseudowires is the same as switching any MPLS packet. The MPLS switching data path switches AToM packets between two AToM pseudowires. The following list explains exceptions:

- The outgoing virtual circuit (VC) label replaces the incoming VC label in the packet. New Internal Gateway Protocol (IGP) labels and Layer 2 encapsulation are added.
- The incoming VC label time-to-live (TTL) field is decremented by one and copied to the outgoing VC label TTL field.
- The incoming VC label EXP value is copied to the outgoing VC label EXP field.
- The outgoing VC label “Bottom of Stack” S bit in the outgoing VC label is set to 1.
- AToM control word processing is not performed at the L2VPN Pseudowire Switching aggregation point. Sequence numbers are not validated. Use the Router Alert label for LSP Ping; do not require control word inspection to determine an LSP Ping packet.

How to Configure L2VPN Pseudowire Switching

Use the following procedure to configure L2VPN Pseudowire Switching on each of the PE-agg routers. In this configuration, you are limited to two `neighbor` commands after entering the `l2 vfi` command.
This procedure assumes that you have configured basic AToM L2VPNs. This procedure does not explain how to configure basic AToM L2VPNs that transport Layer 2 packets over an MPLS backbone. For information on the basic configuration, see Any Transport over MPLS.

For interautonomous configurations, ASBRs require a labeled interface.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. l2 vfi name point-to-point
4. neighbor ip-address vcid [encapsulation mpls | pw-class pw-class-name]
5. exit
6. exit
7. show mpls l2transport vc [vcid [vc-id | vc-id-min vc-id-max]] [interface name[local-circuit-id]] [destination ip-address | name] [detail]
8. show vfi [vfi-name]
9. ping [protocol] [tag] {host-name|system-address}

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
| Example: | Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal |
| **Step 3** l2 vfi name point-to-point | Creates a point-to-point Layer 2 virtual forwarding interface (VFI) and enters VFI configuration mode. |
| Example: | Router(config)# l2 vfi atomtunnel point-to-point |
| **Step 4** neighbor ip-address vcid [encapsulation mpls | pw-class pw-class-name] | Configures an emulated VC.  
| Example: | Specify the IP address and the VC ID of the remote router.  
| Note: Only two neighbor commands are allowed for each l2 vfi point-to-point command. |
| Example: | Also specify the pseudowire class to use for the emulated VC. |
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>exit</td>
<td>Exits VFI configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config-vfi)# exit</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

### Step 7

**show mpls l2transport vc**
- **vc** [vc-id | vc-id-min vc-id-max] [interface name|local-circuit-id] [destination ip-address | name] [detail]

**Example:**
Router# show mpls l2transport vc

**Purpose:** Verifies that the L2VPN Pseudowire Switching session has been established.

### Step 8

**show vfi** [vfi-name]

**Example:**
Router# show vfi

**Purpose:** Verifies that a point-to-point VFI has been established.

### Step 9

**ping** [protocol] [tag] [host-name|system-address]

**Example:**
Router# ping 10.1.1.1

**Purpose:** When issued from the CE routers, verifies end-to-end connectivity.

### Examples

The following example displays output from the **show mpls l2transport vc** command:

```
Router# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ----- ----
MPLS PW 10.0.1.1:100 10.0.1.1 100 UP
MPLS PW 10.0.1.1:100 10.0.1.1 100 UP
```

The following example displays output from the **show vfi** command:

```
Router# show vfi
VFI name: test, type: point-to-point
Neighbors connected via pseudowires:
```
Configuration Examples for L2VPN Pseudowire Switching

- L2VPN Pseudowire Switching in an Inter-AS Configuration Example, page 172

L2VPN Pseudowire Switching in an Inter-AS Configuration Example

Two separate autonomous systems are able to pass L2VPN packets, because the two PE-agg routers have been configured with L2VPN Pseudowire Switching. This example configuration is shown in the figure below.

Figure 7  L2VPN Pseudowire Switching in an Interautonomous System

<table>
<thead>
<tr>
<th>Router ID</th>
<th>Pseudowire ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.1.1</td>
<td>100</td>
</tr>
<tr>
<td>10.0.1.1</td>
<td>100</td>
</tr>
</tbody>
</table>
PE-agg-1

version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption
!
hostname [pe-agg1]
!
boot-start-marker
boot-end-marker
!
enable secret 5 $1$Q0Bb
$32sIU82pHRgyddWaeB4zs/
!
ip subnet-zero
ip cef
no ip domain-lookup
mpls label protocol ldp
pseudowire-class SW-PW
encapsulation mpls
!
l2 vfi PW-SWITCH-1 point-to-point
neighbor 172.17.255.3 100 pw-class SW-PW
neighbor 172.16.255.1 16 pw-class SW-PW
!
interface Loopback0
ip address 172.16.255.3 255.255.255.255
no ip directed-broadcast
!
interface Serial0/0
ip address 172.16.0.6 255.255.255.252
no ip directed-broadcast
mpls ip

PE-agg-2

version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption
!
hostname [pe-agg2]
!
boot-start-marker
boot-end-marker
!
enable secret 5 $1$32jd
$zQRfxXzjstr4llV9DcWf7/
!
ip subnet-zero
ip cef
no ip domain-lookup
mpls label protocol ldp
pseudowire-class SW-PW
encapsulation mpls
!
l2 vfi PW-SWITCH-1 point-to-point
neighbor 172.16.255.3 100 pw-class SW-PW
neighbor 172.17.255.1 17 pw-class SW-PW
!
interface Loopback0
ip address 172.17.255.3 255.255.255.255
no ip directed-broadcast
!
interface Serial0/0
ip address 172.17.0.6 255.255.255.252
no ip directed-broadcast
mpls ip
### A-P1

```plaintext
version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption

! hostname [a-p1]

! boot-start-marker
boot-end-marker

! enable secret 5 1eiUn$8rTMnZiYnJxtMTpO0NKpQQ/

! ip subnet-zero
ip cef
no ip domain-lookup
mpls label protocol ldp

! interface Loopback0
ip address 172.16.255.2 255.255.255.255
no ip directed-broadcast

! interface Serial0/0
ip address 172.16.0.5 255.255.255.252
no ip directed-broadcast
mpls ip

! interface Serial1/0
ip address 172.16.0.2 255.255.255.252
no ip directed-broadcast
```

### B-P1

```plaintext
version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption

! hostname [b-p1]

! boot-start-marker
boot-end-marker

! enable secret 5 1svU/$2JmJZ/5gxlW4nVXvniIJe1

! ip subnet-zero
ip cef
no ip domain-lookup
mpls label protocol ldp

! interface Loopback0
ip address 172.17.255.2 255.255.255.255
no ip directed-broadcast

! interface Serial0/0
ip address 172.17.0.5 255.255.255.252
no ip directed-broadcast
mpls ip

! interface Serial1/0
ip address 172.17.0.2 255.255.255.252
no ip directed-broadcast
```
PE1

version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption
!
hostname [pe1]
!
boot-start-marker
boot-end-marker
!
enable secret 5 $1$9z8F$2A1/YLc6NB6d.WLQXF0Bz1
!
ip subnet-zero
ip cef
no ip domain-lookup
mpls label protocol ldp
pseudowire-class ETH-PW
encapsulation mpls
!
interface Loopback0
ip address 172.16.255.1 255.255.255.255
no ip directed-broadcast
!
interface Ethernet0/0
no ip address
no ip directed-broadcast
no cdp enable
xconnect 172.16.255.3 16 pw-class ETH-PW
!
interface Serial1/0
ip address 172.16.0.1 255.255.255.252
!

PE2

version 12.0
service timestamps debug uptime
service timestamps log uptime
service password-encryption
!
hostname [pe2]
!
boot-start-marker
boot-end-marker
!
enable secret 5 $1$rT.V/$8Z6Dy/r8/eaRdx2TR/OSr/
!
ip subnet-zero
ip cef
no ip domain-lookup
mpls label protocol ldp
pseudowire-class ETH-PW
encapsulation mpls
!
interface Loopback0
ip address 172.17.255.1 255.255.255.255
no ip directed-broadcast
!
interface Ethernet0/0
no ip address
no ip directed-broadcast
no cdp enable
xconnect 172.17.255.3 17 pw-class ETH-PW
!
<table>
<thead>
<tr>
<th>CE1</th>
<th>CE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>version 12.0</td>
<td>version 12.0</td>
</tr>
<tr>
<td>service timestamps debug uptime</td>
<td>service timestamps debug uptime</td>
</tr>
<tr>
<td>service timestamps log uptime</td>
<td>service timestamps log uptime</td>
</tr>
<tr>
<td>service password-encryption</td>
<td>service password-encryption</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>hostname [ce1]</td>
<td>hostname [ce2]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>boot-start-marker</td>
<td>boot-start-marker</td>
</tr>
<tr>
<td>boot-end-marker</td>
<td>boot-end-marker</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>enable secret 5</td>
<td>enable secret 5</td>
</tr>
<tr>
<td>$1$5o9N6$LSrxHufTn0vjCY0nW8hQX.</td>
<td>$1$5Yh6$LQ4z5PdrF5B9dnL75Xvml</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ip subnet-zero</td>
<td>ip subnet-zero</td>
</tr>
<tr>
<td>ip cef</td>
<td>ip cef</td>
</tr>
<tr>
<td>no ip domain-lookup</td>
<td>no ip domain-lookup</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>interface Ethernet0/0</td>
<td>interface Ethernet0/0</td>
</tr>
<tr>
<td>ip address 10.0.0.1 255.255.255.252</td>
<td>ip address 10.0.0.2 255.255.255.252</td>
</tr>
<tr>
<td>no ip directed-broadcast</td>
<td>no ip directed-broadcast</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ip classless</td>
<td>ip classless</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>control-plane</td>
<td>control-plane</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>line con 0</td>
<td>line con 0</td>
</tr>
<tr>
<td>exec-timeout 0 0</td>
<td>exec-timeout 0 0</td>
</tr>
<tr>
<td>line aux 0</td>
<td>line aux 0</td>
</tr>
<tr>
<td>line vty 0 4</td>
<td>line vty 0 4</td>
</tr>
<tr>
<td>login</td>
<td>login</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>no cns aaa enable</td>
<td>no cns aaa enable</td>
</tr>
</tbody>
</table>
## Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
<tr>
<td>Pseudowire redundancy</td>
<td><a href="http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s31/fsstitch.htm">http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s31/fsstitch.htm</a> L2VPN Pseudowire Redundancy</td>
</tr>
<tr>
<td>High availability for AToM</td>
<td>AToM Graceful Restart</td>
</tr>
<tr>
<td>L2VPN interworking</td>
<td>L2VPN Interworking</td>
</tr>
<tr>
<td>Layer 2 local switching</td>
<td>Layer 2 Local Switching</td>
</tr>
<tr>
<td>PWE3 MIB</td>
<td>Pseudowire Emulation Edge-to-Edge MIBs for Ethernet and Frame Relay Services</td>
</tr>
<tr>
<td>Packet sequencing</td>
<td>Any Transport over MPLS (AToM) Sequencing Support</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-pwe3-control-protocol-14.txt</td>
<td>Pseudowire Setup and Maintenance using LDP</td>
</tr>
<tr>
<td>draft-martini-pwe3-pw-switching-01.txt</td>
<td>Pseudo Wire Switching</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-IETF-PW-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
<tr>
<td>CISCO-IETF-PW-MPLS-MIB</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-ENET-MIB</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-FR-MIB</td>
<td></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for L2VPN Pseudowire Switching

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Table 18 Feature Information for L2VPN Pseudowire Switching

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN Pseudowire Switching</td>
<td>12.0(31)S, 12.2(28)SB, 12.2(33)SRB, 12.2(33)SRD2, 12.2(33)SRE</td>
<td>This feature configures L2VPN Pseudowire Switching, which extends L2VPN pseudowires across an interautonomous system (inter-AS) boundary or across two separate MPLS networks. In Cisco IOS Release 12.2(28)SB, support was added for the Cisco 7200 and 7301 series routers. In 12.2(33)SRD2, support was added for ATM and TDM ACs. The following commands were introduced or modified: <code>l2 vfi point-to-point</code>, <code>neighbor</code> (L2VPN Pseudowire Switching), <code>show vfi</code>.</td>
</tr>
</tbody>
</table>
L2VPN Pseudowire Redundancy

The L2VPN Pseudowire Redundancy feature lets you configure your network to detect a failure in the network and reroute the Layer 2 (L2) service to another endpoint that can continue to provide service. This feature provides the ability to recover from a failure either of the remote provider edge (PE) router or of the link between the PE and customer edge (CE) routers.

- Finding Feature Information, page 181
- Prerequisites for L2VPN Pseudowire Redundancy, page 181
- Restrictions for L2VPN Pseudowire Redundancy, page 182
- Information About L2VPN Pseudowire Redundancy, page 182
- How to Configure L2VPN Pseudowire Redundancy, page 184
- Configuration Examples for L2VPN Pseudowire Redundancy, page 189
- Additional References, page 191
- Feature Information for L2VPN Pseudowire Redundancy, page 192

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN Pseudowire Redundancy

- This feature module requires that you understand how to configure basic L2 virtual private networks (VPNs). You can find that information in the following documents:
  - Any Transport over MPLS
  - L2 VPN Interworking
- The L2VPN Pseudowire Redundancy feature requires that the following mechanisms be in place to enable you to detect a failure in the network:
  - Label-switched paths (LSP) Ping/Traceroute and Any Transport over MPLS Virtual Circuit Connection Verification (AToM VCCV)
  - Local Management Interface (LMI)
Restrictions for L2VPN Pseudowire Redundancy

General Restrictions

- The primary and backup pseudowires must run the same type of transport service. The primary and backup pseudowires must be configured with AToM.
- Only static, on-box provisioning is supported.
- If you use L2VPN Pseudowire Redundancy with L2VPN Interworking, the interworking method must be the same for the primary and backup pseudowires.
- Setting the experimental (EXP) bit on the Multiprotocol Label Switching (MPLS) pseudowire is supported.
- Different pseudowire encapsulation types on the MPLS pseudowire are not supported.
- The `mpls l2transport route` command is not supported. Use the `xconnect` command instead.
- The ability to have the backup pseudowire fully operational at the same time that the primary pseudowire is operational is not supported. The backup pseudowire becomes active only after the primary pseudowire fails.
- The AToM VCCV feature is supported only on the active pseudowire.
- More than one backup pseudowire is not supported.

Restrictions for Layer 2 Tunnel Protocol Version 3 (L2TPv3) Xconnect Configurations

- Interworking is not supported.
- Local switching backup by pseudowire redundancy is not supported.
- PPP, HDLC, and Frame-Relay attachment circuit (AC) types of L2TPv3 pseudowire redundancy are not supported.
- For the edge interface, only the Cisco 7600 series SPA Interface Processor-400 (SIP-400) linecard with the following shared port adapters (SPAs) is supported:
  - Cisco 2-Port Gigabit Ethernet Shared Port Adapter (SPA-2X1GE)
  - Cisco 2-Port Gigabit Ethernet Shared Port Adapter, Version 2 (SPA-2X1GE-V2)
  - Cisco 5-Port Gigabit Ethernet Shared Port Adapter, Version 2 (SPA-5X1GE-V2)

Information About L2VPN Pseudowire Redundancy

- Introduction to L2VPN Pseudowire Redundancy, page 182

Introduction to L2VPN Pseudowire Redundancy

L2VPNs can provide pseudowire resiliency through their routing protocols. When connectivity between end-to-end PE routers fails, an alternative path to the directed LDP session and the user data can take over. However, there are some parts of the network where this rerouting mechanism does not protect against
interruptions in service. The figure below shows those parts of the network that are vulnerable to an interruption in service.

