
The Fast Reroute MIB has the following features:

- Notifications can be created and queued.
- Command-line interface (CLI) commands enable notifications, and specify the IP address to where the notifications will be sent.
- The configuration of the notifications can be written into nonvolatile memory.

The MIB includes objects describing features within MPLS FRR, and it includes the following tables:

- cmplsFrrConstTable
- cmplsFrrLogTable
- cmplsFrrFacRouteDBTable

The MIB also includes scalar objects (that is, objects that are not in a table). For more information, see the FRR MIB Scalar Objects, on page 3.

Finding Feature Information, on page 1
Prerequisites for the MPLS Traffic Engineering--Fast Reroute MIB, on page 2
Restrictions for the MPLS Traffic Engineering--Fast Reroute MIB, on page 2
Information About the MPLS Traffic Engineering--Fast Reroute MIB, on page 2
How to Configure the MPLS Traffic Engineering--Fast Reroute MIB, on page 8
Configuration Examples for the MPLS Traffic Engineering--Fast Reroute MIB, on page 13
Additional References, on page 14
Feature Information for MPLS Traffic Engineering--Fast Reroute MIB, on page 15
Glossary, on page 15
Prerequisites for the MPLS Traffic Engineering--Fast Reroute MIB

- The network must support the Intermediate System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF) protocol.
- The SNMP is installed and enabled on the label switch routers (LSRs).
- MPLS is enabled globally on each LSR.
- Cisco Express Forwarding is enabled on the LSRs.
- Traffic engineering (TE) tunnels are enabled.
- MPLS FRR is enabled on one of the TE tunnels.
- The Resource Reservation Protocol (RSVP) is enabled.

Restrictions for the MPLS Traffic Engineering--Fast Reroute MIB

- The implementation of the FRR MIB is limited to read-only (RO) permission for MIB objects.
- The following tables are not implemented:
 - mplsFrrOne2OnePlrTable
 - mplsFrrDetourTable.

Information About the MPLS Traffic Engineering--Fast Reroute MIB

Feature Design of the MPLS Traffic Engineering--Fast Reroute MIB

The FRR MIB enables standard, SNMP-based network management of FRR in Cisco software. This capability requires that SNMP agent code executes on a designated network management station (NMS) in the network. The NMS serves as the medium for user interaction with the network management objects in the MIB.

The FRR MIB is based on the Internet Engineering Task Force (IETF) draft MIB specification draft-ietf-mpls-fastreroute-mib-02.txt. The IETF draft MIB, which undergoes revisions periodically, is evolving.
toward becoming a standard. The Cisco implementation of the FRR MIB is expected to track the evolution of the IETF draft MIB, and may change accordingly.

Slight differences between the IETF draft MIB and the implementation of FRR within Cisco software require some minor translations between the FRR MIB objects and the internal data structures of Cisco software. These translations are accomplished by the SNMP agent, which runs in the background on the NMS workstation as a low priority process and provides a management interface to Cisco software.

You can use an SNMP agent to access FRR MIB objects using standard SNMP GET operations. All the objects in the FRR MIB follow the conventions defined in the IETF draft MIB.

Functional Structure of the MPLS Traffic Engineering--Fast Reroute MIB

The SNMP agent code supporting the FRR MIB follows the existing model for such code in Cisco software and is, in part, generated by the Cisco tool set, based on the MIB source code. The basis for the generated code is the Cisco version of the FRR MIB CISCO-ietf-frr-mib.

The SNMP agent code, which has a layered structure that is common to MIB support code in Cisco software, consists of the following layers:

- **Platform-independent layer**--This layer is generated primarily by the MIB development Cisco tool set and incorporates platform- and implementation-independent functions. These functions handle SNMP standard functionality in the context of the specific MIB. This layer handles indexes and range or enumeration value checks for GET, GET-NEXT, and SET SNMP operations. A function is generated for each SNMP table or group of objects. This layer calls into the next layer.

