

MPLS Embedded Management and MIBs Configuration Guide, Cisco IOS Release 12.2SR

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com

Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental

© 2011 Cisco Systems, Inc. All rights reserved.

CONTENTS

MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV 1	
Finding Feature Information 1	
Prerequisites for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV 2	
Restrictions for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV 2	
Information About MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV 3	
MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV Functionality 3	
MPLS LSP Ping Operation 3	
MPLS LSP Traceroute Operation 5	
MPLS Network Management with MPLS LSP Ping and MPLS LSP Traceroute 7	
Any Transport over MPLS Virtual Circuit Connection 8	
AToM VCCV Signaling 8	
Selection of AToM VCCV Switching Types 8	
Information Provided by the Router Processing LSP Ping or LSP Traceroute 9	
IP Does Not Forward MPLS Echo Request Packets 10	
Compatibility Between the MPLS LSP and Ping or Traceroute Implementations 11	
CiscoVendorExtensions 11	
DSCP Option to Request a Specific Class of Service in an Echo Reply 12	
Reply Modes for an MPLS LSP Ping and LSP Traceroute Echo Request Response 12	
IPv4 Reply Mode 12	
Router-Alert Reply Mode 13	
LSP Breaks 13	
How to Configure MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV 14	
Enabling Compatibility Between the MPLS LSP and Ping or Traceroute Implementation	14
Validating an LDP IPv4 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute 16	
Validating a Layer 2 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute 17	
Using DSCP to Request a Specific Class of Service in an Echo Reply 18	
Controlling How a Responding Router Replies to an MPLS Echo Request 19	
Using MPLS LSP Ping to Discover Possible Loops 19	
Using MPLS LSP Traceroute to Discover Possible Loops 20	

```
Tracking Packets Tagged as Implicit Null 21
  Tracking Untagged Packets 22
   Determining Why a Packet Could Not Be Sent 23
   Detecting LSP Breaks when Load Balancing Is Enabled for IPv4 LDP LSPs 24
   Specifying the Interface Through Which Echo Packets Leave a Router 25
   Pacing the Transmission of Packets 26
  Interrogating the Transit Router for Its Downstream Information by Using Echo Request
   request-dsmap 27
   Interrogating a Router for Its DSMAP 28
   Requesting that a Transit Router Validate the Target FEC Stack 29
   Enabling LSP Ping to Detect LSP Breakages Caused by Untagged Interfaces 30
   Viewing the AToM VCCV Capabilities Advertised to and Received from the Peer 31
Configuration Examples for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV 32
   Enabling Compatibility Between the MPLS LSP and Ping or Traceroute Implementation
   Example 33
   Validating an LDP IPv4 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute
   Example 33
   Validating a Layer 2 FEC by Using MPLS LSP Ping Example 34
   Using DSCP to Request a Specific Class of Service in an Echo Reply Example 34
   Controlling How a Responding Router Replies to an MPLS Echo Request Example 34
   Preventing Possible Loops with MPLS LSP Ping Example 35
  Preventing Possible Loops with MPLS LSP Traceroute Example 36
   Troubleshooting with LSP Ping or Traceroute Example 37
      Configuration for Sample Topology 38
      Verification That the LSP Is Configured Correctly 44
      Discovery of LSP Breaks 44
   MTU Discovery in an LSP Example 46
  Tracking Packets Tagged as Implicit Null Example 47
  Tracking Untagged Packets Example 48
  Determining Why a Packet Could Not Be Sent Example 49
  Detecting LSP Breaks when Load Balancing Is Enabled for IPv4 LSPs Example 49
   Specifying the Interface Through Which Echo Packets Leave a Router Example 51
  Pacing the Transmission of Packets Example 52
   Interrogating the Transit Router for Its Downstream Information Example 52
   Interrogating a Router for Its DSMAP Example 54
```

```
Requesting that a Transit Router Validate the Target FEC Stack Example 54
      Enabling LSP Ping to Detect LSP Breakages Caused by Untagged Interfaces Example 55
      Viewing the AToM VCCV Capabilities Advertised to and Received from the Peer Example 55
   Additional References 56
   Feature Information for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV 57
   Glossary 59
MPLS EM—MPLS LSP Multipath Tree Trace 61
   Finding Feature Information 61
   Prerequisites for MPLS EM - MPLS LSP Multipath Tree Trace 62
   Restrictions for MPLS EM-MPLS LSP Multipath Tree Trace 62
   Information About MPLS EM-MPLS LSP Multipath Tree Trace 62
      Overview of MPLS LSP Multipath Tree Trace 62
      Discovery of IPv4 Load Balancing Paths by MPLS SLP Multipath Tree Trace 63
      Echo Reply Return Codes Sent by the Router Processing Multipath LSP Tree Trace 63
   How to Configure MPLS EM - MPLS LSP Multipath Tree Trace 64
      Customizing the Default Behavior of MPLS Echo Packets 64
      Configuring MPLS LSP Multipath Tree Trace 66
      Discovering IPv4 Load Balancing Paths Using MPLS LSP Multipath Tree Trace 68
      Monitoring LSP Paths Discovered by MPLS LSP Multipath Tree Trace Using MPLS LSP
      Traceroute 70
      Using DSCP to Request a Specific Class of Service in an Echo Reply 73
      Controlling How a Responding Router Replies to an MPLS Echo Request 74
         Reply Modes for an Echo Request Response 74
      Specifying the Output Interface for Echo Packets Leaving a Router for 76
      Setting the Pace of MPLS Echo Request Packet Transmission for MPLS LSP Multipath Tree
      Trace 77
      Enabling to Detect LSP Breakages Caused by an Interface That Lacks an MPLS Configuration 78
      Requesting That a Transit Router Validate the Target FEC Stack for MPLS LSP Multipath
      Tree Trace 79
      Setting the Number of Timeout Attempts for MPLS LSP Multipath Tree Trace 80
   Configuration Examples for MPLS EM - MPLS LSP Multipath Tree Trace 81
      Customizing the Default Behavior of MPLS Echo Packets Example 82
      Configuring MPLS LSP Multipath Tree Trace: Example 82
      Discovering IPv4 Load Balancing Paths Using MPLS LSP Multipath Tree Trace Example 82
      Using DSCP to Request a Specific Class of Service in an Echo Reply Example 83
      Controlling How a Responding Router Replies to an MPLS Echo Request Example 84
```

```
Specifying the Output Interface for Echo Packets Leaving a Router for MPLS LSP
      Multipath Tree Trace Example 84
      Setting the Pace of MPLS Echo Request Packet Transmission for MPLS LSP Multipath
      Tree Trace: Example 85
      Enabling to Detect LSP Breakages Caused by an Interface That Lacks an MPLS
      Configuration Example 86
      Requesting That a Transit Router Validate the Target FEC Stack for MPLS LSP Multipath
      Tree Trace Example 87
      Setting the Number of Timeout Attempts for MPLS LSP Multipath Tree Trace Example 88
   Additional References for MPLS LSP Multipath Tree Trace 89
   Related Documents 89
      Standards 89
      MIBs 90
      RFCs 90
      Technical Assistance 90
   Feature Information for MPLS EM-MPLS LSP Multipath Tree Trace 91
   Glossary 93
Pseudowire Emulation Edge-to-Edge MIBs 95
   Finding Feature Information 95
   Prerequisites for Pseudowire Emulation Edge-to-Edge MIBs 95
   Restrictions for Pseudowire Emulation Edge-to-Edge MIBs 96
   Information About Pseudowire Emulation Edge-to-Edge MIBs 96
      The Function of a Pseudowire in the PWE3 MIBs 97
      PWE3 MIBs Architecture 97
      Components and Functions of the PWE3 MIBs 98
      Tables in the PW-MIB 99
         cpwVcTable 99
         cpwVcPerfTotalTable 105
         cpwVcIdMappingTable 105
         cpwVcPeerMappingTable 105
      Tables in the PW-MPLS-MIB 106
         cpwVcMplsTable 107
         cpwVcMplsOutboundTable 108
         cpwVcMplsInboundTable 109
         cpwVcMplsNonTeMappingTable 110
         cpwVcMplsTeMappingTable 110
```

```
Tables in the PW-ENET-MIB 110
         cpwVcEnetTable 111
      Tables in the PW-FR-MIB 112
         cpwVcFrTable 112
      Tables in the PW-ATM-MIB 113
         cpwVcAtmTable 113
         cpwVcAtmPerfTable 114
      Objects in the PWE3 MIBs 115
      Scalar Objects in the PWE3 MIBs 115
      Notifications in the PWE3 MIBs 116
      Benefits of the PWE3 MIBs 116
   How to Configure Pseudowire Emulation Edge-to-Edge MIBs 116
      Enabling the SNMP Agent for the PWE3 MIBs 116
      Configuring the Pseudowire Class 118
         What to Do Next 119
   Configuration Examples for the Pseudowire Emulation Edge-to-Edge MIBs 119
      PWE3 MIBs Example 120
   Additional References 120
   Feature Information for Pseudowire Emulation Edge-to-Edge MIBs for Ethernet Frame Relay and
   ATM Services 122
   Glossary 125
MPLS Enhancements to Interfaces MIB 127
   Finding Feature Information 127
   Prerequisites for MPLS Enhancements to Interfaces MIB 127
   Restrictions for MPLS Enhancements to Interfaces MIB 127
   Information About MPLS Enhancements to Interfaces MIB 128
      Feature Design of the MPLS Enhancements to Interfaces MIB 129
         ifStackTable Objects 129
         ifRcvAddressTable Objects 130
      Interfaces MIB Scalar Objects 131
      Stacking Relationships for MPLS Layer Interfaces 131
      Stacking Relationships for Traffic Engineering Tunnels 132
      MPLS Label Switching Router MIB Enhancements 133
      Benefits of the MPLS Enhancements to Interfaces MIB 134
   How to Configure MPLS Enhancements to Interfaces MIB 134
```

```
Enabling the SNMP Agent 134
   Configuration Examples for the MPLS Enhancements to Interfaces MIB 136
      MPLS Enhancements to Interfaces MIB: Examples 136
   Additional References 136
   Feature Information for MPLS Enhancements to Interfaces MIB 137
   Glossary 138
MPLS Label Distribution Protocol MIB Version 8 Upgrade 141
  Finding Feature Information 141
  Prerequisites for MPLS LDP MIB Version 8 Upgrade 141
   Restrictions for MPLS LDP MIB Version 8 Upgrade 141
   Information About MPLS LDP MIB Version 8 Upgrade 142
      Feature Design of MPLS LDP MIB Version 8 Upgrade 142
      Enhancements in Version 8 of the MPLS LDP MIB 144
      Benefits of MPLS LDP MIB Version 8 Upgrade 144
      Description of MPLS LDP MIB Elements for MPLS LDP MIB Version 8 Upgrade 144
         LDP Entities 145
         LDP Sessions and Peers 146
         LDP Hello Adjacencies 147
      Events Generating MPLS LDP MIB Notifications in MPLS LDP MIB Version 8 Upgrade 148
      MIB Tables in MPLS LDP MIB Version 8 Upgrade 149
         mplsLdpEntityTable 150
         mplsLdpEntityConfGenLRTable 153
         mplsLdpEntityAtmParmsTable 154
         mplsLdpEntityConfAtmLRTable 155
         mplsLdpEntityStatsTable 155
         mplsLdpPeerTable 157
         mplsLdpHelloAdjacencyTable 157
         mplsLdpSessionTable 158
         mplsLdpAtmSesTable 159
         mplsLdpSesStatsTable 159
         VPN Contexts in MPLS LDP MIB Version 8 Upgrade 160
         SNMP Context 160
         VPN Aware LDP MIB Sessions 160
         VPN Aware LDP MIB Notifications 162
  How to Configure MPLS LDP MIB Version 8 Upgrade 164
```

```
Enabling the SNMP Agent 164
      Enabling Distributed Cisco Express Forwarding 166
      Enabling MPLS Globally 167
      Enabling LDP Globally 168
      Enabling MPLS on an Interface 168
      Enabling LDP on an Interface 169
      Configuring a VPN Aware LDP MIB 170
         Configuring SNMP Support for a VPN 171
         Configuring an SNMP Context for a VPN 172
            SNMP Context 172
            VPN Route Distinguishers 172
         Associating an SNMP VPN Context with SNMPv1 or SNMPv2 174
      Verifying MPLS LDP MIB Version 8 Upgrade 176
   Configuration Examples for MPLS LDP MIB Version 8 Upgrade 177
      MPLS LDP MIB Version 8 Upgrade Examples 177
      Configuring a VPN Aware SNMP Context for SNMPv1 or SNMPv2 Example 177
   Additional References 178
   Feature Information for MPLS LDP MIB Version 8 Upgrade 179
   Glossary 181
MPLS EM—MPLS LDP MIB—RFC 3815 185
  Finding Feature Information 185
   Prerequisites for MPLS EM—MPLS LDP MIB - RFC 3815 185
   Restrictions for MPLS EM—MPLS LDP MIB - RFC 3815 186
   Information About MPLS EM—MPLS LDP MIB - RFC 3815 186
      Label Distribution Protocol Overview 187
      MPLS EM—MPLS LDP MIB - RFC 3815 Feature Design and Use 187
      Benefits of Using the MPLS EM—MPLS LDP MIB - RFC 3815 Feature 188
      MPLS LDP MIB (RFC 3815) Elements 189
         LDP Entities 189
         LDP Sessions and Peers 191
         LDP Hello Adjacencies 192
      Events Generating MPLS LDP MIB Notifications 193
      Scalar Objects in the MPLS LDP MIB Modules (RFC 3815) 194
      MIB Tables in the MPLS-LDP-STD-MIB Module (RFC 3815) 195
         MPLS LDP Entity Table (mplsLdpEntityTable) Objects and Descriptions 196
```

```
MPLS LDP Entity Statistics Table (mplsLdpEntityStatsTable) Objects and Descriptions 198
      MPLS LDP Peer Table (mplsLdpPeerTable) Objects and Descriptions 199
      MPLS LDP Session Table (mplsLdpSessionTable) Objects and Descriptions 200
      MPLS LDP Session Statistics Table (mplsLdpSessionStatsTable) Objects and
      Descriptions 201
      MPLS LDP Hello Adjacency Table (mplsLdpHelloAdjacencyTable) Objects and
      Descriptions 202
   MIB Tables in the MPLS-LDP-ATM-STD-MIB Module (RFC 3815) 203
      MPLS LDP Entity ATM Table (mplsLdpEntityAtmTable) Objects and Descriptions 203
      MPLS LDP Entity ATM Label Range Table (mplsLdpEntityAtmLRTable) Objects and
      Descriptions 204
      MPLS LDP ATM Session Table (mplsLdpAtmSessionTable) Objects and Descriptions 205
   MIB Table in the MPLS-LDP-GENERIC-STD-MIB Module (RFC 3815) 205
      MPLS LDP Entity Generic Label Range Table (mplsLdpEntityGenericLRTable)
      Objects and Descriptions 206
   VPN Contexts in the MPLS LDP MIB 206
      SNMP Contexts 207
      VPN Aware LDP MIB Sessions 207
      VPN Aware LDP MIB Notifications 208
   Differences Between the MPLS-LDP-STD-MIB and the MPLS-LDP-MIB 209
      MPLS-LDP-MIB and MPLS-LDP-STD-MIB Scalar Object Differences 210
      MPLS-LDP-MIB and MPLS-LDP-STD-MIB Table Object Differences 210
         MPLS LDP Entity Table (mplsLdpEntityTable) Differences 211
         MPLS LDP Entity Statistics Table (mplsLdpEntityStatsTable) Differences 212
         MPLS LDP Peer Table (mplsLdpPeerTable) Differences 213
         MPLS LDP Session Table (mplsLdpSessionTable) Differences 213
         MPLS LDP Hello Adjacency Table (mplsLdpHelloAdjacencyTable) Differences 214
      MPLS-LDP-MIB and MPLS-LDP-STD-MIB Notification Changes 214
  Differences Between the MPLS-LDP-MIB and the MPLS-LDP-ATM-STD-MIB (RFC
   3815) 215
   Differences Between the MPLS-LDP-MIB and the MPLS-LDP-GENERIC-STD-MIB
   (RFC 3815) 216
How to Configure SNMP for MPLS EM—MPLS LDP MIB - RFC 3815 216
   Configuring Access to an SNMP Agent on a Host NMS Workstation 217
      Examples 218
   Configuring the Router to Send SNMP Notifications to a Host for Monitoring LDP 219
```

```
Configuring a VPN-Aware LDP MIB 221
         Configuring SNMP Support for a VPN 221
            What to Do Next 223
         Configuring an SNMP Context for a VPN 223
            SNMP Context 223
            VPN Route Distinguishers 223
            What to Do Next 225
         Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2 225
            SNMPv1 or SNMPv2 Security 225
   Configuration Examples for MPLS EM—MPLS LDP MIB - RFC 3815 230
      Configuring Access to an SNMP Agent on a Host NMS Workstation Example 230
      Configuring the Router to Send SNMP Notifications to a Host for Monitoring LDP Example 231
      Configuring a VPN-Aware LDP MIB Example 231
         Configuring SNMP Support for a VPN Example 231
         Configuring an SNMP Context for a VPN Example 231
         Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2 Example 232
   Additional References 232
   Feature Information for MPLS EM—MPLS LDP MIB - RFC 3815 234
   Glossary 236
MPLS Label Switching Router MIB 239
   Finding Feature Information 240
   Information About MPLS Label Switching Router MIB 240
      MPLS-LSR-MIB Elements 241
         MPLS-LSR-MIB Tables 241
         Information from Scalar Objects 245
      Linking Table Elements 245
      Interface Configuration Table and Interface MIB Links 246
      Using the MPLS-LSR-MIB 248
         MPLS-LSR-MIB Structure 248
         CLI Commands and the MPLS-LSR-MIB 249
            CLI Command Output 250
            MPLS-LSR-MIB Output 250
      Benefits 250
   How to Configure the MPLS LSR MIB 251
      Prerequisites 251
```

```
Enabling the SNMP Agent 251
      Verifying That the SNMP Agent Has Been Enabled 252
   Configuration Examples for the MPLS LSR MIB 253
   Additional References 254
   Command Reference 255
   Glossary 255
MPLS EM—MPLS LSR MIB - RFC 3813 259
  Finding Feature Information 259
   Prerequisites for MPLS EM—MPLS LSR MIB - RFC 3813 260
   Restrictions for MPLS EM—MPLS LSR MIB - RFC 3813 260
   Information About MPLS EM—MPLS LSR MIB - RFC 3813 260
      MPLS-LSR-STD-MIB Benefits 260
     Label Switching Information Managed by the MPLS-LSR-STD-MIB 261
      MPLS-LSR-STD-MIB Elements 262
      Brief Description of MPLS-LSR-STD-MIB Tables 262
     MPLS LSR Information Available Through the MPLS-LSR-STD-MIB 263
         MPLS Interface Table (mplsInterfaceTable) 263
         MPLS Interface Performance Table (mplsInterfacePerfTable) 264
         MPLS In-Segment Table (mplsInSegmentTable) 264
         MPLS In-Segment Performance Table (mplsInSegmentPerfTable) 265
         MPLS Out-Segment Table (mplsOutSegmentTable) 265
         MPLS Out-Segment Performance Table (mplsOutSegmentPerfTable) 266
         MPLS Cross-Connect Table (mplsXCTable) 267
         MPLS Label Stack Table (mplsLabelStackTable) 267
         MPLS In-Segment Map Table (mplsInSegmentMapTable) 268
      Information from MPLS-LSR-STD-MIB Scalar Objects 268
      MPLS-LSR-STD-MIB Indexing—Linking Table Elements 269
      Interface Configuration Table and Interface MIB Links 270
      MPLS-LSR-STD-MIB Structure 271
      CLI Commands and the MPLS-LSR-MIB 272
      VPN Aware LSR MIB 274
         SNMP Contexts 274
      Major Differences Between the MPLS-LSR-STD-MIB and the MPLS-LSR-MIB 275
         MPLS-LSR-MIB and the MPLS-LSR-STD-MIB Scalar Object Differences 275
         MPLS-LSR-MIB and the MPLS-LSR-STD-MIB Table Object Differences 276
```

```
MPLS-LSR-MIB and MPLS-LSR-STD-MIB Notification Differences 280
         MPLS-LSR-MIB and MPLS-LSR-STD-MIB Indexing Differences 280
   How to Configure SNMP for the MPLS EM—MPLS LSR MIB - RFC 3813 281
      Prerequisites 281
      Enabling the SNMP Agent 282
      Verifying That the SNMP Agent Is Enabled 283
      Configuring a VPN-Aware LSR MIB 284
         Configuring SNMP Support for a VPN 285
            What to Do Next 286
         Configuring an SNMP Context for a VPN 286
            SNMP Context 286
            VPN Route Distinguishers 286
         What to Do Next 288
         Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2 288
            SNMPv1 or SNMPv2 Security 288
   Configuration Examples for the MPLS EM—MPLS LSR MIB - RFC 3813 293
      Enabling the SNMP Agent Examples 293
      Configuring a VPN-Aware LSR MIB Example 293
         Configuring SNMP Support for a VPN Example 293
         Configuring an SNMP Context for a VPN Example 294
         Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2 Example 294
   Additional References 294
   Feature Information for MPLS EM—MPLS LSR MIB - RFC 3813 296
   Glossary 298
MPLS Traffic Engineering MIB 301
   Finding Feature Information 301
   Restrictions for the MPLS Traffic Engineering MIB 301
   Information About the MPLS Traffic Engineering MIB 302
      MPLS Traffic Engineering MIB Cisco Implementation 302
         MPLS Traffic Engineering Overview 302
      Capabilities Supported by the MPLS Traffic Engineering MIB 302
      Notification Generation Events 303
      Notification Implementation 303
      Benefits of the MPLS Traffic Engineering MIB 304
      MPLS Traffic Engineering MIB Layer Structure 304
```

```
Features and Technologies Related to MPLS Traffic Engineering MIB 304
      Supported Objects in the MPLS Traffic Engineering MIB 304
      CLI Access to MPLS Traffic Engineering MIB Information 309
          Retrieving Information from the MPLS Traffic Engineering MIB 309
   How to Configure the MPLS Traffic Engineering MIB 310
      Enabling the SNMP Agent to Help Manage Various MPLS TE Tunnel Characteristics of
      Tunnels on the Local Router 310
      Verifying the Status of the SNMP Agent 311
         Examples 312
   Configuration Examples for the MPLS Traffic Engineering MIB 312
      Example Enabling the SNMP Agent to Help Manage MPLS TE Characteristics of Tunnels
      on the Local Router 313
   Additional References 313
   Feature Information for the MPLS Traffic Engineering MIB 314
   Glossary 315
MPLS Traffic Engineering--Fast Reroute MIB 319
   Finding Feature Information 319
   Prerequisites for the MPLS Traffic Engineering--Fast Reroute MIB 320
   Restrictions for the MPLS Traffic Engineering--Fast Reroute MIB 320
   Information About the MPLS Traffic Engineering--Fast Reroute MIB 320
      Feature Design of the MPLS Traffic Engineering--Fast Reroute MIB 320
      Functional Structure of the MPLS Traffic Engineering--Fast Reroute MIB 321
      System Flow of SNMP Protocol Requests and Response Messages 321
      FRR MIB Scalar Objects 321
      FRR MIB Notification Generation Events 323
      FRR MIB Notification Specification 323
      FRR MIB Notification Monitoring 323
      MIB Tables in the MPLS Traffic Engineering--Fast Reroute MIB 323
         cmplsFrrConstTable 324
         cmplsFrrLogTable 324
          cmplsFrrFacRouteDBTable 325
   How to Configure the MPLS Traffic Engineering--Fast Reroute MIB 326
      Enabling the SNMP Agent for FRR MIB Notifications 327
      Enabling Cisco Express Forwarding 328
      Enabling TE Tunnels 329
```

```
Enabling MPLS FRR on Each TE Tunnel 330
      Enabling a Backup Tunnel on an Interface 331
   Configuration Examples for the MPLS Traffic Engineering--Fast Reroute MIB 332
      Enabling an SNMP Agent on a Host NMS Example 332
      Enabling Cisco Express Forwarding Example 332
      Enabling TE Tunnels Example 333
      Enabling MPLS FRR on Each TE Tunnel Example 333
      Enabling a Backup Tunnel on an Interface Example 333
   Additional References 333
   Feature Information for MPLS Traffic Engineering--Fast Reroute MIB 334
   Glossary 335
MPLS EM - TE MIB RFC 3812 337
   Finding Feature Information 337
   Restrictions for the MPLS EM - TE MIB RFC 3812 337
   Information About the MPLS EM - TE MIB RFC 3812 338
      MPLS Traffic Engineering MIB Cisco Implementation 338
         MPLS Traffic Engineering Overview 338
      Capabilities Supported by the MPLS EM TE MIB RFC 3812 338
      Notification Generation Events 339
      Notification Implementation 339
      Benefits of MPLS EM - TE MIB RFC 3812 340
      MPLS Traffic Engineering MIB Layer Structure 340
      Features and Technologies Related to MPLS EM - TE MIB RFC 3812 340
      Supported Objects in the MPLS EM - TE MIB RFC 3812 340
      CLI Access to MPLS EM - TE MIB RFC 3812 Information 345
         Retrieving Information from the MPLS EM - TE MIB RFC 3812 345
   How to Configure the MPLS EM - TE MIB RFC 3812 346
      Enabling the SNMP Agent to Manage Various MPLS TE Tunnel Chars on the Local Router 346
      Verifying the Status of the SNMP Agent 347
         Examples 348
   Configuration Examples for the MPLS EM - TE MIB RFC 3812 348
      Enabling the SNMP Agent to Manage Various MPLS TE Tunnel Chars on the Local Router
      Example 348
   Additional References 349
   Feature Information for the MPLS EM - TE MIB RFC 3812 350
```

Glossary 351 **MPLS VPN--MIB Support 355** Finding Feature Information 355 Prerequisites for MPLS VPN--MIB Support 355 Restrictions for MPLS VPN--MIB Support **356** Information About MPLS VPN--MIB Support 356 MPLS VPN Overview 356 MPLS VPN MIB Overview 356 MPLS VPN MIB and the IETF 357 Capabilities Supported by PPVPN-MPLS-VPN MIB 357 Functional Structure of the PPVPN-MPLS-VPN MIB 357 Supported Objects in PPVPN-MPLS-VPN MIB 358 Scalar Objects 359 MIB Tables 359 mplsVpnVrfTable 359 mplsVpnInterfaceConfTable 362 mplsVpnVrfRouteTargetTable 363 mplsVpnVrfBgpNbrAddrTable 365 mplsVpnVrfSecTable 366 mplsVpnVrfPerfTable 366 mplsVpnVrfRouteTable 367 PPVPN-MPLS-VPN MIB Notifications 370 PPVPN-MPLS-VPN MIB Notification Events 370 CISCO-IETF-PPVPN-MPLS-VPN MIB Notification Events 371 Notification Specification 371 Monitoring the PPVPN-MPLS-VPN MIB Notifications 372 Unsupported Objects in PPVPN-MPLS-VPN MIB 372 How to Configure MPLS VPN--MIB Support 373 Configuring the SNMP Community 373 Configuring the Router to Send SNMP Traps 374 Configuring Threshold Values for MPLS VPN--SNMP Notifications 377 Configuration Examples for MPLS VPN--MIB Support 378 Example Configuring the SNMP Community 379 Example Configuring the Router to Send SNMP Traps 379

Example Configuring Threshold Values for MPLS VPN--SNMP Notifications 379

```
Additional References 379
   Feature Information for MPLS VPN--MIB Support 381
   Glossary 382
MPLS EM—MPLS VPN MIB RFC 4382 Upgrade 387
   Finding Feature Information 387
   Prerequisites for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade 387
   Restrictions for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade 388
   Information About MPLS EM—MPLS VPN MIB RFC 4382 Upgrade 388
      MPLS Layer 3 VPN Overview 388
      MPLS-L3VPN-STD-MIB Benefits 388
      Capabilities Supported by the MPLS-L3VPN-STD-MIB 389
      Supported Objects in the MPLS-L3VPN-STD-MIB 389
      MPLS-L3VPN-STD-MIB Scalar Objects 390
      MPLS-L3VPN-STD-MIB MIB Tables 391
         VRFConfigurationTable(mplsL3VpnVrfTable) 392
         VPN Interface Configuration Table (mplsL3VpnIfConfTable) 396
         VRF Route Target Table (mplsL3VpnVrfRTTable) 397
         VRFSecurityTable(mplsL3VpnVrfSecTable) 399
         VRFPerformanceTable(mplsL3VpnVrfPerfTable) 400
         VRF Routing Table (mplsL3VpnVrfRteTable) 401
      MPLS-L3VPN-STD-MIB Notification Events 405
         SNMP Notification Specification for the MPLS-L3VPN-STD-MIB 407
         MPLS-L3VPN-STD-MIB Notifications Display on Network Management Station 408
      MPLS-L3VPN-STD-MIB Support for IPv6 VPNs over MPLS 408
         MPLS-L3VPN-STD-MIB Tables and Objects Support for IPv6 VPNs over MPLS 408
         MPLS-L3VPN-STD-MIB Notifications Support for IPv6 VPNs over MPLS 410
         Information About Setting Maximum Routes for IPv6 Address-Family VRF Route Limits 411
      MPLS-L3VPN-STD-MIB Data Security 411
      Major Differences Between the MPLS-VPN-MIB and the MPLS-L3VPN-STD-MIB 412
         Global Name Changes for the MPLS-L3VPN-STD-MIB Objects 413
         MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Scalar Object Differences 413
         MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Table Object Differences 413
            VRF Configuration Table (mplsL3VpnVrfTable) 413
            VPN Interface Configuration Table (mplsL3VpnIfConfTable) 414
            VRF Route Target Table (mplsL3VpnVrfRTTable) 414
```

VRF Security Table (mplsL3VpnVrfSecTable) 415
VRF Performance Table (mplsL3VpnVrfPerfTable) 415
VRF Routing Table (mplsL3VpnVrfRteTable) 415
Tables Not Supported in the MPLS-L3VPN-STD-MIB 417
MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Notification Differences 417
How to Configure MPLS EM—MPLS VPN MIB RFC 4382 Upgrade 417
Configuring the SNMP Community 418
Configuring the Router to Send MPLS Layer 3 VPN SNMP Notifications to a Host 419
Configuring Threshold Values for MPLS Layer 3 VPN SNMP Notifications 422
Configuring SNMP Controls for MPLS VPN Notification Thresholds 424
Configuration Examples for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade 426
Example Configuring the SNMP Community 426
Example Configuring the Router to Send MPLS Layer 3 VPN SNMP Traps 426
Example Configuring Threshold Values for MPLS Layer 3 VPN SNMP Notifications 427
Example Configuring SMNP Controls for MPLS Layer 3 VPN Notification Thresholds 427
Additional References 427
Feature Information for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade 429
Glossary 431

MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV

The MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV feature helps service providers monitor label switched paths (LSPs) and quickly isolate Multiprotocol Label Switching (MPLS) forwarding problems.

The feature provides the following capabilities:

- MPLS LSP ping to test LSP connectivity for IPv4 Label Distribution Protocol (LDP) prefixes, Resource Reservation Protocol (RSVP) traffic engineering (TE), and Any Transport over MPLS (AToM) forwarding equivalence classes (FECs).
- MPLS LSP traceroute to trace the LSPs for IPv4 LDP prefixes and RSVP TE prefixes.
- Finding Feature Information, page 1
- Prerequisites for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV, page 2
- Restrictions for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV, page 2
- Information About MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV, page 3
- How to Configure MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV, page 14
- Configuration Examples for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV, page
 32
- Additional References, page 56
- Feature Information for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV, page
 57
- Glossary, page 59

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV

Before you use the MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV feature, you should:

- Determine the baseline behavior of your MPLS network. For example:
 - Expected MPLS experimental (EXP) treatment.
 - Expected maximum size packet or maximum transmission unit (MTU) of the LSP.
 - The topology, expected label switched path, and number of links in the LSP. Trace the paths of the label switched packets including the paths for load balancing.
- Understand how to use MPLS and MPLS applications. You need to:
 - Know how LDP is configured.
 - Understand AToM concepts.
- Understand label switching, forwarding, and load balancing.

Before using the **ping mpls** or **trace mpls** command, you must ensure that the router is configured to encode and decode MPLS echo packets in a format that all receiving routers in the network can understand.

Restrictions for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV

- You cannot use MPLS LSP traceroute to trace the path taken by AToM packets. MPLS LSP traceroute
 is not supported for AToM. (MPLS LSP ping is supported for AToM.) However, you can use MPLS
 LSP traceroute to troubleshoot the Interior Gateway Protocol (IGP) LSP that is used by AToM.
- You cannot use MPLS LSP ping to validate or trace MPLS Virtual Private Networks (VPNs).
- You cannot use MPLS LSP traceroute to troubleshoot LSPs that employ time-to-live (TTL) hiding.
- MPLS supports per-destination and per-packet (round robin) load balancing. If per-packet load
 balancing is in effect, you should not use MPLS LSP traceroute because LSP traceroute at a transit
 router consistency checks the information supplied in the previous echo response from the directly
 connected upstream router. When round robin is employed, the path that an echo request packet takes
 cannot be controlled in a way that allows a packet to be directed to TTL expire at a given router.
 Without that ability, the consistency checking may fail during an LSP traceroute. A consistency check
 failure return code may be returned.
- A platform must support LSP ping and traceroute in order to respond to an MPLS echo request packet.
- Unless the MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV feature is enabled along
 the entire path, you cannot get a reply if the request fails along the path at any node.
- There are certain limitations when a mixture of draft versions are implemented within a network. The version of the draft must be compatible with Cisco's implementation. Due to the way the LSP Ping draft was written, earlier versions may not be compatible with later versions because of changes to type, length, values (TLVs) formats without sufficient versioning information. Cisco attempts to compensate for this in its implementations by allowing the sending and responding routers to be configured to encode and decode echo packets assuming a certain version.
- If you want to use MPLS LSP traceroute, the network should not use TTL hiding.

Information About MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV

- MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV Functionality, page 3
- MPLS LSP Ping Operation, page 3
- MPLS LSP Traceroute Operation, page 5
- MPLS Network Management with MPLS LSP Ping and MPLS LSP Traceroute, page 7
- Any Transport over MPLS Virtual Circuit Connection, page 8
- IP Does Not Forward MPLS Echo Request Packets, page 10
- Compatibility Between the MPLS LSP and Ping or Traceroute Implementations, page 11
- DSCP Option to Request a Specific Class of Service in an Echo Reply, page 12
- Reply Modes for an MPLS LSP Ping and LSP Traceroute Echo Request Response, page 12
- LSP Breaks, page 13

MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV Functionality

Internet Control Message Protocol (ICMP) ping and traceroute are often used to help diagnose the root cause when a forwarding failure occurs. However, they are not well suited for identifying LSP failures because an ICMP packet can be forwarded via IP to the destination when an LSP breakage occurs.

The MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV feature is well suited for identifying LSP breakages for the following reasons:

- An MPLS echo request packet cannot be forwarded via IP because IP TTL is set to 1 and the IP
 destination address field is set to a 127/8 address.
- The FEC being checked is not stored in the IP destination address field (as is the case of ICMP).

MPLS echo request and reply packets test LSPs. There are two methods by which a downstream router can receive packets:

- The Cisco implementation of MPLS echo request and echo reply that was previously based on the Internet Engineering Task Force (IETF) Internet Draft Detecting MPLS Data Plane Failures (draft-ietf-mpls-lsp-ping-03.txt).
- Features described in this document that are based on the IETF RFC 4379 Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures:
 - Echo request output interface control
 - Echo request traffic pacing
 - Echo request end-of-stack explicit-null label shimming
 - Echo request request-dsmap capability
 - Request-fec checking
 - Depth limit reporting

MPLS LSP Ping Operation

MPLS LSP ping uses MPLS echo request and reply packets to validate an LSP. You can use MPLS LSP ping to validate IPv4 LDP, AToM, and IPv4 RSVP FECs by using appropriate keywords and arguments with the **ping mpls**command.

The MPLS echo request packet is sent to a target router through the use of the appropriate label stack associated with the LSP to be validated. Use of the label stack causes the packet to be forwarded over the LSP itself.

The destination IP address of the MPLS echo request packet is different from the address used to select the label stack. The destination IP address is defined as a 127.x.y.z/8 address. The 127.x.y.z/8 address prevents the IP packet from being IP switched to its destination if the LSP is broken.

An MPLS echo reply is sent in response to an MPLS echo request. The reply is sent as an IP packet and it is forwarded using IP, MPLS, or a combination of both types of switching. The source address of the MPLS echo reply packet is an address obtained from the router generating the echo reply. The destination address is the source address of the router that originated the MPLS echo request packet.

The MPLS echo reply destination port is set to the echo request source port.

The figure below shows MPLS LSP ping echo request and echo reply paths.

LSP headend
LSR1
LSR2
LSR3
LSR4
LSR4
LSR5
LSR6
LSR6
LSR6
Originating
router

LSR10
LSR9
LSR8
LSR7
MPLS echo reply
Target router

Figure 1 MPLS LSP Ping Echo Request and Echo Reply Paths

If you initiate an MPLS LSP ping request at LSR1 to a FEC at LSR6, you get the results shown in the table below.

Table 1 MPLS LSP Ping Example

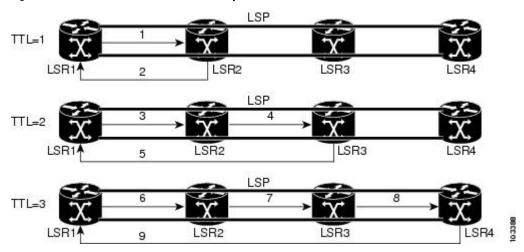
Step	Router	Action
1.	LSR1	Initiates an MPLS LSP ping request for an FEC at the target router LSR6 and sends an MPLS echo request to LSR2.
2.	LSR2	Receives the MPLS echo request packet and forwards it through transit routers LSR3 and LSR4 to the penultimate router LSR5.
3.	LSR5	Receives the MPLS echo request, pops the MPLS label, and forwards the packet to LSR6 as an IP packet.

Step	Router	Action
4.	LSR6	Receives the IP packet, processes the MPLS echo request, and sends an MPLS echo reply to LSR1 through an alternate route.
5.	LSR7 to LSR10	Receives the MPLS echo reply and forwards it back toward LSR1, the originating router.
6.	LSR1	Receives the MPLS echo reply in response to its MPLS echo request.

MPLS LSP Traceroute Operation

MPLS LSP traceroute uses MPLS echo request and reply packets to validate an LSP. You can use MPLS LSP traceroute to validate IPv4 LDP and IPv4 RSVP FECs by using appropriate keywords and arguments with the **trace mpls** command.

The MPLS LSP Traceroute feature uses TTL settings to force expiration of the TTL along an LSP. MPLS LSP Traceroute incrementally increases the TTL value in its MPLS echo requests (TTL = 1, 2, 3, 4) to discover the downstream mapping of each successive hop. The success of the LSP traceroute depends on the transit router processing the MPLS echo request when it receives a labeled packet with a TTL = 1. On Cisco routers, when the TTL expires, the packet is sent to the Route Processor (RP) for processing. The transit router returns an MPLS echo reply containing information about the transit hop in response to the TTL-expired MPLS packet.


The MPLS echo reply destination port is set to the echo request source port.

When a router traces an IPV4 FEC that goes over a traffic engineering tunnel, intermediate routers may return U (unreachable) if LDP is not running in those intermediate routers.

The figure below shows an MPLS LSP traceroute example with an LSP from LSR1 to LSR4.

Figure 2 MPLS LSP Traceroute Example

If you enter an LSP traceroute to an FEC at LSR4 from LSR1, you get the results shown in the table below.

Table 2 MPLS LSP Traceroute Example

Step	Router	MPLS Packet Type and Description	Router Action (Receive or Send)
1.	LSR1	MPLS echo requestWith a target FEC pointing to LSR4 and to a downstream mapping	 Sets the TTL of the label stack to 1 Sends the request to LSR2
2.	LSR2	MPLS echo reply	 Receives the packet with a TTL = 1 Processes the User Datagram Protocol (UDP) packet as an MPLS echo request Finds a downstream mapping and replies to LSR1 with its own downstream mapping, based on the incoming label
3.	LSR1	MPLS echo requestWith the same target FEC and the downstream mapping received in the echo reply from LSR2	 Sets the TTL of the label stack to 2 Sends the request to LSR2
4.	LSR2	MPLS echo request	 Receives the packet with a TTL = 2 Decrements the TTL Forwards the echo request to LSR3
5.	LSR3	MPLS reply packet	 Receives the packet with a TTL = 1 Processes the UDP packet as an MPLS echo request Finds a downstream mapping and replies to LSR1 with its own downstream mapping based on the incoming label

Step	Router	MPLS Packet Type and Description	Router Action (Receive or Send)
6.	LSR1	MPLS echo requestWith the same target FEC and the downstream mapping received in the echo reply from LSR3	 Sets the TTL of the packet to 3 Sends the request to LSR2
7.	LSR2	MPLS echo request	 Receives the packet with a TTL = 3 Decrements the TTL Forwards the echo request to LSR3
8.	LSR3	MPLS echo request	 Receives the packet with a TTL = 2 Decrements the TTL Forwards the echo request to LSR4
9.	LSR4	MPLS echo reply	 Receives the packet with a TTL = 1 Processes the UDP packet as an MPLS echo request Finds a downstream mapping and also finds that the router is the egress router for the target FEC Replies to LSR1

MPLS Network Management with MPLS LSP Ping and MPLS LSP Traceroute

To manage an MPLS network, you must have the ability to monitor LSPs and quickly isolate MPLS forwarding problems. You need ways to characterize the liveliness of an LSP and reliably detect when an LSP fails to deliver user traffic.

You can use MPLS LSP ping to verify the LSP that is used to transport packets destined for IPv4 LDP prefixes, and AToM PW FECs. You can use MPLS LSP traceroute to trace LSPs that are used to carry packets destined for IPv4 LDP prefixes.

An MPLS echo request is sent through an LSP to validate it. A TTL expiration or LSP breakage causes the transit router to process the echo request before it gets to the intended destination. The router returns an MPLS echo reply that contains an explanatory reply code to the originator of the echo request.

The successful echo request is processed at the egress of the LSP. The echo reply is sent via an IP path, an MPLS path, or a combination of both back to the originator of the echo request.

Any Transport over MPLS Virtual Circuit Connection

ATOM Virtual Circuit Connection Verification (VCCV) allows you to send control packets inband of an ATOM PW from the originating provider edge (PE) router. The transmission is intercepted at the destination PE router, instead of being forwarded to the customer edge (CE) router. This capability allows you to use MPLS LSP ping to test the PW section of ATOM virtual circuits (VCs).

LSP ping allows verification of AToM VC setup by FEC 128 or FEC 129. FEC 128-based AToM VCs can be set up by using LDP for signaling or by using a static pseudowire configuration without using any signaling component on the two endpoints. Cisco software does not distinguish between FEC 128 and FEC 129 static pseudowires while issuing MPLS ping; the same commands are used.

AToM VCCV consists of the following:

- A signaled component in which the AToM VCCV capabilities are advertised during VC label signaling
- A switching component that causes the AToM VC payload to be treated as a control packet
- AToM VCCV Signaling, page 8
- Selection of AToM VCCV Switching Types, page 8
- Information Provided by the Router Processing LSP Ping or LSP Traceroute, page 9

AToM VCCV Signaling

One of the steps involved in AToM VC setup is the signaling or communication of VC labels and AToM VCCV capabilities between AToM VC endpoints. To communicate the AToM VCCV disposition capabilities of each endpoint, the router uses an optional parameter, defined in the IETF Internet Draft *Pseudo Wire (PW) Virtual Circuit Connection Verification (VCCV)* (draft-ieft-pwe3-vccv-01).

The AToM VCCV disposition capabilities are categorized as follows:

- Applications--MPLS LSP ping and ICMP ping are applications that AToM VCCV supports to send packets inband of an AToM PW for control purposes.
- Switching modes--Type 1 and Type 2 are switching modes that AToM VCCV uses for differentiating between control and data traffic.

The table below describes AToM VCCV Type 1 and Type 2 switching modes.

Table 3 Type 1 and Type 2 AToM VCCV Switching Modes

Switching Mode	Description
Type 1	Uses a Protocol ID (PID) field in the AToM control word to identify an AToM VCCV packet
Type 2	Uses an MPLS Router Alert Label above the VC label to identify an AToM VCCV packet

Selection of AToM VCCV Switching Types

Cisco routers always use Type 1 switching, if available, when they send MPLS LSP ping packets over an AToM VC control channel. Type 2 switching accommodates those VC types and implementations that do not support or interpret the AToM control word.

The table below shows the AToM VCCV switching mode advertised and the switching mode selected by the AToM VC.

Table 4 AToM VCCV Switching Mode Advertised and Selected by AToM VC

Type Advertised	Type Selected
AToM VCCV not supported	
Type 1 AToM VCCV switching	Type 1 AToM VCCV switching
Type 2 AToM VCCV switching	Type 2 AToM VCCV switching
Type 1 and Type 2 AToM VCCV switching	Type 1 AToM VCCV switching

An AToM VC advertises its AToM VCCV disposition capabilities in both directions: that is, from the originating router (PE1) to the destination router (PE2), and from PE2 to PE1.

In some instances, AToM VCs might use different switching types if the two endpoints have different AToM VCCV capabilities. If PE1 supports Type 1 and Type 2 AToM VCCV switching and PE2 supports only Type 2 AToM VCCV switching, there are two consequences:

- LSP ping packets sent from PE1 to PE2 are encapsulated with Type 2 switching.
- LSP ping packets sent from PE2 to PE1 use Type 1 switching.

You can determine the AToM VCCV capabilities advertised to and received from the peer by entering the **show mpls l2transport binding** command at the PE router.

Information Provided by the Router Processing LSP Ping or LSP Traceroute

The table below describes the characters that the router processing an LSP ping or LSP traceroute packet returns to the sender about the failure or success of the request.

You can also display the return code for an MPLS LSP Ping operation if you enter the **ping mpls verbose** command.

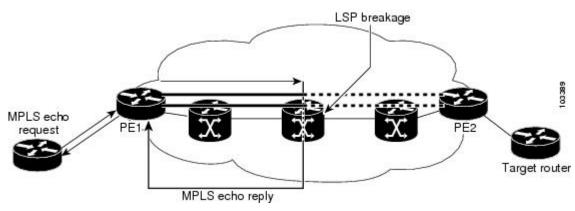
Table 5 Echo Reply Return Codes

Output Code	Echo Return Code	Meaning
x	0	No return code.
M	1	Malformed echo request.
m	2	Unsupported TLVs.
!	3	Success.
F	4	No FEC mapping.
D	5	DS Map mismatch.
I	6	Unknown Upstream Interface index.
U	7	Reserved.

Echo Return Code	Meaning
8	Labeled output interface.
9	Unlabeled output interface.
10	FEC mismatch.
11	No label entry.
12	No receive interface label protocol.
13	Premature termination of the LSP.
unknown	Undefined return code.
	8 9 10 11 12

Echo return codes 6 and 7 are accepted only for Version 3 (draft-ieft-mpls-ping-03).

IP Does Not Forward MPLS Echo Request Packets


MPLS echo request packets sent during an LSP ping are never forwarded by IP. The IP header destination address field in an MPLS echo request packet is a 127.x.y.z /8 address. Routers should not forward packets using a 127.x.y.z /8 address. The 127.x.y.z /8 address corresponds to an address for the local host.

Use of a 127.x .y .z address as the destination address of the UDP packet is significant because the MPLS echo request packet fails to make it to the target router if a transit router does not label switch the LSP. The use of the 127.x .y .z address allows for the detection of LSP breakages. The following occurs at the transit router:

- If an LSP breakage occurs at a transit router, the MPLS echo packet is not forwarded; it is consumed by the router.
- If the LSP is intact, the MPLS echo packet reaches the target router and is processed by the terminal point of the LSP.

The figure below shows the path of the MPLS echo request and reply when a transit router fails to label switch a packet in an LSP.

Figure 3 Path when Transit Router Fails to Label Switch a Packet

An AToM payload does not contain usable forwarding information at a transit router because the payload may not be an IP packet. An MPLS VPN packet, although an IP packet, does not contain usable forwarding information at a transit router because the destination IP address is significant only to the virtual routing and forwarding (VRF) instances at the endpoints of the MPLS network.

Compatibility Between the MPLS LSP and Ping or Traceroute Implementations

LSP ping drafts after Version 3 (draft-ietf-mpls-ping-03) have undergone numerous TLV format changes, but the versions of the draft do not always interoperate.

To allow later Cisco implementations to interoperate with draft Version 3 Cisco and non-Cisco implementations, use a global configuration mode to decode echo packets in formats understood by draft Version 3 implementations.

Unless configured otherwise, a Cisco implementation encodes and decodes echo requests assuming the version on which the IETF implementations is based.

To prevent failures reported by the replying router due to TLV version issues, you should configure all routers in the core. Encode and decode MPLS echo packets in the same draft version. For example, if the network is running RFC 4379 (Cisco Version 4) implementations but one router is capable of only Version 3 (Cisco Revision 3), configure all routers in the network to operate in Revision 3 mode.

The Cisco implementation of MPLS echo request and echo reply is based on the IETF RFC 4379. IEFT drafts subsequent to this RFC (drafts 3, 4, 5, 6, and 7) introduced TLV format differences. These differences could not be identified because the echo packet had no way to differentiate between one TLV format and another TLV format. This introduced limited compatibility between the MPLS LSP Ping Traceroute implementations in the Cisco IOS 12.0(27)S1 and 12.0(27)S2 releases and the MPLS ping or traceroute implementation in later Cisco IOS releases. To allow interoperability between these releases, a **revision** keyword was added for the **ping mpls** and **trace mpls** commands. The **revision** keyword enables Cisco IOS releases to support the existing draft changes and any changes from future versions of the IETF LSP Ping draft.

Note

We recommend that you use the **mpls oam** global configuration command instead of the revision option.

Note

No images are available on cisco.com to support Revision 2. It is recommended that you use only images supporting Version 3 and later when configuring TLV encode and decode modes. MPLS Multipath LSP traceroute requires Cisco Revision 4 or later.

• CiscoVendorExtensions, page 11

CiscoVendorExtensions

In Cisco's Version 3 (draft-ietf-mpls-ping-03.txt) implementations, Cisco defined a vendor extension TLV in the ignore-if-not-understood TLV space. It is used for the following purposes:

Provide an ability to track TLV versions.

Provide an experimental Reply TOS capability.

The first capability was defined before the existence of the global configuration command for setting the echo packet encode and decode behavior. TLV version information in an echo packet overrides the configured decoding behavior. Using this TLV for TLV versions is no longer required since the introduction of the global configuration capability.

The second capability controls the reply DSCP. Draft Version 8 defines a Reply TOS TLV, so the use of the reply DSCP is no longer required.

You enable compatibility between the MPLS LSP and ping or traceroute implementation by customizing the default behavior of echo packets.

DSCP Option to Request a Specific Class of Service in an Echo Reply

Cisco software includes a reply differentiated services code point (DSCP) option that lets you request a specific class of service (CoS) in an echo reply.

The reply DSCP option is supported in the experimental mode for IETF draft-ietf-mpls-lsp-ping-03.txt. Cisco implemented a vendor-specific extension for the reply DSCP option rather than using a Reply TOS TLV. A Reply TOS TLV serves the same purpose as the **reply dscp** command in RFC 4379. This draft provides a standardized method of controlling the reply DSCP.

Before draft Version 8, Cisco implemented the Reply DSCP option as an experimental capability using a Cisco vendor extension TLV. If a router is configured to encode MPLS echo packets for draft Version 3 implementations, a Cisco vendor extension TLV is used instead of the Reply TOS TLV that was defined in draft Version 8.

Reply Modes for an MPLS LSP Ping and LSP Traceroute Echo Request Response

The reply mode controls how a responding router replies to an MPLS echo request sent by a **ping mpls** or **trace mpls** command. There are two reply modes for an echo request packet:

- ipv4--Reply with an IPv4 UDP packet (default)
- router-alert--Reply with an IPv4 UDP packet with router alert

It is useful to use ipv4 and router-alert reply modes in conjunction with each other to prevent false negatives. If you do not receive a reply via the ipv4 mode, it is useful to send a test with the router-alert reply mode. If both fail, something is wrong in the return path. The problem may be only that the Reply TOS is not set correctly.

- IPv4 Reply Mode, page 12
- Router-Alert Reply Mode, page 13

IPv4 Reply Mode

IPv4 packet is the most common reply mode used with a **ping mpls** or **trace mpls** command when you want to periodically poll the integrity of an LSP. With this option, you do not have explicit control over

whether the packet traverses IP or MPLS hops to reach the originator of the MPLS echo request. If the originating (headend) router fails to receive a reply to an MPLS echo request when you use the **reply mode ipv4** keywords, use the **reply mode router-alert** keywords.

Router-Alert Reply Mode

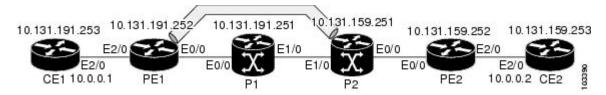
The router-alert reply mode adds the router alert option to the IP header. When an IP packet that contains an IP router alert option in its IP header or an MPLS packet with a router alert label as its outermost label arrives at a router, the router punts (redirects) the packet to the Route Processor (RP) level for handling. This forces the Cisco router to handle the packet at each intermediate hop as it moves back to the destination. Hardware and line-card forwarding inconsistencies are bypassed. Router-alert reply mode is more expensive than IPv4 mode because the reply goes hop-by-hop. It also is slower, so the sender receives a reply in a relatively longer period of time.

The table below describes how IP and MPLS packets with an IP router alert option are handled by the router switching path processes.

Table 6 Path Process Handling of IP and MPLS Router Alert Packets

Incoming Packet	Normal Switching Action	Process Switching Action	Outgoing Packet
IP packetRouter alert option in IP header	Router alert option in IP header causes the packet to be punted to the process switching path.	Forwards the packet as is	IP packetRouter alert option in IP header
		Forwards the packet as is	MPLS packet
MPLS packet Outermost label contains a router alert	If the router alert label is the outermost label, it causes the packet to be punted to the process switching path.	Removes the outermost router alert label and forwards the packet as an IP packet	IP packetRouter alert option in IP header
		Preserves the outermost router alert label and forwards the MPLS packet	MPLS packet Outermost label contains a router alert.

LSP Breaks


If there is a problem forwarding MPLS packets in your network, you can determine where there are LSP breaks. This section describes MTU discovery in an LSP.

Untagged output interfaces at a penultimate hop do not impact the forwarding of IP packets through an LSP because the forwarding decision is made at the penultimate hop through use of the incoming label. However, untagged output interfaces cause AToM and MPLS VPN traffic to be dropped at the penultimate hop.

During an MPLS LSP ping, MPLS echo request packets are sent with the IP packet attribute set to "do not fragment." That is, the Don't Fragment (DF) bit is set in the IP header of the packet. This allows you to use the MPLS echo request to test for the MTU that can be supported for the packet through the LSP without fragmentation.

The figure below shows a sample network with a single LSP from PE1 to PE2 formed with labels advertised by the LDP.

Figure 4 Sample Network with LSP--Labels Advertised by LDP

You can determine the maximum receive unit (MRU) at each hop by using the MPLS Traceroute feature to trace the LSP. The MRU is the maximum size of a labeled packet that can be forwarded through an LSP.

How to Configure MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV

- Enabling Compatibility Between the MPLS LSP and Ping or Traceroute Implementation, page 14
- Validating an LDP IPv4 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute, page 16
- Validating a Layer 2 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute, page 17
- Using DSCP to Request a Specific Class of Service in an Echo Reply, page 18
- Controlling How a Responding Router Replies to an MPLS Echo Request, page 19
- Using MPLS LSP Ping to Discover Possible Loops, page 19
- Using MPLS LSP Traceroute to Discover Possible Loops, page 20
- Tracking Packets Tagged as Implicit Null, page 21
- Tracking Untagged Packets, page 22
- Determining Why a Packet Could Not Be Sent, page 23
- Detecting LSP Breaks when Load Balancing Is Enabled for IPv4 LDP LSPs, page 24
- Specifying the Interface Through Which Echo Packets Leave a Router, page 25
- Pacing the Transmission of Packets, page 26
- Interrogating the Transit Router for Its Downstream Information by Using Echo Request requestdsmap, page 27
- Interrogating a Router for Its DSMAP, page 28
- Requesting that a Transit Router Validate the Target FEC Stack, page 29
- Enabling LSP Ping to Detect LSP Breakages Caused by Untagged Interfaces, page 30
- Viewing the AToM VCCV Capabilities Advertised to and Received from the Peer, page 31

Enabling Compatibility Between the MPLS LSP and Ping or Traceroute Implementation

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. mplsoam
- 4. echo revision $\{3 \mid 4\}$
- 5. echo vendor-extension
- 6. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	mplsoam	Enters MPLS OAM configuration mode for customizing the default
		behavior of echo packets.
	Example:	
	Router(config)# mpls oam	
Step 4	echo revision {3 4}	Specifies the revision number of the echo packet's default values.
		• 3draft-ietf-mpls-ping-03 (Revision 2).
	Example:	• 4RFC 4379 compliant (default).
	Router(config-mpls)# echo revision 4	
Step 5	echo vendor-extension	Sends the Cisco-specific extension of TLVs with echo packets.
	Example:	
	Router(config-mpls)# echo vendor-extension	

	Command or Action	Purpose
Step 6	exit	Returns to global configuration mode.
	Example:	
	Router(config-mpls)# exit	

Validating an LDP IPv4 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute

SUMMARY STEPS

- 1. enable
- **2.** Do one of the following:
 - ping mpls ipv4 destination-address /destination-mask-length [repeat count] [exp exp-bits] [verbose]
 - trace mpls ipv4 destination-address /destination-mask-length
- 3. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	 ping mpls ipv4 destination-address /destination-mask-length [repeat count] [exp exp-bits] [verbose] trace mpls ipv4 destination-address /destination-mask-length 	Selects an LDP IPv4 prefix FEC for validation.
	Example:	
	Router# ping mpls ipv4 10.131.191.252/32 exp 5 repeat 5 verbose	
	Example:	
	Router# trace mpls ipv4 10.131.191.252/32	

	Command or Action	Purpose
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Validating a Layer 2 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute

SUMMARY STEPS

- 1. enable
- 2. ping mpls pseudowire ipv4-address vc-id vc-id
- 3. exit

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
		Enter your password if prompted.	
	Example:		
	Router> enable		
Step 2	ping mpls pseudowire ipv4-address vc-id vc-id	Selects a Layer 2 FEC for validation.	
	Example:		
	Router# ping mpls pseudowire 10.131.191.252 vc-id 333		
Step 3	exit	Returns to user EXEC mode.	
	Example:		
	Router# exit		

Using DSCP to Request a Specific Class of Service in an Echo Reply

SUMMARY STEPS

- 1. enable
- **2.** Do one of the following:
 - **ping mpls** {**ipv4** *destination-address/destination-mask-length* | **pseudowire** *ipv4-address* **vc-id** *vc-id*} [**reply dscp** *dscp-value*]
 - trace mpls ipv4 destination-address/destination-mask-length [reply dscp dscp-value]
- 3. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	 ping mpls {ipv4 destination-address/destination-mask-length pseudowire ipv4-address vc-id vc-id} [reply dscp dscp-value] trace mpls ipv4 destination-address/destination-mask-length [reply dscp dscp-value] 	Controls the DSCP value of an echo reply.
	Example:	
	Router# ping mpls ipv4 10.131.191.252/32 reply dscp 50	
	Example:	
	Router# trace mpls ipv4 10.131.191.252/32 reply dscp 50	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Controlling How a Responding Router Replies to an MPLS Echo Request

SUMMARY STEPS

- 1. enable
- **2.** Do one of the following:
 - **ping mpls** {**ipv4***destination-address/destination-mask-length* | **pseudowire** *ipv4-address* **vc-id** *vc-id*} **reply mode** {**ipv4** | **router-alert**}
 - trace mpls ipv4 destination-address/destination-mask reply mode {ipv4 | router-alert}
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	Do one of the following:	Checks MPLS LSP connectivity.
	 ping mpls {ipv4destination-address/destination-mask-length pseudowire ipv4-address vc-id vc-id} reply mode {ipv4 routeralert} trace mpls ipv4 destination-address/destination-mask reply mode {ipv4 router-alert} 	or Discovers MPLS LSP routes that packets actually take when traveling to their destinations. Note To specify the reply mode, you must enter the reply mode keyword with the ipv4 or the router-alert keyword.
	Example:	
	Router# ping mpls ipv4 10.131.191.252/32 reply mode ipv4	
	Example:	
	Router# trace mpls ipv4 10.131.191.252/32 reply mode router-alert	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Using MPLS LSP Ping to Discover Possible Loops

With the MPLS LSP Ping feature, loops can occur if you use the UDP destination address range, repeat option, or sweep option.

To use MPLS LSP ping to discover possible loops, perform the following steps.

SUMMARY STEPS

- 1. enable
- 2. ping mpls {ipv4 destination-address/destination-mask [destination address-start address-end increment | [pseudowire ipv4-address vc-id vc-id address-end increment]} [repeat count] [sweep minimum maximum size-increment]
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	ping mpls {ipv4 destination-address/destination-mask [destination address-start address-end increment [pseudowire ipv4-address vc-id vc-id address-end increment]} [repeat count] [sweep minimum maximum size-increment]	Checks MPLS LSP connectivity.
	Example:	
	Router# ping mpls ipv4 10.131.159.251/32 destination 127.0.0.1 127.0.0.2 1 repeat 2 sweep 1450 1475 25	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Using MPLS LSP Traceroute to Discover Possible Loops

With the MPLS LSP Traceroute feature, loops can occur if you use the UDP destination address range option and the time-to-live option.

By default, the maximum TTL is set to 30. Therefore, the traceroute output may contain 30 lines if the target of the traceroute is not reached, which can happen when an LSP problem exists. If an LSP problem occurs, there may be duplicate entries. The router address of the last point that the trace reaches is repeated until the output is 30 lines. You can ignore the duplicate entries.

SUMMARY STEPS

- 1. enable
- **2. trace mpls ipv4** *destination-address /destination-mask* [**destination** *address-start address-end address increment*] [**ttl** *maximum-time-to-live*]
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	trace mpls ipv4 destination-address /destination-mask [destination address-start address-end address increment] [ttl maximum-time-to-live]	Discovers MPLS LSP routes that packets take when traveling to their destinations. The example shows how a loop can occur.
	Example:	
	Router# trace mpls ipv4 10.131.159.251/32 destination 127.0.0.1 127.0.0.3 1 ttl 5	
Step 3	exit	Returns to user EXEC mode.
	Francis	
	Example:	
	Router# exit	

Tracking Packets Tagged as Implicit Null

SUMMARY STEPS

- 1. enable
- 2. trace mpls ipv4 destination-address/destination-mask
- 3. exit

	Command or Action	Purpose
Step 1 enable Enables privileged EXEC mode.		Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	

	Command or Action	Purpose
Step 2	trace mpls ipv4 destination-address/destination-mask	Discovers MPLS LSP routes that packets actually take when traveling to their destinations.
	Example:	
	Router# trace mpls ipv4 10.131.159.252/32	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Tracking Untagged Packets

SUMMARY STEPS

- 1. enable
- $\textbf{2. show mpls forwarding-table} \ \textit{destination-address/destination-mask}$
- 3. show mpls ldp discovery
- 4. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show mpls forwarding-table destination-address/ destination-mask	Displays the content of the MPLS Label Forwarding Information Base (LFIB) and displays whether the LDP is properly configured.
	Example:	
	Router# show mpls forwarding-table 10.131.159.252/32	
Step 3	show mpls ldp discovery	Displays the status of the LDP discovery process and displays whether the LDP is properly configured.
	Example:	
	Router# show mpls ldp discovery	

	Command or Action	Purpose
Step 4	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Determining Why a Packet Could Not Be Sent

The Q return code means that the packet could not be sent. The problem can be caused by insufficient processing memory, but it probably results because an LSP could not be found that matches the FEC information that was entered on the command line.

You need to determine the reason why the packet was not forwarded so that you can fix the problem in the path of the LSP. To do so, look at the Routing Information Base (RIB), the Forwarding Information Base (FIB), the Label Information Base (LIB), and the MPLS LFIB. If there is no entry for the FEC in any of these routing or forwarding bases, there is a Q return code.

To determine why a packet could not be transmitted, perform the following steps.

SUMMARY STEPS

- 1. enable
- 2. show ip route [ip-address [mask]]
- **3. show mpls forwarding-table** [network {mask | length} | **labels** label[-label] | **interface** interface | **next-hop** address | **lsp-tunnel** [tunnel-id]]
- 4. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show ip route [ip-address [mask]]	Displays the current state of the routing table.
		When the MPLS echo reply returns a Q, troubleshooting
	Example:	occurs on the routing information database.
	Router# show ip route 10.0.0.1	

	Command or Action	Purpose
Step 3	show mpls forwarding-table [network {mask length} labels label[-label] interface interface next-hop address lsp-tunnel [tunnel-id]]	Displays the content of the MPLS LFIB. When the MPLS echo reply returns a Q, troubleshooting occurs on a label information database and an MPLS forwarding information database.
	Example:	
	Router# show mpls forwarding-table 10.0.0.1/32	
Step 4	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Detecting LSP Breaks when Load Balancing Is Enabled for IPv4 LDP LSPs

An ICMP ping or trace follows one path from the originating router to the target router. Round robin load balancing of IP packets from a source router discovers the various output paths to the target IP address.

For MPLS ping and traceroute, Cisco routers use the source and destination addresses in the IP header for load balancing when multiple paths exist through the network to a target router. The Cisco implementation of MPLS may check the destination address of an IP payload to accomplish load balancing (the type of checking depends on the platform).

To detect LSP breaks when load balancing is enabled for IPv4 LDP LSPs, perform the following steps.

SUMMARY STEPS

- 1. enable
- **2. ping mpls ipv4** *destination-address/destination-mask-length* [**destination** *address-start address-end increment*]
- 3. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	

	Command or Action	Purpose
Step 2	ping mpls ipv4 destination-address/destination-mask-length [destination	Checks for load balancing paths.
	address-start address-end increment]	Enter the $127.z.y.x / 8$ destination address.
	Example:	
	Router# ping mpls ipv4 10.131.159.251/32 destination 127.0.0.1/8	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Specifying the Interface Through Which Echo Packets Leave a Router

You can control the interface through which packets leave a router. Path output information is used as input to LSP ping and traceroute.

The echo request output interface control feature allows you to force echo packets through the paths that perform detailed debugging or characterizing of the LSP. This feature is useful if a PE router connects to an MPLS cloud and there are broken links. You can direct traffic through a certain link. The feature also is helpful for troubleshooting network problems.

To specify the output interface for echo requests, perform the following steps.

SUMMARY STEPS

- 1. enable
- **2.** Enter one of the following commands:
 - **ping mpls** {**ipv4** *destination-address/destination-mask* | **pseudowire** *ipv4-address* **vc-id** *vc-id*} [**output interface** *tx-interface*]
 - trace mpls ipv4 destination-address/destination-mask
- 3. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	

	Command or Action	Purp	ose
Step 2	Enter one of the following commands:	Chec	ks MPLS LSP connectivity.
	 ping mpls {ipv4 destination-address/destination-mask pseudowire ipv4-address vc-id vc-id} [output interface tx-interface] trace mpls ipv4 destination-address/destination-mask Example:	actua desti	overs MPLS LSP routes that packets ally take when traveling to their nations. For this task, you must specify the output interface keyword.
	Router# ping mpls ipv4 10.131.159.251/32 output interface fastethernet0/0/0		
	Example:		
	Router# trace mpls ipv4 10.131.159.251/32 output interface fastethernet0/0/0		
Step 3	exit	Retu	rns to user EXEC mode.
	Example:		
	Router# exit		

Pacing the Transmission of Packets

Echo request traffic pacing allows you to pace the transmission of packets so that the receiving router does not drop packets. To perform echo request traffic pacing, perform the following steps.

SUMMARY STEPS

- 1. enable
- **2.** Do one of the following:
 - **ping mpls** {**ipv4** destination-address/destination-mask | **pseudowire** ipv4-address **vc-id** vc-id} [**interval** ms]]
 - trace mpls ipv4 destination-address/destination-mask
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
tep 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
tep 2	Do one of the following:	Checks MPLS LSP connectivity.
	• ping mpls {ipv4 destination-address/destination-mask	or
	pseudowire ipv4-address vc-id vc-id} [interval ms]]	Discovers MPLS LSP routes that packets take
	• trace mpls ipv4 destination-address/destination-mask	when traveling to their destinations.
	Example:	Note In this task, if you use the ping mpls command you must specify the interval keyword.
	Router# ping mpls ipv4 10.131.159.251/32 interval 2	
	Example:	
	Router# trace mpls ipv4 10.131.159.251/32	
tep 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Interrogating the Transit Router for Its Downstream Information by Using Echo Request request-dsmap

The echo request request-dsmap capability troubleshooting feature, used in conjunction with the TTL flag, allows you to selectively interrogate a transit router. If there is a failure, you do not have to enter an **lsp traceroute** command for each previous failure; you can focus just on the failed hop.

A request-dsmap flag in the downstream mapping flags field, and procedures that specify how to trace noncompliant routers allow you to arbitrarily time-to-live (TTL) expire MPLS echo request packets with a wildcard downstream map (DSMAP).

Echo request DSMAPs received without labels indicate that the sender did not have any DSMAPs to validate. If the downstream router ID field of the DSMAP TLV in an echo request is set to the ALLROUTERs address (224.0.0.2) and there are no labels, the source router can arbitrarily query a transit router for its DSMAP information.

The **ping mpls** command allows an MPLS echo request to be TTL-expired at a transit router with a wildcard DSMAP for the explicit purpose of troubleshooting and querying the downstream router for its DSMAPs. The default is that the DSMAP has an IPv4 bitmap hashkey. You also can select hashkey 0 (none). The purpose of the **ping mpls** command is to allow the source router to selectively TTL expire an

echo request at a transit router to interrogate the transit router for its downstream information. The ability to also select a multipath (hashkey) type allows the transmitting router to interrogate a transit router for load-balancing information as is done with multipath LSP traceroute, but without having to interrogate all subsequent nodes traversed between the source router and the router on which each echo request TTL expires. Use an echo request in conjunction with the TTL setting because if an echo request arrives at the egress of the LSP with an echo request, the responding routers never return DSMAPs.

To interrogate the transit router for its downstream information so that you can focus just on the failed hop if there is a failure, perform the following steps.

SUMMARY STEPS

- 1. enable
- 2. ping mpls {ipv4 destination-address/destination-mask | pseudowire ipv4-address vc-id vc-id} [dsmap [hashkey {none | ipv4 bitmap bitmap-size}]]
- 3. exi

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	ping mpls {ipv4 destination-address/destination-mask pseudowire	Checks MPLS LSP connectivity.
	<pre>ipv4-address vc-id vc-id} [dsmap [hashkey {none ipv4 bitmap bitmap-size}]]</pre>	Note In this task, you must specify the dsmap and hashkey keywords.
	Example:	
	Router# ping mpls ipv4 10.161.251/32 dsmap hashkey ipv4 bitmap 16	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Interrogating a Router for Its DSMAP

The router can interrogate the software or hardware forwarding layer for the depth limit that needs to be returned in the DSMAP TLV. If forwarding does not provide a value, the default is 255.

To determine the depth limit, specify the **dsmap** and **ttl** keywords in the **ping mpls** command. The transit router will be interrogated for its DSMAP. The depth limit is returned with the echo reply DSMAP. A value of 0 means that the IP header is used for load balancing. Another value indicates that the IP header load balances up to the specified number of labels.

To interrogate a router for its DSMAP, perform the following steps.

SUMMARY STEPS

- 1. enable
- 2. ping mpls {ipv4 destination-address/destination-mask | pseudowire ipv4-address vc-id vc-id} ttl time-to-live dsmap
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
tep 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	ping mpls {ipv4 destination-address/destination-mask pseudowire	Checks MPLS LSP connectivity.
	ipv4-address vc-id vc-id} ttl time-to-live dsmap	Note You must specify the ttl and dsmap keywords.
	Example:	
	Router# ping mpls ipv4 10.131.159.252/32 ttl 1 dsmap	
tep 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Requesting that a Transit Router Validate the Target FEC Stack

An MPLS echo request tests a particular LSP. The LSP to be tested is identified by the FEC stack.

To request that a transit router validate the target FEC stack, set the V flag from the source router by entering the **flags fec** keyword in the **ping mpls** and **trace mpls** commands. The default is that echo request packets are sent with the V flag set to 0.

To request that a transit router validate the target FEC stack, perform the following steps.

SUMMARY STEPS

- 1. enable
- **2.** Do one of the following:
 - ping mpls {ipv4 destination-address/destination-mask | pseudowire ipv4-address vc-id vc-id} flags fec
 - trace mpls ipv4 destination-address/destination-mask flags fec
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	Do one of the following:	Checks MPLS LSP connectivity.
	• ping mpls {ipv4 destination-address/destination-mask	or
	pseudowire ipv4-address vc-id vc-id} flags fec	Discovers MPLS LSP routes that packets
	• trace mpls ipv4 destination-address/destination-mask flags fec	actually take when traveling to their destinations.
	Example:	Note You must enter the flags fec keyword.
	Router# ping mpls ipv4 10.131.159.252/32 flags fec	
	Example:	
	Router# trace mpls ipv4 10.131.159.252/32 flags fec	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Enabling LSP Ping to Detect LSP Breakages Caused by Untagged Interfaces

For MPLS LSP ping and traceroute of LSPs carrying IPv4 FECs, you can force an explicit null label to be added to the MPLS label stack even though the label was unsolicited. This allows LSP ping to detect LSP breakages caused by untagged interfaces. LSP ping does not report that an LSP is operational when it is unable to send MPLS traffic.

An explicit null label is added to an MPLS label stack if MPLS echo request packets are forwarded from untagged interfaces that are directly connected to the destination of the LSP ping or if the IP TTL value for the MPLS echo request packets is set to 1.

When you enter an **lsp ping** command, you are testing the LSP's ability to carry IP traffic. Failure at untagged output interfaces at the penultimate hop are not detected. Explicit-null shimming allows you to test an LSP's ability to carry MPLS traffic.

To enable LSP ping to detect LSP breakages caused by untagged interfaces, specify the **force-explicit-null** keyword in the **ping mpls** or **trace mpls** commands as shown in the following steps.

SUMMARY STEPS

- 1. enable
- **2.** Do one of the following:
 - ping mpls {ipv4 destination-address/destination-mask | pseudowire ipv4-address vc-id vc-id} force-explicit-null
 - trace mpls ipv4 destination-address/destination-mask force-explicit-null
- 3. exit

DETAILED STEPS

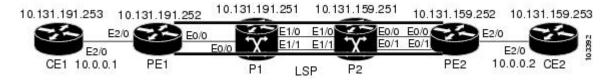
	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	Do one of the following:	Checks MPLS LSP connectivity.
	• ping mpls {ipv4 destination-address/destination-mask	or
	pseudowire ipv4-address vc-id vc-id} force-explicit-null	Discovers MPLS LSP routes that packets
	 trace mpls ipv4 destination-address/destination-mask force- explicit-null 	actually take when traveling to their destinations.
		Note You must enter the force-explicit-null
	Example:	keyword.
	Router# ping mpls ipv4 10.131.191.252/32 force-explicit null	
	Example:	
	Router# trace mpls ipv4 10.131.191.252/32 force-explicit-null	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Viewing the AToM VCCV Capabilities Advertised to and Received from the Peer

To view the AToM VCCV capabilities advertised to and received from the peer, perform the following steps.

SUMMARY STEPS

- 1. enable
- 2. show mpls l2transport binding
- 3. exit


DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show mpls 12transport binding	Displays VC label binding information.
	Example:	
	Router# show mpls 12transport binding	
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Configuration Examples for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV

Examples for the MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV feature are based on the sample topology shown in the figure below.

Figure 5 Sample Topology for Configuration Examples

- Enabling Compatibility Between the MPLS LSP and Ping or Traceroute Implementation Example, page 33
- Validating an LDP IPv4 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute Example, page

- Validating a Layer 2 FEC by Using MPLS LSP Ping Example, page 34
- Using DSCP to Request a Specific Class of Service in an Echo Reply Example, page 34
- Controlling How a Responding Router Replies to an MPLS Echo Request Example, page 34
- Preventing Possible Loops with MPLS LSP Ping Example, page 35
- Preventing Possible Loops with MPLS LSP Traceroute Example, page 36
- Troubleshooting with LSP Ping or Traceroute Example, page 37
- MTU Discovery in an LSP Example, page 46
- Tracking Packets Tagged as Implicit Null Example, page 47
- Tracking Untagged Packets Example, page 48
- Determining Why a Packet Could Not Be Sent Example, page 49
- Detecting LSP Breaks when Load Balancing Is Enabled for IPv4 LSPs Example, page 49
- Specifying the Interface Through Which Echo Packets Leave a Router Example, page 51
- Pacing the Transmission of Packets Example, page 52
- Interrogating the Transit Router for Its Downstream Information Example, page 52
- Interrogating a Router for Its DSMAP Example, page 54
- Requesting that a Transit Router Validate the Target FEC Stack Example, page 54
- Enabling LSP Ping to Detect LSP Breakages Caused by Untagged Interfaces Example, page 55
- Viewing the AToM VCCV Capabilities Advertised to and Received from the Peer Example, page

Enabling Compatibility Between the MPLS LSP and Ping or Traceroute Implementation Example

The following example shows how to configure MPLS multipath LSP traceroute to interoperate with a vendor implementation that does not interpret RFC 4379 as Cisco does:

```
configure terminal!
mpls oam
echo revision 4
no echo vendor-extension
```

The default echo revision number is 4, which corresponds to the IEFT draft 11.

Validating an LDP IPv4 FEC by Using MPLS LSP Ping and MPLS LSP Traceroute Example

The following example shows how to use the **ping mpls** command to test connectivity of an IPv4 LDP LSP:

```
Router# ping mpls ipv4 10.131.191.252/32 repeat 5 exp 5 verbose

Sending 5, 100-byte MPLS Echos to 10.131.191.252, timeout is 2 seconds:

Codes:

'!' - success, 'Q' - request not sent, '.' - timeout,

'L' - labeled output interface, 'B' - unlabeled output interface,

'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,

'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,

'P' - no rx intf label prot, 'p' - premature termination of LSP,

'R' - transit router, 'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

! 10.131.191.230, return code 3
```

```
! 10.131.191.230, return code 3
Success rate is 100 percent (5/5), round-trip min/avg/max = 100/10
```

Validating a Layer 2 FEC by Using MPLS LSP Ping Example

The following example validates a Layer 2 FEC:

Using DSCP to Request a Specific Class of Service in an Echo Reply Example

The following example shows how to use DSCP to request a specific CoS in an echo reply:

```
Router# ping mpls ipv4 10.131.159.252/32 reply dscp 50
 <0-63>
         Differentiated services codepoint value
 af11
          Match packets with AF11 dscp (001010)
af12
         Match packets with AF12 dscp (001100)
af13
         Match packets with AF13 dscp (001110)
 af21
         Match packets with AF21 dscp (010010)
 af22
         Match packets with AF22 dscp
                                       (010100)
 af23
         Match packets with AF23 dscp (010110)
af31
         Match packets with AF31 dscp (011010)
af32
         Match packets with AF32 dscp (011100)
 af33
         Match packets with AF33 dscp (011110)
 af41
         Match packets with AF41 dscp (100010)
 af42
         Match packets with AF42 dscp (100100)
af43
         Match packets with AF43 dscp (100110)
         Match packets with CS1(precedence 1) dscp (001000)
cs1
 cs2
         Match packets with CS2(precedence 2) dscp (010000)
          Match packets with CS3(precedence 3) dscp (011000)
 cs3
cs4
         Match packets with CS4(precedence 4) dscp (100000)
cs5
         Match packets with CS5(precedence 5) dscp (101000)
cs6
          Match packets with CS6(precedence 6) dscp (110000)
 cs7
          Match packets with CS7(precedence 7) dscp (111000)
 default
         Match packets with default dscp (000000)
         Match packets with EF dscp (101110)
```

Controlling How a Responding Router Replies to an MPLS Echo Request Example

The following example checks MPLS LSP connectivity by using ipv4 reply mode:

```
Router# ping mpls ipv4 10.131.191.252/32 reply mode ipv4
```

Preventing Possible Loops with MPLS LSP Ping Example

The following example shows how a loop operates if you use the following **ping mpls** command:

```
Router# ping mpls
 ipv4
10.131.159.251/32 destination 127.0.0.1 127.0.0.2 1 repeat 2
sweep 1450 1475 25
Sending 2, [1450..1500]-byte MPLS Echos to 10.131.159.251/32,
     timeout is 2 seconds, send interval is 0 msec:
    '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Destination address 127.0.0.1
Destination address 127.0.0.2
Destination address 127.0.0.1
Destination address 127.0.0.2
```

A **ping mpls** command is sent for each packet size range for each destination address until the end address is reached. For this example, the loop continues in the same manner until the destination address, 127.0.0.5, is reached. The sequence continues until the number is reached that you specified with the **repeat** *count* keyword and argument. For this example, the repeat count is 2. The MPLS LSP ping loop sequence is as follows:

```
repeat = 1
  destination address 1 (address-start
    for (size from sweep minimum
 to maximum
, counting by size-increment
      send an lsp ping
  destination address 2 (address-start
address-
increment
    for (size from sweep minimum
 to maximum
, counting by size-increment
      send an lsp ping
  destination address 3 (address-start
address-
increment
address-
     for (size from sweep minimum
 to maximum
 counting by size-increment
      send an lsp ping
```

```
.
.
.
until destination address = address-end
.
.
.
until repeat = count 2
```

Preventing Possible Loops with MPLS LSP Traceroute Example

The following example shows how a loop occurs if you use the following trace mpls command:

```
Router# trace mpls ipv4 10.131.159.251/32 destination 127.0.0.1 127.0.0.3 1 ttl 5
Tracing MPLS Label Switched Path to 10.131.159.251/32, timeout is 2 seconds
     '!' - success, 'Q' - request not sent, '.' - timeout,
     'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
    'P' - no rx intf label prot, 'p' - premature termination of LSP, 'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Destination address 127.0.0.1
  0 10.131.191.230 MRU 1500 [Labels: 19 Exp: 0]
R 1 10.131.159.226 MRU 1504 [implicit-null] 40 ms
! 2 10.131.159.225 40 ms
Destination address 127.0.0.2
  0 10.131.191.230 MRU 1500 [Labels: 19 Exp: 0]
R 1 10.131.159.226 MRU 1504 [implicit-null] 40 ms
! 2 10.131.159.225 40 ms
Destination address 127.0.0.3
  0 10.131.191.230 MRU 1500 [Labels: 19 Exp: 0]
 1 10.131.159.226 MRU 1504 [implicit-null] 40 ms
! 2 10.131.159.225 48 ms
```

An **mpls trace** command is sent for each TTL from 1 to the maximum TTL (**ttl** *maximum-time-to-live* keyword and argument) for each destination address until the address specified with the destination *end-address* argument is reached. In this example, the maximum TTL is 5 and the end destination address is 127.0.0.3. The MPLS LSP traceroute loop sequence is as follows:

```
destination address 1 (address-start
)
  for (ttl from 1 to maximum-time-to-live
)
    send an lsp trace
destination address 2 (address-start
    + address-increment
)
  for (ttl from 1 to 5
)
    send an lsp trace
destination address 3 (address-start
    + address-increment
    + address-increment
)
  for (ttl from 1 to
maximum-time-to-live)
    send an lsp trace
.
.
. until destination address = 4
```

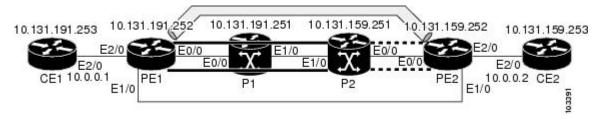
The following example shows that the trace encountered an LSP problem at the router that has an IP address of 10.6.1.6:

```
Router# traceroute mpls ipv4 10.6.7.4/32
```

```
Tracing MPLS Label Switched Path to 10.6.7.4/32, timeout is 2 seconds
          - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label, 'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
  0 10.6.1.14 MRU 4470 [Labels: 22 Exp: 0]
R 1 10.6.1.5 MRU 4470 [Labels: 21 Exp: 0] 2 ms
R 2 10.6.1.6 4 ms
                                        <---- Router address repeated for 2nd to 30th TTL.
R 3 10.6.1.6 1 ms
R 4 10.6.1.6 1 ms
R 5 10.6.1.6 3 ms
R 6 10.6.1.6 4 ms
R 7 10.6.1.6 1 ms
R 8 10.6.1.6 2 ms
R 9 10.6.1.6 3 ms
R 10 10.6.1.6 4 ms
R 11 10.6.1.6 1 ms
R 12 10.6.1.6 2 ms
R 13 10.6.1.6 4 ms
R 14 10.6.1.6
               5 ms
R 15 10.6.1.6 2 ms
R 16 10.6.1.6 3 ms
R 17 10.6.1.6 4 ms
R 18 10.6.1.6 2 ms
               3 ms
R 19 10.6.1.6
R 20 10.6.1.6 4 ms
R 21 10.6.1.6 1 ms
R 22 10.6.1.6 2 ms
R 23 10.6.1.6 3 ms
R 24 10.6.1.6
R 25 10.6.1.6 1 ms
R 26 10.6.1.6 3 ms
R 27 10.6.1.6 4 ms
R 28 10.6.1.6 1 ms
R 29 10.6.1.6
R 30 10.6.1.6 3 ms
                                          <---- TTL 30.
```

If you know the maximum number of hops in your network, you can set the TTL to a lower value with the **trace mpls ttl** *maximum-time-to-live* command. The following example shows the same **traceroute** command as the previous example, except that this time the TTL is set to 5:

```
Router# traceroute mpls ipv4 10.6.7.4/32 ttl 5
Tracing MPLS Label Switched Path to 10.6.7.4/32, timeout is 2 seconds
Codes:
    '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label, 'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, \bar{\mathbf{X}}' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
  0 10.6.1.14 MRU 4470 [Labels: 22 Exp: 0]
R 1 10.6.1.5 MRU 4474 [No Label] 3 ms
                                       <---- Router address repeated for 2nd to 5th TTL.
R 2 10.6.1.6 4 ms
R 3 10.6.1.6 1 ms
R 4 10.6.1.6 3 ms
R 5 10.6.1.6 4 ms
```


Troubleshooting with LSP Ping or Traceroute Example

ICMP **ping** and **trace** commands are often used to help diagnose the root cause of a failure. When an LSP is broken, the packet may reach the target router by IP forwarding, thus making the ICMP ping and traceroute features unreliable for detecting MPLS forwarding problems. The MPLS LSP ping or traceroute and AToM VCCV features extend this diagnostic and troubleshooting ability to the MPLS network and

handle inconsistencies (if any) between the IP and MPLS forwarding tables, inconsistencies in the MPLS control and data plane, and problems with the reply path.

The figure below shows a sample topology with an LDP LSP.

Figure 6 Sample Topology with LDP LSP

This section contains the following subsections:

- Configuration for Sample Topology, page 38
- Verification That the LSP Is Configured Correctly, page 44
- Discovery of LSP Breaks, page 44

Configuration for Sample Topology

These are sample topology configurations for the troubleshooting examples in the following sections (see the figure above). There are the six sample router configurations.