**Figure 8  Points of Potential Failure in an L2VPN Network**

X1 = End-to-end routing failure
X2 = PE hardware or software failure
X3 = Attachment circuit failure from a line break
X4 = CE hardware or software failure

The L2VPN Pseudowire Redundancy feature provides the ability to ensure that the CE2 router in the figure above can always maintain network connectivity, even if one or all the failures in the figure occur.

The L2VPN Pseudowire Redundancy feature enables you to set up backup pseudowires. You can configure the network with redundant pseudowires (PWs) and redundant network elements, which are shown in the three figures below.

The figure below shows a network with redundant pseudowires and redundant attachment circuits.

**Figure 9  L2VPN Network with Redundant PWs and Attachment Circuits**

The figure below shows a network with redundant pseudowires, attachment circuits, and CE routers.

**Figure 10  L2VPN Network with Redundant PWs, Attachment Circuits, and CE Routers**
The figure below shows a network with redundant pseudowires, attachment circuits, CE routers, and PE routers.

**Figure 11**  L2VPN Network with Redundant PWs, Attachment Circuits, CE Routers, and PE Routers

---

**How to Configure L2VPN Pseudowire Redundancy**

The L2VPN Pseudowire Redundancy feature enables you to configure a backup pseudowire in case the primary pseudowire fails. When the primary pseudowire fails, the PE router can switch to the backup pseudowire. You can have the primary pseudowire resume operation after it comes back up.

The default Label Distribution Protocol (LDP) session hold-down timer will enable the software to detect failures in about 180 seconds. That time can be configured so that the software can detect failures more quickly. See the `mpls ldp holdtime` command for more information.

- Configuring the Pseudowire, page 184
- Configuring L2VPN Pseudowire Redundancy, page 185
- Forcing a Manual Switchover to the Backup Pseudowire VC, page 187
- Verifying the L2VPN Pseudowire Redundancy Configuration, page 188

---

**Configuring the Pseudowire**

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You set up the connection, called a pseudowire, between the routers.

The pseudowire-class configuration group specifies the characteristics of the tunneling mechanism, which are:

- Encapsulation type
- Control protocol
- Payload-specific options

You must specify the `encapsulation mpls` command as part of the pseudowire class for the AToM VCs to work properly. If you omit the `encapsulation mpls` command as part of the `xconnect` command, you receive the following error:

```
% Incomplete command.
```

Perform this task to configure a pseudowire class.
### SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class name
4. encapsulation mpls
5. interworking {ethernet | ip}

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1 enable</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2 configure terminal</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3 pseudowire-class name</strong></td>
<td>Establishes a pseudowire class with a name that you specify. Enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# pseudowire-class atom</td>
</tr>
<tr>
<td><strong>Step 4 encapsulation mpls</strong></td>
<td>Specifies the tunneling encapsulation. For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-pw-class)# encapsulation mpls</td>
</tr>
<tr>
<td>**Step 5 interworking {ethernet</td>
<td>ip}**</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-pw-class)# interworking ip</td>
</tr>
</tbody>
</table>

### Configuring L2VPN Pseudowire Redundancy

Use the following steps to configure the L2VPN Pseudowire Redundancy feature.

For each transport type, the `xconnect` command is configured slightly differently. The following configuration steps use Ethernet VLAN over MPLS, which is configured in subinterface configuration.
mode. See *Any Transport over MPLS* to determine how to configure the *xconnect* command for other transport types.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface gigabitethernet *slot* / *subslot* / *interface* . *subinterface*
4. encapsulation dot1q *vlan-id*
5. xconnect peer-router-id *vcid* {encapsulation mpls| pw-class *pw-class-name*}
6. backup peer peer-router-ip-addr *vcid* [pw-class *pw-class-name*]
7. backup delay *enable-delay* {disable-delay | never}

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong> interface gigabitethernet <em>slot</em> / <em>subslot</em> / <em>interface</em> . <em>subinterface</em></td>
<td>Specifies the Gigabit Ethernet subinterface and enters subinterface configuration mode. Make sure that the subinterface on the adjoining CE router is on the same VLAN as this PE router.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# interface gigabitethernet0/0/0.1</td>
</tr>
<tr>
<td><strong>Step 4</strong> encapsulation dot1q <em>vlan-id</em></td>
<td>Enables the subinterface to accept 802.1Q VLAN packets. The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet. All other subinterfaces and backbone routers do not.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-subif)# encapsulation dot1q 100</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
**Step 5** xconnect peer-router-id vcid {encapsulation mpls| pw-class pw-class-name} | Binds the attachment circuit to a pseudowire VC. The syntax for this command is the same as for all other Layer 2 transports. Enters xconnect configuration mode.

Example:

Router(config-subif)# xconnect 10.0.0.1 123 pw-class atom

**Step 6** backup peer peer-router-ip-addr vcid [pw-class pw-class-name] | Specifies a redundant peer for the pseudowire VC. The pseudowire class name must match the name you specified when you created the pseudowire class, but you can use a different pw-class in the backup peer command than the name that you used in the primary xconnect command.

Example:

Router(config-if-xconn)# backup peer 10.0.0.3 125 pw-class atom

**Step 7** backup delay enable-delay [disable-delay | never] | Specifies how long (in seconds) the backup pseudowire VC should wait to take over after the primary pseudowire VC goes down. The range is 0 to 180. Specifies how long the primary pseudowire should wait after it becomes active to take over for the backup pseudowire VC. The range is 0 to 180 seconds. If you specify the never keyword, the primary pseudowire VC never takes over for the backup.

Example:

Router(config-if-xconn)# backup delay 5 never

---

**Forcing a Manual Switchover to the Backup Pseudowire VC**

To force the router switch over to the backup or primary pseudowire, you can enter the xconnect backup force switchover command in privileged EXEC mode. You can specify either the interface of the primary attachment circuit (AC) to switch to or the IP-address and VC ID of the peer router.

A manual switchover can be made only if the interface or peer specified in the command is actually available and the xconnect will move to the fully active state when the command is entered.

**SUMMARY STEPS**

1. enable
2. xconnect backup force-switchover [interface interface-info | peer ip-address vcid]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Router> enable
### Step 2

**xconnect backup force-switchover**

- **interface** interface-info
- **peer** ip-address vcid

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>xconnect backup force-switchover</strong></td>
<td>Specifies that the router should switch to the backup or to the primary pseudowire.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router# xconnect backup force-switchover peer 10.10.10.1 123
```

### Verifying the L2VPN Pseudowire Redundancy Configuration

Use the following commands to verify that the L2VPN Pseudowire Redundancy feature is correctly configured.

**SUMMARY STEPS**

1. **show mpls l2transport vc**
2. **show xconnect all**
3. **xconnect logging redundancy**

**DETAILED STEPS**

#### Step 1  
**show mpls l2transport vc**

In this example, the primary attachment circuit is up. The backup attachment circuit is available, but not currently selected. The `show` output displays as follows:

**Example:**

```
Router# show mpls l2transport vc

Local intf Local circuit Dest address VC ID Status
------------- ----------------------- --------------- ---------- ----------
Et0/0.1 Eth VLAN 101 10.0.0.2 101 UP
Et0/0.1 Eth VLAN 101 10.0.0.3 201 DOWN

Router# show mpls l2transport vc detail

Local interface: Et0/0.1 up, line protocol up, Eth VLAN 101 up
 Destination address 10.0.0.2 VC ID: 101, VC status UP

Local interface: Et0/0.1 down, line protocol down, Eth VLAN 101 down
 Destination address 10.0.0.3 VC ID: 201, VC status down
```

#### Step 2  
**show xconnect all**

In this example, the topology is Attachment Circuit 1 to Pseudowire 1 with a Pseudowire 2 as a backup:

**Example:**

```
Router# show xconnect all
Legend: XC ST=Xconnect State, S1=Segment1 State, S2=Segment2 State
```
In this example, the topology is Attachment Circuit 1 to Attachment Circuit 2 with a Pseudowire backup for Attachment Circuit 2:

Example:

Router# show xconnect all
Legend: XC ST=Xconnect State, S1=Segment1 State, S2=Segment2 State
UP=Up, DN=Down, AD=Admin Down, IA=Inactive, NH=No Hardware

Step 3 xconnect logging redundancy
In addition to the `show mpls l2transport vc` command and the `show xconnect` command, you can use the `xconnect logging redundancy` command to track the status of the xconnect redundancy group:

Example:

Router(config)# xconnect logging redundancy
When this command is configured, the following messages will be generated during switchover events:

Example:

00:01:07: %XCONNECT-5-REDUNDANCY: Activating primary member 10.55.55.2:1000
Activating the primary member:

Example:

00:01:05: %XCONNECT-5-REDUNDANCY: Activating secondary member 10.55.55.3:1001
Activating the backup member:

Configuration Examples for L2VPN Pseudowire Redundancy

Each of the configuration examples refers to one of the following pseudowire classes:

- AToM (like-to-like) pseudowire class:

  pseudowire-class mpls
  encapsulation mpls

- L2VPN IP interworking:

  pseudowire-class mpls-ip
The following example shows a High-Level Data Link Control (HDLC) attachment circuit xconnect with a backup pseudowire:

```plaintext
class Serial4/0
xconnect 10.55.55.2 4000 pw-class mpls
backup peer 10.55.55.3 4001 pw-class mpls
```

The following example shows a Frame Relay attachment circuit xconnect with a backup pseudowire:

```plaintext
class fr-fr-pw Serial6/0 225 l2transport
xconnect 10.55.55.2 5225 pw-class mpls
backup peer 10.55.55.3 5226 pw-class mpls
```

The following example shows an Ethernet attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```plaintext
class Ethernet0/0
xconnect 10.55.55.2 1000 pw-class mpls-ip
backup peer 10.55.55.3 1001 pw-class mpls-ip
```

The following example shows a Frame Relay attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```plaintext
class fr-ppp-pw Serial6/0 250 l2transport
xconnect 10.55.55.2 8250 pw-class mpls-ip
backup peer 10.55.55.3 8251 pw-class mpls-ip
```

The following example shows a PPP attachment circuit xconnect with L2VPN IP interworking and a backup pseudowire:

```plaintext
class Serial7/0
encapsulation ppp
xconnect 10.55.55.2 2175 pw-class mpls-ip
backup peer 10.55.55.3 2176 pw-class mpls-ip
```
**L2VPN Pseudowire Redundancy with Layer 2 Local Switching Examples**

The following example shows an Ethernet VLAN-VLAN local switching xconnect with a pseudowire backup for Ethernet segment E2/0.2. If the subinterface associated with E2/0.2 goes down, the backup pseudowire is activated.

```
connect vlan-vlan Ethernet1/0.2 Ethernet2/0.2
 backup peer 10.55.55.3 1101 pw-class mpls
```

The following example shows a Frame Relay-to-Frame Relay local switching connect with a pseudowire backup for Frame Relay segment S8/0 150. If data-link connection identifier (DLCI) 150 on S8/0 goes down, the backup pseudowire is activated.