- **Application interface layer**--The Cisco tool set generates the function names and template code for MIB objects.

- **Application-specific layer**--This layer provides the mechanism for retrieving relevant data from the managed application layer. It includes an entry point function for each table. This function calls two other functions; one that searches the TE tunnel database that RSVP maintains for the relevant data according to the indexes, and another function that fills the data into the structure.

- **Managed application layer**--This layer includes all the structures and mechanisms, and is managed by the MIB.

System Flow of SNMP Protocol Requests and Response Messages

All SNMP protocol requests and response messages are ultimately handled by the SNMP master agent. When such a message is received on a router, the master agent parses the requests and identifies the MIB to which the request refers. The master agent then queries the subagent responsible for the MIB with a GET, GET-NEXT, or SET request. The FRR MIB subagent retrieves the appropriate data, and returns it to the master agent. The master agent is then responsible for returning an SNMP response to the NMS. All queries occur within the IP SNMP Cisco software process, which runs as a low priority task.

FRR MIB Scalar Objects

Scalar objects are objects that are not in tables. A scalar object has one instance (that is, one occurrence).

The table below describes the FRR MIB scalar objects.
Table 1: Scalar Objects

<table>
<thead>
<tr>
<th>MIB Object</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmplsFrrDetourIncoming</td>
<td>Number of detour link-state packets (LSPs) entering the device. This object returns 0 because cmplsFrrConstProtectionMethod is set to facilityBackup(1).</td>
</tr>
<tr>
<td>cmplsFrrDetourOutgoing</td>
<td>Number of detour LSPs leaving the device. This object returns 0 because cmplsFrrConstProtectionMethod is set to facilityBackup(1).</td>
</tr>
<tr>
<td>cmplsFrrDetourOriginating</td>
<td>Number of detour LSPs originating from the device. This object returns 0 because cmplsFrrConstProtectionMethod is set to facilityBackup(1).</td>
</tr>
<tr>
<td>cmplsFrrSwitchover</td>
<td>Number of tunnels that are being backed up because cmplsFrrConstProtectionMethod is set to facilityBackup(1).</td>
</tr>
<tr>
<td>cmplsFrrNumOfConfIfs</td>
<td>Number of MPLS interfaces FRR configured for protection; 0 indicates that LSPs traversing any interface can be protected.</td>
</tr>
<tr>
<td>cmplsFrrActProtectedIfs</td>
<td>Number of interfaces FRR is protecting because cmplsFrrConstProtectionMethod is set to facilityBackup(1).</td>
</tr>
<tr>
<td>cmplsFrrConfProtectingTuns</td>
<td>Number of backup Fast Reroute-protected tunnels configured because cmplsFrrConstProtectionMethod is set to facilityBackup(1).</td>
</tr>
<tr>
<td>cmplsFrrActProtectedTuns</td>
<td>Number of tunnels protected by the Fast Reroute feature. This object returns 0 because cmplsFrrConstProtectionMethod is set to facilityBackup(1).</td>
</tr>
<tr>
<td>cmplsFrrActProtectedLSPs</td>
<td>Number of LSPs that FRR is protecting. If cmplsFrrConstProtectionMethod is set to facilityBackup(1), this object returns 0.</td>
</tr>
<tr>
<td>cmplsFrrConstProtectionMethod</td>
<td>This object always returns facilityBackup(1) because Cisco software supports only the facility backup protection method.</td>
</tr>
<tr>
<td>cmplsFrrNotifsEnabled</td>
<td>A value that indicates whether FRR notifications defined in this MIB are enabled or disabled. This object returns True(1) for enabled, or False(2) for disabled. The default is that notifications are disabled.</td>
</tr>
<tr>
<td>cmplsFrrLogTableMaxEntries</td>
<td>Maximum number of entries allowed in the FRR log table.</td>
</tr>
<tr>
<td>cmplsFrrLogTableCurrEntries</td>
<td>Current number of entries in the FRR log table. This object always returns 0.</td>
</tr>
<tr>
<td>cmplsFrrNotifMaxRate</td>
<td>Maximum interval rate between FRR MIB notifications. This object always returns 0.</td>
</tr>
</tbody>
</table>

FRR MIB Notification Generation Events

Notifications are issued after particular FRR events occur.