Router CE1 Configuration

Following is the configuration for the CE1 router:

```
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname CE1
boot-start-marker
boot-end-marker
enable password lab
clock timezone EST -5
ip subnet-zero
interface Loopback0
 ip address 10.131.191.253 255.255.255.255
 no ip directed-broadcast
no clns route-cache
interface Ethernet2/0
no ip address
no ip directed-broadcast
no keepalive
no cdp enable
no clns route-cache
interface Ethernet2/0.1
```

```
encapsulation dot1Q 1000
ip address 10.0.0.1 255.255.255.0
no ip directed-broadcast
!
line con 0
exec-timeout 0 0
line aux 0
line vty 0 4
exec-timeout 0 0
password lab
login
!
end
```

Router PE1 Configuration

Following is the configuration for the PE1 router:

```
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname PE1
boot-start-marker
boot-end-marker
logging snmp-authfail
enable password lab
clock timezone EST -5
ip subnet-zero
ip cef
no ip domain-lookup
mpls ldp discovery targeted-hello accept mpls ldp router-id LoopbackO force
mpls label protocol ldp
interface Loopback0
 ip address 10.131.191.252 255.255.255.255
no clns route-cache
interface Ethernet0/0
ip address 10.131.191.230 255.255.255.252
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
interface Ethernet1/0
 ip address 10.131.159.246 255.255.255.252
 shutdown
no clns route-cache
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
interface Ethernet2/0
no ip address
no cdp enable
no clns route-cache
interface Ethernet2/0.1
encapsulation dot1Q 1000
xconnect 10.131.159.252 333 encapsulation mpls
1
1
router ospf 1
log-adjacency-changes
```

```
passive-interface Loopback0
network 10.131.159.244 0.0.0.3 area 0
network 10.131.191.228 0.0.0.3 area 0
network 10.131.191.232 0.0.0.3 area 0
network 10.131.191.252 0.0.0.0 area 0
!
!
!
line con 0
exec-timeout 0 0
line aux 0
line vty 0 4
exec-timeout 0 0
password lab
login
!
end
```

Router P1 Configuration

Following is the configuration for the P1 router:

```
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname P1
boot-start-marker
boot-end-marker
logging snmp-authfail
enable password lab
clock timezone EST -5
ip subnet-zero
ip cef
no ip domain-lookup
mpls ldp discovery targeted-hello accept
mpls ldp router-id Loopback0 force
mpls label protocol ldp
no clns route-cache
interface Loopback0
 ip address 10.131.191.251 255.255.255.255
no clns route-cache
interface Ethernet0/0
ip address 10.131.191.229 255.255.255.252
no clns route-cache
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
interface Ethernet1/0
ip address 10.131.159.226 255.255.255.252
no clns route-cache
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
interface Ethernet1/1
ip address 10.131.159.222 255.255.255.252
no clns route-cache
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
```

```
router ospf 1
log-adjacency-changes
passive-interface Loopback0
network 10.131.159.220 0.0.0.3 area 0
 network 10.131.159.224 0.0.0.3 area 0
network 10.131.191.228 0.0.0.3 area 0
network 10.131.191.251 0.0.0.0 area 0
mpls traffic-eng router-id Loopback0
mpls traffic-eng area 0
line con 0
 exec-timeout 0 0
line aux 0
line vty 0 4
 exec-timeout 0 0
password lab
 login
end
```

Router P2 Configuration

Following is the configuration for the P2 router:

```
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname P2
boot-start-marker
boot-end-marker
enable password lab
clock timezone EST -5
ip subnet-zero
ip cef
no ip domain-lookup
mpls ldp discovery targeted-hello accept
mpls ldp router-id Loopback0 force
mpls label protocol ldp
interface Loopback0
 ip address 10.131.159.251 255.255.255.255
no ip directed-broadcast
interface Ethernet0/0
ip address 10.131.159.229 255.255.255.252
no ip directed-broadcast
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
interface Ethernet0/1
ip address 10.131.159.233 255.255.255.252
no ip directed-broadcast
ip rsvp signalling dscp 0
interface Ethernet1/0
ip address 10.131.159.225 255.255.255.252
no ip directed-broadcast
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
interface Ethernet1/1
```

```
ip address 10.131.159.221 255.255.255.252
no ip directed-broadcast
ip rsvp signalling dscp 0
router ospf 1
log-adjacency-changes
passive-interface Loopback0
network 10.131.159.220 0.0.0.3 area 0
network 10.131.159.224 0.0.0.3 area 0
network 10.131.159.228 0.0.0.3 area 0
network 10.131.159.232 0.0.0.3 area 0
network 10.131.159.251 0.0.0.0 area 0
line con 0
exec-timeout 0 0
line aux 0
line vty 0 4
 exec-timeout 0 0
password lab
login
1
end
```

Router PE2 Configuration

Following is the configuration for the PE2 router:

```
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname PE2
boot-start-marker
boot-end-marker
logging snmp-authfail
enable password lab
clock timezone EST -5
ip subnet-zero
ip cef
no ip domain-lookup
mpls ldp discovery targeted-hello accept
mpls ldp router-id Loopback0 force
mpls label protocol ldp
interface Loopback0
 ip address 10.131.159.252 255.255.255.255
no clns route-cache
interface Ethernet0/0
ip address 10.131.159.230 255.255.255.252
no clns route-cache
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
interface Ethernet0/1
ip address 10.131.159.234 255.255.255.252
no clns route-cache
ip rsvp bandwidth 1500 1500
ip rsvp signalling dscp 0
interface Ethernet1/0
```

```
ip address 10.131.159.245 255.255.255.252
no clns route-cache
interface Ethernet3/0
no ip address
no cdp enable
no clns route-cache
interface Ethernet3/0.1
 encapsulation dot1Q 1000
no snmp trap link-status
no cdp enable
xconnect 10.131.191.252 333 encapsulation mpls
router ospf 1
log-adjacency-changes
 passive-interface Loopback0
network 10.131.122.0 0.0.0.3 area 0
network 10.131.159.228 0.0.0.3 area 0
network 10.131.159.232 0.0.0.3 area 0
network 10.131.159.236 0.0.0.3 area 0
network 10.131.159.244 0.0.0.3 area 0
network 10.131.159.252 0.0.0.0 area 0
line con 0
 exec-timeout 0 0
line aux 0
line vty 0 4
 exec-timeout 0 0
 password lab
 login
end
```

Router CE2 Configuration

Following is the configuration for the CE2 router:

```
version 12.4
service timestamps debug datetime msec
service timestamps log datetime msec
no service password-encryption
hostname CE2
boot-start-marker
boot-end-marker
enable password lab
clock timezone EST -5
ip subnet-zero
ip cef
no ip domain-lookup
interface Loopback0
ip address 10.131.159.253 255.255.255.255
no ip directed-broadcast
no clns route-cache
interface Ethernet3/0
no ip address
no ip directed-broadcast
no keepalive
no cdp enable
no clns route-cache
```

```
!
interface Ethernet3/0.1
encapsulation dot1Q 1000
ip address 10.0.0.2 255.255.255.0
no ip directed-broadcast
!
!
line con 0
exec-timeout 0 0
line aux 0
line vty 0 4
exec-timeout 0 0
password lab
login
!
end
```

Verification That the LSP Is Configured Correctly

Use the output from the **show** commands in this section to verify that the LSP is configured correctly.

A **show mpls forwarding-table** command shows that tunnel 1 is in the MPLS forwarding table.

```
PE1# show mpls forwarding-table 10.131.159.252
                   Prefix
Local Outgoing
                                      Bytes tag
                                                 Outgoing
                                                            Next Hop
tag
       tag or VC
                   or Tunnel Id
                                      switched
                                                 interface
22
       18
[T] 10.131.159.252/32 0
                                  T111
                                             point2point
[T]
        Forwarding through a TSP tunnel.
        View additional tagging info with the 'detail' option
```

A **trace mpls** command issued at PE1 verifies that packets with 16 as the outermost label and 18 as the end-of-stack label are forwarded from PE1 to PE2.

```
PE1# trace mpls ipv4 10.131.159.252/32

Tracing MPLS Label Switched Path to 10.131.159.252/32, timeout is 2 seconds Codes:

'!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

0 10.131.191.252 MRU 1496 [Labels: 16/18 Exp: 0/0] L 1 10.131.191.229

MRU 1508 [Labels: 18 Exp: 0] 0 ms L 2 10.131.159.225

MRU 1504 [Labels: implicit-null Exp: 0] 0 ms ! 3 10.131.159.234 20 ms

PE1#
```

The MPLS LSP Traceroute to PE2 is successful, as indicated by the exclamation point (!).

Discovery of LSP Breaks

Use the output of the commands in this section to discover LSP breaks.

An LDP target session is established between routers PE1 and P2, as shown in the output of the following **show mpls ldp discovery** command:

Enter the following command on the P2 router in global configuration mode:

```
P2(config)# no mpls ldp discovery targeted-hello accept
```

The LDP configuration change causes the targeted LDP session between the headend and tailend of the TE tunnel to go down. Labels for IPv4 prefixes learned by P2 are not advertised to PE1. Thus, all IP prefixes reachable by P2 are reachable by PE1 only through IP (not MPLS). In other words, packets destined for those prefixes through Tunnel 1 at PE1 will be IP switched at P2 (which is undesirable).

The following **show mpls ldp discovery** command shows that the LDP targeted session is down:

Enter the **show mpls forwarding-table** command at the PE1 router. The display shows that the outgoing packets are untagged as a result of the LDP configuration changes.

```
PE1# show mpls forwarding-table 10.131.159.252
                   Prefix
                                                 Outgoing
Local
      Outgoing
                                     Bytes tag
                                                            Next Hop
       tag or VC
                   or Tunnel Id
                                      switched
                                                 interface
taq
       Untagged[T] 10.131.159.252/32 0
                                                 Tu1
                                                            point2point
22
[T]
        Forwarding through a TSP tunnel.
        View additional tagging info with the 'detail' option
```

A **ping mpls** command entered at the PE1 router displays the following:

The **ping mpls** command fails. The R indicates that the sender of the MPLS echo reply had a routing entry but no MPLS FEC. Entering the **verbose** keyword with the **ping mpls** command displays the MPLS LSP echo reply sender address and the return code. You should be able to determine where the breakage occurred by telnetting to the replying router and inspecting its forwarding and label tables. You might need to look at the neighboring upstream router as well, because the breakage might be on the upstream router.

```
PE1# ping mpls ipv4 10.131.159.252/32 repeat 1 verbose

Sending 1, 100-byte MPLS Echos to 10.131.159.252/32,
            timeout is 2 seconds, send interval is 0 msec:

Codes:
    '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
```

```
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label, 'P' - no rx intf label prot, 'p' - premature termination of LSP, 'R' - transit router, 'X' - unknown return code, 'x' - return code 0 Type escape sequence to abort.

R 10.131.159.225, return code 6
Success rate is 0 percent (0/1)
```

Alternatively, use the LSP **traceroute** command to figure out which router caused the breakage. In the following example, for subsequent values of TTL greater than 2, the same router keeps responding (10.131.159.225). This suggests that the MPLS echo request keeps getting processed by the router regardless of the TTL. Inspection of the label stack shows that P1 pops the last label and forwards the packet to P2 as an IP packet. This explains why the packet keeps getting processed by P2. MPLS echo request packets cannot be forwarded by use of the destination address in the IP header because the address is set to a 127/8 address.

```
PEl# trace mpls ipv4 10.131.159.252/32 ttl 5
Tracing MPLS Label Switched Path to 10.131.159.252/32, timeout is 2 seconds Codes:

'!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.

0 10.131.191.230 MRU 1496 [Labels: 22/19 Exp: 0/0]
R 1 10.131.159.226 MRU 1500 [Labels: 19 Exp: 0] 40 ms
R 2 10.131.159.229 MRU 1504 [implicit-null] 28 ms
! 3 10.131.159.230 40 ms
pel#
```

MTU Discovery in an LSP Example

The following example shows the results of a **trace mpls** command when the LSP is formed with labels created by LDP:

```
PEl# trace mpls ipv4 10.131.159.252/32
Tracing MPLS Label Switched Path to 10.131.159.252/32, timeout is 2 seconds Codes:
    '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
    0 10.131.191.230 MRU 1496 [Labels: 22/19 Exp: 0/0]
R 1 10.131.159.226 MRU 1500 [Labels: 19 Exp: 0] 40 ms
R 2 10.131.159.229 MRU 1504 [implicit-null] 28 ms
! 3 10.131.159.230 40 ms
pel#
```

You can determine the MRU for the LSP at each hop through the use of the **show mpls forwarding detail**command:

```
PE1# show mpls forwarding 10.131.159.252 detail
Local
       Outgoing
                   Prefix
                                     Bytes tag Outgoing
                                                            Next Hop
tag
       tag or VC
                   or Tunnel Id
                                     switched
                                                interface
2.2
                   10.131.159.252/32 0
                                                            point2point
                                                 Tu1
       MAC/Encaps=14/22, MRU=1496, Tag Stack{22 19}, via Et0/0
        AABBCC009700AABBCC0098008847 0001600000013000
        No output feature configured
```

To determine how large an echo request will fit on the LSP, first calculate the size of the IP MTU by using the **show interface** *interface-name* command:

```
PE1# show interface e0/0
Ethernet0/0 is up, line protocol is up
  Hardware is Lance, address is aabb.cc00.9800 (bia aabb.cc00.9800)
  Internet address is 10.131.191.230/30
  MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 255/255, load 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:01, output 00:00:01, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
  Oueueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     377795 packets input, 33969220 bytes, 0 no buffer
     Received 231137 broadcasts, 0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     0 input packets with dribble condition detected
     441772 packets output, 40401350 bytes, 0 underruns
     0 output errors, 0 collisions, 10 interface resets
     0 babbles, 0 late collision, 0 deferred
     0 lost carrier, 0 no carrier
     0 output buffer failures, 0 output buffers swapped out
```

The IP MTU in the **show interface** *interface-name* example is 1500 bytes. Subtract the number of bytes corresponding to the label stack from the MTU number. The output of the **show mpls forwarding** command indicates that the Tag stack consists of one label (21). Therefore, the largest MPLS echo request packet that can be sent in the LSP is $1500 - (2 \times 4) = 1492$.

You can validate this by using the following **mpls ping** command:

```
PE1# ping mpls ipv4 10.131.159.252/32 sweep 1492 1500 1 repeat 1
Sending 1, [1492..1500]-byte MPLS Echos to 10.131.159.252/32,
    timeout is 2 seconds, send interval is 0 msec:
Codes:
    '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
!QQQQQQQQQ
Success rate is 11 percent (1/9), round-trip min/avg/max = 40/40/40 ms
```

In this command, echo packets that have a range in size from 1492 to 1500 bytes are sent to the destination address. Only packets of 1492 bytes are sent successfully, as indicated by the exclamation point (!). Packets of byte sizes 1493 to 1500 are source-quenched, as indicated by the Qs.

You can pad an MPLS echo request so that a payload of a given size can be tested. The pad TLV is useful when you use the MPLS echo request to discover the MTU that is supportable by an LSP. MTU discovery is extremely important for applications like AToM that contain non-IP payloads that cannot be fragmented.

Tracking Packets Tagged as Implicit Null Example

In the following example, Tunnel 1 is shut down, and only an LSP formed with LDP labels is established. An implicit null is advertised between the P2 and PE2 routers. Entering an MPLS LSP traceroute command at the PE1 router results in the following output that shows that packets are forwarded from P2 to PE2 with

an implicit-null label. Address 10.131.159.229 is configured for the P2 Ethernet 0/0 out interface for the PE2 router.

```
PEl# trace mpls ipv4 10.131.159.252/32
Tracing MPLS Label Switched Path to 10.131.159.252/32, timeout is 2 seconds Codes:
    '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
    0 10.131.191.230 MRU 1496 [Labels: 22/19 Exp: 0/0]
R 1 10.131.159.226 MRU 1500 [Labels: 19 Exp: 0] 40 ms
R 2 10.131.159.229 MRU 1504 [implicit-null] 28 ms
! 3 10.131.159.230 40 ms
pel#
```

Tracking Untagged Packets Example

Untagged cases are valid configurations for IGP LSPs that could cause problems for MPLS VPNs.

A **show mpls forwarding-table** command and a **show mpls ldp discovery** command issued at the P2 router show that LDP is properly configured:

```
P2# show mpls forwarding-table 10.131.159.252
Local Outgoing
                   Prefix
                                     Bytes tag
                                                Outgoing
                                                            Next Hop
                   or Tunnel Id
       tag or VC
                                     switched
                                                 interface
tag
       Pop tag
                   10.131.159.252/32 0
                                                 Et0/0
                                                            10.131.159.230
P2# show mpls ldp discovery
 Local LDP Identifier:
    10.131.159.251:0
    Discovery Sources:
    Interfaces:
        Ethernet0/0 (ldp): xmit/recv
            LDP Id: 10.131.159.252:0
        Ethernet1/0 (ldp): xmit/recv
            LDP Id: 10.131.191.251:0
```

The **show mpls ldp discovery** command output shows that Ethernet interface 0/0, which connects PE2 to P2, is sending and receiving packets.

If a **no mpls ip** command is entered on Ethernet interface 0/0, this could prevent an LDP session between the P2 and PE2 routers from being established. A **show mpls ldp discovery** command entered on the PE router shows that the MPLS LDP session with the PE2 router is down.

```
P2# show mpls ldp discovery
Local LDP Identifier:
10.131.159.251:0
Discovery Sources:
Interfaces:
Ethernet0/0 (ldp): xmit
Ethernet1/0 (ldp): xmit/recv
LDP Id: 10.131.191.251:0
```

If the MPLS LDP session to PE2 goes down, the LSP to 10.131.159.252 becomes untagged, as shown by the **show mpls forwarding-table** command:

```
P2# show mpls forwarding-table 10.131.159.252/32
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
19 Untagged 10.131.159.252/32 864 Et0/0 10.131.159.230
```

Untagged cases would provide an MPLS LSP traceroute reply with packets tagged with No Label, as shown in the following display. You may need to reestablish an MPLS LSP session from interface P2 to

PE2 by entering an **mpls ip** command on the output interface from P2 to PE2, which is Ethernet 0/0 in this example:

```
PEl# trace mpls ipv4 10.131.159.252/32

Tracing MPLS Label Switched Path to 10.131.159.252/32, timeout is 2 seconds

Codes:

'!' - success, 'Q' - request not sent, '.' - timeout,

'L' - labeled output interface, 'B' - unlabeled output interface,

'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,

'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,

'P' - no rx intf label prot, 'p' - premature termination of LSP,

'R' - transit router, 'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

0 10.131.191.230 MRU 1500 [Labels: 20 Exp: 0]

R 1 10.131.159.226 MRU 1500 [Labels: 19 Exp: 0] 80 ms

R 2 10.131.159.229 MRU 1504 [No Label] 28 ms <----No MPLS session from P2 to PE2.
```

Determining Why a Packet Could Not Be Sent Example

The following example shows a **ping mpls** command when an MPLS echo request is not sent. The transmission failure is shown by the returned Qs.

The following **show mpls forwarding-table** command and **show ip route** command demonstrate that the IPv4 address (10.0.0.1)address is not in the LFIB or RIB routing table. Therefore, the MPLS echo request is not sent.

```
PE1# show mpls forwarding-table 10.0.0.1
Local Outgoing Prefix Bytes tag Outgoing Next Hop
tag tag or VC or Tunnel Id switched interface
PE1# show ip route 10.0.0.1
% Subnet not in table
```

Detecting LSP Breaks when Load Balancing Is Enabled for IPv4 LSPs Example

In the following examples, different paths are followed to the same destination. The output from these examples demonstrates that load balancing occurs between the originating router and the target router.

To ensure that Ethernet interface 1/0 on the PE1 router is operational, enter the following commands on the PE1 router:

```
PE1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
PE1(config)# interface ethernet 1/0
PE1(config-if)# no shutdown
PE1(config-if)# end
*Dec 31 19:14:10.034: %LINK-3-UPDOWN: Interface Ethernet1/0, changed state to up
*Dec 31 19:14:11.054: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/0,
```

```
changed state to upend
PE1#
*Dec 31 19:14:12.574: %SYS-5-CONFIG_I: Configured from console by console
*Dec 31 19:14:19.334: %OSPF-5-ADJCHG: Process 1, Nbr 10.131.159.252 on Ethernet1/0
from LOADING to FULL, Loading Done
PE1#
```

The following **show mpls forwarding-table** command displays the possible outgoing interfaces and next hops for the prefix 10.131.159.251/32:

```
\texttt{PE1} \# \textbf{ show mpls forwarding-table 10.131.159.251/32}
Local
       Outgoing
                     Prefix
                                         Bytes tag Outgoing
                                                                  Next Hop
tag
        tag or VC
                     or Tunnel Id
                                         switched
                                                     interface
                     10.131.159.251/32 0
                                                      Et0/0
                                                                  10.131.191.229
                     10.131.159.251/32 0
                                                     Et1/0
        2.0
                                                                  10.131.159.245
```

The following **ping mpls** command to 10.131.159.251/32 with a destination UDP address of 127.0.0.1 shows that the selected path has a path index of 0:

```
Router# ping mpls ipv4
10.131.159.251/32 destination
 127.0.0.1/32
Sending 1, 100-byte MPLS Echos to 10.131.159.251/32,
      timeout is 2 seconds, send interval is 0 msec:
Codes:
    '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Success rate is 100 percent (1/1), round-trip min/avg/max = 40/40/40 ms
*Dec 29 20:42:40.638: LSPV: Echo Request sent on IPV4 LSP, load_index 2,
pathindex 0, size 100
*Dec 29 20:42:40.638: 46 00 00 64 00 00 40 00 FF 11 9D 03 0A 83 BF FC
*Dec 29 20:42:40.638: 7F 00 00 01 94 04 00 00 0D AF 0D AF 00 4C 14 70
*Dec 29 20:42:40.638: 00 01 00 00 01 02 00 00 1A 00 00 1C 00 00 01
*Dec 29 20:42:40.638: C3 9B 10 40 A3 6C 08 D4 00 00 00 00 00 00 00 00
*Dec 29 20:42:40.638: 00 01 00 09 00 01 00 05 0A 83 9F FB 20 00 03 00
*Dec 29 20:42:40.638: 13 01 AB CD AB CD AB CD AB CD AB CD AB CD AB CD
*Dec 29 20:42:40.638: AB CD AB CD
*Dec 29 20:42:40.678: LSPV: Echo packet received: src 10.131.159.225,
dst 10.131.191.252, size 74
*Dec 29 20:42:40.678: AA BB CC 00 98 01 AA BB CC 00 FC 01 08 00 45 C0
*Dec 29 20:42:40.678: 00 3C 32 D6 00 00 FD 11 15 37 0A 83 9F E1 0A 83
*Dec 29 20:42:40.678: BF FC 0D AF 0D AF 00 28 D1 85 00 01 00 00 02 02
*Dec 29 20:42:40.678: 03 00 1A 00 00 1C 00 00 00 01 C3 9B 10 40 A3 6C
*Dec 29 20:42:40.678: 08 D4 C3 9B 10 40 66 F5 C3 C8
```

The following **ping mpls** command to 10.131.159.251/32 with a destination UDP address of 127.0.0.3 shows that the selected path has a path index of 1:

```
PEl# ping mpls ipv4 10.131.159.251/32 destination 127.0.0.3/32

Sending 1, 100-byte MPLS Echos to 10.131.159.251/32,
    timeout is 2 seconds, send interval is 0 msec:

Codes:

'!' - success, 'Q' - request not sent, '.' - timeout,
 'L' - labeled output interface, 'B' - unlabeled output interface,
 'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
 'P' - no rx intf label prot, 'p' - premature termination of LSP,
 'R' - transit router, 'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.
!

Success rate is 100 percent (1/1), round-trip min/avg/max = 40/40/40 ms
PEl#
*Dec 29 20:43:09.518: LSPV: Echo Request sent on IPV4 LSP, load_index 13,
pathindex 1, size 100
```

```
*Dec 29 20:43:09.518: 46 00 00 64 00 00 40 00 FF 11 9D 01 0A 83 BF FC *Dec 29 20:43:09.518: 7F 00 00 03 94 04 00 00 0D AF 0D AF 0D AF 00 4C 88 58 *Dec 29 20:43:09.518: 00 01 00 00 01 02 00 03 80 00 01 D0 00 00 00 01 *Dec 29 20:43:09.518: 00 01 00 00 09 00 01 00 05 0A 83 9F FB 20 00 03 00 *Dec 29 20:43:09.518: 13 01 AB CD *Dec 29 20:43:09.518: 13 01 AB CD *Dec 29 20:43:09.518: AB CD AB CD *Dec 29 20:43:09.518: AB CD AB CD *Dec 29 20:43:09.558: LSPV: Echo packet received: src 10.131.159.229, dst 10.131.191.252, size 74 *Dec 29 20:43:09.558: AA BB CC 00 98 01 AA BB CC 00 FC 01 08 00 45 C0 *Dec 29 20:43:09.558: AB CD *Dec 29 20:43:09.558: BF FC 0D AF 0D AF 0D AF 00 28 D7 70 00 01 00 00 02 02 *Dec 29 20:43:09.558: BF FC 0D AF 0D AF 00 28 D7 70 00 01 00 00 02 02 *Dec 29 20:43:09.558: 03 00 38 00 00 1D 00 00 00 01 C3 9B 10 5D 84 B3 *Dec 29 20:43:09.558: 95 84 C3 9B 10 5D 48 3D 50 78
```

To see the actual path chosen, enter the **debug mpls lspv** command with the **packet** and **data** keywords.

The load balancing algorithm attempts to uniformly distribute packets across the available output paths by hashing based on the IP header source and destination addresses. The selection of the *address-start,address-end*, and *address-increment* arguments for the **destination** keyword may not provide the expected results.

Specifying the Interface Through Which Echo Packets Leave a Router Example

The following example tests load balancing from the upstream router:

```
Router# ping mpls ipv4 10.131.161.251/32 ttl 1 repeat 1 dsmap hashkey ipv4 bitmap 8
Sending 1, 100-byte MPLS Echos to 10.131.161.251/32,
     timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, \bar{X}' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Echo Reply received from 10.131.131.2
  DSMAP 0, DS Router Addr 10.131.141.130, DS Intf Addr 10.131.141.130
    Depth Limit 0, MRU 1500 [Labels: 54 Exp: 0]
    Multipath Addresses:
                      127.0.0.5
                                      127.0.0.7
                                                       127.0.0.8
      127.0.0.3
  DSMAP 1, DS Router Addr 10.131.141.2, DS Intf Addr 10.131.141.2
    Depth Limit 0, MRU 1500 [Labels: 40 Exp: 0]
    Multipath Addresses:
      127.0.0.1
                      127.0.0.2
                                      127.0.0.4
                                                       127.0.0.6
```

The following example validates that the transit router reported the proper results by determining the Echo Reply sender address two hops away and checking the rx label advertised upstream:

```
Success rate is 0 percent (0/1)
Router# trace mpls ipv4 10.131.161.251/32 destination 127.0.0.6 ttl 2
Tracing MPLS Label Switched Path to 10.131.161.251/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
```

```
0 10.131.131.1 10.131.131.2 MRU 1500 [Labels: 37 Exp: 0]
L 1 10.131.131.2 10.131.141.2 MRU 1500 [Labels: 40 Exp: 0] 0 ms, ret code 8
L 2 10.131.141.2 10.131.150.2 MRU 1504 [Labels: implicit-null Exp: 0] 0 ms, ret code 8
Router#
Router# telnet 10.131.141.2
Trying 10.131.141.2 ... Open
User Access Verification
Password:
Router> en
The following example shows how the output interface
keyword forces an LSP traceroute out Ethernet interface 0/0:
Router# show mpls forwarding-table 10.131.159.251
Local Outgoing
                     Prefix
                                       Bytes Label
                                                                 Next. Hop
                                                      Outaoina
                                                      interface
Label Label or VC
                     or Tunnel Id
                                        Switched
2.0
       19
                     10.131.159.251/32 0
                                                      Et1/0
                                                                  10.131.159.245
       18
                     10.131.159.251/32 0
                                                      Et0/0
                                                                  10.131.191.229
Router# trace mpls ipv4 10.131.159.251/32
Tracing MPLS Label Switched Path to 10.131.159.251/32, timeout is 2 seconds
Type escape sequence to abort.
  0 10.131.159.246 MRU 1500 [Labels: 19 Exp: 0]
L 1 10.131.159.245 MRU 1504 [Labels: implicit-null Exp: 0] 4 ms
! 2 10.131.159.229 20 ms
Router# trace mpls ipv4 10.131.159.251/32 output-interface ethernet0/0
Tracing MPLS Label Switched Path to 10.131.159.251/32, timeout is 2 seconds
Type escape sequence to abort.
  0 10.131.191.230 MRU 1500 [Labels: 18 Exp: 0]
L 1 10.131.191.229 MRU 1504 [Labels: implicit-null Exp: 0] 0 \ensuremath{\mathsf{ms}}
! 2 10.131.159.225 1 ms
```

Pacing the Transmission of Packets Example

The following example shows the pace of the transmission of packets:

```
Router# ping mpls ipv4 10.5.5.5/32 interval 100

Sending 5, 100-byte MPLS Echos to 10.5.5.5/32,
    timeout is 2 seconds, send interval is 100 msec:

Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'I' - unknown upstream index,
    'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/29/36 ms PE-802
```

Interrogating the Transit Router for Its Downstream Information Example

The following example shows sample output when a router with two output paths is interrogated:

```
Router# ping mpls ipv4 10.161.251/32 ttl 4 repeat 1 dsmap hashkey ipv4 bitmap 16

Sending 1, 100-byte MPLS Echos to 10.131.161.251/32,
    timeout is 2 seconds, send interval is 0 msec:

Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

L

Echo Reply received from 10.131.131.2

DSMAP 0, DS Router Addr 10.131.141.130, DS Intf Addr 10.131.141.130

Depth Limit 0, MRU 1500 [Labels: 54 Exp: 0]
```

```
Multipath Addresses:
                   127.0.0.6
                                     127.0.0.9
                                                      127.0.0.10
     127.0.0.3
     127.0.0.12
                     127.0.0.13
                                     127.0.0.14
                                                      127.0.0.15
     127.0.0.16
 DSMAP 1, DS Router Addr 10.131.141.2, DS Intf Addr 10.131.141.2
   Depth Limit 0, MRU 1500 [Labels: 40 Exp: 0]
   Multipath Addresses:
                     127.0.0.2
                                      127.0.0.4
                                                      127.0.0.5
     127.0.0.1
     127.0.0.7
                     127.0.0.8
                                      127.0.0.11
Success rate is 0 percent (0/1)
```

The multipath addresses cause a packet to transit to the router with the output label stack. The **ping mpls** command is useful for determining the number of output paths, but when the router is more than one hop away a router cannot always use those addresses to get the packet to transit through the router being interrogated. This situation exists because the change in the IP header destination address may cause the packet to be load-balanced differently by routers between the source router and the responding router. Load balancing is affected by the source address in the IP header. The following example tests load-balancing reporting from the upstream router:

```
Router# ping mpls ipv4 10.131.161.251/32 ttl 1 repeat 1 dsmap hashkey ipv4 bitmap 8
```

```
Sending 1, 100-byte MPLS Echos to 10.131.161.251/32,
    timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Echo Reply received from 10.131.131.2
  DSMAP 0, DS Router Addr 10.131.141.130, DS Intf Addr 10.131.141.130
    Depth Limit 0, MRU 1500 [Labels: 54 Exp: 0]
    Multipath Addresses:
      127.0.0.3
                      127.0.0.5
                                                      127.0.0.8
  DSMAP 1, DS Router Addr 10.131.141.2, DS Intf Addr 10.131.141.2
    Depth Limit 0, MRU 1500 [Labels: 40 Exp: 0]
    Multipath Addresses:
      127.0.0.1
                      127.0.0.2
                                      127.0.0.4
                                                      127.0.0.6
```

To validate that the transit router reported the proper results, determine the Echo Reply sender address that is two hops away and consistently check the rx label that is advertised upstream. The following is sample output:

```
Success rate is 0 percent (0/1)
Router# trace mpls ipv4 10.131.161.251/32 destination 127.0.0.6 ttl 2
Tracing MPLS Label Switched Path to 10.131.161.251/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label 'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
  0 10.131.131.1 10.131.131.2 MRU 1500 [Labels: 37 Exp: 0]
L 1 10.131.131.2 10.131.141.2 MRU 1500 [Labels: 40 Exp: 0] 0 ms, ret code 8
L 2 10.131.141.2 10.131.150.2 MRU 1504 [Labels: implicit-null Exp: 0] 0 ms, ret code 8
Router#
Router# telnet 10.131.141.2
Trying 10.131.141.2 ... Open
User Access Verification
Password:
Router> en
Router# show mpls forwarding-table 10.131.161.251
                    Prefix
Local Outgoing
                                       Bytes tag Outgoing
                                                              Next Hop
```

Interrogating a Router for Its DSMAP Example

The following example interrogates the software and hardware forwarding layer for their depth limit that needs to be returned in the DSMAP TLV.

```
Router# ping mpls ipv4 10.131.159.252/32 ttl 1 dsmap
Sending 1, 100-byte MPLS Echos to 10.131.159.252/32,
    timeout is 2 seconds, send interval is 0 msec:
Codes:
  '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Echo Reply received from 10.131.191.229
  DSMAP 0, DS Router Addr 10.131.159.225, DS Intf Addr 10.131.159.225
    Depth Limit 0, MRU 1508 [Labels: 18 Exp: 0]
    Multipath Addresses:
      127.0.0.1
                       127.0.0.2
                                                         127.0.0.4
                                        127.0.0.3
      127.0.0.5
                       127.0.0.6
                                                         127.0.0.8
                                        127.0.0.7
      127.0.0.9
                      127.0.0.10
                                       127.0.0.11
                                                       127.0.0.12
                                      127.0.0.15
                      127.0.0.14
                                                      127.0.0.16
      127.0.0.13
      127.0.0.17
                      127.0.0.18
                                      127.0.0.19
                                                      127.0.0.20
      127.0.0.21
                      127.0.0.22
                                      127.0.0.23
                                                      127.0.0.24
      127.0.0.25
                      127.0.0.26
                                      127.0.0.27
                                                      127.0.0.28
      127.0.0.29
                      127.0.0.30
                                      127.0.0.31
                                                      127.0.0.32
Success rate is 0 percent (0/1)
```

Requesting that a Transit Router Validate the Target FEC Stack Example

The following example causes a transit router to validate the target FEC stack by which an LSP to be tested is identified:

```
Router# trace mpls ipv4 10.5.5.5/32 flags fec
Tracing MPLS Label Switched Path to 10.5.5.5/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.'
                                                      - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
  0 10.2.3.2 10.2.3.3 MRU 1500 [Labels: 19 Exp: 0] L 1 10.2.3.3 10.3.4.4 MRU 1500
[Labels: 19 Exp: 0] 40 ms, ret code 8 L 2 10.3.4.4 10.4.5.5 MRU 1504 [Labels: implicit-
null Exp: 0] 32 ms, ret code 8 ! 3 10.4.5.5 40 ms, ret code 3
Router# ping mpls ipv4 10.5.5.5/32
Sending 5, 100-byte MPLS Echos to 10.5.5.5/32
    timeout is 2 seconds, send interval is 0 msec:
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
     size 100, reply addr 10.4.5.5, return code 3
```

```
! size 100, reply addr 10.4.5.5, return code 3
! size 100, reply addr 10.4.5.5, return code 3
! size 100, reply addr 10.4.5.5, return code 3
! size 100, reply addr 10.4.5.5, return code 3
Success rate is 100 percent (5/5), round-trip min/avg/max = 28/31/32 ms
```

Enabling LSP Ping to Detect LSP Breakages Caused by Untagged Interfaces Example

The following example shows the extra label that is added to the end of the label stack when there is explicit-null label shimming:

```
Router# trace mpls ipv4 10.131.159.252/32 force-explicit-null

Tracing MPLS Label Switched Path to 10.131.159.252/32, timeout is 2 seconds Codes:

'!' - success, 'Q' - request not sent, '.' - timeout,

'L' - labeled output interface, 'B' - unlabeled output interface,

'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,

'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,

'P' - no rx intf label prot, 'p' - premature termination of LSP,

'R' - transit router, 'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

0 10.131.191.252 MRU 1492 [Labels: 16/18/explicit-null Exp: 0/0/0]

L 1 10.131.191.229 MRU 1508 [Labels: 18/explicit-null Exp: 0/0] 0 ms

L 2 10.131.159.225 MRU 1508 [Labels: explicit-null Exp: 0] 0 ms

! 3 10.131.159.234 4 ms
```

The following example shows the command output when there is not explicit-null label shimming:

```
Router# trace mpls ipv4 10.131.159.252/32

Tracing MPLS Label Switched Path to 10.131.159.252/32, timeout is 2 seconds Codes: '!' - success, 'Q' - request not sent, '.' - timeout, 'L' - labeled output interface, 'B' - unlabeled output interface, 'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label, 'P' - no rx intf label prot, 'p' - premature termination of LSP, 'R' - transit router, 'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

0 10.131.191.252 MRU 1496 [Labels: 16/18 Exp: 0/0]

L 1 10.131.191.229 MRU 1508 [Labels: 18 Exp: 0] 4 ms

L 2 10.131.159.225 MRU 1504 [Labels: implicit-null Exp: 0] 4 ms

! 3 10.131.159.234 4 ms
```

Viewing the AToM VCCV Capabilities Advertised to and Received from the Peer Example

The following example shows that router PE1 advertises both AToM VCCV Type 1 and Type 2 switching capabilities and that the remote router PE2 advertises only a Type 2 switching capability.

```
Router# show mpls 12transport binding
  Destination Address: 10.131.191.252, VC ID: 333
    Local Label: 16
       Cbit: 1,
                   VC Type: Ethernet,
                                         GroupID: 0
       MTU: 1500,
                    Interface Desc: n/a
       VCCV Capabilities: Type 1, Type 2 <---- Locally advertised VCCV capabilities
    Remote Label: 19
       Cbit: 1,
                   VC Type: Ethernet,
                                         GroupID: 0
       MTU: 1500,
                    Interface Desc: n/a
       VCCV Capabilities: Type 2
                                           <----Remotely advertised VCCV capabilities
```

Additional References

Related Documents

Related Topic	Document Title
Usage examples for the IP ping and IP traceroute commands	Understanding the Ping and Traceroute Commands
Configuration and verification tasks for MPLS LDP	MPLS Label Distribution Protocol (LDP) Overview
Configuration and verification tasks for AToM	Any Transport over MPLS
Switching services commands	Multiprotocol Label Switching Command Reference
Automatic detection of which PE routers are added to or removed from the Virtual Private LAN Service (VPLS) domain	Information About VPLS Autodiscovery: BGP Based

Standards

Standard	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIB	MIBs Link
No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use the Cisco MIB Locator, found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
draft-ietf-pwe3-vccv-01.txt	Pseudo-Wire (PW) Virtual Circuit Connection Verification (VCCV)
RFC 2113	IP Router Alert Option
RFC 4379	Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for MPLS LSP Ping Traceroute for LDP TE and LSP Ping for VCCV

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 7 Feature Information for MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV

Feature Name	Releases	Feature Information
MPLS LSP Ping/Traceroute for	12.0(27)S	The MPLS LSP Ping/Traceroute
LDP/TE, and LSP Ping for VCCV	12.2(18)SXE	for LDP/TE, and LSP Ping for VCCV feature helps service
, , ,	12.4(6)T	providers monitor label switched
	12.2(28)SB	paths and quickly isolate MPLS forwarding problems.
	12.0(32)SY	In Cisco IOS Release 12.0(27)S,
	12.4(11)T	this feature was introduced. The
	12.2(31)SB2	following commands were
	12.2(33)SRB	introduced: ping mpls and trace mpls .
	12.2(33)SXH	The feature was incorporated into
	12.3(33)SXI	Cisco IOS Release 12.2(18)SXE. The following commands were modified: ping mpls and trace mpls .
		In Cisco IOS Release 12.4(6)T, the mpls oam command was introduced and the trace mpls command was modified.
		This feature was integrated into Cisco IOS Release 12.2(28)SB.
		The feature was incorporated into Cisco IOS Release 12.0(32)SY. The show mpls oam echo statistics command was added.
		The feature was incorporated into Cisco IOS Release 12.4(11)T. AToM Virtual Circuit Connection Verification (VCCV) is supported. The following commands were modified: mpls oam, ping mpls, and trace mpls.
		The feature was incorporated into Cisco IOS Release 12.2(31)SB2.
		In Cisco IOS Release 12.2(33)SRB, support for FEC 129 was added.
		This feature was integrated into Cisco IOS Release 12.2(33)SXH.
		This feature was integrated into Cisco IOS Release 12.2(33)SXI.

Glossary

FEC --forwarding equivalence class. A set of packets that can be handled equivalently for forwarding purposes and are thus suitable for binding to a single label. Examples include the set of packets destined for one address prefix and the packets in any flow.

flow --A set of packets traveling between a pair of hosts, or between a pair of transport protocol ports on a pair of hosts. For example, packets with the same source address, source port, destination address, and destination port might be considered a flow.

A flow is also a stream of data traveling between two endpoints across a network (for example, from one LAN station to another). Multiple flows can be transmitted on a single circuit.

fragmentation -- The process of breaking a packet into smaller units when they are to be transmitted over a network medium that cannot support the original size of the packet.

ICMP -- Internet Control Message Protocol. A network layer Internet protocol that reports errors and provides other information relevant to IP packet processing. It is documented in RFC 792.

LFIB --Label Forwarding Information Base. A data structure and way of managing forwarding in which destinations and incoming labels are associated with outgoing interfaces and labels.

localhost --A name that represents the host router (device). The localhost uses the reserved loopback IP address 127.0.0.1.

LSP --label switched path. A connection between two routers in which MPLS forwards the packets.

LSPV --Label Switched Path Verification. An LSP Ping subprocess. It encodes and decodes MPLS echo requests and replies, and it interfaces with IP, MPLS, and AToM switching for sending and receiving MPLS echo requests and replies. At the MPLS echo request originator router, LSPV maintains a database of outstanding echo requests for which echo responses have not been received.

MPLS router alert label--An MPLS label of 1. An MPLS packet with a router alert label is redirected by the router to the Route Processor (RP) processing level for handling. This allows these packets to bypass any forwarding failures in hardware routing tables.

MRU --maximum receive unit. Maximum size, in bytes, of a labeled packet that can be forwarded through an LSP.

MTU --maximum transmission unit. Maximum packet size, in bytes, that a particular interface can send or receive.

punt --Redirect packets with a router alert from the line card or interface to Route Processor (RP) level processing for handling.

PW --pseudowire. A form of tunnel that carries the essential elements of an emulated circuit from one provider edge (PE) router to another PE router over a packet-switched network.

RP --Route Processor. The processor module in a Cisco 7000 series router that contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.

RSVP --Resource Reservation Protocol. A protocol that supports the reservation of resources across an IP network. Applications running on IP end systems can use RSVP to indicate to other nodes the nature (bandwidth, jitter, maximum burst, and so on) of the packet streams they want to receive. RSVP depends on IPv6. Is is also known as Resource Reservation Setup Protocol.

TLV --type, length, values. A block of information included in a Cisco Discovery Protocol address.

TTL hiding--Time-to-live is a parameter you can set that indicates the maximum number of hops a packet should take to reach its destination.

UDP --User Datagram Protocol. Connectionless transport layer protocol in the TCP/IP protocol stack. UDP is a simple protocol that exchanges datagrams without acknowledgments or guaranteed delivery, so error processing and retransmission must be handled by other protocols. UDP is defined in RFC 768.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS EM—MPLS LSP Multipath Tree Trace

The MPLS EM--MPLS LSP Multipath Tree Trace feature provides the means to discover all possible equal-cost multipath (ECMP) routing paths of a label switched path (LSP) between an egress and ingress router. Once discovered, these paths can be retested on a periodic basis using Multiprotocol Label Switching (MPLS) LSP ping or traceroute. This feature is an extension to the MPLS LSP traceroute functionality for the tracing of IPv4 LSPs.

You can use the MPLS EM--MPLS LSP Multipath Tree Trace feature to discover all paths for an IPv4 LSP.

This implementation of the MPLS EM--MPLS LSP Multipath Tree Trace feature is based on RFC 4379, Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures.

For information on the use of MPLS LSP ping and traceroute, see the MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV feature module.

Cisco MPLS Embedded Management (EM) is a set of standards and value-added services that facilitate the deployment, operation, administration, and management of MPLS-based networks according to the fault, configuration, accounting, performance, and security (FCAPS) model.

- Finding Feature Information, page 61
- Prerequisites for MPLS EM MPLS LSP Multipath Tree Trace, page 62
- Restrictions for MPLS EM-MPLS LSP Multipath Tree Trace, page 62
- Information About MPLS EM-MPLS LSP Multipath Tree Trace, page 62
- How to Configure MPLS EM MPLS LSP Multipath Tree Trace, page 64
- Configuration Examples for MPLS EM MPLS LSP Multipath Tree Trace, page 81
- Additional References for MPLS LSP Multipath Tree Trace, page 89
- Related Documents, page 89
- Feature Information for MPLS EM-MPLS LSP Multipath Tree Trace, page 91
- Glossary, page 93

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS EM - MPLS LSP Multipath Tree Trace

- You must understand the concepts and know how to use MPLS LSP ping or traceroute as described in the MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV document.
- The routers in your network must be using an implementation based on RFC 4379, *Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures*.
- You should know the following about your MPLS network:
 - The topology
 - The number of links in your network
 - The expected number of LSPs, and how many LSPs
- Understand label switching, forwarding, and load balancing.

Restrictions for MPLS EM-MPLS LSP Multipath Tree Trace

- All restrictions that apply to the MPLS LSP Ping and LSP Traceroute features also apply to the MPLS EM-MPLS LSP Multipath Tree Trace feature:
 - You cannot use this feature to trace the path taken by AToM packets. This feature is not supported for AToM. (is supported for AToM.) However, you can use the feature to troubleshoot the Interior Gateway Protocol (IGP) LSP that is used by AToM.
 - You cannot use this feature to validate or trace MPLS Virtual Private Networks (VPNs). Multiple LSP paths are not discovered unless all routers in the MPLS core support an RFC 4379 implementation of *Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures*.
- This feature is not expected to operate in networks that support time-to-live (TTL) hiding.

Information About MPLS EM-MPLS LSP Multipath Tree Trace

- Overview of MPLS LSP Multipath Tree Trace, page 62
- Discovery of IPv4 Load Balancing Paths by MPLS SLP Multipath Tree Trace, page 63
- Echo Reply Return Codes Sent by the Router Processing Multipath LSP Tree Trace, page 63

Overview of MPLS LSP Multipath Tree Trace

As the number of MPLS deployments increases, the number of traffic types the MPLS networks carry could increase. In addition, load balancing on label switch routers (LSRs) in the MPLS network provides alternate paths for carrying MPLS traffic to a target router. The ability of service providers to monitor LSPs and quickly isolate MPLS forwarding problems is critical to their ability to offer services.

Prior to the release of the MPLS EM--MPLS LSP Multipath Tree Trace feature no automated way existed to discover all paths between provider edge (PE) routers. Troubleshooting forwarding problems between PEs was cumbersome.

The release of the MPLS EM--MPLS LSP Multipath Tree Trace feature provides an automated way to discover all paths from the ingress PE router to the egress PE router in multivendor networks that use IPv4 load balancing at the transit routers. Once the PE-to-PE paths are discovered, use MPLS LSP ping and MPLS LSP traceroute to periodically test them.

The MPLS EM--MPLS LSP Multipath Tree Trace feature requires the Cisco RFC-compliant implementation that is based on RFC 4379. If you do not have a Cisco software release that supports RFC 379, MPLS LSP multipath tree trace does not operate to discover all PE-to-PE paths.

Discovery of IPv4 Load Balancing Paths by MPLS SLP Multipath Tree Trace

IPv4 load balancing at a transit router is based on the incoming label stack and the source and destination addresses in the IP header. The outgoing label stack and IP header source address remain constant for each branch being traced.

When you execute MPLS SLP Multipath Tree Trace on the source LSR, the router needs to find the set of IP header destination addresses to use all possible output paths. The source LSR starts path discovery by sending a transit router a bitmap in an MPLS echo request. The transit router returns information in an MPLS echo request that contains subsets of the bitmap in a downstream map (DS Map) in an echo reply. The source router can then use the information in the echo reply to interrogate the next router. The source router interrogates each successive router until it finds one bitmap setting that is common to all routers along the path. The router uses TTL expiry to interrogate the routers to find the common bits.

For example, you could start path discovery by entering the following command at the source router:

Router# trace mpls multipath ipv4 10.131.101.129/32 hashkey ipv4 bitmap 16

This command sets the IP address of the target router as 10.131.101.192 255.255.255.255 and configures:

- The default hash key type to 8, which requests that an IPv4 address prefix and bit mask address set be returned in the DS Map in the echo reply.
- The bitmap size to 16. This means that MPLS SLP Multipath Tree Trace uses 16 addresses (starting with 127.0.0.1) in the discovery of all paths of an LSP between the source router and the target router.

If you enter the**trace mpls multipath ipv4 10.131.101.129/32** command, MPLS SLP Multipath Tree Trace uses the default hash type of 8 or IPv4 and a default bitmap size of 32. Your choice of a bitmap size depends on the number of routes in your network. If you have a large number of routes, you might need to use a larger bitmap size.

Echo Reply Return Codes Sent by the Router Processing Multipath LSP Tree Trace

The table below describes the characters that the router processing a multipath LSP tree trace packet returns to the sender about the failure or success of the request.

Table 8 Echo Reply Return Codes

Output Code	Echo Return Code	Meaning
Period "."		A timeout occurred before the target router could reply.
X	0	No return code.
M	1	Malformed request.
m	2	Unsupported type, length, values (TLVs).

Output Code	Echo Return Code	Meaning
!	3	Success.
F	4	No Forwarding Equivalence Class (FEC) mapping.
D	5	DS Map mismatch.
R	6	Downstream router but not target.
U	7	Reserved.
L	8	Labeled output interface.
В	9	Unlabeled output interface.
f	10	FEC mismatch.
N	11	No label entry.
P	12	No receive interface label protocol.
p	13	Premature termination of the LSP.
X	unknown	Undefined return code.

How to Configure MPLS EM - MPLS LSP Multipath Tree Trace

- Customizing the Default Behavior of MPLS Echo Packets, page 64
- Configuring MPLS LSP Multipath Tree Trace, page 66
- Discovering IPv4 Load Balancing Paths Using MPLS LSP Multipath Tree Trace, page 68
- Monitoring LSP Paths Discovered by MPLS LSP Multipath Tree Trace Using MPLS LSP Traceroute, page 70
- Using DSCP to Request a Specific Class of Service in an Echo Reply, page 73
- Controlling How a Responding Router Replies to an MPLS Echo Request, page 74
- Specifying the Output Interface for Echo Packets Leaving a Router for, page 76
- Setting the Pace of MPLS Echo Request Packet Transmission for MPLS LSP Multipath Tree Trace, page 77
- Enabling to Detect LSP Breakages Caused by an Interface That Lacks an MPLS Configuration, page
- Requesting That a Transit Router Validate the Target FEC Stack for MPLS LSP Multipath Tree Trace, page 79
- Setting the Number of Timeout Attempts for MPLS LSP Multipath Tree Trace, page 80

Customizing the Default Behavior of MPLS Echo Packets

Perform the following task to customize the default behavior of MPLS echo packets. You might need to customize the default echo packet encoding and decoding behavior to allow later implementations of the

Detecting MPLS Data Plane Failures (RFC 4379) to be deployed in networks running earlier versions of the draft.

MPLS LSP Multipath Tree Trace requires RFC 4379 (Revision 4).

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. mpls oam
- 4. echo revision $\{3 \mid 4\}$
- 5. [no] echo vendor-extension
- 6. end

DETAILED STEPS

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
		Enter your password if prompted.	
	Example:		
	Router> enable		
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 3	mpls oam	Enters MPLS OAM configuration mode and customizes the default behavior of echo packets.	
	Example:		
	Router(config)# mpls oam		
Step 4	echo revision {3 4}	Customizes the default behavior of echo packets.	
		The revision keyword set echo packet attributes to one of the following:	
	Example:	∘ 3 = draft-ietf-mpls-ping-03 (Revision 2)	
	Router(config-mpls)# echo revision 4	• 4 = RFC 4379 compliant (default)	
		Note The MPLS LSP Multipath Tree Trace feature requires Revision 4.	

	Command or Action	Purpose	
Step 5	[no] echo vendor-extension	Customizes the default behavior of echo packets.	
	<pre>Example: Router(config-mpls)# echo vendor- extension</pre>	 The vendor-extension keyword sends the Cisco-specific extension of TLVs with the echo packets. The no form of the command allows you to disable a Cisco vendor's extension TLVs that another vendor's noncompliant implementations may not support. The router default is echo vendor-extension. 	
Step 6	end	Exits to privileged EXEC mode.	
	<pre>Example: Router(config-mpls)# end</pre>		

Configuring MPLS LSP Multipath Tree Trace

Perform the following task to configure MPLS multipath LSP traceroute. This task helps discover all LSPs from an egress router to an ingress router.

Cisco LSP ping or traceroute implementations based on draft-ietf-mpls-lsp-ping-11 are capable in some cases of detecting the formatting of the sender of an MPLS echo request. However, certain cases exist in which an echo request or echo reply might not contain the Cisco extension TLV. To avoid complications due to certain cases where the echo packets are decoded assuming the wrong TLV formats, configure all routers in the network to operate in the same mode.

For an MPLS LSP multipath tree trace to be successful, the implementation in your routers must support RFC 4379 on all core routers.

If all routers in the network support RFC-4379 and another vendor's implementation exists that is not capable of properly handling Cisco's vendor TLV, the routers supporting the RFC-compliant or later configuration must include commands to disable the Cisco vendor TLV extensions.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. mpls oam
- 4. echo revision 4
- 5. [no] echo vendor-extension
- 6. end
- 7. trace mpls multipath ipv4 destination-ip-address/destination mask-length
- 8. debug mpls lspv multipath

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	•	
Stop 2	Router# configure terminal	Entare MDI S OAM configuration mode
oreh o	mpls oam	Enters MPLS OAM configuration mode.
	Example:	
	Router(config)# mpls oam	
Sten 4	echo revision 4	Customizes the default behavior of echo packets.
Otop 1	ceno revision 4	The revision 4 keywords set echo packet attributes to the default
	Example:	Revision 4 (RFC 4379 compliant).
	Router(config-mpls)# echo revision 4	Note The MPLS LSP Multipath Tree Trace feature requires Revision 4.
Step 5	[no] echo vendor-extension	(Optional) Customizes the default behavior of echo packets.
	Example:	• The vendor-extension keyword sends the Cisco-specific extension of TLVs with the echo packets.
	Router(config-mpls) echo vendor- extension	The no form of the command allows you to disable a Cisco vendor's extension TLVs that another vendor's noncompliant implementations may not support.
		The router default is echo vendor-extension .
Step 6	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-mpls)# end	

	Command or Action	Purpose
Step 7	address/destination mask-length Example:	 Discovers all LSPs from an egress router to an ingress router. The ipv4 keyword specifies the destination type as an LDP IPv4 address. The destination-ip-address argument is the address prefix of the target to be tested.
	Router# trace mpls multipath ipv4 10.131.161.251/32	 The destination-mask-length argument is the number of bits in the network mask of the target address. The / keyword before this argument is required.
Step 8	debug mpls lspv multipath	Displays multipath information related to the MPLS LSP Multipath Tree Trace feature.
	Example:	
	Router# debug mpls lspv multipath	

Discovering IPv4 Load Balancing Paths Using MPLS LSP Multipath Tree Trace

Perform the following task to discover IPv4 load balancing paths using MPLS LSP multipath tree trace.

A Cisco router load balances MPLS packets based on the incoming label stack and the source and destination addresses in the IP header. The outgoing label stack and IP header source address remain constant for each path being traced. The router needs to find the set of IP header destination addresses to use all possible output paths. This might require exhaustive searching of the 127.x.y.z/8 address space. Once you discover all paths from the source LSR to the target or destination LSR with MPLS LSP multipath tree trace, you can use MPLS LSP traceroute to monitor these paths.

The figure below shows how MPLS LSP multipath tree trace discovers LSP paths in a sample network. In the figure, the bitmap size is 16 and the numbers 0 to 15 represent the bitmapped addresses that MPLS LSP

multipath tree trace uses to discover all the paths from the source LSR R-101 to the target LSR R-150. The figure illustrates how the **trace mpls multipath** command discovers all LSP paths in the sample network.

Address: 1, 2, R-120 Address: 1, Address: 4 Address: 1, 2, 3, 4 5, 7, 13, 15 Target R-150 Address: 3, 5, 7, R-111 Address 7, 13 Source R-101 Address: 14 Address: 0, 6, 8, 9 Address: 6, 9, 14 10, 11, 12, 14 Address: 6, 9, R-121 R-132 12, 14

Figure 7 MPLS LSP Multipath Tree Trace Path Discovery in a Sample Network

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. mpls oam
- 4. echo revision 4
- **5**. end
- **6.** trace mpls multipath ipv4 destination-address/destination-mask-length hashkey ipv4 bitmap bitmapsize

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	mpls oam	Enters MPLS OAM configuration mode and sets the echo packet attribute to Revision 4 (RFC 4379 compliant).
	Example:	
	Router(config)# mpls oam	
Step 4	echo revision 4	Customizes the default behavior of echo packets.
	Example:	• The revision 4 keywords set echo packet attributes to the default Revision 4 (RFC 4379 compliant).
	Router(config-mpls)# echo revision 4	Note The MPLS LSP Multipath Tree Trace feature requires Revision 4.
Step 5	end	Exits to privileged EXEC mode.
	<pre>Example: Router(config-mpls)# end</pre>	
Ston 6		Discovers all MPLS LSPs from an egress router to an ingress router.
Step 0	trace mpls multipath ipv4 destination- address/destination-mask-length hashkey ipv4 bitmap bitmap-size	 The ipv4 keyword specifies the destination type as an LDP IPv4 address.
	Example:	• The <i>destination-address</i> argument is the address prefix of the target to be tested.
	Router# trace mpls multipath ipv4 10.131.161.251/32 hashkey ipv4 bitmap 16	• The <i>destination-mask-length</i> argument is the number of bits in the network mask of the target address. The / keyword before this argument is required.
		 The hashkey ipv4 keywords set the hashkey type to IPv4 addresses. The bitmap bitmap-size keyword and arguments set the bitmap size for multipath discovery.

Monitoring LSP Paths Discovered by MPLS LSP Multipath Tree Trace Using MPLS LSP Traceroute

Perform the following task to monitor LSP paths discovered by MPLS LSP multipath tree trace using MPLS LSP traceroute. You can take output directly from the **trace mpls multipath** command and add it to a **trace mpls** command periodically to verify that the path is still operating.

The figure below shows the mapping of the output of a **trace mpls multipath** command to a **trace mpls** command.

Figure 8 Mapping of trace mpls multipath Command Output to a trace mpls Command

Router# trace mpls multipath ipv4 10.1.1.150/32 hashkey ipv4 bitmap 16

output interface Et0/0 mource 10.1.111.101 destination 127.0.0.7

Router# trace mpls ipv4 10.1.1.1.150/32 output interface Et0/0 source 10.1.111.101 destination 127.0.0.7

trace mpl#pv4lestination -address/destinatestinatestinatess-standbless-end]
[address-incrathedffic-tragnel-interfaces-long-phase

Each path you discover with MPLS LSP Multipath Tree Trace can be tested in this manner periodically to monitor the LSP paths in your network.

tlv-revision-njumpere-explicit-quthjut interfracenter fathags fec

SUMMARY STEPS

- 1. enable
- 2. trace mpls multipath ipv4 destination-address/destination-mask-length hashkey ipv4 bitmap bitmapsize
- **3. trace mpls ipv4** *destination-address/destination-mask-length* [**output interface** *tx-interface*] [**source** *source-address*] [**destination** *address-start*
- 4. exit

DETAILED STEPS

Step 1 enable

Use this command to enable privileged EXEC mode. Enter your password if prompted. For example:

Example:

Router> enable Router#

Step 2 trace mpls multipath ipv4 destination-address/destination-mask-length hashkey ipv4 bitmap bitmap-size
Use this command to discover all MPLS LSPs from an egress router to an ingress router. For example:

Example:

```
Router# trace mpls multipath ipv4 10.1.1.150/32 hashkey ipv4 bitmap 16

Starting LSP Multipath Traceroute for 10.1.1.150/32

Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
```

```
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
LLLL!
Path 0 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
LLL!
Path 1 found.
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1
Path 2 found.
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
LL!
Path 3 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7
Paths (found/broken/unexplored) (4/0/0)
Echo Request (sent/fail) (14/0)
Echo Reply (received/timeout) (14/0)
Total Time Elapsed 468 ms
```

The output of the **trace mpls multipath ipv4** command in the example shows the result of path discovery with MPLS LSP multipath tree trace. In this example, the command sets the bitmap size to 16. Path discovery starts by MPLS LSP multipath tree trace using 16 bitmapped addresses as it locates LSP paths from the source router to the target router with prefix and mask 10.1.1.150/32. MPLS LSP multipath tree trace starts using the 127.x.y.z/8 address space with 127.0.0.1.

Step 3 trace mpls ipv4 *destination-address/destination-mask-length* [**output interface** *tx-interface*] [**source** *source-address*] [**destination** *address-start*

Use this command to verify that the paths discovered when you entered a **trace mpls multipath ipv4** command are still operating. For example, the output for Path 0 in the previous **trace mpls multipath ipv4** command in Step 2 is:

Example:

```
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
```

If you put the output for path 0 in the **trace mpls** command, you see the following results:

Example:

Router# trace mpls ipv4 10.1.1.150/32 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0

```
Tracing MPLS Label Switched Path to 10.1.1.150/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.'

    timeout.

  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x'
                                 - return code 0
Type escape sequence to abort.
  0 10.1.111.101 MRU 1500 [Labels: 33 Exp: 0]
L 1 10.1.111.111 MRU 1500 [Labels: 34 Exp: 0] 40 ms
L 2 10.2.121.121 MRU 1500 [Labels: 34 Exp: 0] 32 ms
L 3 10.3.132.132 MRU 1500 [Labels: 32 Exp: 0] 16 ms
L 4 10.4.140.240 MRU 1504 [Labels: implicit-null Exp: 0] 20 ms
! 5 10.5.150.50 20 ms
```

You can take output directly from the**trace mpls multipath** command and add it to a **trace mpls** command periodically to verify that the path is still operating (see the figure above).

Step 4 exi

Use this command to exit to user EXEC mode. for example:

Example:

Router# exit Router>

Using DSCP to Request a Specific Class of Service in an Echo Reply

A reply differentiated services code point (DSCP) option lets you request a specific class of service (CoS) in an echo reply.

The reply DSCP option is supported in the experimental mode for IETF draft-ietf-mpls-lsp-ping-03.txt. Cisco implemented a vendor-specific extension for the reply DSCP option rather than using a Reply TOS TLV. A Reply TOS TLV serves the same purpose as the **reply dscp** command in IETF draft-ietf-mpls-lsp-ping-11.txt. This draft provides a standardized method of controlling the reply DSCP.

Before RFC 4379, Cisco implemented the Reply DSCP option as an experimental capability using a Cisco vendor extension TLV. If a router is configured to encode MPLS echo packets for draft Version 3 implementations, a Cisco vendor extension TLV is used instead of the = Reply TOS TLV that was defined in draft Version 8.

To use DSCP to request a specific CoS in an echo reply, perform the following steps.

SUMMARY STEPS

- 1. enable
- 2. trace mpls multipath ipv4 destination-address/destination-mask-length [reply dscp dscp-value]
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	

	Command or Action	Purpose
Step 2	trace mpls multipath ipv4 destination- address/destination-mask-length [reply dscp dscp-value] Example: Router# trace mpls multipath ipv4 10.131.191.252/32 reply dscp 50	 Discovers all MPLS LSPs from an ingress router to an egress router and controls the DSCP value of an echo reply. The ipv4 keyword specifies the destination type as an LDP IPv4 address. The destination-address argument is the address prefix of the target to be tested. The destination-mask-length argument is the number of bits in the network mask of the target address. The / keyword before this argument is required. The reply dscp dscp-value keywords and argument are the DSCP value of an echo reply. A Reply TOS TLV serves the same purpose as the reply dscp command in IETF draft-ietf-mpls-lsp-ping-11.txt. Note To specify a DSCP value, you must enter the reply dscp dscp-value keywords and argument.
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Controlling How a Responding Router Replies to an MPLS Echo Request

To control how a responding router replies to an MPLS echo request, see the "Reply Modes for an MPLS LSP Ping and LSP Traceroute Echo Request Response" section.

• Reply Modes for an Echo Request Response, page 74

Reply Modes for an Echo Request Response

The reply mode controls how a responding router replies to an MPLS echo request sent by a **trace mpls multipath** command. There are two reply modes for an echo request packet:

- ipv4--Reply with an IPv4 User Datagram Protocol (UDP) packet (default)
- router-alert--Reply with an IPv4 UDP packet with router alert

Use the ipv4 and router-alert reply modes with each other to prevent false negatives. If you do not receive a reply via the ipv4 mode, send a test with the router-alert reply mode. If both fail, something is wrong in the return path. The problem might be due to an incorrect ToS setting.

IPv4 UDP Reply Mode: The IPv4 UDP reply mode is the most common reply mode used with a **trace mpls multipath** command when you want to periodically poll the integrity of an LSP. With this option, you do not have explicit control over whether the packet traverses IP or MPLS hops to reach the originator of the MPLS echo request. If the originating (headend) router fails to receive a reply to an MPLS echo request when you use the **reply mode ipv4** keywords, use the **reply mode router-alert** keywords.

Router-aler Reply Mode: The router-alert reply mode adds the router alert option to the IP header. When an IP packet that contains an IP router alert option in its IP header or an MPLS packet with a router alert

label as its outermost label arrives at a router, the router punts (redirects) the packet to the Route Processor (RP) process level for handling. This forces the RP of each intermediate router to specifically handle the packet at each intermediate hop as it moves back to the destination. Hardware and line-card forwarding inconsistencies are thus bypassed. Router-alert reply mode is slower than IPv4 mode because the reply requires process-level RP handling at each hop.

The table below describes how an incoming IP packet with an IP router alert is handled by the router switching path processes when the outgoing packet is an IP packet or an MPLS packet. It also describes how an MPLS packet with a router alert option is handled by the router switching path processes when the outgoing packet is an IP packet or an MPLS packet.

Table 9 Path Process Handling of IP and MPLS Router Alert Packets

Incoming Packet	Outgoing Packet	Normal Switching Action	Process Switching Action
IP packetRouter alert option in IP header	IP packetRouter alert option in IP header	Router alert option in IP header causes the packet to be punted to the process switching path.	Forwards the packet as is
	MPLS packet		Forwards the packet as is
MPLS packet Outermost label contains a router alert	IP packetRouter alert option in IP header	If the router alert label is the outermost label, it causes the packet to be punted to the process switching path.	Removes the outermost router alert label and forwards the packet as an IP packet
	MPLS packet Outermost label contains a router alert		Preserves the outermost router alert label and forwards the MPLS packet

SUMMARY STEPS

- 1. enable
- 2. trace mpls multipath ipv4 destination-address/destination-mask-length reply mode {ipv4 | routeralert}
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	

	Command or Action	Purpose
Step 2	trace mpls multipath ipv4 destination- address/destination-mask-length reply mode {ipv4 router-alert} Example: Router# trace mpls multipath ipv4 10.131.191.252/32 reply mode router-alert	 Discovers all MPLS LSPs from an ingress router to an egress router and specifies the reply mode. The ipv4 keyword specifies the destination type as an LDP IPv4 address. The destination-address argument is the address prefix of the target to be tested. The destination-mask-length argument is the number of bits in the network mask of the target address. The / keyword before this argument is required. The reply mode keyword requires that you enter one of the following keywords to specify the reply mode: The ipv4 keywordReply with an IPv4 UDP packet (default). The router-alert keywordReply with an IPv4 UDP packet with router alert.
		Note To specify the reply mode, you must enter the reply mode keyword with the ipv4 or router-alert keyword.
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Specifying the Output Interface for Echo Packets Leaving a Router for

Perform the following task to specify the output interface for echo packets leaving a router for the MPLS LSP Multipath Tree Trace feature. You can use this task to test the LSPs reachable through a given interface.

Echo Request Output Interface Control: You can control the interface through which packets leave a router. Path output information is used as input to LSP ping and traceroute.

The echo request output interface control feature allows you to force echo packets through the paths that perform detailed debugging or characterizing of the LSP. This feature is useful if a PE router connects to an MPLS cloud and there are broken links. You can direct traffic through a certain link. The feature also is helpful for troubleshooting network problems.

SUMMARY STEPS

- 1. enable
- 2. trace mpls multipath ipv4 destination-address/destination-mask-length [output interface tx-interface]
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	trace mpls multipath ipv4 destination- address/destination-mask-length [output interface tx-interface] Example: Router# trace mpls multipath ipv4 10.131.159.251/32 output interface fastethernet0/0/0	 Discovers all MPLS LSPs from an ingress router to an egress router and specifies the interface through which echo packets leave a router. The ipv4 keyword specifies the destination type as an LDP IPv4 address. The destination-address argument is the address prefix of the target to be tested. The destination-mask-length argument is the number of bits in the network mask of the target address. The / keyword before this argument is required. The output interface tx-interface keywords and argument specify the output interface for the MPLS echo request. Note You must specify the output interface keywords.
Step 3	exit	Returns to user EXEC mode.
	Example: Router# exit	

Setting the Pace of MPLS Echo Request Packet Transmission for MPLS LSP Multipath Tree Trace

Perform the following task to set the pace of MPLS echo request packet transmission for the MPLS LSP Multipath Tree Trace feature. Echo request traffic pacing allows you to set the pace of the transmission of packets so that the receiving router does not drop packets. If you have a large amount of traffic on your network you might increase the size of the interval to help ensure that the receiving router does not drop packets.

SUMMARY STEPS

- 1. enable
- $\textbf{2. trace mpls multipath ipv4} \textit{ destination-address/destination-mask-length [interval \textit{ millise} conds]}$
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	trace mpls multipath ipv4 destination- address/destination-mask-length [interval milliseconds]	Discovers all MPLS LSPs from an egress router to an ingress router and sets the time in milliseconds between successive MPLS echo requests.
	[met vai muuseconus]	• The ipv4 keyword specifies the destination type as an LDP IPv4 address.
	Example: Router# trace mpls multipath ipv4 10.131.159.251/32 interval 100	• The <i>destination-address</i> argument is the address prefix of the target to be tested.
		The <i>destination-mask</i> argument is the number of bits in the network mask
		of the target address. The / keyword before this argument is required.
		• The interval <i>milliseconds</i> keyword and argument set the time between successive MPLS echo requests in milliseconds. The default is 0 milliseconds.
		Note To pace the transmission of packets, you must specify the interval keyword.
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Enabling to Detect LSP Breakages Caused by an Interface That Lacks an MPLS Configuration

Perform the following task to enable MPLS LSP multipath tree trace to detect LSP breakages caused by an interface that lacks an MPLS configuration. If an interface is not configured for MPLS, then it cannot forward MPLS packets.

Explicit Null Label Shimming Tests LSP Ability to Carry MPLS Traffic: For an MPLS LSP multipath tree trace of LSPs carrying IPv4 FECs, you can force an explicit null label to be added to the MPLS label stack even though the label was unsolicited. This allows MPLS LSP multipath tree trace to detect LSP breakages caused by an interface that is not configured for MPLS. MPLS LSP multipath tree trace does not report that an LSP is functioning when it is unable to send MPLS traffic.

An explicit null label is added to an MPLS label stack if MPLS echo request packets are forwarded from an interface not configured for MPLS that is directly connected to the destination of the MPLS LSP multipath tree trace or if the IP TTL value for the MPLS echo request packets is set to 1.

When you enter a **trace mpls multipath** command, you are looking for all MPLS LSP paths from an egress router to an ingress router. Failure at output interfaces that are not configured for MPLS at the

penultimate hop are not detected. Explicit-null shimming allows you to test an LSP's ability to carry MPLS traffic.

SUMMARY STEPS

- 1. enable
- 2. trace mpls multipath ipv4 destination-address/destination-mask-length force-explicit-null
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	trace mpls multipath ipv4 destination- address/destination-mask-length force- explicit-null	Discovers all MPLS LSPs from an egress router to an ingress router and forces an explicit null label to be added to the MPLS label stack. • The ipv4 keyword specifies the destination type as an LDP IPv4 address.
	Example: Router# trace mpls multipath ipv4 10.131.191.252/32 force-explicit- null	 The destination-address argument is the address prefix of the target to be tested. The destination-mask-length argument is the number of bits in the network mask of the target address. The / keyword before this argument is required. The force-explicit-null keyword forces an explicit null label to be added to the MPLS label stack even though the label was unsolicited. Note You must enter the force-explicit-null keyword to enable MPLS LSP multipath tree trace to detect LSP breakages caused by an interface that is not configured for MPLS.
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Requesting That a Transit Router Validate the Target FEC Stack for MPLS LSP Multipath Tree Trace

Perform the following task to request that a transit router validate the target FEC stack for the MPLS LSP Multipath Tree Trace feature.

An MPLS echo request tests a particular LSP. The LSP to be tested is identified by the FEC stack.

During an MPLS LSP Multipath Tree Trace, the echo packet validation rules do not require that a transit router validate the target FEC stack TLV. A downstream map TLV containing the correct received labels must be present in the echo request for target FEC stack checking to be performed.

To request that a transit router validate the target FEC stack, set the V flag from the source router by entering the **flags fec** keywords in the **trace mpls multipath** command. The default is that echo request packets are sent with the V flag set to 0.

SUMMARY STEPS

- 1. enable
- 2. trace mpls multipath ipv4 destination-address/destination-mask-length [flags fec] [ttl maximum-time-to-live]
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	trace mpls multipath ipv4 destination- address/destination-mask-length [flags fec] [ttl maximum-time-to-live]	Discovers all MPLS LSPs from an egress router to an ingress router and requests validation of the target FEC stack by a transit router.
		• The ipv4 keyword specifies the destination type as an LDP IPv4 address.
	Example:	• The <i>destination-address</i> argument is the address prefix of the target to be tested.
	Router# trace mpls multipath ipv4 10.131.159.252/32 flags fec ttl 5	• The <i>destination-mask-length</i> argument is the number of bits in the network mask of the target address. The / keyword before this argument is required.
		The flags fec keywords requests that target FEC stack validation be done at a transit router.
		• The ttl ttl <i>maximum-time-to-live</i> keyword and argument pair specify a maximum hop count.
		Note For a transit router to validate the target FEC stack, you must enter the flags fec and ttl keywords.
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Setting the Number of Timeout Attempts for MPLS LSP Multipath Tree Trace

Perform the following task to set the number of timeout attempts for the MPLS LSP Multipath Tree Trace feature.

A retry is attempted if an outstanding echo request times out waiting for the corresponding echo reply.

SUMMARY STEPS

- 1. enable
- 2. trace mpls multipath ipv4 destination-address/destination-mask-length [retry-count retry-count-value]
- 3. exit

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	trace mpls multipath ipv4 destination-address/destination-mask-length	Sets the number of retry attempts during an MPLS LSP multipath tree trace. • The ipv4 keyword specifies the destination type as an LDP IPv4 address.
	[retry-count retry-count-value]	• The <i>destination-address</i> argument is the address prefix of the target to be tested.
	Example:	• The <i>destination-mask-length</i> argument is the number of bits in the network mask of the target address. The / keyword before this argument is required.
	Router# trace mpls multipath ipv4 10.131.159.252/32 retry-count 4	• The retry-count <i>retry-count-value</i> keyword and argument sets the number of retry attempts after a timeout occurs.
		A retry-count value of "0" means infinite retries. A retry-count value from 0 to 10 is suggested. You might want to increase the retry value to greater than 10, if 10 is too small a value. The default retry-count value is 3.
		Note To set the number of retries after a timeout, you must enter the retry-count keyword.
Step 3	exit	Returns to user EXEC mode.
	Example:	
	Router# exit	

Configuration Examples for MPLS EM - MPLS LSP Multipath Tree Trace

- Customizing the Default Behavior of MPLS Echo Packets Example, page 82
- Configuring MPLS LSP Multipath Tree Trace: Example, page 82
- Discovering IPv4 Load Balancing Paths Using MPLS LSP Multipath Tree Trace Example, page 82
- Using DSCP to Request a Specific Class of Service in an Echo Reply Example, page 83
- Controlling How a Responding Router Replies to an MPLS Echo Request Example, page 84

- Specifying the Output Interface for Echo Packets Leaving a Router for MPLS LSP Multipath Tree
 Trace Example, page 84
- Setting the Pace of MPLS Echo Request Packet Transmission for MPLS LSP Multipath Tree Trace: Example, page 85
- Enabling to Detect LSP Breakages Caused by an Interface That Lacks an MPLS Configuration Example, page 86
- Requesting That a Transit Router Validate the Target FEC Stack for MPLS LSP Multipath Tree Trace Example, page 87
- Setting the Number of Timeout Attempts for MPLS LSP Multipath Tree Trace Example, page 88

Customizing the Default Behavior of MPLS Echo Packets Example

The following example shows how to customize the behavior of MPLS echo packets so that the MPLS LSP Multipath Tree Trace feature interoperates with a vendor implementation that does not interpret RFC 4379 as Cisco does:

```
configure terminal!
mpls oam
echo revision 4
no echo vendor-extension
```

The **echo revision** command is included in this example for completeness. The default echo revision number is 4, which corresponds to RFC 4379.

Configuring MPLS LSP Multipath Tree Trace: Example

The following example shows how to configure the MPLS LSP Multipath Tree Trace feature to interoperate with a vendor implementation that does not interpret RFC 4379 as Cisco does:

```
configure terminal
!
mpls oam
  echo revision 4
  no echo vendor-extension
  end
!
trace mpls multipath ipv4 10.131.161.151/32
```

The **echo revision** command is included in this example for completeness. The default echo revision number is 4, which corresponds to the RFC 4379.

Discovering IPv4 Load Balancing Paths Using MPLS LSP Multipath Tree Trace Example

The following example shows how to use the MPLS LSP Multipath Tree Trace feature to discover IPv4 load balancing paths. The example is based on the sample network shown in the figure below. In this example, the bitmap size is set to 16. Therefore, path discovery starts by the MPLS LSP Multipath Tree Trace feature using 16 bitmapped addresses as it locates LSP paths from the source router R-101 to the target router R-150 with prefix and mask 10.1.1.150/32. The MPLS LSP Multipath Tree Trace feature starts using the 127.x.y.z/8 address space with 127.0.0.0.

```
Router# trace mpls multipath ipv4 10.1.1.150/32 hashkey ipv4 bitmap 16
```

```
Starting LSP Multipath Traceroute for 10.1.1.150/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
LLLL!
Path 0 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
LLL!
Path 1 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1
Path 2 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
LL!
Path 3 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7
Paths (found/broken/unexplored) (4/0/0)
 Echo Request (sent/fail) (14/0)
 Echo Reply (received/timeout) (14/0)
 Total Time Elapsed 468 ms
```

The output of the **trace mpls multipath** command in the example shows the result of path discovery with the MPLS LSP Multipath Tree Trace feature as shown in the figure below.

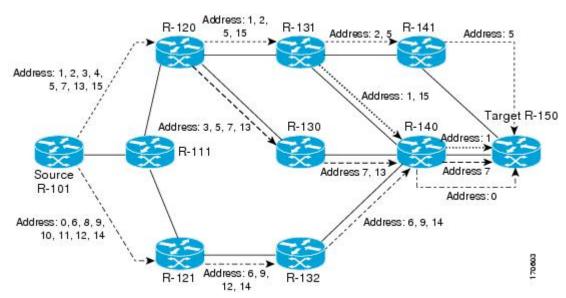


Figure 9 MPLS LSP Multipath Tree Trace Path Discovery in a Sample Network

Using DSCP to Request a Specific Class of Service in an Echo Reply Example

The following example shows how to use DSCP to request a specific CoS in an echo reply:

```
Router# trace mpls multipath ipv4 10.1.1.150/32 reply dscp 50
Starting LSP Multipath Traceroute for 10.1.1.150/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
   'L' - labeled output interface, 'B' - unlabeled output interface,
   'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
```

```
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index, 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Path 0 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
LLL!
Path 1 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1
Path 2 found.
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
Path 3 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7
Paths (found/broken/unexplored) (4/0/0)
 Echo Request (sent/fail) (14/0)
 Echo Reply (received/timeout) (14/0)
 Total Time Elapsed 448 ms
```

Controlling How a Responding Router Replies to an MPLS Echo Request Example

The following example shows how to control how a responding router replies to an MPLS echo request:

```
Router# trace mpls multipath ipv4 10.1.1.150/32 reply mode router-alert
Starting LSP Multipath Traceroute for 10.1.1.150/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP, 'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
LLLL!
Path 0 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
Path 1 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1
Path 2 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
LL!
Path 3 found.
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7
Paths (found/broken/unexplored) (4/0/0)
 Echo Request (sent/fail) (14/0)
 Echo Reply (received/timeout) (14/0
 Total Time Elapsed 708 ms
```

Specifying the Output Interface for Echo Packets Leaving a Router for MPLS LSP Multipath Tree Trace Example

The following example shows how to specify the output interface for echo packets leaving a router for the MPLS LSP Multipath Tree Trace feature:

```
Router# trace mpls multipath ipv4 10.1.1.150/32 output interface fastethernet0/0/0

Tracing MPLS Label Switched Path to 10.1.1.150/32, timeout is 2 seconds

Codes: '!' - success, 'Q' - request not sent, '.' - timeout,

'L' - labeled output interface, 'B' - unlabeled output interface,
```

```
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry, 'P' - no rx intf label prot, 'p' - premature termination of LSP, 'R' - transit router, 'I' - unknown upstream index, 'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

0 10.1.111.101 MRU 1500 [Labels: 33 Exp: 0]

L

1 10.1.111.111 MRU 1500 [Labels: 33 Exp: 0] 40 ms

L

2 10.2.120.120 MRU 1500 [Labels: 33 Exp: 0] 20 ms

L

3 10.3.131.131 MRU 1500 [Labels: 34 Exp: 0] 20 ms

L

4 10.4.141.141 MRU 1504 [Labels: implicit-null Exp: 0] 20 ms !
5 10.5.150.150 16 ms
```

Setting the Pace of MPLS Echo Request Packet Transmission for MPLS LSP Multipath Tree Trace: Example

The following examples show how set the pace of MPLS echo request packet transmission for the MPLS LSP Multipath Tree Trace feature. The time between successive MPLS echo requests is set to 300 milliseconds in the first example and 400 milliseconds in the second example:

```
Router# trace mpls multipath ipv4 10.131.159.252/32 interval 300
Starting LSP Multipath Traceroute for 10.131.159.252/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
Path 0 found,
 output interface Et1/0 source 10.2.3.2 destination 127.0.0.0
Paths (found/broken/unexplored) (1/0/0)
 Echo Request (sent/fail) (3/0)
 Echo Reply (received/timeout) (3/0)
 Total Time Elapsed 1604 ms
Router# trace mpls multipath ipv4 10.131.159.252/32 interval 400
Starting LSP Multipath Traceroute for 10.131.159.252/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
   'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
 output interface Et1/0 source 10.2.3.2 destination 127.0.0.0
Paths (found/broken/unexplored) (1/0/0)
 Echo Request (sent/fail) (3/0)
 Echo Reply (received/timeout) (3/0)
 Total Time Elapsed 1856 ms
```

Notice that the elapsed time increases as you increase the interval size.

Enabling to Detect LSP Breakages Caused by an Interface That Lacks an MPLS Configuration Example

The following examples shows how to enable the MPLS LSP Multipath Tree Trace feature to detect LSP breakages caused by an interface that lacks an MPLS configuration:

Router# trace mpls multipath ipv4 10.1.1.150/32 force-explicit-null

```
Starting LSP Multipath Traceroute for 10.1.1.150/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP,
  'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
LLLL!
Path 0 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
LLL!
Path 1 found.
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1
Path 2 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
LL!
Path 3 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7
Paths (found/broken/unexplored) (4/0/0)
Echo Reguest (sent/fail) (14/0)
 Echo Reply (received/timeout) (14/0)
Total Time Elapsed 460 ms
```

This example shows the additional information provided when you add the **verbose** keyword to the command:

```
Router# trace mpls multipath ipv4 10.1.1.150/32 force-explicit-null verbose
Starting LSP Multipath Traceroute for 10.1.1.150/32
        '!' - success, 'Q' - request not sent, '.'

    timeout.

 'L' - labeled output interface, 'B' - unlabeled output interface,
 'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch, 'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
 'P' - no rx intf label prot, 'p' - premature termination of LSP,
 'R' - transit router, 'I' - unknown upstream index,
 'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
LLLL!
Path 0 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
  0 10.1.111.101 10.1.111.111 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] multipaths 0
  1 10.1.111.111 10.2.121.121 MRU 1500 [Labels: 34/explicit-null Exp: 0/0] ret code 8
multipaths 2
  2 10.2.121.121 10.3.132.132 MRU 1500 [Labels: 34/explicit-null Exp: 0/0] ret code 8
multipaths 1
  3 10.3.132.132 10.4.140.240 MRU 1500 [Labels: 32/explicit-null Exp: 0/0] ret code 8
multipaths 1
  4 10.4.140.240 10.5.150.50 MRU 1504 [Labels: explicit-null Exp: 0] ret code 8
multipaths 1 !
  5 10.5.150.50, ret code 3 multipaths 0
T.T.T.!
Path 1 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1
  0 10.1.111.101 10.1.111.111 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] multipaths 0
```

```
1 10.1.111.111 10.2.120.120 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] ret code 8
multipaths 2
  2 10.2.120.120 10.3.131.131 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] ret code 8
multipaths 2
  3 10.3.131.131 10.4.141.141 MRU 1500 [Labels: 34/explicit-null Exp: 0/0] ret code 8
multipaths 2
  4 10.4.141.141 10.5.150.150 MRU 1504 [Labels: explicit-null Exp: 0] ret code 8
multipaths 1
5 10.5.150.150, ret code 3 multipaths 0
L!
Path 2 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
  0 10.1.111.101 10.1.111.111 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] multipaths 0
1 10.1.111.111 10.2.120.120 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] ret code 8
multipaths 2
2 10.2.120.120 10.3.131.131 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] ret code 8
multipaths 2
 3 10.3.131.131 10.4.140.140 MRU 1500 [Labels: 32/explicit-null Exp: 0/0] ret code 8
multipaths 2
 4 10.4.140.140 10.5.150.50 MRU 1504 [Labels: explicit-null Exp: 0] ret code 8 multipaths
1 ! 5 10.5.150.50, ret code 3 multipaths 0
LL!
Path 3 found.
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7
  0 10.1.111.101 10.1.111.111 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] multipaths 0
  1 10.1.111.111 10.2.120.120 MRU 1500 [Labels: 33/explicit-null Exp: 0/0] ret code 8
multipaths 2
  2 10.2.120.120 10.3.130.130 MRU 1500 [Labels: 34/explicit-null Exp: 0/0] ret code 8
multipaths 2
  3 10.3.130.130 10.4.140.40 MRU 1500 [Labels: 32/explicit-null Exp: 0/0] ret code 8
multipaths 1
  4 10.4.140.40 10.5.150.50 MRU 1504 [Labels: explicit-null Exp: 0] ret code 8 multipaths
  5 10.5.150.50, ret code 3 multipaths 0
Paths (found/broken/unexplored) (4/0/0)
Echo Request (sent/fail) (14/0)
 Echo Reply (received/timeout) (14/0)
 Total Time Elapsed 492 ms
```

Requesting That a Transit Router Validate the Target FEC Stack for MPLS LSP Multipath Tree Trace Example

Router# trace mpls multipath ipv4 10.1.1.150/32 flags fec ttl 5

The following example shows how to request that a transit router validate the target FEC stack for the MPLS LSP Multipath Tree Trace feature:

```
Starting LSP Multipath Traceroute for 10.1.1.150/32
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
    'R' - transit router, 'I' - unknown upstream index,
```

```
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
LLLL!
Path 0 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
LLL!
Path 1 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1
L!
Path 2 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
LL!
Path 3 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
LL!
Path 3 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7
Paths (found/broken/unexplored) (4/0/0)
Echo Request (sent/fail) (14/0)
Echo Reply (received/timeout) (14/0)
Total Time Elapsed 464 ms
```

Target FEC stack validation is always done at the egress router when the **flags fec** keywords are specified in the **trace mpls multipath** command.