```
connect fr-fr-ls Serial6/0 150 Serial8/0 150
 backup peer 10.55.55.3 7151 pw-class mpls
```

**Additional References**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
<tr>
<td>High Availability for AToM</td>
<td>AToM Graceful Restart</td>
</tr>
<tr>
<td>L2VPN Interworking</td>
<td>L2VPN Interworking</td>
</tr>
<tr>
<td>Layer 2 local switching</td>
<td>Layer 2 Local Switching</td>
</tr>
<tr>
<td>PWE3 MIB</td>
<td>Pseudowire Emulation Edge-to-Edge MIBs for Ethernet and Frame Relay Services</td>
</tr>
<tr>
<td>Packet sequencing</td>
<td>Any Transport over MPLS (AToM) Sequencing Support</td>
</tr>
</tbody>
</table>

**Standards**

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

**MIBs**

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

---

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

Feature Information for L2VPN Pseudowire Redundancy

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN Pseudowire Redundancy</td>
<td>12.0(31)S 12.2(28)SB 12.4(11)T&lt;br&gt;12.2(33)SRB 12.2(22)SXI 15.0(1)S</td>
<td>This feature enables you to set up your network to detect a failure in the network and reroute the Layer 2 service to another endpoint that can continue to provide service. In Cisco IOS Release 12.0(31)S, the L2VPN Pseudowire Redundancy feature was introduced for Any Transport over MPLS (AToM) on the Cisco 12000 series routers. This feature was integrated into Cisco IOS Release 12.2(28)SB. This feature was integrated into Cisco IOS Release 12.4(11)T. This feature was integrated into Cisco IOS Release 12.2(33)SRB. This feature was integrated into Cisco IOS Release 12.2(33)SXI. The following commands were introduced or modified: backup delay (L2VPN local switching), backup peer, show xconnect, xconnect backup force-switchover, xconnect logging redundancy.</td>
</tr>
<tr>
<td>L2VPN Pseudowire Redundancy for L2TPv3</td>
<td>12.2(33)SRE 15.0(1)S</td>
<td>This feature provides L2VPN pseudowire redundancy for L2TPv3 xconnect configurations. In Cisco IOS Release 12.2(33)SRE, this feature was implemented on the Cisco 7600 series routers.</td>
</tr>
<tr>
<td>Resilient Pseudowire (RPW): PW Fast Recovery</td>
<td>15.2(1)S</td>
<td>This feature was integrated into Cisco IOS Release 15.2(1)S. The following commands were introduced or modified: <strong>aps hspw-icrm-grp</strong>, show hspw-aps-icrm.</td>
</tr>
</tbody>
</table>
VPLS Autodiscovery BGP Based

VPLS Autodiscovery enables each Virtual Private LAN Service (VPLS) provider edge (PE) router to discover which other PE routers are part of the same VPLS domain. VPLS Autodiscovery also automatically detects when PE routers are added to or removed from the VPLS domain. You no longer need to manually configure the VPLS and maintain the configuration when a PE router is added or deleted. VPLS Autodiscovery uses the Border Gateway Protocol (BGP) to discover the VPLS members and to set up and tear down pseudowires in the VPLS.

- Feature Information For, page 195
- Prerequisites for VPLS Autodiscovery BGP Based, page 195
- Restrictions for VPLS Autodiscovery BGP Based, page 195
- Information About VPLS Autodiscovery BGP Based, page 196
- How to Configure VPLS Autodiscovery BGP Based, page 199
- Configuration Examples for VPLS Autodiscovery BGP Based, page 206
- Additional References, page 208
- Feature Information for VPLS Autodiscovery BGP Based, page 210

Feature Information For

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VPLS Autodiscovery BGP Based

Before configuring VPLS Autodiscovery, if you are using a Cisco 7600 series router, perform the Cisco 7600 router-specific tasks listed in the section called “Virtual Private LAN Services on the Optical Service Modules” in the Cisco 7600 Series Router IOS Software Configuration Guide.

Restrictions for VPLS Autodiscovery BGP Based

- VPLS Autodiscovery supports only IPV4 addresses.
- VPLS Autodiscovery uses Forwarding Equivalence Class (FEC) 129 to convey endpoint information. Manually configured pseudowires use FEC 128.
- VPLS Autodiscovery is not supported with Layer 2 Tunnel Protocol Version 3 (L2TPv3).
- VPLS Autodiscovery is not supported with interautonomous system configurations.
- You can configure both autodiscovered and manually configured pseudowires in a single virtual forwarding instance (VFI). However, the pseudowires cannot go to the same peer PE router.
- If you manually configure a neighbor using the `neighbor (VPLS)` command after you have enabled VPLS Autodiscovery and both peers are in autodiscovery mode, manually configure the route target (RT) values to prevent each peer from receiving discovery data for that VPLS.
- If you manually configure multiple pseudowires and target different IP addresses on the same PE router for each pseudowire, do not use the same virtual circuit identifier (VC ID) to identify the pseudowires terminated at the same PE router.
- You cannot configure a pseudowire by manually configuring a neighbor on one PE router and using autodiscovery on the other PE router to configure the same pseudowire in the other direction.
- Tunnel selection is not supported with autodiscovered neighbors.
- You can have up to 16 route targets only per VFI.
- The same RT is not allowed in multiple VFIs in the same PE router.
- The BGP autodiscovery process does not support dynamic hierarchical VPLS. User-facing PE (U-PE) routers cannot discover the network-facing PE (N-PE) routers, and N-PE routers cannot discover U-PE routers.
- Pseudowires for autodiscovered neighbors are provisioned with split horizon enabled. Therefore, manually configure the pseudowires for hierarchical VPLS. Make sure the U-PE routers do not participate in BGP autodiscovery for those pseudowires.
- Do not disable split horizon on autodiscovered neighbors. Split horizon is required with VPLS Autodiscovery.
- The provisioned peer address must be a /32 address bound to the peer’s Label Distribution Protocol (LDP) router ID.
- The peer PE router must be able to access the IP address that is used as the local LDP router ID. Even though the IP address need not be used in the `xconnect` command on the peer PE router, that IP address must be reachable.
- VPLS Autodiscovery is supported on the Cisco 7600 router hardware. For details on supported shared port adapters and line cards, see the following documents:
  - Cisco 7600 Series Router Cisco IOS Software Configuration Guide
  - Release Notes for Cisco IOS Release 12.2SR for the Cisco 7600 Series Routers

Information About VPLS Autodiscovery BGP Based

- How the VPLS Feature Works, page 197
- How the VPLS Autodiscovery BGP Based Feature Works, page 197
- How Enabling VPLS Autodiscovery Differs from Manually Configuring VPLS, page 197
- Show Commands Affected by VPLS Autodiscovery BGP Based, page 198
- BGP VPLS Autodiscovery Support on a Route Reflector, page 198
How the VPLS Feature Works

VPLS allows Multiprotocol Label Switching (MPLS) networks to provide multipoint Ethernet LAN services, also known as Transparent LAN Services (TLS). All customer sites in a VPLS appear to be on the same LAN, even though those sites might be in different geographic locations.

How the VPLS Autodiscovery BGP Based Feature Works

VPLS Autodiscovery enables each VPLS PE router to discover the other PE routers that are part of the same VPLS domain. VPLS Autodiscovery also tracks when PE routers are added to or removed from the VPLS domain. The autodiscovery and signaling functions use BGP to find and track the PE routers.

BGP uses the L2VPN Routing Information Base (RIB) to store endpoint provisioning information, which is updated each time any Layer 2 VFI is configured. Prefix and path information is stored in the L2VPN database, allowing BGP to make decisions on the best path. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, the endpoint information is used to configure a pseudowire mesh to support L2VPN-based services.

The BGP autodiscovery mechanism facilitates the configuration of L2VPN services, which are an integral part of the Cisco IOS Virtual Private LAN Service (VPLS) feature. VPLS enables flexibility in deploying services by connecting geographically dispersed sites as a large LAN over high-speed Ethernet in a robust and scalable IP MPLS network. For more information about BGP and the L2VPN address family in relation to VPLS Autodiscovery, see the following documents:

- The section called “L2VPN Address Family” in the Cisco BGP Overview.
- The document called BGP Support for the L2VPN Address Family.

How Enabling VPLS Autodiscovery Differs from Manually Configuring VPLS

With VPLS Autodiscovery, you no longer need to manually set up the VPLS. The commands you use to set up VPLS Autodiscovery are similar to those you use to manually configure a VPLS, as shown in the table below. VPLS Autodiscovery uses neighbor commands in L2VPN address family mode to distribute endpoint information to configure a pseudowire.
Table 20  VPLS Autodiscovery Configuration versus Manual VPLS Configuration

<table>
<thead>
<tr>
<th>Manual Configuration of VPLS</th>
<th>VPLS Autodiscovery: BGP Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 vfi vpls1 manual</td>
<td>12 vfi vpls1 autodiscovery</td>
</tr>
<tr>
<td>vpn id 100</td>
<td>vpn id 100</td>
</tr>
<tr>
<td>neighbor 10.10.10.1 encapsulation mpls</td>
<td>exit</td>
</tr>
<tr>
<td>neighbor 10.10.10.0 encapsulation mpls</td>
<td>router bgp 1</td>
</tr>
<tr>
<td>exit</td>
<td>no bgp default ipv4-unicast</td>
</tr>
<tr>
<td></td>
<td>bgp log-neighbor-changes</td>
</tr>
<tr>
<td></td>
<td>bgp update-delay 1</td>
</tr>
<tr>
<td></td>
<td>neighbor 10.1.1.2 remote-as 1</td>
</tr>
<tr>
<td></td>
<td>neighbor 10.1.1.2 update-source</td>
</tr>
<tr>
<td></td>
<td>Loopback1</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>address-family l2vpn vpls</td>
</tr>
<tr>
<td></td>
<td>neighbor 10.1.1.2 activate</td>
</tr>
<tr>
<td></td>
<td>neighbor 10.1.1.2 send-community</td>
</tr>
<tr>
<td></td>
<td>extended</td>
</tr>
<tr>
<td></td>
<td>exit-address-family</td>
</tr>
</tbody>
</table>

When you configure VPLS Autodiscovery, you enter the `l2vfi autodiscovery` command. This command allows the VFI to learn and advertise the pseudowire endpoints. As a result, you no longer need to enter the `neighbor` (VPLS) command in L2 VFI configuration mode.

However, the `neighbor` (VPLS) command is still supported with VPLS Autodiscovery in L2 VFI command mode. You can use the `neighbor` (VPLS) command to allow PE routers that do not participate in the autodiscovery process to join the VPLS. You can also use the `neighbor` (VPLS) command with PE routers that have been configured using the Tunnel Selection feature. You can also use the `neighbor` (VPLS) command in hierarchical VPLS configurations that have U-PE routers that do not participate in the autodiscovery process and have split-horizon forwarding disabled.

Show Commands Affected by VPLS Autodiscovery BGP Based

VPLS Autodiscovery changes the following show commands:

- The `show mpls l2transport vc` command with the `detail` keyword has been updated to include FEC 129 signaling information for the autodiscovered VPLS pseudowires.
- The `show vfi` command now displays information related to autodiscovered VFIIs. The new information includes the VPLS ID, the route distinguisher (RD), the RT, and the router IDs of the discovered peers.
- The `show xconnect` command has been updated with the `rib` keyword to provide RIB information about the pseudowires.

BGP VPLS Autodiscovery Support on a Route Reflector

VPLS Autodiscovery is normally run on PE routers to support endpoint discovery and the setup of pseudowires between the PEs (typically a full mesh). VPLS does not normally run on a BGP route reflector. In Cisco IOS Release 12.2(33)SRE, VPLS Autodiscovery support was added to route reflectors. The BGP route reflector can be used to reflect the BGP VPLS prefixes without having VPLS explicitly configured on the route reflector.

The route reflector does not participate in the autodiscovery, meaning that no pseudowires are set up between the route reflector and the PEs. The route reflector reflects the VPLS prefixes to other PEs, so that the PEs do not need to have a full mesh of BGP sessions. The network administrator configures only the
BGP VPLS address family on the route reflector. For an example configuration of VPLS autodiscovery support on a route reflector, see the BGP VPLS Autodiscovery Support on Route Reflector Example, page 208.

**How to Configure VPLS Autodiscovery BGP Based**

- Enabling VPLS Autodiscovery BGP Based, page 199
- Configuring BGP to Enable VPLS Autodiscovery, page 200
- Customizing the VPLS Autodiscovery Settings, page 204

**Enabling VPLS Autodiscovery BGP Based**

Perform the following task to enable each VPLS PE router to discover the other PE routers that are part of the same VPLS domain.

Before configuring VPLS Autodiscovery, perform the Cisco 7600 router-specific tasks listed in the “Virtual Private LAN Services on the Optical Services Modules” chapter in the Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 12.2SR.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. l2 vfi vfi-name autodiscovery
4. vpn id vpn-id
5. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1 enable</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2 configure terminal</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring BGP to Enable VPLS Autodiscovery

In Cisco IOS Release 12.2(33)SRB, the BGP L2VPN address family was introduced with a separate L2VPN RIB that contains endpoint provisioning information for VPLS Autodiscovery. BGP learns the endpoint provisioning information from the L2VPN database which is updated each time a Layer 2 virtual forwarding instance (VFI) is configured. When BGP distributes the endpoint provisioning information in an update message to all its BGP neighbors, the endpoint information is used to configure a pseudowire mesh to support aL2VPN-based services.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong>  l2 vfi vfi-name autodiscovery</td>
<td>Enables VPLS Autodiscovery on the PE router and enters L2 VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong>  vpn id vpn-id</td>
<td>Configures a VPN ID for the VPLS domain.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong>  exit</td>
<td>Exits L2 VFI configuration mode. Commands take effect after the router exits L2 VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. enable
2. configure terminal
3. `router bgp autonomous-system-number`
4. no bgp default ipv4-unicast
5. bgp log-neighbor-changes
6. `neighbor {ip-address|peer-group-name} remote-as autonomous-system-number`
7. `neighbor {ip-address|peer-group-name} update-source interface-type interface-number`
8. Repeat Step 6 and Step 7 to configure other BGP neighbors
9. `address-family l2vpn [vpls]`
10. `neighbor {ip-address|peer-group-name} activate`
11. `neighbor {ip-address|peer-group-name} send-community {both|standard|extended}`
12. Repeat Step 10 and Step 11 to activate other BGP neighbors under an L2VPN address family.
13. `exit-address-family`
14. exit
15. exit
16. show vfi
17. `show ip bgp l2vpn vpls {all | rd vpn-rd}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>router bgp autonomous-system-number</code></td>
<td>Enters router configuration mode for the specified routing process.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# router bgp 65000</td>
<td></td>
</tr>
</tbody>
</table>
## How to Configure VPLS Autodiscovery BGP Based

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> no bgp default ipv4-unicast</td>
<td>Disables the IPv4 unicast address family for the BGP routing process. <strong>Note</strong> Routing information for the IPv4 unicast address family is advertised by default for each BGP routing session configured with the <code>neighbor remote-as</code> router configuration command unless you configure the <code>no bgp default ipv4-unicast</code> router configuration command before configuring the <code>neighbor remote-as</code> command. Existing neighbor configurations are not affected.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router</strong> (config-router)# <code>no bgp default ipv4-unicast</code></td>
</tr>
<tr>
<td><strong>Step 5</strong> bgp log-neighbor-changes</td>
<td>Enables logging of BGP neighbor resets.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router</strong> (config-router)# <code>bgp log-neighbor-changes</code></td>
</tr>
<tr>
<td><strong>Step 6</strong> neighbor {ip-address|peer-group-name} remote-as {autonomous-system-number}</td>
<td>Adds the IP address or peer group name of the neighbor in the specified autonomous system to the IPv4 multiprotocol BGP neighbor table of the local router.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router</strong> (config-router)# <code>neighbor 10.10.10.1 remote-as 65000</code></td>
</tr>
<tr>
<td><strong>Step 7</strong> neighbor {ip-address|peer-group-name} update-source interface-type interface-number</td>
<td><strong>(Optional)</strong> Configures a router to select a specific source or interface to receive routing table updates.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router</strong> (config-router)# <code>neighbor 10.10.10.1 update-source loopback1</code></td>
</tr>
<tr>
<td><strong>Step 8</strong> Repeat Step 6 and Step 7 to configure other BGP neighbors</td>
<td>—</td>
</tr>
<tr>
<td><strong>Step 9</strong> address-family l2vpn {vpls}</td>
<td>Specifies the L2VPN address family and enters address family configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router</strong> (config-router)# <code>address-family l2vpn vpls</code></td>
</tr>
</tbody>
</table>

---

**VPLS Autodiscovery BGP Based**

How to Configure VPLS Autodiscovery BGP Based

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS Release 12.2SR

202
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 10</strong> neighbor {ip-address</td>
<td>peer-group-name} activate</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router-af)# neighbor 10.10.10.1 activate</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> neighbor {ip-address</td>
<td>peer-group-name} send-community {both</td>
</tr>
<tr>
<td>Example:</td>
<td>• In this example, an extended communities attribute is sent to the neighbor at 10.10.10.1.</td>
</tr>
<tr>
<td>Router(config-router-af)# neighbor 10.10.10.1 send-community extended</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> Repeat Step 10 and Step 11 to activate other BGP neighbors under an L2VPN address family.</td>
<td>—</td>
</tr>
<tr>
<td><strong>Step 13</strong> exit-address-family</td>
<td>Exits address family configuration mode and returns to router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router-af)# exit-address-family</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> exit</td>
<td>Exits router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> exit</td>
<td>Exits privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong> show vfi</td>
<td>(Optional) Displays information about the configured VFI instances.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show vfi</td>
<td></td>
</tr>
</tbody>
</table>
### Customizing the VPLS Autodiscovery Settings

Several commands allow you to customize the VPLS environment. You can specify identifiers for the VPLS domain, the route distinguisher, the route target, and the PE router. Perform the following steps to customize these settings.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `l2vfi vfi-name autodiscovery`
4. `vpn id vpn-id`
5. `vpls-id {autonomous-system-number : nn | ip-address : nn}`
6. `rd {autonomous-system-number : nn | ip-address : nn}`
7. `route-target [import | export | both] {autonomous-system-number : nn | ip-address : nn}`
8. `l2router-id ip-address`
9. `exit`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong> l2 vfi vfi-name autodiscovery</td>
<td>Enables VPLS Autodiscovery on the PE router and enters L2 VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# l2 vfi vpsts autodiscovery</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> vpn id vpn-id</td>
<td>Configures a VPN ID for the VPLS domain.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-vfi)# vpn id 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> vpls-id {autonomous-system-number : nn</td>
<td>ip-address : nn}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-vfi)# vpls-id 5:300</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> rd {autonomous-system-number : nn</td>
<td>ip-address : nn}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-vfi)# rd 2:3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> route-target [import</td>
<td>export</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-vfi)# route-target 600:2222</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> l2 router-id ip-address</td>
<td>(Optional) Specifies a unique identifier for the PE router. This command is optional, because VPLS Autodiscovery automatically generates a Layer 2 router ID using the MPLS global router ID. You can use this command to change the automatically generated ID.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-vfi)# l2 router-id 10.10.10.10</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
Step 9 exit | Exits L2 VFI configuration mode. Commands take effect after the router exits L2 VFI configuration mode.

Example:

Router(config-vfi)# exit

---

**Configuration Examples for VPLS Autodiscovery BGP Based**

The following examples shows the configuration of a network using VPLS Autodiscovery and VPLS Autodiscovery supported on a route reflector:

- VPLS Autodiscovery BGP Based Basic Example, page 206
- BGP VPLS Autodiscovery Support on Route Reflector Example, page 208

---

**VPLS Autodiscovery BGP Based Basic Example**

The figure below show a basic configuration of VPLS Autodiscovery.

*Figure 12  Basic VPLS Autodiscovery Configuration*

PE1