When you enable FRR MIB notification functionality by issuing the `snmp-server enable traps mpls fast-reroute` command, FRR events generate notification messages that are sent to a designated NMS in the network to signal the occurrence of specific events in Cisco software.

The FRR MIB objects involved in FRR status transitions and event notifications include cmplsFrrProtected. This message is sent to an NMS if there is a major TE tunnel change (that is, fast rerouting of TE tunnels).
FRR MIB Notification Specification

Notifications are issued after particular FRR events occur.

Each FRR notification has a generic type identifier and an enterprise-specific type identifier for identifying the notification type. The generic type for all FRR notifications is “enterprise Specific” because this is not one of the generic notification types defined for SNMP. The enterprise-specific type is 1 for cmplsFrrProtected.

Each notification contains the following objects from the FRR MIB so that the FRR tunnel can be easily identified:

- cmplsFrrConstNumProtectingTunOnIf
- cmplsFrrConstNumProtectedTunOnIf
- cmplsFrrConstBandwidth

Upon being invoked, the appropriate FRR interface indexes have already been retrieved by existing FRR code. The FRR interfaces are then used to fill in data for the three objects included in the notification.

FRR MIB Notification Monitoring

Notifications are issued after particular FRR events occur.

When FRR MIB notifications are enabled (see the `snmp-server enable traps` command), notification messages relating to specific FRR events within Cisco software are generated and sent to a specified NMS in the network. Any utility that supports SNMPv1 or SNPv2 notifications can receive notification messages.

To monitor FRR MIB notifications, log in to an NMS that supports a utility that displays SNMP notifications, and start the display utility.

MIB Tables in the MPLS Traffic Engineering--Fast Reroute MIB

The FRR MIB consists of the following tables:

The tables access various data structures to obtain information regarding detours, the FRR database, and logging.

cmplsFrrConstTable

cmplsFrrConstTable displays the configuration of an FRR-enabled tunnel and the characteristics of its accompanying backup tunnels. For each protected tunnel, there can be multiple backup tunnels.

The table is indexed by the following:

- cmplsFrrConstIfIndex
- cmplsFrrConstTunnelIndex
- cmplsFrrConstTunnelInstance

The table below describes the MIB objects for *cmplsFrrConstTable*.
Table 2: cmplsFrrConstTable Objects

<table>
<thead>
<tr>
<th>MIB Object</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmplsFrrConstIfIndex</td>
<td>Uniquely identifies an interface on which FRR is configured. If an index has a value of 0, the configuration applies to all interfaces on the device on which the FRR feature can operate.</td>
</tr>
<tr>
<td>cmplsFrrConstTunnelIndex</td>
<td>Tunnel for which FRR is requested.</td>
</tr>
<tr>
<td>cmplsFrrConstTunnelInstance</td>
<td>Tunnel for which FRR is requested. The value always is 0 because only tunnel heads are represented, and tunnel heads have an instance value of 0.</td>
</tr>
<tr>
<td>cmplsFrrConstSetupPrio</td>
<td>Setup priority of the backup tunnel.</td>
</tr>
<tr>
<td>cmplsFrrConstHoldingPrio</td>
<td>Holding priority of the backup tunnel.</td>
</tr>
<tr>
<td>cmplsFrrConstInclAnyAffinity</td>
<td>Attribute bits that must be set for the tunnel to traverse a link.</td>
</tr>
<tr>
<td>cmplsFrrConstInclAllAffinity</td>
<td>Attribute bits that must not be set for the tunnel to traverse a link.</td>
</tr>
<tr>
<td>cmplsFrrConstExclAllAffinity</td>
<td>A link satisfies the exclude-all constraint only if the link contains none of the administrative groups specified in the constraint.</td>
</tr>
<tr>
<td>cmplsFrrConstHopLimit</td>
<td>The maximum number of hops that the backup tunnel can traverse.</td>
</tr>
<tr>
<td>cmplsFrrConstBandwidth</td>
<td>The bandwidth of the backup tunnels for this tunnel, in thousands of bits per second (kbps).</td>
</tr>
<tr>
<td>cmplsFrrConstRowStatus</td>
<td>Creates, modifies, and deletes a row in this table.</td>
</tr>
</tbody>
</table>