Setting the Number of Timeout Attempts for MPLS LSP Multipath Tree Trace Example

The following example sets the number of timeout attempts for the MPLS LSP Multipath Tree Trace feature to four:

Router# trace mpls multipath ipv4 10.1.1.150/32 retry-count 4

```
Starting LSP Multipath Traceroute for 10.1.1.150/32
Codes: '!' - success, 'Q' - request not sent, '.'

    timeout.

  'L' - labeled output interface, 'B' - unlabeled output interface,
  'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
  'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
  'P' - no rx intf label prot, 'p' - premature termination of LSP, 'R' - transit router, 'I' - unknown upstream index,
  'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
LLLL!
Path 0 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0
LLL!
Path 1 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1
L!
Path 2 found.
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.5
Path 3 found,
 output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7
Paths (found/broken/unexplored) (4/0/0)
 Echo Request (sent/fail) (14/0)
 Echo Reply (received/timeout) (14/0)
 Total Time Elapsed 460 ms
```

The following output shows a **trace mpls multipath** command that found one unexplored path, one successful path, and one broken path:

```
Router# trace mpls multipath ipv4 10.1.1.150/32 retry-count 4
```

```
Starting LSP Multipath Traceroute for 10.1.1.150/32

Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
    'L' - labeled output interface, 'B' - unlabeled output interface,
    'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
    'M' - malformed request, 'm' - unsupported tlvs, 'N' - no label entry,
    'P' - no rx intf label prot, 'p' - premature termination of LSP,
```

```
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0

Type escape sequence to abort.

LLL....

Path 0 Unexplorable,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.0

LLL!

Path 1 found,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.1 B

Path 2 Broken,
output interface Fe0/0/0 source 10.1.111.101 destination 127.0.0.7

Paths (found/broken/unexplored) (1/1/1)

Echo Request (sent/fail) (12/0)

Echo Reply (received/timeout) (8/4)

Total Time Elapsed 7868 ms
```

Additional References for MPLS LSP Multipath Tree Trace

Related Documents

Related Topic	Document Title
Concepts and configuration tasks for MPLS LSP ping or traceroute	MPLS LSP Ping/Traceroute for LDP/TE, and LSP Ping for VCCV
MPLS commands	Cisco IOS Multiprotocol Label Switching Command Reference

- Standards, page 89
- MIBs, page 90
- RFCs, page 90
- Technical Assistance, page 90

Standards

Standard	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIB	MIBs Link
No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
RFC 2113	IP Router Alert Option
RFC 3443	Time To Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks
RFC 4377	Operations and Management (OAM) Requirements for Multi-Protocol Label Switched (MPLS) Networks
RFC 4378	A Framework for Multi-Protocol Label Switching (MPLS) Operations and Management (OAM)
RFC 4379	Detecting Multi-Protocol Label Switched (MPLS) Data Plane Failures

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for MPLS EM-MPLS LSP Multipath Tree Trace

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 10 Feature Information for MPLS EM-MPLS LSP Multipath Tree Trace

Feature Name	Releases	Feature Information
MPLS EM-MPLS LSP Multipath Tree Trace	12.2(31)SB2 12.2(33)SRB 12.4(20)T 12.2(33)SXI	The MPLS EM-MPLS LSP Multipath Tree Trace feature provides the means to discover all the possible paths of a label switched path (LSP) between an egress and ingress router. Once discovered, these paths can be retested on a periodic basis using Multiprotocol Label Switching (MPLS) LSP ping or traceroute. This feature is an extension to the MPLS LSP traceroute functionality for the tracing of IPv4 LSPs.
		Cisco IOS MPLS Embedded Management (EM) is a set of standards and value-added services that facilitate the deployment, operation, administration, and management of MPLS-based networks in line with the fault, configuration, accounting, performance, and security (FCAPS) model.
		In Cisco IOS Release 12.2(31)SB2, this feature was introduced.
		In Cisco IOS Release 12.2(33)SRB, support was added for a Cisco IOS 12.2SR release.
		In Cisco IOS Release 12.(20)T, support was added for a Cisco IOS 12.4T release.
		In Cisco IOS Release 12.2(33)SXI, support was added for a Cisco IOS 12.2SX release.
		The following commands were introduced or modified: debug mpls lspv, echo, mpls oam, trace mpls, trace mpls multipath.

Glossary

ECMP --equal-cost multipath. Multiple routing paths of equal cost that may be used for packet forwarding.

FEC --Forwarding Equivalence Class. A set of packets that can be handled equivalently for forwarding purposes and are thus suitable for binding to a single label. Examples include the set of packets destined for one address prefix and the packets in any flow.

flow --A set of packets traveling between a pair of hosts, or between a pair of transport protocol ports on a pair of hosts. For example, packets with the same source address, source port, destination address, and destination port might be considered a flow.

A flow is also a stream of data traveling between two endpoints across a network (for example, from one LAN station to another). Multiple flows can be transmitted on a single circuit.

localhost --A name that represents the host router (device). The localhost uses the reserved loopback IP address 127.0.0.1.

LSP --label switched path. A connection between two routers in which Multiprotocol Label Switching (MPLS) forwards the packets.

LSPV --Label Switched Path Verification. An LSP ping subprocess. It encodes and decodes Multiprotocol Label Switching (MPLS) echo requests and replies, and it interfaces with IP, MPLS, and AToM switching for sending and receiving MPLS echo requests and replies. At the MPLS echo request originator router, LSPV maintains a database of outstanding echo requests for which echo responses have not been received.

MPLS router alert label --An Multiprotocol Label Switching (MPLS) label of 1. An MPLS packet with a router alert label is redirected by the router to the Route Processor (PR) processing level for handling. This allows these packets to bypass any forwarding failures in hardware routing tables.

OAM --Operation, Administration, and Management.

punt --Redirect packets with a router alert from the line card or interface to Route Processor (RP) level processing for handling.

RP --Route Processor. The processor module contains the CPU, system software, and most of the memory components that are used in the router.

TTL --time-to-live. A parameter you can set that indicates the maximum number of hops a packet should take to reach its destination.

TLV --type, length, values. A block of information included in a Cisco Discovery Protocol address.

UDP --User Datagram Protocol. Connectionless transport layer protocol in the TCP/IP protocol stack. UDP is a simple protocol that exchanges datagrams without acknowledgments or guaranteed delivery, so error processing and retransmission must be handled by other protocols. UDP is defined in RFC 768.

XDR --eXternal Data Representation. Standard for machine-independent data structures developed by Sun Microsystems. Used to transport messages between the Route Processor (RP) and the line card.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Pseudowire Emulation Edge-to-Edge MIBs

The Pseudowire Emulation Edge-to-Edge MIBs for Ethernet, Frame Relay, and ATM Services feature provides Simple Network Management Protocol (SNMP) support within an Any Transport over Multiprotocol Label Switching (AToM) infrastructure emulating Ethernet, Frame Relay, and ATM services over packet switched networks (PSNs). The Pseudowire Emulation Edge-to-Edge (PWE3) MIBs are the following:

- CISCO-IETF-PW-MIB (PW-MIB)
- CISCO-IETF-PW-MPLS-MIB (PW-MPLS-MIB)
- CISCO-IETF-PW-ENET-MIB (PW-ENET-MIB)
- CISCO-IETF-PW-FR-MIB (PW-FR-MIB)
- CISCO-IETF-PW-ATM-MIB (PW-ATM-MIB)
- Finding Feature Information, page 95
- Prerequisites for Pseudowire Emulation Edge-to-Edge MIBs, page 95
- Restrictions for Pseudowire Emulation Edge-to-Edge MIBs, page 96
- Information About Pseudowire Emulation Edge-to-Edge MIBs, page 96
- How to Configure Pseudowire Emulation Edge-to-Edge MIBs, page 116
- Configuration Examples for the Pseudowire Emulation Edge-to-Edge MIBs, page 119
- Additional References, page 120
- Feature Information for Pseudowire Emulation Edge-to-Edge MIBs for Ethernet Frame Relay and ATM Services, page 122
- Glossary, page 125

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Pseudowire Emulation Edge-to-Edge MIBs

- SNMP must be enabled on the label switch routers (LSRs).
- MPLS must be enabled on the LSRs.

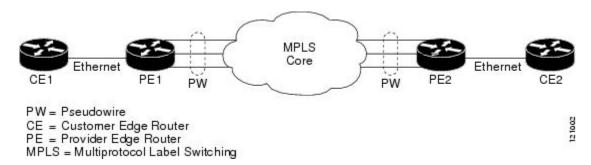
• Pseudowires must be configured with Ethernet, Frame Relay, or ATM access circuits. (For more detailed information, see the "Any Transport over MPLS" module.

Restrictions for Pseudowire Emulation Edge-to-Edge MIBs

The PWE3 MIBs are limited to read-only (RO) permission for MIB objects except for the cpwVcUp and cpwVcDown notification enable object, cpwVcUpDownNotifEnable, which has been extended to be writable by the SNMP agent.

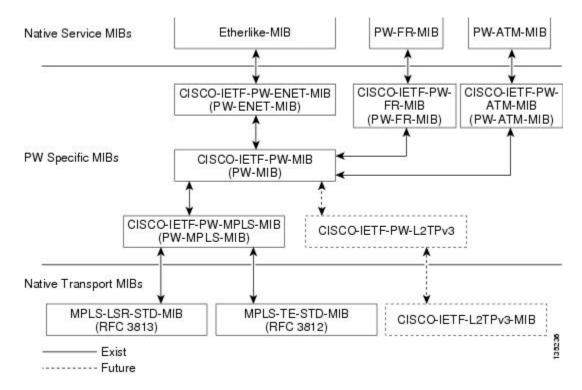
- The following tables in the PW-MIB are not supported:
 - cpwVcPerfCurrentTable
 - cpwVcPerfIntervalTable
- The following objects in the PW-MPLS-MIB are not supported:
 - cpwVcMplsOutboundIndexNext
 - cpwVcMplsInboundIndexNext
- The following tables in the PW-ENET-MIB are not supported:
 - cpwVcEnetMplsPriMappingTable
 - cpwVcEnetStatsTable
- The following table in the PW-FR-MIB is not supported:
 - cpwVcFrPMTable
- The PW-ATM-MIB does not support a high-capacity cell counter per virtual path (VP) or cells per port.
- The PW-ATM-MIB virtual path identifier (VPI)/virtual channel identifier (VCI) value for port mode cell relay is 0.
- The PW-ATM-MIB VP cell relay VCI value is 0.
- The PW-ATM-MIB VP does not support ATM adaptation layer 5 (AAL5); therefore, all packet counters are invalid.

This feature is not supported over Ethernet, Frame Relay, and ATM in all releases. See the GUID-65FACDA8-4FD1-408E-B166-1CBA19ECE794 for more detailed information.


Information About Pseudowire Emulation Edge-to-Edge MIBs

- The Function of a Pseudowire in the PWE3 MIBs, page 97
- PWE3 MIBs Architecture, page 97
- Components and Functions of the PWE3 MIBs, page 98
- Tables in the PW-MIB, page 99
- Tables in the PW-MPLS-MIB, page 106
- Tables in the PW-ENET-MIB, page 110
- Tables in the PW-FR-MIB, page 112
- Tables in the PW-ATM-MIB, page 113
- Objects in the PWE3 MIBs, page 115

- Scalar Objects in the PWE3 MIBs, page 115
- Notifications in the PWE3 MIBs, page 116
- Benefits of the PWE3 MIBs, page 116


The Function of a Pseudowire in the PWE3 MIBs

A pseudowire is a point-to-point connection between pairs of provider edge (PE) routers (as shown in the figure below). Its primary function is to emulate services like Ethernet over an underlying core MPLS network through encapsulation into a common MPLS format. By encapsulating services into a common MPLS format, a pseudowire allows carriers to converge their services to an MPLS network.

PWE3 MIBs Architecture

The PWE3 MIBs architecture shown in the figure below categorizes three groups of MIBs that, when used together, provide the complete emulated service; the native transport, which carries the service across the core network; and the relationship between the two.

The architecture is modular in that once deployed, new emulated service MIB modules or additional transport MIB modules "plug in" to or extend the existing infrastructure rather than require a new and unique one. This allows you to build management applications without the concern of a new service requiring the deployment of a completely different management strategy. Because the architecture is a generalized association mechanism between existing service and transport MIB modules, native MIB modules work in the absence of the associated PWE3-specific MIBs. The advantage is that if a PWE3-specific MIB has not yet been deployed in Cisco software, which associates a service or transport with pseudowires, these MIB modules can still be queried. However, the only drawback is that the associations with the pseudowires are absent.

Components and Functions of the PWE3 MIBs

The PWE3 MIBs have the following components and functions:

• PW-MIB (the pseudowire MIB)

This MIB binds the PW-MPLS-MIB and the PW-ENET-MIB together, and provides status of the pseudowire emulation and statistics and configuration information. The PW-MIB also defines the notifications for pseudowire fault and event monitoring.

• PW-MPLS-MIB (the pseudowire MPLS-MIB)

This MIB contains managed objects that can be used by a network manager to monitor pseudowire emulation MPLS services, such as MPLS-traffic engineering (TE)-PSN and MPLS-non-TE-PSN.

This MIB shows the following:

- Cross-connect (XC) indexes for virtual circuits (VCs) that are Label Distribution Protocol (LDP)-signaled and have a preferred path that is not set to an MPLS TE tunnel.
 - Tunnel indexes for VCs with a preferred path set to a TE tunnel and an output interface that is a TE tunnel.
- PW-ENET-MIB (the pseudowire Ethernet services MIB)

This MIB contains managed objects that can be used by a network manager to monitor pseudowire emulation Ethernet services.

• PW-FR-MIB (the pseudowire Frame Relay services MIB)

This MIB contains managed objects that can be used by a network manager to monitor pseudowire emulation Frame Relay services.

This MIB uses a Frame Relay over pseudowire (FRoPW) connection that consists of two segments: the Frame Relay segment and the pseudowire segment. The PW-FR-MIB provides hooks to those segments. The PW MIB contains information about the pseudowire segment, and the PW-FR-MIB contains information about the Frame Relay segment.

The PW-FR-MIB is defined at the Pseudowire Service Emulation Layer and resides on top of the generic PW-MIB as shown in the figure above. Therefore, the PW-FR-MIB is highly dependent on the existence and the service provided by the PW-MIB. In addition, an existing PW-FR connection entry must associate with an existing VC entry in the PW-MIB.

The PW-FR-MIB and the generic PW-MIB are logically tied by the PW VC Index, which is an internal index defined to support the PW-MIB. Each PW VC index uniquely maps into an existing VC entry in the PW-MIB and the PW-FR-MIB.

• PW-ATM-MIB (the pseudowire ATM services MIB)

This MIB contains managed objects that can be used by a network manager to monitor pseudowire emulation ATM services.

This MIB uses an ATM over pseudowire (ATMoPW) connection that consists of two segments: the ATM segment and the pseudowire segment. The PW-ATM-MIB provides hooks to those segments. The PW MIB contains information about the pseudowire segment, and the PW-ATM-MIB contains information about the ATM segment called the attachment circuit.

The PW-ATM-MIB is defined at the Pseudowire Service Emulation Layer and resides on top of the generic PW-MIB as shown in the figure above. Therefore, the PW-ATM-MIB is highly dependent on the existence and the service provided by the PW-MIB. In addition, an existing PW-ATM connection entry must associate with an existing VC entry in the PW-MIB.

The PW-ATM-MIB and the generic PW-MIB are logically tied by the PW VC Index, which is an internal index defined to support the PW-MIB. Each PW VC index uniquely maps into an existing VC entry in the PW-MIB and the PW-ATM-MIB.

Tables in the PW-MIB

The PW-MIB consists of the following tables:

- cpwVcTable -- Contains high-level generic parameters related to VC creation. This table is
 implemented as read only and is indexed by the cpwVcIndex, which uniquely identifies a singular
 connection. A row in this table represents an emulated virtual connection. This table is used for all VC
 types.
- cpwVcPerfTotalTable -- Provides per-VC performance information from the VC start time. This table is indexed by the cpwVcIndex.
- cpwVcIdMappingTable -- Provides reverse mapping of the existing VCs based on VC type and VC ID ordering. This table is typically useful for element manager software (EMS) ordered query of existing VCs. This table is indexed by cpwVcIdMappingVcType, cpwVcIdMappingVcID, cpwVcIdMappingPeerAddrType, and cpwVcIdMappingPeerAddr. This table is implemented as read only.
- cpwVcPeerMappingTable -- Provides reverse mapping of the existing VCs based on VC type and VC ID ordering. This table is typically useful for EMS ordered query of existing VCs. This table is indexed by cpwVcPeerMappingPeerAddrType, cpwVcPeerMappingPeerAddr, cpwVcPeerMappingVcType, and cpwVcPeerMappingVcID. This table is implemented as read only.
- cpwVcTable, page 99
- cpwVcPerfTotalTable, page 105
- cpwVcIdMappingTable, page 105
- cpwVcPeerMappingTable, page 105

cpwVcTable

The table below lists the cpwVcTable objects and their descriptions.

Table 11 cpwVcTable Objects and Descriptions

Objects	Description
cpwVcType	Indicates the service to be carried over this VC. This is circuit type information.

Objects	Description
cpwVcOwner	Set by the operator to indicate the protocol responsible for establishing this VC. Values are the following:
	 manual(1)Used when no maintenance protocol (PW signaling) is needed to set up the VC, such as configuration of entries in the VC tables including VC labels, and so forth. maintenanceProtocol(2)Used for standard signaling of the VC for the specific PSN; for example, LDP for MPLS PSN as specified in draft-martini-l2circuit-trans-mpls or the Layer 2 Tunneling Protocol (L2TP). other(3)Used for all other types of signaling.
cpwVcPsnType	Set by the operator to indicate the PSN type on which this VC is carried. Based on this object, the relevant PSN table entries are created in the PSN-specific MIB modules. For example, if mpls(1) is defined, the agent creates an entry in the cpwVcMplsTable, which further defines the MPLS PSN configuration.
cpwVcSetUpPriority	Defines the relative setup priority of the VC in a lowest-to-highest manner, where 0 is the highest priority. This value is significant if there are competing resources between VCs and the implementation supports this feature. Because this is not implemented in AToM, the value of 0 is used.
cpwVcHoldingPriority	Defines the relative holding priority of the VC in a lowest-to-highest manner, where 0 is the highest priority. This value is significant if there are competing resources between VCs and the implementation supports this feature. Because this is not implemented in AToM, the value of 0 is used.

Objects	Description
cpwVcInboundMode	Enables greater security for implementations that use per-platform VC label space. Modes are the following:
	 strict(1) loose(2)
	In strict mode, packets coming from the PSN are accepted only from tunnels that are associated to the same VC via the inbound tunnel table in the case of MPLS, or as identified by the source IP address in the case of L2TP or IP PSN. The entries in the inbound tunnel table are either explicitly configured or implicitly known by the maintenance protocol used for VC setup.
	If such association is not known, not configured, or not desired, loose mode should be configured, and the node should accept the packet based on the VC label only, regardless of the outer tunnel used to carry the VC.
cpwVcPeerAddrType	Denotes the address type of the peer node maintenance protocol (signaling) address if the PW maintenance protocol is used for the VC creation. It should be set to unknown if the PW maintenance protocol is not used; for example, cpwVcOwner is set to manual.
cpwVcPeerAddr	Contains the value of the peer node address of the PW maintenance protocol entity. This object should contain a value of 0 if not relevant (manual configuration of the VC).
cpwVcID	Use in the outgoing VC ID field within the VC forward equivalence class (FEC) element with LDP signaling or the PW ID attribute-value (AV) pair for the L2TP.
cpwVcLocalGroupID	Use in the Group ID field sent to the peer PW within the maintenance protocol for VC setup; 0 if not used.
cpwVcControlWord	Defines if the control word is sent with each packet by the local node.
cpwVcLocalIfMtu	If not = 0, the optional IfMtu object in the maintenance protocol is sent with this value, representing the locally supported maximum transmission unit (MTU) size over the interface (or the virtual interface) associated with the VC.

Objects	Description
cpwVcLocalIfString	Each VC is associated to an interface (or a virtual interface) in the ifTable of the node as part of the service configuration. This object defines if the maintenance protocol sends the interface's name as it appears in the ifTable in the name object as part of the maintenance protocol. If this object is set to false, the optional element is not sent.
cpwVcRemoteGroupID	Obtained from the Group ID field as received via the maintenance protocol used for VC setup; 0 if not used. The value of 0xFFFF is used if the object is not defined by the VC maintenance protocol.
cpwVcRemoteControlWord	If the maintenance protocol is used for VC establishment, this parameter indicates the received status of the control word usage; that is, if packets are received with the control word or not. The value of notYetKnown is used while the maintenance protocol has not yet received the indication from the remote node. In a manual configuration of the VC, this parameter indicates to the local node the expected encapsulation for the received packets.
cpwVcRemoteIfMtu	The remote interface MTU as received from the remote node via the maintenance protocol. This object should be 0 if this parameter is not available or not used.
cpwVcRemoteIfString	Indicates the interface description string as received by the maintenance protocol; it must be a NULL string if not applicable or not known yet.
cpwVcOutboundVcLabel	The VC label used in the outbound direction toward the PSN. This object may be set up manually if the owner is manual; otherwise, it is automatic. Examples; for MPLS PSN, the label represents the 20 bits of the VC tag; for L2TP, it represents the 32 bits of the session ID. If the label is not yet known (signaling in process), the object should return a value of 0xFFFF.
cpwVcInboundVcLabel	The VC label used in the inbound direction for packets received from the PSN. This object may be set up manually if the owner is manual; otherwise, it is automatic. Examples; for MPLS PSN, the label represents the 20 bits of VC tag; for L2TP, the label represents the 32 bits of the session ID. If the label is not yet known (signaling in process), the object should return a value of 0xFFFF.
cpwVcName	The canonical name assigned to the VC.

Objects	Description
cpwVcDescr	A textual string containing information about the VC. If there is no description, this object contains a 0 length string.
cpwVcCreateTime	System time when this VC was created.
cpwVcUpTime	Number of consecutive ticks that this VC has been up in both directions together. (Up is observed in cpwVcOperStatus.)
cpwVcAdminStatus	The desired operational status of this VC.
cpwVcOperStatus	Indicates the actual combined operational status of this VC. This object is up if both cpwVcInboundOperStatus and cpwVcOutboundOperStatus are in the up state. For all other values, if the VCs in both directions are of the same value, this object reflects that value; otherwise, it is set to the more severe status of the two. The order of severity from most severe to less severe is as follows: unknown, notPresent, down, lowerLayerDown, dormant, testing, and up. The operator can consult the direction of OperStatus for fault isolation.
cpwVcInboundOperStatus	Indicates the actual operational status of this VC in the inbound direction. Values are the following:
	 upThe VC is established and ready to pass packets. downPW signaling has not yet finished or indications available at the service level show that the VC is not passing packets. testingAdminStatus at the VC level is set to test. dormantThe VC is not available because the required resources are occupied by higher priority VCs. notPresentSome component needed for the setup of the VC is missing. lowerLayerDownThe underlying PSN is not in OperStatus up.

Objects	Description	
cpwVcOutboundOperStatus	Indicates the actual operational status of this VC in the outbound direction. Values are the following:	
	 upThe VC is established and ready to pass packets. downPW signaling has not yet finished or indications available at the service level show that the VC is not passing packets. testingAdminStatus at the VC level is set to test. dormantThe VC is not available because the required resources are occupied by higher priority VCs. notPresentSome component needed for the setup of the VC is missing. lowerLayerDownThe underlying PSN is not in OperStatus up. 	
cpwVcTimeElapsed	The number of seconds, including partial seconds, that have elapsed since the beginning of the current measurement period. If, for some reason, such as an adjustment in the system's time-of-day clock, and the current interval exceeds the maximum value, the agent returns the maximum value. Because cpwVcPerfIntervalTable is not implemented, this is 0.	
cpwVcValidIntervals	The number of previous 15-minute intervals for which data was collected. An agent with PW capability must be capable of supporting at least xintervals. The minimum value of xis 4; the default of xis 32, and the maximum value of xis 96. The value is xunless the measurement was (re)started within the last x*15 minutes, in which case the value will be the number of complete 15-minute intervals; for example, in the case where the agent is a proxy, some intervals may be unavailable. In this case, this interval is the maximum interval number for which data is available. This interval is set to 0.	
cpwVcRowStatus	A read-only implementation that is always active(1). It is used for creating, modifying, and deleting.	
cpwVcStorageType	The storage type for this object is a read-only implementation that is always volatile(2).	

cpwVcPerfTotalTable

The table below lists the cpwVcPerfTotalTable objects and their descriptions.

Table 12 cpwVcPerfTotalTable Objects and Descriptions

Objects	Description
cpwVcPerfTotalInHCPackets	High-capacity counter for the number of packets received by the VC from the PSN.
cpwVcPerfTotalInHCBytes	High-capacity counter for the number of bytes received by the VC from the PSN.
cpwVcPerfTotalOutHCPackets	High-capacity counter for the number of packets forwarded by the VC to the PSN.
cpwVcPerfTotalOutHCBytes	High-capacity counter for the number of bytes forwarded by the VC (to the PSN).
cpwVcPerfTotalDiscontinuityTime	The value of sysUpTime on the most recent occasion when one or more of this object's counters suffered a discontinuity. The relevant counters are the specific instances of any Counter32 or Counter64. If no such discontinuities have occurred since the last reinitialization of the local management subsystem, this object contains a 0 value.

cpwVcIdMappingTable

The table below lists the cpwVcIdMappingTable objects and their descriptions.

Table 13 cpwVcldMappingTable Objects and Descriptions

Objects	Description
cpwVcIdMappingVcType	The VC type (indicates the service) of this VC.
cpwVcIdMappingVcID	The VC ID of this VC; 0 if the VC is configured manually.
cpwVcIdMappingPeerAddrType	IP address type of the peer node.
cpwVcIdMappingPeerAddr	IP address of the peer node.
cpwVcIdMappingVcIndex	The value that represents the VC in the cpwVcTable.

cpwVcPeerMappingTable

The table below lists the cpwVcPeerMappingTable objects and their descriptions.

Table 14 cpwVcPeerMappingTable Objects and Descriptions

Objects	Description
cpwVcPeerMappingPeerAddrType	IP address type of the peer node.
cpwVcPeerMappingPeerAddr	IP address of the peer node.
cpwVcPeerMappingVcType	The VC type (indicates the service) of this VC.
cpwVcPeerMappingVcID	The VC ID of this VC; 0 if the VC is configured manually.
cpwVcPeerMappingVcIndex	The value that represents the VC in the cpwVcTable.

Tables in the PW-MPLS-MIB

The PW-MPLS-MIB consists of the following tables:

- cpwVcMplsTable -- Specifies information for the VC to be carried over an MPLS PSN. This table is indexed on cpwVcIndex.
- cpwVcMplsOutboundTable -- Associates VCs using an MPLS PSN with the outbound MPLS tunnels toward the PSN or the physical interface in the case of the VC only. A row in this table represents a link between PW VCs that require MPLS tunnels and an MPLS tunnel toward the PSN. This table is indexed by the cpwVcIndex and an additional index that is not supported; consequently, its value is 1. The operator creates at least one entry in this table for each PW VC that requires an MPLS PSN. The VC-only case and the cpwVcMplsOutboundIndex is not supported.
- cpwVcMplsInboundTable -- Associates VCs using an MPLS PSN with the inbound MPLS tunnels for packets coming from the PSN, if such association is desired mainly for security reasons. A row in this table represents a link between PW VCs that require MPLS tunnels and an MPLS tunnel for packets arriving from the PSN. This table is indexed by the set of indexes used to identify the VC, cpwVcIndex, and an additional index that is not supported; consequently, its value is 1. An entry is created in this table either automatically by the local agent or manually by the operator when strict mode is required. This table points to the appropriate MPLS MIB. For MPLS-TE, the four variables relevant to the indexing of an MPLS TE tunnel are set. The VC-only case and the cpwVcMplsInboundIndex are not supported.
- cpwVcMplsNonTeMappingTable -- Maps an inbound or outbound tunnel to a VC in non-TE applications. A row in this table represents the association between a PW VC and its non-TE MPLS outer tunnel. An application can use this table to retrieve the PW carried over a specific non-TE MPLS outer tunnel quickly. This table is indexed by the xconnect index for the MPLS non-TE tunnel and the direction of the VC in the specific entry. The same table is used in both inbound and outbound directions, but in a different row for each direction. If the inbound association is not known, no rows should exist for it. Rows are created by the local agent when all the association data is available for display.
- cpwVcMplsTeMappingTable -- Maps an inbound or outbound tunnel to a VC in MPLS-TE applications. A row in this table represents the association between a PW VC and its MPLS-TE outer tunnel. An application can use this table to retrieve the PW carried over a specific TE MPLS outer tunnel quickly. This table is indexed by the four indexes of a TE tunnel, the direction of the VC specific entry, and the VcIndex. The same table is used in both inbound and outbound directions, but a different row for each direction. If the inbound association is not known, no rows should exist for it.

Rows are created by the local agent when all the association data is available for display. This table shows mappings between pseudowires and the xconnect index for non-TE outer tunnel or index.

- cpwVcMplsTable, page 107
- cpwVcMplsOutboundTable, page 108
- cpwVcMplsInboundTable, page 109
- cpwVcMplsNonTeMappingTable, page 110
- cpwVcMplsTeMappingTable, page 110

cpwVcMplsTable

The table below lists the cpwVcMplsTable objects and their descriptions.

Table 15 cpwVcMplsTable Objects and Descriptions

Objects	Description
cpwVcMplsMplsType	Set by the operator to indicate the outer tunnel types, if they exist. Values are the following:
	 mplsTe(0)Used when the outer tunnel is set up by MPLS-TE. mplsNonTe(1)Used when the outer tunnel is
	set up by LDP or manually.
cpwVcMplsExpBitsMode	Set by the operator to indicate the way the VC shim label EXP bits are to be determined. The value is the following:
	• outerTunnel(1)Used when there is an outer tunnel and cpwVcMplsMplsType is mplsTe or mplsNonTe.
cpwVcMplsExpBits	Set by the operator to indicate the MPLS EXP bits to be used on the VC shim label if cpwVcMplsExpBitsMode is specified; value = 0.
cpwVcMplsTtl	Set by the operator to indicate the VC time-to-live (TTL) bits to be used on the VC shim label; value = 0.
cpwVcMplsLocalLdpID	The local LDP identifier of the LDP entity creating this VC in the local node. Because the VC labels are always set from the per-platform label space, the last two octets in the LDP ID must be 0s.
cpwVcMplsLocalLdpEntityID	The local LDP entity index of the LDP entity to be used for this VC on the local node; this should be set to all 0s when this object is not used.

Objects	Description	
cpwVcMplsPeerLdpID	The peer LDP identifier as identified by the LDP session; this should be zero if not relevant or not known yet.	
cpwVcMplsStorageType	The storage type for this object is a read-only implementation that is always volatile(2).	

cpwVcMpIsOutboundTable

The table below lists the cpwVcMplsOutboundTable objects and their descriptions.

Table 16 cpwVcMplsOutboundTable Objects and Descriptions

Objects	Description
cpwVcMplsOutboundIndex	An arbitrary index for enabling multiple rows per VC in this table. The next available free index can be retrieved using cpwVcMplsOutboundIndexNext. The value = 1, because this object is not supported.
cpwVcMplsOutboundLsrXcIndex	Set by the operator. If the outer label is defined in the MPL-LSR-MIB, that is, set by LDP or manually, this object points to the xconnect index of the outer tunnel. Otherwise, this object is set to 0.
cpwVcMplsOutboundTunnelIndex	Part of the set of indexes for an outbound tunnel, specifically an MPLS-TE outer tunnel; otherwise, this object is set to 0.
cpwVcMplsOutboundTunnelInstance	Part of the set of indexes for an outbound tunnel, specifically an MPLS-TE outer tunnel; otherwise, this object is set to 0.
cpwVcMplsOutboundTunnelLclLSR	Part of the set of indexes for an outbound tunnel, specifically an MPLS-TE outer tunnel; otherwise, this object is set to NULL.
cpwVcMplsOutboundTunnelPeerLSR	Part of the set of indexes for an outbound tunnel, specifically an MPLS-TE outer tunnel; otherwise, this object is set to NULL.
cpwVcMplsOutboundIfIndex	For a VC only with no outer tunnel, this object holds the ifIndex of the outbound port. The value = 0.
cpwVcMplsOutboundRowStatus	A read-only implementation that is always active(1). It is used for creating, modifying, and deleting.

Objects	Description
cpwVcMplsOutboundStorageType	The storage type for this object is a read-only implementation that is always volatile(2).

cpwVcMplsInboundTable

The table below lists the cpwVcMplsInboundTable objects and their descriptions.

Table 17 cpwVcMplsInboundTable Objects and Descriptions

Objects	Description
cpwVcMplsInboundIndex	An arbitrary index for enabling multiple rows per VC in this table. The next available free index can be retrieved using cpwVcMplsInboundIndexNext. the value = 1, because this object is not supported.
cpwVcMplsInboundLsrXcIndex	If the outer label is defined in the MPL-LSR-MIB; that is, set by LDP or manually, this object points to the xconnect index of the outer tunnel. The xconnect index represents the pseudowire in the inbound direction retrieving 0 if information for this object is not known.
cpwVcMplsInboundTunnelIndex	Part of the set of indexes for an inbound tunnel, specifically an MPLS-TE outer tunnel; value = 0. This object does not support TE tunnels at the ingress router.
cpwVcMplsInboundTunnelInstance	Part of the set of indexes for an inbound tunnel, specifically an MPLS-TE outer tunnel; value = 0. This object does not support TE tunnels at the ingress router.
cpwVcMplsInboundTunnelLclLSR	Part of the set of indexes for an inbound tunnel, specifically an MPLS-TE outer tunnel; otherwise, set to NULL. This object does not support TE tunnels at the ingress router.
cpwVcMplsInboundTunnelPeerLSR	Part of the set of indexes for an inbound tunnel, specifically an MPLS-TE outer tunnel; otherwise, this object is set to NULL. This object does not support TE tunnels at the ingress router.
cpwVcMplsInboundIfIndex	In the case of a VC only (no outer tunnel), this object holds the ifIndex of the inbound port. The value = 0.
cpwVcMplsInboundRowStatus	A read-only implementation that is always active(1). It is used for creating, modifying, and deleting.

Objects	Description
cpwVcMplsInboundStorageType	The storage type for this object is a read-only implementation that is always volatile(2).

cpwVcMplsNonTeMappingTable

The table below lists the cpwVcMplsNonTeMappingTable objects and their descriptions.

Table 18 cpwVcMplsNonTeMappingTable Objects and Descriptions

Objects	Description
cpwVcMplsNonTeMappingTunnelDirection	Identifies if the row represents an outbound or inbound mapping.
cpwVcMplsNonTeMappingXcTunnelIndex	XC index in the MPLS-LSR-MIB of the pseudowire LDP-generated XC entry.
cpwVcMplsNonTeMappingIfIndex	Identifies the port on which the VC is carried for VC only; the value $= 0$.
cpwVcMplsNonTeMappingVcIndex	Represents the VC in the cpwVcTable.

cpwVcMplsTeMappingTable

The table below lists the cpwVcMplsTeMappingTable objects and their descriptions.

Table 19 cpwVcMplsTeMappingTable Objects and Descriptions

Objects	Description
cpwVcMplsTeMappingTunnelDirection	Identifies if the row represents an outbound mapping.
cpwVcMplsTeMappingTunnelIndex	Index for the conceptual row identifying an MPLS-TE tunnel.
cpwVcMplsTeMappingTunnelInstance	Identifies an instance of an MPLS-TE tunnel.
cpwVcMplsTeMappingTunnelPeerLsrID	Identifies a peer LSR when the outer tunnel is MPLS-TE based.
cpwVcMplsTeMappingTunnelLocalLsrID	Identifies the local LSR.
cpwVcMplsTeMappingVcIndex	Represents the VC in the cpwVcTable.

Tables in the PW-ENET-MIB

The PW-ENET-MIB consists of the following table:

 cpwVcEnetTable -- Provides Ethernet port mapping and VLAN configuration for each Ethernet emulated virtual connection. This table is indexed on cpwVcIndex, which uniquely identifies a singular connection. The second level index for this table is cpwVcEnetPwVlan, which indicates VLANs on this VC. This table is used only for Ethernet VC types--ethernetVLAN, ethernet, or ethernet virtual private LAN service (VPLS), and is implemented as read-only.

• cpwVcEnetTable, page 111

cpwVcEnetTable

The table below lists the cpwVcEnetTable objects and their descriptions.

Table 20 cpwVcEnetTable Objects and Descriptions

Objects	Description
cpwVcEnetPwVlan	The VLAN value for frames on a VC. This is one of the indexes to the table so multiple VLAN values can be configured for a PW VC. This value is 4096 to indicate untagged frames; that is, if the cpwVcEnetVlanMode value is removeVlan. This value is the VLAN value of the access circuit if the cpwVcEnetVlanMode value is noChange. The value of 4097 is used if the object is not applicable; for example, when mapping all packets from an Ethernet port to the VC.
cpwVcEnetVlanMode	Indicates the way the VLAN field is handled between the access circuit and the PW VC. The possible values for this field are as follows:
	 noChangeIndicates that the VC contains the original user VLAN, as specified in cpwVcEnetPortVlan. changeVlanIndicates that the VLAN field on the VC may be different from the VLAN field
	 on the user's port. removeVlanIndicates that the encapsulation on the VC does not include the original VLAN field.
cpwVcEnetPortVlan	Defines the VLAN value on the physical port (or VPLS virtual port) if a change is required to the VLAN value between the VC and the physical or virtual port. It is equal to cpwVcEnetPwVlan if the cpwVcEnetVlanMode value is noChange. A value of 4096 indicates that no VLAN is associated with the VC; that is, assigning Default VLAN to untagged frames. If all traffic from the VC is being forwarded to the port, then this value is 4097 indicating it is not relevant.

Objects	Description
cpwVcEnetPortIfIndex	The ifIndex value of the Ethernet port associated with this PW VC for point-to-point Ethernet service. For VPLS, this value is an ifIndex value for a virtual interface for the VPLS instance.
cpwVcEnetVcIfIndex	Models the VC as a virtual interface in the ifTable. This value is always 0 to indicate no virtual interface is created.
cpwVcEnetRowStatus	A read-only implementation that is always active(1). It is used for creating, modifying, and deleting.
cpwVcEnetStorageType	The storage type for this object is a read-only implementation that is always volatile(2).

Tables in the PW-FR-MIB

The PW-FR-MIB consists of the following table:

- cpwVcFrTable -- Contains entries that represent an FRoPW connection operating in one-to-one mapping mode in which there is a one-to-one correspondence between a Frame Relay VC and a pair of unidirectional pseudowires.
- cpwVcFrTable, page 112

cpwVcFrTable

The table below lists the cpwVcFrTable objects and their descriptions.

Table 21 cpwVcFrTable Objects and Descriptions

Objects	Description
cpwVcFrIfIndex	Returns the interface ifIndex of the Frame Relay (FR) segment of the FRoPW connection.
cpwVcFrDlci	Returns the data-link connection identifier (DLCI) of the Frame Relay segment of an FRoPW connection.
cpwVcFrAdminStatus	Returns the administrative status of an FRoPW connection.
cpwVcFrOperStatus	Returns the combined operational status of an FRoPW connection.
cpwVcFrPw2FrOperStatus	Returns the operational status of the PW-to-FR direction in an FRoPW connection.

Objects	Description
cpwVcFrRowStatus	A read-only implementation that is always active(1). It is used for creating, modifying, and deleting.
cpwVcFrStorageType	The storage type for this object is a read-only implementation that is always volatile(2).

Tables in the PW-ATM-MIB

The PW-ATM-MIB consists of the following tables:

- cpwVcAtmTable -- Specifies information for an ATM VC to be carried over the PSN.
- cpwVcAtmPerfTable -- Specifies performance-related attributes for an ATM VC.
- cpwVcAtmTable, page 113
- cpwVcAtmPerfTable, page 114

cpwVcAtmTable

The table below lists the cpwVcAtmTable objects and their descriptions.

Table 22 cpwVcAtmTable Objects and Descriptions

Objects	Description
cpwAtmIf	Specifies the ATM interface that sends and receives cells from the ATM network.
cpwAtmVpi	Specifies the VPI value of the ATM VC.
cpwAtmVci	Specifies the VCI value of the ATM VC.
cpwAtmClpQosMapping	Indicates the presence of cell loss priority (CLP) bits determining the value in quality of service (QoS) fields of the encapsulating protocol. The value could be used only for outbound traffic, which means traffic going out to the PSN.
cpwAtmRowStatus	A read-only implementation that is always active(1). It is used for creating, modifying, and deleting.
cpwAtmOamCellSupported	Indicates whether operation, administration, and maintenance (OAM) cells are transported on this VC.
cpwAtmQosScalingFactor	Represents the scaling factor to be applied to ATM QoS rates when calculating QoS rates for the PSN domain.

Objects	Description
cpwAtmCellPacking	Identifies if the VC is configured to do cell packing.
cpwAtmMncp	Identifies the number of cells that need to be packed.
cpwAtmEncap	Provides information on whether MPLS or Layer 2 Tunneling Protocol Version 3 (L2TPv3) is used as the transport.
cpwAtmPeerMncp	Represents the maximum number of cells that can be packed in one packet for a peer interface.
cpwAtmMcptTimeout	Represents the maximum cell packing timeout (MCPT) value used.

cpwVcAtmPerfTable

The table below lists the cpwVcAtmPerfTable objects and their descriptions.

Table 23 cpwVcAtmPerfTable Objects and Descriptions

Objects	Description
cpwAtmCellsReceived	Obtains information on the number of cells that were received and sent to the PSN.
cpwAtmCellsSent	Provides information on the number of cells sent to the ATM network.
cpwAtmCellsRejected	Indicates the number of cells that were rejected by this VC because of policing.
cpwAtmCellsTagged	Indicates the number of cells that were tagged.
cpwAtmHCCellsReceived	Provides the high-capacity counter for the number of cells received by this VC.
cpwAtmHCCellsRejected	Provides the high-capacity counter for the number of cells rejected by this VC.
cpwAtmHCCellsTagged	Provides the high-capacity counter for number of cells that were tagged.
cpwAtmAvgCellsPacked	Provides the average number of cells that were packed.
cpwAtmPktsReceived	Indicates the number of ATM AAL5 packets that are actually sent into the ATM network as packets when the VC is configured to do AAL5 over PW.

Objects	Description
cpwAtmPktsSent	Gets the number of packets that are reconstructed from the cells, assigns a VC label, and sends the packets into the PSN.
cpwAtmPktsRejected	Indicates the number of packets that were rejected because of policing.

Objects in the PWE3 MIBs

The PWE3 MIBs represent an ASN.1 notation reflecting specific components of the pseudowire services. The MIBs enable a network management application using SNMP to get this information for display. The MIBs support the standard GETNEXT and GETBULK functionality, but do not support configuration capabilities (via SET) in the current implementation.

Scalar Objects in the PWE3 MIBs

The PWE3 MIBs contain the following supported scalar object:

cpwVcUpDownNotifEnable--This object reflects the configuration of the cpwVcUp and cpwVcDown
notifications. If either of the notifications is configured via the command-line interface (CLI), then this
object has a value of true(1). If this object is set via SNMP to true(1), then it enables the emission of
both the cpwVcUp and cpwVcDown notifications; if the object is set via SNMP to false(2), these
notifications are not emitted.

cpwVcUpDownNotifEnable can be set only if RW is configured for the **snmp-server community** *string* [view *view-name*] [ro | rw] [ipv6 *nacl*] [access-list-number] command.

The PWE3 MIBs contain the following unsupported scalar objects:

- cpwVcIndexNext--Indicates the next cpwVcIndex value to use when you add rows to the cpwVcTable.
- cpwVcNotifRate--Indicates the rate at which cpwVcUp/Down notifications can be issued from the device
- cpwVcMplsOutboundIndexNext--Contains an appropriate value to be used for cpwVcMplsOutboundIndex when you create entries in the cpwVcMplsOutboundTable. The value 0 indicates that no unassigned entries are available. To obtain the cpwVcMplsOutboundIndex value for a new entry, the manager issues a management protocol retrieval operation to obtain the current value of this object. After each retrieval, the software agent should modify the value to the next unassigned index; however, the software agent *must not* assume such retrieval will be done for each row created.
- cpwVcMplsInboundIndexNext--Contains an appropriate value to be used for cpwVcMplsInboundIndex when you create entries in the cpwVcMplsInboundTable. The value 0 indicates that no unassigned entries are available. To obtain the cpwVcMplsInboundIndex value for a new entry, the manager issues a management protocol retrieval operation to obtain the current value of this object. After each retrieval, the software agent should modify the value to the next unassigned index; however, the agent must not assume such retrieval will be done for each row created.

Notifications in the PWE3 MIBs

The cpwVcUp and cpwVcDown notifications in the PW-MIB indicate when the operStatus values for a range of PW VCs have changed state.

The definition of these objects in the PW-MIB indicates that events of the same type, either up or down, must be able to be correlated into ranges. The implementation of these notifications does not do any of this correlation. A notification is generated for each individual VC that has an operational state change if that notification is enabled. A notification does not signal an operational state change for a group of VCs as described in the MIB.

Benefits of the PWE3 MIBs

The PWE3 MIBs provide the ability to manage pseudowire emulation edge-to-edge by providing MPLS-related information about the service and a mechanism to monitor the Ethernet, Frame Relay, or ATM access circuits.

How to Configure Pseudowire Emulation Edge-to-Edge MIBs

- Enabling the SNMP Agent for the PWE3 MIBs, page 116
- Configuring the Pseudowire Class, page 118

Enabling the SNMP Agent for the PWE3 MIBs

SUMMARY STEPS

- 1. enable
- 2. show running-config [interface | map-class]
- 3. configure terminal
- **4. snmp-server community** *string* [**view** *view-name*] [**ro** | **rw**] [**ipv6** *nacl*] [*access-list-number*]
- 5. end
- 6. write memory

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	

	Command or Action	Purpose
Step 2	show running-config [interface map- class]	Displays the running configuration of the router so that you can determine if an SNMP agent is already running on the device.
		If no SNMP information is displayed, continue with the next step.
	Example:	If any SNMP information is displayed, you can modify the information or change it as desired.
	Router# show running-config	 The optional interface keyword displays interface-specific configuration information. The optional map-class keyword displays dialer or Frame Relay map-class information.
Step 3	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 4	snmp-server community string [view view-name] [ro rw] [ipv6 nacl] [access-list-number]	 Sets up the community access string to permit access to SNMP for the MIBs. The <i>string</i> argument consists of 1 to 32 alphanumeric characters and functions much like a password, permitting access to SNMP. Blank spaces are not permitted in the community string.
	Example: Router(config)# snmp-server community public ro	 The optional view view-name keyword argument combination specifies a previously defined view. The view defines the objects available to the SNMP community. The optional ro keyword configures read-only (ro) access to the objects in the MIBs. The optional rw keyword specifies read-write access. Authorized management stations can both retrieve and modify MIB objects. The optional ipv6 nacl keyword argument combination specifies an IPv6 named access list. The optional access-list-number argument is an integer from 1 to 99 that specifies a standard access list of IP addresses or a string (not to exceed 64 characters) that is the name of a standard access list of IP addresses allowed access to the SNMP agent. Alternatively, it is an integer from 1300 to 1999 that specifies a list of IP addresses in the expanded range of standard access list numbers that are allowed to use the community string to gain access to the SNMP agent.
Step 5	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

	Command or Action	Purpose
Step 6	write memory	Writes the modified SNMP configuration into NVRAM of the router, permanently saving the SNMP settings.
	Example:	
	Router# write memory	

Configuring the Pseudowire Class

The successful transmission of the Layer 2 frames between PE routers is due to the configuration of the PE routers. You configure the connection, called a pseudowire, between the routers.

In simple configurations, this task is optional. You do not need to specify a pseudowire class if you specify the tunneling method as part of the **xconnect**command.

The pseudowire-class configuration group specifies the following characteristics of the tunneling mechanism:

- · Encapsulation type
- Control protocol
- · Payload-specific options

You must specify the **encapsulation mpls** command as part of the pseudowire class or as part of the **xconnect** command for the AToM VCs to work properly. If you omit the **encapsulation mpls** command as part of the **xconnect** command, you receive the following error:

% Incomplete command.

Once you specify the **encapsulation mpls** command, you cannot remove it using the **no encapsulation mpls** command. Nor can you change the command's setting using the **encapsulation l2tpv3** command. Those methods result in the following error message:

Encapsulation changes are not allowed on an existing pw-class.

To remove the command, you must delete the pseudowire with the **no pseudowire-class** command. To change the type of encapsulation, remove the pseudowire with the **no pseudowire-class** command and reestablish the pseudowire and specify the new encapsulation type.

There are many options that you can configure. For detailed information, see the "Any Transport over MPLS" module.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. pseudowire-class name
- 4. encapsulation mpls

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	pseudowire-class name	Establishes a pseudowire class with a name that you specify and enters pseudowire class configuration mode.
	Example:	
	Router(config)# pseudowire-class atom	
Step 4	encapsulation mpls	Specifies the tunneling encapsulation. For AToM, the encapsulation type is mpls.
	Example:	
	Router(config-pw)# encapsulation mpls	

• What to Do Next, page 119

What to Do Next

Perform a MIB walk using your SNMP management tool on cpwVcMIB, cpwVcMplsMIB, cpwVcFrMIB, and cpwVcAtmMIB to verify that the PW-MIB, the PW-MPLS-MIB, the PW-ENET-MIB, the PW-FR-MIB, and the PW-ATM-MIB objects, respectively, are populated correctly.

SNMPv1 and SNMPv2c are supported.

Configuration Examples for the Pseudowire Emulation Edge-to-Edge MIBs

• PWE3 MIBs Example, page 120

PWE3 MIBs Example

In the following example, the configuration permits any SNMP manager to access all objects with readonly permissions using the community string *public*.

Router# configure terminal

Enter configuration commands, one per line. End with ${\tt CNTL/Z}$. Router(config)# snmp-server community public ro

There is no explicit way to configure the PWE3 MIBs. However, for information on AToM configuration tasks and examples, see the "Any Transport over MPLS" module.

There are notifications specific to the PWE3 MIBs. For detailed information on the commands used to configure them, see the "Additional References" section.

Additional References

Related Documents

Related Topic	Document Title
Description of commands associated with MPLS and MPLS applications	Multiprotocol Label Switching Command Reference
AToM and MPLS	"Any Transport over MPLS" module

Related Topic	Document Title
Pseudowire-related Internet drafts	 An Architecture for Multi-Segment Pseudo Wire Emulation Edge-to-Edge, Internet draft, December 2007 [draft-ietf-pwe3-ms-arch-03.txt] Definitions for Textual Conventions and OBJECT-IDENTITIES for Pseudo-Wires Management, Internet draft, August 10, 2007 [draft-ietf-pwe3-pw-tc-mib-09.txt] Ethernet Pseudo Wire (PW) Management Information Base, Internet draft, August 30, 2007 [draft-pwe3-enet-mib-10.txt] Managed Objects for ATM over Packet Switched Network (PSN), Internet draft, August 8, 2007 [draft-ietf-pwe3-pw-atm-mib-02.txt] Pseudo Wire (PW) Management Information Base, Internet draft, May 31, 2007 [draft-ietf-pwe3-pw-mib-11.txt] Pseudo Wire (PW) over MPLS PSN Management Information Base, Internet draft August 11, 2007 [draft-ietf-pwe3-pw-mpls-mib-11.txt]
	Note For information on using SNMP MIB features, see the appropriate documentation for your network management system.

Standards

Standard	Title
No new or modified standards are supported by this	

feature, and support for existing standards has not been modified by this feature.

MIBs

MIB	MIBs Link
SNMP-VACM-MIB	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RF	Cs
----	----

RFC	Title
RFC 1156	Management Information Base for Network Management of TCP/IP-based Internets
RFC 1157	A Simple Network Management Protocol (SNMP)
RFC 1213	Management Information Base for Network Management of TCP/IP-based Internets: MIB-II
RFC 1315	Management Information Base for Frame Relay DTEs
RFC 3815	Definitions of Managed Objects for the Multiprotocol Label Switching (MPLS), Label Distribution Protocol (LDP)
RFC 3916	Requirements for Pseudo-Wire Emulation Edge-to- Edge (PWE3)
RFC 4619	Encapsulation Methods for Transport of Frame Relay over Multiprotocol Label Switching (MPLS) Networks

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for Pseudowire Emulation Edge-to-Edge MIBs for Ethernet Frame Relay and ATM Services

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 24 Feature Information for Pseudowire Emulation Edge-to-Edge MIBs for Ethernet, Frame Relay, and ATM Services

Feature Name	Releases	Feature Information
Pseudowire Emulation Edge-to- Edge MIBs for Ethernet, Frame Relay, and ATM Services 12.0(29)S 12.0(30)S 12.2(28)SB 12.2(23)SRA 12.4(11)T 12.2(33)SXH	12.0(29)S	The Pseudowire Emulation Edge-
	12.0(30)S	to-Edge MIBs for Ethernet, Frame Relay, and ATM Services
	12.0(31)S	feature provides Simple Network Management Protocol (SNMP) support within an Any Transport
	12.2(28)SB	
	12.2(33)SRA	over Multiprotocol Label
	12.4(11)T	Switching (AToM) infrastructure emulating Ethernet, Frame Relay,
	12.2(33)SXH	and ATM services over packet switched networks (PSNs).
		In Cisco IOS Release 12.0(29)S, this feature was introduced as Pseudowire Emulation Edge-to- Edge MIBs for Ethernet Services.
		In Cisco IOS Release 12.0(30)S, the title changed to Pseudowire Emulation Edge-to-Edge MIBs for Ethernet and Frame Relay Services because Frame Relay was added as a transport. Support was added for the Cisco 12000 series routers and for the CISCO-IETF-PW-FR-MIB (PW-FR-MIB).
		In Cisco IOS Release 12.0(31)S, the CISCO-IETF-PW-MPLS-MIB (PW-MPLS-MIB) was modified regarding how cross-connect (XC) and tunnel indexes appear for virtual circuits (VCs).
		In Cisco IOS Release 12.2(28)SB, the title changed to Pseudowire Emulation Edge-to- Edge MIBs for Ethernet, Frame Relay, and ATM Services because ATM was added as a transport. Support was added for the CISCO-IETF-PW-ATM-MIE (PW-ATM-MIB).
		In Cisco IOS Releases 12.2(33)SRA, 12.4(11)T, and 12.2(33)SXH, this feature was integrated into the releases as the

Feature Name	Releases	Feature Information
		Pseudowire Emulation Edge-to-
		Edge MIBs for Ethernet and
		Frame Relay Services feature
		because ATM is not supported as
		a transport.

Glossary

AAL —ATM adaptation layer. AAL defines the conversion of user information into cells. AAL1 and AAL2 handle isochronous traffic, such as voice and video; AAL3/4 and AAL5 pertain to data communications through the segmentation and reassembly of packets.

ATM —asynchronous transfer mode. A cell-based data transfer technique in which channel demand determines packet allocation. This is an international standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media such as E3, SONET, and T3.

CE router—customer edge router. A router that is part of a customer network and that interfaces to a provider edge (PE) router.

DLCI —data-link connection identifier. A unique number assigned to a PVC endpoint in a Frame Relay network. Identifies a particular PVC endpoint within an access channel in a Frame Relay network and has local significance only to that channel.

encapsulation —Wrapping of data in a particular protocol header. For example, Ethernet data is wrapped in a specific Ethernet header before network transit. Also, when bridging occurs in dissimilar networks, the entire frame from one network is simply placed in the header used by the data link layer protocol of the other network.

EoMPLS —Ethernet over multiprotocol label switching (MPLS). A tunneling mechanism that allows a service provider to tunnel customer Layer 2 traffic through a Layer 3 MPLS network. EoMPLS is a point-to-point solution only. EoMPLS is also known as Layer 2 tunneling.

Frame Relay—The industry standard, switched data link layer protocol that handles multiple virtual circuits using High-Level Data Link Control (HDLC) encapsulation between connected devices. Frame Relay is more efficient than X.25, the protocol for which it is generally considered a replacement.

IETF —internet engineering task force. A task force (consisting of more than 80 working groups) that is developing standards for the Internet and the IP suite of protocols.

LDP—label distribution protocol. The protocol that supports MPLS hop-by-hop forwarding and the distribution of bindings between labels and network prefixes. The Cisco proprietary version of this protocol is the Tag Distribution Protocol (TDP).

LSP—label switched path. A configured connection between two label switch routers (LSRs) in which label-switching techniques are used for packet forwarding; also a specific path through an MPLS network.

LSR —label switch router. A Multiprotocol Label Switching (MPLS) node that can forward native Layer 3 packets. The LSR forwards a packet based on the value of a label attached to the packet.

MIB—management information base. A database of network management information that is used and maintained by a network management protocol such as simple network management protocol (SNMP). The value of a MIB object can be changed or retrieved by using SNMP commands, usually through a network

management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MPLS—multiprotocol label switching. A switching method for the forwarding of IP traffic through the use of a label. This label instructs the routers and the switches in the network where to forward the packets based on preestablished IP routing information.

MTU —maximum transmission unit. Maximum packet size, in bytes, that a particular interface can handle.

NMS—network management system. System responsible for managing at least part of a network. An NMS is generally a reasonably powerful and well-equipped computer, such as an engineering workstation. An NMS communicates with agents to help keep track of network statistics and resources.

notification —A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal to indicate that a significant network event has occurred. See also trap.

OSPF —Open Shortest Path First. A link-state hierarchical Interior Gateway Protocol routing algorithm, derived from the IS-IS protocol. OSPF features include least-cost routing, multipath routing, and load balancing.

PE router—provider edge router. A router that is part of a service provider's network and is connected to a customer edge (CE) router.

primary tunnel—A tunnel whose label-switched path (LSP) may be fast rerouted if there is a failure. Backup tunnels cannot be primary tunnels.

pseudowire —PW. A mechanism that carries the elements of an emulated service from one provider edge (PE) to one or more PEs over a packet switched network (PSN).

SNMP—simple network management protocol. A management protocol used almost exclusively in TCP/IP networks. SNMP provides a means for monitoring and controlling network devices, and for managing configurations, statistics collection, performance, and security.

trap—A message sent by an SNMP agent to a network management station, console, or terminal, indicating that a significant event occurred. Traps are less reliable than notification requests because the receiver does not send an acknowledgment when it receives a trap. The sender cannot determine if the trap was received.

tunnel —A secure communication path between two peers, such as routers.

VC—virtual circuit. A logical circuit created to ensure reliable communication between two network devices. A virtual circuit can be either permanent (PVC) or switched (SVC).

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS Enhancements to Interfaces MIB

This document describes the Multiprotocol Label Switching (MPLS) enhancements to the existing Interfaces MIB (RFC 2233) to support an MPLS layer. This layer provides counters and statistics specifically for MPLS.

- Finding Feature Information, page 127
- Prerequisites for MPLS Enhancements to Interfaces MIB, page 127
- Restrictions for MPLS Enhancements to Interfaces MIB, page 127
- Information About MPLS Enhancements to Interfaces MIB, page 128
- How to Configure MPLS Enhancements to Interfaces MIB, page 134
- Configuration Examples for the MPLS Enhancements to Interfaces MIB, page 136
- Additional References, page 136
- Feature Information for MPLS Enhancements to Interfaces MIB, page 137
- Glossary, page 138

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS Enhancements to Interfaces MIB

- Simple Network Management Protocol (SNMP) must be installed and enabled on the label switching routers (LSRs)
- MPLS must be enabled on the LSRs
- MPLS IP must be enabled on an interface or an MPLS traffic engineering (TE) tunnel enabled on an interface

Restrictions for MPLS Enhancements to Interfaces MIB

Link up and link down traps for the MPLS layer are not supported in this release.

- Write capability using the SNMP SET command is not supported for the MPLS layer in this release.
- Some counters, including discard and multicast, increment on the underlying physical layer; therefore, they equal 0 because they never reach the MPLS layer.
- The high-capacity counters for the MPLS layer interfaces of the Interfaces MIB contain 64 bits of counter data. In previous versions, the high capacity counters displayed 32 bits of counter data.

The following MIB objects are affected:

- ifHCInOctets
 - ifHCOutOctets
 - ifHCInUcastPkts
 - ifHCOutUcastPkts

When the 64-bit values are less than the value of 232, the 32-bit and 64-bit values are identical.

After the counter increases to more than 232, the counters are different; the 64-bit value is computed by the following formula:

$$X * (232) + Y$$

where:

- X is the number of times the 32-bit counter has rolled.
 - Y is the residual value of the counter after the roll occurred. The Y value equals the 32-bit value.

When the high-capacity counter values are compared to their 32-bit values, there is a period of time that the counter values are not equal. The 64-bit values lag the 32-bit values when the counters poll the 32-bit hardware counters and computing the correct counter value. During the polling and computation interval, the following high-capacity counter values counters might be inconsistent:

- ifInOctets
 - ifOutOctets
 - ifInUcastPkts
 - ifOutUcastPkts

The inconsistent values can occur if traffic is constantly flowing over an interface and a MIB walk is performed. The 32-bit value is correct at that moment. The 64-bit value lags slightly, because of the polling computations needed to generate it. Once traffic stops flowing over the interface, and a polling period has passed, the two counters are identical and correct.

The lag time depends on the following factors:

- The polling interval used by the Interfaces MIB. The less time the polling interval takes, the more
 accurate the value is.
 - The size of the Interfaces MIB. A large MIB takes a long time to walk and might affect the values found at that instant.
 - The number of computations needed to generate the 64-bit value. The number of MPLS-enabled interfaces increases the number of 64-bit counter values that need to be computed.

Information About MPLS Enhancements to Interfaces MIB

- Feature Design of the MPLS Enhancements to Interfaces MIB, page 129
- Interfaces MIB Scalar Objects, page 131
- Stacking Relationships for MPLS Layer Interfaces, page 131

- Stacking Relationships for Traffic Engineering Tunnels, page 132
- MPLS Label Switching Router MIB Enhancements, page 133
- Benefits of the MPLS Enhancements to Interfaces MIB, page 134

Feature Design of the MPLS Enhancements to Interfaces MIB

The Interfaces MIB (IF MIB) provides an SNMP-based method for managing interfaces. Each entry in the IF MIB establishes indexing, statistics, and stacking relationships among underlying physical interfaces, subinterfaces, and Layer 2 protocols that exist within Cisco software.

The enhancements add an MPLS layer to the IF MIB as a Layer 2 protocol to provide statistics for traffic encapsulated as MPLS on an interface. In this structure, MPLS-specific data such as MPLS-encapsulated traffic counters and the MPLS maximum transmission unit (MTU) resides on top of the underlying physical or virtual interface to allow separation from non-MPLS data.

The enhancements also allow you to display indexing, statistics, and stacking relationships using the ifStackTable. MPLS layer interfaces are stacked above the underlying physical or virtual interface that is actually forwarding the MPLS traffic. MPLS traffic engineering tunnels are then stacked above those MPLS layers.

The IF MIB supports several types of interfaces. A virtual interface that provides protocol statistics for MPLS-encapsulated traffic has been added. This interface is stacked above real Cisco interfaces or subinterfaces, such as Fast Ethernet (fe0/1/0) or ATM (at1/1.1).

Cisco software creates a corresponding MPLS layer above each interface capable of supporting MPLS when the MPLS encapsulation is enabled by issuing the **mpls ip** command in interface configuration mode.

You can also create the interface layer if you enable MPLS TE by using the **mpls traffic-eng tunnels** command in interface configuration mode.

You must also issue these commands in global configuration mode for MPLS IP or MPLS TE to be enabled.

An IF MIB entry is created when you enable either MPLS IP or MPLS TE tunnels on an interface; the entry is removed when you disable both MPLS IP and MPLS TE.

- ifStackTable Objects, page 129
- ifRcvAddressTable Objects, page 130

ifStackTable Objects

The table below defines the ifStackTable objects.

Table 25 ifStackTable Objects and Definitions

Object	Definition	
ifStackHigherLayer	The value of ifIndex corresponding to the higher sublayer of the relationship; that is, the sublayer that runs on top of the sublayer identified by the corresponding instance of the ifStackLowerLayer.	
	Note Index objects are not accessible in a MIB walk. This value is part of the object identifier (OID) for every object in the ifStackTable.	
ifStackLowerLayer	The value of ifIndex corresponding to the lower sublayer of the relationship; that is, the sublayer that runs below the sublayer identified by the corresponding instance of the ifStackHigherLayer.	
	Note Index objects are not accessible in a MIB walk. This value is part of the OID for every object in the ifStackTable.	
ifStackStatus	Used to create and delete rows in the ifStackTable; status is always active(1) for MPLS.	

ifRcvAddressTable Objects

The table below defines the ifRcvAddressTable objects.

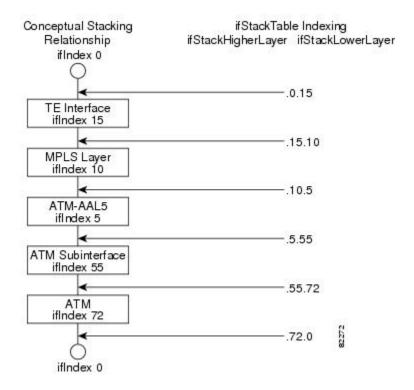
Entries for the MPLS layer do not appear in the ifRcvAddressTable.

Table 26	ifRcvAddressTable Objects and Descriptions

Object	Definition An address for which the system accepts packets and frames on this entry's interface.	
ifRcvAddressAddress		
	Note Index objects are not accessible in a MIB walk. This value is part of the OID for every object in the ifRcvAddressTable.	
ifRcvAddressStatus	Used to create and delete rows in the ifRcvAddressTable.	
ifRcvAddressType	Type of storage used for each entry in the ifRcvAddressTable.	

Interfaces MIB Scalar Objects

The IF MIB supports the following scalar objects:


- ifStackLastChange--The value of sysUpTime at the time of the last change of the entire interface stack. A change of the interface stack is defined to be any creation, deletion, or change in value of any instance of ifStackStatus. If the interface stack has been unchanged since the last reinitialization of the local network management subsystem, then this object contains a zero value.
- ifTableLastChange--The value of sysUpTime at the time of the last creation or deletion of an entry in the ifTable. If the number of entries has been unchanged since the last reinitialization of the local network management subsystem, then this object contains a zero value.

Stacking Relationships for MPLS Layer Interfaces

The ifStackTable within the IF MIB provides a conceptual stacking relationship between the interfaces and subinterfaces represented as entries in the ifTable.

The ifStackTable is indexed like a linked list. Each entry shows a relationship between two interfaces providing the ifIndexes of the upper and the lower interface. The entries chain together to show the entire stacking relationship. Each entry links with one another until the stack terminates with an ifIndex of 0 at the highest and lowest ends of the stack. For example, in the figure below, the indexes .10.5 show that ifIndex 10 is stacked upon ifIndex 5. There are 0 entries at the highest and lowest ends of the stack; in the figure, the indexes .0.15 and .72.0 are the highest and lowest ends of the stack, respectively.

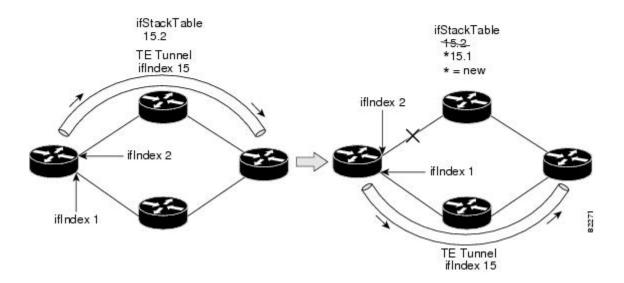
Figure 10 Sample ATM Stacking Relationship in the ifStackTable

The table below describes the indexing of the ifStackTable for the layer relationships shown in the figure above.

The order of the entries in the table may not be the same as that seen in the MIB walk, which has to follow SNMP ordering rules.

Table 27 Layer Relationships

Layer Relationship (in Descending Order)	ifStackHigherLayer/ifStackLowerLayer
TE interface as top layer	.0.15
TE interface stacked upon MPLS layer	.15.10
MPLS layer stacked upon ATM-AAL5	.10.5
ATM-AAL5 layer stacked upon ATM subinterface	.5.55
ATM subinterface stacked upon ATM	.55.72
ATM as bottom layer	.72.0


Stacking Relationships for Traffic Engineering Tunnels

MPLS TE tunnels are represented in Cisco software and the IF MIB as virtual interfaces. When properly signaled, TE tunnels pass traffic through MPLS over a physical interface. This process dictates that a TE tunnel is to be stacked on an MPLS layer that is stacked on an underlying interface.

TE tunnels can also change paths in response to different error or network conditions. These changes are instigated by using the RSVP-TE signaling protocol. When a change occurs, a tunnel can switch to a different MPLS interface. If no signaling path exists, no paths will be chosen and thus no MPLS interface will be used.

Because a TE tunnel is represented as an IF MIB ifTable entry, the ifStackTable also contains an entry corresponding to the TE tunnel. If the TE tunnel is successfully signaled, the ifStackTable also contains a link between the tunnel interface and one MPLS interface. Note that because it is possible for a TE tunnel to not have a corresponding signaled path, it is thus possible for a TE tunnel's ifStackTable entry to not have a corresponding lower layer. In this case, the lower layer variable contains the value of 0.

The figure below shows a TE tunnel before (left) and after (right) being rerouted and the effect on the ifStackTable. When ifIndex 2 fails, the TE tunnel is rerouted through ifIndex1, the 15.2 entry is removed from the ifStackTable, and the 15.1 entry is added.

MPLS Label Switching Router MIB Enhancements

All of the ifIndex references in the MPLS-LSR-MIB tables have changed from the ifIndex of the underlying physical or virtual interface to the ifIndex of the MPLS layer.

The table below shows the specific changes.

Table 28 MPLS-LSR-MIB ifIndex Objects Enhanced

Table	ifIndex
MPLS interface configuration table (mplsInterfaceConfTable)	mplsInterfaceConfIndex
MPLS in-segment table (mplsInSegmentTable)	mplsInSegmentIfIndex
MPLS cross-connect table (mplsXCTable)	mplsInSegmentIfIndex
MPLS out-segment table (mplsOutSegmentTable)	mplsOutSegmentIfIndex

The following objects from the mplsInterfaceConfTable are affected:

- mplsInterfaceOutPackets--Count only MPLS-encapsulated out packets
- mplsInterfaceInPackets--Count only MPLS-encapsulated in packets

Benefits of the MPLS Enhancements to Interfaces MIB

Improved Accounting Capability

By viewing the MPLS layer, you get MPLS-encapsulated traffic counters that do not include non-MPLS encapsulated traffic (for example, IP packets). Therefore, the counters are more useful for MPLS-related statistics.

TE Tunnel Interfaces

For TE tunnel interfaces, the stacking relationship reflects the current underlying MPLS interface that is in use and dynamically changes as TE tunnels reoptimize and reroute.

MPLS-Specific Information

The MPLS layer shows MPLS-specific information including the following:

- If MPLS is enabled
- MPLS counters
- MPLS MTU
- MPLS operational status

How to Configure MPLS Enhancements to Interfaces MIB

• Enabling the SNMP Agent, page 134

Enabling the SNMP Agent

SUMMARY STEPS

- 1. enable
- 2. show running-config
- 3. configure terminal
- **4. snmp-server community** *string* [**view** *view-name*] [**ro** *number*]
- 5 end
- 6. write memory
- 7. show running-config

DETAILED STEPS

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
		Enter your password if prompted.	
	Example:		
	Router> enable		
Step 2	show running-config	Displays the running configuration of the router so that you can determine if an SNMP agent is already running on the device.	
	Example:	If no SNMP information is displayed, continue with the next step.	
	Router# show running-config	If any SNMP information is displayed, you can modify the information or change it as desired.	
Step 3	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 4	snmp-server community string [view view-name] [ro number]	Configures read-only (ro) community strings for the MPLS Label Distribution Protocol (LDP) MIB.	
	<pre>Example: Router(config)# snmp-server community public ro</pre>	 The <i>string</i> argument functions like a password, permitting access to SNMP functionality on label switch routers (LSRs) in an MPLS network. The optional ro keyword configures read-only (ro) access to the objects in the MPLS LDP MIB. 	
Step 5	end	Exits to privileged EXEC mode.	
	Example:		
	Router(config)# end		
Step 6	write memory	Writes the modified SNMP configuration into NVRAM of the router, permanently saving the SNMP settings.	
	Example:		
	Router# write memory		
Step 7	show running-config	Displays the running configuration of the router so that you can determine if an SNMP agent is already running on the device.	
	Example:	If you see any snmp-server statements, SNMP has been enabled on the router.	
	Router# show running-config	If any SNMP information is displayed, you can modify the information or change it as desired.	

Configuration Examples for the MPLS Enhancements to Interfaces MIB

• MPLS Enhancements to Interfaces MIB: Examples, page 136

MPLS Enhancements to Interfaces MIB: Examples

The following example shows how to enable an SNMP agent:

Router# configure terminal
Router(config)# snmp-server community

In the following example, SNMPv1 and SNMPv2C are enabled. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string *public*.

Router(config)# snmp-server community public

In the following example, read-only access is allowed for all objects to members of access list 4 that specify the comaccess community string. No other SNMP managers have access to any objects.

Router(config)# snmp-server community comaccess ro 4

Additional References

Related Documents

Related Topic	Document Title
SNMP commands	Cisco IOS Network Management Command Reference
SNMP configuration	"Configuring SNMP Support" in the <i>Network Management Configuration Guide</i> .
A description of SNMP agent support for the MPLS Traffic Engineering MIB (MPLS TE MIB)	MPLS Traffic Engineering (TE) MIB

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:	
Interfaces Group MIB (IF MIB)		
	http://www.cisco.com/go/mibs	

RFCs

Title Management Information Base for Network Management of TCP/IP-based internets	
Management Information Base for Network Management of TCP/IP-based internets: MIB-II	
Extensions to the Generic-Interface MIB	
Interfaces MIB	

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for MPLS Enhancements to Interfaces MIB

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software

release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 29 Feature Information for MPLS Enhancements to Interfaces MIB

Feature Name	Releases	Feature Information
MPLS Enhancements to Interfaces MIB	12.0(23)S	This document describes the
	(MPLS) enhan	Multiprotocol Label Switching (MPLS) enhancements to the
		existing Interfaces MIB (RFC
	12.2(33)SXH	2233) to support an MPLS layer. This layer provides counters and statistics specifically for MPLS.
	12.2(33)SB Cisco IOS XE Release 2.1	
		In Cisco IOS Release 12.0(23)S, this feature was introduced.
		This feature was integrated into Cisco IOS Release 12.3(8)T.
		This feature was integrated into Cisco IOS Release 12.2(33)SRA.
		This feature was integrated into Cisco IOS Release 12.2(33)SXH.
		This feature was integrated into Cisco IOS Release 12.2(33)SB.
		In Cisco IOS XE Release 2.1, this feature was implemented on the Cisco ASR 1000 Series Aggregation Services Routers.
		The following command was introduced or modified: snmp-server community .

Glossary

ATM -- Asynchronous Transfer Mode. The international standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media, such as E3, SONET, and T3.

ATM-AAL5 --ATM adaptation layer 5. One of four AALs recommended by the ITU-T. AAL5 supports connection-oriented variable bit rate (VBR) services and is used predominantly for the transfer of classical IP over ATM and LAN emulation (LANE) traffic. AAL5 uses simple and efficient AAL (SEAL) and is the least complex of the current AAL recommendations. It offers low bandwidth overhead and simpler processing requirements in exchange for reduced bandwidth capacity and error-recovery capability.

encapsulation -- Wrapping of data in a particular protocol header. For example, Ethernet data is wrapped in a specific Ethernet header before network transit. Also, when bridging dissimilar networks, the entire

frame from one network is simply placed in the header used by the data link layer protocol of the other network.

IETF --Internet Engineering Task Force. A task force (consisting of more than 80 working groups) that is developing standards for the Internet and the IP suite of protocols.

interface -- The boundary between adjacent layers of the ISO model.

label -- A short, fixed-length identifier that is used to determine the forwarding of a packet.

label switching--A term used to describe the forwarding of IP (or other network layer) packets using a label swapping algorithm based on network layer routing algorithms. The forwarding of these packets uses the exact match algorithm and rewrites the label.

LSR --label switching router. A device that forwards Multiprotocol Label Switching (MPLS) packets based on the value of a fixed-length label encapsulated in each packet.

MIB --Management Information Base. A database of network management information that is used and maintained by a network management protocol such as Simple Network Management Protocol (SNMP). The value of a MIB object can be changed or retrieved by means of SNMP commands, usually through a network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MPLS --Multiprotocol Label Switching. A method for forwarding packets (frames) through a network. It enables routers at the edge of a network to apply labels to packets (frames). ATM switches or existing routers in the network core can switch packets according to the labels with minimal lookup overhead.

MPLS interface--An interface on which Multiprotocol Label Switching (MPLS) traffic is enabled.

MTU --maximum transmission unit. Maximum packet size, in bytes, that a particular interface can handle.

NMS --network management system. System responsible for managing at least part of a network. An NMS is generally a reasonably powerful and well-equipped computer, such as an engineering workstation. NMSs communicate with agents to help keep track of network statistics and resources.

OID --object identifier. Values are defined in specific MIB modules. The Event MIB allows you or an NMS to watch over specified objects and to set event triggers based on existence, threshold, and Boolean tests. An event occurs when a trigger is fired; this means that a specified test on an object returns a value of true. To create a trigger, you or a network management system (NMS) configures a trigger entry in the mteTriggerTable of the Event MIB. This trigger entry specifies the OID of the object to be watched. For each trigger entry type, corresponding tables (existence, threshold, and Boolean tables) are populated with the information required for carrying out the test. The MIB can be configured so that when triggers are activated (fired) either a Simple Network Management Protocol (SNMP) Set is performed, a notification is sent out to the interested host, or both.

SNMP --Simple Network Management Protocol. A management protocol used almost exclusively in TCP/IP networks. SNMP provides a means for monitoring and controlling network devices, and for managing configurations, statistics collection, performance, and security.

traffic engineering tunnel--A label-switched tunnel that is used for traffic engineering. Such a tunnel is set up through means other than normal Layer 3 routing; it is used to direct traffic over a path different from the one that Layer 3 routing could cause the tunnel to take.

trap --A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal, indicating that a significant event occurred. Traps are less reliable than notification requests, because the receiver does not send an acknowledgment when it receives a trap. The sender cannot determine if the trap was received.

tunnel -- A secure communication path between two peers, such as routers.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS Label Distribution Protocol MIB Version 8 Upgrade

The MPLS Label Distribution Protocol (LDP) MIB Version 8 Upgrade feature enhances the LDP MIB to support the Internet Engineering Task Force (IETF) draft Version 8.

- Finding Feature Information, page 141
- Prerequisites for MPLS LDP MIB Version 8 Upgrade, page 141
- Restrictions for MPLS LDP MIB Version 8 Upgrade, page 141
- Information About MPLS LDP MIB Version 8 Upgrade, page 142
- How to Configure MPLS LDP MIB Version 8 Upgrade, page 164
- Configuration Examples for MPLS LDP MIB Version 8 Upgrade, page 177
- Additional References, page 178
- Feature Information for MPLS LDP MIB Version 8 Upgrade, page 179
- Glossary, page 181

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS LDP MIB Version 8 Upgrade

- Simple Network Management Protocol (SNMP) must be installed and enabled on the label switch routers (LSRs).
- Multiprotocol Label Switching (MPLS) must be enabled on the LSRs.
- LDP must be enabled on the LSRs.

Restrictions for MPLS LDP MIB Version 8 Upgrade

This implementation of the MPLS LDP MIB is limited to read-only (RO) permission for MIB objects, except for MIB object *mplsLdpSessionUpDownTrapEnable* , which has been extended to be writable by the SNMP agent.

Setting this object to a value of true enables both the *mplsLdpSessionUp* and *mplsLdpSessionDown* notifications on the LSR; conversely, setting this object to a value of false disables both of these notifications.

For a description of notification events, see the Events Generating MPLS LDP MIB Notifications in MPLS LDP MIB Version 8 Upgrade section.

Most MPLS LDP MIB objects are set up automatically during the LDP peer discovery (hello) process and the subsequent negotiation of parameters and establishment of LDP sessions between the LDP peers.

The following tables are not implemented in this feature:

- mplsLdpEntityFrParmsTable
- mplsLdpEntityConfFrLRTable
- mplsLdpFrameRelaySesTable
- mplsFecTable
- mplsLdpSesInLabelMapTable
- mplsXCsFecsTable
- mplsLdpSesPeerAddrTable

Information About MPLS LDP MIB Version 8 Upgrade

- Feature Design of MPLS LDP MIB Version 8 Upgrade, page 142
- Enhancements in Version 8 of the MPLS LDP MIB, page 144
- Benefits of MPLS LDP MIB Version 8 Upgrade, page 144
- Description of MPLS LDP MIB Elements for MPLS LDP MIB Version 8 Upgrade, page 144
- Events Generating MPLS LDP MIB Notifications in MPLS LDP MIB Version 8 Upgrade, page 148
- MIB Tables in MPLS LDP MIB Version 8 Upgrade, page 149

Feature Design of MPLS LDP MIB Version 8 Upgrade

MPLS is a packet forwarding technology that uses a short, fixed-length value called a label in packets to specify the next hop for packet transport through an MPLS network by means of label switch routers (LSRs).

A fundamental MPLS principle is that LSRs in an MPLS network must agree on the definition of the labels being used for packet forwarding operations. Label agreement is achieved in an MPLS network by means of procedures defined in the LDP.

LDP operations begin with a discovery (hello) process, during which an LDP entity (a local LSR) finds a cooperating LDP peer in the network, and the two negotiate basic operating procedures. The recognition and identification of a peer by means of this discovery process results in a hello adjacency, which represents the context within which label binding information is exchanged between the local LSR and its LDP peer. LDP then creates an active LDP session between the two LSRs to effect the exchange of label binding information. When this process is carried to completion with respect to all of the LSRs in an MPLS network, the result is a label-switched path (LSP), which constitutes an end-to-end packet transmission pathway between the communicating network devices.

By means of LDP, LSRs can collect, distribute, and release label binding information to other LSRs in an MPLS network, thereby enabling the hop-by-hop forwarding of packets in the network along normally routed paths.

The MPLS LDP MIB has been implemented to enable standard, SNMP-based network management of the label switching features in Cisco software. Providing this capability requires SNMP agent code to execute on a designated network management station (NMS) in the network. The NMS serves as the medium for user interaction with the network management objects in the MPLS LDP MIB.

The SNMP agent code has a layered structure that is compatible with Cisco software and presents a network administrative and management interface to the objects in the MPLS LDP MIB and, thence, to the rich set of label switching capabilities supported by Cisco software.

By means of an SNMP agent, you can access MPLS LDP MIB objects using standard SNMP GET operations, and you can use those objects to accomplish a variety of network management tasks. All the objects in the MPLS LDP MIB follow the conventions defined in the IETF draft MIB entitled draft-ietfmpls-ldp-mib-08.txt, which defines network management objects in a structured and standardized manner. This draft MIB is evolving and is soon expected to be a standard. Accordingly, the MPLS LDP MIB will be implemented in such a way that it tracks the evolution of this IETF document.

However, slight differences exist between the IETF draft MIB and the implementation of equivalent Cisco functions. As a result, some minor translations between the MPLS LDP MIB objects and the internal Cisco data structures are needed. Such translations are accomplished by the SNMP agent, which runs in the background on the NMS workstation as a low-priority process.

The extensive Cisco label switching capabilities provide an integrated approach to managing the large volumes of traffic carried by WANs. These capabilities are integrated into the Layer 3 network services, thus optimizing the routing of high-volume traffic through Internet service provider backbones while, at the same time, ensuring the resistance of the network to link or node failures.

The MPLS Label Distribution Protocol MIB Version 8 Upgrade supports the following functions:

- Tag Distribution Protocol (TDP) (This protocol might not be supported in all software releases.)
- Generation and sending of event notification messages that signal changes in the status of LDP sessions
- Enabling and disabling of event notification messages by means of extensions to existing SNMP CLI
- Specification of the name or the IP address of an NMS workstation in the operating environment to which Cisco event notification messages are to be sent to serve network administrative and management purposes
- Storage of the configuration pertaining to an event notification message in NVRAM of the NMS

The structure of the MPLS LDP MIB conforms to Abstract Syntax Notation One (ASN.1), so the MIB forms a highly structured and idealized database of network management objects.

Using any standard SNMP application, you can retrieve and display information from the MPLS LDP MIB by means of standard SNMP GET and GETNEXT operations.

Because the MPLS LDP MIB was not given an Internet Assigned Numbers Authority (IANA) experimental object identifier (OID) at the time of its implementation, Cisco chose to implement the MIB under the ciscoExperimental OID number, as follows: ciscoExperimental 1.3.6.1.4.1.9.10 mplsLdpMIB 1.3.6.1.4.1.9.10.65 If the MPLS LDP MIB is assigned an IANA Experimental OID number, Cisco will replace all objects in the MIB under the ciscoExperimental OID and reposition the objects under the IANA Experimental OID.

Enhancements in Version 8 of the MPLS LDP MIB

Version 8 of the MPLS LDP MIB contains the following enhancements:

- TDP support (This protocol might not be supported in all software releases.)
- · Upgraded objects
- New indexing that is no longer based on the number of sessions
- Multiple SNMP context support for Virtual Private Networks (VPNs)

Benefits of MPLS LDP MIB Version 8 Upgrade

- Supports TDP and LDP (TDP might not be supported in all software releases.)
- Establishes LDP sessions between peer devices in an MPLS network
- Retrieves MIB parameters relating to the operation of LDP entities, such as:
 - Well-known LDP discovery port
 - Maximum transmission unit (MTU)
 - Proposed keepalive timer interval
 - Loop detection
 - Session establishment thresholds
 - Range of virtual path identifier/virtual channel identifier (VPI/VCI) pairs to be used in forming labels
- Gathers statistics related to LDP operations, such as error counters.
- · Monitors the time remaining for hello adjacencies
- Monitors the characteristics and status of LDP peers, such as:
 - Internetwork layer address of LDP peers
 - Loop detection of the LDP peers
 - Default MTU of the LDP peer
 - Number of seconds the LDP peer proposes as the value of the keepalive interval
- Monitors the characteristics and status of LDP sessions, such as:
 - Displaying the error counters.
 - Determining the LDP version being used by the LDP session
 - Determining the keepalive hold time remaining for an LDP session
 - Determining the state of an LDP session (whether the session is active or not)
 - o Displaying the label ranges for platform-wide and interface-specific sessions
 - Displaying the ATM parameters.

Description of MPLS LDP MIB Elements for MPLS LDP MIB Version 8 Upgrade

LDP operations related to an MPLS LDP MIB involve the following functional elements:

- LDP entity--Relates to an instance of LDP for purposes of exchanging label spaces; describes a
 potential session.
- LDP peer--Refers to a remote LDP entity (that is, a nonlocal LSR).
- LDP session--Refers to an active LDP process between a local LSR and a remote LDP peer.

Hello adjacency--Refers to the result of an LDP discovery process that affirms the state of two LSRs
in an MPLS network as being adjacent to each other (that is, as being LDP peers). When the neighbor
is discovered, the neighbor becomes a hello adjacency. An LDP session can be established with the
hello adjacency. After the session is established, label bindings can be exchanged between the LSRs.

These MPLS LDP MIB elements are briefly described under separate headings below.

In effect, the MPLS LDP MIB provides a network management database that supports real-time access to the various MIB objects in the database. This database reflects the current state of MPLS LDP operations in the network. You can access this network management information database by means of standard SNMP commands issued from an NMS in the MPLS LDP operating environment.

The MPLS LDP MIB supports the following network management and administrative activities:

- Retrieving MPLS LDP MIB parameters pertaining to LDP operations
- · Monitoring the characteristics and the status of LDP peers
- Monitoring the status of LDP sessions between LDP peers
- Monitoring hello adjacencies in the network
- Gathering statistics regarding LDP sessions
- LDP Entities, page 145
- LDP Sessions and Peers, page 146
- LDP Hello Adjacencies, page 147

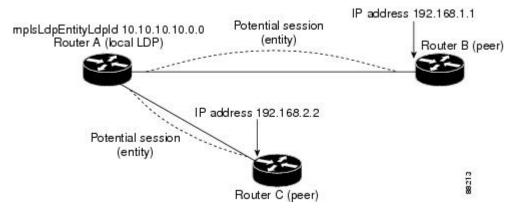
LDP Entities

An LDP entity is uniquely identified by an LDP identifier that consists of the mplsLdpEntityLdpId and the mplsLdpEntityIndex (see the figure below).

- The mplsLdpEntityLdpId consists of the local LSR ID (four octets) and the label space ID (two octets). The label space ID identifies a specific label space available within the LSR.
- The mplsLdpEntityIndex consists of the IP address of the peer active hello adjacency, which is the 32-bit representation of the IP address assigned to the peer LSR.

The mplsldpEntityProtocolVersion is a sample object from the mplsLdpEntityTable.

The figure shows the following indexing:

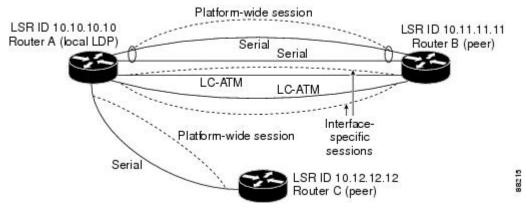

- mplsLdpEntityLdpId = 10.10.10.10.0.0
- LSR ID = 10.10.10.10
- Label space ID = 0.0

The mplsLdpEntityLdpId or the LDP ID consists of the LSR ID and the label space ID.

• The IP address of peer active hello adjacency or the mplsLdpEntityIndex = 3232235777, which is the 32-bit representation of the IP address assigned to the peer's active hello adjacency.

An LDP entity represents a label space that has the potential for a session with an LDP peer. An LDP entity is set up when a hello adjacency receives a hello message from an LDP peer.

In the figure below, Router A has potential sessions with two remote peers, Routers B and C. The mplsLdpEntityLdpId is 10.10.10.10.0.0, and the IP address of the peer active hello adjacency (mplsLdpEntityIndex) is 3232235777, which is the 32-bit representation of the IP address 192.168.1.1 for Router B.


LDP Sessions and Peers

LDP sessions exist between local entities and remote peers for the purpose of distributing label spaces. There is always a one-to-one correspondence between an LDP peer and an LDP session. A single LDP session is an LDP instance that communicates across one or more network links with a single LDP peer. LDP supports the following types of sessions:

- Interface-specific--An interface-specific session uses interface resources for label space distributions.
 For example, each label-controlled ATM (LC-ATM) interface uses its own VPIs/VCIs for label space distributions.
 Depending on its configuration, an LDP platform can support zero, one, or more interface-specific sessions.
 Each LC-ATM interface has its own interface-specific label space and a nonzero label space ID.
- Platform-wide--An LDP platform supports a single platform-wide session for use by all interfaces that
 can share the same global label space. For Cisco platforms, all interface types except LC-ATM use the
 platform-wide session and have a label space ID of zero.