```
12 router-id 10.1.1.1
12 vfi auto autodiscovery
 vpn id 100
 pseudowire-class mpls
 encapsulation mpls
 interface Loopback1
 ip address 10.1.1.1 255.255.255.255
 interface Ethernet0/0
 description Backbone interface
 ip address 192.168.0.1 255.255.255.0
 mpls ip
 router ospf 1
 log-adjacency-changes
 network 10.1.1.0 0.0.0.255 area 0
 network 172.16.0.0 0.0.0.255 area 0
 router bgp 1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 bgp update-delay 1
 neighbor 10.1.1.2 remote-as 1
 neighbor 10.1.1.2 update-source Loopback1
 neighbor 10.1.1.3 remote-as 1
 neighbor 10.1.1.3 update-source Loopback1
 address-family ipv4
 no synchronization
 no auto-summary
 exit-address-family
 ...
```
address-family l2vpn vpls
neighbor 10.1.1.2 activate
neighbor 10.1.1.2 send-community extended
neighbor 10.1.1.3 activate
neighbor 10.1.1.3 send-community extended
exit-address-family

PE2

12 router-id 10.1.1.2
12 vfi auto autodiscovery
  vpn id 100
  pseudowire-class mpls
  encapsulation mpls
  !
  interface Loopback1
    ip address 10.1.1.2 255.255.255.255
  !
  interface Ethernet0/0
description Backbone interface
  ip address 192.168.0.2 255.255.255.0
  mpls ip
  !
  router ospf 1
description Backbone interface
  log-adjacency-changes
  network 10.1.1.0 0.0.0.255 area 0
  network 172.16.0.0 0.0.0.255 area 0
  !
  router bgp 1
  no bgp default ipv4-unicast
  bgp log-neighbor-changes
  bgp update-delay 1
  neighbor 10.1.1.1 remote-as 1
  neighbor 10.1.1.1 update-source Loopback1
  neighbor 10.1.1.3 remote-as 1
  neighbor 10.1.1.3 update-source Loopback1
  !
  address-family ipv4
  no synchronization
  no auto-summary
  exit-address-family
  !
  address-family l2vpn vpls
  neighbor 10.1.1.1 activate
  neighbor 10.1.1.1 send-community extended
  neighbor 10.1.1.3 activate
  neighbor 10.1.1.3 send-community extended
  exit-address-family

PE3

12 router-id 10.1.1.3
12 vfi auto autodiscovery
  vpn id 100
  !
  pseudowire-class mpls
  encapsulation mpls
  !
  interface Loopback1
    ip address 10.1.1.3 255.255.255.255
  !
  interface Ethernet0/0
description Backbone interface
  ip address 192.168.0.3 255.255.255.0
  mpls ip
  !
  router ospf 1
description Backbone interface
  log-adjacency-changes
  network 10.1.1.0 0.0.0.255 area 0
network 172.16.0.0 0.0.0.255 area 0
!
router bgp 1
  no bgp default ipv4-unicast
  bgp log-neighbor-changes
  bgp update-delay 1
  neighbor 10.1.1.1 remote-as 1
  neighbor 10.1.1.1 update-source Loopback1
  neighbor 10.1.1.2 remote-as 1
  neighbor 10.1.1.2 update-source Loopback1

  address-family ipv4
  no synchronization
  no auto-summary
  exit-address-family

  address-family l2vpn vpls
  neighbor 10.1.1.1 activate
  neighbor 10.1.1.1 send-community extended
  neighbor 10.1.1.2 activate
  neighbor 10.1.1.2 send-community extended
  exit-address-family

BGP VPLS Autodiscovery Support on Route Reflector Example

In the following example, a host named PE-RR (indicating Provider Edge-Route Reflector) is configured as a route reflector capable of reflecting VPLS prefixes. The VPLS address family is configured by `address-family l2vpn vpls` below.

hostname PE-RR
!
router bgp 1
  bgp router-id 1.1.1.3
  no bgp default route-target filter
  bgp log-neighbor-changes
  neighbor iBGP_PEERS peer-group
  neighbor iBGP_PEERS remote-as 1
  neighbor iBGP_PEERS update-source Loopback1
  neighbor 1.1.1.1 peer-group iBGP_PEERS
  neighbor 1.1.1.2 peer-group iBGP_PEERS

  address-family l2vpn vpls
  neighbor iBGP_PEERS send-community extended
  neighbor iBGP_PEERS route-reflector-client
  neighbor 1.1.1.1 peer-group iBGP_PEERS
  neighbor 1.1.1.2 peer-group iBGP_PEERS
  exit-address-family

Additional References

The following sections provide references related to the VPLS Autodiscovery: BGP Based feature.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
L2 VPNs on the Cisco 7600 router

Configuration information for Layer 2 VPNs on the Cisco 7600 router is included in the following documents:

- The “Configuring PFC3BXL and PFC3B Mode Multiprotocol Label Switching” module of the Cisco 7600 Series Cisco IOS Software Configuration Guide, Release 12.2SR
- The “Configuring Multiprotocol Label Switching on the Optical Services Modules” module of the OSM Configuration Note, Release 12.2SR
- The “Configuring Multiprotocol Label Switching on FlexWAN and Enhanced FlexWAN Modules” module of the FlexWAN and Enhanced FlexWAN Modules Configuration Guide
- The “Configuring Any Transport over MPLS on a SIP” section of the Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide
- The “Configuring AToM VP Cell Mode Relay Support” section of the Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide
- The Release Notes for Cisco IOS Release 12.2SR for the Cisco 7600 Series Routers

### MPLS Commands

**Cisco IOS Multiprotocol Label Switching Command Reference**

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-12vpn-signaling-08.txt</td>
<td>Provisioning, Autodiscovery, and Signaling in L2VPNs</td>
</tr>
<tr>
<td>draft-ietf-12vpn-vpls-bgp-08.8</td>
<td>Virtual Private LAN Service (VPLS) Using BGP for Autodiscovery and Signaling</td>
</tr>
<tr>
<td>draft-ietf-mpls-lsp-ping-03.txt</td>
<td>Detecting MPLS Data Plane Failures</td>
</tr>
<tr>
<td>draft-ietf-pwe3-vccv-01.txt</td>
<td>Pseudo-Wire (PW) Virtual Circuit Connection Verification (VCCV)</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-IETF-PW-MIB (PW-MIB)</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-MPLS-MIB (PW-MPLS-MIB)</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-ENET-MIB (PW-ENET-MIB)</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-FR-MIB (PW-FR-MIB)</td>
<td></td>
</tr>
<tr>
<td>CISCO-IETF-PW-ATM-MIB (PW-ATM-MIB)</td>
<td></td>
</tr>
</tbody>
</table>

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3916</td>
<td>Requirements for Pseudo-wire Emulation Edge-to-Edge (PWE3)</td>
</tr>
<tr>
<td>RFC 3981</td>
<td>Pseudo Wire Emulation Edge-to-Edge Architecture</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password. If you have a valid service contract but do not have a user ID or password, you can register on Cisco.com.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>

Feature Information for VPLS Autodiscovery BGP Based

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Feature Information for VPLS Autodiscovery: BGP Based

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| VPLS Autodiscovery: BGP Based | 12.2(33)SRB| VPLS Autodiscovery enables each Virtual Private LAN Service (VPLS) provider edge (PE) router to discover which other PE routers are part of the same VPLS domain. In 12.2(33)SRB, this feature was introduced on the Cisco 7600 router. The following commands were introduced or modified for this feature:  
  - auto-route-target  
  - l2 router-id  
  - l2 vfi autodiscovery  
  - neighbor (VPLS)  
  - rd (VPLS)  
  - route-target (VPLS)  
  - show mpls l2transport vc  
  - show vfi  
  - show xconnect  
  - vpls-id  
  - xconnect |
| BGP VPLS Autodiscovery Support on Route Reflector | 12.2(33)SRE| This feature was introduced on the Cisco 7600 series routers. This feature is documented in the following sections: |
H-VPLS N-PE Redundancy for QinQ and MPLS Access

The H-VPLS N-PE Redundancy for QinQ feature and the H-VPLS N-PE Redundancy for MPLS Access feature enable two network provider edge (N-PE) routers to provide failover services to a user provider edge (U-PE) router in a hierarchical virtual private LAN service (H-VPLS). Having redundant N-PE routers provides improved stability and reliability against link and node failures. The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. This document explains how to implement these features.

- Finding Feature Information, page 213
- Prerequisites for H-VPLS N-PE Redundancy for QinQ and MPLS Access, page 213
- Restrictions for H-VPLS N-PE Redundancy for QinQ and MPLS Access, page 214
- Information About H-VPLS N-PE Redundancy for QinQ and MPLS Access, page 215
- How to Configure H-VPLS N-PE Redundancy for QinQ and MPLS Access, page 217
- Configuration Examples for H-VPLS N-PE Redundancy for QinQ and MPLS Access, page 220
- Additional References, page 221
- Feature Information for H-VPLS N-PE Redundancy for QinQ and MPLS Access, page 223
- Glossary, page 225

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for H-VPLS N-PE Redundancy for QinQ and MPLS Access

- Before configuring the H-VPLS N-PE Redundancy for QinQ and MPLS Access feature, configure your H-VPLS network and make sure it is operating correctly. For more information about configuring the H-VPLS network, see the “Configuring VPLS” section in Configuring Multiprotocol Label Switching on the Optical Services Modules.
• Make sure that the PE-to-customer edge (CE) interface is configured with a list of allowed VLANs. For more information, see the “Configuring VPLS” section in Configuring Multiprotocol Label Switching on the Optical Services Modules.

• To provide faster convergence, you can enable the MPLS Traffic Engineering: Fast Reroute feature in the Multiprotocol Label Switching (MPLS) core. For more information about MPLS traffic engineering, see the “MPLS Traffic Engineering (TE)—Fast Reroute (FRR) Link and Node Protection” section in the Cisco IOS Multiprotocol Label Switching Configuration Guide.

• Enable the L2VPN Pseudowire Redundancy feature on the U-PE routers for MPLS access. For information about configuring the L2VPN Pseudowire Redundancy feature, see the “L2VPN Pseudowire Redundancy” section in the Cisco IOS Wide-Area Networking Configuration Guide.

• When configuring Multiple Spanning Tree Protocol (MSTP), specify that one of the N-PE routers is the root by assigning it the lowest priority using the spanning-tree mst instance-id priority command. For information about configuring MSTP, see the “Configuring MST Instance Parameters” section in the Cisco 7600 Series Cisco IOS Software Configuration Guide.

For information about configuring MSTP, make sure that each router participating in the spanning tree is in the same region and is the same revision by issuing the revision, name, and instance commands in MST configuration mode. For more information on configuring these MSTP parameters, see the “Configuring Spanning Tree and IEEE 802.1s MST” section in the Cisco 7600 Series Cisco IOS Software Configuration Guide.

Restrictions for H-VPLS N-PE Redundancy for QinQ and MPLS Access

• The H-VPLS N-PE Redundancy for QinQ and MPLS Access feature cannot be used with the VPLS Autodiscovery feature on pseudowires that attach to U-PE routers. When you create the VPLS, you can manually create the virtual forwarding interface (VFI).

• You cannot configure more than one pseudowire to carry the bridge protocol data unit (BPDU) information between the N-PE routers. If you attempt to enter the forward permit l2protocol all command for multiple VFIs, an error message is displayed.

• You cannot configure a local loopback address as a neighbor when you configure the H-VPLS N-PE Redundancy for QinQ and MPLS Access feature on N-PE routers. If you do so, the following error is displayed:

VPLS local switching to peer address not supported

• Only two N-PE routers can be connected to each U-PE router.

• For a list of supported hardware for this feature, see the Release Notes for Cisco IOS Release 12.2SR for the Cisco 7600 Series Routers.

• The spanning-tree mode must be MSTP for the H-VPLS N-PE Redundancy for QinQ and MPLS Access feature. If the spanning-tree mode changes, the H-VPLS N-PE Redundancy for QinQ and MPLS Access feature may not work correctly, even though the pseudowire that carries the BPDU information still exists and the H-VPLS N-PE Redundancy feature is still configured.
Information About H-VPLS N-PE Redundancy for QinQ and MPLS Access

- VPLS MAC Address Withdrawal, page 216

How H-VPLS N-PE Redundancy for QinQ and MPLS Access Works

In a network configured with the H-VPLS N-PE Redundancy for QinQ and MPLS Access feature, the U-PE router is connected to two N-PE routers. This feature provides a level of redundancy that can tolerate both link and device faults. If a failure occurs in the network that disables one N-PE router from transmitting data, the other N-PE router takes over. This feature works with both QinQ access based on MSTP and MPLS access based on pseudowire redundancy.

- H-VPLS N-PE Redundancy with QinQ Access Based on MSTP, page 215
- H-VPLS N-PE Redundancy with MPLS Access Based on Pseudowire Redundancy, page 216

H-VPLS N-PE Redundancy with QinQ Access Based on MSTP

H-VPLS N-PE redundancy with QinQ access uses the MSTP running on the N-PE routers and U-PE routers in an H-VPLS network. A pseudowire running between N-PE routers carries only MSTP BPDUs. The pseudowire running between the N-PE routers is always up and is used to create a loop path between N-PE routers so that MSTP will block one of the redundant paths between the U-PE router and the N-PE routers. If the primary N-PE router or the path to it fails, MSTP will enable the path to the backup N-PE router.

The figure below shows an H-VPLS network with redundant access. Each U-PE router has two trunk connections, one to each N-PE router. Between the two N-PE routers is a pseudowire to provide a loop path for MSTP BPDUs. The network topology allows for the backup N-PE router to take over if the primary N-PE router or the path to it fails.

Figure 13  H-VPLS N-PE Redundancy with QinQ Access Based on MSTP
H-VPLS N-PE Redundancy with MPLS Access Based on Pseudowire Redundancy

For H-VPLS redundancy with MPLS access based on pseudowire redundancy, the MPLS network has pseudowires to the VPLS core N-PE routers.

As shown in the figure below, one pseudowire transports data between the U-PE router and its peer N-PE routers. When a failure occurs along the path of the U-PE router, the backup pseudowire and the redundant N-PE router become active and start transporting data.

Figure 14  H-VPLS N-PE Redundancy for QinQ and MPLS Access with MPLS Access Based on Pseudowire Redundancy

VPLS MAC Address Withdrawal

The VPLS MAC Address Withdrawal feature provides faster convergence by removing (or unlearning) MAC addresses that have been dynamically learned. A Label Distribution Protocol (LDP)-based MAC address withdrawal message is used for this purpose. A MAC list Type Length Value (TLV) is part of the MAC address withdrawal message.

The `debug mpls ldp messages` and `debug mpls ldp session io` commands support monitoring of MAC address withdrawal messages being exchanged between LDP peers. Any Transport over MPLS (AToM) may provide other means to display or monitor MAC address withdrawal messages. The Tag Distribution Protocol (TDP) is not supported as AToM uses only LDP for the MAC address withdrawal message.

PE routers learn the remote MAC addresses and directly attached MAC addresses on customer-facing ports by deriving the topology and forwarding information from packets originating at customer sites. To display the number of MAC address withdrawal messages, enter the `show mpls l2transport vc detail` command, as shown in the following example:

```
Router# show mpls l2transport vc detail
Local interface: VFI TEST VFI up
MPLS VC type is VFI, interworking type is Ethernet
Destination address: 10.1.1.1, VC ID: 1000, VC status: up
 Output interface: Se2/0, imposed label stack (17)
 Preferred path: not configured
 Default path: active
 Next hop: point2point
Create time: 00:04:34, last status change time: 00:04:15
Signaling protocol: LDP, peer 10.1.1.1:0 up
 Targeted Hello: 10.1.1.1(LDP Id) -> 10.1.1.1
 MPLS VC labels: local 16, remote 17
 Group ID: local 0, remote 0
```
How MAC Address Withdrawal Works with H-VPLS N-PE Redundancy with QinQ Access

If a failure occurs in the customer-switched network, a spanning-tree Topology Change Notification (TCN) is issued to the N-PE router, which issues an LDP-based MAC address withdrawal message to the peer N-PE routers and flushes its MAC address table.

How MAC Address Withdrawal Works with H-VPLS N-PE Redundancy with MPLS Access

If the pseudowire between the U-PE router and N-PE router fails, then the L2VPN Pseudowire Redundancy feature on the U-PE router activates the standby pseudowire. In addition, the U-PE router sends an LDP MAC address withdrawal request to the new N-PE router, which forwards the message to all pseudowires in the VPLS core and flushes its MAC address table.

If a switched virtual interface (SVI) on the N-PE router fails, the L2VPN Pseudowire Redundancy feature activates the standby pseudowire and the U-PE router sends a MAC withdrawal message to the newly active N-PE router.

For information about the L2VPN Pseudowire Redundancy feature, see the “L2VPN Pseudowire Redundancy” feature module.

How to Configure H-VPLS N-PE Redundancy for QinQ and MPLS Access

• Configuring the VPLS Pseudowire Between the N-PE Routers, page 217
• Configuring the SVI for the Native VLAN, page 219

Configuring the VPLS Pseudowire Between the N-PE Routers

Configuring N-PE redundancy in an H-VPLS network requires two steps. First, you must define the VPLS pseudowire for transporting BPDU data. Then, you must connect that pseudowire to the native VLAN. This configuration provides a redundancy that provides improved reliability against link and node failures.

Review the Prerequisites for H-VPLS N-PE Redundancy for QinQ and MPLS Access, page 213 to ensure that your H-VPLS network is configured and operating correctly.
### SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **l2 vfi name manual**
4. **vpn id id-number**
5. **forward permit l2protocol all**
6. **neighbor remote-router-id vc-id {encapsulation encapsulation-type | pw-class pw-name} [no-split-horizon]**
7. **end**

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** l2 vfi name manual | Creates a Layer 2 VFI and enters Layer 2 VFI manual configuration mode. |
| **Example:** | |
| Router(config)# l2 vfi vfitest1 manual | |
| **Step 4** vpn id id-number | Specifies the VPN ID. |
| **Example:** | |
| Router(config-vfi)# vpn id 200 | |
| **Step 5** forward permit l2protocol all | Creates a pseudowire that is to be used to transport BPDU data between the two N-PE routers. |
| **Example:** | |
| Router(config-vfi)# forward permit l2protocol all | |
Configuring the SVI for the Native VLAN

Perform the following task to configure the switched virtual interface for the native VLAN and verify that it is correctly configured.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface vlan vlanid
4. xconnect vfi vfi-name
5. end
6. show vfi vfi-name
7. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
### Command or Action

#### Step 3  `interface vlan vlanid`

**Purpose**
- Creates a dynamic SVI.
  - To make the SVI active when you create a VLAN, you must configure the VLAN with at least one physical interface that is in the “up” state. Use the `show vfi` command to display the status of the SVI. The state field will display “up” when the SVI is active.

**Example:**

```
Router(config)# interface vlan 23
```

#### Step 4  `xconnect vfi vfi-name`

**Purpose**
- Specifies the Layer 2 VFI that you are binding to the VLAN port.

**Example:**

```
Router(config)# xconnect vfi vfitest1
```

#### Step 5  `end`

**Purpose**
- Ends the current configuration session and returns to privileged EXEC mode.

**Example:**

```
Router(config-vfi)# end
```

#### Step 6  `show vfi vfi-name`

**Purpose**
- (Optional) Displays information about the pseudowire between the two N-PE routers so that you can verify that the H-VPLS N-PE Redundancy for QinQ and MPLS Access feature is correctly configured.

**Example:**

```
Router# show vfi VPLS-2
```

#### Step 7  `end`

**Purpose**
- Exits privileged EXEC mode and returns to user EXEC mode.

**Example:**

```
Router# end
```

---

### Configuration Examples for H-VPLS N-PE Redundancy for QinQ and MPLS Access

- Example H-VPLS N-PE Redundancy for QinQ Access, page 221
Example H-VPLS N-PE Redundancy for QinQ Access

The figure below shows a configuration that is set up for H-VPLS N-PE redundancy with QinQ access.

![Figure 15: H-VPLS N-PE Redundancy with QinQ Access Topology](image)

The table below shows the configuration of two N-PE routers for H-VPLS N-PE redundancy with QinQ access.

<table>
<thead>
<tr>
<th>N-PE1</th>
<th>N-PE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2 vfi l2trunk manual</td>
<td>l2 vfi l2trunk manual</td>
</tr>
<tr>
<td>vpn id 10</td>
<td>vpn id 10</td>
</tr>
<tr>
<td>forward permit l2protocol all</td>
<td>forward permit l2protocol all</td>
</tr>
<tr>
<td>neighbor 10.4.4.4 encapsulation mpls</td>
<td>neighbor 10.2.2.2 encapsulation mpls</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface Vlan1</td>
<td>interface Vlan1</td>
</tr>
<tr>
<td>no ip address</td>
<td>no ip address</td>
</tr>
<tr>
<td>xconnect vfi l2trunk</td>
<td>xconnect vfi l2trunk</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>spanning-tree mode mst</td>
<td>spanning-tree mode mst</td>
</tr>
<tr>
<td>spanning-tree extend system-id</td>
<td>spanning-tree extend system-id</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>spanning-tree mst configuration</td>
<td>spanning-tree mst configuration</td>
</tr>
<tr>
<td>revision 10</td>
<td>revision 10</td>
</tr>
<tr>
<td>instance 1 vlan 20</td>
<td>instance 1 vlan 20</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>interface GigabitEthernet5/2</td>
<td>interface GigabitEthernet2/0/5</td>
</tr>
<tr>
<td>switchport</td>
<td>switchport</td>
</tr>
<tr>
<td>switchport trunk encapsulation dot1q</td>
<td>switchport trunk</td>
</tr>
<tr>
<td>switchport trunk allowed vlan 20</td>
<td>switchport trunk allowed vlan 20</td>
</tr>
<tr>
<td>switchport mode trunk</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>mis qos trust dscp</td>
<td>mis qos trust dscp</td>
</tr>
</tbody>
</table>

Additional References
## Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>L2VPN pseudowire redundancy</td>
<td>“L2VPN Pseudowire Redundancy” section in the Cisco IOS Wide-Area Networking Configuration Guide</td>
</tr>
<tr>
<td>H-VPLS</td>
<td>“Configuring VPLS” section in the Configuring Multiprotocol Label Switching on the Optical Services Modules</td>
</tr>
<tr>
<td>Multiple spanning tree configuration</td>
<td>“Configuring MST Instance Parameters” section in the Cisco 7600 Series Cisco IOS Software Configuration Guide</td>
</tr>
<tr>
<td>MPLS traffic engineering</td>
<td>“MPLS Traffic Engineering (TE)—Fast Reroute (FRR) Link and Node Protection” section in the Cisco IOS Multiprotocol Label Switching Configuration Guide</td>
</tr>
<tr>
<td>Configuring MSTP</td>
<td>“Configuring MST Instance Parameters” section in the Cisco 7600 Series Cisco IOS Software Configuration Guide</td>
</tr>
<tr>
<td>Supported hardware on the Cisco 7600 series routers</td>
<td>Release Notes for Cisco IOS Release 12.2SR for the Cisco 7600 Series Routers</td>
</tr>
</tbody>
</table>

## Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://www3.ietf.org/proceedings/06mar/IDs/draft-ietf-l2vpn-vpls-ldp-08.txt">http://www3.ietf.org/proceedings/06mar/IDs/draft-ietf-l2vpn-vpls-ldp-08.txt</a></td>
<td>Virtual Private LAN Services over MPLS</td>
</tr>
<tr>
<td>draft-ietf-pwe3-vccv-10.txt</td>
<td>Pseudo Wire Virtual Circuit Connectivity Verification (VCCV)</td>
</tr>
<tr>
<td>draft-ietf-pwe3-oam-msg-map-03.txt</td>
<td>Pseudo Wire (PW) OAM Message Mapping</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowire Emulation Edge-to-Edge MIBs for Ethernet, Frame Relay, and ATM Services</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:  <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for H-VPLS N-PE Redundancy for QinQ and MPLS Access

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
## Feature Information for H-VPLS N-PE Redundancy for QinQ and MPLS Access

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| H-VPLS N-PE Redundancy for MPLS Access | 12.2(33)SRC | The H-VPLS N-PE Redundancy for MPLS Access feature enables two N-PE routers to provide redundancy to a U-PE router in an H-VPLS. Having redundant N-PE routers provides improved stability and reliability against link and node failures. In Cisco IOS Release 12.2(33)SRC, this feature was introduced on the Cisco 7600 series routers. The following sections provide information about this feature: The following commands were introduced or modified: `forward permit l2protocol`, `show mpls l2transport vc`.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-VPLS N-PE Redundancy for QinQ Access</td>
<td>12.2(33)SRC</td>
<td>The H-VPLS N-PE Redundancy for QinQ Access feature provides the capability to dual-home a given U-PE router to two N-PE routers in order to provide protection against link and node failures. In Cisco IOS Release 12.2(33)SRC, this feature was introduced on the Cisco 7600 series routers. The following sections provide information about this feature: The following commands were introduced or modified: <code>forward permit l2protocol</code>, <code>show mpls l2transport vc</code>.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------------------</td>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>VPLS MAC Address Withdrawal</td>
<td>12.2(33)SXI4</td>
<td>The VPLS MAC Address Withdrawal feature provides faster convergence by removing</td>
</tr>
<tr>
<td></td>
<td>12.2(50)SY</td>
<td>(or unlearning) MAC addresses that have been dynamically learned.</td>
</tr>
<tr>
<td></td>
<td>XE 3.5S</td>
<td>The following sections provide information about this feature:</td>
</tr>
<tr>
<td></td>
<td>15.2(1)S</td>
<td>&quot;MAC Address Withdrawal&quot;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.5S, this feature was introduced on the Cisco ASR 1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Series Aggregation Services Routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS XE Release 3.5S, support was added for the Cisco ASR 903 Router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 15.2(1)S, this feature was integrated.</td>
</tr>
</tbody>
</table>

**Glossary**

**CE router** —customer edge router. A router that belongs to a customer network, which connects to a PE router to utilize MPLS VPN network services.

**LAN** —local-area network. High-speed, low-error data network covering a relatively small geographic area. LANs connect workstations, peripherals, terminals, and other devices in a single building or other geographically limited areas.

**MPLS** —Multiprotocol Label Switching. A packet-forwarding technology, used in the network core, that applies data link layer labels to tell switching nodes how to forward data, resulting in faster and more scalable forwarding than network layer routing normally can do.

**MSTP** —Multiple Spanning Tree Protocol. MSTP enables multiple VLANs to be mapped to the same spanning-tree instance, reducing the number of spanning-tree instances needed to support a large number of VLANs.

**N-PE** —network provider edge router. This router acts as a gateway between the MPLS core and edge domains.

**PE router** —provider edge router. The PE router is the entry point into the service provider network. The PE router is typically deployed on the edge of the network and is administered by the service provider.

**pseudowire** —A pseudowire is a virtual connection that, in the context of VPLS, connects two SVIs. It is a mechanism that carries the elements of an emulated service from one PE router to one or more PE routers over a packet switched network (PSN). A pseudowire is bidirectional and consists of a pair of unidirectional MPLS virtual circuits (VCs). A pseudowire can be used to connect a point-to-point circuit.

**QinQ** —An IEEE 802.1Q VLAN tunnel. A mechanism for constructing multipoint Layer 2 VPN using Ethernet switches.
redundancy — The duplication of devices, services, or connections so that, in the event of a failure, they can perform the work of those that failed.

router — A network layer device that uses one or more metrics to determine the optimal path along which network traffic should be forwarded. Routers forward packets from one network to another based on network layer information.

spanning tree — Loop-free subset of a network topology.

U-PE — user provider edge router. This router connects CE routers to the service.

VFI — virtual forwarding instance. A VFI is a collection of data structures used by the data plane, software-based or hardware-based, to forward packets to one or more VCs.

VLAN — Virtual LAN. Group of devices on one or more LANs that are configured (using management software) so that they can communicate as if they were attached to the same wire, when in fact they are located on a number of different LAN segments.

VPLS — Virtual Private LAN Service. VPLS describes an architecture that delivers Layer 2 service that emulates an Ethernet LAN across a wide-area network (WAN) and inherits the scaling characteristics of a LAN.

VPLS redundancy — Also called N-PE redundancy. Allows U-PEs to be dual-honed (to their N-PEs) in a loop-free topology with MPLS or QinQ as the access or aggregation domain.

VPN — Virtual Private Network. Allows IP traffic to travel securely over public TCP/IP networks and the Internet by encapsulating and encrypting all IP packets. VPN uses a tunnel to encrypt all information at the IP level.
L2VPN Multisegment Pseudowires

The L2VPN Multisegment Pseudowires feature enables you to configure two or more Layer 2 pseudowire segments that function as a single pseudowire. Layer 2 Virtual Private Network (L2VPN) multisegment pseudowires span multiple cores or autonomous systems of the same or different carrier networks. L2VPN multisegment pseudowires are also used in L2VPN Virtual Private LAN Services (VPLS) Inter-AS Option B networks.

This document explains Multiprotocol Label Switching (MPLS) Operations, Administration, and Maintenance (OAM) Support for L2VPN Multisegment Pseudowires and the MPLS OAM Support for the L2VPN VPLS Inter-AS Option B feature. These features allow you to use ping mpls and trace mpls commands to ensure pseudowire connectivity.

- Finding Feature Information, page 227
- Prerequisites for L2VPN Multisegment Pseudowires, page 227
- Restrictions for L2VPN Multisegment Pseudowires, page 228
- Information About L2VPN Multisegment Pseudowires, page 228
- How to Configure L2VPN Multisegment Pseudowires, page 230
- Configuration Examples for L2VPN Multisegment Pseudowires, page 238
- Additional References, page 241
- Feature Information for L2VPN Multisegment Pseudowires, page 243

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN Multisegment Pseudowires

Before configuring this feature, see the following documents:

- Any Transport over MPLS
- L2VPN Pseudowire Switching
- MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV
- Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP) (RFC 4447)
Restrictions for L2VPN Multisegment Pseudowires

- Only Multiprotocol Label Switching (MPLS) Layer 2 pseudowires are supported.
- In Cisco IOS Release 12.3(33)SRE, only static configuration of the pseudowires is supported for the L2VPN Multisegment Pseudowires feature.
- In Cisco IOS Release 15.1(1)S, dynamic configuration of the pseudowires is supported and required for the L2VPN VPLS Inter-AS Option B feature.
- In Cisco IOS Release 12.3(33)SRE, only pseudowires advertised with forwarding equivalence class (FEC) 128 are supported for the L2VPN Multisegment Pseudowires feature. FEC 129 is not supported.
- In Cisco IOS Release 15.1(1)S, FEC 129 is supported and used to exchange information about the pseudowires for the L2VPN VPLS Inter-AS Option B feature.
- The S-PE router is limited to 1600 pseudowires.

Information About L2VPN Multisegment Pseudowires

- L2VPN Pseudowire Defined, page 228
- L2VPN Multisegment Pseudowire Defined, page 229
- MPLS OAM Support for Multisegment Pseudowires, page 229
- MPLS OAM Support for L2VPN VPLS Inter-AS Option B, page 230

L2VPN Pseudowire Defined

An L2VPN pseudowire (PW) is a tunnel established between two provider edge (PE) routers across the core carrying the Layer 2 payload encapsulated as MPLS data, as shown in the figure below. This helps carriers migrate from traditional Layer 2 networks such as Frame Relay and ATM to an MPLS core. The PWs between two PE routers are located within the same autonomous system (AS). Routers PE1 and PE2 are called terminating PE routers (T-PEs). Attachment circuits are bounded to the PW on these PE routers.
L2VPN Multisegment Pseudowire Defined

An L2VPN multisegment pseudowire (MS-PW) is a set of two or more PW segments that function as a single PW, as shown in the figure below. It is also known as switched PW. MS-PWs span multiple cores or autonomous systems of the same or different carrier networks. An L2VPN MS-PW can include up to 254 PW segments.

The end routers are called terminating PE routers (T-PEs), and the switching routers are called S-PE routers. The S-PE router terminates the tunnels of the preceding and succeeding PW segments in an MS-PW. The S-PE router can switch the control and data planes of the preceding and succeeding PW segments of the MS-PW. An MS-PW is declared to be up when all the single-segment PWs are up. For more information, see the L2VPN Pseudowire Switching document.

With the L2VPN Multisegment Pseudowire feature introduced in Cisco IOS Release 12.2(33)SRE, the pseudowires are created statically, and FEC 128 information is used to exchange the information about each AS.

MPLS OAM Support for Multisegment Pseudowires

You can use the `ping mpls` and `trace mpls` commands to verify that all the segments of the MPLS multisegment pseudowire are operating.

You can use the `ping mpls` command to verify connectivity at the following pseudowire points:

- From one end of the pseudowire to the other
- From one of the pseudowires to a specific segment
- The segment between two adjacent S-PE routers

You can use the `trace mpls` command to verify connectivity at the following pseudowire points:

- From one end of the pseudowire to the other
- From one of the pseudowires to a specific segment
- The segment between two adjacent S-PE routers
- A range of segments
MPLS OAM Support for L2VPN VPLS Inter-AS Option B

The L2VPN VPLS Inter-AS Option B feature introduced in Cisco IOS Release 15.1(1)S uses multisegment pseudowires to connect Autonomous System Border Routers (ASBRs) in different autonomous systems. With this feature, the pseudowires are created dynamically, and FEC 129 information is used to exchange the information about each ASBR.

The differences between static multisegment pseudowires and dynamic multisegment pseudowires are listed in the table below.

<table>
<thead>
<tr>
<th>Static Multisegment Pseudowires</th>
<th>Dynamic Multisegment Pseudowires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are statically stitched and dynamically signalled.</td>
<td>Are dynamically stitched and dynamically signalled.</td>
</tr>
<tr>
<td>Label Distribution Protocol (LDP) exchanges the type length value (TLV) and FEC 128 information is exchanged between segments.</td>
<td>Border Gateway Protocol (BGP) exchanges the TLV and FEC 129 information is exchanged between ASBRs.</td>
</tr>
</tbody>
</table>

For more information about the L2VPN VPLS Inter-AS Option B feature, see L2VPN VPLS Inter-AS Option B.

How to Configure L2VPN Multisegment Pseudowires

- Configuring L2VPN Multisegment Pseudowires, page 230
- Displaying Information About the L2VPN Multisegment Pseudowires, page 233
- Verifying Multisegment Pseudowires with ping mpls and trace mpls Commands, page 234
- Verifying L2VPN VPLS Inter-AS Option B with ping mpls and trace mpls Commands, page 236

Configuring L2VPN Multisegment Pseudowires

Perform the following steps on the S-PE routers to create L2VPN multisegment pseudowires.

- Cisco 7600 Router-Specific Instructions, page 230

Cisco 7600 Router-Specific Instructions

If the Cisco 7600 router is the penultimate hop router connected to the S-PE or T-PE router, issue the following commands on the S-PE or T-PE routers:

- mpls ldp explicit-null
- no mls mpls explicit-null propagate-ttl
SUMMARY STEPS

1. enable
2. configure terminal
3. mpls label protocol ldp
4. mpls ldp router-id interface force
5. pseudowire-class name
6. encapsulation mpls
7. switching tlv
8. exit
9. l2 vfi name point-to-point
10. description string
11. neighbor ip-address vcid { encapsulation mpls | pw-class pw-class-name }

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> mpls label protocol ldp</td>
<td>Configures the use of Label Distribution Protocol (LDP) on all interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mpls label protocol ldp</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> mpls ldp router-id interface force</td>
<td>Specifies the preferred interface for determining the LDP router ID.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mpls ldp router-id loopback0 force</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 5</strong> pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify, and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# pseudowire-class atom</td>
</tr>
<tr>
<td><strong>Step 6</strong> encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-pw-class)# encapsulation mpls</td>
</tr>
<tr>
<td><strong>Step 7</strong> switching tlv</td>
<td>(Optional) Enables the advertisement of the switching point type-length variable (TLV) in the label binding.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-pw-class)# switching tlv</td>
</tr>
<tr>
<td><strong>Step 8</strong> exit</td>
<td>Exits pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-pw-class)# exit</td>
</tr>
<tr>
<td><strong>Step 9</strong> l2 vfi name point-to-point</td>
<td>Creates a point-to-point Layer 2 virtual forwarding interface (VFI) and enters VFI configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# l2 vfi atomtunnel point-to-point</td>
</tr>
<tr>
<td><strong>Step 10</strong> description string</td>
<td>Provides a description of the switching provider edge router for a multisegment pseudowire.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-vfi)# description segment1</td>
</tr>
<tr>
<td><strong>Step 11</strong> neighbor ip-address vcid / encapsulation mpls / pw-class pw-class-name</td>
<td>Sets up an emulated VC.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-vfi)# neighbor 10.0.0.1 100 pw-class mpls</td>
</tr>
<tr>
<td><strong>Note</strong> Only two neighbor commands are allowed for each l2 vfi point-to-point command.</td>
<td></td>
</tr>
</tbody>
</table>
Displaying Information About the L2VPN Multisegment Pseudowires

Perform the following task to display the status of L2VPN multisegment pseudowires.

**SUMMARY STEPS**

1. `show mpls l2transport binding`
2. `show mpls l2transport vc detail`

**DETAILED STEPS**

---

**Step 1**  
**show mpls l2transport binding**
Use the `show mpls l2transport binding` command to display information about the pseudowire switching point, as shown in bold in the output. (In the following examples PE1 and PE4 are the T-PE routers.)

**Example:**