Table 3: cmplsFrrLogTable Objects

<table>
<thead>
<tr>
<th>MIB Object</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmplsFrrLogIndex</td>
<td>Number of the FRR event.</td>
</tr>
<tr>
<td>cmplsFrrLogEventTime</td>
<td>Number of milliseconds that elapsed from bootstrap time to the time that the event occurred.</td>
</tr>
<tr>
<td>cmplsFrrLogInterface</td>
<td>Identifies the interface that was affected by this FRR event. The value can be set to 0 if mplsFrrConstProtectionMethod is set to oneToOneBackup(0).</td>
</tr>
<tr>
<td>cmplsFrrLogEventType</td>
<td>The type of FRR event that occurred. The object returns Protected or Other.</td>
</tr>
<tr>
<td>cmplsFrrLogEventDuration</td>
<td>Duration of the event, in milliseconds.</td>
</tr>
</tbody>
</table>

cmplsFrrLogTable is indexed by the object cmplsFrrLogIndex. The index corresponds to a log entry in the FRR feature’s show mpls traffic-eng fast-reroute log reroutes command. That show command stores up to 32 entries at a time. If entries are added, the oldest entry is overwritten with new log information.

cmplsFrrLogTable can store up to 32 entries at a time, overwriting older entries as newer ones are added. The index cmplsFrrLogIndex is incremented to give each log table entry of the MIB a unique index value. Therefore, it is possible to have indexes greater than 32 even though only 32 entries are displaying.

The table below describes the MIB objects for cmplsFrrLogTable.
FunctionMIB Object	Implementation-specific explanation of the event. The object returns interface down event or interface other event.
cmplsFrrLogEventReasonString

cmplsFrrFacRouteDBTable

The following indexes specify which interface and tunnel are being protected by the FRR feature:
- cmplsFrrFacRouteProtectedIfIndex
- cmplsFrrFacRouteProtectedTunIndex

The following indexes specify the backup tunnel that provides protection to the protected tunnel:
- cmplsFrrFacRouteProtectedIfIndex
- cmplsFrrFacRouteProtectingTunIndex
- cmplsFrrFacRouteProtectedTunIndex
- cmplsFrrFacRouteProtectedTunInstance
- cmplsFrrFacRouteProtectedTunIngressLSRId
- cmplsFrrFacRouteProtectedTunEgressLSRId

This version of the MIB will attempt to leverage the work already done for the MPLS TE MIB because it contains similar lookup functions for TE tunnels.

The table below describes the MIB objects for cmplsFrrFacRouteDBTable.