When a session is established between two peers, entries are created in the mplsLdpPeerTable and the mplsLdpPessionTable because they have the same indexing.

In the figure below, Router A has two remote peers, Routers B and C. Router A has a single platform-wide session that consists of two serial interfaces with Router B and another platform-wide session with Router C. Router A also has two interface-specific sessions with Router B.

The figure below shows entries that correspond to the mplsLdpPeerTable and the mplsLdpSessionTable in the figure above.

In the figure below, mplsLdpSesState is a sample object from the mplsLdpSessionTable on Router A. There are four mplsLdpSesState sample objects shown (top to bottom). The first object represents a platform-wide session associated with two serial interfaces. The next two objects represent interface-specific sessions for the LC-ATM interfaces on Routers A and B. These interface-specific sessions have nonzero peer label space IDs. The last object represents a platform-wide session for the next peer, Router C.

The indexing is based on the entries in the mplsLdpEntityTable. It begins with the indexes of the mplsLdpEntityTable and adds the following:

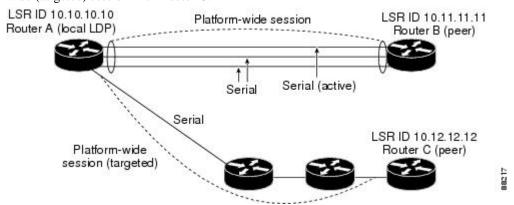
• Peer LDP ID = 10.11.11.11.0.0

The peer LDP ID consists of the peer LSR ID (four octets) and the peer label space ID (two octets).

- Peer LSR ID = 10.11.11.11
- Peer label space ID = 0.0

The peer label space ID identifies a specific peer label space available within the LSR.

```
mplsLdpSesState.10.10.10.10.0.0.3232235777.10.11.11.11.0.0
Indexing of mplsLdpEntityTable
mplsLdpSesState.10.10.10.10.0.0.3232236034.10.12.12.12.0.0
mplsLdpSesState.10.10.10.10.10.13232235778.10.11.11.11.0.1
mplsLdpSesState.10.10.10.10.0.2.3232235779.10.11.11.11.0.2
```


LDP Hello Adjacencies

An LDP hello adjacency is a network link between a router and its peers. An LDP hello adjacency enables two adjacent peers to exchange label binding information.

An LDP hello adjacency exists for each link on which LDP runs. Multiple LDP hello adjacencies exist whenever there is more than one link in a session between a router and its peer, such as in a platform-wide session.

A hello adjacency is considered active if it is currently engaged in a session, or nonactive if it is not currently engaged in a session.

A targeted hello adjacency is not directly connected to its peer and has an unlimited number of hops between itself and its peer. A linked hello adjacency is directly connected between two routers. In the figure below, Router A has two remote peers, Routers B and C. Router A has a platform-wide session with Router B that consists of three serial interfaces, one of which is active and another platform-wide (targeted) session with Router C.

The figure below shows entries in the mplsLdpHelloAdjacencyTable. There are four mplsLdpHelloAdjHoldTime sample objects (top to bottom). They represent the two platform-wide sessions and the four serial links shown in the figure above.

The indexing is based on the mplsLdpSessionTable. When the mplsLdpHelloAdjIndex enumerates the different links within a single session, the active link is mplsLdpHelloAdjIndex = 1.

Events Generating MPLS LDP MIB Notifications in MPLS LDP MIB Version 8 Upgrade

When you enable MPLS LDP MIB notification functionality by issuing the **snmp-server enable traps mpls ldp** command, notification messages are generated and sent to a designated NMS in the network to signal the occurrence of specific events within the network.

The MPLS LDP MIB objects involved in LDP status transitions and event notifications include the following:

- mplsLdpSessionUp--This message is generated when an LDP entity (a local LSR) establishes an LDP session with another LDP entity (an adjacent LDP peer in the network).
- mplsLdpSessionDown--This message is generated when an LDP session between a local LSR and its adjacent LDP peer is terminated.
- mplsLdpPathVectorLimitMismatch--This message is generated when a local LSR establishes an LDP session with its adjacent peer LSR, but the two LSRs have dissimilar path vector limits.

The value of the path vector limit can range from 0 through 255; a value of 0 indicates that loop detection is off; any value other than zero up to 255 indicates that loop detection is on and, in addition, specifies the maximum number of hops through which an LDP message can pass before a loop condition in the network is sensed.

We recommend that all LDP-enabled routers in the network be configured with the same path vector limit. Accordingly, the mplsLdpPathVectorLimitMismatch object exists in the MPLS LDP MIB to provide a warning message to the NMS when two routers engaged in LDP operations have different path vector limits.

This notification is generated only if the distribution method is downstream-on-demand.

mplsLdpFailedInitSessionThresholdExceeded--This message is generated when a local LSR and an
adjacent LDP peer attempt to set up an LDP session between them, but fail to do so after a specified
number of attempts. The default number of attempts is 8. This default value is implemented and cannot
be changed.

Eight failed attempts to establish an LDP session between a local LSR and an LDP peer, due to any type of incompatibility between the devices, causes this notification message to be generated. Cisco routers support the same features across multiple platforms.

Therefore, the most likely incompatibility to occur between Cisco LSRs is a mismatch of their respective ATM VPI/VCI label ranges.

For example, if you specify a range of valid labels for an LSR that does not overlap the range of its adjacent LDP peer, the routers try eight times to create an LDP session between themselves before the mplsLdpFailedInitSessionThresholdExceeded notification is generated and sent to the NMS as an informational message.

The LSRs whose label ranges do not overlap continue their attempt to create an LDP session between themselves after the eight-retry threshold is exceeded.

In such cases, the LDP threshold exceeded notification alerts the network administrator about a condition in the network that might warrant attention.

RFC 3036, *LDP Specification*, details the incompatibilities that can exist between Cisco routers and/or other vendor LSRs in an MPLS network.

Among such incompatibilities, for example, are the following:

- Nonoverlapping ATM VPI/VCI ranges (as noted above) or nonoverlapping Frame-Relay DLCI ranges between LSRs attempting to set up an LDP session
 - Unsupported label distribution method
 - Dissimilar protocol data unit (PDU) sizes
 - Dissimilar types of LDP feature support

MIB Tables in MPLS LDP MIB Version 8 Upgrade

Version 8 of the MPLS LDP MIB consists of the following tables:

• mplsLdpEntityTable --Contains entries for every active LDP hello adjacency. Nonactive hello adjacencies appear in the mplsLdpHelloAdjacencyTable, rather than this table. This table is indexed by the local LDP identifier for the interface and the IP address of the peer active hello adjacency.

The advantage of showing the active hello adjacency instead of sessions in this table is that the active hello adjacency can exist even if an LDP session is not active (cannot be established). Previous implementations of the IETF MPLS-LDP MIB used sessions as the entries in this table. This approach was inadequate because as sessions went down, the entries in the entity table would disappear completely because the agent code could no longer access them. This resulted in the MIB failing to provide information about failed LDP sessions.

Directed adjacencies are also shown in this table. These entries, however, are always up administratively (adminStatus) and operationally (operStatus), because the adjacencies disappear if the directed session fails. Nondirected adjacencies might disappear from the MIB on some occasions, because adjacencies are deleted if the underlying interface becomes operationally down, for example.

- mplsLdpEntityConfGenLRTable --Contains entries for every LDP-enabled interface that is in the
 global label space. (For Cisco, this applies to all interfaces except LC-ATM. LC-ATM entities are
 shown in the mplsLdpEntityConfAtmLRTable instead.) Indexing is the same as it is for the
 mplsLdpEntityTable, except two indexes have been added, mplsLdpEntityConfGenLRMin and
 mplsLdpEntityConfGenLRMax. These additional indexes allow more than one label range to be
 defined. However, in the current Cisco implementation, only one global label range is allowed.
- mplsLdpEntityAtmParmsTable --Contains entries for every LDP-enabled LC-ATM interface. This table is indexed the same as the mplsLdpEntityTable although only LC-ATM interfaces are shown.
- mplsLdpEntityConfAtmLRTable --Contains entries for every LDP-enabled LC-ATM interface.
 Indexing is the same as it is for the mplsLdpEntityTable, except two indexes have been added,
 mplsLdpEntityConfAtmLRMinVpi and mplsLdpEntityConfAtmLRMinVci. These additional indexes

- allow more than one label range to be defined. However, in the current Cisco implementation, only one label range per LC-ATM interface is allowed.
- mplsLdpEntityStatsTable --Augments the mplsLdpEntityTable and shares the exact same indexing for performing GETand GETNEXT operations. This table shows additional statistics for entities.
- mplsLdpPeerTable --Contains entries for all peer sessions. This table is indexed by the local LDP identifier of the session, the IP address of the peer active hello adjacency, and the peer's LDP identifier.
- mplsLdpHelloAdjacencyTable --Contains entries for all hello adjacencies. This table is indexed by the
 local LDP identifier of the associated session, the IP address of the peer active hello adjacency, the
 LDP identifier for the peer, and an arbitrary index that is set to the list position of the adjacency.
- mplsLdpSessionTable --Augments the mplsLdpPeerTable and shares the same indexing for performing GET and GETNEXT operations. This table shows all sessions.
- mplsLdpAtmSesTable --Contains entries for LC-ATM sessions. Indexing is the same as it is for the
 mplsLdpPeerTable, except two indexes have been added, mplsLdpSesAtmLRLowerBoundVpi and
 mplsLdpSesAtmLRLowerBoundVci. These additional indexes allow more than one label range to be
 defined. However, in the current Cisco implementation, only one label range per LC-ATM interface is
 allowed.
- mplsLdpSesStatsTable --Augments the mplsLdpPeerTable and shares the exact same indexing for performing GET and GETNEXT operations. This table shows additional statistics for sessions.
- mplsLdpEntityTable, page 150
- mplsLdpEntityConfGenLRTable, page 153
- mplsLdpEntityAtmParmsTable, page 154
- mplsLdpEntityConfAtmLRTable, page 155
- mplsLdpEntityStatsTable, page 155
- mplsLdpPeerTable, page 157
- mplsLdpHelloAdjacencyTable, page 157
- mplsLdpSessionTable, page 158
- mplsLdpAtmSesTable, page 159
- mplsLdpSesStatsTable, page 159
- VPN Contexts in MPLS LDP MIB Version 8 Upgrade, page 160
- SNMP Context, page 160
- VPN Aware LDP MIB Sessions, page 160
- VPN Aware LDP MIB Notifications, page 162

mplsLdpEntityTable

The table below lists the mplsLdpEntityTable objects and their descriptions.

Table 30 mplsLdpEntityTable Objects and Descriptions

Object	Description
mplsLdpEntityEntry	Represents an LDP entity, which is a potential session between two peers.

Object	Description
mplsLdpEntityLdpId	The LDP identifier (not accessible) consists of the local LSR ID (four octets) and the label space ID (two octets).
mplsLdpEntityIndex	A secondary index that identifies this row uniquely. It consists of the IP address of the peer active hello adjacency, which is the 32-bit representation of the IP address assigned to the LSR (not accessible).
mplsLdpEntityProtocolVersion	The version number of the LDP protocol to be used in the session initialization message.
mplsLdpEntityAdminStatus	The administrative status of this LDP entity is always up. If the hello adjacency fails, this entity disappears from the mplsLdpEntityTable.
mplsLdpEntityOperStatus	The operational status of this LDP entity. Values are unknown(0), enabled(1), and disabled(2).
mplsLdpEntityTcpDscPort	The TCP discovery port for LDP or TDP. The default value is 646 (LDP).
mplsLdpEntityUdpDscPort	The UDP discovery port for LDP or TDP. The default value is 646 (LDP).
mplsLdpEntityMaxPduLength	The maximum PDU length that is sent in the common session parameters of an initialization message.
mplsLdpEntityKeepAliveHoldTimer	The two-octet value that is the proposed keepalive hold time for this LDP entity.
mplsLdpEntityHelloHoldTimer	The two-octet value that is the proposed hello hold time for this LDP entity.
mplsLdpEntityInitSesThreshold	The threshold for notification when this entity and its peer are engaged in an endless sequence of initialization messages.
	The default value is 8 and cannot be changed by SNMP or CLI.
mplsLdpEntityLabelDistMethod	The specified method of label distribution for any given LDP session. Values are downstreamOnDemand(1) and downstreamUnsolicited(2).
mplsLdpEntityLabelRetentionMode	Can be configured to use either conservative(1) for LC-ATM or liberal(2) for all other interfaces.

Object	Description
mplsLdpEntityPVLMisTrapEnable	Indicates whether the mplsLdpPVLMismatch trap should be generated.
	If the value is enabled(1), the trap is generated. If the value is disabled(2), the trap is not generated. The default is disabled(2).
	Note The mplsLdpPVLMismatch trap is generated only if mplsLdpEntityLabelDistMethod is downstreamOnDemand(1).
mplsLdpEntityPVL	If the value of this object is 0, loop detection for path vectors is disabled. Otherwise, if this object has a value greater than zero, loop detection for path vectors is enabled, and the path vector limit is this value.
	Note The mplsLdpEntityPVL object is non-zero only if mplsLdpEntityLabelDistMethod is downstreamOnDemand(1).
mplsLdpEntityHopCountLimit	If the value of this object is 0, loop detection using hop counters is disabled.
	If the value of this object is greater than 0, loop detection using hop counters is enabled, and this object specifies this entity's maximum allowable value for the hop count.
	Note The mplsLdpEntityHopCountLimit object is non-zero only if mplsLdpEntityLabelDistMethod is downstreamOnDemand(1).
mplsLdpEntityTargPeer	If this LDP entity uses a targeted adjacency, this object is set to true(1). The default value is false(2).
mplsLdpEntityTargPeerAddrType	The type of the internetwork layer address used for the extended discovery. This object indicates how the value of mplsLdpEntityTargPeerAddr is to be interpreted.
mplsLdpEntityTargPeerAddr	The value of the internetwork layer address used for the targeted adjacency.

Object	Description
mplsLdpEntityOptionalParameters	Specifies the optional parameters for the LDP initialization message. If the value is generic(1), no optional parameters are sent in the LDP initialization message associated with this entity.
	LC-ATM uses atmParameters(2) to specify that a row in the mplsLdpEntityAtmParmsTable corresponds to this entry.
	Note Frame Relay parameters are not supported.
mplsLdpEntityDiscontinuityTime	The value of sysUpTime on the most recent occasion when one or more of this entity's counters suffered a discontinuity. The relevant counters are the specific instances of any Counter32 or Counter64 object contained in the mplsLdpEntityStatsTable that are associated with this entity. If no such discontinuities have occurred since the last reinitialization of the local management subsystem, this object contains a 0 value.
mplsLdpEntityStorType	The storage type for this entry is a read-only implementation that is always volatile.
mplsLdpEntityRowStatus	This object is a read-only implementation that is always active.

mplsLdpEntityConfGenLRTable

The table below lists the mplsLdpEntityConfGenLRTable objects and their descriptions.

Table 31 mplsLdpEntityConfGenLRTable Objects and Descriptions

Object	Description
mplsLdpEntityConfGenLREntry	A row in the LDP Entity Configurable Generic Label Range table. One entry in this table contains information on a single range of labels; the range is defined by an upper boundary (VPI/VCI pair) and a lower boundary (VPI/VCI pair).
	The current implementation supports one label range per entity.
mplsLdpEntityConfGenLRMin	The minimum label configured for this range (not accessible).
mplsLdpEntityConfGenLRMax	The maximum label configured for this range (not accessible).

Object	Description
mplsLdpEntityConfGenIfIndxOrZero	This value represents the SNMP IF-MIB index for the platform-wide entity. If the active hello adjacency is targeted, the value is 0.
mplsLdpEntityConfGenLRStorType	The storage type for this entry is a read-only implementation that is always volatile.
mplsLdpEntityConfGenLRRowStatus	This object is a read-only implementation that is always active.

mplsLdpEntityAtmParmsTable

The table below lists the mplsLdpEntityAtmParmsTable objects and their descriptions.

Table 32 mplsLdpEntityAtmParmsTable Objects and Descriptions

Object	Description
mplsLdpEntityAtmParmsEntry	Represents the ATM parameters and ATM information for this LDP entity.
mplsLdpEntityAtmIfIndxOrZero	This value represents the SNMP IF-MIB index for the interface-specific LC-ATM entity.
mplsLdpEntityAtmMergeCap	Denotes the merge capability of this entity.
mplsLdpEntityAtmLRComponents	Number of label range components in the initialization message. This also represents the number of entries in the mplsLdpEntityConfAtmLRTable that correspond to this entry.
mplsLdpEntityAtmVcDirectionality	If the value of this object is bidirectional(0), a given VCI within a given VPI is used as a label for both directions independently of one another.
	If the value of this object is unidirectional(1), a given VCI within a VPI designates one direction.
mplsLdpEntityAtmLsrConnectivity	The peer LSR can be connected indirectly by means of an ATM VP, so that the VPI values can be different on the endpoints. For that reason, the label must be encoded entirely within the VCI field.
	Values are direct(1), the default, and indirect(2).
mplsLdpEntityDefaultControlVpi	The default VPI value for the non-MPLS connection.
mplsLdpEntityDefaultControlVci	The default VCI value for the non-MPLS connection.

Object	Description
mplsLdpEntityUnlabTrafVpi	VPI value of the VCC supporting unlabeled traffic. This non-MPLS connection is used to carry unlabeled (IP) packets.
mplsLdpEntityUnlabTrafVci	VCI value of the VCC supporting unlabeled traffic. This non-MPLS connection is used to carry unlabeled (IP) packets.
mplsLdpEntityAtmStorType	The storage type for this entry is a read-only implementation that is always volatile.
mplsLdpEntityAtmRowStatus	This object is a read-only implementation that is always active.

mplsLdpEntityConfAtmLRTable

The table below lists the mplsLdpEntityConfAtmLRTable objects and their descriptions.

Table 33 mplsLdpEntityConfAtmLRTable Objects and Descriptions

Object	Description
mplsLdpEntityConfAtmLREntry	A row in the LDP Entity Configurable ATM Label Range Table. One entry in this table contains information on a single range of labels; the range is defined by an upper boundary (VPI/VCI pair) and a lower boundary (VPI/VCI pair). This is the same data used in the initialization message. This label range should overlap the label range of the peer.
mplsLdpEntityConfAtmLRMinVpi	The minimum VPI number configured for this range (not accessible).
mplsLdpEntityConfAtmLRMinVci	The minimum VCI number configured for this range (not accessible).
mplsLdpEntityConfAtmLRMaxVpi	The maximum VPI number configured for this range (not accessible).
mplsLdpEntityConfAtmLRMaxVci	The maximum VCI number configured for this range (not accessible).
mplsLdpEntityConfAtmLRStorType	The storage type for this entry is a read-only implementation that is always volatile.
mplsLdpEntityConfAtmLRRowStatus	This object is a read-only implementation that is always active.

mplsLdpEntityStatsTable

The table below lists the mplsLdpEntityStatsTable objects and their descriptions.

Table 34 mplsLdpEntityStatsTable Objects and Descriptions

Object	Description
mplsLdpEntityStatsEntry	These entries augment the mplsLdpEntityTable by providing additional information for each entry.
mplsLdpAttemptedSessions	Not supported in this feature.
mplsLdpSesRejectedNoHelloErrors	A count of the session rejected/no hello error notification messages sent or received by this LDP entity.
mplsLdpSesRejectedAdErrors	A count of the session rejected/parameters advertisement mode error notification messages sent or received by this LDP entity.
mplsLdpSesRejectedMaxPduErrors	A count of the session rejected/parameters max PDU length error notification messages sent or received by this LDP entity.
mplsLdpSesRejectedLRErrors	A count of the session rejected/parameters label range notification messages sent or received by this LDP entity.
mplsLdpBadLdpIdentifierErrors	A count of the number of bad LDP identifier fatal errors detected by the session associated with this LDP entity.
mplsLdpBadPduLengthErrors	A count of the number of bad PDU length fatal errors detected by the session associated with this LDP entity.
mplsLdpBadMessageLengthErrors	A count of the number of bad message length fatal errors detected by the session associated with this LDP entity.
mplsLdpBadTlvLengthErrors	A count of the number of bad Type-Length-Value (TLV) length fatal errors detected by the session associated with this LDP entity.
mpls Ldp Malformed Tlv Value Errors	A count of the number of malformed TLV value fatal errors detected by the session associated with this LDP entity.
mplsLdpKeepAliveTimerExpErrors	A count of the number of session keepalive timer expired errors detected by the session associated with this LDP entity.
mplsLdpShutdownNotifReceived	A count of the number of shutdown notifications received related to the session associated with this LDP entity.

Object	Description
mplsLdpShutdownNotifSent	A count of the number of shutdown notifications sent related to the session associated with this LDP entity.

mplsLdpPeerTable

The table below lists the mplsLdpPeerTable objects and their descriptions.

Table 35 mplsLdpPeerTable Objects and Descriptions

Object	Description
mplsLdpPeerEntry	Information about a single peer that is related to a session (not accessible).
	Note This table is augmented by the mplsLdpSessionTable.
mplsLdpPeerLdpId	The LDP identifier of this LDP peer (not accessible) consists of the peer LSR ID (four octets) and the peer label space ID (two octets).
mplsLdpPeerLabelDistMethod	For any given LDP session, the method of label distribution. Values are downstreamOnDemand(1) and downstreamUnsolicited(2).
mplsLdpPeerLoopDetectionForPV	An indication of whether loop detection based on path vectors is disabled or enabled for this peer.
	For downstream unsolicited distribution (mplsLdpPeerLabelDistMethod is downstreamUnsolicited(2)), this object always has a value of disabled(0) and loop detection is disabled.
	For downstream-on-demand distribution (mplsLdpPeerLabelDistMethod is downstreamOnDemand(1)), this object has a value of enabled(1), provided that loop detection based on path vectors is enabled.
mplsLdpPeerPVL	If the value of mplsLdpPeerLoopDetectionForPV for this entry is enabled(1), this object represents that path vector limit for this peer.
	If the value of mplsLdpPeerLoopDetectionForPV for this entry is disabled(0), this value should be 0.

mplsLdpHelloAdjacencyTable

The table below lists the mplsLdpHelloAdjacencyTable objects and their descriptions.

Table 36 mplsLdpHelloAdjacencyTable Objects and Descriptions

Object	Description
mplsLdpHelloAdjacencyEntry	Each row represents a single LDP hello adjacency. An LDP session can have one or more hello adjacencies (not accessible).
mplsLdpHelloAdjIndex	An identifier for this specific adjacency (not accessible). The active hello adjacency has mplsLdpHelloAdjIndex equal to 1.
mplsLdpHelloAdjHoldTimeRem	The time remaining for this hello adjacency. This interval changes when the next hello message, which corresponds to this hello adjacency, is received.
mplsLdpHelloAdjType	This adjacency is the result of a link hello if the value of this object is link(1). Otherwise, this adjacency is a result of a targeted hello and its value is targeted(2).

mplsLdpSessionTable

The table below lists the mplsLdpSessionTable objects and their descriptions.

Table 37 mplsLdpSessionTable Objects and Descriptions

Object	Description
mplsLdpSessionEntry	An entry in this table represents information on a single session between an LDP entity and an LDP peer. The information contained in a row is readonly. This table augments the mplsLdpPeerTable.
mplsLdpSesState	The current state of the session. All of the states are based on the LDP or TDP state machine for session negotiation behavior.
	The states are as follows:
	• nonexistent(1)
	• initialized(2)
	• openrec(3)
	• opensent(4)
	• operational(5)
mplsLdpSesProtocolVersion	The version of the LDP protocol which this session is using. This is the version of the LDP protocol that has been negotiated during session initialization.

Object	Description
mplsLdpSesKeepAliveHoldTimeRem	The keepalive hold time remaining for this session.
mplsLdpSesMaxPduLen	The value of maximum allowable length for LDP PDUs for this session. This value could have been negotiated during the session initialization.
mplsLdpSesDiscontinuityTime	The value of sysUpTime on the most recent occasion when one or more of this session's counters suffered a discontinuity. The relevant counters are the specific instances of any Counter32 or Counter64 object contained in the mplsLdpSesStatsTable associated with this session.
	The initial value of this object is the value of sysUpTime when the entry was created in this table.

mplsLdpAtmSesTable

The table below lists the mplsLdpAtmSesTable objects and their descriptions.

Table 38 mplsLdpAtmSesTable Objects and Descriptions

Objects	Description
mplsLdpAtmSesEntry	An entry in this table represents information on a single label range intersection between an LDP entity and an LDP peer (not accessible).
mplsLdpAtmSesLRLowerBoundVpi	The minimum VPI number for this range (not accessible).
mplsLdpAtmSesLRLowerBoundVci	The minimum VCI number for this range (not accessible).
mplsLdpAtmSesLRUpperBoundVpi	The maximum VPI number for this range (read-only).
mplsLdpAtmSesLRUpperBoundVci	The maximum VCI number for this range (read-only).

mplsLdpSesStatsTable

The table below lists the mplsLdpSesStatsTable objects and their descriptions.

Table 39 mplsLdpSesStatsTable Objects and Descriptions

Object	Description
mplsLdpSesStatsEntry	An entry in this table represents statistical information on a single session between an LDP entity and an LDP peer. This table augments the mplsLdpPeerTable.
mplsLdpSesStatsUnkMesTypeErrors	This object is the count of the number of unknown message type errors detected during this session.
mplsLdpSesStatsUnkTlvErrors	This object is the count of the number of unknown TLV errors detected during this session.

VPN Contexts in MPLS LDP MIB Version 8 Upgrade

Within an MPLS Border Gateway Protocol (BGP) 4 Virtual Private Network (VPN) environment, separate LDP processes can be created for each VPN. These processes and their associated data are called LDP contexts. Each context is independent from all others and contains data specific only to that context.

This feature adds support for different contexts for different MPLS VPNs. Users of the MIB can view MPLS LDP processes for a given MPLS VPN. The VPN Aware LDP MIB feature does not change the syntax of the IETF MPLS-LDP MIB. It changes the number and types of entries within the tables.

The IETF MPLS-LDP MIB can show information about only one context at a time. You can specify a context, either a global context or an MPLS VPN context, using an SMNP security name.

The following sections describe topics related to the VPN Aware LDP MIB feature:

SNMP Context

SNMP contexts provide VPN users with a secure way of accessing MIB data. When a VPN is associated with a context, that VPN's specific MIB data exists in that context. Associating a VPN with a context enables service providers to manage networks with multiple VPNs. Creating and associating a context with a VPN enables a provider to prevent the users of one VPN from accessing information about users of other VPNs on the same networking device.

VPN Aware LDP MIB Sessions

Before the VPN Aware LDP MIB features, an SNMP query to the MPLS LDP MIB returned information about global sessions only. A query did not return information about LDP sessions in a VPN context. The IETF MPLS LDP MIB retrieved information from global routing tables, but did not retrieve information from VPN routing and forwarding instances (VRFs) that store per-VPN routing data. The MPLS LDP MIB looked only at LDP processes in the global context and ignored all other sessions. A query on a VRF returned no information. You can view LDP processes in a VPN context.

The figure below shows a sample MPLS VPN network with the MPLS LDP sessions prior to the implementation of the VPN Aware LDP MIB feature.

LDP sessions on PE1

PE1 PE2
PE1 CE1-1
PE1 PE2
PE1 CE1-1
PE1 PE2
VPN1

VPN1

VPN1

VPN1

VPN2 LDP session

VPN2
Core

VPN2
Site 1

LDP sessions

MIB walk on PE1 (global context)
PE1 PE2
Site 2

CE2-1
VPN1

VPN1

VPN1

VPN2

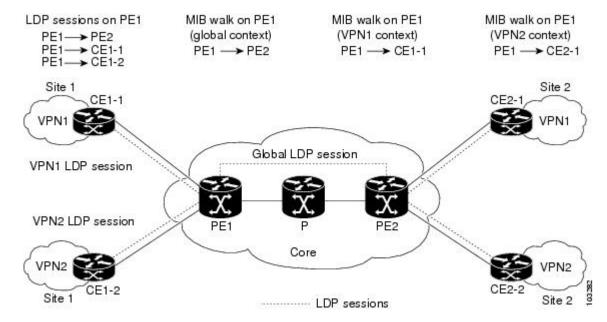
CE2-2
Site 2

VPN2
Site 1

VPN2
Site 1

LDP sessions

Figure 11 MPLS LDP Sessions Setup Before VPN Aware LDP MIB Feature


A MIB walk prior to this software release displayed only global session information.

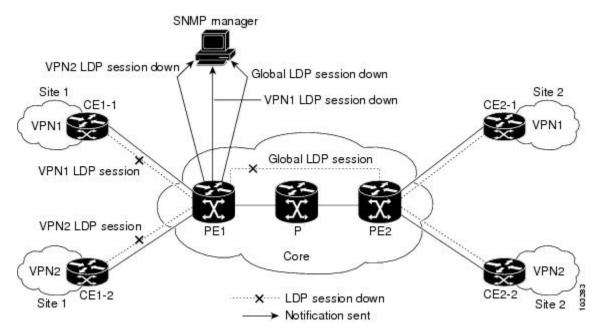
With the VPN Aware LDP MIB enhancement, an SNMP query to the IETF MPLS-LDP-MIB supports both global and VPN contexts. This feature allows you to enter LDP queries on any VRF and on the core (global context). A query can differentiate between LDP sessions from different VPNs. LDP session information for a VPN stays in the context of that VPN. Therefore, the information from one VPN is not available to a user of a different VPN. The VPN Aware update to the LDP MIB also allows you to view LDP processes operating in a Carrier Supporting Carrier (CSC) network.

In an MPLS VPN, a service provider edge router (PE) might contain VRFs for several VPNs as well as a global routing table. To set up separate LDP processes for different VPNs on the same device, you need to configure each VPN with a unique securityName, contextName, and View-based Access Control Model (VACM) view. The VPN securityName must be configured for the IETF MPLS LDP MIB.

The figure below shows LDP sessions for a sample MPLS VPN network with the VPN Aware LDP MIB feature.

Figure 12 MPLS LDP Sessions with the VPN Aware LDP MIB Feature

With the VPN Aware LDP MIB feature, you can do MIB queries or MIB walks for an MPLS VPN LDP session or a global LDP session.


To verify LDP session information for a specific VPN, use the **show mpls ldp neighbor vrf** *vpn-name* **detail** command.

VPN Aware LDP MIB Notifications

Before the VPN Aware LDP MIB feature, all notification messages for MPLS LDP sessions were sent to the same designated network management station (NMS) in the network. The notifications were enabled with the **snmp-server enable traps mpls ldp** command.

The figure below shows LDP notifications that were sent before the implementation of the VPN Aware LDP MIB feature.

Figure 13 LDP Notifications Sent Before the VPN Aware LDP MIB Feature

The VPN Aware LDP MIB feature supports LDP notifications for multiple LDP contexts for VPNs. LDP notifications can be generated for the core (global context) and for different VPNs. You can cause notifications be sent to different NMS hosts for different LDP contexts. LDP notifications associated with a specific VRF are sent to the NMS designated for that VRF. LDP global notifications are sent to the NMS configured to receive global traps.

To enable LDP context notifications for the VPN Aware LDP MIB feature, use either the SNMP object mplsLdpSessionsUpDownEnable (in the global LDP context only) or the following extended global configuration commands.

To enable LDP notifications for the global context, use the following commands on a PE router:

```
Router(config)# snmp-server host host-address traps community mpls-ldp
Router(config)# snmp-server enable traps mpls ldp
```

To enable LDP notifications for a VPN context, use the following commands on a PE router:

The figure below shows LDP notifications with the VPN Aware LDP MIB feature.

VPN2 LDP VPN1 context LDP Global context LDP session down session down session down SNMP managers SNMP managers Site 1 Site 2 Global LDP session VPN1 LDP session VPN2 LDP session Core ··· LDP session down Site 2 Notification sent

Figure 14 LDP Notifications With the VPN Aware LDP MIB Feature

How to Configure MPLS LDP MIB Version 8 Upgrade

- Enabling the SNMP Agent, page 134
- Enabling Distributed Cisco Express Forwarding, page 166
- Enabling MPLS Globally, page 167
- Enabling LDP Globally, page 168
- Enabling MPLS on an Interface, page 168
- Enabling LDP on an Interface, page 169
- Configuring a VPN Aware LDP MIB, page 170
- Verifying MPLS LDP MIB Version 8 Upgrade, page 176

Enabling the SNMP Agent

SUMMARY STEPS

- 1. enable
- 2. show running-config
- 3. configure terminal
- **4. snmp-server community** *string* [**view** *view-name*] [**ro** *number*]
- **5**. **end**
- 6. write memory
- 7. show running-config

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show running-config	Displays the running configuration of the router so that you can determine if an SNMP agent is already running on the device.
	Example:	If no SNMP information is displayed, continue with the next step.
	Router# show running-config	If any SNMP information is displayed, you can modify the information or change it as desired.
Step 3	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 4	snmp-server community string [view view-name] [ro number]	Configures read-only (ro) community strings for the MPLS Label Distribution Protocol (LDP) MIB.
	Example:	 The <i>string</i> argument functions like a password, permitting access to SNMP functionality on label switch routers (LSRs) in an MPLS network. The optional ro keyword configures read-only (ro) access to the objects
	Router(config)# snmp-server community public ro	in the MPLS LDP MIB.
Step 5	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

	Command or Action	Purpose
Step 6	write memory	Writes the modified SNMP configuration into NVRAM of the router, permanently saving the SNMP settings.
	Example:	
	Router# write memory	
Step 7 show running-config		Displays the running configuration of the router so that you can determine if an SNMP agent is already running on the device.
	Example:	If you see any snmp-server statements, SNMP has been enabled on the router.
	Router# show running-config	If any SNMP information is displayed, you can modify the information or change it as desired.

Enabling Distributed Cisco Express Forwarding

Perform this task to enable Cisco Express Forwarding or distributed Cisco Express Forwarding.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip cef distributed
- 4. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	ip cef distributed	Enables distributed Cisco Express Forwarding.
	Example:	
	Router(config)# ip cef distributed	

	Command or Action	Purpose
Step 4	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Enabling MPLS Globally

Perform this task to enable MPLS globally.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. mpls ip
- 4. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	mpls ip	Enables MPLS forwarding of IPv4 packets along normally routed paths for the platform.
	Example:	
	Router(config)# mpls ip	
Step 4	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Enabling LDP Globally

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. mpls label protocol $\{ldp \mid tdp\}$
- 4. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	mpls label protocol {ldp tdp}	Specifies the platform default label distribution protocol. TDP might not be supported in all software releases.
	Example:	
	Router(config)# mpls label protocol ldp	
Step 4	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Enabling MPLS on an Interface

Perform this task to enable MPLS on an interface.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface** *type slot/subslot/port* [.*subinterface-number*]
- 4. mpls ip
- **5**. **end**

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	$\textbf{interface} \ \textit{type} \ \textit{slot/subslot/port} \ [\textbf{.} \textit{subinterface-number}]$	Configures an interface type and enters interface configuration mode.
		mode.
	Example:	
	Router(config)# interface FastEthernet 1/0/0	
Step 4	mpls ip	Enables MPLS forwarding of IPv4 packets along normally routed paths for a particular interface.
		panis for a particular interface.
	Example:	
	Router(config-if)# mpls ip	
Step 5	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Enabling LDP on an Interface

Perform this task to enable LDP on an interface.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface** *type slot* / *subslot* / *port* [. *subinterface-number*]
- 4. mpls label protocol ldp
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	$\textbf{interface} \ \textit{type} \ \textit{slot} \ \textit{/} \ \textit{subslot} \ \textit{/} \ \textit{port} \ [\textbf{.} \ \textit{subinterface-number}]$	Configures an interface type and enters interface configuration mode.
		mode.
	Example:	
	Router(config)# interface FastEthernet 1/0/0	
Step 4	mpls label protocol ldp	Specifies the label distribution protocol to be used on a given interface.
		interrace.
	Example:	
	Router(config-if)# mpls label protocol ldp	
Step 5	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Configuring a VPN Aware LDP MIB

- Configuring SNMP Support for a VPN, page 171
- Configuring an SNMP Context for a VPN, page 172
- Associating an SNMP VPN Context with SNMPv1 or SNMPv2, page 174

Configuring SNMP Support for a VPN

Perform this task to configure SNMP support for a Virtual Private Network (VPN) or a remote VPN.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** snmp-server host host-address [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type] [vrf vrf-name]
- **4. snmp-server engineID remote** *ip-address* [**udp-port** *udp-port-number*] [**vrf** *vrf-name*] *engineid-string*
- **5**. **end**

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	snmp-server host host-address [traps informs] [version {1 2c 3 [auth noauth priv]}] community-string [udp-port port] [notification-type] [vrf vrf-name]	Specifies the recipient of an SNMP notification operation and specifies the Virtual Private Network (VPN) routing and forwarding (VRF) instance table to be used for the sending of SNMP notifications.
	Example:	
	Router(config)# snmp-server host example.com vrf trap-vrf	
Step 4	<pre>snmp-server engineID remote ip-address [udp-port udp-port-number] [vrf vrf-name] engineid-string</pre>	Configures a name for the remote SNMP engine on a router.
	Example:	
	Router(config)# snmp-server engineID remote 172.16.20.3 vrf traps-vrf 80000009030000B064EFE100	

	Command or Action	Purpose
Step 5	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuring an SNMP Context for a VPN

Perform this task to configure an SNMP context for a VPN. This sets up a unique SNMP context for a VPN, which allows you to access the VPN's LDP session information.

- SNMP Context, page 160
- VPN Route Distinguishers, page 172

SNMP Context

SNMP contexts provide VPN users with a secure way of accessing MIB data. When a VPN is associated with a context, that VPN's specific MIB data exists in that context. Associating a VPN with a context enables service providers to manage networks with multiple VPNs. Creating and associating a context with a VPN enables a provider to prevent the users of one VPN from accessing information about users of other VPNs on the same networking device.

VPN Route Distinguishers

A route distinguisher (RD) creates routing and forwarding tables for a VPN. Cisco software adds the RD to the beginning of the customer's IPv4 prefixes to change them into globally unique VPN-IPv4 prefixes.

Either the RD is an autonomous system number (ASN)-relative RD, in which case it is composed of an autonomous system number and an arbitrary number, or it is an IP-address-relative RD, in which case it is composed of an IP address and an arbitrary number. You can enter an RD in either of these formats:

- 16-bit ASN: your 32-bit number, for example, 101:3.
- 32-bit IP address: your 16-bit number, for example, 192.168.122.15:1.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. snmp-server context context-name
- 4. ip vrf vrf-name
- **5. rd** *route-distinguisher*
- 6. context context-name
- 7. route-target [import | export | both] route-target-ext-community
- **8**. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	snmp-server context context-name	Creates and names an SNMP context.
	Example:	
	Router(config)# snmp-server context context1	
Step 4	ip vrf vrf-name	Configures a Virtual Private Network (VPN) routing and forwarding instance (VRF) table and enters VRF
		configuration mode.
	Example:	
	Router(config)# ip vrf vrf1	
Step 5	rd route-distinguisher	Creates a VPN route distinguisher.
	Example:	
	Router(config-vrf)# rd 100:120	
Step 6	context context-name	Associates an SNMP context with a particular VRF.
	Example:	
	Router(config-vrf)# context context1	
Step 7	$\textbf{route-target} \ [\textbf{import} \mid \textbf{export} \mid \textbf{both}] \ \textit{route-target-ext-community}$	(Optional) Creates a route-target extended community for a VRF.
	Framela	
	Example:	
	Router(config-vrf)# route-target export 100:1000	

	Command or Action	Purpose
Step 8	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Associating an SNMP VPN Context with SNMPv1 or SNMPv2

Perform this task to associate an SNMP VPN context with SNMPv1 or SNMPv2. This allows you to access LDP session information for a VPN using SNMPv1 or SNMPv2.

SNMPv1 or SNMPv2 Security: SNMPv1 and SNMPv2 are not as secure as SNMPv3. SNMP Versions 1 and 2 use plain text communities and do not perform the authentication or security checks that SNMP Version 3 performs.

To configure the VPN Aware LDP MIB feature when using SNMP Version 1 or SNMP Version 2, you need to associate a community name with a VPN. This association causes SNMP to process requests coming in for a particular community string only if they come in from the configured VRF. If the community string contained in the incoming packet does not have an associated VRF, the packet is processed only if it came in through a non-VRF interface. This process prevents users outside the VPN from using a clear text community string to query the VPN data. However, this is not as secure as using SNMPv3.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** snmp-server user username group-name [remote host [udp-port port]] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access access-list]
- **4.** snmp-server group group-name {v1 | v2c | v3{auth | noauth | priv}} [context context-name] [read readview] [write writeview] [notify notifyview] [access access-list]
- **5. snmp-server view** *view-name oid-tree* {**included** | **excluded**}
- **6. snmp-server enable traps** [notification-type]
- 7. snmp-server host host-address [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type] [vrf vrf-name]
- **8.** snmp mib community-map community-name [context context-name] [engineid engine-id] [security-name security-name] target-list vpn-list-name
- **9. snmp mib target list** *vpn-list-name* {**vrf** *vrf-name* | **host** *ip-address*}
- 10. no snmp-server trap authentication vrf
- **11.** exit

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
		Enter your password if prompted.	
	Example:		
	Router> enable		
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 3	<pre>snmp-server user username group-name [remote host [udp-port port]] {v1 v2c v3 [encrypted] [auth {md5 sha} auth-password]} [access access-list]</pre>	Configures a new user to an SNMP group.	
	Example:		
	Router(config)# snmp-server user customer1 group1 v1		
Step 4	<pre>snmp-server group group-name {v1 v2c v3{auth noauth priv}} [context context-name] [read readview] [write writeview] [notify notifyview] [access access-list]</pre>	Configures a new SNMP group or a table that maps SNMP users to SNMP views.	
		• Use the context <i>context-name</i> keyword and argument to associate the specified SNMP group with a configured SNMP context.	
	Example:		
	Router(config)# snmp-server group group1 v1 context context1 read view1 write view1 notify view1		
Step 5	snmp-server view view-name oid-tree {included excluded}	Creates or updates a view entry.	
	Example:		
	Router(config)# snmp-server view view1 ipForward included		
Step 6	snmp-server enable traps [notification-type]	Enables all SNMP notifications (traps or informs) available on your system.	
	Example:		
	Router(config)# snmp-server enable traps		

	Command or Action	Purpose
Step 7	snmp-server host host-address [traps informs] [version {1 2c 3 [auth noauth priv]}] community-string [udp-port port] [notification-type] [vrf vrf-name]	Specifies the recipient of an SNMP notification operation.
	Example:	
	Router(config)# snmp-server host 10.0.0.1 vrf customer1 public udp-port 7002	
Step 8	snmp mib community-map community-name [context context-name] [engineid engine-id] [security-name security-name] target-list vpn-list-name	Associates an SNMP community with an SNMP context, Engine ID, or security name.
	Example:	
	Router(config)# snmp mib community-maps communityl context context1 target-list commAVpn	
Step 9	snmp mib target list vpn-list-name {vrf vrf-name host ip-address}	Creates a list of target VRFs and hosts to associate with an SNMP community.
	Example:	
	Router(config)# snmp mib target list commAVpn vrf vrf1	
Step 10	no snmp-server trap authentication vrf	(Optional) Disables all SNMP authentication notifications (traps and informs) generated for
		packets received on VRF interfaces.
	Example:	Use this command to disable authentication
	Router(config)# no snmp-server trap authentication vrf	traps only for those packets on VRF interfaces with incorrect community associations.
Step 11	exit	Exits to privileged EXEC mode.
	Example:	
	Router(config) exit	
		<u> </u>

Verifying MPLS LDP MIB Version 8 Upgrade

Perform a MIB walk using your SNMP management tool to verify that the MPLS LDP MIB Version 8 Upgrade feature is functioning.

Configuration Examples for MPLS LDP MIB Version 8 Upgrade

- MPLS LDP MIB Version 8 Upgrade Examples, page 177
- Configuring a VPN Aware SNMP Context for SNMPv1 or SNMPv2 Example, page 177

MPLS LDP MIB Version 8 Upgrade Examples

The following example shows how to enable an SNMP agent on the host NMS:

```
Router# configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router(config)# snmp-server community
```

The following example shows how to enable SNMPv1 and SNMPv2C on the host NMS. The configuration permits any SNMP agent to access all MPLS LDP MIB objects that have read-only permission using the community string public.

```
Router(config)# snmp-server community public
```

The following example shows how to allow read-only access to all MPLS LDP MIB objects relating to members of access list 4 that specify the comaccess community string. No other SNMP agents will have access to any of the MPLS LDP MIB objects.

```
Router(config)# snmp-server community comaccess ro 4
```

The following example shows how to enable LDP globally and then on an interface:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# mpls label protocol ldp
Router(config)# interface FastEthernet1/0/0
Router(config-if)# mpls label protocol ldp
Router(config-if)# end
```

Configuring a VPN Aware SNMP Context for SNMPv1 or SNMPv2 Example

The following configuration example shows how to configure a VPN Aware SNMP context for the MPLS LDP MIB Version 8 with SNMPv1 or SNMPv2:

```
snmp-server context A
snmp-server context B
ip vrf CustomerA
  rd 100:110
  context A
  route-target export 100:1000
  route-target import 100:1000
!
ip vrf CustomerB
  rd 100:120
  context B
  route-target export 100:2000
  route-target import 100:2000
!
interface FastEthernet0/3/1
  description Belongs to VPN A
```

```
ip vrf forwarding CustomerA
 ip address 10.0.0.0 255.255.0.0
interface FastEthernet0/3/2
 description Belongs to VPN B
 ip vrf forwarding CustomerB
 ip address 10.0.0.1 255.255.0.0
snmp-server user commA grp1A v1
snmp-server user commA grp2A v2c
snmp-server user commB grp1B v1
snmp-server user commB grp2B v2c
snmp-server group grplA vl context A read viewA write viewA notify viewA
snmp-server group grp1B v1 context B read viewB write viewB notify viewB
snmp-server view viewA ipForward included
snmp-server view viewA ciscoPingMIB included
snmp-server view viewB ipForward included
snmp-server view viewB ciscoPingMIB included
snmp-server enable traps
snmp-server host 10.0.0.3 vrf CustomerA commA udp-port 7002
snmp-server host 10.0.0.4 vrf CustomerB commB udp-port 7002
snmp mib community-map commA context A target-list commAvpn
! Configures source address validation
\verb|snmp| \verb|mib| community-map| commB| context B| target-list commB| vpn
! Configures source address validation
snmp mib target list commAvpn vrf CustomerA
! Configures a list of VRFs or from which community commA is valid
snmp mib target list commBvpn vrf CustomerB
! Configures a list of VRFs or from which community commB is valid
```

Additional References

Related Documents

Related Topic	Document Title
MPLS LDP configuration tasks	MPLS Label Distribution Protocol (LDP)
A description of SNMP agent support for the MPLS Traffic Engineering MIB (MPLS TE MIB)	MPLS Traffic Engineering (TE) MIB
A description of MPLS differentiated types of service across an MPLS network	MPLS Quality of Service
SNMP commands	Network Management Command Reference
SNMP configuration	Configuring SNMP Support
SNMP Support for VPNs	

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
 MPLS Label Distribution Protocol MIB (draft-ietf-mpls-ldp-mib-08.txt) SNMP-VACM-MIB The View-based Access Control Model (ACM) MIB for SNMP 	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs

RFCs

RFCs	Title
RFC 2233	Interfaces MIB
The LDP implementation supporting the MPLS LDP MIB fully complies with the provisions of Section 10 of RFC 2026, which, in effect, states that the implementation of LDP is recommended for network devices that perform MPLS forwarding along normally routed paths, as determined by destination-based routing protocols.	

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for MPLS LDP MIB Version 8 Upgrade

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 40 Feature Information for MPLS LDP MIB Version 8 Upgrade

rabie 40 realure iniorina	uon ior mpl3 lup mib version 8 upgrad	ie –
Feature Name	Releases	Feature Information
MPLS Label Distribution	12.0(11)ST	The MPLS Label Distribution
Protocol MIB	12.2(2)T	Protocol (LDP) MIB Version 8 Upgrade feature enhances the
	12.0(21)ST	LDP MIB to support the Internet
	12.0(22)S	Engineering Task Force (IETF) draft Version 8.
	12.0(24)S	In Cisco IOS Release 12.0(11)ST,
	12.0(27)S	this feature was introduced to
	12.2(18)S	provide SNMP agent support for
	12.2(33)SRA	the MPLS LDP MIB on the Cisco 7200, Cisco 7500, and Cisco
	12.2(33)SXH	12000 series routers.
	12.2(33)SRB	In Cisco IOS Release 12.2(2)T,
	12.2(33)SB)	this feature was added to this release to provide SNMP agent
	Cisco IOS XE Release 2.1	support for the MPLS LDP MIB on Cisco 7200 and Cisco 7500 series routers.
		In Cisco IOS Release 12.0(21)ST, this feature was added to this release to provide SNMP agent and LDP notification support for the MPLS LDP MIB on Cisco 7200, Cisco 7500, and Cisco 12000 series Internet routers.
		In Cisco IOS Release 12.0(22)S, Version 1 was integrated into Cisco IOS Release 12.0(22)S.
		In Cisco IOS Release 12.0(24)S, this feature was upgraded to Version 8 in Cisco IOS Release 12.0(24)S.
		In Cisco IOS Release 12.0(27)S, support for the MPLS VPN-VPN Aware LDP MIB feature was added.
		This feature was integrated into Cisco IOS Release 12.2(18)S.
		This feature was integrated into Cisco IOS Release 12.2(33)SRA.
		This feature was integrated into Cisco IOS Release 12.2(33)SXH.
		In Cisco IOS Release 12.2(33)SRB, this MIB was

Feature Name	Releases	Feature Information
		deprecated and replaced by MPLS-LDP-STD-MIB (RVC 3815).
		In Cisco IOS Release 12.2(33)SB, this MIB was deprecated and replaced by MPLS-LDP-STD-MIB (RVC 3815).
		This feature was integrated into Cisco IOS XE Release 2.1 and implemented on Cisco ASR 1000 Series Aggregation Services Routers.
		The following commands were introduced or modified: context, show mpls ldp neighbor, snmp mib community-map, snmp mib target list, snmp-server community, snmp-server context, snmp-server enable traps (MPLS), snmp-server group, snmp-server host, snmp-server trap authentication vrf.

Glossary

ATM -- Asynchronous Transfer Mode. The international standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media, such as E3, SONET, and T3.

downstream-on-demand distribution--A label distribution method in which a downstream label switch router (LSR) sends a binding upstream only if the upstream LSR requests it.

downstream unsolicited distribution—A label distribution method in which labels are dispersed if a downstream label switch router (LSR) needs to establish a new binding with its neighboring upstream LSR. For example, an edge LSR might enable a new interface with another subnet. The LSR then announces to the upstream router a binding to reach this network.

informs --A type of notification message that is more reliable than a conventional trap notification message, because the informs message notification requires acknowledgment, but a trap notification does not.

label --A short, fixed-length data identifier that tells switching nodes how to forward data (packets or cells).

label distribution--The techniques and processes that are used by label switch routers (LSRs) to exchange label binding information for supporting hop-by-hop forwarding along normally routed paths.

- **LDP** --Label Distribution Protocol. The protocol that supports Multiprotocol Label Switching (MPLS) hop-by-hop forwarding and the distribution of bindings between labels and network prefixes.
- **LSP** --label switched path. A configured connection between two label switch routers (LSRs) in which label-switching techniques are used for packet forwarding; also a specific path through an Multiprotocol Label Switching (MPLS) network.
- **LSR** --label switch router. A Multiprotocol Label Switching (MPLS) node that can forward native Layer 3 packets. The LSR forwards a packet based on the value of a label attached to the packet.
- MIB --Management Information Base. A database of network management information that is used and maintained by a network management protocol such as Simple Network Management Protocol (SNMP). The value of a MIB object can be changed or retrieved by the use of SNMP commands, usually through a network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.
- **MPLS** --Multiprotocol Label Switching. A switching method for the forwarding of IP traffic through the use of a label. This label instructs the routers and the switches in the network where to forward the packets based on preestablished IP routing information.
- **MPLS label distribution**--A constraint-based routing algorithm for routing label-switched path (LSP) tunnels.
- NMS --network management station. A powerful, well-equipped computer (typically an engineering workstation) that is used by a network administrator to communicate with other devices in the network. An NMS is typically used to manage network resources, gather statistics, and perform a variety of network administration and configuration tasks. In the context of Simple Network Management Protocol (SNMP), an NMS is a device that performs SNMP queries to the SNMP agent of a managed device to retrieve or modify information.
- **notification** --A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal to indicate that a significant network event has occurred. See also trap.
- **RSVP** --Resource Reservation Protocol. A protocol that supports the reservation of resources across an IP network. Applications running on IP end systems can use RSVP to indicate to other nodes the nature of the packet streams they want to receive by specifying such items as bandwidth, jitter, and maximum burst.
- **RTR** --Response Time Reporter. A tool that allows you to monitor network performance, network resources, and applications by measuring response times and availability.
- **SNMP** --Simple Network Management Protocol. A network management protocol used almost exclusively in TCP/IP networks. SNMP enables a user to monitor and control network devices, manage configurations, collect statistics, monitor performance, and ensure network security.
- **SNMP communities**--Authentication scheme that enables an intelligent network device to validate SNMP requests.
- **SNMPv2c** --Version 2c of the Simple Network Management Protocol. SNMPv2c supports centralized as well as distributed network management strategies and includes improvements in the Structure of Management Information (SMI), protocol operations, management architecture, and security.
- **SNMPv3** --Version 3 of the Simple Network Management Protocol. Interoperable standards-based protocol for network management. SNMPv3 provides secure access to devices by a combination of authenticating and encrypting packets over the network.
- **TLV** --Type-Length-Value. A mechanism used by several routing protocols to carry a variety of attributes. Cisco Discovery Protocol (CDP), Label Discovery Protocol (LDP), and Border Gateway Protocol (BGP) are examples of protocols that use TLVs. BGP uses TLVs to carry attributes such as Network Layer Reachability Information (NLRI), Multiple Exit Discriminator (MED), and local preference.

trap --A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal to indicate that a significant network event has occurred. Traps (notifications) are less reliable than inform requests, because the receiver of the trap does not send an acknowledgment of receipt; furthermore, the sender of the trap cannot determine if the trap was received. See also notification.

VCC --virtual channel connection. A logical circuit, made up of virtual channel links (VCLs), that carries data between two endpoints in an ATM network. Sometimes called a virtual circuit connection.

VCI --virtual channel identifier. A 16-bit field in the header of an ATM cell. The VCI, together with the virtual path identifier (VPI), is used to identify the next network virtual channel link (VCL) as the cell passes through a series of ATM switches on its way to its final destination.

VCL --virtual channel link. The logical connection that exists between two adjacent switches in an ATM network.

VPI --virtual path identifier. An 8-bit field in the header of an ATM cell. The VPI, together with the virtual channel identifier (VCI), is used to identify the next network virtual channel link (VCL) as the cell passes through a series of ATM switches on its way to its final destination.

VPN --Virtual Private Network. A network that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF --VPN routing and forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS EM—MPLS LDP MIB—RFC 3815

The MPLS EM—MPLS LDP MIB - RFC 3815 feature document describes the MIBs that support the Multiprotocol Label Switching (MPLS) Label Distribution Protocol (LDP) based on RFC 3815, Definitions of Managed Objects for the Multiprotocol Label Switching (MPLS), Label Distribution Protocol (LDP), and describes the differences between RFC 3815 and the MPLS-LDP-MIB based on the Internet Engineering Task Force (IETF) draft Version 8 (draft-ieft-mpls-ldp-08.txt). RFC 3815 and IETF draft Version 8 provide an interface for managing LDP through the use of the Simple Network Management Protocol (SNMP).

In RFC 3815, the content of the MPLS-LDP-MIB is divided into four MIB modules: the MPLS-LDP-STD-MIB, the MPLS-LDP-ATM-STD-MIB, the MPLS-LDP-FRAME-RELAY-STD-MIB, and the MPLS-LDP-GENERIC-STD-MIB.

Cisco IOS MPLS Embedded Management (EM) is a set of standards and value-added services that facilitate the deployment, operation, administration, and management of MPLS-based networks in line with the fault, configuration, accounting, performance, and security (FCAPS) model.

- Finding Feature Information, page 185
- Prerequisites for MPLS EM—MPLS LDP MIB RFC 3815, page 185
- Restrictions for MPLS EM—MPLS LDP MIB RFC 3815, page 186
- Information About MPLS EM—MPLS LDP MIB RFC 3815, page 186
- How to Configure SNMP for MPLS EM—MPLS LDP MIB RFC 3815, page 216
- Configuration Examples for MPLS EM—MPLS LDP MIB RFC 3815, page 230
- Additional References, page 232
- Feature Information for MPLS EM—MPLS LDP MIB RFC 3815, page 234
- Glossary, page 236

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS EM—MPLS LDP MIB - RFC 3815

- SNMP must be installed and enabled on the label switch routers (LSRs) or label edge routers (LERs).
- MPLS must be enabled on the LSRs or LERs.
- LDP must be enabled on the LSRs or LERs.
- Cisco Express Forwarding must be enabled on the LSRs or LERs.

For where to find configuration information for MPLS and LDP, see the Prerequisites for MPLS EM—MPLS LDP MIB - RFC 3815, page 185.

Restrictions for MPLS EM—MPLS LDP MIB - RFC 3815

The implementation of the MPLS LDP MIB (RFC 3815) for Cisco IOS Release12.2(33)SRB is limited to read-only (RO) permission for MIB objects.

The following MPLS-LDP-STD-MIB tables are not implemented for Cisco IOS Release 12.2(33)SRB:

- mplsInSegmentLdpLspTable
- mplsOutSegmentLdpLspTable
- mplsFecTable
- mplsLdpLspFecTable
- mplsLdpSessionPeerAddrTable

The following MPLS-LDP-FRAME-RELAY-STD-MIB tables are not implemented for Cisco IOS Release 12.2(33)SRB:

- mplsLdpEntityFrameRelayTable
- mplsLdpEntityFrameRelayLRTable
- mplsLdpFrameRelaySessionTable

Information About MPLS EM—MPLS LDP MIB - RFC 3815

- Label Distribution Protocol Overview, page 187
- MPLS EM—MPLS LDP MIB RFC 3815 Feature Design and Use, page 187
- Benefits of Using the MPLS EM—MPLS LDP MIB RFC 3815 Feature, page 188
- MPLS LDP MIB (RFC 3815) Elements, page 189
- Events Generating MPLS LDP MIB Notifications, page 193
- Scalar Objects in the MPLS LDP MIB Modules (RFC 3815), page 194
- MIB Tables in the MPLS-LDP-STD-MIB Module (RFC 3815), page 195
- MIB Tables in the MPLS-LDP-ATM-STD-MIB Module (RFC 3815), page 203
- MIB Table in the MPLS-LDP-GENERIC-STD-MIB Module (RFC 3815), page 205
- VPN Contexts in the MPLS LDP MIB, page 206
- Differences Between the MPLS-LDP-STD-MIB and the MPLS-LDP-MIB, page 209
- Differences Between the MPLS-LDP-MIB and the MPLS-LDP-ATM-STD-MIB (RFC 3815), page
- Differences Between the MPLS-LDP-MIB and the MPLS-LDP-GENERIC-STD-MIB (RFC 3815), page 216

Label Distribution Protocol Overview

MPLS is a packet forwarding technology that uses a short, fixed-length value called a label in packets to determine the next hop for packet transport through an MPLS network by means of LSRs.

A fundamental MPLS principle is that LSRs in an MPLS network must agree on the definition of the labels being used for packet forwarding operations. Label agreement is achieved in an MPLS network by means of procedures defined in the Label Distribution Protocol (LDP).

LDP operations begin with a discovery (hello) process, during which an LDP entity (a local LSR) finds a cooperating LDP peer in the network and negotiates basic operating procedures between them. The recognition and identification of a peer by means of this discovery process results in a hello adjacency, which represents the context within which label binding information is exchanged between the local LSR and its LDP peer. An LDP function then creates an active LDP session between the two LSRs to effect the exchange of label binding information. The result of this process, when carried to completion with respect to all the LSRs in an MPLS network, is a label switched path (LSP), which constitutes an end-to-end packet transmission pathway between the communicating network devices.

LSRs use LDP to collect, distribute, and label binding information to other LSRs in an MPLS network, thereby enabling the hop-by-hop forwarding of packets in the network along normally routed paths.

MPLS EM—MPLS LDP MIB - RFC 3815 Feature Design and Use

RFC 3815 defines four MIB modules to support the configuration and monitoring of LDP. The MPLS-LDP-STD-MIB module defines objects that are common to all LDP implementations. To monitor LDP on an LSR or an LER, you need to use this MIB and one of the following Layer 2 MIB modules:

- MPLS-LDP-GENERIC-STD-MIB—Use this module and the MPLS-LDP-STD-MIB if the LSR or LER supports LDP that uses the global label space; for example, for Layer 2 Ethernet. This module defines Layer 2 per platform label space objects.
- MPLS-LDP-ATM-STD-MIB—Use this module and the MPLS-LDP-STD-MIB if the LSR or LER supports LDP that uses Layer 2 ATM. This module defines Layer 2 ATM objects.
- MPLS-LDP-FRAME-RELAY-STD-MIB—Use this module and the MPLS-LDP-STD-MIB if the LSR or LER supports LDP that uses Layer 2 Frame Relay. This module defines Layer 2 Frame Relay objects.

The MPLS-LDP-FRAME-RELAY-STD-MIB is not implemented for Cisco IOS Release 12.2(33)SRA.

If the LSR or LER uses LDP that supports Ethernet, ATM, and Frame Relay, then all four MIB modules need to be used by an SNMP agent on the LSR or LER.

The RFC 3815 upgrade to the MPLS-LDP-MIB is implemented to enable standard, SNMP-based network management of the label switching features in Cisco IOS software. Providing this capability requires SNMP agent code to execute on a designated network management station (NMS) in the network. The NMS serves as the medium for user interaction with the network management objects in the MIB.

The SNMP agent is a layered structure that is compatible with Cisco IOS software and presents a network administrative and management interface to the objects in the MPLS LDP MIB and, adds to the rich set of label switching capabilities supported by the Cisco IOS software.

You can use an SNMP agent to access MIB module objects using standard SNMP **get** and **getnext** commands to accomplish a variety of network management tasks. All the objects in the MPLS LDP MIB

modules follow the conventions defined in RFC 3815, which defines network management objects in a structured and standardized manner.

Slight differences that exist between the RFC 3815 and the implementation of equivalent functions in the Cisco IOS software require some minor translations between the MPLS LDP MIB objects and the internal data structures of Cisco IOS software. Such translations are accomplished by the SNMP agent, which runs in the background on the NMS workstation as a low priority process.

Cisco IOS Release 12(33)SRB supports the following MPLS LDP MIB-related functions:

- Generating and sending of event notification messages that signal changes in the status of LDP sessions
- Enabling and disabling of event notification messages by means of extensions to existing SNMP command-line interface (CLI) commands
- Specification of the name or the IP address of an NMS workstation in the operating environment to which Cisco IOS event notification messages are to be sent to serve network administrative and management purposes
- · Storage of the configuration pertaining to an event notification message in NVRAM of the NMS

The structure of the MPLS LDP MIBs conforms to Abstract Syntax Notation One (ASN.1), thereby forming a highly structured and idealized database of network management objects.

MIB structure is represented by a tree hierarchy. Branches along the tree have short text strings and integers to identify them. Text strings describe object names, and integers allow computer software to encode compact representations of the names.

The MPLS LDP MIB is located on the branch of the Internet MIB hierarchy represented by the object identifier 1.3.6.1.2.1.10.166. This branch can also be represented by its object name iso.org.dod.internet.mgmt.mib-2.transmission.mplsStdMIB. The MPLS-LSR-STD-MIB is identified by the object name mplsLsrStdMIB, which is denoted by the number 4. Therefore, objects in the MPLS-LDP-STD-MIB can be identified in either of the following ways:

- The object identifier—1.3.6.1.2.1.10.166.4.[MIB-variable]
- The object name— iso.org.dod.internet.mgmt.mib-2.transmission.mplsStdMIB.mplsLdpStdMIB. [MIB-variable]

You can use any standard SNMP application to retrieve and display information from the MPLS LDP MIBs by means of standard SNMP GET operations. Similarly, you can traverse and display information in the MIB by means of SNMP GETNEXT operations.

Benefits of Using the MPLS EM—MPLS LDP MIB - RFC 3815 Feature

The MPLS LDP MIBs (RFC 3815) provide the following benefits:

- Retrieves MIB parameters relating to the operation of LDP entities, such as:
 - Well-known LDP discovery port
 - Maximum transmission unit (MTU)
 - Proposed keepalive timer interval
 - Loop detection
 - Session establishment thresholds
 - Range of Virtual Path Identifier (VPI)-Virtual Channel Identifier (VCI) pairs to be used in forming labels
- Gathers statistics relating to LDP operations, such as:
 - Count of the total established sessions for an LDP entity

- Count of the total attempted sessions for an LDP entity
- · Monitors the time remaining for hello adjacencies
- Monitors the characteristics and status of LDP peers, such as:
 - Internetwork layer address of LDP peers
 - Loop detection of LDP peers
 - Default MTU of the LDP peer
 - Number of seconds the LDP peer proposes as the value of the keepalive interval
- Monitors the characteristics and status of LDP sessions, such as:
 - Displaying the error counters
 - Determining the LDP version being used by the LDP session
 - Determining the keepalive hold time remaining for an LDP session
 - Determining the state of an LDP session (whether the session is active)
 - Determining the label ranges for platform-wide and interface-specific sessions
 - Determining the ATM parameters

MPLS LDP MIB (RFC 3815) Elements

The following functional elements of the MPLS LDP MIBs (RFC 3815) are used to perform LDP operations:

- LDP entity—Refers to an instance of LDP for purposes of exchanging label spaces; describes a
 potential session.
- LDP peer—Refers to a remote LDP entity (that is, a nonlocal LSR).
- LDP session—Refers to an active LDP process between a local LSR and a remote LDP peer.
- Hello adjacency—Refers to the result of an LDP discovery process that affirms the state of two LSRs in an MPLS network as being adjacent to each other (that is, as being LDP peers). When the neighbor is discovered, the neighbor becomes a hello adjacency. An LDP session can be established with the hello adjacency. After the session is established, label bindings can be exchanged between the LSRs.

These MPLS LDP MIB elements are briefly described in the following sections:

In effect, the MPLS LDP MIBs provide a network management database that supports real-time access to the various MIB objects within, describing the current state of MPLS LDP operations in the network. This network management information database is accessible by means of standard SNMP commands issued from an NMS in the MPLS LDP operating environment.

The MPLS LDP MIBs support the following network management and administrative activities:

- Retrieving MPLS LDP MIB parameters pertaining to LDP operations
- Monitoring the characteristics and the status of LDP peers
- Monitoring the status of LDP sessions between LDP peers
- Monitoring hello adjacencies in the network
- Gathering statistics regarding LDP sessions
- LDP Entities, page 189
- LDP Sessions and Peers, page 191
- LDP Hello Adjacencies, page 192

LDP Entities

An LDP entity is uniquely identified by an LDP identifier that consists of the mplsLdpEntityLdpId and the mplsLdpEntityIndex (see the figure below) objects:

- The mplsLdpEntityLdpId consists of the local LSR ID (four octets) and the label space ID (two octets). The label space ID identifies a specific label space available within the LSR.
- The mplsLdpEntityIndex consists of the IP address of the peer active hello adjacency, which is the 32-bit representation of the IP address assigned to the peer LSR.

The mplsLdpEntityProtocolVersion is a sample object from the mplsLdpEntityTable.

The figure below shows the following indexing:

- mplsLdpEntityLdpId = 10.10.10.10.0.0
- LSR ID = 10.10.10.10
- Label space ID = 0.0

The mplsLdpEntityLdpId or the LDP ID consists of the LSR ID and the label space ID.

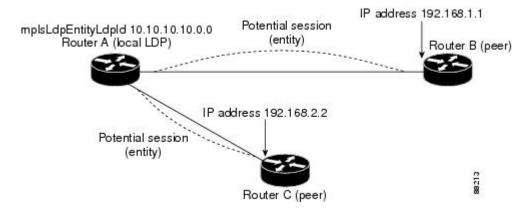

• The IP address of peer active hello adjacency or the mplsLdpEntityIndex = 3232235777, which is the 32-bit representation of the IP address assigned to the peer's active hello adjacency.

Figure 15 Sample Indexing for an LDP Entity

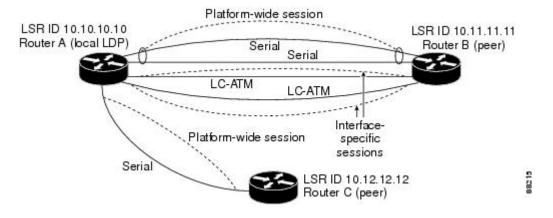
An LDP entity represents a label space that has the potential for a session with an LDP peer. An LDP entity is configured when a hello adjacency receives a hello message from an LDP peer.

In the figure below, Router A has potential sessions with two remote peers, Routers B and C. The mplsLdpEntityLdpId is 10.10.10.10.0.0, and the IP address of the peer active hello adjacency (mplsLdpEntityIndex) is 3232235777, which is the 32-bit representation of the IP address 192.168.1.1 for Router B.

Figure 16 LDP Entity

LDP Sessions and Peers

LDP sessions exist between local entities and remote peers for the purpose of distributing label bindings. There is always a one-to-one correspondence between an LDP peer and an LDP session. A single LDP session is an LDP instance that communicates across one or more network links with a single LDP peer.


LDP supports the following types of sessions:

- Interface-specific—An interface-specific session uses interface resources for label space distributions.
 For example, each label-controlled ATM (LC-ATM) interface uses its own VPIs and VCIs for label
 space distributions. Depending on its configuration, an LDP platform can support zero, one, or more
 interface-specific sessions. Each LC-ATM interface has its own interface-specific label space and a
 nonzero label space ID.
- Platform-wide—An LDP platform supports a single platform-wide session for use by all interfaces
 that can share the same global label space. For Cisco platforms, all interface types except LC-ATM
 use the platform-wide session and have a label space ID of zero.

When a session is established between two peers, entries are created in the mplsLdpPeerTable and the mplsLdpPessionTable because they have the same indexing.

In the figure below, Router A has two remote peers, Routers B and C. Router A has a single platform-wide session that consists of two serial interfaces with Router B and another platform-wide session with Router C. Router A also has two interface-specific sessions with Router B.

Figure 17 LDP Sessions

The figure below shows entries that correspond to the mplsLdpPeerTable and the mplsLdpSessionTable in the figure above.

In the figure below, mplsLdpSesState is a sample object from the mplsLdpSessionTable on Router A. Four mplsLdpSesState sample objects are shown (top to bottom). The first object represents a platform-wide session associated with two serial interfaces. The next two objects represent interface-specific sessions for the LC-ATM interfaces on Routers A and B. These interface-specific sessions have nonzero peer label space IDs. The last object represents a platform-wide session for the next peer, Router C.

The indexing is based on the entries in the mplsLdpEntityTable. It begins with the indexes of the mplsLdpEntityTable and adds the following:

• Peer LDP ID = 10.11.11.11.0.0

The peer LDP ID consists of the peer LSR ID (four octets) and the peer label space ID (two octets).

- Peer LSR ID = 10.11.11.11
- Peer label space ID = 0.0

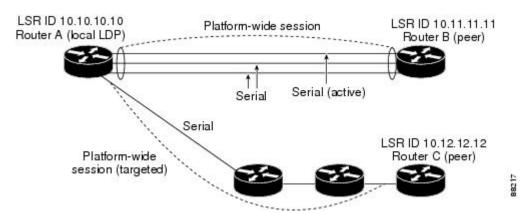
The peer label space ID identifies a specific peer label space available within the LSR.

Figure 18 Sample Indexing for an LDP Session

```
mplsLdpSesState.10.10.10.10.00.3232235777.10.11.11.11.0.0
Indexing of mplsLdpEntityTable
mplsLdpSesState.10.10.10.10.0.0.3232236034.10.12.12.12.0.0
mplsLdpSesState.10.10.10.10.0.1.3232235778.10.11.11.11.0.1
mplsLdpSesState.10.10.10.10.0.2.3232235779.10.11.11.11.0.2
```

LDP Hello Adjacencies

An LDP hello adjacency is an association between a remotely discovered LDP process and a specific network path to reach the remote LDP process. An LDP hello adjacency enables two adjacent peers to exchange label binding information.


An LDP hello adjacency exists for each link on which LDP runs. Multiple LDP hello adjacencies exist whenever there is more than one link in a session between a router and its peer, such as in a platform-wide session.

A hello adjacency is considered active if it is currently engaged in a session, or nonactive if it is not currently engaged in a session.

A targeted hello adjacency is not directly connected to its peer and has an unlimited number of hops between itself and its peer. A linked hello adjacency is directly connected between two routers.

In the figure below, Router A has two remote peers, Routers B and C. Router A has a platform-wide session with Router B that consists of three serial interfaces, one of which is active and another platform-wide (targeted) session with Router C.

Figure 19 Hello Adjacency

The figure below shows entries in the mplsLdpHelloAdjacencyTable. There are four mplsLdpHelloAdjHoldTime sample objects (top to bottom). They represent the two platform-wide sessions and the four serial links shown in the figure above.

The indexing is based on the mplsLdpSessionTable. When the mplsLdpHelloAdjIndex enumerates the different links within a single session, the active link is mplsLdpHelloAdjIndex = 1.

Figure 20 Sample Indexing for an LDP Hello Adjacency

Events Generating MPLS LDP MIB Notifications

When you enable MPLS LDP MIB notification functionality by issuing the **snmp-server enable traps mpls rfc ldp** command, notification messages are generated and sent to a designated NMS in the network to signal the occurrence of specific events within Cisco IOS software.

The MPLS LDP MIB objects that announce LDP status transitions and event notifications are the following:

- mplsLdpSessionUp—This message is generated when an LDP entity (a local LSR) establishes an LDP session with another LDP entity (an adjacent LDP peer in the network). Enable this notification with the session-up keyword.
- mplsLdpSessionDown—This message is generated when an LDP session between a local LSR and its
 adjacent LDP peer is terminated. Enable this notification with the session-down keyword.

The up and down notifications indicate the last active interface in the LDP session.

mplsLdpPathVectorLimitMismatch—This message is generated when a local LSR establishes an LDP session with its adjacent peer LSR, but the two LSRs have dissimilar path vector limits. Enable this notification with the pv-limit keyword.

The value of the path vector limit can range from 0 to 255; a value of 0 indicates that loop detection is off; any value other than 0 up to 255 indicates that loop detection is on and, in addition, specifies the maximum number of hops through which an LDP message can pass before a loop condition in the network is sensed.

We recommend that all LDP-enabled routers in the network be configured with the same path vector limit. Accordingly, the mplsLdpPathVectorLimitMismatch object exists in the MPLS LDP MIB to provide a warning message to the NMS when two routers engaged in LDP operations have a dissimilar path vector limits.

This notification is generated only if the distribution method is downstream-on-demand.

mplsLdpFailedInitSessionThresholdExceeded—This message is generated when a local LSR and an
adjacent LDP peer attempt to configure an LDP session between them, but fail to do so after a
specified number of attempts. The default number of attempts is eight. This default value is
implemented in Cisco IOS software and cannot be changed by either the CLI or an SNMP agent.
Enable this notification with the threshold keyword.

Eight failed attempts to establish an LDP session between a local LSR and an LDP peer, due to any type of incompatibility between the devices, causes this notification message to be generated.

In general, Cisco routers support the same features across multiple platforms. Therefore, the most likely incompatibility to occur between Cisco LSRs is a mismatch of their respective ATM VPI and VCI label ranges.

For example, if you specify a range of valid labels for an LSR that does not overlap the range of its adjacent LDP peer, the routers try eight times to create an LDP session between themselves before the mplsLdpFailedInitSessionThresholdExceeded notification is generated and sent to the NMS as an informational message.

Occasionally, the LSRs whose label ranges do not overlap continue their attempt to create an LDP session between themselves after the eight retry limit is exceeded. In such cases, the LDP threshold exceeded notification alerts the network administrator to the existence of a condition in the network that may warrant attention.

An mplsLdpEntityFailedInitSessionThreshold trap is supported only on an LC-ATM.

RFC 3036, *LDP Specification*, details the incompatibilities that can exist between Cisco routers or between Cisco routers and other vendor LSRs in an MPLS network. Among such incompatibilities, for example, are the following:

- Nonoverlapping ATM VPI and VCI ranges (as previously noted) or nonoverlapping Frame Relay data-link connection identifiers (DLCI) ranges between LSRs attempting to configure an LDP session
 - Unsupported label distribution method
 - Dissimilar protocol data unit (PDU) sizes
 - Dissimilar LDP feature support

Scalar Objects in the MPLS LDP MIB Modules (RFC 3815)

The MPLS LDP MIB modules define several scalar objects. The table below describes the scalar objects that are implemented for Cisco IOS Release 12.2(33) SRB.

Table 41 MPLS LDP MIB Scalar Objects and Descriptions

Object	Description
mplsLpdLsrId	The LSR's identifier. This is a globally unique value, such as the 32-bit router ID assigned to the LSR.
mplsLdpLsrLoopDetectionCapable	Loop detection capability of the LSR.
	Loop detection values are: none(1), other(2), hopCount(3), pathVector(4), and hopCountAndPathVector(5).
	The other(2) value indicates that the LSR supports loop detection, but does not support the three methods associated with values (3), (4), and (5).

Object	Description	
mplsLdpEntityLastChange	The value of sysUpTime at the time of the most recent addition or deletion of an entry to or from the mplsLdpEntityTable or mplsLdpEntityStatsTable, or the most recent change in the value of any object in the mplsLdpEntityTable.	
mplsLdpEntityIndexNext	Value to use for the mplsLdpEntityIndex when the router creates entries in the mplsLdpEntityTable. The value 0 indicates that no unassigned entries are available.	
mplsLdpPeerLastChange	The value of sysUpTime at the time of the most recent addition or deletion to or from the mplsLdpPeerTable or mplsLdpSessionTable.	

MIB Tables in the MPLS-LDP-STD-MIB Module (RFC 3815)

The MPLS-LDP-STD-MIB consists of the following tables. These tables define objects that are common to all LDP implementations.

mplsLdpEntityTable (see the first table below)—Contains entries for every active LDP hello
adjacency. Active and nonactive hello adjacencies appear in the mplsLdpHelloAdjacencyTable, rather
than this table. This table is indexed by the local LDP identifier for the interface and the IP address of
the peer active hello adjacency. (See the first figure above.)

The advantage of showing the active hello adjacency instead of sessions in this table is that the active hello adjacency can exist even if an LDP session is not active (cannot be established).

Directed adjacencies are also shown in this table. Associated adjacencies disappear when the targeted LDP session fails. Nondirected adjacencies might disappear from the mplsLdpEntityTable on some occasions, because adjacencies are deleted if the underlying interface becomes operationally down, for example.

- mplsLdpEntityStatsTable (see the second table below)—Augments the mplsLdpEntityTable and shares the same indexing for performing SNMP GETand GETNEXT operations. This table shows additional statistics for entities.
- mplsLdpPeerTable (see the third table below)—Contains entries for all peer sessions. This table is indexed by the local LDP identifier of the session, the IP address of the peer active hello adjacency, and the peer's LDP identifier. (See the fourth figure above.)
- mplsLdpSessionTable (see the fourth table below)—Augments the mplsLdpPeerTable and shares the same indexing for performing GET and GETNEXT operations. This table shows all sessions.
- mplsLdpSessionStatsTable (see the fifth table below)—Augments the mplsLdpPeerTable and shares
 the exact same indexing for performing GET and GETNEXT operations. This table shows additional
 statistics for sessions.
- mplsLdpHelloAdjacencyTable (see the sixth table below)—Contains entries for active and nonactive
 hello adjacencies. This table is indexed by the local LDP identifier of the associated session, the IP
 address of the peer active hello adjacency, the LDP identifier for the peer, and an arbitrary index that is
 set to the list position of the adjacency. (See the sixth figure above.)
- MPLS LDP Entity Table (mplsLdpEntityTable) Objects and Descriptions, page 196
- MPLS LDP Entity Statistics Table (mplsLdpEntityStatsTable) Objects and Descriptions, page 198
- MPLS LDP Peer Table (mplsLdpPeerTable) Objects and Descriptions, page 199

- MPLS LDP Session Table (mplsLdpSessionTable) Objects and Descriptions, page 200
- MPLS LDP Session Statistics Table (mplsLdpSessionStatsTable) Objects and Descriptions, page
 201
- MPLS LDP Hello Adjacency Table (mplsLdpHelloAdjacencyTable) Objects and Descriptions, page 202

MPLS LDP Entity Table (mplsLdpEntityTable) Objects and Descriptions

The table below describes the mplsLdpEntityTable objects.

Table 42 mplsLdpEntityTable Objects and Descriptions

Object	Description
mplsLdpEntityEntry	An LDP entity is a potential session between two peers.
mplsLdpEntityLdpId	The LDP identifier (not accessible) consists of the local LSR ID (four octets) and the label space ID (two octets).
mplsLdpEntityIndex	A secondary index that identifies this row uniquely. It consists of the IP address of the peer active hello adjacency, which is the 32-bit representation of the IP address assigned to the LSR (not accessible).
mplsLdpEntityProtocolVersion	The version number of the LDP protocol to be used in the session initialization message.
mplsLdpEntityAdminStatus	This is the administrative status of this LDP entity, which is always up. If the hello adjacency fails, this entity disappears from the mplsLdpEntityTable.
mplsLdpEntityOperStatus	This is the operational status of this LDP entity. Values are unknown(1), enabled(2), and disabled(3).
mplsLdpEntityTcpPort	This is the TCP discovery port for LDP or Tag Distribution Protocol (TDP). The default value is 646 (LDP).
mplsLdpEntityUdpDscPort	This is the User Datagram Protocol (UDP) discovery port for LDP or TDP. The default value is 646 (LDP).
mplsLdpEntityMaxPduLength	This is the maximum PDU length that is sent in the common session parameters of an initialization message.
mplsLdpEntityKeepAliveHoldTimer	The two-octet value that is the proposed keepalive hold time for this LDP entity.

Object	Description
mplsLdpEntityHelloHoldTimer	The two-octet value that is the proposed hello hold time for this LDP entity.
mplsLdpEntityInitSessionThreshold	The threshold for notification when this entity and its peer are engaged in an endless sequence of initialization messages.
	• The default value is 8 and cannot be changed by SNMP or the CLI.
mplsLdpEntityLabelDistMethod	The specified method of label distribution for any given LDP session. Values are downstreamOnDemand(1) and downstreamUnsolicited(2).
mplsLdpEntityLabelRetentionMode	Can be configured to use either conservative(1) for an LC-ATM or liberal(2) for all other interfaces.
mplsLdpEntityPathVectorLimit	If the value of this object is 0, loop detection for path vectors is disabled. Otherwise, if this object has a value greater than zero, loop detection for path vectors is enabled, and the path vector limit is this value.
	Note The mplsLdpEntityPathVectorLimit object is nonzero only if the mplsLdpEntityLabelDistMethod is downstreamOnDemand(1).
mplsLdpEntityHopCountLimit	If the value of this object is 0, loop detection using hop counters is disabled.
	• If the value of this object is greater than 0, loop detection using hop counters is enabled, and this object specifies this entity's maximum allowable value for the hop count.
	Note The mplsLdpEntityHopCountLimit object is nonzero only if the mplsLdpEntityLabelDistMethod is downstreamOnDemand(1).
mplsLdpEntityTransportAddrKind	If this value is interface(1), the IP address of the interface from the hello message is used as the transport address in the hello message.
	If this value is loopback(2), the IP address of the loopback interface is used as the address in the hello message.
mplsLdpEntityTargetPeer	If this LDP entity uses a targeted adjacency, this object is set to true(1). The default value is false(2).

Object	Description
mplsLdpEntityTargetPeerAddrType	The type of the internetwork layer address used for the extended discovery. This object indicates how the value of mplsLdpEntityTargPeerAddr is to be interpreted, as either IPv4 or IPv6.
mplsLdpEntityTargetPeerAddr	The value of the internetwork layer address used for the targeted adjacency.
mplsLdpEntityLabelType	Specifies the optional parameters for the LDP initialization message. If the value is generic(1), no optional parameters are sent in the LDP initialization message associated with this entity.
	• An LC-ATM uses atmParameters(2) to specify that a row in the mplsLdpEntityAtmParmsTable corresponds to this entry.
	Note Frame Relay parameters are not supported in Cisco IOS Release 12.2(33)SRB.
mplsLdpEntityDiscontinuityTime	The value of sysUpTime on the most recent occasion when one or more of this entity's counters suffered a discontinuity. The relevant counters are the specific instances of any Counter32 or Counter64 object contained in the mplsLdpEntityStatsTable that are associated with this entity. If no such discontinuities have occurred since the last reinitialization of the local management subsystem, this object contains a 0 value.
mplsLdpEntityStorageType	The storage type for this entry is a read-only implementation that is always volatile.
mplsLdpEntityRowStatus	This object is a read-only implementation that is always active.

MPLS LDP Entity Statistics Table (mplsLdpEntityStatsTable) Objects and Descriptions

The table below describes the mplsLdpEntityStatsTable objects.

Table 43 mplsLdpEntityStatsTable Objects and Descriptions

Object	Description
mplsLdpEntityStatsEntry	These entries augment the mplsLdpEntityTable by providing additional information for each entry.
mplsLdpEntityStatsSessionsAttempts	Not supported in Cisco IOS Release 12.2(33)SRB.

Object	Description
mplsLdpEntityStatsSessionRejectedNoHelloErrors	A count of the session rejected no hello error notification messages sent or received by this LDP entity.
mplsLdpEntityStatsSessionRejectedAdErrors	A count of the session rejected parameters advertisement mode error notification messages sent or received by this LDP entity.
mplsLdpEntityStatsSessionRejectedMaxPduErrors	A count of the session rejected parameters max PDU length error notification messages sent or received by this LDP entity.
mplsLdpEntityStatsSessionRejectedLRErrors	A count of the session rejected parameters label range notification messages sent or received by this LDP entity.
mplsLdpEntityStatsBadLdpIdentifierErrors	A count of the number of bad LDP identifier fatal errors detected by the session associated with this LDP entity.
mplsLdpEntityStatsBadPduLengthErrors	A count of the number of bad PDU length fatal errors detected by the session associated with this LDP entity.
mplsLdpEntityStatsBadMessageLengthErrors	A count of the number of bad message length fatal errors detected by the session associated with this LDP entity.
mplsLdpEntityStatsBadTlvLengthErrors	A count of the number of bad type, length, values (TLVs) length fatal errors detected by the session associated with this LDP entity.
mpls Ldp Entity Stats Malformed Tlv Value Errors	A count of the number of malformed TLV value fatal errors detected by the session associated with this LDP entity.
mplsLdpEntityStatsKeepAliveTimerExpErrors	A count of the number of session keepalive timer expired errors detected by the session associated with this LDP entity.
$\label{lem:mplsLdpEntityStatsShutdownReceivedNotification} mplsLdpEntityStatsShutdownReceivedNotification s$	A count of the number of shutdown notifications received related to the session associated with this LDP entity.
mpls Ldp Entity Stats Shutdown Sent Notifications	A count of the number of shutdown notifications sent related to the session associated with this LDP entity.

MPLS LDP Peer Table (mplsLdpPeerTable) Objects and Descriptions

The table below describes the mplsLdpPeerTable objects.

Table 44 mplsLdpPeerTable Objects and Descriptions

Object	Description
mplsLdpPeerEntry	Information about a single peer that is related to a session (not accessible).
	Note This table is augmented by the mplsLdpSessionTable.
mplsLdpPeerLdpId	The LDP identifier of this LDP peer (not accessible) consists of the peer LSR ID (four octets) and the peer label space ID (two octets).
mplsLdpPeerLabelDistMethod	For any given LDP session, the method of label distribution. Values are downstreamOnDemand(1) and downstreamUnsolicited(2).
mplsLdpPeerPathVectorLimit	If the value of mplsLdpPeerLabelDistMethod is downstreamOnDemand (1), this object represents the path vector limit for this peer.
	If the value of the mplsLdpPeerLabelDistMethod object is downstreamUnsolicited (2), this value should be 0.
mplsLdpPeerTransportAddrType	Type of Internet address for the mplsLdpPeerTransportAddr object—either the IPv4 transport address or IPv6 transport address used in the opening TCP session or the IPv4 or IPv6 source address for the UDP carrying the hello messages.
mplsLdpPeerTransportAddr	Internet address advertised by the peer in the hello message or the hello source address specified by the mplsLdpPeerTransportAddrType object.

MPLS LDP Session Table (mplsLdpSessionTable) Objects and Descriptions

The table below describes the mplsLdpSessionTable objects.

Table 45 mplsLdpSessionTable Objects and Descriptions

Object	Description
mplsLdpSessionEntry	An entry in this table represents information on a single session between an LDP entity and an LDP peer. The information contained in a row is read-only. This table augments the mplsLdpPeerTable.
mplsLdpSessionStateLastChange	The value of sysUpTime at the time the session entered its state denoted by the mplsLdpSessionState object.

Object	Description
mplsLdpSessionState	The current state of the session. All of the states are based on the LDP or TDP state machine for session negotiation behavior.
	The states are as follows:
	 nonexistent(1) initialized(2) openrec(3) opensent(4) operational(5)
mplsLdpSessionRole	The value of this object indicates whether the LSR or LER takes an active(2) or passive(3) role when a session is established.
	If the role of the LSR or LER cannot be determined, the value of the object is unknown(1).
mplsLdpSessionProtocolVersion	The version of the LDP protocol that this session is using. This is the version of the LDP protocol that has been negotiated during session initialization.
mplsLdpSessionKeepAliveHoldTimeRem	The keepalive hold time remaining for this session.
mplsLdpSessionKeepAliveTime	The time in seconds between keepalive messages negotiated between a configured value and the peer's proposed keepalive hold timer value. The value is the lower of the two.
mplsLdpSessionMaxPduLen	The value of maximum allowable length for LDP PDUs for this session. This value could have been negotiated during the session initialization.
mplsLdpSessionDiscontinuityTime	The value of sysUpTime on the most recent occasion when one or more of this session's counters suffered a discontinuity. The relevant counters are the specific instances of any Counter32 or Counter64 object contained in the mplsLdpSesStatsTable associated with this session. The initial value of this object is the value of sysUpTime when the entry was created in this

MPLS LDP Session Statistics Table (mplsLdpSessionStatsTable) Objects and Descriptions

The table below describes the mplsLdpSessionStatsTable objects.

Table 46 mplsLdpSessionStatsTable Objects and Descriptions

Object	Description
mplsLdpSessionStatsEntry	An entry in this table represents statistical information on a single session between an LDP entity and an LDP peer. This table augments the mplsLdpPeerTable.
mpls Ldp Session Stats Unknown Mes Type Errors	This object is the count of the number of unknown message type errors detected during this session.
mplsLdpSessionStatsUnknownTlvErrors	This object is the count of the number of unknown TLV errors detected during this session.

MPLS LDP Hello Adjacency Table (mplsLdpHelloAdjacencyTable) Objects and Descriptions

The table below describes the mplsLdpHelloAdjacencyTable objects.

Table 47 mplsLdpHelloAdjacencyTable Objects and Descriptions

Object	Description
mplsLdpHelloAdjacencyEntry	Each row represents a single LDP hello adjacency. An LDP session can have one or more hello adjacencies (not accessible).
mplsLdpHelloAdjacencyIndex	An identifier for this specific adjacency (not accessible). The active hello adjacency has the mplsLdpHelloAdjIndex object equal to 1.
mplsLdpHelloAdjacencyHoldTimeRem	The time remaining for this hello adjacency. This interval changes when the next hello message, which corresponds to this hello adjacency, is received.
mplsLdpHelloAdjacencyHoldTime	The hello time negotiated between the LSR or LER and its peer.
	If this value is 0, the defaults are used, 15 seconds for link hellos and 45 seconds for targeted hellos.
	If this value is 65535, the hold time is infinite.
mplsLdpHelloAdjacencyType	This adjacency is the result of a link hello if the value of this object is link(1). Otherwise, this adjacency is a result of a targeted hello and its value is targeted(2).

MIB Tables in the MPLS-LDP-ATM-STD-MIB Module (RFC 3815)

The MPLS-LDP-ATM-STD-MIB consists of the following tables. These tables define Layer 2 ATM-related objects for use with the MPLS-LDP-STD-MIB.

- mplsLdpEntityAtmTable (see the first table below)—Contains entries for every LDP-enabled LC-ATM interface. This table is indexed in the same way as the mplsLdpEntityTable although only LC-ATM interfaces are shown.
- mplsLdpEntityAtmLRTable (see the second table below)—Contains entries for every LDP-enabled LC-ATM interface. Indexing is the same as it is for the mplsLdpEntityTable, except two indexes have been added, mplsLdpEntityAtmLRMinVpi and mplsLdpEntityAtmLRMinVci. These additional indexes allow more than one label range to be defined. However, in the Cisco IOS Release 12.2(33)SRB implementation, only one label range per LC-ATM interface is allowed.
- mplsLdpAtmSessionTable (see the third table below)—Contains entries for LDP-enabled LC-ATM sessions. Indexing is the same as it is for the mplsLdpPeerTable, except two indexes have been added, mplsLdpAtmSessionLRLowerBoundVpi and mplsLdpAtmSessionLRLowerBoundVci. These additional indexes allow more than one label range to be defined. However, in the Cisco IOS Release 12.2(33)SRB implementation, only one label range per LC-ATM interface is allowed.
- MPLS LDP Entity ATM Table (mplsLdpEntityAtmTable) Objects and Descriptions, page 203
- MPLS LDP Entity ATM Label Range Table (mplsLdpEntityAtmLRTable) Objects and Descriptions, page 204
- MPLS LDP ATM Session Table (mplsLdpAtmSessionTable) Objects and Descriptions, page 205

MPLS LDP Entity ATM Table (mplsLdpEntityAtmTable) Objects and Descriptions

The table below describes the mplsLdpEntityAtmTable objects.

Table 48 mplsLdpEntityAtmTable Objects and Descriptions

Object	Description
mplsLdpEntityAtmEntry	Represents the ATM parameters and ATM information for this LDP entity.
mplsLdpEntityAtmIfIndxOrZero	This value represents the SNMP IF-MIB index for the interface-specific LC-ATM entity.
mplsLdpEntityAtmMergeCap	Denotes the merge capability of this entity.
mplsLdpEntityAtmLRComponents	Number of label range components in the initialization message. This also represents the number of entries in the mplsLdpEntityConfAtmLRTable that correspond to this entry.
	Note Cisco IOS software supports only one component.

Object	Description
mplsLdpEntityAtmVcDirectionality	If the value of this object is bidirectional(0), a given VCI within a given VPI is used as a label for both directions independently of one another.
	If the value of this object is unidirectional(1), a given VCI within a VPI designates one direction.
mplsLdpEntityAtmLsrConnectivity	The peer LSR can be connected indirectly by means of an ATM VPI, so that the VPI values can be different on the endpoints. For that reason, the label must be encoded entirely within the VCI field.
	Values are direct(1) and indirect(2). The default is direct(1).
mplsLdpEntityAtmDefaultControlVpi	The default VPI value for the non-MPLS connection.
mplsLdpEntityAtmDefaultControlVci	The default VCI value for the non-MPLS connection.
mplsLdpEntityAtmUnlabTrafVpi	VPI value of the virtual channel connector (VCC) supporting unlabeled traffic. This non-MPLS connection is used to carry unlabeled (IP) packets.
mplsLdpEntityAtmUnlabTrafVci	VCI value of the VCC supporting unlabeled traffic. This non-MPLS connection is used to carry unlabeled (IP) packets.
mplsLdpEntityAtmStorageType	The storage type for this entry is a read-only implementation that is always volatile.
mplsLdpEntityAtmRowStatus	This object is a read-only implementation that is always active.

MPLS LDP Entity ATM Label Range Table (mplsLdpEntityAtmLRTable) Objects and Descriptions

The table below describes the mplsLdpEntityAtmLRTable objects.

Table 49 mplsLdpEntityAtmLRTable Objects and Descriptions

Object	Description
mplsLdpEntityAtmLREntry	A row in the LDP Entity Configurable ATM Label Range Table. One entry in this table contains information on a single range of labels; the range is defined by an upper boundary (VPI/VCI pair) and a lower boundary (VPI/VCI pair). This is the same data used in the initialization message. This label range should overlap the label range of the peer.

Object	Description
mplsLdpEntityAtmLRMinVpi	The minimum VPI number configured for this range (not accessible).
mplsLdpEntityAtmLRMinVci	The minimum VCI number configured for this range (not accessible).
mplsLdpEntityAtmLRMaxVpi	The maximum VPI number configured for this range (not accessible).
mplsLdpEntityAtmLRMaxVci	The maximum VCI number configured for this range (not accessible).
mplsLdpEntityAtmLRStorageType	The storage type for this entry is a read-only implementation that is always volatile.
mplsLdpEntityAtmLRRowStatus	This object is a read-only implementation that is always active.

MPLS LDP ATM Session Table (mplsLdpAtmSessionTable) Objects and Descriptions

The table below describes the mplsLdpAtmSessionTable objects.

Table 50 mplsLdpAtmSessionTable Objects and Descriptions

Objects	Description
mplsLdpAtmSessionEntry	An entry in this table represents information on a single label range intersection between an LDP entity and an LDP peer (not accessible).
mplsLdpAtmSessionLRLowerBoundVpi	The minimum VPI number configured for this range (not accessible).
mplsLdpAtmSessionLRLowerBoundVci	The minimum VCI number configured for this range (not accessible).
mplsLdpAtmSessionLRUpperBoundVpi	The maximum VPI number configured for this range (read-only).
mplsLdpAtmSessionLRUpperBoundVci	The maximum VCI number configured for this range (read-only).

MIB Table in the MPLS-LDP-GENERIC-STD-MIB Module (RFC 3815)

The MPLS-LDP-GENERIC-STD-MIB contains the following table. This table defines Layer 2 perplatform objects for use with the MPLS-LDP-STD-MIB.

mplsLdpEntityGenericLRTable (see the table below)—Contains entries for every LDP-enabled interface that is in the global label space. (For Cisco, this applies to all interfaces except LC-ATM. LC-ATM entities are shown in the mplsLdpEntityAtmLRTable instead.) Indexing is the same as it is for the mplsLdpEntityTable, except two indexes have been added, mplsLdpEntityGenericLRMin and

mplsLdpEntityGenericLRMax. These additional indexes allow more than one label range to be defined. However, in the Cisco IOS Release 12.2(33)SRB implementation, only one global label range is allowed.

• MPLS LDP Entity Generic Label Range Table (mplsLdpEntityGenericLRTable) Objects and Descriptions, page 206

MPLS LDP Entity Generic Label Range Table (mplsLdpEntityGenericLRTable) Objects and Descriptions

The table below describes the mplsLdpEntityGenericLRTable objects.

Table 51 mplsLdpEntityGenericLRTable Objects and Descriptions

Object	Description
mplsLdpEntityGenericLREntry	A row in the LDP Entity Configurable Generic Label Range table. One entry in this table contains information on a single range of labels; the range is defined by an upper boundary and a lower boundary.
	• The current implementation supports one label range per entity.
mplsLdpEntityGenericLRMin	The minimum label configured for this range (not accessible).
mplsLdpEntityGenericLRMax	The maximum label configured for this range (not accessible).
mplsLdpEntityGenericLabelSpace	This value indicates whether the label space type is perPlatform (1) or perInterface (2).
mplsLdpEntityGenericIfIndxOrZero	This value represents the SNMP IF-MIB index for the platform-wide entity. If the active hello adjacency is targeted, the value is 0.
mplsLdpEntityGenericLRStorageType	The storage type for this entry is a read-only implementation that is always volatile.
mplsLdpEntityGenericLRRowStatus	This object is a read-only implementation that is always active.

VPN Contexts in the MPLS LDP MIB

Within an MPLS Border Gateway Protocol (BGP) 4 Virtual Private Network (VPN) environment, separate LDP processes can be created for each VPN. These processes and their associated data are called LDP contexts. Each context is independent from all others and contains data specific only to that context.

The VPN Aware LDP MIB feature enables the LDP MIB to get VPN context information. The feature adds support for different contexts for different MPLS VPNs. Users of the MIB can display MPLS LDP

processes for a given MPLS VPN. The VPN Aware LDP MIB feature does not change the syntax of the MPLS LDP MIB. It changes the number and types of entries within the tables.

The MPLS LDP MIB can show information about only one context at a time. With Cisco IOS Release 12.2(33)SRB, you can specify a context—either a global context or an MPLS VPN context—using an SNMP security name.

The following sections describe topics related to the VPN Aware LDP MIB feature:

- SNMP Contexts, page 207
- VPN Aware LDP MIB Sessions, page 207
- VPN Aware LDP MIB Notifications, page 208

SNMP Contexts

SNMP contexts provide VPN users with a secure way of accessing MIB data. When a VPN is associated with a context, that VPN's specific MIB data exists in that context. Associating a VPN with a context enables service providers to manage networks with multiple VPNs. Creating and associating a context with a VPN enables a provider to prevent the users of one VPN from accessing information about users of other VPNs on the same networking device.

VPN-aware SNMP requires that SNMP manager and agent entities operating in a VPN environment agree on mapping between the SNMP security name and the VPN name. This mapping is created by you using different contexts for the SNMP data of different VPNs, which is accomplished through the configuration of the SNMP View-based Access Control Model MIB (SNMP-VACM-MIB). The SNMP-VACM-MIB is configured with views so that a user on a VPN with a security name is allowed access to the restricted object space within the context of only that VPN.

SNMP request messages undergo three phases of security and access control before a response message is sent back with the object values within a VPN context:

- The first security phase is authentication of the username. During this phase, the user is authorized for SNMP access.
- The second phase is access control. During this phase, the user is authorized for SNMP access to the group objects in the requested SNMP context.
- In the third phase, the user can access a particular instance of a table entry. With this third phase, complete retrieval can be based on the SNMP context name.

IP access lists can be configured and associated with SNMP community strings. This feature enables you to configure an association between VPN routing and forwarding (VRF) instances and SNMP community strings. When a VRF instance is associated with an SNMP community string, SNMP processes requests coming in for a particular community string only if they are received from the configured VRF. If the community string contained in the incoming packet does not have a VRF associated with it, it is processed only if it came in through a non-VRF interface.

You can also enable or disable authentication traps for SNMP packets dropped due to VRF mismatches. By default, if SNMP authentication traps are enabled, VRF authentication traps are also enabled.

VPN Aware LDP MIB Sessions

The VPN Aware LDP MIB feature supports an SNMP query to the MPLS LDP MIB for both global and VPN contexts. This feature allows you to enter LDP queries on any VRF and on the core (global context). A query can differentiate between LDP sessions from different VPNs. LDP session information for a VPN stays in the context of that VPN. Therefore, the information from one VPN is not available to a user of a

different VPN. The VPN Aware LDP MIB also allows you to display LDP processes operating in a Carrier Supporting Carrier (CSC) network.

In an MPLS VPN, a service provider edge router (PE) might contain VRFs for several VPNs and a global routing table. To set up separate LDP processes for different VPNs on the same device, you need to configure each VPN with a unique securityName, contextName, and View-based Access Control Model (VACM) view. The VPN securityName must be configured for the MPLS LDP MIB.

The figure below shows LDP sessions for a sample MPLS VPN with the VPN Aware LDP MIB feature.

MIB walk on PE1 LDP sessions on PE1 MIB walk on PE1 MIB walk on PE1 (global context) (VPN1 context) (VPN2 context) PE1-→ PE2 → CE1-1 PE1 → PE2 PE1 -> CE1-1 PE1 -> CE2-1 PE1-> CE1-2 Site 1 Site 2 CE1-1 CE2-Global LDP session VPN1 LDP session VPN2 LDP session Core Site 1 Site 2 LDP sessions

Figure 21 MPLS LDP Sessions with the VPN Aware LDP MIB Feature

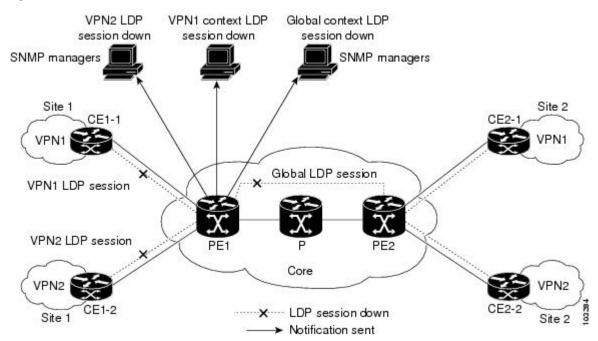
With the VPN Aware LDP MIB feature, you can do MIB queries or MIB walks for an MPLS VPN LDP session or a global LDP session.

To verify LDP session information for a specific VPN, use the show mpls ldp neighbor **vrf** *vpn-name* **detail** command.

VPN Aware LDP MIB Notifications

The VPN Aware LDP MIB feature supports LDP notifications for multiple LDP contexts for VPNs. LDP notifications can be generated for the core (global context) and for different VPNs. You can cause notifications be sent to different NMS hosts for different LDP contexts. LDP notifications associated with a specific VRF are sent to the NMS designated for that VRF. LDP global notifications are sent to the NMS configured to receive global traps.

To enable LDP context notifications for the VPN Aware LDP MIB feature, use either the SNMP mplsLdpSessionsUpDownEnable object (in the global LDP context only) or the following extended global configuration commands.


To enable LDP notifications for the global context, use the following commands on a provider edge (PE) router:

```
Router(config)# snmp-server host host-address trapscommunity mpls-ldp
Router(config)# snmp-server enable traps mpls rfc ldp
To enable LDP notifications for a VPN context, use the following commands:
```

```
Router(config)# snmp-server host host-address vrf
vrf-name version
{v1
|v2c
|v3
community
community-string
udp-port
upd-port
mpls-ldp
Router(config)# snmp-server enable traps mpls rfc ldp
```

The figure below shows LDP notifications with the VPN Aware LDP MIB feature.

Figure 22 LDP Notifications with the VPN Aware LDP MIB Feature

Differences Between the MPLS-LDP-STD-MIB and the MPLS-LDP-MIB

The MPLS-LDP-STD-MIB based on RFC 3815 provides the same basic functionality as the MPLS-LDP-MIB based on the IETF Version 8 draft (draft-ieft-mpls-ldp-08.txt). The module identity was changed from mplsLdpMIB to mplsLdpStdMIB. Both MIBs provide an interface for managing LDP through the use of SNMP.

After the implementation of the MPLS-LDP-STD-MIB (RFC 3815) in Cisco IOS Release 12.2(33)SRB the MPLS-LDP-MIB will exist for a period of time before support is completely removed. This gives you the chance to migrate to the MPLS-LDP-STD-MIB. Both MIBs can coexist in the same image because the MPLS-LDP-STD-MIB and the MPLS-LDP-MIB have different root object identifiers (OIDs).

The following sections contain information about the major differences between the MPLS-LDP-STD-MIB and the MPLS-LDP-MIB:

- MPLS-LDP-MIB and MPLS-LDP-STD-MIB Scalar Object Differences, page 210
- MPLS-LDP-MIB and MPLS-LDP-STD-MIB Table Object Differences, page 210
- MPLS-LDP-MIB and MPLS-LDP-STD-MIB Notification Changes, page 214

MPLS-LDP-MIB and MPLS-LDP-STD-MIB Scalar Object Differences

The table below shows the difference between the scalar objects in the MPLS-LDP-MIB and the MPLS-LDP-STD-MIB.

Table 52 Scalar Objects: MPLS-LDP-MIB and MPLS-LDP-STD-MIB Object Differences

MPLS-LDP-MIB Object	MPLS-LDP-STD-MIB Object	Difference
	mplsLdpPeerLastChange	New Object—Indicates the value of the sysUpTime at the time of the most recent addition or deletion to or from the mplsLdpPeerTable or the mplsLdpSessionTable.
mplsLdpSesUpDownTrapEnable	_	Object deleted.
_	mplsFecLastChange	New object—Contains the
	Note Not supported in Cisco IOS Releases 12.2(33)SRB and 12.2(33)SB.	sysUpTime at the time of the most recent change to the mplsLdpFecTable.
	mplsLdpLspFecLastChange Note Not supported in Cisco IOS Releases 12.2(33)SRB and 12.2(33)SB.	New object—Stores the last change time for the mplsLdpLspFecTable.
_	mplsLdpEntityLastChange	New object—Indicates the last change time for the mplsLdpEntityTable or mplsLdpEntityStatsTable.

MPLS-LDP-MIB and MPLS-LDP-STD-MIB Table Object Differences

The following tables show the major differences between the MPLS-LDP-MIB and the MPLS-LDP-STD-MIB objects for each table.

- MPLS LDP Entity Table (mplsLdpEntityTable) Differences, page 211
- MPLS LDP Entity Statistics Table (mplsLdpEntityStatsTable) Differences, page 212
- MPLS LDP Peer Table (mplsLdpPeerTable) Differences, page 213
- MPLS LDP Session Table (mplsLdpSessionTable) Differences, page 213

• MPLS LDP Hello Adjacency Table (mplsLdpHelloAdjacencyTable) Differences, page 214

MPLS LDP Entity Table (mplsLdpEntityTable) Differences

The table below shows the major differences between MPLS-LDP-MIB and MPLS-LDP-STD-MIB objects for the MPLS LDP entity table.

Table 53 MPLS LDP Entity Table: MPLS-LDP-MIB and MPLS-LDP-STD-MIB Object Differences

MPLS-LDP-MIB Object	MPLS-LDP-STD-MIB Object	Difference
mplsLdpEntityIndexNext	mplsLdpEntityIndexNext	Syntax changed—Unsigned32 to IndexIntegerNextFree.
mplsLdpEntityIndex	mplsLdpEntityIndex	Syntax changed—Unsigned32 to IndexInteger.
mplsLdpEntityProtocolVersion	mplsLdpEntityProtocolVersion	Syntax changed—Unsigned32 to Integer32.
mplsLdpEntityAdminStatus	mplsLdpEntityAdminStatus	Description changed—Modified to suggest that an NMS clean up any related entry in the mplsLdpPeerTable in case this object is changed from enable to disable.
mplsLdpEntityOperStatus	mplsLdpEntityOperStatus	Description changed—Modified to include the value of unknown(1) for a transient condition before the LSR changes the value to enabled(2) or disabled(3).
mplsLdpEntityTcpDscPort	mplsLdpEntityTcpPort	Object name changed.
mplsLdpEntityMaxPduLength	mplsLdpEntityMaxPduLength	Syntax changed—Lower-limit value for this object increased from 0 to 256.
		Description changed—Indicates that the receiving LSR should calculate the maximum PDU length for the session by using the smaller of its and its peer's proposal for the Max PDU length.
mplsLdpEntityInitSessionThreshold	mplsLdpEntityInitSessionThreshold	Syntax changed—Maximum value changed from MAXINT to 100.
mplsLdpEntityLabelDistMethod	mplsLdpEntityLabelDistMethod	Syntax changed—INTEGER to MplsLabelDistributionMethod TC.
mplsLdpEntityLabelRetentionMode	mplsLdpEntityLabelRetentionMode	Syntax changed—INTEGER to MplsRetentionMode TC.
mplsLdpEntityPVLMisTrapEnable	_	Notification control object removed.

MPLS-LDP-MIB Object	MPLS-LDP-STD-MIB Object	Difference
mplsLdpEntityPVL	mplsLdpEntityPathVectorLimit	Object name changed.
mplsLdpEntityHopCountLimit	mplsLdpEntityHopCountLimit	DEFVAL clause added for a default value = 0.
_	mplsLdpEntityTransportAddrKind	New object—Indicates the address to be used for hello messages (interface and loopback).
mplsLdpEntityTargPeerAddrType	mplsLdpEntityTargPeerAddrType	Syntax changed—To InetAddressType.
mplsLdpEntityTargPeerAddr	mplsLdpEntityTargPeerAddr	Syntax changed—To InetAddress.
mplsLdpEntityOptionalParameters	mplsLdpEntityLabelType	Object name changed.
mplsLdpEntityStorType	mplsLdpEntityStorageType	Object name changed.
mplsLdpEntityRowStatus	mplsLdpEntityRowStatus	Description change—Added recommendation to set the mplsLdpentityAdminStatus to down, change the objects in this entry, and then set the Admin status to enable.

MPLS LDP Entity Statistics Table (mplsLdpEntityStatsTable) Differences

Note

A general paragraph regarding discontinuities is added to all the counter objects in MPLS LDP entity statistics table: "Discontinuities in the value of this counter can occur at re-initialization of the management system, and at other times as indicated by the value of mplsLdpEntityDiscontinuityTime."

The table below shows the difference between MPLS-LDP-MIB and MPLS-LDP-STD-MIB objects for the MPLS LDP entity statistics table.

Table 54 MPLS LDP Entity Statistics Table: MPLS-LDP-MIB and MPLS-LDP-STD-MIB Object Differences

MPLS-LDP-MIB Object	MPLS-LDP-STD-MIB Object	Difference
mplsLdpAttemptedSessions	mplsLdpEntityStatsSessionAttempts	Object name changed.
mplsLdpSesRejectedNoHelloErrors	mplsLdpEntityStatsSessionRejectedNoH elloErrors	Object name changed.
mplsLdpSesRejectedAdErrors	mplsLdpEntityStatsSessionRejectedAdEr rors	Object name changed.
mplsLdpSesRejectedMaxPduErrors	mplsLdpEntityStatsSessionRejectedMax PduErrors	Object name changed.
mplsLdpSesRejectedLRErrors	mplsLdpEntityStatsSessionRejectedLREr rors	Object name changed.

MPLS-LDP-MIB Object	MPLS-LDP-STD-MIB Object	Difference
mplsLdpBadLdpIdentifierErrors	mplsLdpEntityStatsBadLdpIdentifierErro rs	Object name changed.
mplsLdpBadPduLengthErrors	mplsLdpEntityStatsBadPduLengthErrors	Object name changed.
mplsLdpBadMessageLengthErrors	mplsLdpEntityStatsBadMessageLengthE rrors	Object name changed.
mplsLdpBadTlvLengthErrors	mplsLdpEntityStatsBadTlvLengthErrors	Object name changed.
mplsLdpMalformedTlvValueErrors	mplsLdpEntityStatsMalformedTlvValue Errors	Object name changed.
mplsLdpKeepAliveTimerExpErrors	mplsLdpEntityStatsKeepAliveTimerExp Errors	Object name changed.
mplsLdpShutdownNotifReceived	mplsLdpEntityStatsShutdownReceivedN otifications	Object name changed.
mplsLdpShutdownNotifSent	mplsLdpEntityStatsShutdownSentNotific ations	Object name changed.

MPLS LDP Peer Table (mplsLdpPeerTable) Differences

The table below shows the difference between MPLS-LDP-MIB and MPLS-LDP-STD-MIB objects for the MPLS LDP peer table.

Table 55 MPLS LDP Peer Table: MPLS-LDP-MIB and MPLS-LDP-STD-MIB Object Differences

MPLS-LDP-MIB Object	MPLS-LDP-STD-MIB Object	Difference
mplsLdpPeerLabelDistMethod	mplsLdpPeerLabelDistMethod	Syntax change—From INTEGER to MplsLabelDistributionMethod
mplsLdpPeerLoopDectionForPV	_	Object deleted.
mplsLdpPeerPVL	mplsLdpPeerPathVectorLimit	Object name changed.
_	mplsLdpPeerTransportAddrType	New object—Internet address type (IPv4 or IPv6) advertised by the peer in the hello message or hello source message.
	mplsLdpPeerTransportAddr	New object—Internet address (IPv4 or IPv6) advertised by the peer in the hello message or hello source message.

MPLS LDP Session Table (mplsLdpSessionTable) Differences

The table below shows the difference between MPLS-LDP-MIB and MPLS-LDP-STD-MIB objects for the MPLS LDP session table.

Table 56 MPLS LDP Session Table: MPLS-LDP-MIB and MPLS-LDP-STD-MIB Object Differences

MPLS-LDP-MIB Object	MPLS-LDP-STD-MIB Object	Difference
mplsLdpSesState	mplsLdpSessionState	Object name changed.
mplsLdpSesProtocolVersion	mplsLdpSessionProtocolVersion	Object name changed.
_	mplsLdpSessionStateLastChange	New Object—Indicates the last change time for this table.
_	mplsLdpSessionRole	New object—Indicates the LSR state: active, passive, or unknown.
mplsLdpSesKeepAliveHoldTimeRem	mplsLdpSessionKeepAliveHoldTimeRe m	Object name changed.
_	mplsLdpSessionKeepAliveTime	New object—Indicates the actual keepalive time negotiated between peers.
mplsLdpSesMaxPduLen	mplsLdpSessionMaxPduLen	Object name changed.
mplsLdpSesDiscontinuityTime	mplsLdpSessionDiscontinuityTime	Object name changed.

MPLS LDP Hello Adjacency Table (mplsLdpHelloAdjacencyTable) Differences

The table below shows the difference between MPLS-LDP-MIB and MPLS-LDP-STD-MIB objects for the MPLS LDP hello adjacency table.

Table 57 MPLS LDP Hello Adjacency Table: MPLS-LDP-MIB and MPLS-LDP-STD-MIB Object Differences

MPLS-LDP-MIB Object	MPLS-LDP-STD-MIB Object	Difference
mplsLdpHelloAdjIndex	mplsLdpHelloAdjacencyIndex	Object name changed.
mplsLdpHelloAdjHoldTimeRem	mplsLdpHelloAdjacencyHoldTimeRem	Object name changed.
_	mplsLdpHelloAdjacencyHoldTime	New object—Indicates the actual negotiated adjacency hold time.
mplsLdpHelloAdjType	mplsLdpHelloAdjacencyType	Object name changed.

MPLS-LDP-MIB and MPLS-LDP-STD-MIB Notification Changes

All notifications from the MPLS-LDP-MIB are retained in the MPLS-LDP-STD-MIB. The following changes are implemented for the notifications in MPLS-LDP-STD-MIB:

- The mplsLdpPVLMismatch notification is renamed to mplsLdpPathVectorLimitMismatch.
- The mplsLdpEntityPVLMisTrapEnable, notification control object, was removed for the MPLS-LDP-STD-MIB.
- The Cisco IOS command for enabling notifications for the MPLS-LDP-MIB is different from the command for enabling notifications for the MPLS-LSR-STD-MIB.

For the MPLS-LDP-MIB, the command is **snmp-server enable traps mpls ldp**. For the MPLS-LSR-STD-MIB, the command is **snmp-server enable traps mpls rfc ldp**.

Differences Between the MPLS-LDP-MIB and the MPLS-LDP-ATM-STD-MIB (RFC 3815)

Layer 2 ATM-related objects are removed from the MPLS-LDP-MIB and placed in a new MIB module in RFC 3815. The new MIB module is the MPLS-LDP-ATM-STD-MIB. This action provides modularity and reduces the size of the MPLS LDP MIB.

The table below lists the differences between ATM-related objects in the MPLS-LDP-MIB and objects in the MPLS-LDP-ATM-STD-MIB.

Table 58 Differences Between MPLS-LDP-MIB and MPLS-LDP-ATM-STD-MIB Objects

MPLS-LDP-MIB Object	MPLS-LDP-ATM-STD-MIB Object	Difference
mplsLdpEntityAtmParmsTable	mplsLdpEntityAtmTable	Object name changed.
mplsLdpEntityAtmMergeCap	mplsLdpEntityAtmMergeCap	Syntax changed—Added enumerations vpMerge and vpAndVcMerge.
mplsLdpEntityDefaultControlVpi	mplsLdpEntityAtmDefaultControlVpi	Object name changed.
mplsLdpEntityDefaultControlVci	mplsLdpEntityAtmDefaultControlVci	Object name changed.
mplsLdpEntityUnlabTrafVpi	mplsLdpEntityAtmUnlabTrafVpi	Object name changed.
mplsLdpEntityUnlabTrafVci	mplsLdpEntityAtmUnlabTrafVci	Object name changed.
mplsLdpEntityAtmStorType	mplsLdpEntityAtmStorageType	Object name changed.
mplsLdpEntityAtmRowStatus	mplsLdpEntityAtmRowStatus	Description changed—Clarified different row status operations. Added a recommendation that the mplsLdpEntityAdminStatus object be set to down before the LSR changes the objects in this table.
mplsLdpEntityConfAtmLRTable	mplsLdpEntityAtmLRTable	Object name changed.
mplsLdpEntityConfAtmLREntry	mplsLdpEntityAtmLREntry	Object name changed.
mplsLdpEntityConfAtmLRMinVpi	mplsLdpEntityAtmLRMinVpi	Object name changed. Description changed—0 added as a valid value.
mplsLdpEntityConfAtmLRMinVci	mplsLdpEntityAtmLRMinVci	Object name changed.
mplsLdpEntityConfAtmLRMaxVpi	mplsLdpEntityAtmRMaxVpi	Object name changed.
mplsLdpEntityConfAtmLRMaxVci	mplsLdpEntityAtmLRMaxVci	Object name changed.
mplsLdpEntityConfAtmLRStorType	mplsLdpEntityAtmLRStorageType	Object name changed.

MPLS-LDP-MIB Object	MPLS-LDP-ATM-STD-MIB Object	Difference
mplsLdpEntityConfAtmLRRowStatus	mplsLdpEntityAtmLRRowStatus	Object name changed.
mplsLdpAtmSesTable	mplsLdpAtmSessionTable	Object name changed.
mplsLdpSesAtmLRLowerBoundVpi	mplsLdpSessionAtmLRLowerBoundVpi	Object name changed.
mplsLdpSesAtmLRLowerBoundVci	mplsLdpSessionAtmLRLowerBoundVci	Object name changed.
mplsLdpSesAtmLRUpperBoundVpi	mplsLdpSessionAtmLRUpperBoundVpi	Object name changed.
mplsLdpSesAtmLRUpperBoundVci	mplsLdpSessionAtmLRUpperBoundVci	Object name changed.

Differences Between the MPLS-LDP-MIB and the MPLS-LDP-GENERIC-STD-MIB (RFC 3815)

Layer 2 objects for per-platform label spaces are removed from the MPLS-LDP-MIB and placed in a new MIB module in RFC 3815. The new MIB module is the MPLS-LDP-GENERIC-STD-MIB. This action provides modularity and reduces the size of the MPLS LDP MIB.

The table below shows the difference between generic label space objects in the MPLS-LDP-MIB and objects in the MPLS-GENERIC-STD-MIB.

Table 59 MPLS LDP LSP DEC Table: MPLS-LDP-MIB and MPLS-LDP-GENERIC-STD-MIB Object Differences

MPLS-LDP-MIB Object	MPLS-LDP-GENERIC-STD-MIB Object	Difference
mplsLdpEntityConfGenLRTable	mplsLdpEntityGenericLRTable	Object name changed.
mplsLdpEntityConfGenLRMinn	mplsLdpEntityGenericLRMin	Object name changed.
mplsLdpEntityConfGenLRMax	mplsLdpEntityGenericLRMax	Object name changed.
mplsLdpEntityConfGenIfIndexOrZero	mplsLdpEntityGenericIfIndexOrZero	Object name changed.
mplsLdpEntityConfGenLRStorType	mplsLdpEntityGenericLRStorageType	Object name changed.
mplsLdpEntityConfGenLRRowStatus	mplsLdpEntityGenericRowStatus	Object name changed.
_	mplsLdpEntityGenericLabelSpace	New object—A value of perPlatform(1) indicates the label space type is per platform; a value of perInterface(2) indicates the label space type is per interface.

How to Configure SNMP for MPLS EM—MPLS LDP MIB - RFC 3815

Configuring Access to an SNMP Agent on a Host NMS Workstation, page 217

- Configuring the Router to Send SNMP Notifications to a Host for Monitoring LDP, page 219
- Configuring a VPN-Aware LDP MIB, page 221

Configuring Access to an SNMP Agent on a Host NMS Workstation

To configure access to the SNMP agent on a host NMS workstation, perform the following task.

Through the use of an SNMP agent, the MPLS LDP MIBs described in RFC 3815 provide an interface for monitoring and managing LDP.

To use SNMP to manage LDP, you need to configure access to an SNMP agent on a NMS workstation. By default, the SNMP agent for the MPLS LDP MIB is disabled. Step 2 shows you how to determine if an SNMP agent is already configured, and if you need to modify the SNMP information to monitor and manage LDP.

SUMMARY STEPS

- 1. enable
- 2. show running-config
- 3. configure terminal
- **4. snmp-server community** *string* [**view** *view-name*] [**ro** | **rw**] [*acl-number*]
- 5. do copy running-config startup-config
- 6. exit
- 7. show running-config

DETAILED STEPS

	Command or Action	Purpose		
Step 1	enable	Enables privileged EXEC mode.		
		Enter your password if prompted.		
	Example:			
	Router> enable			
Step 2	show running-config	Displays the running configuration to determine if an SNMP agent is already running.		
	Example:	If no SNMP information is displayed, continue with the next step. If any SNMP information is displayed, you can modify the information or change		
	Router# show running-config	it as needed.		
Step 3	configure terminal	Enters global configuration mode.		
	Example:			
	Router# configure terminal			

	Command or Action	Purpose
Step 4	<pre>snmp-server community string [view view-name] [ro rw] [acl-number] Example: Router(config)# snmp-server</pre>	 Configures the community access string to permit access to the SNMP protocol. The <i>string</i> argument acts like a password and permits access to the SNMP protocol. The <i>view view-name</i> keyword argument pair specifies the name of a previously defined view. The view defines the objects available to the community.
	community comaccess ro	 The ro keyword specifies read-only access. Authorized management stations are able to only retrieve MIB objects. The rw keyword specifies read/write access. Authorized management stations are able to both retrieve and modify MIB objects. The acl-number argument is an integer from 1 to 99 that specifies an access list of IP addresses that are allowed to use the community string to gain access to the SNMP agent.
Step 5	do copy running-config startup- config Example: Router(config)# do copy running- config startup-config	 (Optional) Saves the modified configuration to nonvolatile memory (NVRAM) as the startup configuration file. Use this command if you made changes to the MIB information. The do command allows you to perform EXEC-level commands in configuration modes.
Step 6	<pre>exit Example: Router(config)# exit</pre>	Returns to privileged EXEC mode.
Step 7	<pre>show running-config Example: Router# show running-config include snmp-server</pre>	 (Optional) Displays the configuration information currently on the router. Use the show running-config command to check that the snmp-server command statements appear in the output.

• Examples, page 218

Examples

Use the **show running-config** command to display the running configuration on the host NMS workstation and examine the output for SNMP information. For example:

Router# show running-config | include snmp-server snmp-server community public RO snmp-server community private RW

The presence of any **snmp-server** command statement in the output that takes the form shown in this example verifies that access to the SNMP agent is configured on the host NMS workstation.

Configuring the Router to Send SNMP Notifications to a Host for Monitoring LDP

To configure the router to send SNMP notifications to a host to monitor LDP, perform the following task. The ability to display SNMP notifications helps in managing LDP sessions. You can determine if an LDP session between peers is up or down, if the path vector limits are the same for both LDP peers, and if the path vector limit threshold between the peers has been exceeded.

The **snmp-server host** command specifies which hosts receive notifications or traps. The **snmp-server enable traps** command globally enables the trap production mechanism for the specified traps.

For a host to receive a trap, an **snmp-server host** command must be configured for that host, and, generally, the trap must be enabled globally through the **snmp-server enable traps** command.

Although you can set the *community-string* argument using the **snmp-server host** command by itself, we recommend that you define this string using the **snmp-server community** command prior to using the **snmp-server host** command.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** snmp-server host host-address [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type] [vrf vrf-name]
- 4. snmp-server enable traps mpls ldp [pv-limit] [session-down] [session-up] [threshold]
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

Command or Action Purpose Step 3 snmp-server host host-address Specifies the recipient of an SNMP notification operation. [traps | informs] [version {1 | 2c | The host-address argument specifies the name or Internet address of the host (the 3 [auth | noauth | priv]}] targeted recipient). community-string [udp-port port] The **traps** keyword sends SNMP traps to this host. This is the default. [notification-type] [**vrf** vrf-name] The **informs** keyword sends SNMP informs to this host. The **version** keyword specifies the version of the SNMP used to send the traps. Version 3 is the most secure model, because it allows packet encryption with the **Example:** priv keyword. If you use the version keyword, you must specify one of the Router(config)# snmp-server following: host 172.20.2.160 traps comaccess mpls-ldp • **1**—SNMPv1. This option is not available with informs. 2c—SNMPv2C. **3**—SNMPv3. The following three optional keywords can follow the **version** 3 keyword: auth, noauth, priv. The *community-string* argument is a password-like community string sent with the notification operation. The **udp-port** port keyword argument pair names the UDP port of the host to use. The default is 162. The *notification-type* argument specifies the type of notification to be sent to the host. If no type is specified, all notifications are sent. The **vrf** vrf-name keyword argument pair specifies the VRF table that should be used to send SNMP notifications. **Step 4** snmp-server enable traps mpls Enables the router to send MPLS LDP-specific SNMP notifications (traps and ldp [pv-limit] [session-down] informs) defined in RFC 3815. [session-up] [threshold] The **pv-limit** keyword controls (enables or disables) path-vector (PV) limit notifications (mplsLdpPathVectorLimitMismatch). This notification is generated when the router establishes an LDP session with its adjacent peer LSR, but the Example: two LSRs have dissimilar path-vector limits. The session-down keyword controls (enables or disables) LDP session down Router(config)# snmp-server enable traps mpls rfc ldp notifications (mplsLdpSessionDown). This message is generated when an LDP session-down session between the router and its adjacent LDP peer is terminated. The **session-up** keyword controls (enables or disables) LDP session up notifications (mplsLdpSessionUp). This notification is generated when the router establishes an LDP session with another LDP entity (an adjacent LDP peer in the network). The **threshold**keyword controls (enables or disables) PV limit notifications (mplsLdpFailedInitSessionThresholdExceeded). This notification is generated after eight failed attempts to establish an LDP session between the router and an LDP peer. The failure can be the result of any type of incompatibility between the devices.

	Command or Action	Purpose
Step 5	end	(Optional) Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuring a VPN-Aware LDP MIB

- Configuring SNMP Support for a VPN, page 221
- Configuring an SNMP Context for a VPN, page 223
- Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2, page 225

Configuring SNMP Support for a VPN

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** snmp-server host host-address [vrf vrf-name] [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type]
- **4. snmp-server engineID remote** *ip-address* [**udp-port** *udp-port-number*] [**vrf** *vrf-name*] *engineid-string*
- **5**. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

The *engineid-string* is a string of a maximum of 24 characters that

identifies the engine ID.

Command or Action Purpose Step 3 snmp-server host host-address [vrf vrf-name] Specifies the recipient of an SNMP notification operation and specifies [traps | informs] [version {1 | 2c | 3 [auth | the VRF instance table to be used for the sending of SNMP noauth | priv]}] community-string [udp-port notifications. port] [notification-type] The *host-address* argument specifies the name or Internet address of the host (the targeted recipient). The vrf vrf-name keyword argument pair specifies the VRF table **Example:** that should be used to send SNMP notifications. Router(config)# snmp-server host The *vrf-name***traps** keyword sends SNMP traps to this host. This example.com vrf trap-vrf is the default. The **informs** keyword sends SNMP informs to this host. The **version** keyword specifies the version of the SNMP used to send the traps. Version 3 is the most secure model, because it allows packet encryption with the priv keyword. If you use the **version** keyword, you must specify one of the following: • 1—SNMPv1. This option is not available with informs. 2c —SNMPv2C. • 3 —SNMPv3. The following three optional keywords can follow the version 3keyword: auth, noauth, priv. The *community-string* argument is a password-like community string sent with the notification operation. The **udp-port** port keyword argument pair names the UDP port of the host to use. The default is 162. The *notification-type* argument specifies the type of notification to be sent to the host. If no type is specified, all notifications are sent. Specifies the SNMP engine ID of a remote SNMP device. **Step 4** snmp-server engineID remote *ip-address* [udp**port** udp-port-number] [**vrf** vrf-name] engineid-The *ipv4-address* argument is the IPv4 address of the device that string contains the remote copy of SNMP. The *ipv6-address* argument is the IPv6 address of the device that contains the remote copy of SNMP. Example: The **udp-port** keyword specifies a User Datagram Protocol Router(config)# snmp-server engineID (UDP) port of the host to use. remote 172.16.20.3 vrf traps-vrf The *udp-port-number* argument is the socket number on the 80000009030000B064EFE100 remote device that contains the remote copy of SNMP. The The **vrf** keyword specifies an instance of a routing table. The vrf-name argument is the name of the VRF table to use for storing data.

	Command or Action	Purpose
Step 5	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

• What to Do Next, page 223

What to Do Next

Proceed to the Configuring an SNMP Context for a VPN, page 223.

Configuring an SNMP Context for a VPN

To configure an SNMP context for a VPN, perform the following task. This sets up a unique SNMP context for a VPN, which allows you to access the VPN's LDP session information.

- SNMP Context, page 223
- VPN Route Distinguishers, page 223
- What to Do Next, page 225

SNMP Context

SNMP contexts provide VPN users with a secure way of accessing MIB data. When a VPN is associated with a context, that VPN's specific MIB data exists in that context. Associating a VPN with a context enables service providers to manage networks with multiple VPNs. Creating and associating a context with a VPN enables a provider to prevent the users of one VPN from accessing information about users of other VPNs on the same networking device.

VPN Route Distinguishers

A route distinguisher (RD) creates routing and forwarding tables for a VPN. Cisco IOS software adds the RD to the beginning of the customer's IPv4 prefixes to change them into globally unique VPN-IPv4 prefixes.

Either the RD is an autonomous system number (ASN)-relative RD, in which case it is composed of an autonomous system number and an arbitrary number, or it is an IP-address-relative RD, in which case it is composed of an IP address and an arbitrary number. You can enter an RD in either of these formats:

- 16-bit ASN: your 32-bit number, for example, 101:3.
- 32-bit IP address: your 16-bit number, for example, 192.168.122.15:1.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. snmp-server context context-name
- **4. ip vrf** vrf-name
- **5. rd** *route-distinguisher*
- **6. context** *context-name*
- 7. route-target {import | export | both} route-target-ext-community
- **8**. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	snmp-server context context-name	Creates and names an SNMP context.
		• The <i>context-name</i> argument is the name of the SNMP context being created.
	Example:	
	Router(config)# snmp-server context context1	
Step 4	ip vrf vrf-name	Configures a VRF table and enters VRF configuration mode.
		• The <i>vrf-name</i> argument is the name assigned to a VRF.
	Example:	
	Router(config)# ip vrf vrf1	
Step 5	rd route-distinguisher	Creates a VPN route distinguisher.
	Example:	• The <i>route-distinguisher</i> argument specifies to add an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter a route distinguisher in either of these formats:
	Router(config-vrf)# rd 100:120	 16-bit autonomous system number: your 32-bit number For example, 101:3.
		 32-bit IP address: your 16-bit number For example, 192.168.122.15:1.

	Command or Action	Purpose
Step 6	context context-name	Associates an SNMP context with a particular VRF.
	<pre>Example: Router(config-vrf)# context</pre>	The <i>context-name</i> argument is the name of the SNMP VPN context, up to 32 characters.
	context1	
Step 7	route-target {import export both} route-target-ext-community	 (Optional) Creates a route-target extended community for a VRF. The import keyword specifies to import routing information from the target VPN extended community.
	Example:	• The export keyword specifies to export routing information to the target VPN extended community.
	Router(config-vrf)# route-target export 100:1000	The both keyword specifies to import both import and export routing information to the target VPN extended community.
		• The <i>route-target-ext-community</i> argument adds the route-target extended community attributes to the VRF's list of import, export, or both (import and export) route-target extended communities.
Step 8	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-vrf)# end	

What to Do Next

Proceed to the Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2, page 225.

Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2

To configure a VPN-aware SNMP context for SNMPv1 or SNMPv2, perform the following task.

This allows you to access LDP session information for a VPN using SNMPv1 or SNMPv2.

• SNMPv1 or SNMPv2 Security, page 225

SNMPv1 or SNMPv2 Security

SNMPv1 and SNMPv2 are not as secure as SNMPv3. SNMP Versions 1 and 2 use plain text communities and do not perform the authentication or security checks that SNMP Version 3 performs.

To configure the VPN Aware LDP MIB feature when using SNMP Version 1 or SNMP Version 2, you need to associate a community name with a VPN. This association causes SNMP to process requests coming in for a particular community string only if they come in from the configured VRF. If the community string contained in the incoming packet does not have an associated VRF, the packet is processed only if it came in through a non-VRF interface. This process prevents users outside the VPN from using a clear text community string to query the VPN data. However, this is not as secure as using SNMPv3.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** snmp-server user username group-name [remote host [udp-port port]] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access access-list]
- **4. snmp-server group** *group-name* {**v1** | **v2c** | **v3** {**auth** | **noauth** | **priv**}} [**context** *context-name*] [**read** *readview*] [**write** *writeview*] [**notify** *notifyview*] [**access** *access-list*]
- **5. snmp-server view** *view-name oid-tree* {**included** | **excluded**}
- **6. snmp-server enable traps** [notification-type]
- **7.** snmp-server host host-address [vrf vrf-name] [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string [udp-port port] [notification-type]
- **8.** snmp mib community-map community-name [context context-name] [engineid engine-id] [security-name security-name] target-list vpn-list-name
- **9. snmp mib target-list** *vpn-list-name* {**vrf** *vrf-name* | **host** *ip-address*}

10. no snmp-server trap authentication vrf

11. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	snmp-server user username group- name [remote host [udp-port port]] {v1 v2c v3 [encrypted] [auth {md5} sha} auth-password]} [access access- list] Example: Router(config)# snmp-server user customer1 group1 v1	Configures a new user to an SNMP group.
		 The <i>username</i> argument is the name of the user on the host that connects to the agent. The <i>group-name</i> argument is the name of the group to which the user belongs.
		• The remote <i>host</i> keyword and argument specify a remote SNMP entity to which the user belongs, and the hostname or IPv6 address or IPv4 IP address of that entity. If both an IPv6 address and IPv4 IP address are being specified, the IPv6 host must be listed first.
		• The udp-port <i>port</i> keyword and argument specify the UDP port number of the remote host. The default is UDP port 162.
		The v1 keyword specifies that SNMPv1 should be used.
		• The v2c keyword specifies that SNMPv2c should be used.
		• The v3 keyword specifies that the SNMPv3 security model should be used. Allows the use of the encrypted and or auth keywords.
		• The encrypted keyword specifies whether the password appears in encrypted format (a series of digits, masking the true characters of the string).
		The auth keyword specifies which authentication level should be used.
		• The md5 keyword is the HMAC-MD5-96 authentication level.
		The sha keyword is the HMAC-SHA-96 authentication level.
		 The <i>auth-password</i> argument is a string (not to exceed 64 characters) that enables the agent to receive packets from the host. The minimum length for a password is one character. The recommended length of a password is at least eight characters, and should include both letters and numbers. The access <i>access-list</i> keyword and argument specify an access list to be associated with this SNMP user
		enables the agent to receive packets from the host. The minimum let for a password is one character. The recommended length of a passw at least eight characters, and should include both letters and number

	Command or Action	Purpose
Step 4	<pre>command or Action snmp-server group group-name {v1 v2c v3 {auth noauth priv}} [context context-name] [read readview] [write writeview] [notify notifyview] [access access-list] Example: Router(config)# snmp-server group group1 v1 context context1 read view1 write view1 notify view1</pre>	 Purpose Configures a new SNMP group or a table that maps SNMP users to SNMP views. The <i>group-name</i> argument is the name of the group. The <i>v1</i> keyword specifies that SNMPv1 should be used for the group. The <i>v2c</i> keyword specifies that SNMPv2c should be used for the group. The SNMPv2c security model allows for the transmission of informs, and supports 64-character strings (instead of 32-character strings). The <i>v3</i> keyword specifies that the SNMPv3 should be used for the group. SMNPv3 is the most secure of the supported security models, because it allows you to explicitly configure the authentication characteristics. The auth keyword specifies authentication of a packet without encrypting it. The noauth keyword specifies no authentication of a packet. The priv keyword specifies authentication of a packet with encryption. The context context-name keyword and argument associate the specified SNMP group with a configured SNMP context. The read readview keyword and argument specify a read view for the SNMP group. The readview argument represents a string (not to exceed 64 characters) that is the name of the view that enables you to display only the contents of the agent. The write wirteview keyword and argument specify a write view for the SNMP group. The writeview argument represents a string (not to exceed 64 characters) that is the name of the view that enables you to enter data and configure the contents of the agent. The notify and notifyview keyword argument specify a notify view for the SNMP group. The writeview argument represents a string (not to exceed 64 characters) that is the name of the view that enables you to specify a
		 of characters) that is the name of the view that enables you to specify a notify, inform, or trap. The access access-list keyword and argument specify a standard access list (a standard ACL) to associate with the group.
Step 5	<pre>snmp-server view view-name oid-tree {included excluded} Example: Router(config)# snmp-server view view1 ipForward included</pre>	 Creates or updates a view entry. The <i>view-name</i> argument is the label for the view record that you are updating or creating. The name is used to reference the record. The <i>oid-tree</i> argument is the object identifier of the ASN.1 subtree to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as system. Replace a single subidentifier with the asterisk (*) wildcard to specify a subtree family; for example 1.3.*.4. The included keyword configures the OID (and subtree OIDs) specified in the <i>oid-tree</i> argument to be included in the SNMP view.
		The excluded keyword configures the OID (and subtree OIDs) specified in the <i>oid-tree</i> argument to be explicitly excluded from the SNMP view.

	Command or Action	Purpose
Step 6	snmp-server enable traps [notification-type]	 Enables all SNMP notifications (traps or informs) available on your system. The <i>notification-type</i> argument specifies the particular type of SNMP notification(s) to be enabled on the LSR. If a notification type is not
	Example:	specified, all SNMP notifications applicable to the LSR are enabled and sent to the SNMP host.
	Router(config)# snmp-server enable traps	
Step 7	snmp-server host host-address [vrf vrf-name] [traps informs] [version {1 2c 3 [auth noauth priv]}] community-string [udp-port port] [notification-type]	 Specifies the recipient of an SNMP notification operation. The <i>host-address</i> argument specifies the name or Internet address of the host (the targeted recipient). The <i>vrf vrf-name</i> keyword argument pair specifies the VRF table that should be used to send SNMP notifications. The <i>traps</i> keyword sends SNMP traps to this host. This is the default.
	Example: Router(config)# snmp-server host 10.0.0.1 vrf customer1 public udp-port 7002	 The informs keyword sends SNMP informs to this host. The version keyword specifies the version of the SNMP used to send the traps. Version 3 is the most secure model, because it allows packet encryption with the priv keyword. If you use the version keyword, you must specify one of the following:
		 1—SNMPv1. This option is not available with informs. 2c —SNMPv2C. 3—SNMPv3. The following three optional keywords can follow the version 3keyword: auth, noauth, priv.
		• The <i>community-string</i> argument is a password-like community string sent with the notification operation.
		• The udp-port <i>port</i> keyword argument pair names the UDP port of the host to use. The default is 162.
		• The <i>notification-type</i> argument specifies the type of notification to be sent to the host. If no type is specified, all notifications are sent.
Step 8	snmp mib community-map community-name [context context- name] [engineid engine-id] [security- name security-name] target-list vpn- list-name	Associates an SNMP community with an SNMP context, engine ID, or security name. • The <i>community-name</i> argument is an SNMP community string. • The <i>context context-name</i> keyword and argument specify an SNMP context name to be mapped to the SNMP community. • The <i>engineid engine-id</i> keyword and argument specify an SNMP engine
	Example: Router(config)# snmp mib community-map community1 context context1 target-list commAVpn	 ID to be mapped to the SNMP community. The security-name security-name keyword and argument specify the security name to be mapped to the SNMP community. The target-list vpn-list-name keyword and argument specify the VRF list to be mapped to the SNMP community. The list name should correspond to a list name used in the snmp mib target-list command.

	Command or Action	Purpose
Step 9	snmp mib target-list vpn-list-name {vrf vrf-name host ip-address}	 Creates a list of target VRFs and hosts to associate with an SNMP community. The <i>vpn-list-name</i> argument is the name of the target list. The <i>vrf</i> keyword adds a specified VRF to the target list.
	Example:	The <i>vrf-name</i> argument is the name of a VRF to include in the list.
	Router(config)# snmp mib target list commAVpn vrf vrf1	 The host keyword adds a specified host to the target list. The <i>ip-address</i> argument is the IP address of the host.
Step 10	no snmp-server trap authentication vrf	(Optional) Disables all SNMP authentication notifications (traps and informs) generated for packets received on VRF interfaces.
	Example:	Use this command to disable authentication traps only for those packets on VRF interfaces with incorrect community associations.
	Router(config)# no snmp-server trap authentication vrf	
Step 11	end	Exits to privileged EXEC mode.
	Example:	
	Router(config) end	

Configuration Examples for MPLS EM—MPLS LDP MIB - RFC 3815

- Configuring Access to an SNMP Agent on a Host NMS Workstation Example, page 230
- Configuring the Router to Send SNMP Notifications to a Host for Monitoring LDP Example, page
- Configuring a VPN-Aware LDP MIB Example, page 231

Configuring Access to an SNMP Agent on a Host NMS Workstation Example

The following example shows how to configure access to an SNMP agent on a host NMS workstation:

```
configure terminal
!
snmp-server community
end
```

The following example shows how to configure access to SNMPv1 and SNMPv2C on the host NMS workstation. The configuration permits any SNMP agent to access all MPLS LDP MIB objects with read-only permission using the community string public.

```
configure terminal
```

```
snmp-server community public
end
```

The following example shows how to allow read-only access to all MPLS LDP MIB objects relating to members of access list 4 that specify the comaccess community string. No other SNMP agents will have access to any of the MPLS LDP MIB objects.

```
configure terminal
!
snmp-server community comaccess ro 4
end
```

Configuring the Router to Send SNMP Notifications to a Host for Monitoring LDP Example

The following example shows how to configure the router to send SNMP notifications to a host for monitoring LDP:

```
config terminal!
snmp-server host 172.20.2.160 traps comaccess mpls-ldp
snmp-server enable traps mpls rfc ldp session-up!
snmp-server enable traps mpls rfc ldp session-down
end
```

The session up and session down LDP notifications are configured.

Configuring a VPN-Aware LDP MIB Example

- Configuring SNMP Support for a VPN Example, page 231
- Configuring an SNMP Context for a VPN Example, page 231
- Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2 Example, page 232

Configuring SNMP Support for a VPN Example

The following example shows how to configure SNMP support for a VPN:

```
configure terminal
!
snmp-server host 10.10.10.1 vrf traps-vrf
snmp-server engineID remote 172.16.20.3 vrf traps-vrf 80000009030000B064EFE100
end
```

Configuring an SNMP Context for a VPN Example

The following example shows how to configure an SNMP context for a VPN. In this example, the VPN vrf1 is associated with the SNMP context context1.

```
configure terminal
!
snmp-server context context1
ip vrf vrf1
rd 100:120
context context1
route-target export 100:1000
end
```

Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2 Example

The following configuration example shows how to configure a VPN-aware SNMP context for the MPLS LDP MIB with SNMPv1 or SNMPv2:

```
snmp-server context A
snmp-server context B
ip vrf CustomerA
rd 100:110
 context A
 route-target export 100:1000
route-target import 100:1000
ip vrf CustomerB
rd 100:120
 context B
 route-target export 100:2000
route-target import 100:2000
interface Ethernet3/1
 description Belongs to VPN A
 ip vrf forwarding CustomerA
 ip address 10.0.0.0 255.255.0.0
interface Ethernet3/2
 description Belongs to VPN B
 ip vrf forwarding CustomerB
 ip address 10.0.0.1 255.255.0.0
snmp-server user commA grp1A v1
snmp-server user commA grp2A v2c
snmp-server user commB grp1B v1
snmp-server user commB grp2B v2c
snmp-server group grp1A v1 context A read viewA write viewA notify viewA
snmp-server group grplB v1 context B read viewB write viewB notify viewB
snmp-server view viewA ipForward included
snmp-server view viewA ciscoPingMIB included
snmp-server view viewB ipForward included
snmp-server view viewB ciscoPingMIB included
snmp-server enable traps
snmp-server host 10.0.0.3 vrf CustomerA commA udp-port 7002
snmp-server host 10.0.0.4 vrf CustomerB commB udp-port 7002
snmp mib community-map commA context A target-list commAvpn
! Configures source address validation
snmp mib community-map commB context B target-list commBvpn
! Configures source address validation
snmp mib target list commAvpn vrf CustomerA
! Configures a list of VRFs or from which community commA is valid
snmp mib target list commBvpn vrf CustomerB
! Configures a list of VRFs or from which community commB is valid
```

Additional References

Related Documents

Related Topic	Document Title
MPLS LDP concepts and configuration tasks	MPLS LDP Configuration Guide
A description of SNMP agent support in the Cisco IOS software for the MPLS Label Switching Router MIB (MPLS-LSR-STD-MIB)	MPLS EM—MPLS LSR MIB - RFC 3813

Related Topic	Document Title
SNMP commands	Network Management Command Reference
SNMP configuration	"Configuring SNMP Support" chapter in the Network Management Configuration Guide
SNMP support for VPNs	SNMP Notification Support for VPNs
SNMP context support for VPNs configuration tasks	SNMP Support over VPNs—Context Based Access Control
MPLS concepts and configuration tasks	Basic MPLS Configuration Guide
CEF concepts and configuration tasks	"Configuring Cisco Express Forwarding" section in the IP Switching Configuration Guide
Information about MPLS EM	Cisco IOS MPLS Embedded Management Application Note
	Cisco IOS MPLS Embedded Management Q&A

Standards

Standard	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIB	MIBs Link
 MPLS-LDP-STD-MIB MPLS-LDP-ATM-STD-MIB MPLS-LDP-FRAME-RELAY-STD-MIB MPLS-LDP-GENERIC-STD-MIB 	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs

RFCs

RFC	Title
RFC 3036	LDP Specification
RFC 3037	LDP Applicability
RFC 3815	Definitions of Managed Objects for the Multiprotocol Label Switching (MPLS), Label Distribution Protocol (LDP)

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for MPLS EM—MPLS LDP MIB - RFC 3815

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 60 Feature Information for MPLS EM—MPLS LDP MIB - RFC 3815

Feature Name	Releases	Feature Information
MPLS EM—MPLS LDP MIB - RFC 3815	12.2(33)SRB 12.2(33)SB	The MPLS EM—MPLS LDP MIB - RFC 3815 feature document describes the MIBs that support the Multiprotocol Label Switching (MPLS) Label Distribution Protocol (LDP) based on RFC 3815, Definitions of Managed Objects for the Multiprotocol Label Switching (MPLS), Label Distribution Protocol (LDP), and describes the differences between RFC 3815 and the MPLS-LDP-MIB based on the Internet Engineering Task Force (IETF) draft Version 8 (draft-ieft-mpls-ldp-08.txt). RFC 3815 and IETF draft Version 8 provide an interface for managing LDP through the use of the Simple Network Management Protocol (SNMP).
		In RFC 3815, the content of the MPLS-LDP-MIB is divided into four MIB modules: the MPLS-LDP-STD-MIB, the MPLS-LDP-GENERIC-STD-MIB, the MPLS-LDP-ATM-STD-MIB, and the MPLS-LDP-FRAME-RELAY-STD-MIB.
		Cisco IOS MPLS Embedded Management (EM) is a set of standards and value-added services that facilitate the deployment, operation, administration, and management of MPLS-based networks in line with the fault, configuration, accounting, performance, and security (FCAPS) model.
		In 12.2(33)SRB, this feature was introduced.
		In 12.2(33)SB, the feature was integrated into Cisco IOS Release 12.2SB.
		The following command was introduced in this feature: snmp -

Feature Name	Releases	Feature Information	
		server enable traps mpls rfc	
		ldp.	

Glossary

FPI—forwarding path identifier. An identifier required to locate Multiprotocol Label Switching (MPLS) forwarding information for a forwarding equivalence class (FEC). Examples of types of FPIs supported by the MPLS Forwarding Infrastructure (MFI) are IPv4, IPv6, LABEL, SSS, and TE.

LDP—Label Distribution Protocol. A standard protocol between MPLS-enabled routers that is used for the negotiation of the labels (addresses) used to forward packets.

LFIB — Label Forwarding Information Base. A data structure and way of managing forwarding in which destinations and incoming labels are associated with outgoing interfaces and labels.

LSP—label switched path. A sequence of hops in which a packet travels from one router to another router by means of label switching mechanisms. A label switched path can be established dynamically, based on normal routing mechanisms, or through configuration.

LSR—label switch router. A device that forwards MPLS packets based on the value of a fixed-length label encapsulated in each packet.

MFI—MPLS Forwarding Infrastructure. In the Cisco MPLS subsystem, the data structure for storing information about incoming and outgoing labels and associated equivalent packets suitable for labeling.

MIB —Management Information Base. Database of network management information that is used and maintained by a network management protocol such as SNMP. The value of a MIB object can be changed or retrieved by means of SNMP commands, usually through a network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MOI —MPLS output information. The MOI includes the next hop, outgoing interface, and outgoing label.

MPLS —Multiprotocol Label Switching. MPLS is a method for forwarding packets (frames) through a network. It enables routers at the edge of a network to apply labels to packets (frames). ATM switches or existing routers in the network core can switch packets according to the labels with minimal lookup overhead.

NMS —network management station. A device (usually a workstation) that performs Simple Network Management Protocol (SNMP) queries to the SNMP agent of a managed device to retrieve or modify information.

notification request —Message sent by an SNMP agent to a network management station, console, or terminal, indicating that a significant event occurred. SNMP notification requests are more reliable than traps, because a notification request from an SNMP agent requires that the SNMP manager acknowledge receipt of the notification request. The manager replies with an SNMP response protocol data unit (PDU). If the manager does not receive a notification message from an SNMP agent, it does not send a response. If the sender (SNMP agent) never receives a response, the notification request can be sent again. Thus, a notification request is more likely than a trap to reach its intended destination.

SNMP —Simple Network Management Protocol. Management protocol used almost exclusively in TCP/IP networks. SNMP provides a means for monitoring and controlling network devices, and for managing configurations, statistics collection, performance, and security.

trap —Message sent by an SNMP agent to a network management station, console, or terminal, indicating that a significant event occurred. Traps are less reliable than notification requests, because the receiver does not send an acknowledgment when it receives a trap. The sender cannot determine if the trap was received.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS Label Switching Router MIB

The MPLS Label Switching Router MIB (MPLS-LSR-MIB) allows you to use the Simple Network Management Protocol (SNMP) to remotely monitor a label switch router (LSR) that is using the Multiprotocol Label Switching (MPLS) technology.

Scalability enhancements provided in the Cisco IOS 12.0(28)S release reduce the size of any MIB walk and improve the usability of the MPLS-LSR-MIB.

In Cisco IOS Release 12.2(33)SRB and Cisco IOS Release 12.2(33)SB, this MIB has been deprecated and replaced by MPLS-LSR-STD-MIB (RFC 3813). In those two releases and in later images, the entire MIB can be referenced by the name mplsLsrMIB for purposes of the SNMP server excluded/included command. If other MIB object names need to be referenced on the router, they must be referenced by MPLS-LSR-MIB::<table_entry_name>.

Feature History for MPLS Label Switching Router MIB

Release	Modification
12.0(14)ST	This feature was introduced on Cisco IOS Release 12.0(14)ST
12.2(2)T	This feature was integrated into Cisco IOS Release 12.2(2)T.
12.0(22)S	This feature was implemented on the Cisco 12000 series routers and integrated into Cisco IOS Release 12.0(22)S.
12.2(14)S	This feature was integrated into Cisco IOS Release 12.2(14)S and implemented on Cisco 7200 and Cisco 7500 series routers.
12.2(25)S	This feature was updated to work in the MPLS High Availability environment with the Cisco 7500 series routers.
12.0(28)S	This feature was updated to include scalability enhancements in Cisco IOS Release 12.0(28)S.

Release	Modification
12.2(33)SRB	This MIB has been deprecated and replaced by MPLS-LSR-STD-MIB (RFC 3813).
12.2(33)SB	This MIB has been deprecated and replaced by MPLS-LSR-STD-MIB (RFC 3813).

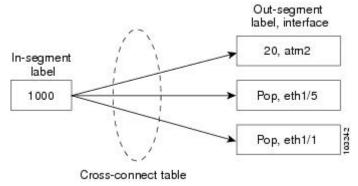
- Finding Feature Information, page 240
- Information About MPLS Label Switching Router MIB, page 240
- How to Configure the MPLS LSR MIB, page 251
- Configuration Examples for the MPLS LSR MIB, page 253
- Additional References, page 254
- Command Reference, page 255
- Glossary, page 255

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About MPLS Label Switching Router MIB


The MPLS-LSR-MIB contains managed objects that support the retrieval of label switching information from a router. The MIB is based on Revision 05 of the IETF MPLS-LSR-MIB. The MPLS-LSR-MIB mirrors a portion of the Cisco MPLS subsystem; specifically, it mirrors the Label Forwarding Information Base (LFIB). This implementation enables a network administrator to get information on the status, character, and performance of the following:

- MPLS-capable interfaces on the LSR
- Incoming MPLS segments (labels) at an LSR and their associated parameters
- Outgoing segments (labels) at an LSR and their associated parameters

In addition, the network administrator can retrieve the status of cross-connect table entries that associate MPLS segments with each other.

The figure below shows the association of the cross-connect table with incoming and outgoing segments (labels).

Figure 23 Label Forwarding with the Cross-Connect Table

The out-segment table does not display "no label" entries. Labels that are displayed as "POP" are the special MPLS label 3.

The notation used in the MPLS-LSR-MIB follows the conventions defined in Abstract Syntax Notation One (ASN.1). ASN.1 defines an Open System Interconnection (OSI) language used to describe data types apart from particular computer structures and presentation techniques. Each object in the MIB incorporates a DESCRIPTION field that includes an explanation of the object's meaning and usage, which, together with the other characteristics of the object (SYNTAX, MAX-ACCESS, and INDEX) provides sufficient information for management application development, as well as for documentation and testing.

The MPLS-LSR-MIB represents an ASN.1 notation reflecting an idealized MPLS LSR.

A network administrator can access the entries (objects) in the MPLS-LSR-MIB by means of any SNMP-based network management system (NMS). The network administrator can retrieve information in the MPLS-LSR-MIB using standard SNMP **get** and **getnext** operations.

Typically, SNMP runs as a low-priority process. The response time for the MPLS-LSR-MIB is expected to be similar to that for other MIBs. The size and structure of the MIB and other MIBs in the system influence response time when you retrieve information from the management database. Traffic through the LSR also affects SNMP performance. The busier the switch is with forwarding activities, the greater the possibility of lower SNMP performance.

- MPLS-LSR-MIB Elements, page 241
- Linking Table Elements, page 245
- Interface Configuration Table and Interface MIB Links, page 246
- Using the MPLS-LSR-MIB, page 248
- Benefits, page 250

MPLS-LSR-MIB Elements

The top-level components of the MPLS-LSR-MIB consist of

- Tables and scalars (mplsLsrObjects)
- Traps (mplsLsrNotifications and mplsLsrNotifyPrefix)
- Conformance (mplsLsrConformance)

This Cisco implementation does not support the notifications defined in the MIB, nor does it support the labelStackTable or the trafficParamTable.

- MPLS-LSR-MIB Tables, page 241
- Information from Scalar Objects, page 245

MPLS-LSR-MIB Tables

The Cisco implementation of the MPLS-LSR-MIB supports four main tables:

- Interface configuration
- · In-segment
- Out-segment
- Cross-connect

The MIB contains three supplementary tables to supply performance information. This implementation does not support the label stack and traffic parameter tables.

The following sections list the MPLS-LSR-MIB tables (main and supplementary), their functions, table objects that are supported, and table objects that are *not* supported.

MPLS interface configuration table (mplsInterfaceConfTable)

Provides information for each MPLS-capable interface on an LSR.

Supports:

- A unique interface index or zero
- Minimum and maximum values for an MPLS label received on the interface
- · Minimum and maximum values for an MPLS label sent from the interface
- A value for an MPLS label sent from the interface
- Per platform (0) or per interface (1) setting
- The storage type

Does not support:

- The total usable bandwidth on the interface
- The difference between the total usable bandwidth and the bandwidth in use

MPLS interface performance table (mplsInterfacePerfTable)

Augments the MPLS interface configuration table.

Supports:

- The number of labels in the incoming direction in use
- The number of top-most labels in outgoing label stacks in use

Does not support:

- The number of top-most labels in outgoing label stacks in use
- The number of labeled packets discarded because no cross-connect entries exist
- The number of outgoing MPLS packets requiring fragmentation for transmission

MPLS in-segment table (mplsInSegmentTable)

Contains a description of incoming segments (labels) at an LSR and their associated parameters.

Administrative and operational status objects for this table control packet transmission. If administrative and operational status objects are down, the LSR does not forward packets. If these status objects are up, the LSR forwards packets.

Supports:

- A unique index identifier
- The incoming label
- The number of labels to pop from the incoming segment
- An address family number from the Internet Assigned Number Authority (IANA)
- A segment cross-connect entry association
- The segment owner
- · The storage type
- · The administrative status

The operational status

The administrative status and operational status are always up for inSegments in the Cisco implementation. Otherwise, these entries do not appear in the table.

Does not support:

• A pointer to a traffic parameter table entry (set to the default 0.0)

MPLS in-segment performance table (mplsInSegmentPerfTable)

Augments the MPLS in-segment table, providing performance information and counters for incoming segments on an LSR.

Supports:

- The number of 32-bit octets received
- The number of 64-bit octets received
- The time of the last system failure that corresponded to one or more incoming segment discontinuities

The lastFailure parameter is set to zero because it has no meaning in the Cisco implementation.

Does not support:

- The total number of packets received
- The number of packets with errors
- The number of labeled packets discarded with no errors

MPLS out-segment table (mplsOutSegmentTable)

Contains a description of outgoing segments from an LSR and their associated parameters.

Administrative and operational status objects for this table control packet transmission. If administrative and operational status objects are down, the LSR does not forward packets. If these values are up, the LSR forwards packets.

Supports:

- A unique index identifier
- An interface index of the outgoing interface
- An indication of whether or not a top label is pushed onto the outgoing packet's label stack
- The label to push onto the outgoing packet's label stack (if the previous value is true)
- The next hop address type
- The IPv4 address of the next hop
- The segment cross-connect entry association
- · The segment owner
- · The storage type
- The administrative status
- The operational status

The administrative and operational status entries are always up in the Cisco implementation. Otherwise, the administrative and operational status entries do not appear in the table.

Does not support:

- An IPv6 address of the next hop
- A pointer to a traffic parameter table entry (set to the default 0.0)

MPLS out-segment performance table (mplsOutSegmentPerfTable)

Augments the MPLS out-segment table, providing performance information and counters for outgoing segments on an LSR.

Supports:

- The number of 32-bit octets sent
- The number of 64-bit octets sent
- The time of the last system failure that corresponded to one or more outgoing segment discontinuities

Does not support:

- The number of packets sent
- The number of packets that could not be sent because of errors
- The number of packets discarded with no errors

MPLS cross-connect table (mplsXCTable)

Associates inSegments (labels) with outSegments (labels) to show the manager how the LSR is currently swapping these labels.

A row in this table consists of one cross-connect entry that is indexed by the cross-connect index, the interface index of the incoming segment, the incoming label, and the out-segment index.

The administrative and operational objects for this table control packet forwarding to and from a cross-connect entry (XCEntry). The administrative status and operational status are always up in the Cisco implementation. Otherwise, the LSR would not forward packets.

Supports:

- A unique index identifier for a group of cross-connect segments
- A label switched path (LSP) to which the cross-connect entry belongs
- An index to the MPLS label stack table that identifies the stack of labels to be pushed under the top label
- An indication whether or not to restore the cross-connect entry after a failure (the default value is false)
- The cross-connect owner
- The storage type
- The administrative status (if up)
- The operational status (if up)

The administrative status and operational status are always up in the Cisco implementation. Otherwise, these status entries do not appear in the table.

Does not support:

• Tunnel IDs as label switched path (LSP) ID objects

Information from Scalar Objects

The MPLS-LSR-MIB supports several scalar objects. In the Cisco implementation of the MIB, the following scalar objects are hard-coded to the value indicated and are read-only objects:

- mplsOutSegmentIndexNext (0)--The value for the out-segment index when an LSR creates a new entry in the MPLS out-segment table. The 0 indicates that this is not implemented because modifications to this table are not allowed.
- mplsXCTIndexNext (0)--The value for the cross-connect index when an LSR creates an entry in the MPLS cross-connect table. The 0 indicates that no unassigned values are available.
- mplsMaxLabelDepth(2)--The value for the maximum stack depth.
- mplsLabelStackIndexNext (0)--The value for the label stack index when an LSR creates entries in the MPLS label stack table. The 0 indicates that no unassigned values are available.
- mplsTrafficParamIndexNext (0)--The value for the traffic parameter index when an LSR creates entries in the MPLS traffic parameter table. The 0 indicates that no unassigned values are available.

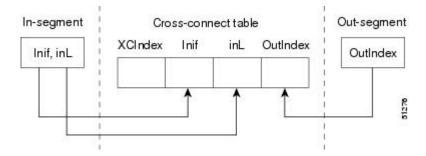
The following scalar objects do not contain information for the MPLS-LSR-MIB and are coded as false:

- mplsInSegmentTrapEnable (false)--In-segment traps are not sent when this value is false.
- mplsOutSegmentTrapEnable (false)--Out-segment traps are not sent when this value is false.
- mplsXCTrapEnable (false)--Cross-connect traps are not sent when this value is false.

No trap information exists to support the MIB. Therefore, the following traps are not supported:

- mplsInSegmentUp
- mplsInSegmentDown
- mplsOutSegmentUp
- mplsOutSegmentDown
- mplsXCUp
- mplsXCDown

Linking Table Elements


In the cross-connect table, cross-connect entries associate incoming segments and interfaces with outgoing segments and interfaces. The following objects index the cross-connect entry:

- Cross-connect index--A unique identifier for a group of cross-connect entries in the cross-connect
 table. In the Cisco implementation, this value is always the same as that for the outSegmentIndex,
 unless there is no label or if the label has been popped.
- Interface index of the in-segment--A unique index for an entry in the in-segment table that represents an incoming MPLS interface. The value 0 means platform wide, for any entries that apply to all interfaces.
- Incoming label--An entry in the in-segment table that represents the label on the incoming packet.

 Out-segment index--A unique identifier for an entry in the out-segment table that contains a top label for the outgoing packet's label stack and an interface index of the outgoing interface.

The figure below shows the links between the in-segment and the out-segment in the cross-connect table.

Figure 24 Cross-Connect Table Links

The table below shows the cross-connect table links you might see in the output from SNMP **get** operations on the MPLS-LSR-MIB objects that index a cross-connect entry. These objects include

- In-Segment Values--mplsInSegmentIfIndex and mplsInSegmentLabel
- Cross-Connect Entry--mplsXCIndex
- Out-Segment Values--mplsOutSegmentIndex

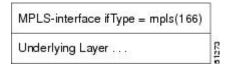
Table 61 MPLS LSR Output Showing Cross-Connect Table Links

In-Segment Values Cross-Connect Entry		Out-Segment Values	
0 [‡] , 1000	500 ² , 0, 1000, 0Linking Table Elements, page 245		
	501, 0, 1000, 501	501 = Pop (topLabel), Eth 1/5	
	502, 0, 1000, 502	502 = Pop (topLabel), Eth, 1/1	

The OutSegmentIndex object is not the label. The label can be retrieved from the mplsOutSegmentTopLabel object.

Interface Configuration Table and Interface MIB Links

The MPLS interface configuration table lists interfaces that support MPLS technology. An LSR creates an entry dynamically in this table for each MPLS-capable interface. An interface becomes MPLS-capable when MPLS is enabled on that interface. A non-zero index for an entry in this table points to the ifIndex for the corresponding interface entry in the MPLS-layer in the ifTable of the Interfaces Group MIB.

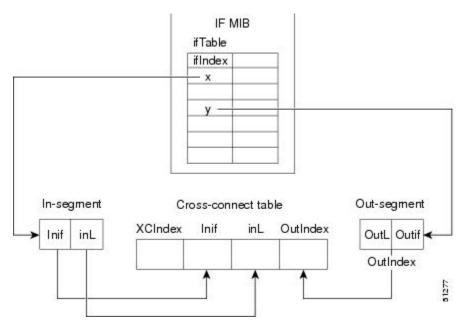

¹ All MPLS-enabled interfaces can receive incoming labels.

² For this implementation of the MPLS-LSR-MIB, the cross-connect index and the out-segment index are the same. If there is no outsegment, the value will be zero.

The ifTable contains information on each interface in the network. Its definition of an interface includes any sublayers of the internetwork layer of the interface. MPLS interfaces fit into this definition of an interface. Therefore, each MPLS-enabled interface is represented by an entry in the ifTable.

The interrelation of entries in the ifTable is defined by the interfaces stack group of the Interfaces Group MIB. The figure below shows how the stack table might appear for MPLS interfaces. The underlying layer refers to any interface that is defined for MPLS internetworking, for example, ATM, Frame Relay, or Ethernet.

Figure 25 Interface Group MIB Stack Table for MPLS Interfaces



Tunnel interfaces are included in the MPLS list for the current implementation.

The incoming and outgoing packets include a reference to the interface index for the ifTable of the Interfaces Group MIB. The figure below shows the links between MPLS-LSR-MIB objects and the Interfaces Group MIB.

Figure 26 MPLS-LSR-MIB and Interfaces Group MIB Links

- For the Interfaces Group MIB (IF MIB):
 - if Table represents the MPLS interface table.
 - ifIndex represents the index to an entry in the MPLS interface table.
- For the In-segment:
 - Inif represents the interface on the incoming segment (references an index entry in the ifTable).

- inL represents the label on the incoming segment.
- For the Out-segment:
 - OutL represents the label on the outgoing segment.
 - Outif represents the interface on the outgoing segment (references an index entry in the ifTable).
- For the Cross-connect table:
 - XCIndex represents the index to an entry in the MPLS cross-connect table.
 - Inif represents the interface on the incoming segment.
 - inL represents the MPLS label on the incoming segment.
 - o OutIndex represents an index to an entry in the MPLS out-segment table.

Using the MPLS-LSR-MIB

The MPLS-LSR-MIB enables you to display the contents of the MPLS Label Forwarding Information Base (LFIB). It gives you the same information that you can obtain using the CLI command **show mpls forwarding-table**.

However, the MPLS-LSR-MIB approach offers these advantages over the CLI command approach:

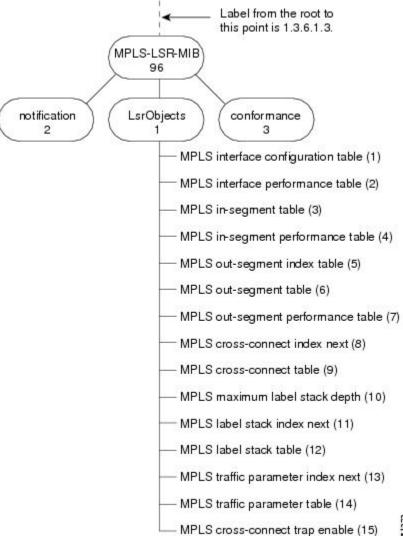
- A more efficient use of network bandwidth
- Greater interoperability among vendors
- Greater security (SMNP Version 3)

The following paragraphs describe the MPLS-LSR-MIB structure and show, through the use of an example, how the two approaches to the information display compare.

- MPLS-LSR-MIB Structure, page 248
- CLI Commands and the MPLS-LSR-MIB, page 249

MPLS-LSR-MIB Structure

MIB structure is represented by a tree hierarchy. Branches along the tree have short text strings and integers to identify them. Text strings describe object names, and integers allow computer software to encode compact representations of the names.


The MPLS-LSR-MIB falls on the experimental branch of the Internet MIB hierarchy. The experimental branch of the Internet MIB hierarchy is represented by the object identifier 1.3.6.1.3. This branch can also be represented by its object name *iso.org.dod.internet.experimental*. The MPLS-LSR-MIB is identified by the object name *mplsLsrMIB*, which is denoted by the number 96. Therefore, objects in the MPLS-LSR-MIB can be identified in either of the following ways:

- The object identifier--1.3.6.1.3.96.[MIB-variable]
- The object name--iso.org.dod.internet.experimental.mplsLsrMIB.[MIB-variable]

To display a *MIB-variable*, you enter an SNMP **get** command with an object identifier. Object identifiers are defined by the MPLS-LSR-MIB.

The figure below shows the position of the MPLS-LSR-MIB in the Internet MIB hierarchy.

Figure 27 MPLS-LSR-MIB in the Internet MIB Hierarchy

CLI Commands and the MPLS-LSR-MIB

The MPLS LFIB is the component of the Cisco MPLS subsystem that contains management information for LSRs. You can access this management information by means of either of the following:

- Using the show mpls forwarding-table CLI command
- · Entering SNMP get commands on a network manager

The following examples show how you can gather LSR management information using both methods.

- CLI Command Output, page 250
- MPLS-LSR-MIB Output, page 250

CLI Command Output

A **show mpls forwarding-table** CLI command allows you to look at label forwarding information for a packet on a specific MPLS LSR.

Router	# show mpls :	forwarding-table			
Local	Outgoing	Prefix	Bytes Tag	Outgoing	Next Hop
Tag	Tag or VC	or Tunnel Id	Switched	interface	
19	Pop Tag	10.3.4.0/24	0	Et1/4	10.22.23.23
22	23	14.14.14.14/32	0	AT2/0.1	point2point
	1/36	14.14.14.14/32	0	AT2/0.2	point2point

MPLS-LSR-MIB Output

SNMP commands on MIB objects also allow you to look at the label forwarding information for a specific MPLS LSR.

You can do a walk-through of the MIB by running a command such as **getmany -v2c public mplsLsrMIB** on a network manager where **getmany** does repeated SNMP **getnext** operations to retrieve the contents of the MPLS-LSR-MIB.

```
mplsXCOperStatus.9729.0.19.9729 = up(1)
mplsXCOperStatus.11265.0.22.11265 = up(1)
mplsXCOperStatus.11266.0.22.11266 = up(1)
```

You can continue to scan the output of the **getmany** command for the following (from the MPLS outsegment table):

• Out-segment's top label objects (mplsOutSegmentTopLabel)

```
mplsOutSegmentTopLabel.9729 = 3
mplsOutSegmentTopLabel.11265 = 23
mplsOutSegmentTopLabel.11266 = 65572
```


65572 is 1/36 in label form (1 is the high-order 16 bits. 36 is the low-order 16 bits.)

Out-segment's interface index (mplsOutSegmentIfIndex)

```
mplsOutSegmentIfIndex.9729 = 7
mplsOutSegmentIfIndex.11265 = 28
mplsOutSegmentIfIndex.11266 = 31
```

Benefits

The benefits described in the following paragraphs are available to you with the MPLS-LSR-MIB.

Troubleshooting LSR Problems

By monitoring the cross-connect entries and the associated incoming and outgoing segments, you can see which labels are installed and how they are being swapped. Use the MPLS-LSR-MIB in place of the **show mpls forwarding** CLI command.

Monitoring of LSR Traffic Loads

By monitoring interface and packet operations on an MPLS LSR, you can identify high- and low-traffic patterns, as well as traffic distributions.

Improvement of Network Performance

By identifying potentially high-traffic areas, you can set up load sharing to improve network performance.

Verification of LSR Configuration

By comparing results from SNMP **get** commands and the **show mpls forwarding** CLI command, you can verify your LSR configuration.

Displaying of Active Label Switched Paths

By monitoring the cross-connect entries and the associated incoming segments and outgoing segments, you can determine the active LSPs.

How to Configure the MPLS LSR MIB

- Prerequisites, page 251
- Enabling the SNMP Agent, page 251
- Verifying That the SNMP Agent Has Been Enabled, page 252

Prerequisites

The MPLS-LSR-MIB requires the following:

- SNMP installed and enabled on the LSR
- · MPLS enabled on the LSR
- 60K of memory

Note

Additional capacity is not required for runtime dynamic random-access memory (DRAM).

Enabling the SNMP Agent

The SNMP agent for the MPLS-LSR-MIB is disabled by default. To enable the SNMP agent, perform the following steps:

SUMMARY STEPS

- 1. enable
- 2. show running-config
- 3. configure terminal
- **4. snmp-server community** *string* [**view** *view-name*] [**ro**] [*number*]
- 5. end
- **6.** copy running-config startup-config

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show running-config	Displays the running configuration of the router to determine if an SNMP agent is already running on the device.
	Example:	If no SNMP information is displayed, continue with the next step.
	Router# show running-config	If any SNMP information is displayed, you can modify the information or change it as desired.
Step 3	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 4	snmp-server community string [view view-	Configures read-only (ro) SNMP community strings.
name] [ro] [number]	name] [ro] [number]	This command enables the SNMP agent and permits any SNMP manager to access all objects with read-only permission using the
	Formula	community string public.
	Example:	
	Router(config)# snmp-server community public ro	
Step 5	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	
Step 6	copy running-config startup-config	Copies the modified SNMP configuration into router NVRAM, permanently saving the SNMP settings.
	Example:	When you are working with Cisco IOS Release 10.3 or earlier, use the write memory command.
	Router# copy running-config startup-config	

Verifying That the SNMP Agent Has Been Enabled

To verify that the SNMP agent has been enabled, perform the following steps:

SUMMARY STEPS

- **1.** Access the router through a Telnet session:
- **2.** Enter privileged mode:
- **3.** Display the running configuration and look for SNMP information:

DETAILED STEPS

Step 1 Access the router through a Telnet session:

Example:

```
Prompt# telnet xxx.xxx.xxx
```

where xxx.xxx.xxx represents the IP address of the target device.

Step 2 Enter privileged mode:

Example:

Router# enable

Step 3 Display the running configuration and look for SNMP information:

Example:

```
Router# show running-configuration
...
...
snmp-server community public RO
```

If you see any "snmp-server" statements, SNMP has been enabled on the router.

Configuration Examples for the MPLS LSR MIB

The following example shows how to enable an SNMP agent.