```
Router# show mpls l2transport binding

Destination Address: 10.1.1.1, VC ID: 102
Local Label: 17
 Cbit: 1, VC Type: Ethernet, GroupID: 0
 MTU: 1500, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2], TTL [3]
 CV Type: LSPV [2]
Remote Label: 16
 Cbit: 1, VC Type: Ethernet, GroupID: 0
 MTU: 1500, Interface Desc: n/a
 VCCV: CC Type: CW [1], RA [2], TTL [3]
 CV Type: LSPV [2]
PW Switching Point:
 Vcid local IP addr remote IP addr Description
 101 10.11.11.1 10.20.20.20 PW Switching Point PE3
 100 10.20.20.20 10.11.11.1 PW Switching Point PE2
```

**Step 2**  
**show mpls l2transport vc detail**
Use the `show mpls l2transport vc detail` command to display status of the pseudowire switching point. In the following example, the output (shown in bold) displays the segment that is the source of the fault of the multisegment pseudowire:

**Example:**

```
Router# show mpls l2transport vc detail

Local interface: Se3/0 up, line protocol up, HDLC up
 Destination address: 12.1.1.1, VC ID: 100, VC status: down
 Output interface: Se2/0, imposed label stack {23}
 Preferred path: not configured
 Default path: active
 Next hop: point2point
 Create time: 00:03:02, last status change time: 00:01:41
 Signaling protocol: LDP, peer 10.1.1.1:0 up
 Targeted Hello: 10.1.1.4(LDP Id) -> 10.1.1.1, LDP is UP
 Status TLV support (local/remote) : enabled/supported
 LDP route watch : enabled
 Label/status state machine : established, LruRrd
 Last local dataplane status rcvd: No fault
 Last local SSS circuit status rcvd: No fault
 Last local SSS circuit status sent: DOWN(PW-tx-fault)
```
Verifying Multisegment Pseudowires with ping mpls and trace mpls Commands

You can use ping mpls and trace mpls commands to verify connectivity in multisegment pseudowires.

Note

Some ping mpls and trace mpls keywords that are available with IPv4 LDP or traffic engineering (TE) are not available with pseudowire.

The following keywords are not available with the ping mpls pseudowire command:

- dsmap
- flags
- force-explicit-null
- output
- revision
- ttl

The following keywords are not available with the trace mpls pseudowire command:

- flags
- force-explicit-null
- output
- revision
- ttl

> 

SUMMARY STEPS

1. ping mpls pseudowire destination-address vc-id [segment segment-number]
2. trace mpls pseudowire destination-address vc-id segment segment-number [segment-number]
DETAILED STEPS

Step 1 ping mpls pseudowire destination-address vc-id [segment segment-number]
Where:

- destination-address is the address of the S-PE router, which is the end of the segment from the direction of the source.
- vc-id is the VC ID of the segment from the source to the next PE router.
- segment segment-number is optional and specifies the segment you want to ping.

The following examples use the topology shown in the second figure above:

- To perform an end-to-end ping operation from T-PE1 to T-PE2, enter the following command. destination-address is S-PE1 and vc-id is the VC between T-PE1 and S-PE1.

Example:

Step 2 trace mpls pseudowire destination-address vc-id segment segment-number [segment-number ]
Where:

- destination-address is the address of the next S-PE router from the origin of the trace.
- vc-id is the VC ID of the segment from which the trace command is issued.
- segment-number indicates the segment upon which the trace operation will act. If you enter two segment numbers, the traceroute operation will perform a trace on that range of routers.

The following examples use the topology shown in the second figure above:

- To perform a trace operation from T-PE1 to segment 2 of the multisegment pseudowire, enter the following command. destination-address is S-PE1 and vc-id is the VC between T-PE1 and S-PE1.

Example:
Verifying L2VPN VPLS Inter-AS Option B with ping mpls and trace mpls

Commands

You can use ping mpls and trace mpls commands to verify connectivity in configurations using the L2VPN VPLS Inter-AS Option B feature. For end-to-end ping and trace operations, you enter the destination address of the T-PE router at the other end of the pseudowire.
Some **ping mpls** and **trace mpls** keywords that are available with IPv4 LDP or traffic engineering (TE) are not available with pseudowire.

The following keywords are not available with the **ping mpls pseudowire** command:

- dsmap
- flags
- force-explicit-null
- output
- revision
- ttl

The following keywords are not available with the **trace mpls pseudowire** command:

- flags
- force-explicit-null
- output
- revision
- ttl

**SUMMARY STEPS**

1. **ping mpls pseudowire** destination-address vc-id [segment segment-number]
2. **trace mpls pseudowire** destination-address vc-id segment segment-number [segment-number ]

**DETAILED STEPS**

**Step 1**

**ping mpls pseudowire** destination-address vc-id [segment segment-number]

Where:

- *destination-address* is the address of the T-PE2 router at the other end of the pseudowire.
- *vc-id* is the VC ID between T-PE1 and S-PE1.
- *segment segment-number* is optional and specifies the segment you want to ping.

The following examples use the topology shown in the second figure above:

- To perform an end-to-end ping operation from T-PE1 to T-PE2, enter the following command. *destination-address* is T-PE2 and *vc-id* is the VC between T-PE1 and S-PE1.

**Example:**

```
ping mpls pseudowire destination-address vc-id
```

**Step 2**

**trace mpls pseudowire** destination-address vc-id segment segment-number [segment-number ]

Where:

- *destination-address* is the address of the T-PE2 router at the other end of the pseudowire.
- *vc-id* is the VC ID between T-PE1 and S-PE1.
• *segment-number* indicates the segment upon which the trace operation will act. If you enter two segment numbers, the traceroute operation will perform a trace on that range of routers.

The following examples use the topology shown in the second figure above:

• To perform a trace operation from T-PE1 to T-PE2, enter the following command. *destination-address* is T-PE2 and *vc-id* is the VC between T-PE1 and S-PE1.

```
trace mpls pseudowire destination-address vc-id segment 2
```

This example performs a trace from T-PE1 to T-PE2.

• To perform a trace operation on a range of segments, enter the following command. This example performs a trace from S-PE2 to T-PE2. *destination-address* is S-PE1 and *vc-id* is the VC between T-PE1 and S-PE1.

```
trace mpls pseudowire destination-address vc-id segment 2 4
```

### Configuration Examples for L2VPN Multisegment Pseudowires

- Example Configuring an L2VPN Multisegment Pseudowire, page 238

### Example Configuring an L2VPN Multisegment Pseudowire

The following example does not include all the commands. Unconfigured interfaces are not shown. Portions of the example relevant to L2VPN Multisegment Pseudowires are shown in bold.

#### T-PE1 Configuration