<table>
<thead>
<tr>
<th>MIB Object</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>cmplsFrrFacRouteProtectedIfIndex</td>
<td>Interface configured for FRR protection.</td>
</tr>
<tr>
<td>cmplsFrrFacRouteProtectingTunIndex</td>
<td>The tunnel number of the protecting (backup) tunnel.</td>
</tr>
<tr>
<td>cmplsFrrFacRouteProtectedTunIndex</td>
<td>The mplsTunnelEntry primary index for the tunnel head interface designated to protect the interface specified in mplsFrrFacRouteIfProtIdx (and all the tunnels using this interface).</td>
</tr>
<tr>
<td>cmplsFrrFacRouteProtectedTunInstance</td>
<td>An mplsTunnelEntry that is being protected by FRR. An instance uniquely identifies a tunnel.</td>
</tr>
<tr>
<td>cmplsFrrFacRouteProtectedTunIngressLSRId</td>
<td>Inbound label for the backup LSR.</td>
</tr>
<tr>
<td>cmplsFrrFacRouteProtectedTunEgressLSRId</td>
<td>Outbound label for the backup LSR.</td>
</tr>
</tbody>
</table>
MIB Object | Function
---|---
cmplsFrrFacRouteProtectedTunStatus | State of the protected tunnel. Valid values are:
| • active--Tunnel label has been placed in the Label Forwarding Information Base (LFIB) and is ready to be applied to incoming packets.
| • ready--Tunnel’s label entry has been created, but is not in the LFIB.
| • partial--Tunnel’s label entry has not been fully created.
cmplsFrrFacRouteProtectingTunResvBw | Amount of bandwidth, in megabytes per second, that is reserved by the backup tunnel.
cmplsFrrFacRouteProtectingTunProtectionType | Type of protection: 0 designates link protection; 1 designates node protection.

How to Configure the MPLS Traffic Engineering--Fast Reroute MIB

Enabling the SNMP Agent for FRR MIB Notifications

SUMMARY STEPS

1. enable
2. show running-config
3. configure terminal
4. snmp-server community string [view view-name] [ro] [access-list-number]
5. snmp-server enable traps mpls fast-reroute protected
6. end
7. write memory

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>show running-config</td>
<td>Displays the running configuration of the router to determine if an SNMP agent is already running on the device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>If no SNMP information is displayed, continue with the next step.</td>
</tr>
<tr>
<td></td>
<td>Router# show running-config</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>If any SNMP information is displayed, you can modify or change the information.</td>
<td></td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

Example:

```bash
Router# configure terminal
```

Step 4

`snmp-server community string [view view-name] [ro] [access-list-number]`

Example:

```bash
Router(config)# snmp-server community public ro
```

Step 5

`snmp-server enable traps mpls fast-reroute protected`

Example:

```bash
Router(config)# snmp-server enable traps mpls fast-reroute protected
```

Step 6

`end`

Example:

```bash
Router(config)# end
```

Step 7

`write memory`

Example:

```bash
Router# write memory
```

Enabling Cisco Express Forwarding

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip cef distributed`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
</tbody>
</table>

Enter your password if prompted.
Enabling TE Tunnels

SUMMARY STEPS

1. enable
2. configure terminal
3. ip cef
4. mpls traffic-eng tunnels
5. interface type slot/subslot/port/subinterface
6. mpls traffic-eng tunnels
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables standard Cisco Express Forwarding operations.</td>
</tr>
<tr>
<td>ip cef</td>
<td>Router(config)# ip cef</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Enabling MPLS FRR on Each TE Tunnel

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type slot/subslot/port[,subinterface]`
4. `tunnel mode mpls traffic-eng`
5. `tunnel mpls traffic-eng fast-reroute`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Enabling a Backup Tunnel on an Interface

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface typeslot/subslot/port/[-subinterface]`
4. `mpls traffic-eng backup-path tunnel interface`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for the MPLS Traffic Engineering--Fast Reroute MIB

Example Enabling an SNMP Agent on a Host NMS

```plaintext
enable
show running-config
configure terminal
snmp-server community public ro
snmp-server enable traps mpls fast-reroute protected
end
write memory
```

Example Enabling Cisco Express Forwarding

```plaintext
enable
configure terminal
ip cef
end
```

Example Enabling TE Tunnels

```plaintext
enable
configure terminal
ip cef
mpls traffic-eng tunnels
interface FastEthernet1/0/0
mpls traffic-eng tunnels
end
```
Example Enabling MPLS FRR on Each TE Tunnel

```
enable
configure terminal
interface POS1/0/0
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng fast-reroute
end
```