```
configure terminal
snmp-server community
```

In the following example, SNMPv1 and SNMPv2C are enabled. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string *public*.

```
configure terminal
snmp-server community public
```

In the following example, read-only access is allowed for all objects to members of access list 4 that specify the *comaccess* community string. No other SNMP managers have access to any objects.

configure terminal
nmp-server community comaccess ro 4

Additional References

Related Documents

Related Topic	Document Title	
Configuring SNMP using Cisco IOS software	 Network Management Configuration Guide . Configuring SNMP Support Network Management Command Reference, SNMP Commands 	

Standards

Standard	Title
draft-ietf-mpls-lsr-mib-05.txt	MPLS Label Switch Router Management Information Base Using SMIv2
draft-ietf-mpls-arch-07.txt	Multiprocol Label Switching Architecture

MIBs

MIBs	MIBs Link	
MPLS Label Switching Router MIB (MPLS- LSR-MIB)	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:	
	http://www.cisco.com/go/mibs	

RFCs

RFCs	Title
The LSR implementation supporting the MPLS-LSR-MIB is in full compliance with all provisions of Section 10 of RFC 2026.	The Internet Standards Process

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	http://www.cisco.com/techsupport
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Command Reference

This feature uses no new or modified commands.

Glossary

cross-connect (**XC**) --An association of in-segments and incoming Multiprotocol Label Switching (MPLS) interfaces to out-segments and outgoing MPLS interfaces.

IETF --Internet Engineering Task Force. A task force (consisting of more that 80 working groups) that is developing standards for the Internet and the IP suite of protocols.

inSegment -- A label on an incoming packet that is used to determine the forwarding of the packet.

Internet Engineering Task Force -- See IETF.

label -- A short, fixed length identifier that is used to determine the forwarding of a packet.

Label Distribution Protocol -- See LDP.

label switched path -- See LSP.

label switching --Describes the forwarding of IP (or other network layer) packets by a label swapping algorithm based on network layer routing algorithms. The forwarding of these packets uses the exact match algorithm and rewrites the label.

label switch router -- See LSR.

LDP --Label Distribution Protocol. A standard protocol that operates between Multiprotocol Label Switching (MPLS)-enabled routers to negotiate the labels (addresses) used to forward packets. The Cisco proprietary version of this protocol is the Tag Distribution Protocol (TDP).

LSP --label switched path. A sequence of hops in which a packet travels from one router to another router by means of label switching mechanisms. A label switched path can be established dynamically, based on normal routing mechanisms, or through configuration.

LSR --label switch router. A device that forwards Multiprotocol Label Switching (MPLS) packets based on the value of a fixed-length label encapsulated in each packet.

Management Information Base -- See MIB.

MIB --Management Information Base. A database of network management information that is used and maintained by a network management protocol such as Simple Network Management Protocol (SNMP). The value of a MIB object can be changed or retrieved by means of SNMP commands, usually through a network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MPLS --Multiprotocol Label Switching. A switching method that forwards IP traffic through use of a label. This label instructs the routers and the switches in the network where to forward the packets. The forwarding of MPLS packets is based on preestablished IP routing information.

MPLS interface -- An interface on which Multiprotocol Label Switching (MPLS) traffic is enabled.

Multiprotocol Label Switching -- See MPLS.

notification request --A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal, indicating that a significant event occurred. SNMP notification requests are more reliable than traps, because a notification request from an SNMP agent requires that the SNMP manager acknowledge receipt of the notification request. The manager replies with an SNMP response protocol data unit (PDU). If the manager does not receive a notification message from an SNMP agent, it does not send a response. If the sender (SNMP agent) never receives a response, the notification request can be sent again.

outSegmen t--A label on an outgoing packet.

Simple Network Management Protocol -- See SNMP.

SNMP --Simple Network Management Protocol. A management protocol used almost exclusively in TCP/IP networks. SNMP provides a means for monitoring and controlling network devices, and for managing configurations, statistics collection, performance, and security.

trap --A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal, indicating that a significant event occurred. Traps are less reliable than notification requests, because the receiver does not send an acknowledgment when it receives a trap. The sender cannot determine if the trap was received.

Refer to the Cisco *Dictionary of Internetworking Terms and Acronyms* for terms not included in this glossary.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.

Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS EM—MPLS LSR MIB - RFC 3813

The MPLS LSR MIB- RFC 3813 (MPLS-LSR-STD-MIB) allows you to use the Simple Network Management Protocol (SNMP) to remotely monitor a label switch router (LSR) that is using the Multiprotocol Label Switching (MPLS) technology.

This document describes the MPLS-LSR-STD-MIB. The document also describes the major differences between the MPLS-LSR-STD-MIB and draft Version 5 of the MPLS-LSR-MIB.

The MPLS EM—MPLS LSR MIB - RFC 3813 feature introduces the MPLS-LSR-STD-MIB, which is an upgrade from draft Version 5 of the MPLS-LSR-MIB to an implementation of the *Multiprotocol Label Switching (MPLS) Label Switching Router (LSR) Management Information Base (MIB)*, RFC 3813. This feature also introduces the VPN Aware LSR MIB feature that enables the MPLS-LSR-STD-MIB to get VPN context information.

Cisco IOS MPLS Embedded Management (EM) is a set of standards and value-added services that facilitate the deployment, operation, administration, and management of MPLS-based networks in line with the fault, configuration, accounting, performance, and security (FCAPS) model.

- Finding Feature Information, page 259
- Prerequisites for MPLS EM—MPLS LSR MIB RFC 3813, page 260
- Restrictions for MPLS EM—MPLS LSR MIB RFC 3813, page 260
- Information About MPLS EM—MPLS LSR MIB RFC 3813, page 260
- How to Configure SNMP for the MPLS EM—MPLS LSR MIB RFC 3813, page 281
- Configuration Examples for the MPLS EM—MPLS LSR MIB RFC 3813, page 293
- Additional References, page 294
- Feature Information for MPLS EM—MPLS LSR MIB RFC 3813, page 296
- Glossary, page 298

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS EM—MPLS LSR MIB - RFC 3813

The MPLS-LSR-STD-MIB requires the following:

- SNMP installed and enabled on the LSR
- MPLS enabled on the LSR
- MPLS Forwarding Infrastructure (MFI)

Restrictions for MPLS EM—MPLS LSR MIB - RFC 3813

- The implementation of the MPLS-LSR-STD-MIB (RFC 3815) for Cisco IOS Releases 12.2(33)SRB and 12.2(33)SB is limited to read-only (RO) permission for MIB objects.
- The following MIB objects are not supported in Cisco IOS Releases 12.2(33)SRB and 12.2(33)SB:
 - mplsInterfaceTotalBandwidth (MPLS interface table)
 - mplsInterfaceAvailableBandwidth (MPLS interface table)
 - mplsInterfacePerfInLabelLookupFailures (MPLS interface performance table)
 - mplsInterfacePerfOutFragmentedPkts (MPLS interface performance table)
 - mplsInSegmentTrafficParamPtr (MPLS in-segment table)
 - mplsInSegmentPerfDiscards (MPLS in-segment performance table)
- The following notifications are not supported:
 - mplsXCUp
 - mplsXCDown

Information About MPLS EM—MPLS LSR MIB - RFC 3813

- MPLS-LSR-STD-MIB Benefits, page 260
- Label Switching Information Managed by the MPLS-LSR-STD-MIB, page 261
- MPLS-LSR-STD-MIB Elements, page 262
- Brief Description of MPLS-LSR-STD-MIB Tables, page 262
- MPLS LSR Information Available Through the MPLS-LSR-STD-MIB, page 263
- Information from MPLS-LSR-STD-MIB Scalar Objects, page 268
- MPLS-LSR-STD-MIB Indexing—Linking Table Elements, page 269
- Interface Configuration Table and Interface MIB Links, page 270
- MPLS-LSR-STD-MIB Structure, page 271
- CLI Commands and the MPLS-LSR-MIB, page 272
- VPN Aware LSR MIB, page 274
- Major Differences Between the MPLS-LSR-STD-MIB and the MPLS-LSR-MIB, page 275

MPLS-LSR-STD-MIB Benefits

The benefits described in the following paragraphs are available to you with the MPLS-LSR-STD-MIB.

LSR Problem Troubleshooting

By monitoring the cross-connect entries and the associated incoming and outgoing segments, you can see which labels are installed and how they are being swapped. Use the MPLS-LSR-STD-MIB in place of the **show mpls forwarding** command-line interface (CLI) command.

LSR Traffic Load Monitoring

By monitoring interface and packet operations on an MPLS LSR, you can identify high- and low-traffic patterns, and traffic distributions.

Improvement of Network Performance

By identifying potentially high-traffic areas, you can set up load sharing to improve network performance.

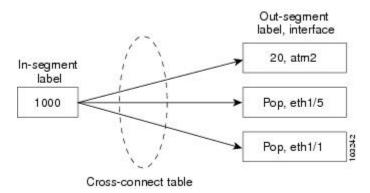
Verification of LSR Configuration

By comparing results from SNMP **get** commands and the **show mpls forwarding** CLI command, you can verify your LSR configuration.

Active Label Switched Paths Monitoring

By monitoring the cross-connect entries and the associated incoming segments and outgoing segments, you can determine the active LSPs.

Label Switching Information Managed by the MPLS-LSR-STD-MIB


The MPLS-LSR-STD-MIB contains managed objects that support the retrieval of label switching information from a router. The MIB is based on RFC 3813. This implementation enables a network administrator to get information on the status, character, and performance of the following:

- MPLS-capable interfaces on the LSR
- Incoming MPLS segments (labels) at an LSR and their associated parameters
- Outgoing segments (labels) at an LSR and their associated parameters

In addition, the network administrator can retrieve the status of cross-connect table entries that associate MPLS segments with each other.

The figure below shows the association of the cross-connect table with incoming and outgoing segments (labels).

Figure 28 Label Forwarding with the Cross-Connect Table

The out-segment table does not display "no label" entries. Labels that are displayed as "POP" are the special MPLS label 3.

The notation used in the MPLS-LSR-STD-MIB follows the conventions defined in Abstract System Notation One (ASN.1). ASN.1 defines an Open Systems Interconnection (OSI) language used to describe data types independently from particular computer structures and presentation techniques. Each object in the MIB incorporates a DESCRIPTION field that includes an explanation of the object's meaning and usage, which, together with the other characteristics of the object (SYNTAX, MAX-ACCESS, and INDEX) provides sufficient information for management application development, as well as for documentation and testing.

The MPLS-LSR-STD-MIB represents an ASN.1 notation that represents an idealized MPLS LSR.

A network administrator can access the entries (objects) in the MPLS-LSR-STD-MIB by means of any SNMP-based network management system (NMS). The network administrator can retrieve information in the MPLS-LSR-STD-MIB using standard SNMP **get** and **getnext** commands.

Typically, SNMP runs as a low-priority process. The response time for the MPLS-LSR-STD-MIB is expected to be similar to that for other MIBs. The size and structure of the MIB and other MIBs in the system influence response time when you retrieve information from the management database. Traffic through the LSR also affects SNMP performance. The busier the switch is with forwarding activities, the greater the possibility of lower SNMP performance.

MPLS-LSR-STD-MIB Elements

The top-level components of the MPLS-LSR-STD-MIB are:

- Tables and scalars (mplsLsrObjects)
- Notifications (mplsLsrNotifications)
- Conformance (mplsLsrConformance)

Brief Description of MPLS-LSR-STD-MIB Tables

This section lists and briefly describes of the main and supplementary tables in the MPLS-LSR-STD-MIB.

The Cisco implementation of the MPLS-LSR-STD-MIB supports four main tables:

- MPLS interface table (mplsInterfaceTable)—Contains entries for all MPLS-capable interfaces on the LSR.
- MPLS in-segment table (mplsInSegmentTable)—Contains a description of incoming labels on the LSR.
- Mpls out-segment table (mplsOutSegmentTable)—Contains a description of outgoing labels on the LSR.
- MPLS cross-connect table (mplsXCTable)—Contains the connections between the in-segments and out-segments on the LSR. A single cross-connect entry is equivalent to a single entry in the Label Forwarding Information Base (LFIB), showing an in-label being switched to an out-label. A cross-connect entry can exist where no corresponding in-segment exists. For example, only the outgoing label exists at the head end of a traffic engineering (TE) tunnel.

Three tables manage labels, the MPLS in-segment table, the MPLS out-segment table, and the MPLS cross-connect tables.

The MIB contains three supplementary tables to supply performance information:

- MPLS interface performance table (mplsInterfacePerfTable)—Augments the MPLS interface table. Provides objects to measure performance for MPLS-capable interfaces on the LSR.
- MPLS in-segment performance table (mplsInSegmentPerfTable)—Augments the MPLS in-segment table. Provides performance information and counters for incoming segments on the LSR.
- MPLS out-segment performance table (mplsOutSegmentPerfTable)—Augments the MPLS outsegment table. Provides performance information and counters for outgoing segments on the LSR.

MPLS LSR Information Available Through the MPLS-LSR-STD-MIB

You can use SNMP **get**and **getnext**commands to gather label switching information for an MPLS LSR available through the MPLS-LSR-STD-MIB tables. This section describes the MPLS LSR information available from each table:

- MPLS Interface Table (mplsInterfaceTable), page 263
- MPLS Interface Performance Table (mplsInterfacePerfTable), page 264
- MPLS In-Segment Table (mplsInSegmentTable), page 264
- MPLS In-Segment Performance Table (mplsInSegmentPerfTable), page 265
- MPLS Out-Segment Table (mplsOutSegmentTable), page 265
- MPLS Out-Segment Performance Table (mplsOutSegmentPerfTable), page 266
- MPLS Cross-Connect Table (mplsXCTable), page 267
- MPLS Label Stack Table (mplsLabelStackTable), page 267
- MPLS In-Segment Map Table (mplsInSegmentMapTable), page 268

MPLS Interface Table (mplsInterfaceTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS interface table (mplsInterfaceTable).

Table 62 MPLS Interface Table—MPLS LSR Information and Associated MIB Object

MPLS LSR Information	MIB Object
Minimum value for an MPLS label that can be received on the interface	mplsInterfaceLabelMinIn
Maximum value for an MPLS label that can be received on the interface	mplsInterfaceLabelMaxIn
A unique MPLS-enabled interface index or 0	mplsInterfaceIndex
Minimum value for an MPLS label that the LSR can send from the interface	mplsInterfaceLabelMinOut
Maximum value for an MPLS label that the LSR can send from the interface	mplsInterfaceLabelMaxOut
Per platform (0) or per interface (1) setting	mplsInterfaceLabelParticipationType

The following MIB objects and associated MPLS LSR information from the MPLS interface table are not supported:

mplsInterfaceTotalBandwidth—The total usable bandwidth on the interface.

 mplsInterfaceAvailableBandwidth—The difference between the total usable bandwidth and the bandwidth in use.

MPLS Interface Performance Table (mplsInterfacePerfTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS interface performance table (mplsInterfacePerfTable).

Table 63 MPLS Interface Performance Table—MPLS LSR Information and Associated MIB Object

MPLS LSR Information	MIB Object
Number of labels in the incoming direction in use	mplsInterfacePerfInLabelsInUse
Number of top-most labels in outgoing label stacks in use	mplsInterfacePerfOutLabelsInUse

The following MIB objects and associated MPLS LSR information from the MPLS interface performance table are not supported:

- mplsInterfacePerfInLabelLookupFailures—The number of labeled packets discarded because no cross-connect entries exist.
- mplsInterfacePerfOutFragmentedPkts—The number of outgoing MPLS packets requiring fragmentation for transmission.

MPLS In-Segment Table (mplsInSegmentTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS insegment table (mplsInSegmentTable).

Table 64 MPLS In-Segment Table—MPLS LSR Information and Associated MIBObject

MPLS LSR Information	MIB Object
Unique index identifier	mplsInSegmentIndex
Interface index for the incoming MPLS interface	mplsInSegmentInterface
Incoming label	mplsInSegmentLabel
Pointer to an external table containing the label, if not represented fully in the mplsInSegmentLabel object	mplsInSegmentLabelPtr
Number of labels to pop (remove) from the incoming segment	mplsInSegmentNPop
An address family number from the Internet Assigned Number Authority (IANA)	mplsInSegmentAddrFamily
Segment cross-connect entry association	mplsInSegmentXCIndex
Segment owner	mplsInSegmentOwner

MPLS LSR Information	MIB Object
Status of the table row	mplsInSegmentRowStatus
Storage type	mplsInSegmentStorageType

The following MIB object and associated MPLS LSR information from the MPLS in-segment table is not supported:

• mplsInSegmentTrafficParamPtr—A pointer to a traffic parameter table entry (set to the default 0.0).

MPLS In-Segment Performance Table (mplsInSegmentPerfTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS insegment performance table (mplsInSegmentPerfTable).

Table 65 MPLS In-Segment Performance Table—MPLS LSR Information and Associated MIB Object

MPLS LSR Information	MIB Object
Number of 32-bit octets received	mplsInSegmentPerfOctets
Number of 64-bit octets received	mplsInSegmentPerfHOctets
Total number of packets received	mplsInSegmentPerfPackets
Number of packets with errors	mplsInSdegmentPerfErrors
Time of the last system failure that corresponded to one or more incoming segment discontinuities	mplsInSegmentPerfDiscontinuityTime

The following MIB object and associated MPLS LSR information from the MPLS in-segment performance table is not supported:

• mplsInSegmentPerfDiscards—The number of labeled packets discarded with no errors.

MPLS Out-Segment Table (mplsOutSegmentTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS out-segment table (mplsOutSegmentTable).

Table 66 MPLS Out-Segment Table—MPLS LSR Information and Associated MIBObject

MPLS LSR Information	MIB Object
Unique index identifier	mplsOutSegmentIndex
Interface index of the outgoing interface	mplsOutSegmentInterface
Indication of whether a top label is pushed onto the outgoing packet's label stack	mplsOutSegmentPushToptLabel

MPLS LSR Information	MIB Object
Label to push onto the outgoing packet's label stack (if the mplsOutSegmentPushToptLabel is true)	mplsOutSegmentToptLabel
Pointer to an external table containing the label, if not represented fully in the mplsOutSegmentTopLabel object (set to the default 0.0)	mplsOutSegmentTopLabelPtr
Next-hop Internet address type (unknown [0], ipv4 [1], ipv6 [2])	mplsOutSegmentNextHopAddrType
Internet address of the next hop	mplsOutSegmentNextHopAddr
Segment cross-connect entry association	mplsOutSegmentXCIndex
Segment owner	mplsOutSegmentOwner
Status of the table row	mplsOutSegmentRowStatus
Storage type	mplsOutSegmentStorageType

The following MIB object and associated MPLS LSR information from the8—A pointer to a traffic parameter table entry (set to the default 0.0).

MPLS Out-Segment Performance Table (mplsOutSegmentPerfTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS out-segment performance table (mplsOutSegmentPerfTable).

Table 67 MPLS Out-Segment Performance Table—MPLS LSR Information and Associated MIB Object

MPLS LSR Information	MIB Object
Number of 32-bit octets sent	mplsOutSegmentPerfOctets
Total number of packets sent	mplsOutSegmentPerfPackets
Number of packets that could not be sent because of errors	mplsOutSegmentPerfErrors
Number of 64-bit octets sent	mplsOutSegmentPerfHOctets
The time of the last system failure that corresponded to one or more outgoing segment discontinuities	mplsOutSegmentPerfDiscontinuityTime

The following MIB object and associated MPLS LSR information from the MPLS out-segment performance table is not supported:

• mplsOutSegmentPerfDiscards—The number of packets discarded with no errors.

MPLS Cross-Connect Table (mplsXCTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS cross-connect table (mplsXCTable).

Table 68 MPLS Cross-Connect Table—MPLS LSR Information and Associated MIB Object

MPLS LSR Information	MIB Object
Unique index identifier for a group of cross-connect segments.	mplsXCIndex
In-segment label index.	mplsXCInSegmentIndex
Out-segment index.	mplsXCOutSegmentIndex
Label switched path (LSP) to which the cross- connect entry belongs. When using mplsXCLspId to poll a device that has MPLS-TE enabled, all zeros will be returned for the prefix.	mplsXCLspId
Index to the MPLS label stack table that identifies the stack of labels to be pushed under the top label.	mplsXCLabelStackIndex
Cross-connect owner.	mplsXCOwner
Status of table row.	mplsXCRowStatus
Storage type.	mplsXCStorageType
Administrative status (if up).	mlpsXCAdminStatus
Operational status (if up).	mplsXCOperStatus

The administrative status and operational status are always up in the Cisco implementation. Otherwise, these status entries do not appear in the table.

MPLS Label Stack Table (mplsLabelStackTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS label stack table (mplsLabelStackTable).

Table 69 MPLS Label Stack Table—MPLS LSR Information and Associated MIB Object

MPLS LSR Information	MIB Object
Primary index for a stack of labels to be pushed on an outgoing packet	mplsLabelStackIndex
Secondary index identifying one label of the stack	mplsLabelStackLabelIndex

MPLS LSR Information	MIB Object
Label to be pushed	mplsLabelStackLabel
Pointer to an extenal table containing the label, if not represented fully in the mplsLabelStackLabel object	mplsLabelStackLabelPtr
Status of the table row	mplsLabelStackRowStatus
Storage type	mplsLabelStackStorageType

MPLS In-Segment Map Table (mplsInSegmentMapTable)

The table below lists the MPLS LSR information and associated MIB objects provided by the MPLS insegment map table.

Table 70 MPLS In-Segment Map Table—MPLS LSR Information and Associated MIB Object

MPLS LSR Information	MIB Object
Index containing the same value as the mplsInSegmentInterface in the MPLS in-segment table	mplsInSegmentMapInterface
Index containing the same value as the mplsInSegmentLabel in the MPLS in-segment table	mplsInSegmentMapLabel
Pointer to an extenal table containing the label, if the label for the in-segment cannot be represented fully in the mplsInSegmentLabel object	mplsInSegmentMapLabelPtrIndex
The mplsInSegmentIndex that corresponds to the mplsInSegmentInterface and mplsInSegmentLabel objects or the mplsInSegmentInterface and mplsInSegmentLabelPtr objects	mplsInSegmentMapIndex

Information from MPLS-LSR-STD-MIB Scalar Objects

The MPLS-LSR-STD-MIB supports several scalar objects. In the Cisco implementation of the MIB for Cisco IOS Releases 12.2(33)SRB and 12.2(33(SB), the following scalar objects are hard-coded to the value indicated and are read-only objects. This symbol ("") indicates an empty string.

- mplsInSegmentIndexNext ("")—The value for the in-segment index when the LSR creates an entry in
 the MPLS in-segment table. The "" indicates that this is not implemented because modifications to
 this table are not allowed.
- mplsOutSegmentIndexNext ("")—The value for the out-segment index when an LSR creates a new
 entry in the MPLS out-segment table. The "" indicates that this is not implemented because
 modifications to this table are not allowed.
- mplsXCTIndexNext ("")—The value for the cross-connect index when an LSR creates an entry in the MPLS cross-connect table. The "" indicates that no unassigned values are available.
- mplsMaxLabelStackDepth (6)—The value for the maximum stack depth.

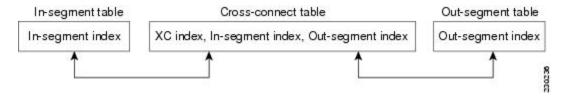
- mplsLabelStackIndexNext ("")—The value for the label stack index when an LSR creates entries in the MPLS label stack table. The "" indicates that no unassigned values are available.
- mplsXCNotificationEnable (false)—Cross-connect notifications are not sent when this value is false.

The following notifications are not supported:

- mplsXCUp
- mplsXCDown

MPLS-LSR-STD-MIB Indexing—Linking Table Elements

In the MPLS cross-connect table, cross-connect entries associate incoming segments with outgoing segments. The following objects index the cross-connect entry:


- Cross-connect index (mplsXCIndex)—A unique identifier for a group of cross-connect entries in the cross-connect table.
- In-segment index (mplsXCInSegmentIndex)—The value of this object is the same value as for the mplsInSegmentIndex in the in-segment table.

The in-segment table (mplsInSegmentTable) is indexed by the incoming label. The mplsInSegmentIndex is a 4-byte octet string containing the local label.

 Out-segment index (mplsXCOutSegmentIndex)—The value of this object is the same value as for the mplsOutSegmentIndex in the out-segment table.

The following figure shows the relationship among the indexes of the mplsInSegmentTable, the mplsXCTable, and the mplsOutSegmentTable.

Figure 29 MPLS-LSR-STD-MIB Indexing

The mplsInSegmentIndex, mplsXCindex, and mplsOutSegmentIndex values are defined as an MplsIndexType, which is a variable-length octet string that can be used to specify an interface index, a physical card or device, or an application ID.

MPLS In-Segment Table Index

The mplsInSegmentIndex is a 4-byte octet string containing the local label.

MPLS Cross-Connect Table Index

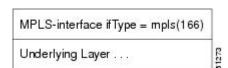
The mplsXCIndex is a variable-length octet string, the size of which depends on the application type that is represented and the amount of information needed to represent the label for that application type. The application type is based on a forwarding path identifier (FPI) type that is supported by the MFI. The Cisco implementation of the MPLS-LSR-STD-MIB for Cisco IOS Release xx.x(x)X supports the following FPI types: LABEL, TE, and IPV4.

The figure below shows how the MPLS-LSR-STD-MIB represents the application types for the cross-connect mplsXCIndex object.

Figure 30 MPLS-LSR-STD-MIB Application Type Representation for mplsXCIndex Object

MPLS Out-Segment Table Index

The mplsOutSegmentIndex is a variable-length octet string. The description of this index is identical to that of the mplsXCIndex except the mplsOutSegmentIndex is two bytes longer in length. The last two bytes in the out-segment index contains the MPLS output information (MOI) list index.


Interface Configuration Table and Interface MIB Links

The MPLS interface configuration table lists interfaces that support MPLS technology. An LSR creates an entry dynamically in this table for each MPLS-capable interface. An interface becomes MPLS-capable when MPLS is enabled on that interface. A nonzero index for an entry in this table points to the ifIndex for the corresponding interface entry in the MPLS-layer in the ifTable of the Interfaces Group MIB.

The ifTable contains information on each interface in the network. Its definition of an interface includes any sublayers of the internetwork layer of the interface. MPLS interfaces fit into this definition of an interface. Therefore, each MPLS-enabled interface is represented by an entry in the ifTable.

The interrelation of entries in the ifTable is defined by the interfaces stack group of the Interfaces Group MIB. The figure below shows how the stack table might appear for MPLS interfaces. The underlying layer refers to any interface that is defined for MPLS internetworking, for example, ATM, Frame Relay, or Ethernet.

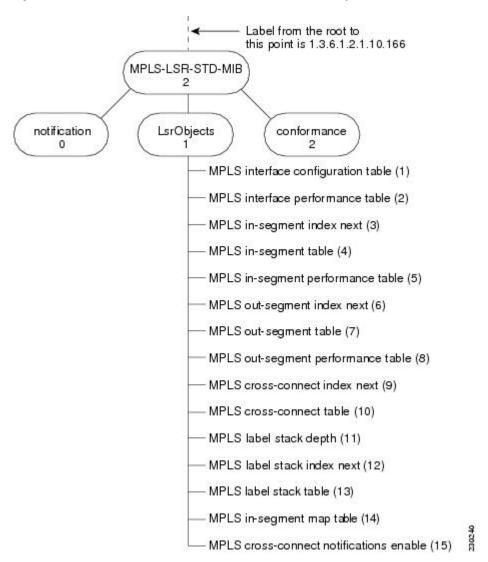
Figure 31 Interface Group MIB Stack Table for MPLS Interfaces

Note

Tunnel interfaces are included in the MPLS list for the current implementation.

MPLS-LSR-STD-MIB Structure

MIB structure is represented by a tree hierarchy. Branches along the tree have short text strings and integers to identify them. Text strings describe object names, and integers allow computer software to encode compact representations of the names.


The MPLS-LSR-STD-MIB falls on the branch of the Internet MIB hierarchy represented by the object identifier 1.3.6.1.2.1.10.166. This branch can also be represented by its object name iso.org.dod.internet.mgmt.mib-2.transmission.mplsStdMIB. The MPLS-LSR-STD-MIB is identified by the object name mplsLsrStdMIB, which is denoted by the number 2. Therefore, objects in the MPLS-LSR-MIB can be identified in either of the following ways:

- The object identifier—1.3.6.1.2.1.10.166.2.[MIB-variable]
- The object name—iso.org.dod.internet.mgmt.mib-2.transmission.mplsStdMIB.mplsLsrStdMIB.[MIB-variable]

To display a MIB-variable, you enter an SNMP **get** command with an object identifier. Object identifiers are defined by the MPLS-LSR-STD-MIB.

The figure below shows the position of the MPLS-LSR-STD-MIB in the Internet MIB hierarchy.

Figure 32 MPLS-LSR-STD-MIB in the Internet MIB Hierarchy

CLI Commands and the MPLS-LSR-MIB

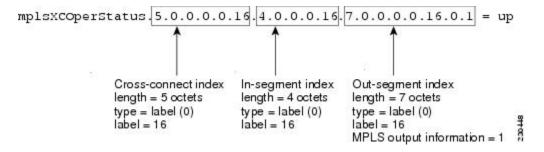
The MPLS LFIB is the component of the Cisco MPLS subsystem that contains management information for LSRs. You can access this management information by means of either of the following:

- Using the show mpls forwarding-table CLI command
- Entering SNMP get commands on a network manager

The following examples show how you can gather LSR management information using both methods.

CLI Command Output

A **show mpls forwarding-table** CLI command allows you to display label forwarding information for a packet on a specific MPLS LSR:


Router# show mpls forwarding-table					
Local	Outgoing	Prefix	Bytes Label	Outgoing	Next Hop
Label	Label or VC	or Tunnel Id	Switched	interface	
16	Pop Label	IPv4 VRF[V]	1000	aggregate/	vpn1
17	Pop Label	10.0.0.3/32	0	PO7/1/0	point2point
18	Pop Label	10.30.1.0/16	0	PO7/1/0	point2point
19	17	10.0.0.1/32	0	PO7/1/0	point2point
20	No Label	10.9.0.0/16[V]	0	GE3/1	10.30.2.2
21	No Label	10.0.0.7/32[V]	128856	GE3/1	10.30.2.2

MPLS-LSR-STD-MIB Output

SNMP commands on MIB objects also allow you to display the label forwarding information for a specific MPLS LSR.

You can do a walk-through of the MIB by running a command such as **getmany -v2c public mplsLsrStdMIB** on a network manager where **getmany** does repeated SNMP **getnext** operations to retrieve the contents of the MPLS-LSR-STD-MIB. The figure below shows index information for the mplsXCOperStatus MPLS-LSR-STD-MIB object and how to read the information in the MIB output that follows.

Figure 33 Index Information for the mplsXCOperStatus MPLS-LSR-STD-MIB Object


```
mplsXCOperStatus.5.0.0.0.0.4.0.0.0.0.7.0.0.0.0.0.0.0.1 = up
mplsXCOperStatus.5.0.0.0.0.1.4.0.0.0.1.1.0 = up
mplsXCOperStatus.5.0.0.0.0.2.4.0.0.0.2.7.0.0.0.0.2.0.1 = up
mplsXCOperStatus.5.0.0.0.0.3.4.0.0.0.3.1.0 = up
mplsXCOperStatus.5.0.0.0.0.16.4.0.0.0.16.7.0.0.0.0.16.0.1 = up
mplsXCOperStatus.5.0.0.0.17.4.0.0.0.17.7.0.0.0.0.17.0.1 = up
mplsXCOperStatus.5.0.0.0.17.4.0.0.0.17.7.0.0.0.0.17.0.1 = up
mplsXCOperStatus.5.0.0.0.18.4.0.0.0.18.7.0.0.0.0.18.0.1 = up
mplsXCOperStatus.5.0.0.0.19.4.0.0.19.7.0.0.0.0.19.0.1 = up
mplsXCOperStatus.5.0.0.0.0.20.4.0.0.0.20.1.0 = up
mplsXCOperStatus.5.0.0.0.0.21.4.0.0.0.21.1.0 = up
mplsXCOperStatus.6.2.10.30.0.16.1.0.8.2.30.1.0.0.16.0.1 = up
```

You can continue to scan the output of the **getmany** command for the following MIB objects from the MPLS out-segment table:

Out-segment's top label objects (mplsOutSegmentTopLabel)

```
mplsOutSegmentTopLabel.7.0.0.0.0.0.0.1 = 3
mplsOutSegmentTopLabel.7.0.0.0.0.2.0.1 = 3
mplsOutSegmentTopLabel.7.0.0.0.0.16.0.1 = 3
mplsOutSegmentTopLabel.7.0.0.0.0.17.0.1 = 3
mplsOutSegmentTopLabel.7.0.0.0.0.18.0.1 = 3
```

```
mplsOutSegmentTopLabel.7.0.0.0.0.19.0.1 = 17
mplsOutSegmentTopLabel.8.2.10.0.0.1.32.0.1 = 17
mplsOutSegmentTopLabel.8.2.10.0.0.3.32.0.1 = 3
mplsOutSegmentTopLabel.8.2.10.30.0.16.0.1 = 3
```

Out-segment's interface (mplsOutSegmentIInterface)

```
mplsOutSegmentInterface.7.0.0.0.0.0.0.1 = 0
mplsOutSegmentInterface.7.0.0.0.0.2.0.1 = 0
mplsOutSegmentInterface.7.0.0.0.0.16.0.1 = 0
mplsOutSegmentInterface.7.0.0.0.0.17.0.1 = 55
mplsOutSegmentInterface.7.0.0.0.0.18.0.1 = 55
mplsOutSegmentInterface.7.0.0.0.0.19.0.1 = 55
mplsOutSegmentInterface.8.2.10.0.0.1.32.0.1 = 55
mplsOutSegmentInterface.8.2.10.0.0.3.32.0.1 = 55
mplsOutSegmentInterface.8.2.10.30.0.16.0.1 = 55
```

For more information on how to read the indexing for MPLS-LSR-STD-MIB objects, see the MPLS-LSR-STD-MIB Indexing—Linking Table Elements, page 269.

VPN Aware LSR MIB

Cisco IOS Releases 12.2(33)SRB and 12.2(33)SB include the VPN Aware LSR MIB feature that enables the MPLS-LSR-STD-MIB to get VPN context information. This feature adds support for different contexts for different MPLS VPNs. Users of the MIB can display per-VPN entries in the MPLS-LSR-STD-MIB tables. The VPN Aware LSR MIB feature does not change the syntax of the MPLS-LSR-STD-MIB. It changes the number and types of entries within the tables.

The MPLS-LSR-STD-MIB can show information about only one context at a time. You can specify either a global context or an MPLS VPN context using an SMNP security name. The security name must match the SNMP community name when an SNMP request is performed on a MIB entry.

SNMP Contexts, page 274

SNMP Contexts

SNMP contexts provide VPN users with a secure way of accessing MIB data. When a VPN is associated with a context, that VPN's specific MIB data exists in that context. Associating a VPN with a context enables service providers to manage networks with multiple VPNs. Creating and associating a context with a VPN enables a provider to prevent the users of one VPN from accessing information about users of other VPNs on the same networking device.

VPN-aware SNMP requires that SNMP manager and agent entities operating in a VPN environment agree on mapping between the SNMP security name and the VPN name. This mapping is created by you using different contexts for the SNMP data of different VPNs, which is accomplished through the configuration of the SNMP View-based Access Control Model MIB (SNMP-VACM-MIB). The SNMP-VACM-MIB is configured with views so that a user on a VPN with a security name is allowed access to the restricted object space within the context of only that VPN.

SNMP request messages undergo three phases of security and access control before a response message is sent back with the object values within a VPN context:

- The first security phase is authentication of the username. During this phase, the user is authorized for SNMP access.
- The second phase is access control. During this phase, the user is authorized for SNMP access to the group objects in the requested SNMP context.
- In the third phase, the user can access a particular instance of a table entry. With this third phase, complete retrieval can be based on the SNMP context name.

IP access lists can be configured and associated with SNMP community strings. This feature enables you to configure an association between VRF instances and SNMP community strings. When a VRF instance is associated with an SNMP community string, SNMP processes requests coming in for a particular community string only if they are received from the configured VRF. If the community string contained in the incoming packet has no VRF associated with it, it is processed only if it came in through a non-VRF interface.

Major Differences Between the MPLS-LSR-STD-MIB and the MPLS-LSR-MIB

The MPLS-LSR-STD-MIB based on RFC 3813 provides the same basic functionality as the MPLS-LSR-MIB based on Version 05 of the IETF MPLS-LSR-MIB. They both provides an interface for managing label switching through the use of SNMP.

After the implementation of the MPLS-LSR-STD-MIB (RFC 3813) in Cisco IOS Releases 12.2(33)SRB and 12.2(33)SRB, the MPLS-LSR-MIB will exist for a period of time before support is completely removed. This gives you the chance to migrate to the MPLS-LSR-STD-MIB. Both MIBs can coexist in the same image because the MPLS-LSR-STD-MIB and the MPLS-LSR-MIB have different root object identifiers (OIDs).

The following sections contain information about the major differences between the MPLS-LSR-STD-MIB and the MPLS-LSR-MIB:

- MPLS-LSR-MIB and the MPLS-LSR-STD-MIB Scalar Object Differences, page 275
- MPLS-LSR-MIB and the MPLS-LSR-STD-MIB Table Object Differences, page 276
- MPLS-LSR-MIB and MPLS-LSR-STD-MIB Notification Differences, page 280
- MPLS-LSR-MIB and MPLS-LSR-STD-MIB Indexing Differences, page 280

MPLS-LSR-MIB and the MPLS-LSR-STD-MIB Scalar Object Differences

The table below shows the major difference between the MPLS-LSR-MIB objects and the MPLS-LSR-STD-MIB objects for each scalar object.

Table 71 Scalar Objects: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsTrafficParamIndexNext	_	Object deleted.
mplsInSegmentTrapEnable	_	Object deleted.
mplsOutSegmentTrapEnable	_	Object deleted.
_	mplsInSegmentIndexNext	New object.
mplsOutSegmentIndexNext	mplsOutSegmentIndexNext	Syntax change. Formerly integer 32, now is MplsIndexType, which is an octet string.
mplsXCIndexNext	mplsXCIndexNext	Syntax change. Formerly integer 32, now is MplsIndexType, which is an octet string.

MPLS-LSR-MIB and the MPLS-LSR-STD-MIB Table Object Differences

The following tables show the major differences between the MPLS-LSR-MIB and the MPLS-LSR-STD-MIB for each table.

MPLS Interface Table (mplsInterfaceTable) Differences

The table below shows the difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS interface table (mplsInterfaceTable), formerly called the MPLS interface configuration table (mplsInterfaceConfTable).

Table 72 MPLS Interface Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsInterfaceTotalBuffer	_	Object deleted.
mplsInterfaceAvailableBuffer	_	Object deleted.
mplsInterfaceConfStorageType	_	Object deleted.
mplsInterfaceConfIndex	mplsInterfaceIndex	Object name changed.

MPLS Interface Performance Table (mplsInterfacePerfTable) Differences

The table below shows the major difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS interface performance table (mplsInterfacePerfTable).

Table 73 MPLS Interface Performance Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsInterfaceInPackets	_	Object deleted.
mplsInterfaceInDiscards	_	Object deleted.
mplsInterfaceInLabelsUsed	mplsInterfacePerfInLabelsInUse	Object name changed.
mplsInterfaceFailedLabelLookup	mplsInterfacePerfInLabelLookup Failures	Object name changed.
mplsInterfaceOutPackets	_	Object deleted.
mplsInterfaceOutDiscard	_	Object deleted.
mplsInterfaceOutLabelsUsed	mplsInterfacePerfOutLabelsInUs e	Object name changed.
mplsInterfaceOutFragments	mplsInterfacePerfOutFragmented Pkts	Object name changed.

MPLS In-Segment Table (mplsInSegmentTable) Differences

The table below shows the major difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS in-segment table (mplsInSegmentTable).

Table 74 MPLS In-Segment Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsInSegmentAdminStatus	_	Object deleted.
mplsInSegmentOperStatus	_	Object deleted.
mplsInSegmentIfIndex	mplsInSegmentInterface	Object name changed. Formerly not accessible (was used as index into the table). Now it is an object in the table.
_	mplsInSegmentIndex	New object. Used as an index into the table.
_	mplsInSegmentLabelPtr	New object.
mplsInSegmentLabel	mplsInSegmentLabel	Formerly not accessible (was used as index into the table). Now it is an object in the table.
mplsInSegmentXCIndex	mplsInSegmentXCIndex	Syntax change. Formerly Integer32, now MplsIndextype, which is an Octet String.

MPLS In-Segment Performance Table (mplsInSegmentPerfTable) Differences

The table below shows the major difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS in-segment performance table (mplsInSegmentPerfTable).

Table 75 MPLS In-Segment Performance Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsInSegmentOctets	mplsInSegmentPerfOctets	Object name changed.
mplsInSegmentPackets	mplsInSegmentPerfPackets	Object name changed.
mplsInSegmentErrors	mplsInSegmentPerfErrors	Object name changed.
mplsInSegmentDiscards	mplsInSegmentPerfDiscards	Object name changed.
mplsInSegmentHCOctets	mplsInSegmentPerfHCOctets	Object name changed.

MPLS Out-Segment Table (mplsOutSegmentTable) Differences

The table below shows the major difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS out-segment table (mplsOutSegmentTable).

Table 76 MPLS Out-Segment Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsOutSegmentAdminStatus	_	Object deleted.

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsOutSegmentOperStatus	_	Object deleted.
mplsOutSegmentIndex	mplsOutSegmentIndex	Syntax changed. Formerly Integer32, now MplsIndexType, which is an octet string.
mplsOutSegmentIfIndex	mplsOutSegmentInterface	Object name changed.
_	mplsOutSgementTopLabelPtr	New object.
mplsOutSegmentNextHopIpAddr Type	mplsOutSegmentNextHopAddrT ype	Object name changed.
mplsOutSegmentNextHopIpv4Ad dr mplsOutSegmentNextHopIpv6Ad dr	mplsOutSegmentNextHopAddr	Formerly two objects, now one object with the syntax of InetAddress.
mplsOutSegmentXCIndex	mplsOutSegmentXCIndex	Syntax changed. Formerly Integer32, now MplsIndexType, which is an octet string.

MPLS Out-Segment Performance Table (mplsOutSegmentPerfTable) Differences

The table below shows the major difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS out-segment performance table (mplsOutSegmentPerfTable).

Table 77 MPLS Out-Segment Performance Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsOutSegmentOctets	mplsOutSegmentPerfOctets	Object name changed.
mplsOutSegmentPackets	mplsOutSegmentPerfPackets	Object name changed.
mplsOutSegmentErrors	mplsOutSegmentPerfErrors	Object name changed.
mplsOutSegmentDiscards	mplsOutSegmentPerfDiscards	Object name changed.
mplsOutSegmentHCOctets	mplsOutSegmentPerfHCOctets	Object name changed.

MPLS Cross-Connect Table (mplsXCTable) Differences

The table below shows the major difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS cross-connect table (mplsXCTable).

Table 78 MPLS Cross-Connect Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsXCIsPersistent	_	Object deleted.

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsXCIndex	mplsXCIndex	Syntax changed. Formerly Integer32, now MplsIndexType, which is an octet string.
_	mplsXCInSegmentIndex	New object, an index into the mplsXCTable.
_	mplsXCOutSegmentIndex	New object, an index into the mplsXCTable.
mplsXCLabelStackIndex	mplsXCLabelStackIndex	Syntax changed. Formerly Integer32, now MplsIndexType, which is an octet string.

MPLS Label Stack Table (mplsLabelStackTable) Differences

The table below shows the major difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS label stack table (mplslLabelStackTable).

Table 79 MPLS Label Stack Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-STD-MIB Object	Difference
mplsLabelStackIndex	mplsLabelStackIndex	Syntax changed. Formerly Integer32, now MplsIndexType, which is an octet string.
_	mplsLabelStackLabelPtr	New object.

MPLS In-Segment Map Table (mplsInSegmentMapTable) Differences

The table below shows the major difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB objects for the MPLS in-segment map table (mplsInSegmentMapTable). The MPLS in-segment map table is a new table introduced with the MPLS-LSR-STD-MIB.

Table 80 MPLS In-Segment Map Table: MPLS-LSR-MIB and MPLS-LSR-STD-MIB Object Differences

MPLS-LSR-MIB Object	MPLS-LSR-MIB Object MPLS-LSR-STD-MIB Object	
_	mplsInSegmentMapInterface	New object.
_	mplsInSegmentMapLabel	New object.
_	mplsInSegmentMapLabelPtrInde x	New object.
_	mplsInSegmentMapIndex	New object.

MPLS Traffic Parameters Table (mplsTrafficParamTable) Differences

The MPLS traffic parameters table was not supported in Cisco IOS implementation of MPLS-LSR-MIB. It has been removed from the MPLS-LSR-STD-MIB.

MPLS-LSR-MIB and MPLS-LSR-STD-MIB Notification Differences

The table below shows the difference between MPLS-LSR-MIB and MPLS-LSR-STD-MIB notifications.

Table 81 MPLS-LSR-MIB and MPLS-LSR-STD-MIB Notification Differences

MPLS-LSR-MIB Notification	MPLS-LSR-STD-MIB Notification	Difference
mplsInSegmentUp	_	Object deleted.
mplsInSegmentDown	_	Object deleted.
mplsOutSegmentUp	_	Object deleted.
mplsOutSegmentDown	_	Object deleted.
mplsXCUp	mplsXCUp	Returned objects changed.
mplsXCDown	mplsXCDown	Returned objects changed.

The following notifications were not supported for MPLS-LSR-MIB and are not supported for the MPLS-LSR-STD-MIB in Cisco IOS Releases 12.2(33)SRB and 12.3(33)SB):

- mplsXCUp
- mplsXCDown

For scalability reasons, none of the notifications were implemented in the Cisco IOS software from the MPLS-LSR-MIB. For the same reason, the notifications from the MPLS-LSR-STD-MIB are not implemented in Cisco IOS Releases 12.2(33)SRB and 12.2(33)SB.

MPLS-LSR-MIB and MPLS-LSR-STD-MIB Indexing Differences

One of the major differences between the MPLS-LSR-MIB and the MPLS-LSR-STD-MIB is the indexing used for the three main tables that manage labels for the MPLS LSR in the MPLS-LSR-MIB and the MPLS-LSR-STD-MIB: the MPLS in-segment table (mplsInSegmentTable), the MPLS cross-connect table (mplsXCTable), and the MPLS out-segment table (mplsOutSegmentTable).

All entries in each table are uniquely identified by one or more indexes. The indexes determine the order in which entries are displayed in a MIB walk.

The table below compares indexing characteristics of the draft Version 05 MPLS-LSR-MIB implementation with indexing characteristics of the MPLS-LSR-STD-MIB (RFC 3813) implementation.

Table 82 Comparison of Indexing Characteristics of the MPLS-LSR-MIB and the MPLS-LSR-STD-MIB

Object Compared	MPLS-LSR-MIB Draft Version 05 Implementation	MPLS-LSR-STD-MIB RFC 3813 Implementation	
Index type definition	A 32-bit integer type is used to define the indexing into the tables that manage label switching in the MPLS LSR.	An octet string is used to define the indexing into the tables that manage label switching in the MPLS LSR.	

Object Compared	MPLS-LSR-MIB Draft Version 05 Implementation	MPLS-LSR-STD-MIB RFC 3813 Implementation
MPLS in-segment table index	The MPLS in-segment table is indexed by the SNMP interface index (ifIndex) and the incoming label (mplsInSegmentLabel).	The MPLS in-segment table is indexed by the mplsInSegmentIndex. The mplsInSegmentIndex is a 4-byte octet string representing the local label (mplsInSegmentLabel).
MPLS cross-connect table index	The MPLS cross-connect table indexing has four indexes: mplsXCIndex, ifIndex, mplsInSegmentLabel, and mplsOutSegmentIndex. The SNMP interface index and incoming label are identical to the in-segment table. The mplsXCindex and mplsOutSegmentIndex values are defined as arbitrary unsigned 32-bit quantities.	The MPLS cross-connect table indexing has three indexes: mplsXCIndex, mplsXCInSegmentIndex, and mplsXCOutSegmentIndex. The mplsXCInSegmentIndex is the same as the mplsInSegmentIndex in the insegment table. The mplsXCOutSegmentIndex is the same as the mplsOutSegmentIndex in the outsegment table.
MPLS out-segment table index	The MPLS out-segment table is indexed by the mplsOutSegmentIndex, which corresponds to the mplsOutSegmentIndex used in the MPLS cross-connect table.	The MPLS out-segment table is indexed by the mplsOutSegmentIndex, which corresponds to the mplsXCIndex with the addition of two bytes that contain an MOI list index.

For more information about the relationship between the indexes for the MPLS-LSR-STD-MIB implementation, see the MPLS-LSR-STD-MIB Indexing—Linking Table Elements, page 269.

How to Configure SNMP for the MPLS EM—MPLS LSR MIB - RFC 3813

This section contains tasks to configure the MPLS EM—MPLS LSR MIB (RFC 3813) feature.

The SNMP agent for the MPLS-LSR-STD-MIB is disabled by default and must be enabled for you to use SNMP to monitor and manage the MPLS LSRs on your network. Perform these task to enable the SNMP Agent and verify that it is enabled:

Perform the following task to configure a VPN context for the MPLS-LSR-STD-MIB:

- Prerequisites, page 281
- Enabling the SNMP Agent, page 282
- Verifying That the SNMP Agent Is Enabled, page 283
- Configuring a VPN-Aware LSR MIB, page 284

Prerequisites

The MPLS-LSR-STD-MIB requires the following:

- · SNMP installed and enabled on the LSR
- MPLS enabled on the LSR

• MFI

Enabling the SNMP Agent

To enable the SNMP agent, perform the following task.

The SNMP agent for the MPLS-LSR-STD-MIB is disabled by default.

SUMMARY STEPS

- 1. enable
- 2. show running-config
- 3. configure terminal
- **4.** snmp-server community string [view view-name] [ro | rw] [ipv6 nacl] [access-list-number]
- 5. end
- 6. save running-config startup-config

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show running-config	Displays the running configuration of the router to determine if an SNMP agent is already running on the device.
	Example:	If no SNMP information is displayed, continue with the next step.
	Router# show running-config	If any SNMP information is displayed, you can modify the information or change it as desired.
Step 3	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose	
Step 4 snmp-server community string [view view-name] [ro rw] [ipv6 nacl] [access-list-number] Example: Router(config)# snmp-server community public ro Router(config) public ro Sets up the community access string to permit access to the SNMP protocol. Blank spaces community string. The view view-name keyword-argument padefined view. The view defines the objects community. The ro keyword specifies read-only access stations can retrieve only MIB objects. The rw keyword specifies read-write access stations can retrieve and modify MIB object. The ipv6 nacl keywords specify the IPv6 nor the access-list-number argument is an integrand access list of IP addresses or a strict characters) that is the name of a standard access to the SNMP agent.		 Sets up the community access string to permit access to SNMP. The <i>string</i> argument is a community string that consists of from 1 to 32 alphanumeric characters and functions much like a password, permitting access to the SNMP protocol. Blank spaces are not permitted in the community string. The view <i>view-name</i> keyword-argument pair is the name of a previously defined view. The view defines the objects available to the SNMP community. The ro keyword specifies read-only access. Authorized management stations can retrieve only MIB objects. The rw keyword specifies read-write access. Authorized management stations can retrieve and modify MIB objects. The ipv6 nacl keywords specify the IPv6 named access list. The <i>access-list-number</i> argument is an integer from 1 to 99. It specifies a standard access list of IP addresses or a string (not to exceed 64 characters) that is the name of a standard access list of IP addresses 	
O: -		addresses are allowed to use the community string to gain access to the SNMP agent.	
Step 5	end	Exits to privileged EXEC mode.	
	Example:		
	Router(config)# end		
Step 6	save running-config startup-config	Saves the modified SNMP configuration into NVRAM of the router, permanently saving the SNMP settings.	
	Example:		
	Router# save running-config startup-config		

Verifying That the SNMP Agent Is Enabled

To verify that the SNMP agent is enabled, perform the following task.

SUMMARY STEPS

- 1. telnet device-ip-address
- 2. enable
- 3. show running-config
- 4. exit

DETAILED STEPS

Step 1 telnet device-ip-address

Use this command to access the router through a Telnet session. For example:

Example:

```
Prompt> telnet 10.15.230.20
```

where 10.15.20.20 represents the IP address of the target device.

Step 2 enable

Use this command to enable privileged EXEC mode. Enter your password, if prompted. For example:

Example:

```
Router> enable Router#
```

Step 3 show running-config

Use this command to display the running configuration. Look for SNMP information. For example:

Example:

If you see any "snmp-server" statements, SNMP has been enabled on the router.

Step 4 exit

Use this command to exit privileged EXEC mode. For example:

Example:

```
Router# exit
Router>
```

Configuring a VPN-Aware LSR MIB

- Configuring SNMP Support for a VPN, page 285
- Configuring an SNMP Context for a VPN, page 286
- What to Do Next, page 288
- Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2, page 288

Configuring SNMP Support for a VPN

To configure SNMP support for a VPN (or a remote VPN), perform the following task. SNMP support for VPNs allows users of the MPLS-LSR-STD-MIB to display per-VPN entries in the MPLS-LSR-STD-MIB tables.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. snmp-server engineID remote** { *ipv4-address* | *ipv6-address* } [**udp-port** *udp-port-number*] [**vrf** *vrf-name*] *engineid-string*
- 4. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	<pre>snmp-server engineID remote {ipv4-address ipv6-address} [udp-port udp-port-number] [vrf vrf-name] engineid-string Example: Router(config) # snmp-server engineID remote 172.16.20.3 vrf customer1 80000009030000B064EFE100</pre>	 Specifies the SNMP engine ID of a remote SNMP device. The <i>ipv4-address</i> argument is the IPv4 address of the device that contains the remote copy of SNMP. The <i>ipv6-address</i> argument is the IPv6 address of the device that contains the remote copy of SNMP. The udp-port keyword specifies a User Datagram Protocol (UDP) port of the host to use. The <i>udp-port-number</i> argument is the socket number on the remote device that contains the remote copy of SNMP. The default is 161. The vrf keyword specifies an instance of a routing table. The <i>vrf-name</i> argument is the name of the VRF table to use for storing data. The <i>engineid-string</i> is a string of a maximum of 24 characters that identifies the engine ID.

	Command or Action	Purpose
Step 4	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

• What to Do Next, page 286

What to Do Next

Proceed to the "Configuring an SNMP Context for a VPN, page 286.

Configuring an SNMP Context for a VPN

To configure an SNMP context for a VPN, perform the following task. This sets up a unique SNMP context for a VPN that allows you to access the per-VPN entries in the VRF table.

- SNMP Context, page 286
- VPN Route Distinguishers, page 286

SNMP Context

SNMP contexts provide VPN users with a secure way of accessing MIB data. When a VPN is associated with a context, that VPN's specific MIB data exists in that context. Associating a VPN with a context enables service providers to manage networks with multiple VPNs. Creating and associating a context with a VPN enables a provider to prevent the users of one VPN from accessing information about users of other VPNs on the same networking device.

VPN Route Distinguishers

A route distinguisher (RD) creates routing and forwarding tables for a VPN. Cisco IOS software adds the RD to the beginning of the customer's IPv4 prefixes to change them into globally unique VPN-IPv4 prefixes.

Either the RD is an autonomous system number (ASN)-relative RD, in which case it is composed of an autonomous system number and an arbitrary number, or it is an IP-address-relative RD, in which case it is composed of an IP address and an arbitrary number. You can enter an RD in either of these formats:

- 16-bit ASN: your 32-bit number, for example, 101:3.
- 32-bit IP address: your 16-bit number, for example, 192.168.122.15:1.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. snmp-server context context-name
- 4. ip vrf vrf-name
- **5. rd** *route-distinguisher*
- **6. context** *context-name*
- 7. route-target $\{import \mid export \mid both\}$ route-target-ext-community
- **8**. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	snmp-server context context-name	Creates an SNMP context.
		• The <i>context-name</i> argument is the name of the SNMP context being created.
	Example:	created.
	<pre>Router(config)# snmp-server context context-vpn1</pre>	
Step 4	ip vrf vrf-name	Configures a VRF table and enters VRF configuration mode.
		• The <i>vrf-name</i> argument is the name assigned to a VRF.
	Example:	
	Router(config)# ip vrf customer1	
Step 5	rd route-distinguisher	Creates routing and forwarding tables for a VRF.
		• The <i>route-distinguisher</i> argument specifies to add an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix.
	Example:	
	Router(config-vrf)# rd 100:1	

	Command or Action	Purpose
Step 6	context context-name	Associates an SNMP context with a particular VRF.
	<pre>Example: Router(config-vrf)# context context- vpn1</pre>	The <i>context-name</i> argument is the name of the SNMP VPN context, up to 32 characters.
Step 7	<pre>route-target {import export both} route- target-ext-community Example: Router(config-vrf)# route-target export 100:1</pre>	 (Optional) Creates a route-target extended community for a VRF. The import keyword specifies to import routing information from the target VPN extended community. The export keyword specifies to export routing information to the target VPN extended community. The both keyword specifies to import both import and export routing information to the target VPN extended community. The route-target-ext-community argument adds the route-target extended community attributes to the VRF's list of import, export, or both (import and export) route-target extended communities.
Step 8	Example:	Exits to privileged EXEC mode.
	Router(config-vrf)# end	

What to Do Next

Proceed to the Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2, page 288.

Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2

To configure a VPN-aware SNMP context for SNMPv1 or SNMPv2, perform the following task. This allows you to access per-VPN entries in the MPLS-LSR-STD-MIB tables using SNMPv1 or SNMPv2.

• SNMPv1 or SNMPv2 Security, page 288

SNMPv1 or SNMPv2 Security

SNMPv1 and SNMPv2 are not as secure as SNMPv3. SNMP Versions 1 and 2 use plain text communities and do not perform the authentication or security checks that SNMP Version 3 performs.

To configure the VPN Aware LSR MIB feature when using SNMP Version 1 or SNMP Version 2, you need to associate a community name with a VPN. This association causes SNMP to process requests coming in for a particular community string only if they come in from the configured VRF. If the community string contained in the incoming packet does not have an associated VRF, the packet is processed only if it came in through a non-VRF interface. This process prevents users outside the VPN from using a clear text community string to query the VPN data. However, this is not as secure as using SNMPv3.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** snmp-server user username group-name [remote host [udp-port port]] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access access-list]
- **4. snmp-server group** *group-name* {**v1** | **v2c** | **v3**{**auth** | **noauth** | **priv**}} [**context** *context-name*] [**read** *readview*] [**write** *writeview*] [**notify** *notifyview*] [**access** *access-list*]
- **5. snmp-server view** *view-name oid-tree* {**included** | **excluded**}
- **6. snmp mib community-map** *community-name* [**context** *context-name*] [**engineid** *engine-id*] [**security-name** *security-name*] **target-list** *vpn-list-name*
- 7. snmp mib target list vpn-list-name {vrf vrf-name | host ip-address}
- 8. end

DETAILED STEPS

Purpose
Enables privileged EXEC mode.
Enter your password if prompted.
Enters global configuration mode.
inal

Command or Action

Purpose

Step 3 snmp-server user username group-name [remote host [udp-port port]] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access access-

Configures a new user to an SNMP group.

The group-name argument is the name of the group to which the user belongs.

The *username* argument is the name of the user on the host that connects to the agent.

Example:

Router(config)# snmp-server user vrfcommvpn1 group-vpn1 v2c

- The **remote** *host* keyword and argument specify a remote SNMP entity to which the user belongs, and the hostname or IPv6 address or IPv4 IP address of that entity. If both an IPv6 address and IPv4 IP address are being specified, the IPv6 host must be listed first.
- The **udp-port** port keyword and argument specify the UDP port number of the remote host. The default is UDP port 162.
- The vi keyword specifies that SNMPv1 should be used.
- The **v2c** keyword specifies that SNMPv2c should be used.
- The **v3** keyword specifies that the SNMPv3 security model should be used. Allows the use of the encrypted and or auth keywords.
- The **encrypted** keyword specifies whether the password appears in encrypted format (a series of digits, masking the true characters of the string).
- The **auth** keyword specifies which authentication level should be used.
- The **md5** keyword is the HMAC-MD5-96 authentication level.
- The **sha** keyword is the HMAC-SHA-96 authentication level.
- The *auth-password* argument is a string (not to exceed 64 characters) that enables the agent to receive packets from the host. The minimum length for a password is one character. The recommended length of a password is at least eight characters, and should include both letters and numbers.
- The access access-list keyword and argument specify an access list to be associated with this SNMP user.

Command or Action

Step 4 snmp-server group group-name {v1 | v2c | v3{auth | noauth | priv}} [context context-name] [read readview] [write writeview] [notify notifyview] [access access-list]

Example:

Router(config)# snmp-server group groupvpnl v2c context context-vpnl read viewvpnl write view-vpnl notify *tv. 00000000.00040000.00000000.0 access context-vpnl

Purpose

Configures a new SNMP group or a table that maps SNMP users to SNMP views.

- The *group-name* argument is the name of the group.
- The **vi** keyword specifies that SNMPv1 should be used for the group.
- The **v2c** keyword specifies that SNMPv2c should be used for the group. The SNMPv2c security model allows for the transmission of informs, and supports 64-character strings (instead of 32-character strings).
- The v3 keyword specifies that the SNMPv3 should be used for the group. SMNPv3 is the most secure of the supported security models, because it allows you to explicitly configure the authentication characteristics.
- The **auth** keyword specifies authentication of a packet without encrypting it.
- The **noauth** keyword specifies no authentication of a packet.
- The priv keyword specifies authentication of a packet with encryption.
- The **context** *context-name* keyword and argument associate the specified SNMP group with a configured SNMP context.
- The **read** *readview* keyword and argument specify a read view for the SNMP group. The *readview* argument represents a string (not to exceed 64 characters) that is the name of the view that enables you to display only the contents of the agent.
- The write writeview keyword and argument specify a write view for the SNMP group. The writeview argument represents a string (not to exceed 64 characters) that is the name of the view that enables you to enter data and configure the contents of the agent.
- The **notify** *notifyview* keyword and argument specify a notify view for the SNMP group. The *writeview* argument represents a string (not to exceed 64 characters) that is the name of the view that enables you to specify a notify, inform, or trap.
- The access access-list keyword and argument specify a standard access list (a standard ACL) to associate with the group.

	Command or Action	Purpose
Step 5	<pre>snmp-server view view-name oid-tree {included excluded}</pre> Example: Router(config)# snmp-server view view-vpnl iso included	 Creates or updates a view entry. The <i>view-name</i> argument is the label for the view record that you are updating or creating. The name is used to reference the record. The <i>oid-tree</i> argument is the object identifier of the ASN.1 subtree to be included or excluded from the view. To identify the subtree, specify a text string consisting of numbers, such as 1.3.6.2.4, or a word, such as system. Replace a single subidentifier with the asterisk (*) wildcard to specify a subtree family; for example 1.3.*.4. The included keyword configures the OID (and subtree OIDs) specified in the <i>oid-tree</i> argument to be included in the SNMP view. The excluded keyword configures the OID (and subtree OIDs) specified in the <i>oid-tree</i> argument to be explicitly excluded from the SNMP view.
Step 6	<pre>snmp mib community-map community-name [context context-name] [engineid engine-id] [security-name security-name] target-list vpn-list- name Example: Router(config)# snmp mib community-map vrfcomm-vpnl context context-vpnl target- list targ-vpnl</pre>	Associates an SNMP community with an SNMP context, Engine ID, or security name. • The community-name argument is an SNMP community string. • The context context-name keyword and argument specify an SNMP context name to be mapped to the SNMP community. • The engineid engine-id keyword and argument specify an SNMP engine ID to be mapped to the SNMP community. • The security-name security-name keyword and argument specify the security name to be mapped to the SNMP community. • The target-list vpn-list-name keyword and argument specify the VRF list to be mapped to the SNMP community. The list name should correspond to a list name used in the snmp mib target list command.
Step 7	<pre>snmp mib target list vpn-list-name {vrf vrf-name host ip-address} Example: Router(config) # snmp mib target list targ- vpn1 vrf customer1</pre>	Creates a list of target VRFs and hosts to associate with an SNMP community. • The <i>vpn-list-name</i> argument is the name of the target list. • The vrf keyword adds a specified VRF to the target list. • The <i>vrf-name</i> argument is the name of a VRF to include in the list. • The host keyword adds a specified host to the target list. • The <i>ip-address</i> argument is the IP address of the host.

	Command or Action	Purpose
Step 8	end	Exits to privileged EXEC mode.
	Example:	
	Router(config) end	

Configuration Examples for the MPLS EM—MPLS LSR MIB - RFC 3813

- Enabling the SNMP Agent Examples, page 293
- Configuring a VPN-Aware LSR MIB Example, page 293

Enabling the SNMP Agent Examples

The following example shows how to enable an SNMP agent.

```
Router# configure terminal
Router(config)# snmp-server community
```

In the following example, SNMPv1 and SNMPv2C are enabled. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string *public*.

```
Router(config)# snmp-server community public
```

In the following example, read-only access is allowed for all objects to members of access list 4 that specify the comaccess community string. No other SNMP managers have access to any objects.

Router(config)# snmp-server community comaccess ro 4

Configuring a VPN-Aware LSR MIB Example

- Configuring SNMP Support for a VPN Example, page 293
- Configuring an SNMP Context for a VPN Example, page 294
- Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2 Example, page 294

Configuring SNMP Support for a VPN Example

The following example shows how to configure SNMP support for a VPN:

```
configure terminal
!
snmp-server engineID remote 172.16.20.3 vrf vrf customer1 80000009030000B064EFE100
end
```

Configuring an SNMP Context for a VPN Example

The following example shows how to configure an SNMP context for a VPN. In this example, the VPN vrf1 is associated with the SNMP context context1.

```
configure terminal
!
snmp-server context context-vpnl
ip vrf customerl
rd 100:1
context context-vpnl
route-target export 100:1
end
```

Configuring a VPN-Aware SNMP Context for SNMPv1 or SNMPv2 Example

The following configuration example shows how to configure a VPN-aware SNMP context for the MPLS LSR MIB with SNMPv1 or SNMPv2:

```
snmp-server context context-vpn1
ip vrf customer1
rd 100:1
context context-vpn1
route-target export 100:1
route-target import 100:1
interface Ethernet1/0
ip vrf forwarding customer1
ip address 10.99.99.100 255.0.0.0
mpls label protocol ldp
mpls ip
interface Serial3/0
ip vrf forwarding customer1
ip address 10.60.1.1 255.0.0.0
mpls label protocol ldp
mpls ip
serial restart-delay 0
ip access-list standard context-vpn1
snmp-server group group-vpnl v2c context context-vpnl read view-vpnl notify *tv.
00000000.00040000.000000000.0 access context-vpnl
snmp-server view view-vpnl iso included
snmp-server community public RW
snmp-server community vrfcomm-vpn1 RW1
snmp-server user vrfcomm-vpn1 vrfcomm-vpn1 v1
snmp-server user vrfcomm-vpn1 group-vpn1 v2c
snmp mib community-map vrfcomm-vpnl context context-vpnl target-list targ-vpnl
snmp mib target list targ-vpn1 host 0.0.0.0
snmp mib target list targ-vpn1 vrf customer1
!
```

Additional References

Related Documents

Related Topic	Document Title
Configuring SNMP	"Configuring SNMP Support" chapter in the Network Management Configuration Guide
SNMP command descriptions	Network Management Command Reference
SNMP support for VPNs	SNMP Notification Support for VPNs
SNMP context support for VPNs configuration tasks	SNMP Support over VPNs—Context Based Access Contro l
MPLS concepts and configuration tasks	MPLS Basic MPLS Configuration Guide

Standards

Standard	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	_

MIBs

MIB	MIBs Link	
MPLS-LSR-MIBMPLS-LSR-STD-MIB	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:	
	http://www.cisco.com/go/mibs	

RFCs

RFC	Title
RFC 3291	Textual Conventions for Internet Network Addresses
RFC 3413	Simple Network Management Protocol (SNMP) Applications
RFC 3812	Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB)
RFC 3813	Multiprotocol Label Switching (MPLS) Label Switching Router (LSR) Management Information Base (MIB)

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for MPLS EM—MPLS LSR MIB - RFC 3813

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 83 Feature Information for MPLS EM—MPLS LSR MIB - RFC 3813

Feature Name	Releases	Feature Information
MPLS EM—MPLS LSR MIB - RFC 3813	12.2(33)SRB 12.2(33)SB	The MPLS LSR MIB- RFC 3813 (MPLS-LSR-STD-MIB) allows you to use the Simple Network Management Protocol (SNMP) to remotely monitor a label switch router (LSR) that is using the Multiprotocol Label Switching (MPLS) technology.
		This document describes the MPLS-LSR-STD-MIB. The document also describes the major differences between the MPLS-LSR-STD-MIB and draft Version 5 of the MPLS-LSR-MIB.
		The MPLS EM—MPLS LSR MIB - RFC 3813 feature introduces the MPLS-LSR-STD- MIB, which is an upgrade from draft Version 5 of the MPLS- LSR-MIB to an implementation of the Multiprotocol Label Switching (MPLS) Label Switching Router (LSR) Management Information Base (MIB), RFC 3813. This feature also introduces the VPN Aware LSR MIB feature that enables the MPLS-LSR-STD-MIB to get VPN context information.
		Cisco IOS MPLS Embedded Management (EM) is a set of standards and value-added services that facilitate the deployment, operation, administration, and management of MPLS-based networks in line with the fault, configuration, accounting, performance, and security (FCAPS) model.
		In 12.2(33)SRB, this feature was introduced.
		In 12.2(33)SB, this feature was integrated into a Cisco IOS 12.2SB release.

Feature Name	Releases	Feature Information
		The following sections provide information about this feature:
		 MPLS-LSR-STD-MIB Benefits, page 260 Label Switching Information Managed by the MPLS- LSR-STD-MIB, page 261 MPLS-LSR-STD-MIB Elements, page 262 Brief Description of MPLS- LSR-STD-MIB Tables, page 262
		 page 262 MPLS LSR Information Available Through the MPLS-LSR-STD-MIB, page 263 Information from MPLS- LSR-STD-MIB Scalar Objects, page 268 MPLS-LSR-STD-MIB Indexing—Linking Table Elements, page 269 Interface Configuration
		 Table and Interface MIB Links, page 270 MPLS-LSR-STD-MIB Structure, page 271 Major Differences Between the MPLS-LSR-STD-MIB and the MPLS-LSR-MIB, page 275 Enabling the SNMP Agent, page 282 Verifying That the SNMP Agent Is Enabled, page 283
		No commands were introduced or modified for this feature.

Glossary

cross-connect (**XC**) —An association of in-segments and incoming MPLS interfaces to out-segments and outgoing MPLS interfaces.

FPI —forwarding path identifier. An identifier required to locate MPLS forwarding information for a FEC. Examples of types of FPIs supported by the MPLS Forwarding Infrastructure (MFI) are IPv4, IPv6, LABEL, SSS, and TE.

IETF —Internet Engineering Task Force. A task force (consisting of more that 80 working groups) that is developing standards for the Internet and the IP suite of protocols.

inSegment—A label on an incoming packet that is used to determine the forwarding of the packet.

label —A short, fixed-length identifier that is used to determine the forwarding of a packet.

label switching —A term used to describe the forwarding of IP (or other network layer) packets using a label swapping algorithm based on network layer routing algorithms. The forwarding of these packets uses the exact match algorithm and rewrites the label.

LDP—Label Distribution Protocol. A standard protocol between MPLS-enabled routers that is used for the negotiation of the labels (addresses) used to forward packets.

LFIB — Label Forwarding Information Base. A data structure and way of managing forwarding in which destinations and incoming labels are associated with outgoing interfaces and labels.

LSP—label switched path. A sequence of hops in which a packet travels from one router to another router by means of label switching mechanisms. A label-switched path can be established dynamically, based on normal routing mechanisms, or through configuration.

LSR—label switching router. A device that forwards MPLS packets based on the value of a fixed-length label encapsulated in each packet.

MFI —MPLS Forwarding Infrastructure. In the Cisco MPLS subsystem, the data structure for storing information about incoming and outgoing labels and associated equivalent packets suitable for labeling.

MIB —Management Information Base. Database of network management information that is used and maintained by a network management protocol such as SNMP. The value of a MIB object can be changed or retrieved by means of SNMP commands, usually through a network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MOI —MPLS output information. The MOI includes the next hop, outgoing interface, and outgoing label.

MPLS —Multiprotocol Label Switching. MPLS is a method for forwarding packets (frames) through a network. It enables routers at the edge of a network to apply labels to packets (frames). ATM switches or existing routers in the network core can switch packets according to the labels with minimal lookup overhead.

MPLS interface —An interface on which MPLS traffic is enabled.

NMS —Network Management Station. A device (usually a workstation) that performs SNMP queries to the SNMP agent of a managed device in order to retrieve or modify information.

notification request —Message sent by an SNMP agent to a network management station, console, or terminal, indicating that a significant event occurred. SNMP notification requests are more reliable than traps, because a notification request from an SNMP agent requires that the SNMP manager acknowledge receipt of the notification request. The manager replies with an SNMP response protocol data unit (PDU). If the manager does not receive a notification message from an SNMP agent, it does not send a response. If the sender (SNMP agent) never receives a response, the notification request can be sent again. Thus, a notification request is more likely than a trap to reach its intended destination.

outSegment —A label on an outgoing packet.

SNMP —Simple Network Management Protocol. Management protocol used almost exclusively in TCP/IP networks. SNMP provides a means for monitoring and controlling network devices, and for managing configurations, statistics collection, performance, and security.

trap —Message sent by an SNMP agent to a network management station, console, or terminal, indicating that a significant event occurred. Traps are less reliable than notification requests, because the receiver does not send an acknowledgment when it receives a trap. The sender cannot determine if the trap was received.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS Traffic Engineering MIB

The MPLS Traffic Engineering MIB enables Simple Network Management Protocol (SNMP) agent support in Cisco software for Multiprotocol Label Switching (MPLS) traffic engineering (TE) management, as implemented in the MPLS Traffic Engineering MIB (MPLS TE MIB). The SNMP agent code operating with the MPLS TE MIB enables a standardized, SNMP-based approach to be used in managing the MPLS TE features in Cisco software.

- Finding Feature Information, page 301
- Restrictions for the MPLS Traffic Engineering MIB, page 301
- Information About the MPLS Traffic Engineering MIB, page 302
- How to Configure the MPLS Traffic Engineering MIB, page 310
- Configuration Examples for the MPLS Traffic Engineering MIB, page 312
- Additional References, page 313
- Feature Information for the MPLS Traffic Engineering MIB, page 314
- Glossary, page 315

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for the MPLS Traffic Engineering MIB

- Supports read-only (RO) permission for MIB objects.
- Contains no configuration support by means of SET functions, except for the mplsTunnelTrapEnable object (which has been made writable). Accordingly, the MPLS TE MIB contains indexing support for the Interfaces MIB.
- Supports only SNMP GET, GETNEXT, and GETBULK retrieval functions, except in the case of the mplsTunnelTrapEnable object (which has been made writable by means of SET functions).
- Contains no support for Guaranteed Bandwidth Traffic Engineering (GBTE) or Auto Bandwidth features.

Information About the MPLS Traffic Engineering MIB

- MPLS Traffic Engineering MIB Cisco Implementation, page 302
- Capabilities Supported by the MPLS Traffic Engineering MIB, page 302
- Notification Generation Events, page 303
- Notification Implementation, page 303
- Benefits of the MPLS Traffic Engineering MIB, page 304
- MPLS Traffic Engineering MIB Layer Structure, page 304
- Features and Technologies Related to MPLS Traffic Engineering MIB, page 304
- Supported Objects in the MPLS Traffic Engineering MIB, page 304
- CLI Access to MPLS Traffic Engineering MIB Information, page 309

MPLS Traffic Engineering MIB Cisco Implementation

The MPLS TE MIB is based on the Internet Engineering Task Force (IETF) draft MIB entitled *draft-ietf-mpls-te-mib-05.txt* which includes objects describing features that support MPLS TE.

Slight differences between the IETF draft MIB and the implementation of the TE capabilities within Cisco software require some minor translations between the MPLS TE MIB and the internal data structures of Cisco software. These translations are made by the SNMP agent code that is installed and operating on various hosts within the network. This SNMP agent code, running in the background as a low priority process, provides a management interface to Cisco software.

The SNMP objects defined in the MPLS TE MIB can be displayed by any standard SNMP utility. All MPLS TE MIB objects are based on the IETF draft MIB; thus, no specific Cisco SNMP application is required to support the functions and operations pertaining to the MPLS TE MIB.

• MPLS Traffic Engineering Overview, page 302

MPLS Traffic Engineering Overview

MPLS TE capabilities in Cisco software enable an MPLS backbone to replicate and expand upon the TE capabilities of Layer 2 ATM and Frame Relay networks.

TE capabilities are essential to effective management of service provider and Internet service provider (ISP) backbones. Such backbones must support high transmission capacities, and the networks incorporating backbones must be extremely resilient to link or node failures.

The MPLS TE facilities built into Cisco software provide a feature-rich, integrated approach to managing the large volumes of traffic that typically flow through WANs. The MPLS TE facilities are integrated into Layer 3 network services, thereby optimizing the routing of IP traffic in the face of constraints imposed by existing backbone transmission capacities and network topologies.

Capabilities Supported by the MPLS Traffic Engineering MIB

- The ability to generate and queue notification messages that signal changes in the operational status of MPLS TE tunnels.
- Extensions to existing SNMP commands that provide the ability to enable, disable, and configure notification messages for MPLS TE tunnels.

- The ability to specify the name or the IP address of a network management station (NMS) in the
 operating environment to which notification messages are to be sent.
- The ability to write notification configurations into nonvolatile memory.

Notification Generation Events

When MPLS TE notifications are enabled (see the **snmp-server enable traps mpls** command), notification messages relating to specific events within Cisco software are generated and sent to a specified NMS in the network.

For example, an mplsTunnelUp notification is sent to an NMS when an MPLS TE tunnel is configured and the tunnel transitions from an operationally "down" state to an "up" state.

Conversely, an mplsTunnelDown notification is generated and sent to an NMS when an MPLS TE tunnel transitions from an operationally "up" state to a "down" state.

An mplstunnelRerouted notification is sent to the NMS under the following conditions:

- The signaling path of an existing MPLS TE tunnel fails for some reason and a new path option is signaled and placed into effect (that is, the tunnel is rerouted).
- The signaling path of an existing MPLS TE tunnel is fully operational, but a better path option can be signaled and placed into effect (that is, the tunnel can be reoptimized). This reoptimization can be triggered by:
 - o A timer
 - The issuance of an mpls traffic-eng reoptimize command
 - A configuration change that requires the resignaling of a tunnel

The mplsTunnelReoptimized notification is not generated when an MPLS traffic engineering tunnel is reoptimized. However, an mplsTunnelReroute notification is generated. Thus, at the NMS, you cannot distinguish between a tunnel reoptimization event and tunnel reroute event.

Path options are configurable parameters that you can use to specify the order of priority for establishing a new tunnel path. For example, you can create a tunnel head configuration and define any one of many path options numbered 1 through n, with "1" being the highest priority option and "n" being an unlimited number of lower priority path options. Thus, there is no limit to the number of path options that you can specify in this manner.

Notification Implementation

When an MPLS TE tunnel interface (or any other device interface, such as an FastEthernet or Packet over SONET (POS) interface) transitions between an up and down state, an Interfaces MIB (ifMIB) link notification is generated. When such a notification occurs in an MPLS TE MIB environment, the interface is checked by software to determine if the notification is associated with an MPLS TE tunnel. If so, the interfaces MIB link notification is interlinked with the appropriate mplsTunnelUp or mplsTunnelDown notification to provide notification to the NMS regarding the operational event occurring on the tunnel interface. Hence, the generation of an Interfaces MIB link notification pertaining to an MPLS traffic engineering tunnel interface begets an appropriate mplsTunnelUp or mplsTunnelDown notification that is transmitted to the specified NMS.

An mplsTunnelRerouted notification is generated whenever the signaling path for an MPLS TE tunnel changes. However, software intelligence in the MPLS TE MIB prevents the reroute notification from being sent to the NMS when a TE tunnel transitions between an up or down state during an administrative or operational status check of the tunnel. Either an up or down notification or a reroute notification can be sent in this instance, but not both. This action prevents unnecessary traffic on the network.

Benefits of the MPLS Traffic Engineering MIB

- Provides a standards-based SNMP interface for retrieving information about MPLS TE.
- Provides information about the traffic flows on MPLS TE tunnels.
- Presents MPLS TE tunnel routes, including the configured route, the Interior Gateway Protocol (IGP) calculated route, and the actual route traversed.
- Provides information, in conjunction with the Interfaces MIB, about how a tunnel was rerouted in the event of a link failure.
- Provides information about the configured resources used for an MPLS TE tunnel.
- Supports the generation and queueing of notifications that call attention to major changes in the operational status of MPLS TE tunnels;
- Forwards notification messages to a designated NMS for evaluation or action by network administrators

MPLS Traffic Engineering MIB Layer Structure

The SNMP agent code supporting the MPLS TE MIB follows the existing model for such code in Cisco software and is, in part, generated by the Cisco tool set, based on the MIB source code.

The SNMP agent code, which has a layered structure similar to that of the MIB support code in Cisco software, consists of four layers:

- Platform independent layer--This layer is generated primarily by the Cisco MIB development tool set and incorporates platform and implementation independent functions. The Cisco MIB development tool set creates a standard set of files associated with a MIB.
- Application interface layer--The functions, names, and template code for MIB objects in this layer are also generated by the Cisco MIB development tool set.
- Application specific layer--This layer provides an interface between the application interface layer and
 the application program interface (API) and data structures layer and performs tasks needed to retrieve
 required information from Cisco software, such as searching through data structures.
- API and data structures layer--This layer contains the data structures or APIs within Cisco software that are retrieved or called in order to set or retrieve SNMP management information.

Features and Technologies Related to MPLS Traffic Engineering MIB

The MPLS TE MIB feature is used with the following features and technologies:

- Standards-based SNMP network management application
- MPLS
- MPLS TE
- MPLS label switching router MIB (MPLS-LSR-MIB)

Supported Objects in the MPLS Traffic Engineering MIB

The MPLS TE MIB contains numerous tables and object definitions that provide read-only SNMP management support for the MPLS TE features in Cisco software. The MPLS TE MIB conforms to Abstract Syntax Notation One (ASN.1), thus reflecting an idealized MPLS TE database.

Using any standard SNMP network management application, you can retrieve and display information from the MPLS TE MIB by using GET operations; similarly, you can traverse information in the MIB database for display by using GETNEXT operations.

The MPLS TE MIB tables and objects supported in Cisco software follow. Important MIB tables (those highlighted in bold type) are described briefly in accompanying text.

- mplsTunnelConfigured--Total number of tunnel configurations that are defined on this node.
- mplsTunnelActive--Total number of label switched paths (LSPs) that are defined on this node.
- mplsTunnelTEDistProto--The IGP distribution protocol in use.
- mplsTunnelMaxHops--The maximum number of hops any given tunnel can utilize.
- mplsTunnelIndexNext--Unsupported; set to 0.
- mplsTunnelTable--Entries in this table with an instance of 0 and a source address of 0 represent tunnel head configurations. All other entries in this table represent instances of LSPs, both signaled and standby. If a tunnel instance is signaled, its operating status (operStatus) is set to "up" (1) and its instance corresponds to an active LSP.

Tunnel configurations exist only on the tunnel head where the tunnel interface is defined. LSPs traverse the network and involve tunnel heads, tunnel midpoints, and tunnel tails.

Pointers in the tunnel table refer to corresponding entries in other MIB tables. By using these pointers, you can find an entry in the mplsTunnelTable and follow a pointer to other tables for additional information. The pointers are the following: mplsTunnelResourcePointer, mplsTunnelHopTableIndex, mplsTunnelARHopTableIndex, and mplsTunnelCHopTableIndex.

The tunnel table is indexed by tunnel ID, tunnel instance, tunnel source address, and tunnel destination address. The description of each entry has an alphabetic suffix (a) for tunnel head configurations only, (b) for LSPs only, or (c) for both tunnel head configurations and LSPs, if appropriate, to indicate the applicability of the entry.

Following is a list and description of each entry.

- o mplsTunnelIndex--Same as tunnel ID (c).
 - mplsTunnelInstance--Tunnel instance of the LSP; 0 for head configurations (b).
 - mplsTunnelIngressLSRId--Source IP address of the LSP; 0 for head configurations (b).
 - mplsTunnelEgressLSRId--Destination IP address of the tunnel (c).
 - mplsTunnelName--Command name for the tunnel interfaces (a).
 - mplsTunnelDescr--Descriptive name for tunnel configurations and LSPs (c).
 - mplsTunnelIsIf--Indicator of whether the entry represents an interface (c).
 - mplsTunnelIfIndex--Index of the tunnel interface within the ifMIB (a).
 - mplsTunnelXCPointer--(For midpoints only no tails) Pointer for the LSP within the mplsXCTable of the MPLS LSR MIB (b).
 - mplsTunnelSignallingProto--Signaling protocol used by tunnels (c).
 - mplsTunnelSetupPrio--Setup priority of the tunnel (c).
 - mplsTunnelHoldingPrio--Holding priority of the tunnel (c).
 - mplsTunnelSessionAttributes--Session attributes (c).
 - mplsTunnelOwner--Tunnel owner (c).
 - mplsTunnelLocalProtectInUse--Not implemented (c).
 - mplsTunnelResourcePointer--Pointer into the Resource Table (b).
 - mplsTunnelInstancePriority--Not implemented (b).
 - mplsTunnelHopTableIndex--Index into the Hop Table (a).
 - mplsTunnelARHopTableIndex--Index into the AR Hop Table (b).
 - mplsTunnelCHopTableIndex--Index into the C Hop Table (b).

- mplsTunnelPrimaryTimeUp--Amount of time, in seconds, that the current path has been up (a).
- mplsTunnelPathChanges--Number of times a tunnel has been resignalled (a).
- mplsTunnelLastPathChange--Amount of time, in seconds, since the last path resignaling occurred
 (a).
- mplsTunnelCreationTime--Time stamp when the tunnel was created (a).
- mplsTunnelStateTransitions--Number of times the tunnel has changed state (a).
- mplsTunnelIncludeAnyAffinity--Not implemented (a).
- mplsTunnelIncludeAllAffinity--Attribute bits that must be set for the tunnel to traverse a link (a).
- mplsTunnelExcludeAllAffinity--Attribute bits that must not be set for the tunnel to traverse a link
 (a).
- mplsTunnelPathInUse--Path option number being used for the tunnel's path. If no path option is active, this object will be 0 (a).
- mplsTunnelRole--Role of the tunnel on the router; that is, head, midpoint, or tail (c).
- mplsTunneltotalUptime--Amount of time, in seconds, that the tunnel has been operationally up (a).
- mplsTunnelInstanceUptime--Not implemented (b).
- mplsTunnelAdminStatus--Administrative status of a tunnel (c).
- mplsTunnelOperStatus--Actual operating status of a tunnel (c).
- mplsTunnelRowStatus--This object is used in conjunction with configuring a new tunnel. This
 object will always be seen as "active" (a).
- mplsTunnelStorageType--Storage type of a tunnel entry (c).
- mplsTunnelHopListIndexNext--Next valid index to use as an index in the mplsTunnelHopTable.
- mplsTunnelHopTable --Entries in this table exist only for tunnel configurations and correspond to the path options defined for the tunnel. Two types of path options exist: explicit and dynamic. This table shows all hops listed in the explicit path options, while showing only the destination hop for dynamic path options. The tunnel hop table is indexed by tunnel ID, path option, and hop number.

Following is a list and description of each table entry.

- mplsTunnelHopListIndex--Primary index into the table.
 - mplsTunnelHopIndex--Secondary index into the table.
 - mplsTunnelHopAddrType--Indicates if the address of this hop is the type IPv4 or IPv6.
 - mplsTunnelHopIpv4Addr--The IPv4 address of this hop.
 - mplsTunnelHopIpv4PrefixLen--The prefix length of the IPv4 address.
 - mplsTunnelHopIpv6Addr--The IPv6 address of this hop.
 - mplsTunnelHopIpv6PrefixLen--The prefix length of the IPv6 address.
 - mplsTunnelHopAsNumber--This object will contain 0 or the autonomous system number of the hop, depending on the value of mplsTunnelHopAddrType.
 - mplsTunnelHopLspId--This object will contain 0 or the LSPID of the tunnel, depending on the value of mplsTunnelHopAddrType.
 - mplsTunnelHopType--Denotes whether this tunnel hop is routed in a strict or loose fashion.
 - mplsTunnelHopRowStatus--This object is used in conjunction with the configuring of a new row in the table.
 - mplsTunnelHopStorageType--The storage type of this MIB object.
- mplsTunnelResourceIndexNext--This object contains the next appropriate value to be used for mplsTunnelResourceIndex when creating entries in the mplsTunnelResourceTable
- mplsTunnelResourceTable --Entries in this table correspond to the "Tspec" information displayed
 when you execute the show mpls traff9c-eng tunnels command. These entries exist only for LSPs.

The tunnel resource table is indexed by address and hop number. Following the mplsTunnelResourcePointer pointer from the tunnel table is the best way to retrieve information from this table.

Following is a list and description of each table entry.

- mplsTunnelResourceIndex--The primary index into this table.
 - mplsTunnelResourceMaxRate--The maximum rate, in bits per second, supported by this tunnel.
 - mplsTunnelResourceMeanRate--The mean rate, in bits per second, supported by this tunnel.
 - mplsTunnelResourceMaxBurstSize--The maximum burst size, in bytes, allowed by this tunnel.
 - mplsTunnelResourceRowStatus--This object is used in conjunction with the configuration of a new row in the table.
 - mplsTunnelResourceStorageType--The storage type of this MIB object.
- mplsTunnelARHopTable --Entries in this table correspond to the actual route taken by the tunnel, and whose route was successfully signaled by the network. The hops present in this table correspond to those present in the record route object (RRO) in Resource Reservation Protocol (RSVP). You can also display the information in this table by executing the show mpls traff9c-eng tunnels command.

The actual route hop table is indexed by address and hop number. Following the mplsTunnelARHopTableIndex pointer from the tunnel table is the best way to retrieve information from this table.

Following is a list and description of each table entry:

- mplsTunnelARHopListIndex--The primary index into this table.
 - mplsTunnelARHopIndex--The secondary index into this table.
 - mplsTunnelARHopIpv4Addr--The IPv4 address of this hop.
 - mplsTunnelARHopIpv4PrefixLen--The prefix length of the IPv4 address.
 - mplsTunnelARHopIpv6Addr--The IPv6 address of this hop.
 - mplsTunnelARHopIpv6PrefixLen--The prefix length of the IPv6 address.
 - mplsTunnelARHopAsNumber--This object will contain 0 or the AS number of the hop, depending on the value of mplsTunnelARHopAddrType.
 - mplsTunnelARHopAddrType--The type of address for this MIB entry, either IPv4 or IPv6.
 - mplsTunnelARHopType--Denotes whether this tunnel hop is routed in a strict or loose manner.
- mplsTunnelCHopTable --Entries in this table correspond to the explicit route object (ERO) in RSVP, which is used to signal the LSP. The list of hops in this table will contain those hops that are computed by the constraint-based shortest path first (SPF) algorithm. In those cases where "loose" hops are specified for the tunnel, this table will contain the hops that are "filled-in" between the loose hops to complete the path. If you specify a complete explicit path, the computed hop table matches your specified path.

The computed hop table is indexed by address and hop number. Following the mplsTunnelCHopTableIndex pointer from the tunnel table is the best way to retrieve information from this table.

Following is a list and description of each table entry:

- mplsTunnelCHopListIndex--The primary index into this table.
 - mplsTunnelCHopIndex--The secondary index into this table.
 - mplsTunnelCHopAddrType--Indicates if the address of this hop is the type IPv4 or IPv6.
 - mplsTunnelCHopIpv4Addr--The IPv4 address of this hop.
 - mplsTunnelCHopIpv4PrefixLen--The prefix length of the IPv4 address.
 - mplsTunnelCHopIpv6Addr--The IPv6 address of this hop.

- mplsTunnelCHopIpv6PrefixLen--The prefix length of the IPv6 address.
- mplsTunnelCHopAsNumber--This object will contain 0 or the autonomous system number of the hop, depending on the value of mplsTunnelHopAddrType.
- mplsTunnelCHopType--Denotes whether this tunnel hop is routed in a strict or loose way.
- **mplsTunnelPerfTable** -- The tunnel performance table, which augments the **mplsTunnelTable**, provides packet and byte counters for each tunnel. This table contains the following packet and byte counters:
 - mplsTunnelPerfPackets--This packet counter works only for tunnel heads.
 - mplsTunnelPerfHCPackets--This packet counter works only for tunnel heads.
 - mplsTunnelPerfErrors--This packet counter works only for tunnel heads.
 - mplsTunnelPerfBytes--This byte counter works for tunnel heads and tunnel midpoints, but not for tunnel tails.
 - mplsTunnelPerfHCBytes--This byte counter works for tunnel heads and tunnel midpoints, but not for tunnel tails.
- mplsTunnelTrapEnable--The object type *mplsTunnelTrapEnable* is enhanced to be writable. Accordingly, if this object type is set to "TRUE," the following notifications are enabled, thus giving you the ability to monitor changes in the operational status of MPLS TE tunnels:
 - mplsTunnelUp
 - mplsTunnelDown
 - mplsTunnelRerouted

If the *mplsTunnelTrapEnable* object is set to "FALSE," such operational status notifications are not generated. These notification functions are based on the definitions (mplsTeNotifications) contained in the IETF draft document entitled *draft-ietf-mpls-te-mib-05.txt* .

CLI Access to MPLS Traffic Engineering MIB Information

The figure below shows commands that you can use to retrieve information from specific tables in the MPLS TE MIB. As noted in this figure, some information in the MPLS TE MIB is not retrievable by commands.

Short right lights and lighters STON TOE HOTE WHITE Not available in corntrated S'HOW THE HOUSE mplsTunnelTable х mplsTunnelHopTable X mplsTunnelResourceTable mplsTunnelARHopTable mplsTunnelCHopTable mplsTunnelPerfTable X Scalars х 52510

Figure 34 Commands for Retrieving MPLS TE MIB Information

• Retrieving Information from the MPLS Traffic Engineering MIB, page 309

Retrieving Information from the MPLS Traffic Engineering MIB

This section describes how to efficiently retrieve information about TE tunnels. Such information can be useful in large networks that contain many TE tunnels.

Traverse across a single column of the mplsTunnelTable, such as mplsTunnelName. This action provides the indexes of every tunnel configuration, and any LSPs involving the host router. Using these indexes, you can perform a GET operation to retrieve information from any column and row of the mplsTunnelTable.

The mplsTunnelTable provides pointers to other tables for each tunnel. The column mplsTunnelResourcePointer, for example, provides an object ID (OID) that you can use to access resource allocation information in the mplsTunnelResourceTable. The columns mplsTunnelHopTableIndex, mplsTunnelARHopTableIndex, and mplsTunnelCHopTableIndex provide the primary index into the mplsTunnelHopTable, mplsTunnelARHopTable, and mplsTunnelCHopTable, respectively. By traversing the MPLS TE MIB in this manner using a hop table column and primary index, you can retrieve information pertaining to the hops of that tunnel configuration.

Because tunnels are treated as interfaces, the tunnel table column (mplsTunnelIfIndex) provides an index into the Interfaces MIB that you can use to retrieve interface-specific information about a tunnel.

How to Configure the MPLS Traffic Engineering MIB

- Enabling the SNMP Agent to Help Manage Various MPLS TE Tunnel Characteristics of Tunnels on the Local Router, page 310
- Verifying the Status of the SNMP Agent, page 311

Enabling the SNMP Agent to Help Manage Various MPLS TE Tunnel Characteristics of Tunnels on the Local Router

The SNMP agent for the MPLS TE MIB is disabled by default. To enable the SNMP agent for the MPLS TE MIB, perform the following task.

SUMMARY STEPS

- 1. telnet host
- 2. enable
- 3. show running-config
- 4. configure terminal
- **5. snmp-server community** *string* [**view** *view-name*] [**ro** | **rw**] [**ipv6** *nacl*] [*access-list-number*]
- **6. snmp-server enable traps** [identification-type] [notification-option]
- 7. exit
- 8. write memory

	Command or Action	Purpose
Step 1	telnet host	Telnets to the router identified by the specified IP address (represented as xxx.xxx.xxx.xxx).
	Example:	
	Router> telnet 192.172.172.172	
Step 2	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router# enable	
Step 3	show running-config	Displays the running configuration to determine if an SNMP agent is already running.
	Example:	If no SNMP information is displayed, go to Step 4 . If any SNMP information is displayed, you can modify the
	Router# show running-config	information or change it as needed.

	Command or Action	Purpose
Step 4	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 5	<pre>snmp-server community string [view view-name] [ro rw] [ipv6 nacl] [access-list-number]</pre>	Enables the read-only (RO) community string.
	Example:	
	Router(config)# snmp-server community comaccess ro 4	
Step 6	<pre>snmp-server enable traps [identification-type] [notification-option]</pre>	Enables an LSR to send SNMP notifications or informs to an SNMP host.
		Note This command is optional. After SNMP is enabled, all
	Example:	MIBs (not just the TE MIB) are available for the user to query.
	Router(config)# snmp-server enable traps	
Step 7	exit	Exits global configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config)# exit	
Step 8	write memory	Writes the modified configuration to NVRAM, permanently saving the settings.
	Example:	
	Router# write memory	

Verifying the Status of the SNMP Agent

To verify that the SNMP agent has been enabled on a host network device, perform the following steps.

SUMMARY STEPS

- 1. telnet host
- 2. enable
- 3. show running-config

DETAILED STEPS

Command or Action		Purpose	
Step 1	telnet host	Telnets to the target device identified by the specified IP address (represented as xxx.xxx.xxx).	
	Example:		
	Router# telnet 192.172.172.172		
Step 2	enable	Enables SNMP on the target device.	
	Example:		
	Router# enable		
Step 3	show running-config	Displays the running configuration on the target device and is used to examine the output for displayed SNMP information.	
	Example:		
	Router# show running-config		

• Examples, page 312

Examples

The follows example displays the running configuration on the target device and its SNMP information.