```text
no ipv6 cef
multilink bundle-name authenticated
frame-relay switching
mpls traffic-eng tunnels
mpls ldp discovery targeted-hello accept
no mpls ip propagate-ttl forwarded
mpls label protocol ldp
!
policy-map exp2
!
interface Loopback0
 ip address 10.131.191.252 255.255.255.255
 no clns route-cache
!
interface Ethernet0/0
 ip address 10.131.191.230 255.255.255.252
 mpls label protocol ldp
 mpla ip
 no clns route-cache
 ip rsvp bandwidth 1500 1500
 ip rsvp signalling dscp 0
 !
interface Ethernet1/0
 ip address 10.131.159.246 255.255.255.252
 shutdown
 no clns route-cache
```
! interface Ethernet2/0
  no ip address
  no cdp enable
  ! interface Ethernet2/0.1
    encapsulation dot1q 1000
    xconnect 10.131.191.251 333 encapsulation mpls
  !
  router ospf 1
    log-adjacency-changes
    passive-interface Loopback0
    network 10.131.159.244 0.0.0.3 area 0
    network 10.131.191.228 0.0.0.3 area 0
    network 10.131.191.232 0.0.0.3 area 0
    network 10.131.191.252 0.0.0.0 area 0
    network 11.0.0.0 0.0.0.3 area 0
    mpls traffic-eng router-id Loopback0
    mpls traffic-eng area 0
  !
  ip classless
  !
  no ip http server
  !
  mpls ldp router-id Loopback0 force
  end

S-PE1 Configuration

no ipv6 cef
multilink bundle-name authenticated
mpls traffic-eng tunnels
  no mpls traffic-eng auto-bw timers
  mpls ldp discovery targeted-hello accept
  no mpls ip propagate-ttl forwarded
  mpls label protocol ldp
  !
  policy-map exp2
  !
  l2 vfi sam-sp point-to-point
    neighbor 10.131.191.252 333 encapsulation mpls
    neighbor 10.131.159.251 222 encapsulation mpls
  !
  interface Tunnel3
    ip unnumbered Loopback0
    shutdown
    mpls label protocol ldp
    mpls accounting experimental input
    mpls ip
tunnel mode mpls traffic-eng
tunnel destination 10.131.159.252
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 2 2
tunnel mpls traffic-eng bandwidth 512
tunnel mpls traffic-eng path-option 1 dynamic
  no clns route-cache
  service-policy output exp2
  !
  interface Loopback0
    ip address 10.131.191.251 255.255.255.255
    no clns route-cache
  !
  interface Ethernet0/0
    ip address 10.131.191.229 255.255.255.252
    mpls traffic-eng tunnels
    mpls label protocol ldp
    mpls ip
    no clns route-cache
    ip rsvp bandwidth 1500 1500
    ip rsvp signalling dscp 0
  !
  interface Ethernet1/0

MPLS Layer 2 VPNs Configuration Guide, Cisco IOS Release 12.2SR
ip address 10.131.159.226 255.255.255.252
mpls traffic-eng tunnels
mpls ip
no clns route-cache
service-policy output exp2
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
!
interface Serial2/0
ip unnumbered Loopback0
mpls ip
no fair-queue
no keepalive
serial restart-delay 0
no clns route-cache

router ospf 1
log-adjacency-changes
passive-interface Loopback0
network 10.131.159.224 0.0.0.3 area 0
network 10.131.191.228 0.0.0.3 area 0
network 10.131.191.251 0.0.0.0 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
!
ip classless
!
end

T-PE2 Configuration

no ipv6 cef
no l2tp congestion-control
multilink bundle-name authenticated
frame-relay switching
mpls traffic-eng tunnels
no mpls traffic-eng auto-bw timers frequency 0
mpls ldp discovery targeted-hello accept
no mpls ip propagate-ttl forwarded
mpls label protocol ldp
!
interface Loopback0
ip address 10.131.159.252 255.255.255.255
no clns route-cache
!
interface Ethernet0/0
ip address 10.131.159.230 255.255.255.252
interface Ethernet0/0
ip address 10.131.159.230 255.255.255.252
mpls traffic-eng tunnels
mpls ip
no clns route-cache
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
!
interface Ethernet1/0
ip address 10.131.159.245 255.255.255.252
shutdown
mpls ip
no clns route-cache
!
interface Ethernet3/0.1
encapsulation dot1Q 1000
xconnect 10.131.159.251 111 encapsulation mpls
!
router ospf 1
log-adjacency-changes
passive-interface Loopback0
network 10.131.122.0 0.0.0.3 area 0
network 10.131.159.228 0.0.0.3 area 0
network 10.131.159.232 0.0.0.3 area 0
network 10.131.159.244 0.0.0.3 area 0
network 10.131.159.252 0.0.0.0 area 0
network 11.0.0.0 0.0.0.3 area 0
network 19.0.0.0 0.0.0.255 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
end

S-PE2 configuration

no ipv6 cef
no l2tp congestion-control
multilink bundle-name authenticated
mpls traffic-eng tunnels
no mpls traffic-eng auto-bw timers frequency 0
mpls ldp discovery targeted-hello accept
no mpls ip propagate-ttl forwarded
mpls label protocol ldp

! 12 vfi sam-sp point-to-point
neighbor 10.131.159.252 111 encapsulation mpls
neighbor 10.131.191.251 222 encapsulation mpls
!
!
interface Loopback0
ip address 10.131.159.251 255.255.255.255
!
interface Ethernet0/0
interface Ethernet0/0
ip address 10.131.159.229 255.255.255.252
mpls traffic-eng tunnels
mpls accounting experimental input
mpls ip
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
!
interface Ethernet1/0
ip address 10.131.159.225 255.255.255.252
mpls traffic-eng tunnels
mpls ip
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
!
router ospf 1
log-adjacency-changes
passive-interface Loopback0
network 10.131.159.224 0.0.0.3 area 0
network 10.131.159.228 0.0.0.3 area 0
network 10.131.159.251 0.0.0.0 area 0
network 19.0.0.0 0.0.0.255 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
!
end

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>
### Related Topic

<table>
<thead>
<tr>
<th>MPLS commands</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Document Title</strong></td>
</tr>
</tbody>
</table>

### Layer 2 VPNS

- Any Transport over MPLS
- L2VPN Pseudowire Switching
- MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV

<table>
<thead>
<tr>
<th>L2VPN VPLS Inter-AS Option B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Document Title</strong></td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Title</strong></td>
</tr>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MIBs Link</strong></td>
</tr>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4447</td>
<td>Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)</td>
</tr>
<tr>
<td>RFC 5085</td>
<td>Pseudowire Virtual Circuit Connectivity Verification (VCCV)</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for L2VPN Multisegment Pseudowires

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

**Table 25  Feature Information for L2VPN Multisegment Pseudowires**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN Multisegment Pseudowires</td>
<td>12.2(33)SRE</td>
<td>This feature enables you to configure two or more Layer 2 pseudowire segments that function as a single pseudowire. The feature spans multiple cores or autonomous systems of the same or different carrier networks.</td>
</tr>
<tr>
<td>MPLS OAM Support for Multisegment Pseudowires</td>
<td>12.2(33)SRE</td>
<td>This feature enables you to use the <code>ping mpls</code> and <code>trace mpls</code> commands to verify that all the segments of the MPLS multisegment pseudowire are operating.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>MPLS OAM Support for L2VPN VPLS Inter-AS Option B</td>
<td>15.1(1)S</td>
<td>This feature is an enhancement to the MPLS OAM Support for Multisegment Pseudowires feature. This feature allows you to use the <code>ping mpls</code> and <code>trace mpls</code> commands to verify the pseudowire used in a L2VPN VPLS Inter-AS Option B configuration.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: [www.cisco.com/go/trademarks](http://www.cisco.com/go/trademarks). Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
QoS Policy Support for L2VPN ATM PVPs

This document explains how to configure Quality of Service (QoS) Policy Support for Layer 2 Virtual Private Network (L2VPN) ATM permanent virtual paths (PVPs). That is, it explains how to configure QoS policies in ATM PVP mode for L2VPNs.

- Finding Feature Information, page 245
- Prerequisites for QoS Policy Support for L2VPN ATM PVPs, page 245
- Restrictions for QoS Policy Support for L2VPN ATM PVPs, page 245
- Information About QoS Policy Support for L2VPN ATM PVPs, page 246
- How to Configure QoS Policy Support for L2VPN ATM PVPs, page 247
- Configuration Examples for QoS Policy Support for L2VPN ATM PVPs, page 252
- Additional References, page 252
- Feature Information for QoS Policy Support for L2VPN ATM PVPs, page 254

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for QoS Policy Support for L2VPN ATM PVPs

Before configuring QoS policies on L2VPN ATM PVPs, you should understand the concepts and configuration instructions in the following document:

- Any Transport over MPLS

Restrictions for QoS Policy Support for L2VPN ATM PVPs

The following restrictions apply to the QoS Policy Support for L2VPN ATM PVPs feature:

- The Cisco 7600 series router does not support any queueing features in ATM PVP mode.
- When you enable a policy in PVP mode, do not configure ATM rates on the VCs that are part of the PVP. The VCs should be unspecified bit rate (UBR) VCs only.
If VCs are part of a PVP that has a policy configured, you cannot configure ATM VC traffic shaping.

Cisco IOS Release 12.2(33)SRE does not support cell-based ATM shaping per PVP.

You cannot configure a queueing policy on an ATM PVP with UBR.

You cannot configure queueing-based policies with UBR traffic shaping.

Information About QoS Policy Support for L2VPN ATM PVPs

MQC Structure, page 246

Elements of a Traffic Class, page 246

Elements of a Traffic Policy, page 246

MQC Structure

The modular QoS command-line interface (CLI) (MQC) structure allows you to define a traffic class, create a traffic policy, and attach the traffic policy to an interface.

The MQC structure is the result of the following these three high-level steps.

1. Define a traffic class by using the class-map command. A traffic class is used to classify traffic.
2. Create a traffic policy by using the policy-map command. (The terms traffic policy and policy map are often synonymous.) A traffic policy (policy map) contains a traffic class and one or more QoS features that will be applied to the traffic class. The QoS features in the traffic policy determine how to treat the classified traffic.
3. Attach the traffic policy (policy map) to the interface by using the service-policy command.

Elements of a Traffic Class

A traffic class contains three major elements: a traffic class name, a series of match commands, and, if more than one match command is used in the traffic class, instructions on how to evaluate these match commands.

The match commands are used for classifying packets. Packets are checked to determine whether they meet the criteria specified in the match commands; if a packet meets the specified criteria, that packet is considered a member of the class. Packets that fail to meet the matching criteria are classified as members of the default traffic class.

Elements of a Traffic Policy

A traffic policy contains three elements: a traffic policy name, a traffic class (specified with the class command), and the command used to enable the QoS feature.

The traffic policy (policy map) applies the enabled QoS feature to the traffic class once you attach the policy map to the interface (by using the service-policy command).

Note

A packet can match only one traffic class within a traffic policy. If a packet matches more than one traffic class in the traffic policy, the first traffic class defined in the policy will be used.
How to Configure QoS Policy Support for L2VPN ATM PVPs

- Enabling a Service Policy in ATM PVP Mode, page 247
- Enabling Traffic Shaping in ATM PVP Mode, page 248
- Enabling Matching of ATM VCIs, page 251

Enabling a Service Policy in ATM PVP Mode

You can enable a service policy in ATM PVP mode. You can also enable a service policy on PVP on a multipoint subinterface.

**Note**

- The Cisco 7600 series router does not support a service policy that uses the `match atm-vci` command in the egress direction.
- The `show policy-map interface` command does not display service policy information for ATM interfaces.
- Cisco IOS Release 12.2(33)SRE does not support cell-based ATM shaping per PVP.

> SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/port
4. atm pvp vpi l2transport
5. service-policy [input | output] policy-map-name
6. xconnect peer-router-id vcid encapsulation mpls
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
---|---
**Step 3** interface atm slot/port | Defines the interface and enters interface configuration mode.

Example:

```
Router(config)# interface atm 1/0
```

**Step 4** atm pvp vpi l2transport | Specifies that the PVP is dedicated to transporting ATM cells and enters l2transport PVP configuration mode.

- The l2transport keyword indicates that the PVP is for cell relay. This mode is for Layer 2 transport only; it is not for regular PVPs.

Example:

```
Router(config-if)# atm pvp 1 l2transport
```

**Step 5** service-policy [input | output] policy-map-name | Enables a service policy on the specified PVP.

Example:

```
Router(config-if-atm-l2trans-pvp)# service policy input pol1
```

**Step 6** xconnect peer-router-id vcid encapsulation mpls | Binds the attachment circuit to a pseudowire VC.

- The syntax for this command is the same as for all other Layer 2 transports.

Example:

```
Router(config-if-atm-l2trans-pvp)# xconnect 10.0.0.1 123 encapsulation mpls
```

**Step 7** end | Exits l2transport PVP configuration mode and returns to privileged EXEC mode.

Example:

```
Router(config-if-atm-l2trans-pvp)#
end
```

---

**Enabling Traffic Shaping in ATM PVP Mode**

Traffic shaping commands are supported in ATM PVP mode. For egress VP shaping, one configuration command is supported for each ATM service category. The supported service categories are constant bit rate (CBR), UBR, variable bit rate-nonreal time (VBR-NRT), and variable bit rate real-time (VBR-RT).

**Note**

- The Cisco 7600 series router does not support traffic shaping.
- Cisco IOS Release 12.2(33)SRE does not support cell-based ATM shaping per PVP.

>
SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/port
4. atm pvp vpi l2transport
5. Do one of the following:
   - ubr pcr
   - cbr pcr
   - vbr-nrt pcr scr mbs
   - or
   - vbr-rt pcr scr mbs
6. xconnect peer-router-id vcid encapsulation mpls

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface atm slot/port</td>
<td>Defines the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 1/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> atm pvp vpi l2transport</td>
<td>Specifies that the PVP is dedicated to transporting ATM cells, and enters l2transport PVP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The l2transport keyword indicates that the PVP is for cell relay. This mode is for Layer 2 transport only; it is not for regular PVPs.</td>
</tr>
<tr>
<td>Router(config-if)# atm pvp 1 l2transport</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

**Step 5** Do one of the following:

- `ubr pcr`
- `cbr pcr`
- `vbr-nrt pcr scr mbs`
- `vbr-rt pcr scr mbs`

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cbr pcr</code></td>
<td>Enables traffic shaping in ATM PVP mode.</td>
</tr>
<tr>
<td><code>vbr-nrt pcr scr mbs</code></td>
<td></td>
</tr>
<tr>
<td><code>vbr-rt pcr scr mbs</code></td>
<td></td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-if-atm-l2trans-pvp)# cbr 1000
```

**Example:**

```
cbr 56
```

**Example:**

```
vbr-nrt 11760 11760 1
```

**Example:**

```
vbr-rt 640 320 80
```
### Command or Action

| Step 6 | xconnect peer-router-id vcid encapsulation mpls |

**Example:**

```
Router(config-if-atm-l2trans-pvp)# xconnect 10.0.0.1 123 encapsulation mpls
```

**Purpose**

Binds the attachment circuit to a pseudowire VC.  
- The syntax for this command is the same as for all other Layer 2 transports.

---

### Enabling Matching of ATM VCIs

You can enable packet matching on an ATM VCI or range of VCIs using the `match atm-vci` command in class map configuration mode.

**Note**

- When you configure the `match atm-vci` command in class map configuration mode, you can add this class map to a policy map that can be attached only to an ATM VP.  
- On the Cisco 7600 series router, the `match atm-vci` command is supported only in the ingress direction on an ATM VP.  
- Cisco IOS Release 12.2(33)SRE does not support cell-based ATM shaping per PVP.

---

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `class-map class-map-name [match-all | match-any]`
4. `match atm-vci vc-id [- vc-id]`
5. `end`

---

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |

**Example:**

```
Router> enable
```

| **Step 2** configure terminal | Enters global configuration mode. |

**Example:**

```
Router# configure terminal
```
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>`class-map class-map-name [match-all</td>
<td>match-any]`</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# class-map class1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>match atm-vci vc-id [- vc-id]</code></td>
<td>Enables packet matching on an ATM VCI or range of VCIs.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-cmap)# match atm-vci 50</td>
<td><strong>Note</strong> You can use the <code>match not</code> command to match any VC except those you specify in the command.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
<td>(Optional) Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-cmap)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Configuration Examples for QoS Policy Support for L2VPN ATM PVPs

- Enabling Traffic Shaping in ATM PVP Mode Example, page 252

### Enabling Traffic Shaping in ATM PVP Mode Example

The following example enables traffic shaping in ATM PMP mode.

```
interface atm 1/0
atm pvp 100 l2transport
ubr 1000
xconnect 10.11.11.11 777 encapsulation mpls
atm pvp 101 l2transport
cbr 1000
xconnect 10.11.11.11 888 encapsulation mpls
atm pvp 102 l2transport
vbr-nrt 1200 800 128
xconnect 10.11.11.11 999 encapsulation mpls
```

### Additional References

The following sections provide references related to the QoS Policy Support for L2VPN ATM PVPs feature.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/public/support/tac/home.shtml">http://www.cisco.com/public/support/tac/home.shtml</a> <a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Feature Information for QoS Policy Support for L2VPN ATM PVPs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS Policy Support for L2VPN ATM PVPs</td>
<td>12.2(33)SRE</td>
<td>This feature enables you to configure QoS policies in ATM PVP mode for L2VPNs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified by this feature: cbr, match atm-vci, service-policy, ubr, vbr-nrt, vbr-rt.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
L2VPN Pseudowire Preferential Forwarding

The L2VPN: Pseudowire Preferential Forwarding feature allows you to configure the pseudowires so that you can use ping and show commands to find status information of the pseudowires before, during, and after a switchover.

- Finding Feature Information, page 255
- Prerequisites for L2VPN--Pseudowire Preferential Forwarding, page 255
- Restrictions for L2VPN--Pseudowire Preferential Forwarding, page 256
- Information About L2VPN--Pseudowire Preferential Forwarding, page 256
- How to Configure L2VPN--Pseudowire Preferential Forwarding, page 257
- Configuration Examples for L2VPN--Pseudowire Preferential Forwarding, page 258
- Additional References, page 260
- Feature Information for L2VPN: Pseudowire Preferential Forwarding, page 262

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for L2VPN--Pseudowire Preferential Forwarding

- Before configuring the L2VPN: Pseudowire Preferential Forwarding feature, you should understand the concepts in the following documents:
  - Preferential Forwarding Status Bit Definition (draft-ietf-pwe3-redundancy-bit-xx.txt)
  - MPLS Pseudowire Status Signaling
  - L2VPN Pseudowire Redundancy
  - NSF/SSO--Any Transport over MPLS and AToM Graceful Restart
  - MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV
- The PE routers must be configured with the following features:
The L2VPN: Pseudowire Preferential Forwarding feature requires that the following mechanisms be in place to enable you to detect a failure in the network:

- Label switched paths (LSP) Ping/Traceroute and Any Transport over MPLS Virtual Circuit Connection Verification (AToM VCCV)
- Local Management Interface (LMI)
- Operation, Administration, and Maintenance (OAM)

Restrictions for L2VPN--Pseudowire Preferential Forwarding

- Only ATM attachment circuits are supported.
- The following features are not supported:
  - Port mode cell relay
  - Any Transport over MPLS: AAL5 over MPLS
  - VC cell packing
  - OAM emulation
  - ILMI/PVC-D
  - Permanent virtual circuit (PVC) Range
  - L2TPv3 Pseudowire Redundancy
  - Local switching
  - Multiple backup pseudowires
  - Static pseudowires

Information About L2VPN--Pseudowire Preferential Forwarding

- Overview of L2VPN--Pseudowire Preferential Forwarding, page 256

Overview of L2VPN--Pseudowire Preferential Forwarding

The L2VPN: Pseudowire Preferential Forwarding feature allows you to configure pseudowires so that you can use ping, traceroute, and show commands to find status information before, during, and after a switchover. The implementation of this feature is based on Preference Forwarding Status Bit Definition (draft-ietf-pwe3-redundancy-bit-xx.txt). The L2VPN: Pseudowire Preferential Forwarding feature provides these enhancements for displaying information about the pseudowires:

- You can issue ping mpls commands on the backup pseudowires.
- You can display status of the pseudowires before, during, and after a switchover, using the show xconnect and show mpls l2transport vc commands.
In a single-segment pseudowire, the PE routers at each end of the pseudowire serve as the termination points. In multisegment pseudowires, the terminating PE routers serve as the termination points.