Example Enabling a Backup Tunnel on an Interface

```
enable
configure terminal
interface POS1/0/0
mpls traffic-eng backup-path tunnel1
end
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Description of commands associated with MPLS and MPLS applications</td>
<td>Multiprotocol Label Switching Command Reference</td>
</tr>
<tr>
<td>SNMP agent support for the MPLS Traffic Engineering MIB</td>
<td>MPLS Traffic Engineering MIB</td>
</tr>
<tr>
<td>Fast Reroute</td>
<td>MPLS Traffic Engineering: Fast Reroute Link and Node Protection</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS-FRR-MIB</td>
<td>draft-ietf-mpls-fastreroute-mib-02.txt</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Traffic Engineering (TE) MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for MPLS Traffic Engineering--Fast Reroute MIB

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Embedded Management--MPLS Fast Reroute MIB (IETF draft v01)</td>
<td>Cisco IOS XE Release 2.3</td>
<td>The Fast Reroute MIB provides SNMP-based network management of the Multiprotocol Label Switching (MPLS) Fast Reroute (FRR) feature.</td>
</tr>
</tbody>
</table>

Glossary

FEC—Forwarding Equivalence Class. A set of packets that can be handled equivalently for forwarding purposes and are thus suitable for binding to a single label. Examples include the set of packets destined for one address prefix and any flow.

flow—Generally, a set of packets traveling between a pair of hosts, or a pair of transport protocol ports on a pair of hosts. For example, packets with the same source address, source port, destination address, and destination port might be considered a flow.
A flow is also a stream of data traveling between two endpoints across a network (for example, from one LAN station to another). Multiple flows can be transmitted on a single circuit.

fragmentation—Process of breaking a packet into smaller units when transmitting over a network medium that cannot support the original size of the packet.

ICMP—Internet Control Message Protocol. A network layer Internet protocol that reports errors and provides other information relevant to IP packet processing. It is documented in RFC 792.

LFIB—label forwarding information base. A data structure and way of managing forwarding in which destinations and incoming labels are associated with outgoing interfaces and labels.

localhost—A name that represents the host name of a device. The localhost uses the reserved loopback IP address 127.0.0.1.

LSP—label switched path. A connection between two devices that uses MPLS to carry the packets.

LSPV—Label Switched Path Verification. An LSP Ping subprocess that encodes and decodes MPLS echo requests and replies; interfaces with IP, MPLS, and AToM switching for sending and receiving MPLS echo requests and replies; and, at the MPLS echo request originator device, maintains a database of outstanding echo requests for which echo responses have not been received.

MPLS router alert label—An MPLS label of 1. An MPLS packet with a router alert label is redirected by the device to the Route Processor (PR) processing level for handling. This allows these packets to bypass any forwarding failures in hardware routing tables.

MRU—maximum receive unit. Maximum size, in bytes, of a labeled packet that can be forwarded through an LSP.

MTU—maximum transmission unit. Maximum packet size, in bytes, that a particular interface can handle.

punt—Redirect packets with a router alert from the line card or interface to Route Processor (RP) level processing for handling.

PW—pseudowire. A mechanism that carries the essential elements of an emulated circuit from one provider edge (PE) device to another PE device over a packet-switched network.

RP—Route Processor. Processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the device. It is sometimes called a supervisory processor.

RSVP—Resource Reservation Protocol. A protocol that supports the reservation of resources across an IP network. Applications running on IP end systems can use RSVP to indicate to other nodes the nature (bandwidth, jitter, maximum burst, and so on) of the packet streams they want to receive. RSVP depends on IPv6. It is also known as Resource Reservation Setup Protocol.

UDP—User Datagram Protocol. Connectionless transport layer protocol in the TCP/IP protocol stack. UDP is a simple protocol that exchanges datagrams without acknowledgments or guaranteed delivery, requiring that error processing and retransmission be handled by other protocols. UDP is defined in RFC 768.