```
Router# show running-config
.
.
.
snmp-server community public ro
snmp-server community private ro
```

Any **snmp-server** statement that appears in the output and takes the form shown here verifies that SNMP has been enabled on that device.

Configuration Examples for the MPLS Traffic Engineering MIB

• Example Enabling the SNMP Agent to Help Manage MPLS TE Characteristics of Tunnels on the Local Router, page 313

Example Enabling the SNMP Agent to Help Manage MPLS TE Characteristics of Tunnels on the Local Router

The following example shows how to enable an SNMP agent on a host network device:

Router# configure terminal
Router(config)# snmp-server community private

The following example shows how to enable SNMPv1 and SNMPv2C. The configuration permits any SNMP agent to access all MPLS TE MIB objects with read-only permissions using the community string public.

Router(config)# snmp-server community public

The following example shows how to allow read-only access to all MPLS TE MIB objects relating to members of access list 4 that specify the comaccess community string. No other SNMP agents will have access to any MPLS TE MIB objects.

Router(config)# snmp-server community comaccess ro 4

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases
Information about MPLS TE and enhancements	MPLS Traffic Engineering and Enhancements
MPLS TE commands	Multiprotocol Label Switching Command Reference
SNMP commands	Network Management Command Reference
SNMP configuration	"Configuring SNMP Support" in the Network Management Configuration Guide

Standards

Standard	Title
draft-ietf-mpls-te-mib-05	MPLS Traffic Engineering Management Information Base Using SMIv2

MIBs

MIB	MIBs Link
MPLS TE MIBInterfaces MIB	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs
RFCs	
RFC	Title
RFC 2026	The Internet Standards Process
Technical Assistance	
Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for the MPLS Traffic Engineering MIB

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 84 Feature Information for the MPLS Traffic Engineering MIB

Feature Name	Releases	Feature Information
MPLS Traffic Engineering MIB	12.0(17)S	The MPLS Traffic Engineering
	12.0(17)ST	MIB feature enables the SNMP agent support in Cisco IOS
	12.2(8)T	software for MPLS TE
	12.2(14)S	management, as implemented in the MPLS TE MIB.
	12.2(28)SB	
	12.2(31)SB2	In 12.0(17)S, this feature provided the ability to generate and queue SNMP notification messages that signal changes in the operational status of MPLS TE tunnels when you are using the MPLS TE MIB on Cisco 7500 series routers and Cisco 12000 series Internet routers.
		In 12.0(17)ST, support for SNMP traffic engineering notifications was extended to include Cisco 7500 series routers and Cisco 12000 series Internet routers.
		In 12.2(8)T, support for SNMP TE notifications was extended to include Cisco 7500 series routers. The snmp-server host command was modified.
		In 12.2(14)S, this feature was integrated.
		In 12.2(28)SB, this feature was integrated.
		In 12.2(31)SB2, this feature was integrated.
		The following commands were introduced or modified: snmp-server community, snmp-server enable traps mpls traffic-eng, snmp-server host.

Glossary

affinity bits --A Multiprotocol Label Switching (MPLS) traffic engineering (TE) tunnel's requirements on the attributes of the links it will cross. The tunnel's affinity bits and affinity mask must match with the attributes of the various links carrying the tunnel.

call admission precendence --An Multiprotocol Label Switching (MPLS) traffic engineering tunnel with a higher priority will, if necessary, preempt an MPLS traffic engineering tunnel with a lower priority. An

expected use is that tunnels that are more difficult to route will have a higher priority, and can preempt tunnels that are less difficult to route, on the assumption that those lower priority tunnels can find another path.

constraint-based routing--Procedures and protocols used to determine a route across a backbone taking into account resource requirements and resource availability, instead of simply using the shortest path.

flow --A traffic load entering the backbone at one point--point of presence (POP)--and leaving it from another that must be traffic engineered across the backbone. The traffic load will be carried across one or more LSP tunnels running from the entry POP to the exit POP.

headend --The label switch router (LSR) at which the tunnel originates. The tunnel's "head" or tunnel interface will reside at this LSR as well.

informs -- A type of notification message that is more reliable than a conventional trap notification message because an informs message requires acknowledgment.

label --A short, fixed-length data construct that tells switching nodes how to forward data (packets or cells).

label switched path (LSP) tunnel--A configured connection between two routers, using label switching to carry the packets.

LSP --label switched path. A path that is followed by a labeled packet over several hops, starting at an ingress label switch router (LSR) and ending at an egress LSR.

LSR --label switch router. A Layer 3 router that forwards a packet based on the value of a label encapsulated in the packet.

MIB --Management Information Base. A database of network management information (consisting of MIB objects) that is used and maintained by a network management protocol such as Simple Network Management Protocol (SNMP). The value of a MIB object can be changed or retrieved using SNMP commands, usually by a GUI-based network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MPLS --Multiprotocol Label Switching. Switching method that forwards IP traffic using a label. This label instructs the routers and the switches in the network where to forward the packets based on preestablished IP routing information.

NMS --network management station. An NMS is a powerful, well-equipped computer (typically an engineering workstation) that is used by a network administrator to communicate with other devices in the network. An NMS is typically used to manage network resources, gather statistics, and perform a variety of network administration and configuration tasks.

notification --A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal to indicate that a significant event within Cisco software has occurred (see traps).

OSPF --Open Shortest Path First. A link-state routing protocol used for routing IP.

RSVP --Resource Reservation Protocol. Protocol for reserving network resources to provide quality of service (QoS) guarantees to application flows.

SNMP --Simple Network Management Protocol. A network management protocol used almost exclusively in TCP/IP networks. SNMP provides a means to monitor and control network devices, manage configurations, collect statistics, monitor performance, and ensure network security.

tailend -- The downstream, receive end of a tunnel.

traffic engineering --Techniques and processes that cause routed traffic to travel through the network on a path other than the one that would have been chosen if standard routing methods were used.

trap --A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal to indicate that a significant event within Cisco software has

occurred. Traps (notifications) are less reliable than inform requests, because the receiver of the trap does not send an acknowledgment of receipt; furthermore, the sender of the trap cannot determine if the trap was received (see notification).

VCC --virtual channel connection. A VCC is a logical circuit consisting of VCLs that carries data between two endpoints in an ATM network. Sometimes called a virtual circuit connection.

VCI --virtual channel identifier. A 16-bit field in the header of an ATM cell. The VCI, together with the VPI, is used to identify the next network VCL as the cell passes through a series of ATM switches on its way to its final destination.

VCL --virtual channel link. A VCL is the logical connection that exists between two adjacent switches in an ATM network.

VPI --virtual path identifier. An 8-bit field in the header of an ATM cell. The VPI, together with the VCI, is used to identify the next network VCL as the cell passes through a series of ATM switches on its way to its final destination.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS Traffic Engineering--Fast Reroute MIB

The MPLS Traffic Engineering--Fast Reroute MIB provides Simple Network Management Protocol (SNMP)-based network management of the Multiprotocol Label Switching (MPLS) Fast Reroute (FRR) feature in Cisco software.

The Fast Reroute MIB has the following features:

- Notifications can be created and queued.
- Command-line interface (CLI) commands enable notifications, and specify the IP address to where the notifications will be sent.
- The configuration of the notifications can be written into nonvolatile memory.

The MIB includes objects describing features within MPLS FRR, and it includes the following tables:

- cmplsFrrConstTable
- cmplsFrrLogTable
- cmplsFrrFacRouteDBTable

The MIB also includes scalar objects (that is, objects that are not in a table). For more information, see the FRR MIB Scalar Objects, page 321.

- Finding Feature Information, page 319
- Prerequisites for the MPLS Traffic Engineering--Fast Reroute MIB, page 320
- Restrictions for the MPLS Traffic Engineering--Fast Reroute MIB, page 320
- Information About the MPLS Traffic Engineering--Fast Reroute MIB, page 320
- How to Configure the MPLS Traffic Engineering--Fast Reroute MIB, page 326
- Configuration Examples for the MPLS Traffic Engineering--Fast Reroute MIB, page 332
- Additional References, page 333
- Feature Information for MPLS Traffic Engineering--Fast Reroute MIB, page 334
- Glossary, page 335

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for the MPLS Traffic Engineering--Fast Reroute MIB

- The network must support the Intermediate System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF) protocol.
- The SNMP is installed and enabled on the label switch routers (LSRs).
- MPLS is enabled globally on each LSR.
- Cisco Express Forwarding is enabled on the LSRs.
- Traffic engineering (TE) tunnels are enabled.
- MPLS FRR is enabled on one of the TE tunnels.
- The Resource Reservation Protocol (RSVP) is enabled.

Restrictions for the MPLS Traffic Engineering--Fast Reroute MIB

- The implementation of the FRR MIB is limited to read-only (RO) permission for MIB objects.
- Configuration of the FRR MIB using the SNMP SET command is not supported in Cisco IOS Release 12.2(33)SRA or in prior releases.
- The following tables are not implemented in the specified releases:
 - mplsFrrOne2OnePlrTable--Not implemented in Cisco IOS software.
 - mplsFrrDetourTable--Not implemented in Cisco IOS software.
 - cmplsFrrLogTable--Implemented only in Cisco IOS 12.0S-based releases.

Information About the MPLS Traffic Engineering--Fast Reroute MIB

- Feature Design of the MPLS Traffic Engineering--Fast Reroute MIB, page 320
- Functional Structure of the MPLS Traffic Engineering--Fast Reroute MIB, page 321
- System Flow of SNMP Protocol Requests and Response Messages, page 321
- FRR MIB Scalar Objects, page 321
- FRR MIB Notification Generation Events, page 323
- FRR MIB Notification Specification, page 323
- FRR MIB Notification Monitoring, page 323
- MIB Tables in the MPLS Traffic Engineering--Fast Reroute MIB, page 323

Feature Design of the MPLS Traffic Engineering--Fast Reroute MIB

The FRR MIB enables standard, SNMP-based network management of FRR in Cisco software. This capability requires that SNMP agent code executes on a designated network management station (NMS) in

the network. The NMS serves as the medium for user interaction with the network management objects in the MIB.

The FRR MIB is based on the Internet Engineering Task Force (IETF) draft MIB specification *draft-ietf-mpls-fastreroute-mib-02.txt*. The IETF draft MIB, which undergoes revisions periodically, is evolving toward becoming a standard. The Cisco implementation of the FRR MIB is expected to track the evolution of the IETF draft MIB, and may change accordingly.

Slight differences between the IETF draft MIB and the implementation of FRR within Cisco software require some minor translations between the FRR MIB objects and the internal data structures of Cisco software. These translations are accomplished by the SNMP agent, which runs in the background on the NMS workstation as a low priority process and provides a management interface to Cisco software.

You can use an SNMP agent to access FRR MIB objects using standard SNMP GET operations. All the objects in the FRR MIB follow the conventions defined in the IETF draft MIB.

Functional Structure of the MPLS Traffic Engineering--Fast Reroute MIB

The SNMP agent code supporting the FRR MIB follows the existing model for such code in Cisco software and is, in part, generated by the Cisco tool set, based on the MIB source code. The basis for the generated code is the Cisco version of the FRR MIB CISCO-ietf-frr-mib.

The SNMP agent code, which has a layered structure that is common to MIB support code in Cisco software, consists of the following layers:

- Platform-independent layer--This layer is generated primarily by the MIB development Cisco tool set
 and incorporates platform- and implementation-independent functions. These functions handle SNMP
 standard functionality in the context of the specific MIB. This layer handles indexes and range or
 enumeration value checks for GET, GET-NEXT, and SET SNMP operations. A function is generated
 for each SNMP table or group of objects. This layer calls into the next layer.
- Application interface layer--The Cisco tool set generates the function names and template code for MIB objects.
- Application-specific layer--This layer provides the mechanism for retrieving relevant data from the
 managed application layer. It includes an entry point function for each table. This function calls two
 other functions; one that searches the TE tunnel database that RSVP maintains for the relevant data
 according to the indexes, and another function that fills the data into the structure.
- Managed application layer--This layer includes all the structures and mechanisms, and is managed by the MIB.

System Flow of SNMP Protocol Requests and Response Messages

All SNMP protocol requests and response messages are ultimately handled by the SNMP master agent. When such a message is received on a router, the master agent parses the requests and identifies the MIB to which the request refers. The master agent then queries the subagent responsible for the MIB with a GET, GET-NEXT, or SET request. The FRR MIB subagent retrieves the appropriate data, and returns it to the master agent. The master agent is then responsible for returning an SNMP response to the NMS. All queries occur within the IP SNMP Cisco software process, which runs as a low priority task.

FRR MIB Scalar Objects

Scalar objects are objects that are not in tables. A scalar object has one instance (that is, one occurrence).

The table below describes the FRR MIB scalar objects.

Table 85 Scalar Objects

MIB Object	Function
cmplsFrrDetourIncoming	Number of detour link-state packets (LSPs) entering the device. This object returns 0 because cmplsFrrConstProtectionMethod is set to facilityBackup(1).
cmplsFrrDetourOutgoing	Number of detour LSPs leaving the device. This object returns 0 because cmplsFrrConstProtectionMethod is set to facilityBackup(1).
cmplsFrrDetourOriginating	Number of detour LSPs originating from the device. This object returns 0 because cmplsFrrConstProtectionMethod is set to facilityBackup(1).
cmplsFrrSwitchover	Number of tunnels that are being backed up because cmplsFrrConstProtectionMethod is set to facilityBackup(1).
cmplsFrrNumOfConfIfs	Number of MPLS interfaces FRR configured for protection; 0 indicates that LSPs traversing any interface can be protected.
cmplsFrrActProtectedIfs	Number of interfaces FRR is protecting because cmplsFrrConstProtectionMethod is set to facilityBackup(1).
cmplsFrrConfProtectingTuns	Number of backup Fast Reroute-protected tunnels configured because cmplsFrrConstProtectionMethod is set to facilityBackup(1).
cmplsFrrActProtectedTuns	Number of tunnels protected by the Fast Reroute feature. This object returns 0 because cmplsFrrConstProtectionMethod is set to facilityBackup(1).
cmplsFrrActProtectedLSPs	Number of LSPs that FRR is protecting. If cmplsFrrConstProtectionMethod is set to facilityBackup(1), this object returns 0.
cmplsFrrConstProtectionMethod	This object always returns facilityBackup(1) because Cisco software supports only the facility backup protection method.
cmplsFrrNotifsEnabled	A value that indicates whether FRR notifications defined in this MIB are enabled or disabled. This object returns True(1) for enabled, or False(2) for disabled. The default is that notifications are disabled.
cmplsFrrLogTableMaxEntries	Maximum number of entries allowed in the FRR log table.
cmplsFrrLogTableCurrEntries	Current number of entries in the FRR log table. This object always returns 0.
cmplsFrrNotifMaxRate	Maximum interval rate between FRR MIB notifications. This object always returns 0.

FRR MIB Notification Generation Events

Notifications are issued after particular FRR events occur.

When you enable FRR MIB notification functionality by issuing the **snmp-server enable traps mpls fast-reroute** command, FRR events generate notification messages that are sent to a designated NMS in the network to signal the occurrence of specific events in Cisco software.

The FRR MIB objects involved in FRR status transitions and event notifications include cmplsFrrProtected. This message is sent to an NMS if there is a major TE tunnel change (that is, fast rerouting of TE tunnels).

FRR MIB Notification Specification

Notifications are issued after particular FRR events occur.

Each FRR notification has a generic type identifier and an enterprise-specific type identifier for identifying the notification type. The generic type for all FRR notifications is "enterprise Specific" because this is not one of the generic notification types defined for SNMP. The enterprise-specific type is 1 for cmplsFrrProtected.

Each notification contains the following objects from the FRR MIB so that the FRR tunnel can be easily identified:

- cmplsFrrConstNumProtectingTunOnIf
- cmplsFrrConstNumProtectedTunOnIf
- cmplsFrrConstBandwidth

Upon being invoked, the appropriate FRR interface indexes have already been retrieved by existing FRR code. The FRR interfaces are then used to fill in data for the three objects included in the notification.

FRR MIB Notification Monitoring

Notifications are issued after particular FRR events occur.

When FRR MIB notifications are enabled (see the **snmp-server enable traps** command), notification messages relating to specific FRR events within Cisco software are generated and sent to a specified NMS in the network. Any utility that supports SNMPv1 or SNPv2 notifications can receive notification messages.

To monitor FRR MIB notifications, log in to an NMS that supports a utility that displays SNMP notifications, and start the display utility.

MIB Tables in the MPLS Traffic Engineering--Fast Reroute MIB

The FRR MIB consists of the following tables:

The tables access various data structures to obtain information regarding detours, the FRR database, and logging.

- cmplsFrrConstTable, page 324
- cmplsFrrLogTable, page 324
- cmplsFrrFacRouteDBTable, page 325

cmplsFrrConstTable

cmplsFrrConstTable displays the configuration of an FRR-enabled tunnel and the characteristics of its accompanying backup tunnels. For each protected tunnel, there can be multiple backup tunnels.

The table is indexed by the following:

- cmplsFrrConstIfIndex
- cmplsFrrConstTunnelIndex
- cmplsFrrConstTunnelInstance

The table below describes the MIB objects for cmplsFrrConstTable.

Table 86 cmplsFrrConstTable Objects

MIB Object	Function
cmplsFrrConstIfIndex	Uniquely identifies an interface on which FRR is configured. If an index has a value of 0, the configuration applies to all interfaces on the device on which the FRR feature can operate.
cmplsFrrConstTunnelIndex	Tunnel for which FRR is requested.
cmplsFrrConstTunnelInstance	Tunnel for which FRR is requested. The value always is 0 because only tunnel heads are represented, and tunnel heads have an instance value of 0.
cmplsFrrConstSetupPrio	Setup priority of the backup tunnel.
cmplsFrrConstHoldingPrio	Holding priority of the backup tunnel.
cmplsFrrConstInclAnyAffinity	Attribute bits that must be set for the tunnel to traverse a link.
cmplsFrrConstInclAllAffinity	Attribute bits that must not be set for the tunnel to traverse a link.
cmplsFrrConstExclAllAffinity	A link satisfies the exclude-all constraint only if the link contains none of the administrative groups specified in the constraint.
cmplsFrrConstHopLimit	The maximum number of hops that the backup tunnel can traverse.
cmplsFrrConstBandwidth	The bandwidth of the backup tunnels for this tunnel, in thousands of bits per second (kbps).
cmplsFrrConstRowStatus	Creates, modifies, and deletes a row in this table.

cmplsFrrLogTable

cmplsFrrLogTable and the **show mpls traffic-eng fast-reroute log reroutes**command are supported only in Cisco IOS 12.0S-based releases.

cmplsFrrLogTable is indexed by the object cmplsFrrLogIndex. The index corresponds to a log entry in the FRR feature's **show mpls traffic-eng fast-reroute log reroutes** command. That **show** command stores up to 32 entries at a time. If entries are added, the oldest entry is overwritten with new log information.

cmplsFrrLogTable can store up to 32 entries at a time, overwriting older entries as newer ones are added. The index cmplsFrrLogIndex is incremented to give each log table entry of the MIB a unique index value. Therefore, it is possible to have indexes greater than 32 even though only 32 entries are displaying.

The table below describes the MIB objects for cmplsFrrLogTable.

Table 87 cmplsFrrLogTable Objects

MIB Object	Function
cmplsFrrLogIndex	Number of the FRR event.
cmplsFrrLogEventTime	Number of milliseconds that elapsed from bootstrap time to the time that the event occurred.
cmplsFrrLogInterface	Identifies the interface that was affected by this FRR event. The value can be set to 0 if mplsFrrConstProtectionMethod is set to oneToOneBackup(0).
cmplsFrrLogEventType	The type of FRR event that occurred. The object returns Protected or Other.
cmplsFrrLogEventDuration	Duration of the event, in milliseconds.
cmplsFrrLogEventReasonString	Implementation-specific explanation of the event. The object returns interface down event or interface other event.

cmpls Frr Fac Route DB Table

The following indexes specify which interface and tunnel are being protected by the FRR feature:

- cmplsFrrFacRouteProtectedIfIndex
- cmplsFrrFacRouteProtectedTunIndex

The following indexes specify the backup tunnel that provides protection to the protected tunnel:

- cmplsFrrFacRouteProtectedIfIndex
- cmplsFrrFacRouteProtectingTunIndex
- cmplsFrrFacRouteProtectedTunIndex
- cmplsFrrFacRouteProtectedTunInstance
- cmplsFrrFacRouteProtectedTunIngressLSRId
- cmplsFrrFacRouteProtectedTunEgressLSRId

This version of the MIB will attempt to leverage the work already done for the MPLS TE MIB because it contains similar lookup functions for TE tunnels.

The table below describes the MIB objects for cmplsFrrFacRouteDBTable.

Table 88 cmplsFrrFacRouteDBTable Objects

MIB Object	Function	
cmplsFrrFacRouteProtectedIfIndex	Interface configured for FRR protection.	
cmplsFrrFacRouteProtectingTunIndex	The tunnel number of the protecting (backup) tunnel.	
cmplsFrrFacRouteProtectedTunIndex	The mplsTunnelEntry primary index for the tunnel head interface designated to protect the interface specified in mplsFrrFacRouteIfProtIdx (and all the tunnels using this interface).	
cmplsFrrFacRouteProtectedTunInstance	An mplsTunnelEntry that is being protected by FRR. An instance uniquely identifies a tunnel.	
cmplsFrrFacRouteProtectedTunIngressLSRId	Inbound label for the backup LSR.	
cmplsFrrFacRouteProtectedTunEgressLSRId	Outbound label for the backup LSR.	
cmplsFrrFacRouteProtectedTunStatus	State of the protected tunnel. Valid values are:	
	 activeTunnel label has been placed in the Label Forwarding Information Base (LFIB) and is ready to be applied to incoming packets. readyTunnel's label entry has been created, but is not in the LFIB. partialTunnel's label entry has not been fully created. 	
cmpls Frr Fac Route Protecting Tun Resv Bw	Amount of bandwidth, in megabytes per second, that is reserved by the backup tunnel.	
cmpls Frr Fac Route Protecting Tun Protection Type	Type of protection: 0 designates link protection; 1 designates node protection.	

How to Configure the MPLS Traffic Engineering--Fast Reroute MIB

- Enabling the SNMP Agent for FRR MIB Notifications, page 327
- Enabling Cisco Express Forwarding, page 328
- Enabling TE Tunnels, page 329
- Enabling MPLS FRR on Each TE Tunnel, page 330
- Enabling a Backup Tunnel on an Interface, page 331

Enabling the SNMP Agent for FRR MIB Notifications

SUMMARY STEPS

- 1. enable
- 2. show running-config
- 3. configure terminal
- **4. snmp-server community** *string* [**view** *view-name*] [**ro**] [*access-list-number*]
- 5. snmp-server enable traps mpls fast-reroute protected
- 6. end
- 7. write memory

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show running-config	Displays the running configuration of the router to determine if an SNMP agent is already running on the device.
	Example:	If no SNMP information is displayed, continue with the next step.
	Router# show running-config	If any SNMP information is displayed, you can modify or change the information.
Step 3	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 4	snmp-server community string [view view-name] [ro] [access-list-number]	Configures read-only (ro) SNMP community strings for the FRR MIB.
	Example:	
	Router(config)# snmp-server community public ro	

	Command or Action	Purpose
Step 5	snmp-server enable traps mpls fast-reroute protected	Enables Fast Reroute traps.
	Example:	
	Router(config)# snmp-server enable traps mpls fast-reroute protected	
Step 6	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	
Step 7	write memory	Writes the modified SNMP configuration into NVRAM of the router, permanently saving the SNMP settings.
	Example:	
	Router# write memory	

Enabling Cisco Express Forwarding

SUMMARY STEPS

- 1. enable
- 2. configure teminal
- 3. ip cef distributed
- **4.** end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure teminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	ip cef distributed	Enables distributed Cisco Express Forwarding.
	Example:	
	Router(config)# ip cef distributed	
Step 4	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Enabling TE Tunnels

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip cef
- 4. mpls traffic-eng tunnels
- **5. interface** *typeslot/port*
- 6. mpls traffic-eng tunnels
- **7.** end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	ip cef	Enables standard Cisco Express Forwarding operations.
	Example:	
	Router(config)# ip cef	
Step 4	mpls traffic-eng tunnels	Enables the MPLS TE tunnel feature on a device.
	Example:	
	Router(config)# mpls traffic-eng tunnels	
Step 5	interface typeslot/port	Specifies the interface and enters interface configuration mode.
	Example:	
	Router(config)# interface POS1/0	
Step 6	mpls traffic-eng tunnels	Enables the MPLS TE tunnel feature on an interface.
	Example:	
	Router(config-if)# mpls traffic-eng tunnels	
Step 7	end	Returns to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Enabling MPLS FRR on Each TE Tunnel

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3.** interface typeslot/port
- 4. tunnel mode mpls traffic-eng
- 5. tunnel mpls traffic-eng fast-reroute
- **6.** end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface typeslot/port	Specifies the interface and enters interface configuration mode.
	Example:	
	Router(config)# interface POS1/0	
Step 4	tunnel mode mpls traffic-eng	Sets the mode of a tunnel to MPLS for traffic engineering.
	Example:	
	Router(config-if)# tunnel mode mpls traffic-eng	
Step 5	tunnel mpls traffic-eng fast-reroute	Enables Fast Reroute on the TE tunnel being protected.
	Example:	
	Router(config-if)# tunnel mpls traffic-eng fast-reroute	
Step 6	end	Exits to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Enabling a Backup Tunnel on an Interface

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface** *typeslot/port*

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface typeslot/port	Specifies the interface and enters interface configuration mode.
	Example:	
	Router(config)# interface POS1/0	

Configuration Examples for the MPLS Traffic Engineering--Fast Reroute MIB

- Enabling an SNMP Agent on a Host NMS Example, page 332
- Enabling Cisco Express Forwarding Example, page 332
- Enabling TE Tunnels Example, page 333
- Enabling MPLS FRR on Each TE Tunnel Example, page 333
- Enabling a Backup Tunnel on an Interface Example, page 333

Enabling an SNMP Agent on a Host NMS Example

The following example shows how to enable an SNMP agent on the host NMS:

```
enable
show running-config
configure terminal
snmp-server community public ro
snmp-server enable traps mpls fast-reroute protected
end
write memory
```

Enabling Cisco Express Forwarding Example

The following example shows how to enable Cisco Express Forwarding:

enable

```
configure terminal
ip cef distributed
end
```

Enabling TE Tunnels Example

The following example shows how to enable traffic engineering tunnels:

```
enable
configure terminal
ip cef
mpls traffic-eng tunnels
interface Ethernet1/0
mpls traffic-eng tunnels
end
```

Enabling MPLS FRR on Each TE Tunnel Example

The following example shows how to enable MPLS Fast Reroute on each TE tunnel:

```
enable
configure terminal
interface POS1/0
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng fast-reroute
end
```

Enabling a Backup Tunnel on an Interface Example

The following example shows how to enable a backup tunnel on an interface:

```
enable
  configure terminal
  interface POS1/0
  mpls traffic-eng backup-path tunnell
  end
```

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases
Description of commands associated with MPLS and MPLS applications	Multiprotocol Label Switching Command Reference
SNMP agent support for the MPLS Traffic Engineering MIB	MPLS Traffic Engineering MIB
Fast Reroute	MPLS Traffic Engineering: Fast Reroute Link and Node Protection

Standards

Standard	Title
MPLS-FRR-MIB	draft-ietf-mpls-fastreroute-mib-02.txt

MIBs

MIB	MIBs Link
MPLS Traffic Engineering (TE) MIB	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for MPLS Traffic Engineering--Fast Reroute MIB

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 89 Feature Information for MPLS Traffic Engineering--Fast Reroute MIB

Feature Name	Releases	Feature Information
MPLS Traffic EngineeringFast Reroute MIB	12.0(10)ST	The MPLS Traffic Engineering-Fast Reroute MIB provides SNMP-based network management of the Multiprotocol Label Switching (MPLS) Fast Reroute (FRR) feature in Cisco IOS software. In 12.0(10)ST, the Fast Reroute
	12.0(16)ST	
	12.0(22)S	
	12.0(26)S	
	12.2(33)SRA	
	12.2(33)SXH	
	12.4(20)T	link protection feature was introduced.
		In 12.0(16)ST, link protection for Cisco series 7200 and 7500 platforms was added.
		In 12.0(22)S, Fast Reroute enhancements, including node protection, were added.
		In 12.0(26)S, support for the IETF MIB <i>draft-ietf-mpls-fastreroute-mib-02.txt</i> , which provides network management for the FRR feature, was added.
		In 12.2(33)SRA, support for cmplsFrrLogTableCurrEntries and cmplsFrrNotifMaxRate was added. The cmplsFrrLogTable is not supported.
		In 12.2(33)SXH, support was added.
		In 12.4(20)T, support was added.

Glossary

Cisco Express Forwarding --An advanced Layer 3 IP switching technology. Cisco Express Forwarding optimizes network performance and scalability for networks with large and dynamic traffic patterns.

index -- A method of uniquely identifying a tunnel.

instance -- An occurrence. An object can have one or more instances.

IS-IS --Intermediate System-to-Intermediate System. IS-IS is an OSI link-state hierarchical routing protocol based on DECnet Phase V routing where intermediate system (IS) routers exchange routing information based on a single metric to determine network topology.

label --A short, fixed-length data construct that tells switching nodes how to forward data (packets or cells).

LFIB --Label Forwarding Information Base. The data structure for storing information about incoming and outgoing tags (labels) and associated equivalent packets suitable for labeling.

LSR --label switching router. A device that forwards MPLS packets based on the value of a fixed-length label encapsulated in each packet.

MIB --Management Information Base. A database of network management information that is used and maintained by a network management protocol such as Simple Network Management Protocol (SNMP). The value of a MIB object can be changed or retrieved by using SNMP commands, usually through a network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

NMS --network management station. A powerful, well-equipped computer (typically an engineering workstation) that is used by a network administrator to communicate with other devices in the network. An NMS is typically used to manage network resources, gather statistics, and perform a variety of network administration and configuration tasks.

notification --A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal to indicate that a significant event within Cisco software has occurred.

object -- A variable that has a specific instance associated with it.

OSPF --Open Shortest Path First. Link-state, hierarchical Interior Gateway Protocol (IGP) routing algorithm proposed as a successor to Routing Information Protocol (RIP) in the Internet community. OSPF features include least-cost routing, multipath routing, and load balancing.

RSVP --Resource Reservation Protocol. Protocol for reserving network resources to provide quality of service (QoS) guarantees to application flows.

scalar object--Objects that are not instances. A scalar object has one instance.

SNMP --Simple Network Management Protocol. A network management protocol used almost exclusively in TCP/IP networks. SNMP provides a means to monitor and control network devices, manage configurations, collect statistics, monitor performance, and ensure network security.

SNMP agent--A managed node or device. The router that has the MIB implementation on it.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS EM - TE MIB RFC 3812

The MPLS EM - TE MIB RFC 3812 enables Simple Network Management Protocol (SNMP) agent support in Cisco IOS software for Multiprotocol Label Switching (MPLS) traffic engineering (TE) management, as implemented in the MPLS Traffic Engineering Standard MIB (MPLS TE STD MIB). The SNMP agent code operating in conjunction with the MPLS TE STD MIB enables a standardized, SNMP-based approach to be used in managing the MPLS TE features in Cisco IOS software.

The MPLS EM - TE MIB RFC 3812 feature introduces the MPLS-TE-STD-MIB, which is an upgrade from draft Version 6 of the MPLS-TE-MIB to an implementation of the *Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB)*, RFC 3812.

- Finding Feature Information, page 337
- Restrictions for the MPLS EM TE MIB RFC 3812, page 337
- Information About the MPLS EM TE MIB RFC 3812, page 338
- How to Configure the MPLS EM TE MIB RFC 3812, page 346
- Configuration Examples for the MPLS EM TE MIB RFC 3812, page 348
- Additional References, page 349
- Feature Information for the MPLS EM TE MIB RFC 3812, page 350
- Glossary, page 351

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for the MPLS EM - TE MIB RFC 3812

- Supports read-only (RO) permission for MIB objects.
- Contains no configuration support by means of SET functions, except for the mplsTunnelTrapEnable object (which has been made writable). Accordingly, the MPLS TE STD MIB contains indexing support for the Interfaces MIB.
- Supports only SNMP GET, GETNEXT, and GETBULK retrieval functions, except in the case of the mplsTunnelTrapEnable object (which has been made writable by means of SET functions).

 Contains no support for Guaranteed Bandwidth Traffic Engineering (GBTE) or Auto Bandwidth features.

Information About the MPLS EM - TE MIB RFC 3812

- MPLS Traffic Engineering MIB Cisco Implementation, page 338
- Capabilities Supported by the MPLS EM TE MIB RFC 3812, page 338
- Notification Generation Events, page 339
- Notification Implementation, page 339
- Benefits of MPLS EM TE MIB RFC 3812, page 340
- MPLS Traffic Engineering MIB Layer Structure, page 340
- Features and Technologies Related to MPLS EM TE MIB RFC 3812, page 340
- Supported Objects in the MPLS EM TE MIB RFC 3812, page 340
- CLI Access to MPLS EM TE MIB RFC 3812 Information, page 345

MPLS Traffic Engineering MIB Cisco Implementation

The MPLS TE MIB is based on the Internet Engineering Task Force (IETF) draft MIB entitled *draft-ietf-mpls-te-mib-05.txt* which includes objects describing features that support MPLS TE.

Slight differences between the IETF draft MIB and the implementation of the TE capabilities within Cisco IOS software require some minor translations between the MPLS TE STD MIB and the internal data structures of Cisco IOS software. These translations are made by the SNMP agent code that is installed and operating on various hosts within the network. This SNMP agent code, running in the background as a low priority process, provides a management interface to Cisco IOS software.

The SNMP objects defined in the MPLS TE STD MIB can be displayed by any standard SNMP utility. All MPLS TE STD MIB objects are based on the IETF draft MIB; thus, no specific Cisco SNMP application is required to support the functions and operations pertaining to the MPLS TE STD MIB.

• MPLS Traffic Engineering Overview, page 338

MPLS Traffic Engineering Overview

MPLS TE capabilities in Cisco IOS software enable an MPLS backbone to replicate and expand upon the TE capabilities of Layer 2 ATM and Frame Relay networks.

TE capabilities are essential to effective management of service provider and Internet service provider (ISP) backbones. Such backbones must support high transmission capacities, and the networks incorporating backbones must be extremely resilient to link or node failures.

The MPLS TE facilities built into Cisco IOS software provide a feature-rich, integrated approach to managing the large volumes of traffic that typically flow through WANs. The MPLS TE facilities are integrated into Layer 3 network services, thereby optimizing the routing of IP traffic in the face of constraints imposed by existing backbone transmission capacities and network topologies.

Capabilities Supported by the MPLS EM TE MIB RFC 3812

The following functionality is supported in the MPLS EM TE MIB RFC 3812:

- The ability to generate and queue notification messages that signal changes in the operational status of MPLS TE tunnels.
- Extensions to existing SNMP commands that provide the ability to enable, disable, and configure notification messages for MPLS TE tunnels.
- The ability to specify the name or the IP address of a network management station (NMS) in the
 operating environment to which notification messages are to be sent.
- The ability to write notification configurations into nonvolatile memory.

Notification Generation Events

When MPLS TE notifications are enabled (see the **snmp-server enable traps mpls traffic-eng** command), notification messages relating to specific events within Cisco IOS software are generated and sent to a specified NMS in the network.

For example, an mplsTunnelUp notification is sent to an NMS when an MPLS TE tunnel is configured and the tunnel transitions from an operationally "down" state to an "up" state.

Conversely, an mplsTunnelDown notification is generated and sent to an NMS when an MPLS TE tunnel transitions from an operationally "up" state to a "down" state.

An mplsTunnelRerouted notification is sent to the NMS when the signaling path of an existing MPLS TE tunnel fails for some reason and a new path option is signaled and placed into effect (that is, the tunnel is rerouted).

An mplsTunnelReoptimized notification is sent when the signaling path of an existing MPLS TE tunnel is fully operational, but a better path option can be signaled and placed into effect (that is, the tunnel can be reoptimized). This reoptimization can be triggered by:

- • A timer
 - The issuance of an mpls traffic-eng reoptimize command
 - A configuration change that requires the resignaling of a tunnel

Path options are configurable parameters that you can use to specify the order of priority for establishing a new tunnel path. For example, you can create a tunnel head configuration and define any one of many path options numbered 1 through n, with "1" being the highest priority option and "n" being an unlimited number of lower priority path options. Thus, there is no limit to the number of path options that you can specify in this manner.

Notification Implementation

When an MPLS TE tunnel interface (or any other device interface, such as an Ethernet or Packet over SONET (POS) interface) transitions between an up and down state, an Interfaces MIB (ifMIB) link notification is generated. When such a notification occurs in an MPLS TE STD MIB environment, the interface is checked by software to determine if the notification is associated with an MPLS TE tunnel. If so, the interfaces MIB link notification is interlinked with the appropriate mplsTunnelUp or mplsTunnelDown notification to provide notification to the NMS regarding the operational event occurring on the tunnel interface. Hence, the generation of an Interfaces MIB link notification pertaining to an MPLS traffic engineering tunnel interface begets an appropriate mplsTunnelUp or mplsTunnelDown notification that is transmitted to the specified NMS.

An mplsTunnelRerouted notification is generated whenever the signaling path for an MPLS TE tunnel changes. However, software intelligence in the MPLS TE STD MIB prevents the reroute notification from being sent to the NMS when a TE tunnel transitions between an up or down state during an administrative or operational status check of the tunnel. Either an up or down notification or a reroute notification can be sent in this instance, but not both. This action prevents unnecessary traffic on the network.

Benefits of MPLS EM - TE MIB RFC 3812

The MPLS Traffic Engineering MIB provides the following benefits:

- Provides a standards-based SNMP interface for retrieving information about MPLS TE.
- Provides information about the traffic flows on MPLS TE tunnels.
- Presents MPLS TE tunnel routes, including the configured route, the Interior Gateway Protocol (IGP) calculated route, and the actual route traversed.
- Provides information, in conjunction with the Interfaces MIB, about how a tunnel was rerouted in the event of a link failure.
- Provides information about the configured resources used for an MPLS TE tunnel.
- Supports the generation and queueing of notifications that call attention to major changes in the operational status of MPLS TE tunnels;
- Forwards notification messages to a designated NMS for evaluation or action by network administrators.

MPLS Traffic Engineering MIB Layer Structure

The SNMP agent code supporting the MPLS TE STD MIB follows the existing model for such code in Cisco IOS software and is, in part, generated by the Cisco IOS tool set, based on the MIB source code.

The SNMP agent code, which has a layered structure similar to that of the MIB support code in Cisco IOS software, consists of four layers:

- Platform independent layer—This layer is generated primarily by the Cisco IOS MIB development tool set and incorporates platform and implementation independent functions. The Cisco IOS MIB development tool set creates a standard set of files associated with a MIB.
- Application interface layer—The functions, names, and template code for MIB objects in this layer are
 also generated by the Cisco IOS MIB development tool set.
- Application specific layer—This layer provides an interface between the application interface layer
 and the application program interface (API) and data structures layer and performs tasks needed to
 retrieve required information from Cisco IOS software, such as searching through data structures.
- API and data structures layer—This layer contains the data structures or APIs within Cisco IOS software that are retrieved or called in order to set or retrieve SNMP management information.

Features and Technologies Related to MPLS EM - TE MIB RFC 3812

The MPLS TE STD MIB feature is used in conjunction with the following features and technologies:

- Standards-based SNMP network management application
- MPLS
- MPLS TE
- MPLS label switching router MIB (MPLS-LSR-MIB)

Supported Objects in the MPLS EM - TE MIB RFC 3812

The MPLS TE STD MIB contains numerous tables and object definitions that provide read-only SNMP management support for the MPLS TE features in Cisco IOS software. The MPLS TE STD MIB conforms to Abstract Syntax Notation One (ASN.1), thus reflecting an idealized MPLS TE database.

Using any standard SNMP network management application, you can retrieve and display information from the MPLS TE STD MIB by using GET operations; similarly, you can traverse information in the MIB database for display by using GETNEXT operations.

The MPLS TE STD MIB tables and objects supported in Cisco IOS releases follow. Important MIB tables (those highlighted in bold type) are described briefly in accompanying text.

- mplsTunnelConfigured—Total number of tunnel configurations that are defined on this node.
- mplsTunnelActive—Total number of label switched paths (LSPs) that are defined on this node.
- mplsTunnelTEDistProto—The IGP distribution protocol in use.
- mplsTunnelMaxHops—The maximum number of hops any given tunnel can utilize.
- mplsTunnelIndexNext—Unsupported; set to 0.
- mplsTunnelTable—Entries in this table with an instance of 0 and a source address of 0 represent tunnel head configurations. All other entries in this table represent instances of LSPs, both signaled and standby. If a tunnel instance is signaled, its operating status (operStatus) is set to "up" (1) and its instance corresponds to an active LSP.

Tunnel configurations exist only on the tunnel head where the tunnel interface is defined. LSPs traverse the network and involve tunnel heads, tunnel midpoints, and tunnel tails.

Pointers in the tunnel table refer to corresponding entries in other MIB tables. By using these pointers, you can find an entry in the mplsTunnelTable and follow a pointer to other tables for additional information. The pointers are the following: mplsTunnelResourcePointer, mplsTunnelHopTableIndex, mplsTunnelARHopTableIndex, and mplsTunnelCHopTableIndex.

The tunnel table is indexed by tunnel ID, tunnel instance, tunnel source address, and tunnel destination address. The description of each entry has an alphabetic suffix (a), (b), or (c), if appropriate, to indicate the applicability of the entry:

- 1 For tunnel head configurations only
- 2 For LSPs only
- 3 For both tunnel head configurations and LSPs

Following is a list and description of each entry.

- mplsTunnelIndex—Same as tunnel ID (c).
 - mplsTunnelInstance—Tunnel instance of the LSP; 0 for head configurations (b).
 - mplsTunnelIngressLSRId—Source IP address of the LSP; 0 for head configurations (b).
 - mplsTunnelEgressLSRId—Destination IP address of the tunnel (c).
 - mplsTunnelName—Command name for the tunnel interfaces (a).
 - mplsTunnelDescr—Descriptive name for tunnel configurations and LSPs (c).
 - mplsTunnelIsIf—Indicator of whether the entry represents an interface (c).
 - mplsTunnelIfIndex—Index of the tunnel interface within the ifMIB (a).
 - mplsTunnelXCPointer—(For midpoints only no tails) Pointer for the LSP within the mplsXCTable of the MPLS LSR STD MIB (b).
 - mplsTunnelSignallingProto—Signaling protocol used by tunnels (c).
 - mplsTunnelSetupPrio—Setup priority of the tunnel (c).
 - mplsTunnelHoldingPrio—Holding priority of the tunnel (c).
 - mplsTunnelSessionAttributes—Session attributes (c).
 - mplsTunnelOwner—Tunnel owner (c).
 - mplsTunnelLocalProtectInUse—Not implemented (c).
 - mplsTunnelResourcePointer—Pointer into the Resource Table (b).
 - mplsTunnelInstancePriority—Not implemented (b).

- mplsTunnelHopTableIndex—Index into the Hop Table (a).
- mplsTunnelARHopTableIndex—Index into the AR Hop Table (b).
- mplsTunnelCHopTableIndex—Index into the C Hop Table (b).
- mplsTunnelPrimaryUpTime—Amount of time, in seconds, that the current path has been up (a).
- mplsTunnelPathChanges—Number of times a tunnel has been resignalled (a).
- mplsTunnelLastPathChange—Amount of time, in seconds, since the last path resignaling occurred (a).
- mplsTunnelCreationTime—Time stamp when the tunnel was created (a).
- mplsTunnelStateTransitions—Number of times the tunnel has changed state (a).
- mplsTunnelIncludeAnyAffinity—Not implemented (a).
- mplsTunnelIncludeAllAffinity—Attribute bits that must be set for the tunnel to traverse a link (a).
- mplsTunnelExcludeAnyAffinity—Attribute bits that must *not* be set for the tunnel to traverse a link (a).
- mplsTunnelPathInUse—Path option number being used for the tunnel's path. If no path option is active, this object will be 0 (a).
- mplsTunnelRole—Role of the tunnel on the router; that is, head, midpoint, or tail (c).
- mplsTunnelTotalUpTime—Amount of time, in seconds, that the tunnel has been operationally up
 (a).
- mplsTunnelInstanceUpTime—Not implemented (b).
- mplsTunnelAdminStatus—Administrative status of a tunnel (c).
- mplsTunnelOperStatus—Actual operating status of a tunnel (c).
- mplsTunnelRowStatus—This object is used in conjunction with configuring a new tunnel. This
 object will always be seen as "active" (a).
- mplsTunnelStorageType—Storage type of a tunnel entry (c).
- mplsTunnelHopListIndexNext—Next valid index to use as an index in the mplsTunnelHopTable.
- **mplsTunnelHopTable** —Entries in this table exist only for tunnel configurations and correspond to the path options defined for the tunnel. Two types of path options exist: *explicit* and *dynamic*. This table shows all hops listed in the explicit path options, while showing only the destination hop for dynamic path options. The tunnel hop table is indexed by tunnel ID, path option, and hop number.

Following is a list and description of each table entry.

- mplsTunnelHopListIndex—Primary index into the table.
 - mplsTunnelHopIndex—Secondary index into the table.
 - mplsTunnelHopAddrType—Indicates if the address of this hop is the type IPv4 or IPv6.
 - mplsTunnelHopIpAddr—The IP address of this hop.
 - mplsTunnelHopIpPrefixLen—The prefix length of the IP address.
 - mplsTunnelHopAsNumber—This object will contain 0 or the autonomous system number of the hop, depending on the value of mplsTunnelHopAddrType.
 - mplsTunnelHopLspId—This object will contain 0 or the LSPID of the tunnel, depending on the value of mplsTunnelHopAddrType.
 - mplsTunnelHopType—Denotes whether this tunnel hop is routed in a strict or loose fashion.
 - mplsTunnelHopInclude—Indicates whether this hop must be included in the tunnel.
 - mplsTunnelHopPathOptionName—Describes a series of hops as they relate to a specified path option.
 - mplsTunnelHopEntryPathComp—Indicates whether the complete tunnel path should be specified.
 - mplsTunnelHopRowStatus—This object is used in conjunction with the configuring of a new row in the table.
 - mplsTunnelHopStorageType—The storage type of this MIB object.

- mplsTunnelResourceIndexNext—This object contains the next appropriate value to be used for mplsTunnelResourceIndex when creating entries in the mplsTunnelResourceTable
- **mplsTunnelResourceTable** —Entries in this table correspond to the "Tspec" information displayed when you execute the **show mpls traffic-eng tunnels** command. These entries exist only for LSPs.

The tunnel resource table is indexed by address and hop number. Following the mplsTunnelResourcePointer pointer from the tunnel table is the best way to retrieve information from this table.

Following is a list and description of each table entry.

- mplsTunnelResourceIndex—The primary index into this table.
 - mplsTunnelResourceMaxRate—The maximum rate, in bits per second, supported by this tunnel.
 - mplsTunnelResourceMeanRate—The mean rate, in bits per second, supported by this tunnel.
 - mplsTunnelResourceMaxBurstSize—The maximum burst size, in bytes, allowed by this tunnel.
 - mplsTunnelResourceRowStatus—This object is used in conjunction with the configuration of a new row in the table.
 - mplsTunnelResourceStorageType—The storage type of this MIB object.
- mplsTunnelARHopTable —Entries in this table correspond to the actual route taken by the tunnel, and whose route was successfully signaled by the network. The hops present in this table correspond to those present in the record route object (RRO) in Resource Reservation Protocol (RSVP). You can also display the information in this table by executing the show mpls traffic-eng tunnels command.

The actual route hop table is indexed by address and hop number. Following the mplsTunnelARHopTableIndex pointer from the tunnel table is the best way to retrieve information from this table.

Following is a list and description of each table entry:

- mplsTunnelARHopListIndex—The primary index into this table.
 - mplsTunnelARHopIndex—The secondary index into this table.
 - mplsTunnelARHopIpAddr—The IP address of this hop.
 - mplsTunnelARHopIpPrefixLen—The prefix length of the IP address.
 - mplsTunnelARHopAsNumber—This object will contain 0 or the AS number of the hop, depending on the value of mplsTunnelARHopAddrType.
 - mplsTunnelARHopAddrType—The type of address for this MIB entry, either IPv4 or IPv6.
 - mplsTunnelARHopType—Denotes whether this tunnel hop is routed in a strict or loose manner.
- mplsTunnelCHopTable —Entries in this table correspond to the explicit route object (ERO) in RSVP, which is used to signal the LSP. The list of hops in this table will contain those hops that are computed by the constraint-based shortest path first (SPF) algorithm. In those cases where "loose" hops are specified for the tunnel, this table will contain the hops that are "filled-in" between the loose hops to complete the path. If you specify a complete explicit path, the computed hop table matches your specified path.

The computed hop table is indexed by address and hop number. Following the mplsTunnelCHopTableIndex pointer from the tunnel table is the best way to retrieve information from this table.

Following is a list and description of each table entry:

- o mplsTunnelCHopListIndex—The primary index into this table.
 - mplsTunnelCHopIndex—The secondary index into this table.
 - mplsTunnelCHopAddrType—Indicates if the address of this hop is the type IPv4 or IPv6.
 - mplsTunnelCHopIpAddr—The IP address of this hop.

- mplsTunnelCHopIpPrefixLen—The prefix length of the IP address.
- mplsTunnelCHopAsNumber—This object will contain 0 or the autonomous system number of the hop, depending on the value of mplsTunnelHopAddrType.
- mplsTunnelCHopType—Denotes whether this tunnel hop is routed in a strict or loose way.
- **mplsTunnelPerfTable** —The tunnel performance table, which augments the **mplsTunnelTable**, provides packet and byte counters for each tunnel. This table contains the following packet and byte counters:
 - mplsTunnelPerfPackets—This packet counter works only for tunnel heads.
 - mplsTunnelPerfHCPackets—This packet counter works only for tunnel heads.
 - mplsTunnelPerfErrors—This packet counter works only for tunnel heads.
 - mplsTunnelPerfBytes—This byte counter works for tunnel heads and tunnel midpoints, but not for tunnel tails.
 - mplsTunnelPerfHCBytes—This byte counter works for tunnel heads and tunnel midpoints, but not for tunnel tails.
- mplsTunnelTrapEnable—The object type *mplsTunnelTrapEnable* is enhanced to be writable. Accordingly, if this object type is set to "TRUE," the following notifications are enabled, thus giving you the ability to monitor changes in the operational status of MPLS TE tunnels:
 - mplsTunnelUp
 - mplsTunnelDown
 - mplsTunnelRerouted
 - mplsTunnelReoptimized

If the *mplsTunnelTrapEnable* object is set to "FALSE," such operational status notifications are not generated. These notification functions are based on the definitions (mplsTeNotifications) contained in the IETF draft document entitled *draft-ietf-mpls-te-mib-05.txt*.

CLI Access to MPLS EM - TE MIB RFC 3812 Information

The figure below shows commands that you can use to retrieve information from specific tables in the MPLS TE MIB. As noted in this figure, some information in the MPLS TE STD MIB is not retrievable by commands.

STON TO STORE STOR STON TOE HOUTE STORY Not available in corntrated show to expicit colles S'HOW THE HOUSE mplsTunnelTable х mplsTunnelHopTable X mplsTunnelResourceTable mplsTunnelARHopTable mplsTunnelCHopTable mplsTunnelPerfTable X Scalars х 52510

Figure 35 Commands for Retrieving MPLS TE STD MIB Information

• Retrieving Information from the MPLS EM - TE MIB RFC 3812, page 345

Retrieving Information from the MPLS EM - TE MIB RFC 3812

This section describes how to efficiently retrieve information about TE tunnels. Such information can be useful in large networks that contain many TE tunnels.

Traverse across a single column of the mplsTunnelTable, such as mplsTunnelName. This action provides the indexes of every tunnel configuration, and any LSPs involving the host router. Using these indexes, you can perform a GET operation to retrieve information from any column and row of the mplsTunnelTable.

The mplsTunnelTable provides pointers to other tables for each tunnel. The column mplsTunnelResourcePointer, for example, provides an object ID (OID) that you can use to access resource allocation information in the mplsTunnelResourceTable. The columns mplsTunnelHopTableIndex, mplsTunnelARHopTableIndex, and mplsTunnelCHopTableIndex provide the primary index into the mplsTunnelHopTable, mplsTunnelARHopTable, and mplsTunnelCHopTable, respectively. By traversing the MPLS TE STD MIB in this manner using a hop table column and primary index, you can retrieve information pertaining to the hops of that tunnel configuration.

Because tunnels are treated as interfaces, the tunnel table column (mplsTunnelIfIndex) provides an index into the Interfaces MIB that you can use to retrieve interface-specific information about a tunnel.

How to Configure the MPLS EM - TE MIB RFC 3812

- Enabling the SNMP Agent to Manage Various MPLS TE Tunnel Chars on the Local Router, page 346
- Verifying the Status of the SNMP Agent, page 347

Enabling the SNMP Agent to Manage Various MPLS TE Tunnel Chars on the Local Router

The SNMP agent for the MPLS TE STD MIB is disabled by default. To enable the SNMP agent for the MPLS TE STD MIB, perform the following steps.

SUMMARY STEPS

- 1. telnet host
- 2. enable
- 3. show running-config
- 4. configure terminal
- **5. snmp-server community** *string* [**view** *view-name*] [**ro** | **rw**] [**ipv6** *nacl*] [*access-list-number*]
- **6. snmp-server enable traps** [identification-type] [notification-option]
- 7. exit
- 8. write memory

DETAILED STEPS

	Command or Action	Purpose Telnets to the router identified by the specified IP address (represented as xxx.xxx.xxx).	
Step 1	telnet host		
	Example:		
	Router> telnet 192.172.172.172		
Step 2	enable	Enables privileged EXEC mode.	
		Enter your password if prompted.	
	Example:		
	Router# enable		
Step 3	show running-config	Displays the running configuration to determine if an SNMP agent is already running.	
	Example:	• If no SNMP information is displayed, go to Step 4. If any SNMP information is displayed, you can modify the	
	Router# show running-config	information or change it as needed.	

	Command or Action	Purpose
Step 4	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 5	<pre>snmp-server community string [view view-name] [ro rw] [ipv6 nacl] [access-list-number]</pre>	Enables the read-only (RO) community string.
	Example:	
	Router(config)# snmp-server community comaccess ro 4	
Step 6	<pre>snmp-server enable traps [identification-type] [notification-option]</pre>	Enables an LSR to send SNMP notifications or informs to an SNMP host.
		Note This command is optional. After SNMP is enabled, all MIBs (not just the TE MIB) are available for the user to
	Example:	query.
	Router(config)# snmp-server enable traps	
Step 7	exit	Exits global configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config)# exit	
Step 8	write memory	Writes the modified configuration to NVRAM, permanently saving the settings.
	Example:	
	Router# write memory	

Verifying the Status of the SNMP Agent

SUMMARY STEPS

- 1. telnet host
- 2. enable
- 3. show running-config

DETAILED STEPS

	Command or Action	Purpose	
Step 1	telnet host	Telnets to the target device identified by the specified IP address (represented as xxx.xxx.xxx).	
	Example:		
	Router# telnet 192.172.172.172		
Step 2	enable	Enables SNMP on the target device.	
	Example:		
	Router# enable		
Step 3	show running-config	Displays the running configuration on the target device and is used to examine the output for displayed SNMP information.	
	Example:		
	Router# show running-configs		

• Examples, page 348

Examples

The follows example displays the running configuration on the target device and its SNMP information.

Any **snmp-server** statementthat appears in the output and takes the form shown here verifies that SNMP has been enabled on that device.

Configuration Examples for the MPLS EM - TE MIB RFC 3812

• Enabling the SNMP Agent to Manage Various MPLS TE Tunnel Chars on the Local Router Example, page 348

Enabling the SNMP Agent to Manage Various MPLS TE Tunnel Chars on the Local Router Example

The following example shows how to enable an SNMP agent on a host network device:

Router# configure terminal

Router(config)# snmp-server community
private

The following example shows how to enable SNMPv1 and SNMPv2C. The configuration permits any SNMP agent to access all MPLS TE STD MIB objects with read-only permissions using the community string public.

Router(config)# snmp-server community public

The following example shows how to allow read-only access to all MPLS TE STD MIB objects relating to members of access list 4 that specify the comaccess community string. No other SNMP agents will have access to any MPLS TE STD MIB objects.

Router(config)# snmp-server community comaccess ro 4

Additional References

Related Documents

Related Topic	Document Title	
MPLS-based functionalities	 MPLS Label Distribution Protocol (LDP) MPLS Label Switching Router MIB MPLS Scalability Enhancements for the LSC LSR MPLS Scalability Enhancements for the ATM LSR MPLS Traffic Engineering (TE)—Automatic Bandwidth Adjustment for MPLS TE Tunnels MPLS Traffic Engineering (TE)—Scalability Enhancements 	
	 MPLS Class of Service Enhancements RFC 2233 Interfaces MIB 	

Standards

Standard	Title
draft-ietf-mpls-te-mib-05	MPLS Traffic Engineering Management Information Base Using SMIv2

MIBs

MIB	MIBs Link
MPLS TE MIB	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
Interfaces MIB	
MPLS TE STD MIB	
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
RFC 2026	The Internet Standards Process
RFC 3812	Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB)

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for the MPLS EM - TE MIB RFC 3812

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 90 Feature Information for the MPLS EM - TE MIB RFC 3812

Feature Name	Releases	Feature Information
MPLS-EN TE MIB RFC 3812	12.2(33)SRE	The MPLS EM - TE MIB RFC 3812 feature enables the SNMP agent support in Cisco IOS software for MPLS TE management, as implemented in the MPLS TE STD MIB.
		The following commands were introduced or modified: snmp-server community, snmp-server enable traps mpls rfc, snmp-server enable traps mpls traffic-eng, snmp-server host.

Glossary

affinity bits—An MPLS traffic engineering tunnel's requirements on the attributes of the links it will cross. The tunnel's affinity bits and affinity mask must match with the attributes of the various links carrying the tunnel.

call admission precedence—An MPLS traffic engineering tunnel with a higher priority will, if necessary, preempt an MPLS traffic engineering tunnel with a lower priority. An expected use is that tunnels that are more difficult to route will have a higher priority, and can preempt tunnels that are less difficult to route, on the assumption that those lower priority tunnels can find another path.

constraint-based routing—Procedures and protocols used to determine a route across a backbone taking into account resource requirements and resource availability, instead of simply using the shortest path.

flow —A traffic load entering the backbone at one point—point of presence (POP)—and leaving it from another that must be traffic engineered across the backbone. The traffic load will be carried across one or more LSP tunnels running from the entry POP to the exit POP.

headend —The LSR at which the tunnel originates. The tunnel's "head" or tunnel interface will reside at this LSR as well.

informs —A type of notification message that is more reliable than a conventional trap notification message because an informs message requires acknowledgment.

label —A short, fixed-length data construct that tells switching nodes how to forward data (packets or cells).

label switched path (LSP) tunnel—A configured connection between two routers, using label switching to carry the packets.

LSP—label switched path. A path that is followed by a labeled packet over several hops, starting at an ingress LSR and ending at an egress LSR.

LSR—label switch router. A Layer 3 router that forwards a packet based on the value of a label encapsulated in the packet.

MIB —Management Information Base. A database of network management information (consisting of MIB objects) that is used and maintained by a network management protocol such as SNMP. The value of a MIB object can be changed or retrieved using SNMP commands, usually by a GUI-based network

management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MPLS —Multiprotocol Label Switching. Switching method that forwards IP traffic using a label. This label instructs the routers and the switches in the network where to forward the packets based on preestablished IP routing information.

NMS —network management station. An NMS is a powerful, well-equipped computer (typically an engineering workstation) that is used by a network administrator to communicate with other devices in the network. An NMS is typically used to manage network resources, gather statistics, and perform a variety of network administration and configuration tasks.

notification —A message sent by an SNMP agent to a network management station, console, or terminal to indicate that a significant event within Cisco IOS software has occurred (see traps).

OSPF — Open Shortest Path First. A link-state routing protocol used for routing IP.

RSVP—Resource Reservation Protocol. Protocol for reserving network resources to provide quality of service (QoS) guarantees to application flows.

SNMP —Simple Network Management Protocol. A network management protocol used almost exclusively in TCP/IP networks. SNMP provides a means to monitor and control network devices, manage configurations, collect statistics, monitor performance, and ensure network security.

tailend —The downstream, receive end of a tunnel.

traffic engineering—Techniques and processes that cause routed traffic to travel through the network on a path other than the one that would have been chosen if standard routing methods were used.

trap —A message sent by an SNMP agent to a network management station, console, or terminal to indicate that a significant event within Cisco IOS software has occurred. Traps (notifications) are less reliable than inform requests, because the receiver of the trap does not send an acknowledgment of receipt; furthermore, the sender of the trap cannot determine if the trap was received (see notification).

VCC —virtual channel connection. A VCC is a logical circuit consisting of VCLs that carries data between two endpoints in an ATM network. Sometimes called a virtual circuit connection.

VCI —virtual channel identifier. A 16-bit field in the header of an ATM cell. The VCI, together with the VPI, is used to identify the next network VCL as the cell passes through a series of ATM switches on its way to its final destination.

VCL —virtual channel link. A VCL is the logical connection that exists between two adjacent switches in an ATM network.

VPI—virtual path identifier. An 8-bit field in the header of an ATM cell. The VPI, together with the VCI, is used to identify the next network VCL as the cell passes through a series of ATM switches on its way to its final destination.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS VPN--MIB Support

This document describes the Simple Network Management Protocol (SNMP) agent support in Cisco software for Multiprotocol Label Switching (MPLS) Virtual Private Network (VPN) management, as implemented in the draft MPLS/BGP Virtual Private Network Management Information Base Using SMIv2 (draft-ietf-ppvpn-mpls-vpn-mib-05.txt). This document also describes the cMplsNumVrfRouteMaxThreshCleared notification, which is implemented as part of the proprietary MIB CISCO-IETF-PPVNP-MPLS-VPN-MIB.

- Finding Feature Information, page 355
- Prerequisites for MPLS VPN--MIB Support, page 355
- Restrictions for MPLS VPN--MIB Support, page 356
- Information About MPLS VPN--MIB Support, page 356
- How to Configure MPLS VPN--MIB Support, page 373
- Configuration Examples for MPLS VPN--MIB Support, page 378
- Additional References, page 379
- Feature Information for MPLS VPN--MIB Support, page 381
- Glossary, page 382

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS VPN--MIB Support

- SNMP is installed and enabled on the label switching routers.
- MPLS is enabled on the label switching routers.
- Multiprotocol Border Gateway Protocol (BGP) is enabled on the label switching routers.
- Cisco Express Forwarding is enabled on the label switching routers.

Restrictions for MPLS VPN--MIB Support

- Configuration of the MIB using the **snmp set**command is not supported, except for trap-related objects, such as mplsVpnNotificationEnable and mplsVpnVrfSecIllegalLabelRcvThresh.
- The mplsVpnVrfBgpNbrPrefixTable is not supported.

Information About MPLS VPN--MIB Support

- MPLS VPN Overview, page 356
- MPLS VPN MIB Overview, page 356
- MPLS VPN MIB and the IETF, page 357
- Capabilities Supported by PPVPN-MPLS-VPN MIB, page 357
- Functional Structure of the PPVPN-MPLS-VPN MIB, page 357
- Supported Objects in PPVPN-MPLS-VPN MIB, page 358
- Unsupported Objects in PPVPN-MPLS-VPN MIB, page 372

MPLS VPN Overview

The MPLS VPN technology allows service providers to offer intranet and extranet VPN services that directly connect their customers' remote offices to a public network with the same security and service levels that a private network offers. Each VPN is associated with one or more VPN routing and forwarding (VRF) instances. A VRF is created for each VPN defined on a router and contains most of the information needed to manage and monitor MPLS VPNs: an IP routing table, a derived Cisco Express Forwarding table, a set of interfaces that use this forwarding table, and a set of rules and routing protocol parameters that control the information that is included in the routing table.

MPLS VPN MIB Overview

The Provider-Provisioned VPN (PPVPN)-MPLS-VPN MIB provides access to MPLS VRF information, and interfaces included in the VRF, and other configuration and monitoring information.

The PPVPN-MPLS-VPN MIB provides the following benefits:

- A standards-based SNMP interface for retrieving information about critical MPLS VPN events.
- VRF information to assist in the management and monitoring of MPLS VPNs.
- Information, in conjunction with the Interfaces MIB, about interfaces assigned to VRFs.
- Performance statistics for all VRFs on a router.
- The generation and queueing of notifications that call attention to major changes in the operational status of MPLS VPN enabled interfaces; the forwarding of notification messages to a designated network management system (NMS) for evaluation and action by network administrators.
- Advanced warning when VPN routing tables are approaching or exceed their capacity.
- Warnings about the reception of illegal labels on a VRF-enabled interface. Such receptions may indicate misconfiguration or an attempt to violate security.

This document also describes the CISCO-IETF-PPVPN-MPLS-VPN-MIB, which contains the cMplsNumVrfRouteMaxThreshCleared notification.

MPLS VPN MIB and the IETF

SNMP agent code operating with the PPVPN-MPLS-VPN MIB enables a standardized, SNMP-based approach to managing MPLS VPNs in Cisco software.

The PPVPN-MPLS-VPN MIB is based on the Internet Engineering Task Force draft MIB specification draft-ietf-ppvpn-mpls-vpn-mib-05.txt, which includes objects describing features that support MPLS VPN events. This IETF draft MIB, which undergoes revisions from time to time, is becoming a standard. Accordingly, the Cisco implementation of the PPVPN-MPLS-VPN MIB is expected to track the evolution of the IETF draft MIB, and may change accordingly.

Some slight differences between the IETF draft MIB and the actual implementation of MPLS VPNs within Cisco software require some minor translations between the PPVPN-MPLS-VPN MIB and the internal data structures of Cisco software. These translations are accomplished by means of the SNMP agent code. Also, while running as a low priority process, the SNMP agent provides a management interface to Cisco software. SNMP adds little overhead on the normal functions of the device.

The SNMP objects defined in the PPVPN-MPLS-VPN MIB can be viewed by any standard SNMP utility. The network administrator can retrieve information in the PPVPN-MPLS-VPN MIB using standard SNMP get and getnext operations for SNMP v1, v2, and v3.

All PPVPN-MPLS-VPN MIB objects are based on the IETF draft MIB; thus, no Cisco-specific SNMP application is required to support the functions and operations pertaining to the PPVPN-MPLS-VPN MIB features.

Capabilities Supported by PPVPN-MPLS-VPN MIB

The PPVPN-MPLS-VPN MIB provides you with the ability to do the following:

- Gather routing and forwarding information for MPLS VPNs on a router.
- Expose information in the VRF routing table.
- Gather information on BGP configuration related to VPNs and VRF interfaces and statistics.
- Emit notification messages that signal changes when critical MPLS VPN events occur.
- Enable, disable, and configure notification messages for MPLS VPN events by using extensions to existing SNMP command-line interface (CLI) commands.
- · Specify the IP address of NMS in the operating environment to which notification messages are sent.
- Write notification configurations into nonvolatile memory.

Functional Structure of the PPVPN-MPLS-VPN MIB

The SNMP agent code supporting the PPVPN-MPLS-VPN MIB follows the existing model for such code in Cisco software and is, in part, generated by the Cisco software tool set, based on the MIB source code.

The SNMP agent code, which has a layered structure that is common to MIB support code in Cisco software, consists of four layers:

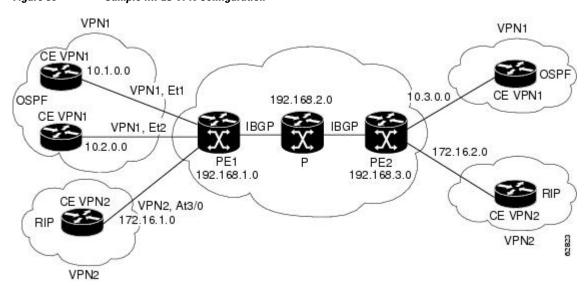
- Platform-independent layer--This layer is generated primarily by the MIB development Cisco software
 tool set and incorporates platform- and implementation-independent functions. The Cisco MIB
 development tool set creates a standard set of files associated with a MIB.
- Application interface layer--The functions, names, and template code for MIB objects in this layer are also generated by the MIB development Cisco software tool set.

- Application-specific layer--This layer provides an interface between the application interface layer and
 the API and data structures layer below and performs tasks needed to retrieve required information
 from Cisco software, such as searching through data structures.
- API and data structures layer--This layer contains the data structures or APIs within Cisco software
 that are retrieved or called in order to set or retrieve SNMP management information.

Supported Objects in PPVPN-MPLS-VPN MIB

The PPVPN-MPLS-VPN MIB contains numerous tables and object definitions that provide read-only SNMP management support for the MPLS VPN feature in Cisco IOS software. The PPVPN-MPLS-VPN MIB conforms to Abstract Syntax Notation One (ASN.1), thus reflecting an idealized MPLS VPN database.

Using any standard SNMP network management application, you can retrieve and display information from the PPVPN-MPLS-VPN MIB using GET operations; similarly, you can traverse information in the MIB database for display using GETNEXT operations.


The PPVPN-MPLS-VPN MIB tables and objects are described briefly in the following sections:

The figure below shows a simple MPLS VPN configuration. This configuration includes two customer MPLS VPNs, labeled VPN1 and VPN2, and a simple provider network that consists of two provider edge (PE) routers, labeled PE1 and PE2, and a provider core router labeled P. The figure below shows the following sample configuration:

- VRF names--VPN1 and VPN2
- Interfaces associated with VRFs--Et1, Et2, and At3/0
- Routing protocols--Open Shortest Path First. Link-state (OSPF), Routing Information Protocol (RIP), and internal Border Gateway Protocol (IBGP)
- Routes associated with VPN1--10.1.0.0, 10.2.0.0, and 10.3.0.0
- Routes associated with VPN2--172.16.1.0 and 172.16.2.0
- Routes associated with the provider network--192.168.1.0, 192.168.2.0, and 192.168.3.0

This configuration is used in this document to explain MPLS VPN events that are monitored and managed by the PPVPN-MPLS-VPN MIB.

Figure 36 Sample MPLS VPN Configuration

- Scalar Objects, page 359
- MIB Tables, page 359
- PPVPN-MPLS-VPN MIB Notifications, page 370

Scalar Objects

The table below shows the supported PPVPN-MPLS-VPN MIB scalar objects.

Table 91 PPVPN-MPLS-VPN MIB Scalar Objects

MIB Object	Function	
mplsVpnConfiguredVrfs	The number of VRFs configured on the router, including VRFs recently deleted.	
mplsVpnActiveVrfs	The number of VRFs that are active on the router. An active VRF is assigned to at least one interface that is in the operationally up state.	
mplsVpnConnectedInterfaces	The total number of interfaces assigned to any VRF.	
mplsVpnNotificationEnable	A value that indicates whether all the PPVPN-MPLS-VPN MIB notifications are enabled:	
	 Setting this object to true enables all notifications defined in the PPVPN-MPLS-VPN MIB. 	
	• Setting this object to false disables all notifications defined in the MIB.	
	This is one of the few objects that is writable.	
mplsVpnVrfConfMaxPossibleRoutes	A number that indicates the amount of routes that this router is capable of storing. This value cannot be determined because it is based on the amount of available memory in the system. Therefore, this object is set to zero (0).	

MIB Tables

The PPVPN-MPLS-VPN MIB implementation supports the following tables described in this section:

- mplsVpnVrfTable, page 359
- mplsVpnInterfaceConfTable, page 362
- mplsVpnVrfRouteTargetTable, page 363
- mplsVpnVrfBgpNbrAddrTable, page 365
- mplsVpnVrfSecTable, page 366
- mplsVpnVrfPerfTable, page 366
- mplsVpnVrfRouteTable, page 367

mplsVpnVrfTable

Each VRF is referenced by its VRF name (mplsVpnVrfName). The table below lists the MIB objects and their functions for this table.

Table 92 PPVPN-MPLS-VPN MIB Objects for the mplsVpnVrfTable

MIB Object	Function	
mplsVpnVrfName	The name associated with this VRF. When this object is used as an index to a table, the first octet is the string length, and subsequent octets are the ASCII codes of each character. For example, "vpn1" is represented as 4.118.112.110.49.	
mplsVpnVrfDescription	The description of the VRF. This is specified with the following configuration command:	
	Router(config)# ip vrf vrf-name Router(config-vrf)# description vrf-description	
mplsVpnVrfRouteDistinguisher	The route distinguisher for this VRF. This is specified with the following configuration command:	
	<pre>Router(config)# ip vrf vrf-name Router(config-vrf)# rd route-distinguisher</pre>	
mplsVpnVrfCreationTime	The value of the sysUpTime when this VRF entry was created.	
mplsVpnVrfOperStatus	The operational status of this VRF. A VRF is up (1) when at least one interface associated with the VRF is up. A VRF is down (2) when:	
	 No interfaces exist whose ifOperStatus = up (1). No interfaces are associated with this VRF. 	
mplsVpnVrfActiveInterfaces	The number of interfaces assigned to this VRF that are operationally up.	
mplsVpnVrfAssociatedInterfaces	The number of interfaces assigned to this VRF, independent of the operational status.	

MIB Object	Function
mplsVpnVrfConfMidRouteThreshold	The middle route threshold. If the amount of routes in the VRF crosses this threshold, an mplsNumVrfRouteMidThreshExceeded notification is sent (if notifications are enabled and configured). You can set this value in configuration mode as a percentage of the maximum with the maximum routes <i>limit</i> { <i>warn-threshold</i> warn-only } command, as follows:
	<pre>Router(config)# ip vrf vpn1 Router(config-vrf)# maximum routes 1000 50</pre>
	The middle or warn threshold is set for VRF vpn1 as 50 percent of the maximum route threshold.
	The following command sets a middle threshold of 1000 routes. An mplsNumVrfRouteMidThreshExceeded notification is sent when this threshold is exceeded. However, additional routes are still allowed because a maximum route threshold is not set with this command.
	Router(config-vrf)# maximum routes 1000 warn-only
mplsVpnVrfConfHighRouteThreshold	The maximum route threshold. If the number of routes in the VRF crosses this threshold, an mplsNumVrfRouteMaxThreshExceeded notification is sent (if notifications are enabled and configured). You can set this value in configuration mode with the maximum routes <i>limit</i> {warn-threshold warn-only} command as follows:
	<pre>Router(config)# ip vrf vpn2 Router(config-vrf)# maximum routes 1000 75</pre>
	The maximum route threshold is set for 1000 routes for VRF vpn2 with a middle or warn threshold of 75 percent of this threshold.
mplsVpnVrfConfMaxRoutes	This value is the same as the mplsVpnVrfConfHighRouteThreshold.
mplsVpnVrfConfLastChanged	The value of sysUpTime when the configuration of the VRF changes or interfaces are assigned or unassigned from the VRF.
	Note This object is updated only when values in this table change.
mplsVpnVrfConfRowStatus	Read-only implementation. This object normally reads "active (1)," but may read "notInService (2)," if a VRF was recently deleted.
mplsVpnVrfConfStorageType	Read-only implementation. This object always reads "volatile (2)."

mplsVpnInterfaceConfTable

A VRF is associated with one MPLS VPN. Zero or more interfaces can be associated with a VRF. A VRF uses an interface that is defined in the ifTable of the Interfaces Group of MIB II (IFMIB). The IFMIB defines objects for managing interfaces. The if Table of this MIB contains information on each interface in the network. The mplsVpnInterfaceConfTable associates a VRF from the mplsVpnVrfTable with a forwarding interface from the if Table. The figure below shows the relationship between VRFs and interfaces defined in the ifTable and the mplsVpnInterfaceConfTable.

ifTable mplsL3VpnVrfTable ifName VPN1 ifIndex Value Et1 5 VPN₂ 6 Et2 A mplsL3VpnVrfName 10 At3/0 B mplsL3VpnlfConflndex mplsL3VpnlfConfTable ܣ ø VPN₁ 5 6 VPN₁ 10 VPN₂ Use in Cisco IOS software Note: The mplsL3VpnVrfName is actually an > Interfaces octet string that represents the string length (4) and the ASCII codes for each character. 62822 For example, VPN1 is represented as

Figure 37 VRFs, the Interfaces MIB, and the mplsVpnInterfaceConfTable

Entries in the VPN interface configuration table (mplsVpnInterfaceConfTable) represent the interfaces that are assigned to each VRF. The information available in this table is also displayed with the show ip vrf command.

The mplsVpnInterfaceConfTable shows how interfaces are assigned to VRFs. A label switch router (LSR) creates an entry in this table for every interface capable of supporting MPLS VPNs.

The mplsVpnInterfaceConfTable is indexed by the following:

mplsVpnVrfName--The VRF name

4.86.80.78.49.

mplsVpnInterfaceConfIndex--An identifier that is the same as the ifIndex from the Interface MIB of the interface assigned to the VRF

The table below lists the MIB objects and their functions for this table.

Table 93 PPVPN-MPLS-VPN MIB Object for the mplsVpnInterfaceConfTable

MIB Object	Function
mplsVpnInterfaceConfIndex	Provides the interface MIB ifIndex of this interface that is assigned to a VRF.
mplsVpnInterfaceLabelEdgeType	Indicates whether the interface is a provider edge interface (1) or a customer edge interface (2).
	This value is always providerEdge (1) because in Cisco software, customerEdge interfaces are not assigned to VRFs and do not appear in this table.
mplsVpnInterfaceVpnClassification	Specifies what type of VPN this interface is providing: carrier supporting carrier (CSC) (1), enterprise (2), or InterProvider (3).
	This value is set to enterprise (2) if MPLS is not enabled and to carrier supporting carrier (1) if MPLS is enabled on this interface.
mplsVpnInterfaceVpnRouteDistProtocol	Indicates the route distribution protocols that are being used to redistribute routes with BGP on this interface: BGP (2), OSPF (3), or RIP (4).
	In Cisco software, router processes are defined and redistributed on a per-VRF basis, not per-interface. Therefore, all interfaces assigned to the same VRF have the same value for this object.
mplsVpnInterfaceConfStorageType	Read-only implementation. This object always reads "volatile (2)."
mpls Vpn Interface ConfRow Status	Read-only implementation. This object normally reads "active (1)," but may read "notInService (2)," if a VRF was recently deleted.

mplsVpnVrfRouteTargetTable

The route target table (mplsVpnVrfRouteTargetTable) describes the route target communities that are defined for a particular VRF. An LSR creates an entry in this table for each target configured for a VRF supporting an MPLS VPN instance.

The distribution of VPN routing information is controlled through the use of VPN route target communities, implemented by BGP extended communities. Distribution of VPN routing information works as follows:

- When a VPN route learned from a customer edge (CE) router is injected into BGP, a list of VPN route
 target extended community attributes is associated with it. Typically the list of route target community
 values is set from an export list of route targets associated with the VRF from which the route was
 learned.
- An import list of route target extended communities is associated with each VRF. The import list
 defines route target extended community attributes a route must have for the route to be imported into
 the VRF. For example, if the import list for a particular VRF includes route target communities A, B,

and C, then any VPN route that carries any of those route target extended communities--A, B, or C--is imported into the VRF.

The figure below shows a sample configuration and its relationship to an mplsVpnVrfRouteTargetTable. A route target table exists on each PE router. Routers with route distinguishers (RDs) 100:1, 100:2, and 100:3 are shown in the sample configuration. Routers with RDs 100:4 and 100:5 are not shown in the figure, but are included in the route targets for PE2 and in the mplsVpnVrfRouteTargetTable.

VPN1 VPN1 PE₁ VPN₂ VPN₂ 100:2 PE₃ B mplsL3VpnVrfRTIndex mplsL3VpnVrfRTType VRF VPN1 import 100:1 mplsL3VpnVrfRT export 100:1 import 100:2 mplsL3VpnVrfRTTable export 100:2 import 100:3 0 8 O ø export:100:3 import 100:4 VPN1 100:1 1 both export 100:5 VPN1 2 both 100:2 VRF VPN2 VPN1 3 both 100:3 import 100:1 export 100:1 VPN₁ 4 import 100:4 import 100:2 VPN1 5 export 100:5 export 100:2 import 100:3 VPN₂ 1 both 100:1 export 100:3 VPN2 2 both 100:2 62825 VPN2 100:3 3 both Note: The mplsL3VpnVrfName is actually an octet string that represents the string length

Figure 38 Sample Configuration and the mplsVpnVrfRouteTargetTable

octet string that represents the string length (4) and the ASCII codes for each character. For example, VPN1 is represented as 4.86.80.78.49.

The mplsVpnVrfRouteTargetTable shows the import and export route targets for each VRF. The table is indexed by the following:

- mplsVpnVrfName--The VRF name
- mplsVpnVrfRouteTargetIndex--The route target entry identifier
- mplsVpnVrfRouteTargetType--A value specifying whether the entry is an import route target, export route target, or is defined as both

The table below lists the MIB objects and their functions for this table.

Table 94 PPVPN-MPLS-VPN MIB Objects for the mplsVpnVrfRouteTargetTable

MIB Object	Function
mplsVpnVrfRouteTargetIndex	A value that defines each route target's position in the table.
mplsVpnVrfRouteTargetType	Determines which type of route target the entry represents: import (1), export (2), or both (3).
mplsVpnVrfRouteTarget	Determines the route distinguisher for this target.
mplsVpnVrfRouteTargetDescr	Description of the route target. This object is not supported. Therefore, the object is the same as mplsVpnVrfRouteTarget.
mplsVpnVrfRouteTargetRowStatus	Read-only implementation. This object normally reads "active (1)," but may read "notInService (2)," if a VRF was recently deleted.

mplsVpnVrfBgpNbrAddrTable

The BGP neighbor address table (mplsVpnVrfBgpNbrAddrTable) represents the MPLS external Border Gateway Protocol (eBGP) neighbors that are defined for a particular VRF. An LSR creates an entry for every BGP neighbor that is defined in the VRF's address-family.

The mplsVpnVrfBgpNbrAddrTable is indexed by the following:

- mplsVpnVrfName--The VRF name
- mplsVpnInterfaceConfIndex--An identifier that is the same as the ifIndex from the Interface MIB of the interface assigned to the VRF
- mplsVpnVrfBgpNbrIndex--The IP address of the neighbor

The table below lists the MIB objects and their functions for this table.

Table 95 PPVPN-MPLS-VPN MIB Objects for the mplsVpnVrfBgpNbrAddrTable

MIB Object	Function
mplsVpnVrfBgpNbrIndex	The IPv4 address of the eBGP neighbor.
mplsVpnVrfBgpNbrRole	The role of this eBGP neighbor: customer edge (1) or provider edge (2). If the object mplsVpnInterfaceVpnClassification is CSC, then this value is provider edge (2); otherwise, this value is customer edge (1).
mplsVpnVrfBgpNbrType	Address type of this eBGP neighbor. The MIB supports only IPv4 (1). Therefore, this object returns "ipv4 (1)."
mplsVpnVrfBgpNbrAddr	IP address of the eBGP neighbor.
mplsVpnVrfBgpNbrRowStatus	Read-only implementation. This object normally reads "active (1)," but may read "notInService (2)" if a VRF was recently deleted.

MIB Object	Function
mplsVpnVrfBgpNbrStorageType	Read-only implementation. This object always reads "volatile (2)."

mplsVpnVrfSecTable

The VRF security table (mplsVpnVrfSecTable) provides information about security for each VRF. An LSR creates an entry in this table for every VRF capable of supporting MPLS VPN.

The mplsVpnVrfSecTable augments the mplsVpnVrfTable and has the same indexing.

The table below lists the MIB objects and their functions for this table.

Table 96 PPVPN-MPLS-VPN MIB Objects for the mplsVpnVrfSecTable

MIB Object	Function
mplsVpnVrfSecIllegalLabelViolations	The number of illegally received labels on a VRF interface. Only illegal labels are counted by this object, therefore the object only applies to a VRF interface that is MPLS enabled (CSC situation).
	This counter is incremented whenever a label is received that is above or below the valid label range, not in the global label forwarding table, or is received on the wrong VRF (that is, table IDs for the receiving interface and appropriate VRF label forwarding table do not match).
mplsVpnVrfSecIllegalLabelRcvThresh	Notification threshold for illegal labels received on this VRF. When the number of illegal labels received on this interface crosses this threshold, an mplsNumVrfSecIllegalLabelThreshExceeded notification is sent (if the notification is enabled and configured).
	This object is one of the few in this MIB agent that supports the SNMP SET operation, which allows you to change this value.

mplsVpnVrfPerfTable

The VRF performance table (mplsVpnVrfPerfTable) provides statistical performance information for each VRF. An LSR creates an entry in this table for every VRF capable of supporting MPLS VPN.

The mplsVpnVrfPerfTable augments the mplsVpnVrfTable and has the same indexing.

The table below lists the MIB objects and their functions for this table.

Table 97 PPVPN-MPLS-VPN MIB Objects for the mplsVpnVrfPerfTable

MIB Objects	Functions
mplsVpnVrfPerfRoutesAdded	The number of routes added to this VRF over the course of its lifetime.

MIB Objects	Functions
mplsVpnVrfPerfRoutesDeleted	The number of routes removed from this VRF.
mplsVpnVrfPerfCurrNumRoutes	The number of routes currently defined within this VRF.

mplsVpnVrfRouteTable

The VRF routing table (mplsVpnVrfRouteTable) provides the IP routing table information for each VRF. The information available in this table can also be accessed with the **show ip route vrf** *vrf-name* command. For example, for PE1 in the figure above:

• With the **show ip route vrf vpn1** command, you would see results like the following:

```
Router# show ip route vrf vpn1

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
!
Gateway of last resort is not set
!