### How to Configure L2VPN--Pseudowire Preferential Forwarding

- Configuring the Pseudowire Connection Between PE Routers, page 257

### Configuring the Pseudowire Connection Between PE Routers

You set up a connection, called a pseudowire, between the routers to transmit Layer 2 frames between PE routers.

As part of the pseudowire configuration, issue the `status redundancy master` command to make it the master. This enables the L2VPN: Pseudowire Preferential Forwarding feature to display the status of the active and backup pseudowires. By default, the PE router is in slave mode.

#### Note

One pseudowire must be the master and the other must be assigned the slave. You cannot configure both pseudowires as master or slave.

#### Note

You must specify the `encapsulation mpls` command as part of the pseudowire class for the AToM VCs to work properly. If you omit the `encapsulation mpls` command, you receive the following error: `%Incomplete command.`

The PE routers must be configured for the L2VPN Pseudowire Redundancy and NSF/SSO--Any Transport over MPLS and AToM Graceful Restart features. See the following documents for configuration instructions.

- L2VPN Pseudowire Redundancy
- NSF/SSO--Any Transport over MPLS and AToM Graceful Restart

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class name`
4. `encapsulation mpls`
5. `status redundancy {master|slave}`
6. `interworking {ethernet | ip}`
## Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1 enable</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2 configure terminal</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3 pseudowire-class name</strong></td>
<td>Establishes a pseudowire class with a name that you specify, and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# pseudowire-class atom</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4 encapsulation mpls</strong></td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td></td>
<td>• For AToM, the encapsulation type is mpls.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>**Step 5 status redundancy {master</td>
<td>slave}**</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# status redundancy master</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong> One pseudowire must be the master and the other must be assigned the slave. You cannot configure both pseudowires as master or slave.</td>
<td></td>
</tr>
<tr>
<td>**Step 6 interworking {ethernet</td>
<td>ip}**</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# interworking ip</td>
<td></td>
</tr>
</tbody>
</table>
L2VPN--Pseudowire Preferential Forwarding Configuration Example

The following commands configure a PE router with the L2VPN: Pseudowire Preferential Forwarding feature:

```
mpls ldp graceful-restart
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp advertise-labels
!
pseudowire-class mpls
 encapsulation mpls
 status redundancy master
 interface ATM0/2/0.1 multipoint
 logging event subif-link-status
 atm pvp 50 l2transport
 xconnect 10.1.1.2 100 encap mpls
 backup peer 10.1.1.3 100 encap mpls
end
```

Displaying the Status of the Pseudowires Example

The following examples show the status of the active and backup pseudowires before, during, and after a switchover.

The `show mpls l2transport vc` command on the active PE router displays the status of the pseudowires:

```
Router# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ---------- ----------
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.2 100 UP
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.3 100 STANDBY
```

The `show mpls l2transport vc` command on the backup PE router displays the status of the pseudowires. The active pseudowire on the backup PE router has the HOTSTANDBY status.

```
Router1-standby# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ---------- ----------
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.2 100 HOTSTANDBY
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.3 100 DOWN
```

During a switchover, the status of the active and backup pseudowires changes:

```
Router# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ---------- ----------
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.2 100 RECOVERING
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.3 100 DOWN
```

After the switchover is complete, the recovering pseudowire shows a status of UP:

```
Router# show mpls l2transport vc
Local intf Local circuit Dest address VC ID Status
------------- -------------------------- --------------- ---------- ----------
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.2 100 UP
AT0/2/0/0.1 ATM VPC CELL 50 10.1.1.3 100 STANDBY
```
The `show xconnect` command displays the standby (SB) state for the backup pseudowire, which is independent of the stateful switchover mode of the router:

```
Router# show xconnect all
Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
 UP=Up DN=Down AD=Admin Down IA=Inactive
 SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware
 XC ST Segment 1 S1 Segment 2
 +---------------------------------+--+---------------------------------+---------
 UP pri ac AT1/1/0/0.1/1/1:220/220(ATM V UP mpls 10.193.193.3:330 UP
 IA sec ac AT1/1/0/0.1/1/1:220/220(ATM V UP mpls 10.193.193.3:331 SB
```

The `ping mpls` and `traceroute mpls` commands show that the dataplane is active on the backup pseudowire:

```
Router# ping mpls pseudowire 10.193.193.22 331
%Total number of MS-PW segments is less than segment number; Adjusting the segment number to 1
Sending 5, 100-byte MPLS Echos to 10.193.193.22, timeout is 2 seconds, send interval is 0 msec:
Codes: ! - success, 'Q' - request not sent, '.', - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

Router# traceroute mpls pseudowire 10.193.193.22 331 segment 1
Tracing MS-PW segments within range [1-1] peer address 10.193.193.22 and timeout 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.', - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
! 1 10.193.33.22 4 ms [Labels: 23 Exp: 0]
 local 10.193.193.3 remote 10.193.193.22 vc id 331
```

Additional References

The following sections provide references related to the L2VPN: Pseudowire Preferential Forwarding feature.

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of commands associated with MPLS and MPLS applications</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>L2VPN Pseudowires</td>
<td>• L2VPN Pseudowire Redundancy</td>
</tr>
<tr>
<td></td>
<td>• MPLS Pseudowire Status Signaling</td>
</tr>
</tbody>
</table>
Related Topic | Document Title
--- | ---
NSF/SSO for L2VPNs | NSF/SSO--Any Transport over MPLS and AToM Graceful Restart
Ping and Traceroute for L2VPNs | MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-pwe3-redundancy-bit-xx.txt</td>
<td>Preferential Forwarding Status Bit Definition</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>
Feature Information for L2VPN: Pseudowire Preferential Forwarding

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2VPN: Pseudowire Preferential Forwarding</td>
<td>12.2(33)SRE</td>
<td>This feature allows you to configure the pseudowires so that you can use ping and show commands to find status information of the pseudowires before, during, and after a switchover. The following commands were introduced or modified: show mpls l2transport vc, show xconnect, status redundancy.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
MPLS Pseudowire Status Signaling

The MPLS Pseudowire Status Signaling feature enables you to configure the router so it can send pseudowire status to a peer router, even when the attachment circuit is down. In releases prior to Cisco IOS 12.2(33)SRC, if the attachment circuit was down, the pseudowire status messages were not sent to the peer.

- Finding Feature Information, page 263
- Prerequisites for MPLS Pseudowire Status Signaling, page 263
- Restrictions for MPLS Pseudowire Status Signaling, page 263
- Information About MPLS Pseudowire Status Signaling, page 264
- How to Configure MPLS Pseudowire Status Signaling, page 266
- Configuration Examples for MPLS Pseudowire Status Signaling, page 268
- Additional References, page 269

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS Pseudowire Status Signaling

- Before configuring this feature, make sure that both peer routers are capable of sending and receiving pseudowire status messages. Specifically, both routers should be running Cisco IOS Release 12.2(33)SRC and have the supported hardware installed.

Restrictions for MPLS Pseudowire Status Signaling

- Both peer routers must support the ability to send and receive pseudowire status messages in label advertisement and label notification messages. If both peer routers do not support pseudowire status messages, Cisco recommends that you disable the messages with the no status command.
• This feature is not integrated with Any Transport over MPLS (AToM) Virtual Circuit Connection Verification (VCCV).
• This feature is not integrated with Bidirectional Forwarding Detection (BFD).
• The standby and required switchover values from IETF draft-muley-pwe3-redundancy-02.txt are not supported.
• For a list of supported hardware for this feature, see the release notes for your platform.

Information About MPLS Pseudowire Status Signaling

• How MPLS Pseudowire Status Signaling Works, page 264

How MPLS Pseudowire Status Signaling Works

In releases prior to Cisco IOS Release 12.2(33)SRC, the control plane for AToM does not have the ability to provide pseudowire status. Therefore, when an attachment circuit (AC) associated with a pseudowire is down (or is forced down as part of the Pseudowire Redundancy functionality), labels advertised to peers are withdrawn. In Cisco IOS Release 12.2(33)SRC, the MPLS Pseudowire Status Signaling feature enables the AC status to be sent to the peer through the Label Distribution Protocol.

The pseudowire status messages are sent in label advertisement and label notification messages if the peer also supports the MPLS Pseudowire Status Signaling feature. You can issue the `show mpls l2transport vc detail` command to show that both the local and remote routers support pseudowire status messages. The following example shows the line of output to look for:

```
Router# show mpls l2transport vc detail

status TLV support (local/remote): enabled/supported

When One Router Does Not Support MPLS Pseudowire Status Signaling, page 264
Status Messages Indicating That the Attachment Circuit Is Down, page 265
Message Codes in the Pseudowire Status Messages, page 265

When One Router Does Not Support MPLS Pseudowire Status Signaling

The peer routers must support the ability to send and receive pseudowire status messages in label advertisement and label notification messages. If one router does not support pseudowire status messages, Cisco recommends that you disable the messages with the `no status` command. This returns the router to label withdraw mode.

If the peer does not support the MPLS Pseudowire Status Signaling feature, the local router changes its mode of operation to label withdraw mode. You can issue the `show mpls l2transport vc detail` command
to show that the remote router does not support pseudowire status messages. The following example shows
the line of output to look for:

```
Router# show mpls l2transport vc detail
```

```
status TLV support (local/remote): enabled/not supported
```

When you issue the following `debug mpls l2transport vc` commands, the messages show that the peer
router does not support the MPLS Pseudowire Status Signaling feature and that the local router is changing
to withdraw mode, as shown in bold in the following example:

```
Router# debug mpls l2transport vc event
Router# debug mpls l2transport vc status event
Router# debug mpls l2transport vc status fsm
Router# debug mpls l2transport vc ldp
```

*Feb 26 13:41:40.707: AToM LDP [110.1.1.2]: Sending label withdraw msg
*Feb 26 13:41:40.707: AToM LDP [110.1.1.2]: VC Type 5, mtu 1500
*Feb 26 13:41:40.707: AToM LDP [110.1.1.2]: VC ID 100, label 18
*Feb 26 13:41:40.707: AToM LDP [110.1.1.2]: Status 0x0000000A [PW Status NOT supported]

Status Messages Indicating That the Attachment Circuit Is Down

When the attachment circuit is down between the two routers, the output of the `show mpls l2transport vc
detail` command shows the following status:

```
Router# show mpls l2transport vc detail
```

```
Last remote LDP TLV     status rcvd: AC DOWN(rx,tx faults)
```

The debug messages also indicate that the attachment circuit is down, as shown in bold in the command
output:

```
Router# debug mpls l2transport vc event
Router# debug mpls l2transport vc status event
Router# debug mpls l2transport vc status fsm
Router# debug mpls l2transport vc ldp
```

*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: Received notif msg, id 88
*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: Status 0x00000007 [PW Status]
*Feb 26 11:51:42.427: AToM LDP [10.1.1.1]: PW Status 0x00000006 [AC DOWN(rx,tx faults)]

Other pseudowire status messages include not-forwarding, pw-tx-fault, and pw-rx-fault.

Message Codes in the Pseudowire Status Messages
The `debug mpls l2transport vc` and the `show mpls l2transport vc detail` commands show output that contains message codes. For example:

```
Label/status state machine: established, LruRru
```

```
AToM MGR [10.9.9.9, 100]: S:Evt local up, LndRru->LnuRru
```

The message codes (LruRru, LndRru, and LnuRru) indicate the status of the local and remote routers. You can use the following key to interpret the message codes:

- **L**—local router
- **R**—remote router
- **r** or **n**—ready (r) or not ready (n)
- **u** or **d**—up (u) or down (d) status

The output also includes other values:

- **D**—Dataplane
- **S**—Local shutdown

How to Configure MPLS Pseudowire Status Signaling

- Enabling MPLS Pseudowire Status Signaling, page 266

Enabling MPLS Pseudowire Status Signaling

Perform the following task to enable the router to send pseudowire status to a peer router even when the attachment circuit is down. If both routers do not support pseudowire status messages, then disable the messages with the `no status` command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class name`
4. `status`
5. `encapsulation mpls`
6. `exit`
7. `exit`
8. `show mpls l2transport vc detail`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 pseudowire-class name</td>
<td>Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# pseudowire-class atom</td>
<td></td>
</tr>
<tr>
<td>Step 4 status</td>
<td>(Optional) Enables the router to send pseudowire status messages to the peer router through label advertisement and label notification messages.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# status</td>
<td>Note By default, status messages are enabled. This step is included only in case status messages have been disabled. If you need to disable status messages because both peer routers do not support this functionality, enter the no status command.</td>
</tr>
<tr>
<td>Step 5 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pw)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for MPLS Pseudowire Status Signaling

- MPLS Pseudowire Status Signaling Example, page 268
- Verifying That Both Routers Support Pseudowire Status Messages Example, page 269

MPLS Pseudowire Status Signaling Example

The following example configures the MPLS Pseudowire Status Signaling feature on two PE routers. By default, status messages are enabled. The `status` command is included in this example in case status messages have been disabled.

PE1

```
interface Loopback0
 ip address 10.1.1.1 255.255.255.255
 !
 pseudowire-class atomstatus
 encapsulation mpls
 status
 !
 interface GigabitEthernet10/5
 xconnect 10.1.1.2 123 pw-class atomstatus
```

PE2

```
interface Loopback0
 ip address 10.1.1.2 255.255.255.255
 !
 pseudowire-class atomstatus
 encapsulation mpls
 status
 !
 interface GigabitEthernet3/3
 xconnect 10.1.1.1 123 pw-class atomstatus
```
Verifying That Both Routers Support Pseudowire Status Messages Example

You can issue the `show mpls l2transport vc detail` command to show that both the local and remote routers support pseudowire status messages. The following example shows the line of output to look for:

```
Router# show mpls l2transport vc detail

status TLV support (local/remote): enabled/supported
```

Additional References

The following sections provide references related to the MPLS Pseudowire Status Signaling feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Transport over MPLS</td>
<td>Any Transport over MPLS</td>
</tr>
<tr>
<td>Virtual Private LAN Services</td>
<td>Virtual Private LAN Services on the Optical Services Modules</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-pwe3-control-protocol-15.txt</td>
<td>Pseudowire Setup and Maintenance Using LDP</td>
</tr>
<tr>
<td>draft-ietf-pwe3-iana-allocation-08.txt</td>
<td>IANA Allocations for Pseudo Wire Edge to Edge Emulation (PWE3)</td>
</tr>
<tr>
<td>draft-martini-pwe3-pw-switching-03.txt</td>
<td>Pseudo Wire Switching</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudowire Emulation Edge-to-Edge MIBs for Ethernet, Frame Relay, and ATM Services</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.

To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.