10.0.0.0/32 is subnetted, 3 subnets
B 10.3.0.0 [200/0] via 192.168.2.1, 04:36:33
C 10.1.0.0/16 is directly connected, FastEthernet1
C 10.2.0.0/16 [200/0] directly connected FastEthernet2, 04:36:33
```

With the show ip route vrf vpn2 command, you would see results like the following:

```
Router# show ip route vrf vpn2

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

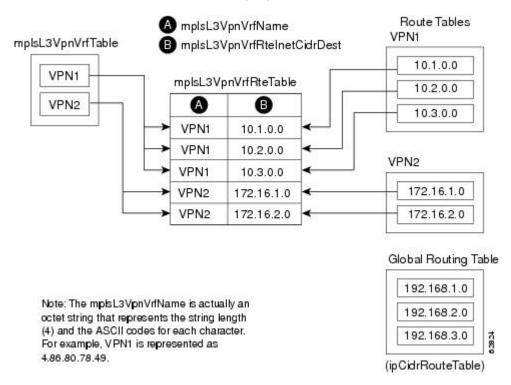
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route
!

Gateway of last resort is not set
!

172.16.0.0/32 is subnetted, 2 subnets


B 172.16.2.0 [200/0] via 192.168.2.1, 04:36:33

C 172.16.1.0 is directly connected, ATM 3/0
```

The figure below shows the relationship of the routing tables, the VRFs, and the mplsVpnVrfRouteTable. You can display information about the VPN1 and VPN2 route tables using the **show ip route vrf** *vrf-name*

command. The global route table is the same as ipCidrRouteTable in the IP-FORWARD-MIB. You can display information about the global route table with the **show ip route** command.

Figure 39 Route Table, VRFs, and the mplsVpnVrfRouteTable

An LSR creates an entry in this table for every route that is configured, either dynamically or statically, within the context of a specific VRF capable of supporting MPLS VPN.

The mplsVpnVrfRouteTable is indexed by the following:

- mplsVpnVrfName--The VRF name, which provides the VRF routing context
- mplsVpnVrfRouteDest--The IP destination address
- mplsVpnVrfRouteMask--The IP destination mask
- mplsVpnVrfRouteTos--The IP header ToS bits
- mplsVpnVrfRouteNextHop--The IP address of the next hop for each route entry

The ToS bits are not supported and, therefore, are always 0.

The table below lists the MIB objects and their functions for the mplsVpnVrfRouteTable. This table represents VRF-specific routes. The global routing table is the ipCidrRouteTable in the IP-FORWARD-MIB.

Table 98 PPVPN-MPLS-VPN MIB Objects for the mplsVpnVrfRouteTable

MIB Object	Function
mplsVpnVrfRouteDest	The destination IP address defined for this route.

MIB Object	Function
mplsVpnVrfRouteDestAddrType	The address type of the IP destination address (mplsVpnVrfRouteDest). This MIB implementation supports only IPv4 (1). Therefore, this object has a value of "ipv4 (1)."
mplsVpnVrfRouteMask	The destination IP address mask defined for this route.
mplsVpnVrfRouteMaskAddrType	The address type of the destination IP address mask. This MIB implementation supports only IPv4 (1). Therefore, this object has a value of "ipv4 (1)."
mplsVpnVrfRouteTos	The ToS bits from the IP header for this route. Cisco software supports only ToS bits of zero. Therefore, the object is always 0.
mplsVpnVrfRouteNextHop	The next hop IP address defined for this route.
mplsVpnVrfRouteNextHopAddrType	The address type of the next hop IP address. This MIB implementation only supports only IPv4 (1). Therefore, this object has a value of "ipv4 (1)."
mplsVpnVrfRouteIfIndex	The interface MIB ifIndex for the interface through which this route is forwarded. The object is 0 if no interface is defined for the route.
mplsVpnVrfRouteType	Defines if this route is a local or remotely defined route.
mplsVpnVrfRouteProto	The routing protocol that was responsible for adding this route to the VRF.
mplsVpnVrfRouteAge	The number of seconds since this route was last updated.
mplsVpnVrfRouteInfo	A pointer to more information from other MIBs. This object is not supported and always returns "nullOID (0.0)."
mplsVpnVrfRouteNextHopAS	The autonomous system number of the next hop for this route. This object is not supported and is always 0.
mplsVpnVrfRouteMetric1	The primary routing metric used for this route.
mplsVpnVrfRouteMetric2 mplsVpnVrfRouteMetric3 mplsVpnVrfRouteMetric4 mplsVpnVrfRouteMetric5	Alternate routing metrics used for this route. These objects are supported only for Cisco Interior Gateway Routing Protocol (IGRP) and Cisco Enhanced Interior Gateway Routing Protocol (EIGRP). These objects display the bandwidth metrics used for the route. Otherwise, these values are set to -1.
mplsVpnVrfRouteRowStatus	Read-only implementation. This object normally reads "active (1)," but may read "notInService (2)," if a VRF was recently deleted.
mpls Vpn Vrf Route Storage Type	Read-only implementation. This object always reads "volatile (2)."

PPVPN-MPLS-VPN MIB Notifications

This section provides the following information about supported PPVPN-MPLS-VPN MIB notifications:

- PPVPN-MPLS-VPN MIB Notification Events, page 370
- CISCO-IETF-PPVPN-MPLS-VPN MIB Notification Events, page 371
- Notification Specification, page 371
- Monitoring the PPVPN-MPLS-VPN MIB Notifications, page 372

PPVPN-MPLS-VPN MIB Notification Events

The following notifications of the PPVPN-MPLS-VPN MIB are supported:

- mplsVrfIfUp--Sent to an NMS when an interface comes up and is assigned a VRF instance.
- mplsVrfIfDown--Generated and sent to the NMS when a VRF is removed from an interface or the interface transitions from an operationally "up" state to a "down" state.
- mplsNumVrfRouteMidThreshExceeded--Generated and sent when the middle (warning) threshold is crossed. You can configure this threshold in the CLI by using the following commands:

```
Router(config)# ip vrf vrf-name
Router(config-vrf)# maximum routes limit warn-threshold (% of max)
```

The *warn-threshold* argument is a percentage of the maximum routes specified by the *limit* argument. You can also configure a middle threshold with the following command, in which the *limit* argument represents the warning threshold:

```
Router(config-vrf)# maximum routes limit warn-threshold (% of max)
```

This notification is sent to the NMS only at the time the threshold is exceeded. (See the figure below for a comparison of the warning and maximum thresholds.) Whenever the number of routes falls below this threshold and exceeds the threshold again, a notification is sent to the NMS.

 MplsNumVrfRouteMaxThreshExceeded--Generated and sent when you attempt to create a route on a VRF that already contains the maximum number of routes as defined by the *limit* argument of the maximum routesc ommands:

```
Router(config)# ip vrf vrf-name
Router(config-vrfmaximum routes limit warn-threshold (% of max)
```

A trap notification is sent to the NMS when you attempt to exceed the maximum threshold. Another MplsNumVrfRouteMaxThreshExceeded notification is not sent until the number of routes falls below the maximum threshold and reaches the maximum threshold again. (See the figure below for an example of how this notification works and for a comparison of the maximum and warning thresholds.)

The **maximum routes** command sets the number of routes for a VRF. You *cannot* exceed the number of routes in the VRF that you set with the **maximum routes** *limit warn-threshold* command. Prior to implementation of the PPVPN-MPLS-VPN MIB, you were not notified when this threshold (or the warning threshold) was reached.

mplsNumVrfSecIllegalLabelThreshExceeded--Generated and sent when the number of illegal labels
received on a VRF interface exceeds the threshold mplsVpnVrfSecIllegalLabelRcvThresh. This
threshold is defined with a value of 0. Therefore, a notification is sent when the first illegal label is
received on a VRF. Labels are considered illegal if they are outside of the valid label range, do not

have a Label Forwarding Information Base (LFIB) entry, or the table ID of the message does not match the table ID for the label in the LFIB.

CISCO-IETF-PPVPN-MPLS-VPN MIB Notification Events

The following notification of the CISCO-IETF-PPVPN-MPLS-VPN MIB is supported in Cisco software:

• cMplsNumVrfRouteMaxThreshCleared--Generated and sent when the number of routes on a VRF attempts to exceed the maximum number of routes and then drops below the maximum number of routes. If you attempt to create a route on a VRF that already contains the maximum number of routes, the mplsNumVrfRouteMaxThreshExceeded notification is sent (if enabled). When you remove routes from the VRF so that the number of routes falls below the set limit, the cMplsNumVrfRouteMaxThreshCleared notification is sent. You can clear all routes from the VRF by using the clear ip route vrf command. (See the figure below to see when the cMplsNumVrfRouteMaxThreshCleared notification is sent.)

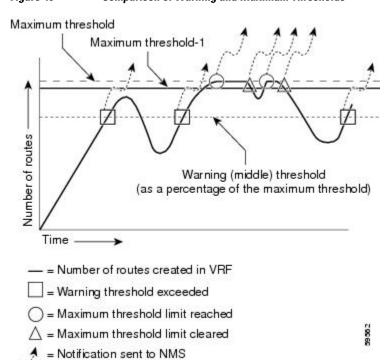


Figure 40 Comparison of Warning and Maximum Thresholds

Notification Specification

In an SNMPv1 notification, each VPN notification has a generic type identifier and an enterprise-specific type identifier for identifying the notification type.

- The generic type for all VPN notifications is "enterpriseSpecific" because this is not one of the generic notification types defined for SNMP.
- The enterprise-specific type is identified as follows:
 - 1 for *mplsVrfIfUp*
 - 2 for mplsVrfIfDown
 - 3 for mplsNumVrfRouteMidThreshExceeded

- 4 for mplsNumVrfRouteMaxThreshExceeded
- 5 for mplsNumVrfSecIllegalLabelThreshExceeded
- 6 for cMplsNumVrfRouteMaxThreshCleared

In SNMPv2, the notification type is identified by an SnmpTrapOID varbind (variable binding consisting of an object identifier [OID] type and value) included within the notification message.

Each notification also contains two additional objects from the PPVPN-MPLS-VPN MIB. These objects provide additional information about the event, as follows:

- The VRF interface up/down notifications provide additional variables--mplsVpnInterfaceConfIndex
 and mplsVpnVrfName-- in the notification. These variables describe the SNMP interface index and the
 VRF name, respectively.
- The mid and max threshold notifications include the mplsVpnVrfName variable (VRF name) and the mplsVpnVrfPerfCurrNumRoutes variable that indicates the current number of routes within the VRF.
- The illegal label notification includes the *mplsVpnVrfName* variable (VRF name) and the *mplsVpnVrfSecIllegalLabelViolations* variable that maintains the current count of illegal labels on a VPN.

Monitoring the PPVPN-MPLS-VPN MIB Notifications

When PPVPN-MPLS-VPN MIB notifications are enabled (see the **snmp-server enable traps mpls vpn** command in the Cisco IOS Multiprotocol Label Switching Command Reference), notification messages relating to specific MPLS VPN events within Cisco software are generated and sent to a specified NMS in the network. Any utility that supports SNMPv1 or SNMPv2 notifications can receive notification messages.

To monitor PPVPN-MPLS-VPN MIB notification messages, log in to an NMS that supports a utility that displays SNMP notifications, and start the display utility.

Unsupported Objects in PPVPN-MPLS-VPN MIB

The following objects from the mplsVpnVrfBgpPathAttrTable are not supported with SNMP management for MPLS VPN features in Cisco software:

- mplsVpnVrfBgpPathAttrPeer
- mplsVpnVrfBgpPathAttrIpAddrPrefixLen
- mplsVpnVrfBgpPathAttrIpAddrPrefix
- mplsVpnVrfBgpPathAttrOrigin
- mplsVpnVrfBgpPathAttrASPathSegment
- mplsVpnVrfBgpPathAttrNextHop
- mplsVpnVrfBgpPathAttrMultiExitDisc
- mplsVpnVrfBgpPathAttrLocalPref
- mplsVpnVrfBgpPathAttrAtomicAggregate
- mplsVpnVrfBgpPathAttrAggregatorAS
- mplsVpnVrfBgpPathAttrAggregatorAddr
- mplsVpnVrfBgpPathAttrCalcLocalPref
- mplsVpnVrfBgpPathAttrBest
- mplsVpnVrfBgpPathAttrUnknown

How to Configure MPLS VPN--MIB Support

- Configuring the SNMP Community, page 373
- Configuring the Router to Send SNMP Traps, page 374
- Configuring Threshold Values for MPLS VPN--SNMP Notifications, page 377

Configuring the SNMP Community

An SNMP community string defines the relationship between the SNMP manager and the agent. The community string acts like a password to regulate access to the agent on the router.

Perform this task to configure an SNMP community.

SUMMARY STEPS

- 1. enable
- **2. show running-config** [options]
- 3. configure terminal
- **4. snmp-server community** *string* [**view** *view-name*] [**ro** | **rw**] [*acl-number*]
- 5. do copy running-config startup-config
- 6. exit
- 7. show running-config [options]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show running-config [options]	Displays the running configuration to determine if an SNMP agent is already running.
	Example:	If no SNMP information is displayed, continue with the next step. If any SNMP information is displayed, you can modify the information or change.
	Router# show running-config	it as needed.
Step 3	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose	
Step 4	<pre>snmp-server community string [view view-name] [ro rw] [acl-number] Example: Router(config)# snmp-server community comaccess ro</pre>	Sets up the community access string to permit access to the SNMP protocol.	
		The <i>string</i> argument acts like a password and permits access to the SNMP protocol.	
		• The view <i>view-name</i> view-name keyword argument pair specifies the name of a previously defined view. The view defines the objects available to the	
		 community. The ro keyword specifies read-only access. Authorized management stations are only able to retrieve MIB objects. 	
		The rw keyword specifies read/write access. Authorized management stations are able to both retrieve and modify MIB objects.	
		• The <i>acl-number</i> argument is an integer from 1 to 99 that specifies an access list of IP addresses that are allowed to use the community string to gain access to the SNMP agent.	
Step 5	do copy running-config startup-config	Saves the modified configuration to NVRAM as the startup configuration file.	
Example:	Example:	The do command allows you to perform EXEC level commands in configuration mode.	
	Router(config)# do copy running- config startup-config		
Step 6	exit	Returns to privileged EXEC mode.	
	Example:		
	Router(config)# exit		
Step 7	show running-config [options]	(Optional) Displays the configuration information currently on the router, the configuration for a specific interface, or map-class information.	
	Example:	Use the show running-config command to check that the snmp-server statements appear in the output.	
	Router# show-running config include smnp-server		

Configuring the Router to Send SNMP Traps

Perform this task to configure the router to sendm SNMP traps to a host.

The **snmp-server host** command specifies which hosts receive traps. The **snmp-server enable traps** command globally enables the trap production mechanism for the specified traps.

For a host to receive a trap, an **snmp-server host** command must be configured for that host, and, generally, the trap must be enabled globally through the **snmp-server enable traps** command.

Note

Although you can set the *community-string* argument using the **snmp-server host** command by itself, we recommend you define this string using the **snmp-server community** command before using the **snmp-server host** command.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. snmp-server host** *host-addr* [**traps** | **informs**] [**version** {1 | 2c | 3 [auth | noauth | priv]}] *community-string* [**udp-port** *port*] [*notification-type*] [**vrf** *vrf-name*]
- **4.** snmp-server enable traps mpls vpn [illegal-label] [max-thresh-cleared] [max-threshold] [mid-threshold] [vrf-down] [vrf-up]
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

Command or Action Purpose Step 3 snmp-server host host-addr Specifies the recipient of an SNMP notification operation. [traps | informs] [version {1 | 2c The host-addr argument specifies the name or Internet address of the host (the 3 [auth | noauth | priv]}] targeted recipient). community-string [udp-port port] The **traps** keyword sends SNMP traps to this host. This is the default. [notification-type] [**vrf** vrf-name] The **informs** keyword sends SNMP informs to this host. The **version** keyword specifies the version of the SNMP used to send the traps. Version 3 is the most secure model, because it allows packet encryption with the **Example:** priv keyword. If you use the version keyword, you must specify one of the Router(config)# snmp-server following: host 172.20.2.160 traps comaccess mpls-vpn **1--SNMPv1.** This option is not available with informs. 2c -- SNMPv2C. 3--SNMPv3. The following three optional keywords can follow the version 3keyword (auth, noauth, priv). The *community-string* argument is a password-like community string sent with the notification operation. The **udp-port** port keyword and argument pair names the User Datagram Protocol (UDP) port of the host to use. The default is 162. The *notification-type* argument specifies the type of notification to be sent to the host. If no type is specified, all notifications are sent. The **vrf** vrf-name keyword and argument pair specifies the VRF table that should be used to send SNMP notifications. **Step 4** snmp-server enable traps mpls Enables the router to send MPLS VPN-specific SNMP notifications (traps and vpn [illegal-label] [max-threshinforms). cleared] [max-threshold] [mid-The illegal-label keyword enables a notification for any illegal labels received on threshold] [vrf-down] [vrf-up] a VRF interface. Labels are illegal if they are outside the legal range, do not have an LFIB entry, or do not match table IDs for the label. The max-thresh-cleared keyword enables a notification when the number of **Example:** routes falls below the limit after the maximum route limit was attempted. Router(config)# snmp-server The **max-threshold** keyword enables a notification that a route creation attempt enable traps mpls vpn vrfwas unsuccessful because the maximum route limit was reached. Another down vrf-up MplsNumVrfRouteMaxThreshExceeded notification is not sent until the number of routes falls below the maximum threshold and reaches the maximum threshold again. The max-threshold value is determined by the maximum routes command in VRF configuration mode. The mid-threshold keyword enables a notification of a warning that the number of routes created has crossed the warning threshold. This warning is sent only at the time the warning threshold is exceeded. The **vrf-down** keyword enables a notification for the removal of a VRF from an interface or the transition of an interface to the down state. The **vrf-up** keyword enables a notification for the assignment VRF to an interface that is operational or for the transition of a VRF interface to the

operationally up state.

	Command or Action	Purpose
Step 5	end	(Optional) Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuring Threshold Values for MPLS VPN--SNMP Notifications

Perform this task to configure the following threshold values for MPLS VPN--SNMP notifications:

- The mplsNumVrfRouteMidThreshExceeded notification event is generated and sent when the middle
 (warning) threshold is crossed. You can configure this threshold in the CLI by using the maximum
 routes command in VRF configuration mode. This notification is sent to the NMS only at the time the
 threshold is exceeded. Whenever the number of routes falls below this threshold and exceeds the
 threshold again, a notification is sent to the NMS.
- The mplsNumVrfRouteMaxThreshExceeded notification event is generated and sent when you attempt to create a route on a VRF that already contains the maximum number of routes as defined by the maximum routes command in VRF configuration mode. A trap notification is sent to the NMS when you attempt to exceed the maximum threshold. Another MplsNumVrfRouteMaxThreshExceeded notification is not sent until the number of routes falls below the maximum threshold and reaches the maximum threshold again.

See the figure above for an example of how this notification works and for a comparison of the maximum and warning thresholds.

The **maximum routes** command sets the number of routes for a VRF. You *cannot* exceed the number of routes in the VRF that you set with the **maximum routes** *limit warn-threshold* command. Prior to the implementation of the PPVPN-MPLS-VPN MIB, you were not notified when this threshold (or the warning threshold) was reached.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip vrf vrf-name
- **4.** maximum routes limit {warn-threshold | warn-only}
- 5. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	ip vrf vrf-name	Configures a VRF routing table and enters VRF configuration mode.
		• The <i>vrf-name</i> argument specifies the name assigned to a VRF.
	Example:	
	Router(config)# ip vrf vpnl	
Step 4	maximum routes limit {warn-threshold warn-only}	Limits the maximum number of routes in a VRF to prevent a PE router from importing too many routes.
	Example:	• The <i>limit</i> argument specifies the maximum number of routes allowed in a VRF. The range is from 1 to 4,294,967,295.
	Router(config-vrf)# maximum routes 10000 80	• The <i>warn-threshold</i> argument generates a warning when the number of routes set by the <i>warn-threshold</i> argument is reached and rejects routes that exceed the maximum number set in the <i>limit</i> argument. The warning threshold is a percentage from 1 to 100 of the maximum number of routes specified in the <i>limit</i> argument.
		• The warn-only keyword specifies that a system logging error message is issued when the maximum number of routes allowed for a VRF exceeds the limit threshold. However, additional routes are still allowed.
Step 5	end	(Optional) Exits to privileged EXEC mode.
	Example:	
	Router(config-vrf)# end	

Configuration Examples for MPLS VPN--MIB Support

- Example Configuring the SNMP Community, page 379
- Example Configuring the Router to Send SNMP Traps, page 379
- Example Configuring Threshold Values for MPLS VPN--SNMP Notifications, page 379

Example Configuring the SNMP Community

The following example shows enabling a simple SNMP community group. This configuration permits any SNMP client to access all PPVPN-MPLS-VPN MIB objects with read-only access using the community string comaccess.

```
Router# configure terminal
Router(config)# snmp-server community comaccess ro
```

Verify that the SNMP master agent is enabled for the MPLS VPN--MIB Support feature:

```
Router# show running-config | include snmp-server Building configuration...
. snmp-server community comaccess RO
```


If you do not see any "snmp-server" statements, SNMP is not enabled on the router.

Example Configuring the Router to Send SNMP Traps

The following example shows you how to enable the router to send MPLS VPN notifications to host 172.20.2.160 using the comaccess community string if a VRF transitions from an up or down state:

```
Router# configure terminal
Router(config)# snmp-server host 172.20.2.160 traps comaccess mpls-vpn
Router(config)# snmp-server enable traps mpls vpn vrf-down vrf-up
```

Example Configuring Threshold Values for MPLS VPN--SNMP Notifications

The following example shows how to set a maximum threshold of 10,000 routes and a warning threshold that is 80 percent of the maximum threshold for a VRF named vpn1 on a router:

```
Router(config)# ip vrf vpn1
Router(config-vrf)# maximum routes 10000 80
```

The following example shows how to set a warning threshold of 10,000 routes for a VRF named vpn2 on a router. An error message is generated; however, additional routes are still allowed because a maximum route threshold is not set with this command.

```
Router(config)# ip vrf vpn2
Router(config-vrf)# maximum routes 10000 warn-only
```

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases

Related Topic	Document Title
Description of commands associated with MPLS and MPLS applications	Cisco IOS Multiprotocol Label Switching Command Reference
MPLS VPN configuration tasks	Configuring MPLS Layer 3 VPNs
A description of SNMP agent support in Cisco software for the MPLS Traffic Engineering MIB (MPLS TE MIB)	MPLS Traffic Engineering (TE) MIB
Overview and configuration tasks for the MPLS distribution protocol	MPLS Label Distribution Protocol

Standards

Standard	Title
draft-ietf-ppvpn-mpls-vpn-mib-05	MPLS/BGP Virtual Private Network Management Information Base Using SMIv2

MIBs

MIB	MIBs Link
MPLS-VPN-MIBCISCO-IETF-PPVPN-MPLS-VPN-MIB	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
RFC 2233	The Interfaces Group MIB using SMIv2
RFC 2547	BGP/MPLS VPNs

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for MPLS VPN--MIB Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 99 Feature Information for MPLS VPN--MIB Support

Feature Name	Releases	Feature Information
MPLS VPNMIB Support	12.0(21)ST	This feature was introduced into
	12.0(22)S	Cisco IOS Release 12.0(21)ST.
	12.2(13)S	This feature was integrated into Cisco IOS Release 12.0(22)S.
	12.2(15)T	This feature was integrated into
	12.0(24)S1	Cisco IOS Release 12.2(13)S.
	12.0(25)S	The PPVPN-MPLS-VPN MIB
	12.0(30)S	notifications were supported in
	12.2(28)SB	Cisco IOS Release 12.2(13)T. The PPVPN-MPLS-VPN MIB
	12.2(33)SRA	tables were integrated into Cisco
	12.2(31)SB2	IOS Release 12.2(15)T.
	12.2(33)SXH	The feature was implemented for ATM and Frame Relay
	12.4(20)T	subinterfaces and integrated into
		Cisco IOS Release 12.0(24)S1.
		This feature was integrated into Cisco IOS Release 12.0(25)S.
		This feature was updated with the MPLS VPN Trap Enhancement feature, which introduced the cMplsNumVrfRouteMaxThreshCleared notification. The maxthresh-cleared keyword was added to the snmp-server enable traps mpls vpn command.
		This feature was integrated into Cisco IOS Release 12.2(28)SB.
		This feature was integrated into Cisco IOS Release 12.2(33)SRA.
		This feature was implemented into Cisco IOS Release 12.2(31)SB2.
		This feature was implemented into Cisco IOS Release 12.2(33)SXH.
		This feature was integrated into Cisco IOS Release 12.4(20)T.

Glossary

autonomous system --A collection of networks that share the same routing protocol and that are under the same system administration.

ASN.1 --Abstract Syntax Notation One. The data types independent of particular computer structures and representation techniques. Described by ISO International Standard 8824.

BGP --Border Gateway Protocol. The exterior Border Gateway Protocol used to exchange routing information between routers in separate autonomous systems. BGP uses TCP. Because TCP is a reliable protocol, BGP does not experience problems with dropped or fragmented data packets.

BGP prefixes--A route announcement using the BGP. A prefix is composed of a path of autonomous system numbers, indicating which networks the packet must pass through, and the IP block that is being routed. A BGP prefix would look something like: 701 1239 42 206.24.14.0/24. (The /24 part is referred to as a CIDR mask.) The /24 indicates that there are 24 ones in the netmask for this block starting from the left side. A /24 corresponds to the natural mask 255.255.255.0.

Cisco Express Forwarding --An advanced Layer 3 IP switching technology. Cisco Express Forwarding optimizes network performance and scalability for networks with large and dynamic traffic patterns.

CE router--customer edge router. A router on the border between a VPN provider and a VPN customer that belongs to the customer.

CIDR --classless interdomain routing. A technique supported by BGP4 and based on route aggregation. CIDR allows routers to group routes to reduce the quantity of routing information carried by the core routers. With CIDR, several IP networks appear to networks outside the group as a single, larger entity. With CIDR, IP addresses and their subnet masks are written as four octets, separated by periods, followed by a forward slash and a two-digit number that represents the subnet mask.

community --In SNMP, a logical group of managed devices and NMSs in the same administrative domain. **community name** --See community string.

community string --A text string that acts as a password and is used to authenticate messages sent between a managed station and a router containing an SNMP agent. The community string is sent in every packet between the manager and the client. Also called a community name.

IETF --Internet Engineering Task Force. A task force consisting of over 80 working groups responsible for developing Internet standards. The IETF operates under the auspices of ISOC. *See also* ISOC.

informs --A type of notification message that is more reliable than a conventional trap notification message, because the informs message notification requires acknowledgment, and a trap notification does not.

ISOC --Internet Society. An international nonprofit organization, founded in 1992, that coordinates the evolution and use of the Internet. In addition, ISOC delegates authority to other groups related to the Internet, such as the IAB. ISOC is headquartered in Reston, Virginia (United States).

label --A short, fixed-length data construct that tells switching nodes how to forward data (packets or cells).

LDP --Label Distribution Protocol. A standard protocol between MPLS-enabled routers that is used for the negotiation of the labels (addresses) used to forward packets.

LFIB --Label Forwarding Information Base. In the Cisco Label Switching system, the data structure for storing information about incoming and outgoing tags (labels) and associated equivalent packets suitable for labeling.

LSR --label switch router. A device that forwards MPLS packets based on the value of a fixed-length label encapsulated in each packet.

MIB --Management Information Base. A database of network management information that is used and maintained by a network management protocol such as SNMP or CMIP. The value of a MIB object can be

changed or retrieved using SNMP or CMIP commands, usually through a GUI network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MPLS --Multiprotocol Label Switching. A method for forwarding packets (frames) through a network. It enables routers at the edge of a network to apply labels to packets (frames). ATM switches or existing routers in the network core can switch packets according to the labels with minimal lookup overhead.

MPLS interface -- An interface on which MPLS traffic is enabled.

MPLS VPN --Multiprotocol Label Switching Virtual Private Network. An IP network infrastructure delivering private network services over a public infrastructure using a Layer 3 backbone. Using MPLS VPNs in a Cisco network provides the capability to deploy and administer scalable Layer 3 VPN backbone services including applications, data hosting network commerce, and telephony services to business customers.

For an MPLS VPN solution, an MPLS VPN is a set of provider edge routers that are connected by means of a common "backbone" network to supply private IP interconnectivity between two or more customer sites for a given customer. Each VPN has a set of provisioning templates and policies and can span multiple provider administrative domains (PADs).

NMS --network management system. A powerful, well-equipped computer (typically an engineering workstation) that is used by a network administrator to communicate with other devices in the network. An NMS is typically used to manage network resources, gather statistics, and perform a variety of network administration and configuration tasks.

notification -- A message sent by an SNMP agent to a network management station, console, or terminal to indicate that a significant event within Cisco software has occurred. *See also* trap.

PE router --provider edge router. A router on the border between a VPN provider and a VPN customer that belongs to the provider.

PPVPN --Provider-Provisioned VPN. The name of the IETF working group that is developing the PPVPN-MPLS-VPN MIB.

QoS --quality of service. A measure of performance for a transmission system that reflects its transmission quality and service availability.

RSVP --Resource Reservation Protocol. A protocol for reserving network resources to provide quality of service guarantees to application flows.

RT --route target. An extended community attribute that identifies a group of routers and, in each router of that group, a subset of forwarding tables maintained by the router that can be populated with a BGP route carrying that extended community attribute. The RT is a 64-bit value by which Cisco discriminates routes for route updates in VRFs.

SNMP --Simple Network Management Protocol. The network management protocol used almost exclusively in TCP/IP networks. SNMP provides a means to monitor and control network devices, and to manage configurations, statistics collection, performance, and security. *Seealso* SNMP2.

SNMP2 --SNMP Version 2. Version 2 of the popular network management protocol. SNMP2 supports centralized and distributed network management strategies, and includes improvements in the Structure of Management Information (SMI), protocol operations, management architecture, and security. *See also* SNMP.

traffic engineering -- The techniques and processes used to cause routed traffic to travel through the network on a path other than the one that would have been chosen if standard routing methods had been used.

trap --A message sent by an SNMP agent to a network management station, console, or terminal, indicating that a significant event occurred. Traps (notifications) are less reliable than inform requests,

because the receiver does not send an acknowledgment when it receives a trap. The sender cannot determine if the trap was received. See also notification.

VPN --Virtual Private Network. A group of sites that, as the result of a set of administrative policies, are able to communicate with each other over a shared backbone network. A VPN is a secure IP-based network that shares resources on one or more physical networks. A VPN contains geographically dispersed sites that can communicate securely over a shared backbone. See alsoMPLS VPN.

VPN ID --A mechanism that identifies a VPN based on RFC 2685. A VPN ID consists of an Organizational Unique Identifier (OUI), a three-octet hex number assigned by the IEEE Registration Authority, and a VPN index, a four-octet hex number, which identifies the VPN within the company.

VRF --VPN routing and forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

MPLS EM—MPLS VPN MIB RFC 4382 Upgrade

The MPLS EM—MPLS VPN MIB RFC 4382 Upgrade feature document describes the MPLS-L3VPN-STD-MIB that supports Multiprotocol Label Switching (MPLS) Layer 3 Virtual Private Networks (VPNs) based on RFC 4382, MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information Base, and describes the major differences between RFC 4382 and MPLS-VPN-MIB, which is based on the Internet Engineering Task Force (IETF) draft Version 3 (draft-ieft-ppvpn-mpls-vpn-mib-03.txt). This document also describes the changes needed to implement MPLS-L3VPN-STD-MIB (RFC 4382). The MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB provide an interface for managing the MPLS VPN feature in Cisco IOS software through the use of the Simple Network Management Protocol (SNMP).

Cisco IOS MPLS Embedded Management (EM) is a set of standards and value-added services that facilitate the deployment, operation, administration, and management of MPLS-based networks according to the fault, configuration, accounting, performance, and security (FCAPS) model.

- Finding Feature Information, page 387
- Prerequisites for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade, page 387
- Restrictions for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade, page 388
- Information About MPLS EM—MPLS VPN MIB RFC 4382 Upgrade, page 388
- How to Configure MPLS EM—MPLS VPN MIB RFC 4382 Upgrade, page 417
- Configuration Examples for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade, page 426
- Additional References, page 427
- Feature Information for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade, page 429
- Glossary, page 431

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade

The MPLS-L3VPN-STD-MIB agent requires the following:

- SNMP is installed and enabled on the label switching routers (LSRs).
- MPLS is enabled on the LSRs.
- Multiprotocol Border Gateway Protocol (BGP) is enabled on the LSRs.
- Cisco Express Forwarding is enabled on the LSRs.
- Label Distribution Protocol (LDP) paths or traffic-engineered tunnels (RFC 3812) are configured between provider edge (PE) routers and customer edge (CE) routers.

Restrictions for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade

The following is not supported for Cisco IOS Releases 12.2(33)SRC and 12.2(33)SB:

• Configuration of the MIB using the SNMP SET command is not supported, except for the trap-related object, mplsL3VpnNotificationEnable.

Information About MPLS EM—MPLS VPN MIB RFC 4382 Upgrade

- MPLS Layer 3 VPN Overview, page 388
- MPLS-L3VPN-STD-MIB Benefits, page 388
- Capabilities Supported by the MPLS-L3VPN-STD-MIB, page 389
- Supported Objects in the MPLS-L3VPN-STD-MIB, page 389
- MPLS-L3VPN-STD-MIB Scalar Objects, page 390
- MPLS-L3VPN-STD-MIB MIB Tables, page 391
- MPLS-L3VPN-STD-MIB Notification Events, page 405
- MPLS-L3VPN-STD-MIB Support for IPv6 VPNs over MPLS, page 408
- MPLS-L3VPN-STD-MIB Data Security, page 411
- Major Differences Between the MPLS-VPN-MIB and the MPLS-L3VPN-STD-MIB, page 412

MPLS Layer 3 VPN Overview

The MPLS Layer 3 VPN technology allows service providers to offer intranet and extranet VPN services that directly connect their customers' remote offices to a public network with the same security and service levels that a private network offers. Each VPN is associated with one or more VPN routing and forwarding (VRF) instances. A VRF is created for each VPN defined on a router and contains most of the information needed to manage and monitor MPLS Layer 3 VPNs: an IP routing table, a derived Cisco Express Forwarding table, a set of interfaces that use this forwarding table, and a set of rules and routing protocol parameters that control the information that is included in the routing table.

MPLS-L3VPN-STD-MIB Benefits

The MPLS-L3VPN-STD-MIB provides access to VRF information, and to interfaces included in the VRF, and other configuration and monitoring information.

The MPLS-L3VPN-STD-MIB provides the following benefits:

- A standards-based SNMP interface for retrieving information about critical MPLS VPN events.
- VRF information to assist in the management and monitoring of MPLS VPNs.
- Information, in conjunction with the Interfaces MIB, about interfaces assigned to VRFs.
- Performance statistics for all VRFs on a router.
- The generation and queueing of notifications that call attention to major changes in the operational status of MPLS VPN enabled interfaces and the forwarding of notification messages to a designated network management system (NMS) for evaluation and action by network administrators.
- Warning when VPN routing tables are approaching or exceed their capacity.
- Warnings about the reception of illegal labels on a VRF-enabled interface. Such receptions may
 indicate misconfiguration or an attempt to violate security.

Capabilities Supported by the MPLS-L3VPN-STD-MIB

SNMP agent code operating with the MPLS-L3VPN-STD-MIB enables a standardized, SNMP-based approach to managing MPLS VPNs in Cisco IOS software.

The MPLS-L3VPN-STD-MIB is based on RFC 4382, MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information Base, which includes objects describing features that support MPLS VPN events.

The MPLS-L3VPN-STD-MIB provides you with the ability to do the following:

- Gather routing and forwarding information for MPLS VPNs on a router.
- Display information in the VRF routing table.
- Send notification messages that signal changes when critical MPLS VPN events occur.
- Enable, disable, and configure notification messages for MPLS VPN events by using extensions to existing SNMP command-line interface (CLI) commands.
- Specify the IP address of an NMS in the operating environment to which notification messages are sent.
- Write notification configurations into nonvolatile memory.

Some slight differences between RFC 4382 and the actual implementation of MPLS VPNs within Cisco IOS software require some minor translations between the MPLS-L3VPN-STD-MIB and the internal data structures of Cisco IOS software. These translations are accomplished by means of the SNMP agent code. Also, while running as a low priority process, the SNMP agent provides a management interface to Cisco IOS software. SNMP adds minimal overhead on the normal functions of the device.

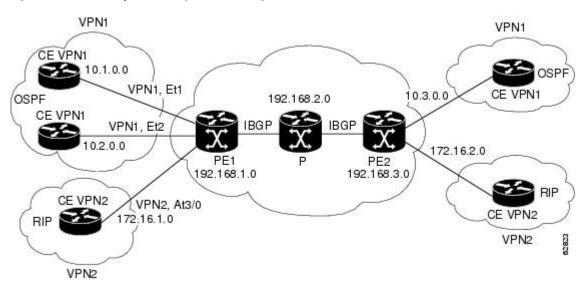
All MPLS-L3VPN-STD-MIB objects are based on RFC 4382; thus, no Cisco-specific SNMP application is required to support the functions and operations pertaining to the MPLS-L3VPN-STD-MIB features.

Supported Objects in the MPLS-L3VPN-STD-MIB

The MPLS-L3VPN-STD-MIB contains numerous tables and object definitions that provide read-only SNMP management support for the MPLS VPN feature in Cisco IOS software. The MPLS-L3VPN-STD-MIB conforms to Abstract Syntax Notation One (ASN.1), thus providing an idealized MPLS VPN database.

Using any standard SNMP network management application, you can retrieve and display information from the MPLS-L3VPN-STD-MIB using GET operations; similarly, you can traverse information in the MIB database for display using GETNEXT operations.

The MPLS-L3VPN-STD-MIB tables and objects are described briefly in the following sections:


The figure below shows a simple MPLS VPN configuration. This configuration includes two customer MPLS VPNs (labeled VPN1 and VPN2) and a simple provider network that consists of two PE routers

(labeled PE1 and PE2) and a provider core router labeled P. The figure below shows the following sample configuration:

- VRF names—VPN1 and VPN2
- Interfaces associated with VRFs—Et1, Et2, and At3/0
- Routing protocols—Open Shortest Path First (OSPF), Routing Information Protocol (RIP), and Interior Border Gateway Protocol (IBGP)
- Routes associated with VPN1—10.1.0.0, 10.2.0.0, and 10.3.0.0
- Routes associated with VPN2—172.16.1.0 and 172.16.2.0
- Routes associated with the provider network—192.168.1.0, 192.168.2.0, and 192.168.3.0

This configuration is used to explain MPLS VPN events that are monitored and managed by the MPLS-L3VPN-STD-MIB.

Figure 41 Sample MPLS Layer 3 VPN Configuration

For information on IPv6 VPN over MPLS (6VPE) configuration, see the "Implementing IPv6 VPN over MPLS (6VPE)" chapter in the *Cisco IOS IPv6 Configuration Guide* .

MPLS-L3VPN-STD-MIB Scalar Objects

MPLS-L3VPN-STD-MIB defines several scalar objects. The table below describes the scalar objects that are implemented for Cisco IOS Release 12.2(33)SRC and Release 12.2(33)SB.

Table 100 MPLS-L3VPN-STD-MIB Scalar Objects

MIB Object	Description
mplsL3VpnConfiguredVrfs	The number of VRFs configured on the router, including VRFs recently deleted.
mplsL3VpnActiveVrfs	The number of VRFs that are active on the router. An active VRF is assigned to at least one interface that is in the operationally up state.

MIB Object	Description
mplsL3VpnConnectedInterfaces	The total number of interfaces assigned to a VRF.
mplsL3VpnNotificationEnable	An object to enable or disable MPLS-L3VPN-STD-MIB notifications:
	 Setting this object to true enables all notifications defined in the MPLS-L3VPN-STD-MIB.
	• Setting this object to false disables all notifications defined in the MIB. This is the default.
	This is one of the few objects that is writable.
mplsL3VpnVrfConfMaxPossRts	The number of routes that this router is capable of storing. This value cannot be determined because it is based on the amount of available memory in the system. Therefore, this object is set to zero (0).
mplsL3VpnVrfConfRteMxThrshTime	An interval in seconds in which repeat mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notifications can be sent if there is an attempt to continuously add routes after the maximum route limit is reached.
	The default value is 0. When the value is 0, the MIB agent does not send the notification again unless the number of routes drops below the threshold and attempts to exceed the threshold again.
	You can set the number of seconds after which the maximum threshold notification is sent with the following configuration command:
	<pre>Router(config)# snmp mib mpls vpn max-threshold seconds</pre>
mplsL3VpnIllLblRcvThrsh	A number above which the receipt of an illegal label generates an mplsNumVrfSecIllglLblThrshExcd notification. The default value is 0.
	You can set the number of illegal labels that generate a notification with the following configuration command:
	Router(config)# snmp mib mpls vpn illegal-label number

MPLS-L3VPN-STD-MIB MIB Tables

- VRFConfigurationTable(mplsL3VpnVrfTable), page 392
- VPN Interface Configuration Table (mplsL3VpnIfConfTable), page 396
- VRF Route Target Table (mplsL3VpnVrfRTTable), page 397
- VRFSecurityTable(mplsL3VpnVrfSecTable), page 399
- VRFPerformanceTable(mplsL3VpnVrfPerfTable), page 400
- VRF Routing Table (mplsL3VpnVrfRteTable), page 401

VRFConfigurationTable(mplsL3VpnVrfTable)

Entries in the VRF configuration table (mplsL3VpnVrfTable) represent the VRF instances that are configured on the router. These include recently deleted VRFs. The information in this table is also displayed in the output of the **show vrf detail** command.

Each VRF is referenced by its VRF name (mplsL3VpnVrfName).

The table below lists MPLS Layer 3 VPN information and the associated MIB objects supported by the VRF configuration table (mplsL3VpnVrfTable).

Table 101 VRF Configuration Table—MPLS Layer 3 VPN Information and Associated MIB Objects

MIB Object	MPLS Layer 3 VPN Information
mplsL3VpnVrfName	The name associated with this VRF. When this object is used as an index to a table, the first octet is the string length, and subsequent octets are the ASCII codes of each character. For example, "vpn1" is represented as 4.118.112.110.49.
	The VRF name can be equivalent to the VPN ID. If the VRF name is equivalent to the VPN ID, the VRF name must be equivalent to the value for the mplsL3VpnVrfVpnId MIB object. We recommend that all sites that support VRFs that are part of the same VPN use the same naming convention for VRFs and use the same VPN ID.
mplsL3VpnVrfVpnId	The VPN identification number based on RFC 2685. If you do not specify a VPN ID, the value is an empty string.
mplsL3VpnVrfDescription	The description of the VRF. This is specified with the description command in VRF configuration mode:
	<pre>Router(config)# vrf definition vrf-name Router(config-vrf)# description vrf-description</pre>
	Note You can use the vrf definition <i>vrf-name</i> command to configure both IPv6 and IPv4 address-family VRFs. When you use the ip vrf <i>vrf-name</i> command, you can configure only an IPv4 address-family VRF.
mplsL3VpnVrfRD	The route distinguisher for this VRF. This is specified with the rd command in VRF configuration mode:
	<pre>Router(config)# vrf definition vrf-name Router(config-vrf)# rd route-distinguisher</pre>
	Note You can use the vrf definition <i>vrf-name</i> command to configure both IPv6 and IPv4 address-family VRFs. When you use the ip vrf <i>vrf-name</i> command, you can configure only an IPv4 address-family VRF.

MIB Object	MPLS Layer 3 VPN Information
mplsL3VpnVrfCreationTime	The value of the sysUpTime when this VRF entry was created.
mplsL3VpnVrfOperStatus	The operational status of this VRF. A VRF is up (1) when at least one interface associated with the VRF is up. A VRF is down (2) when:
	 No interfaces exist whose ifOperStatus = up (1). No interfaces are associated with this VRF.
mplsL3VpnVrfActiveInterfaces	The number of interfaces assigned to this VRF that are operationally up.
mplsL3VpnVrfAssociatedInterfaces	The number of interfaces assigned to this VRF, independent of the operational status.

MIB Object

mplsL3VpnVrfConfMidRteThresh

MPLS Layer 3 VPN Information

The middle threshold. If the number of routes in the VRF crosses this threshold, an mplsL3VpnVrfRouteMidThreshExceeded notification is sent (if notifications are enabled and configured). You can set this value in VRF address family configuration mode as a percentage of the maximum with the **maximum routes** *limit* {*warn-threshold* | **warn-only**} command.

For example, the following **maximum routes** command sets the warning threshold for an IPv4 address family in VRF vpn1 as 50 percent of the maximum route threshold:

```
Router(config)# vrf definition vpn1
Router(config-vrf)# address-family
  ipv4

Router(config-vrf-af)# maximum routes
1000 50
```

If vpn1 also has an IPv6 address family configured, the following **maximum routes** command sets the warning threshold for the IPv6 address family as 50 percent of its maximum route threshold:

```
Router(config)# vrf definition vpn1
Router(config-vrf)# address-family
1pv6

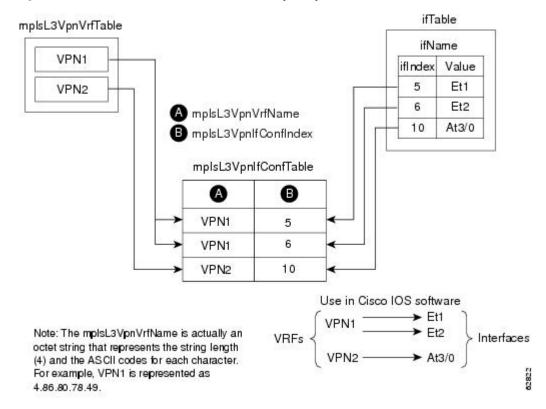
Router(config-vrf-af)# maximum routes
2000 50
```

Note The **vrf definition** *vrf-name* command can configure both IPv6 and IPv4 address-family VRFs. When you use the **ip vrf** *vrf-name* command, you can configure only an IPv4 address-family VRF.

If both IPv4 and IPv6 address-family configurations are present in the VRF, the threshold is an aggregate of the warning threshold values. In this example, the aggregate warning threshold is 1500 routes [(ipv4 = 500) + (ipv6 = 1000)]. An mplsL3VpnVrfRouteMidThreshExceeded notification is not sent until both address families reach their warning threshold. If only a single address family exists for the VRF, the mplsL3VpnVrfRouteMidThreshExceeded notification is sent when the warning threshold is reached for the single address family.

The following command sets a middle threshold of 1000 routes. An mplsL3VrfRouteMidThreshExceeded notification is sent when this threshold is exceeded. However, additional routes are still allowed because a maximum route threshold is not set with this command.

```
Router(config-vrf-if)# maximum routes
1000 warn-only
```


MIB Object	MPLS Layer 3 VPN Information
	See the MPLS-L3VPN-STD-MIB Notification Events, page 405 for more information on the mplsL3VpnVrfRouteMidThreshExceeded notification.
mplsL3VpnVrfConfHighRteThresh	The maximum route threshold. If the number of routes in the VRF crosses this threshold, an mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification is sent (if notifications are enabled and configured). You can set this value in VRF address family configuration mode with the maximum routes limit {warn-threshold warn-only} command as follows:
	Router(config)# vrf definition vpn2 Router(config-vrf)# address-family ipv4 Router(config-vrf-af)# maximum routes 1000 75 Router(config)# vrf definition vpn2 Router(config-vrf)# address-family ipv6 Router(config-vrf-af)# maximum routes 2000 75
	Note The vrf definition <i>vrf-name</i> command can configure both IPv6 and IPv4 address-family VRFs. When you use the ip vrf <i>vrf-name</i> command, you can configure only an IPv4 address-family VRF.
	If both IPv4 and IPv6 address-family configurations are present in the VRF, the threshold is an aggregate of the maximum threshold values. In this example, the aggregate maximum route threshold is 3000 [(ipv4 = 1000)+ (ipv6 = 2000)]. An mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification is not sent until both address families reaches their maximum route threshold. If only a single address family exists for the VRF, the mplsL3VpnVrfRouteMaxThreshExceeded notification is sent when the maximum route threshold is reached for the single address family. Routes are not added to the address-family that has already reached its maximum route threshold.
	See the MPLS-L3VPN-STD-MIB Notification Events, page 405 for more information on the mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification.
mplsL3VpnVrfConfMaxRoutes	This value is the same as that for mplsL3VpnVrfConfHighRteThresh.
mplsL3VpnVrfConfLastChanged	The value of sysUpTime when the configuration of the VRF changes or interfaces are assigned or unassigned from the VRF. Note This object is updated only when values in this table change.

MIB Object	MPLS Layer 3 VPN Information	
mplsL3VpnVrfConfRowStatus	The status of a row in the table. This object normally reads "active (1)," but may read "notInService (2)" if a VRF was recently deleted. The operation status of the VRF. The possible values are: • up (1)—At least one interface is administratively up and the VRF is ready to pass packets. • down (2)—All interfaces are administratively down and the VRF cannot pass packets.	
mplsL3VpnVrfConfAdminStatus		
mplsL3VpnVrfConfStorageType	The storage type for the VRF entry. This object always returns a value of "volatile (2)."	

VPN Interface Configuration Table (mplsL3VpnlfConfTable)

In Cisco IOS software, a VRF is associated with one MPLS Layer 3 VPN. Zero or more interfaces can be associated with a VRF. A VRF uses an interface that is defined in the ifTable of the Interfaces Group of MIB II (IFMIB). The IFMIB defines objects for managing interfaces. The ifTable of this MIB contains information on each interface in the network. The mplsL3VpnIfConfTable associates a VRF from the mplsL3VpnVrfTable with a forwarding interface from the ifTable. The figure below shows the relationship between VRFs and interfaces defined in the ifTable and the mplsL3VpnIfConfTable.

Figure 42 VRFs, the Interfaces MIB, and the mplsL3VpnlfConfTable

Entries in the VPN interface configuration table (mplsL3VpnIfConfTable) represent the interfaces that are assigned to each VRF. The information available in this table is also displayed in the output of the **show vrf** command.

The mplsL3VpnIfConfTable shows how interfaces are assigned to VRFs. An LSR creates an entry in this table for every interface capable of supporting MPLS Layer 3 VPNs.

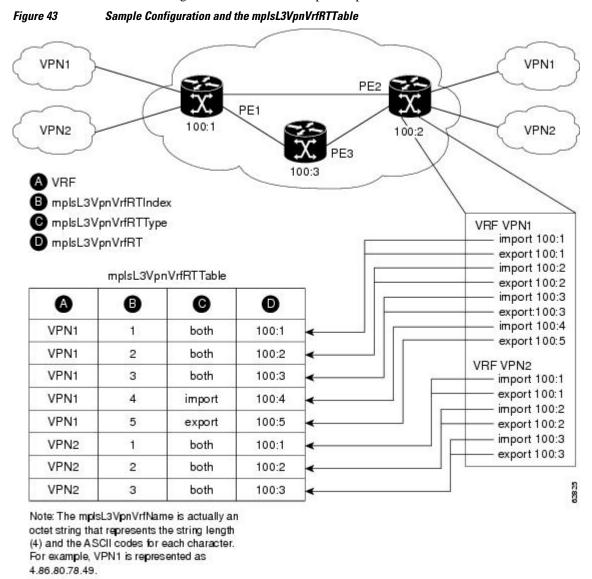
The mplsL3VpnIfConfTable is indexed by the following:

- mplsL3VpnVrfName—The VRF name
- mplsL3VpnIfConfIndex—An identifier that is the same as the ifIndex from the Interface MIB of the interface assigned to the VRF

The table below lists MPLS Layer 3 VPN information and the associated MIB objects supported by the VPN interface configuration table (mplsL3VpnIfConfTable).

Table 102 VPN Interface Configuration Table—MPLS Layer 3 VPN Information and Associated MIB Objects

MIB Object	MPLS Layer 3 VPN Information	
mplsL3VpnIfConfIndex	Provides the interface MIB ifIndex of this interface that is assigned to a VRF.	
mplsL3VpnIfVpnClassification	Specifies what type of VPN this interface is providing: carrier supporting carrier (CsC) (1), enterprise (2), or InterProvider (3).	
	This value is set to enterprise (2) if MPLS is not enabled and to carrier supporting carrier (1) if MPLS is enabled on this interface.	
mplsL3VpnIfVpnRouteDistProtocol	Indicates the route distribution protocols that are being used to redistribute routes across the PE-to-CE link on this interface: none (0), BGP (1), OSPF (2), RIP (3), Intermediate System-Intermediate System (IS-IS) (4), static (5), or other (6). More than one protocol can be enabled at the same time.	
	In Cisco IOS software, router processes are defined and redistributed on a per-VRF basis, not per-interface. Therefore, all interfaces assigned to the same VRF have the same value for this object.	
mplsL3VpnIfConfStorageType	Indicates the storage type for the VPN interface entry. The default value for this object is "volatile (2)."	
mplsL3VpnIfConfRowStatus	Provides the status of the row in the table that associates the specified interface with the VRF. This object normally reads "active (1)," but may read "notInService (2)," if a VRF was recently deleted.	


VRF Route Target Table (mplsL3VpnVrfRTTable)

The VRF route target table (mplsL3VpnVrfRTTable) describes the route target communities that are defined for a particular VRF. An LSR creates an entry in this table for each target configured for a VRF supporting an MPLS Layer 3 VPN instance.

The distribution of VPN routing information is controlled through the use of VPN route target communities, implemented by BGP extended communities. Distribution of VPN routing information works as follows:

- When a VPN route learned from a CE router is injected into BGP, a list of VPN route target extended
 community attributes is associated with it. Typically the list of route target community values is set
 from an export list of route targets associated with the VRF from which the route was learned.
- An import list of route target extended communities is associated with each VRF. The import list
 defines route target extended community attributes a route must have for the route to be imported into
 the VRF. For example, if the import list for a particular VRF includes route target communities A, B,
 and C, then any VPN route that carries any of those route target extended communities—A, B, or C—
 is imported into the VRF.

The figure below shows a sample configuration and its relationship to an mplsL3VpnVrfRTTable. A route target table exists on each PE router. Routers with route distinguishers (RDs) 100:1, 100:2, and 100:3 are shown in the sample configuration. Routers with RDs 100:4 and 100:5 are not shown in the figure below, but are included in the route targets for PE2 and in the mplsL3VpnVrfRTTable.

The mplsL3VpnVrfRTTable shows the import and export route targets for each VRF. The table is indexed by the following:

- mplsL3VpnVrfName—The VRF name
- mplsL3VpnVrfRTIndex—The route target entry identifier
- mplsL3VpnVrfRTType—A value specifying whether the entry is an import route target, is an export route target, or is defined as both

The table below lists MPLS Layer 3 VPN information and the associated MIB objects supported by the VRF route target table (mplsL3VpnVrfRTTable).

Table 103 VRF Route Target Table—MPLS Layer 3 VPN Information and Associated MIB Objects

MIB Object	MPLS Layer 3 VPN Information A value that defines each route target's position in the table.	
mplsL3VpnVrfRTIndex		
mplsL3VpnVrfRTType	The route target distribution type: import (1), export (2), or both (3).	
mplsL3VpnVrfRT	The route target distribution policy. Determines the route distinguisher for this target.	
mplsL3VpnVrfRTDescr	This object contains a string that indicates the address family in which the route target was declared. If the route target was declared in an IPv4 address family, the value of this object is AF_IPv4. If the route target was declared in an IPv6 address family, the value of this object is AF_IPv6.	
mplsL3VpnVrfRTRowStatus	The status of the row in the table. This object normally reads "active (1)," but may read "notInService (2)" if a VRF was recently deleted.	
mplsL3VpnVrfRTStorageType	The storage type for the VPN route target entry. The default value for this object is "volatile (2)."	

VRFSecurityTable(mplsL3VpnVrfSecTable)

The VRF security table (mplsL3VpnVrfSecTable) provides information about security for each VRF. An LSR creates an entry in this table for every VRF capable of supporting MPLS Layer 3 VPNs.

The mplsL3VpnVrfSecTable augments the mplsL3VpnVrfTable and has the same indexing.

The table below lists MPLS Layer 3 VPN information and the associated MIB objects supported by the VRF security table (mplsL3VpnVrfSecTable).

Table 104 VRF Security Table—MPLS Layer 3 VPN Information and Associated MIB Objects

MIB Object	MPLS Layer 3 Information The number of illegally received labels on a VRF interface. Only illegal labels are counted by this object, therefore the object applies only to a VRF interface that is MPLS-enabled (carrier supporting carrier [CsC] situation).	
mplsL3VpnVrfSecIllegalLblVltns		
	This counter is incremented whenever a label is received that is above or below the valid label range, is not in the global label forwarding table, or is received on the wrong VRF (that is, table IDs for the receiving interface and appropriate VRF label forwarding table do not match).	
	Note Discontinuities can occur at reinitialization of the management system and at other times are indicated by the value of the mplsL3VpnVrfSecDiscontinuityTime object.	
mplsL3VpnVrfSecDiscontinuityTime	The value of sysUpTime when any one or more of this entry's counters last had a discontinuity. A switchover would cause a discontinuity. If no discontinuities occurred since the last reinitialization of the local management system, this object contains a value of 0.	

VRFPerformanceTable(mplsL3VpnVrfPerfTable)

The VRF performance table (mplsL3VpnVrfPerfTable) provides statistical performance information for each VRF. An LSR creates an entry in this table for every VRF capable of supporting MPLS Layer 3 VPNs.

The mplsL3VpnVrfPerfTable augments the mplsL3VpnVrfTable and has the same indexing.

The table below lists the MPLS Layer 3 VPN information and the associated MIB objects supported by the VRF performance table (mplsL3VpnVrfPerfTable).

Table 105 VRF Performance Table—MPLS Layer 3 VPN Information and Associated MIB Objects

MIB Object MPLS Layer 3 VPN Information		
mplsL3VpnVrfPerfRoutesAdded	The value of this counter is the number of routes added to this VRF since the last discontinuity. Discontinuities can occur at reinitialization of the management system (such as on a switchover) and at other times are indicated by the value of the mplsL3VpnVrfPerfDiscTime object.	
	If both IPv4 and IPv6 address-family configurations are present in the VRF, the value of this counter is the sum of the number of routes from the IPv4 and IPv6 routing tables that are added to the VRF.	

MIB Object	MPLS Layer 3 VPN Information	
mplsL3VpnVrfPerfRoutesDeleted	The value of this counter is the number of routes removed from this VRF.	
	Note Discontinuities can occur at reinitialization of the management system and at other times are indicated by the value of the mplsL3VpnVrfPerfDiscTime object.	
	If both IPv4 and IPv6 address-family configurations are present in the VRF, the value of this counter is the sum of the number of routes from the IPv4 and IPv6 routing tables that have been deleted from the VRF.	
mplsL3VpnVrfPerfCurrNumRoutes	The number of routes currently defined within this VRF.	
	If both IPv4 and IPv6 address-family configurations are present in the VRF, the number of routes is the sum of the number of routes defined for the IPv4 and IPv6 address families in the VRF.	
mplsL3VpnVrfPerfRoutesDropped	This object is not supported. The counter always returns a value of 0.	
mplsL3VpnVrfPerfDiscTime	The value of sysUpTime when any one or more of this entry's counters had a discontinuity. A switchover would cause a discontinuity. If no discontinuities occurred since the last reinitialization of the local management subsystem, this object contains a value of 0.	

VRF Routing Table (mplsL3VpnVrfRteTable)

The VRF routing table (mplsL3VpnVrfRteTable) provides per-interface routing table information for each MPLS Layer 3 VPN VRF.

The information available in this table can also be displayed with the **show ip route vrf** *vrf-name* command for IPv4 routes or the **show ipv6 route vrf** *vrf-name* command for IPv6 routes.

• For example, for PE1 in the first figure above, with the **show ip route vrf vpn1** command, you would see results like the following:

```
Router# show ip route vrf vpn1

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

!

Gateway of last resort is not set
!

10.0.0.0/32 is subnetted, 3 subnets

B     10.3.0.0 [200/0] via 192.168.2.1, 04:36:33

C     10.1.0.0/16 is directly connected, Ethernet1

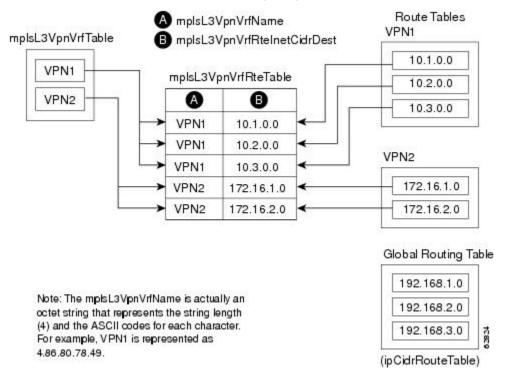
C     10.2.0.0/16 [200/0] directly connected Ethernet2, 04:36:33
```

• With the **show ip route vrf vpn2** command, you would see results like the following:

Router# show ip route vrf vpn2

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
!
Gateway of last resort is not set
!

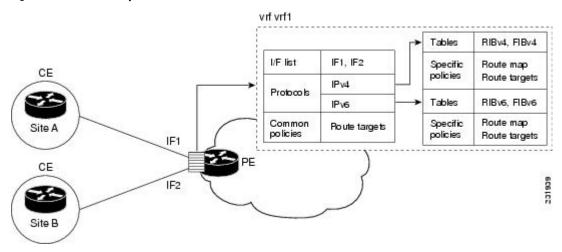
172.16.0.0/32 is subnetted, 2 subnets
B 172.16.2.0 [200/0] via 192.168.2.1, 04:36:33
C 172.16.1.0 is directly connected, ATM 3/0
```


• The following is sample IPv6 output associated with a VRF named vrf3 that you would see with the **show ipv6 route vrf** command:

```
Router# show ipv6 route vrf vrf3
IPv6 Routing Table vrf3 - 6 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
       U - Per-user Static route
        I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
       O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
    2001:8::/64 [0/0]
C
     via ::, FastEthernet0/0
    2001:8::3/128 [0/0]
     via ::, FastEthernet0/0
    2002:8::/64 [200/0]
     via ::FFFF:192.168.1.4,
    2010::/64 [20/1]
     via 2001:8::1,
    2012::/64 [0/0]
     via ::, Loopback1
    2012::1/128 [0/0]
     via ::, Loopback1
```

The figure below shows the relationship of the routing tables, the VRFs, and the mplsL3VpnVrfRteTable. You can display information about the VPN1 and VPN2 route tables using the **show ip route vrf** *vrf-name*

command. The global route table for IPv4 routes is the same as ipCidrRouteTable in the IP-FORWARD-MIB. You can display information about the global route table with the **show ip route** command.


Figure 44 IPv4 Route Table, VRFs, and the mplsL3VpnVrfRteTable

You can display information about IPv6 route tables using the **show ipv6 route vrf** {*vrf-name* | *vrf-number*} command. The global route table for IPv6 routes is the same as inetCidrRouteTable in the IP-FORWARD-MIB. You can display information about the global route table with the **show ipv6 route** command.

The figure below illustrates a multiprotocol VRF, in which the VRF named vrf1 is enabled for both IPv4 and IPv6 routes and is associated with two interfaces (IF1, IF2), two sets of tables (IPv4 RIB and FIB and IPv6 RIB and FIB), and a set of common or distinct policies.

Figure 45 Multiprotocol VRF

An LSR creates an entry in the mplsL3VpnVrfRteTable for every route that is configured, either dynamically or statically, within the context of a specific VRF capable of supporting MPLS Layer 3 VPNs.

The mplsL3VpnVrfRteTable is indexed by the following:

- mplsL3VpnVrfName—The VRF name, which provides the VRF routing context
- mplsL3VpnVrfRteInetCidrDestType—The destination address type (IPv4 or IPv6)
- mplsL3VpnVrfRteInetCidrDest—The destination IPv4 or IPv6 address
- mplsL3VpnVrfRteInetCidrPfxLen—The length of the prefix for the IP destination address
- mplsL3VpnVrfRteInetCidrPolicy—An index that distinguishes between multiple paths to the same destination
- mplsL3VpnVrfRteInetCidrNHopType—The address type of the next hop IP address (IPv4 or IPv6)
- mplsL3VpnVrfRteInetCidrNextHop—The IP address of the next hop for each route entry

The table below lists MPLS Layer 3 VPN information for the MIB objects supported by the VRF routing table (mplsL3VpnVrfRteTable). This table represents VRF-specific routes. The global routing table is the ipCidrRouteTable (IPv4 routes) or inetCidrRouteTable (IPv6 routes) in the IP-FORWARD-MIB.

Table 106 VRF Routing Table—MPLS Layer 3 VPN Information and Associated MIB Objects

MIB Object	MPLS LAYER 3 VPN Information	
mplsL3VpnVrfRteInetCidrDestType	The address type of the IP destination address. This object has a value of ipv4 (1) or ipv6 (2).	
mplsL3VpnVrfRteInetCidrDest	The destination IP address defined for this route. The type of this address is determined by the value of the mplsL3VpnVrfRteInetCidrDestType object.	
	The values for the index objects mplsL3VpnVrfRteInetCidrDest and mplsL3VpnVrfRteInetCidrPfxLen must be consistent.	
mplsL3VpnVrfRteInetCidrPfxLen	The length of the prefix for the destination address (mplsL3VpnVrfRteInetCidrDest).	
	The values for the index objects mplsL3VpnVrfRteInetCidrDest and mplsL3VpnVrfRteInetCidrPfxLen must be consistent.	
mplsL3VpnVrfRteInetCidrPolicy	An index used to distinguish between multiple paths to the same destination. The default value is (0 0).	
mplsL3VpnVrfRteInetCidrNHopType	The address type of the next hop IP address. This object has the following values: unknown (0), ipv4 (1), ipv6 (2), or ipv6z (4). The value should be set to unknown (0) for routes that are not remote.	
mplsL3VpnVrfRteInetCidrNextHop	The next hop IP address defined for this route. The type of this address is determined by the mplsL3VpnVrfRteInetCidrNHopType object.	

MIB Object	MPLS LAYER 3 VPN Information The interface MIB ifIndex for the interface through which this route is forwarded. The object is 0 if no interface is defined for the route.	
mplsL3VpnVrfRteInetCidrIfIndex		
mplsL3VpnVrfRteInetCidrType	The type of route. The value local (3) indicates a route for which the next hop is the final destination. The value remote (4) is for a route for which the next hop is not the final destination.	
mplsL3VpnVrfRteInetCidrProto	The routing protocol that was responsible for adding this route to the VRF.	
mplsL3VpnVrfRteInetCidrAge	The number of seconds since this route was last updated.	
mplsL3VpnVrfRteInetCidrNextHopAS	The autonomous system number of the next hop for this route. This object is not supported and is always 0.	
mplsL3VpnVrfRteInetCidrMetric1	The primary routing metric used for this route.	
mplsL3VpnVrfRteInetCidrMetric2 mplsL3VpnVrfRteInetCidrMetric3 mplsL3VpnVrfRteInetCidrMetric4 mplsL3VpnVrfRteInetCidrMetric5	Alternate routing metrics used for this route. These objects are supported only for Cisco Interior Gateway Routing Protocol (IGRP) and Cisco Enhanced Interior Gateway Routing Protoco (EIGRP) protocols. These objects display the bandwidth metrics used for the route. Otherwise, these values are set to -1	
mplsL3VpnVrfRteXCPointet	This object is not supported. It returns an empty string.	
	The cross-connect index for the entry associated with the VRF route table entry is in the MPLS Cross-Connect table (mplsXCTable) in the MPLS-LSR-STD-MIB.	
mplsL3VpnVrfRteInetCidrStatus	Status of the row. This object normally reads active (1), but may read notInService (2) if a VRF was recently deleted. A row entry cannot be modified when the row status is active (1).	

MPLS-L3VPN-STD-MIB Notification Events

The following notifications of the MPLS-L3VPN-STD-MIB are supported:

- mplsL3VpnVrfUp—This notification indicates that the VRF is up. It is generated and sent to an NMS
 when one interface associated with the VRF is brought up, after previously all interfaces were in the
 down state.
- mplsL3VpnVrfDown—This notification indicates that the VRF is down. It is generated and sent to the NMS when the last interface associated with the VRF is brought down, after all other interfaces associated with the VRF are already in the down state.
- mplsL3VpnVrfRouteMidThreshExceeded—This notification is generated and sent when the middle or warning threshold, mplsL3VpnVrfMidRouteThreshold, is crossed. You can configure this threshold in the CLI by using the following commands:

```
Router(config)# vrf definition vrf-name
Router(config-vrf)# address-family
{ipv4 | ipv6}
```

```
Router(config-vrf-af)# maximum routes limit warn-threshold
[% of max)
```

The *warn-threshold* argument is a percentage of the maximum routes specified by the *limit* argument. You can also configure a middle threshold with the following command, in which the *limit* argument represents the warning threshold:

```
Router(config-vrf-af)# maximum routes limit warn-only
```

This notification is sent to the NMS only at the time the threshold is exceeded. (See the figure below for a comparison of the warning and maximum thresholds.) Whenever the number of routes falls below this threshold and exceeds the threshold again, a notification is sent to the NMS.

If both IPv4 and IPv6 address-family configurations are present in the VRF, the threshold is an aggregate of the warning threshold values. An mplsL3VpnVrfRouteMidThreshExceeded notification is not sent until the second address family reaches its warning threshold.

mplsL3VpnVrfNumVrfRouteMaxThreshExceeded—This notification is generated and sent when you
attempt to create a route on a VRF that already contains the maximum number of routes indicated by
the mplsL3VpnVrfMaxRouteThreshold object. The maximum number of routes is defined by the *limit*argument of the maximum routes commands:

```
Router(config)# vrf definition vrf-name
Router(config-vrf)# address-family
{ipv4 | ipv6
}
Router(config-vrf-af)# maximum routes limit warn-threshold
[% of max]
```

A trap notification is sent to the NMS when you attempt to exceed the maximum threshold. Another mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification is not sent until the number of routes falls below the maximum threshold and reaches the maximum threshold again or if the time interval is reached when the mplsL3VpnVrfConfRteMxThrshTime value is nonzero. (See the figure below for an example of how this notification works and for a comparison of the maximum and warning thresholds.)

If an attempt is made to add routes beyond the route limit, SNMP sends a single notification. No other notification is sent until the route count drops below the route limit and another attempt is made to add routes beyond the limit.

However, if you configure the **snmp mib mpls vpn max-threshold time** command with a value other than 0 (0 is the default), SNMP repeats sending of the notification after the time interval passes if an attempt is made to add another route.

If both IPv4 and IPv6 address-family configurations are present in the VRF, the threshold is an aggregate of the maximum threshold values. An mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification is not sent until the second address family reaches its maximum route threshold. Routes are not added to the address family that has already reached its maximum route threshold.

If both IPv4 and IPv6 address-family configurations are present in the VRF and one address family does not have a maximum threshold configured, no maximum threshold notification is sent.

• mplsL3VpnNumVrfSecIllglLblThrshExcd—This notification is generated and sent when the number of illegal labels received on a VRF interface as indicated by the mplsL3VpnVrfSecIllegalLblVltns value has exceeded the mplsL3VpnIllLblRcvThrsh value. This threshold is defined with a value of 0. Therefore, a notification is sent when the first illegal label is received on a VRF. Labels are considered illegal if they are outside of the valid label range, do not have a Label Forwarding Information Base (LFIB) entry, or the table ID of the message does not match the table ID for the label in the LFIB.

• MplsL3VpnNumVrfRouteMaxThreshCleared—Generated and sent when the number of routes on a VRF attempts to exceed the maximum number of routes and then drops below the maximum number of routes. If you attempt to create a route on a VRF that already contains the maximum number of routes, the mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification is sent (if enabled). When you remove routes from the VRF so that the number of routes falls below the set limit, the MplsL3VpnNumVrfRouteMaxThreshCleared notification is sent. You can clear all routes from the VRF by using the clear ip route vrf command for IPv4 routes and the clear ipv6 route vrf command for IPv6 routes. (See the figure below to see when the MplsL3VpnNumVrfRouteMaxThreshCleared notification is sent.)

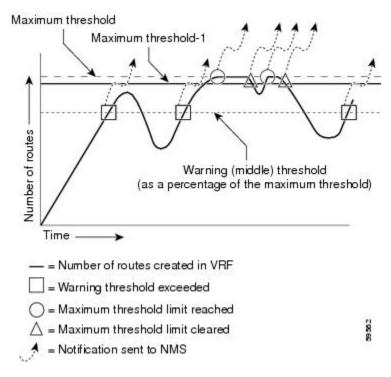


Figure 46 Comparison of Warning and Maximum Thresholds

For information on the Cisco IOS CLI commands for configuring MPLS-L3VPN-STD-MIB notifications that are sent to an NMS, see the How to Configure MPLS EM—MPLS VPN MIB RFC 4382 Upgrade, page 417.

- SNMP Notification Specification for the MPLS-L3VPN-STD-MIB, page 407
- MPLS-L3VPN-STD-MIB Notifications Display on Network Management Station, page 408

SNMP Notification Specification for the MPLS-L3VPN-STD-MIB

In an SNMPv1 notification, each MPLS Layer 3 VPN notification has a generic type identifier and an enterprise-specific type identifier for identifying the notification type:

- The generic type for all VPN notifications is "enterpriseSpecific" because this is not one of the generic notification types defined for SNMP.
- The enterprise-specific type is identified as follows:
 - 1 for mplsL3VpnVrfUp
 - 2 for mplsL3VpnVrfDown

- 3 for mplsL3VpnVrfRouteMidThreshExceeded
- 4 for mplsL3VpnVrfNumVrfRouteMaxThreshExceeded
- 5 for mplsL3VpnNumVrfSecIllglLblThrshExcd
- 6 for mplsL3VpnNumVrfRouteMaxThreshCleared

In SNMPv2, the notification type is identified by an SnmpTrapOID varbind (variable binding consisting of an object identifier [OID] type and value) included within the notification message:

- The VRF up and down notifications provide additional variables—mplsL3VpnIfConfRowStatus and mplsL3VpnVrfOperStatus—in the notification. These variables describe the SNMP row status and operational status, respectively.
- The mid threshold notification includes the mplsL3VpnVrfVConfMidRteThresh variable and the mplsL3VpnVrfPerfCurrNumRoutes variable that indicates the current number of routes within the VRF.
- The max threshold notification includes the mplsL3VpnVrfVConfHighRteThresh variable and the mplsL3VpnVrfPerfCurrNumRoutes variable that indicates the current number of routes within the VRF.
- The illegal label notification includes the *mplsL3VpnVrfSecIllegalLblVltns* variable that maintains the current count of illegal labels on a VPN.
- The max threshold cleared notification includes the mplsL3VpnVrfConfHighRteThresh variable and the mplsL3VpnVrfPerfCurrNumRoutes variable that indicates the current number of routes within the VRF.

MPLS-L3VPN-STD-MIB Notifications Display on Network Management Station

When MPLS-L3VPN-STD-MIB notifications are enabled (see the snmp-server enable traps mpls rfc vpn command), notification messages relating to specific MPLS VPN events within Cisco IOS software are generated and sent to a specified NMS in the network. Any utility that supports SNMPv1 or SNMPv2 notifications can receive notification messages.

To monitor MPLS-L3VPN-STD-MIB notification messages, log in to an NMS that supports a utility that displays SNMP notifications, and start the display utility.

MPLS-L3VPN-STD-MIB Support for IPv6 VPNs over MPLS

- MPLS-L3VPN-STD-MIB Tables and Objects Support for IPv6 VPNs over MPLS, page 408
- MPLS-L3VPN-STD-MIB Notifications Support for IPv6 VPNs over MPLS, page 410
- Information About Setting Maximum Routes for IPv6 Address-Family VRF Route Limits, page 411

MPLS-L3VPN-STD-MIB Tables and Objects Support for IPv6 VPNs over MPLS

The MPLS-L3VPN-STD-MIB gets some of the information to populate the MIB objects from the RIB routing table. For the MPLS-L3VPN-STD-MIB to support IPv6 routes over MPLS, the MIB needs to access the RIB routing tables for both IPv6 and IPv4 for the VRF.

The table below describes how the MPLS-L3VPN-STD-MIB supports the MIB tables and objects that are specified by address families or that require routing table information.

Table 107 MPLS-L3VPN-STD-MIB Support of Address Families in MIB Table and Objects

MIB Tables and Objects	MPLS-L3VPN-STD-MIB Support	
VRF route target table (mplsL3VpnVrfRTTable)	This table lists the route targets specified for the VRF. For IPv6 VPNs over MPLS, route targets can be specified for each address family.	
	The MPLS-L3VPN-STD-MIB retrieves all route targets for IPv4, then retrieves all route targets specified for IPv6.	
	The mplsL3VpnVrfRTDescr object indicates whether a particular route target was defined in an IPv4 or IPv6 address family.	
VRF configuration table (mplsL3VpnVrfTable), mplsL3VpnVrfConfMidRteThresh,	The Cisco IOS CLI allows the setting of maximum and middle threshold values on a per-address-family basis.	
mplsL3VpnVrfConfHighRteThresh, mplsL3VpnVrfConfMaxRoutes	When both IPv4 and IPv6 address-family configurations exist, the MPLS-L3VPN-STD-MIB displays the aggregate value of these settings (not to exceed the max int32 value). If the maximum route limit is configured for one address family and not for the other address family, the aggregate value is max int32 (4,294,967,295).	
	When only a single address-family configuration exists for the VRF, the MPLS-L3VPN-STD-MIB displays the value as configured for the single address family. For more information on how the MPLS-L3VPN-STD-MIB supports notifications, see the MPLS-L3VPN-STD-MIB Notifications Display on Network Management Station, page 408 and the MPLS-L3VPN-STD-MIB Notifications Support for IPv6 VPNs over MPLS, page 410.	
VRF performance table (mplsL3VpnVrfPerfTable), mplsL3VpnVrfPerfRoutesAdded, mplsL3VpnVrfPerfRoutesDeleted, mplsL3VpnVrfPerfCurrNumRoutes, mplsL3VpnVrfPerfRoutesDropped	The MPLS-L3VPN-STD-MIB gets the routing table information from IPv4 and routing table information from IPv6, adds the values, and give a cumulative count for each of the VRF performance table objects.	
VRF routing table (mplsL3VpnVrfRteTable)	This table lists the routes associated with this VRF.	
	The MPLS-L3VPN-STD-MIB needs to get all routes from both the IPv4 route table and IPv6 route table for the VRF.	
VPN interface configuration table (mplsL3VpnIfConfTable), mplsL3VpnIfVpnRouteDistProtocol	This is a bit mask that indicates the protocol for the interface on which the VRF is defined. The MPLS-L3VPN-STD-MIB needs to get route table information from both the IPv4 address family and the IPv6 address family to look up the protocol and bits to set.	
	This MPLS-L3VPN-STD-MIB information is a union of the IPv4 and IPv6 configurations in the VRF.	

MPLS-L3VPN-STD-MIB Notifications Support for IPv6 VPNs over MPLS

This section explains how the MPLS-L3VPN-STD-MIB handles the mplsL3VpnVrfRouteMidThreshExceeded, mplsL3VpnVrfRouteMaxThreshExceeded, and mplsL3VpnNumVrfRouteMaxThreshCleared notifications.

Notifications for exceeding the route limit for the middle (mplsL3VpnVrfRouteMidThreshExceeded) and maximum (mplsL3VpnVrfNumVrfRouteMaxThreshExceeded) thresholds are triggered by the route table when there is an attempt to add a new route after the number of routes has reached the threshold. With MIB support for both IPv6 and IPv4, two separate route tables could exist for the VRF. When the maximum or middle threshold is exceeded, MPLS-L3VPN-STD-MIB sends notifications to an NMS if you configured these thresholds.

MPLS-L3VPN-STD-MIB manages the maximum and middle thresholds based on an address-family configuration. For Cisco IOS Releases 12.2(33)SRC and 12.2(33)SB, the MPLS-L3VPN-STD-MIB triggers a notification (or trap) based on the aggregate of the IPv4 and IPv6 maximum and middle threshold values.

A maximum command is introduced in Cisco IOS Release 12.2(33)SRC for the IPv6 address family.

The MPLS-L3VPN-STD-MIB manages the aggregate threshold values as described in the following scenarios:

- Scenario 1: One address family is configured (IPv4 or IPv6); the address family contains maximum and middle threshold configurations:
 - The aggregate max-threshold value is equal to the address family-specific max-route value.
 - The aggregate mid-threshold value is equal to the address family-specific mid-route value.
 - Address family routes stop adding to the routing table when the number of routes reaches the
 maximum threshold set for the address family. A notification or trap is sent with the next attempt
 to add a route.
- Scenario 2: Both IPv4 and IPv6 address families are configured; both contain maximum and middle threshold configurations:
 - The aggregate max-threshold value is equal to the sum of the IPv4 and IPv6 max-threshold values (with the upper limit set to a maximum value of 4,294,967,295).
 - The aggregate mid-threshold value is equal to the sum of the IPv4 and IPv6 mid-threshold values. Only when both address families have reached the mid-threshold limit is the notification sent.
 - Address family routes stop adding to the routing table when the number of routes reaches the maximum threshold per address family. A notification or trap is not sent until both IPv4 and IPv6 routes reach the maximum threshold.
- Scenario 3: Both IPv4 and IPv6 address families are configured; only one contains a maximum and middle route threshold configuration:
 - The aggregate max-threshold value is equal to the maximum threshold value (4,294,967,295).
 - The aggregate mid-threshold value is equal to the maximum threshold value (4,294,967,295).
 - Address family routes stop adding to the routing table for the address family that contains the maximum threshold configuration when the number of routes reaches the maximum threshold for the address family. However, no notification or trap is sent.

If you configure a single address-family VRF with a maximum and middle threshold (Scenario 1), and later add the other address-family configuration to your VRF without configuring a maximum threshold (Scenario 3), you no longer receive a maximum threshold notification for the original address family when the threshold is reached, but routes would no longer be added to the routing table for this address family.

Information About Setting Maximum Routes for IPv6 Address-Family VRF Route Limits

You should understand the following before you set maximum routes for the IPv6 address family:

- The maximum routes command is entered in address-family configuration mode (the address-family ipv6 or address-family ipv4 command) for the specified VRF.
- If you attempt to set the maximum route limit below the current number of routes in the IPv6 routing table for the VRF, the CLI command is rejected. You cannot downsize the IPv6 routing table.

If you configure a warning-only threshold, the command is accepted, but the route limit is not enforced. This statement also applies to IPv4.

- If the routing table has exceeded its route limit, the output from **show ipv6 route vrf** command displays an error message that indicates that the RIB has overflowed.
- If the routing table does not automatically recover from the overflow condition when the number of routes drops below the enforced limit, you would need to enter the **clear ipv6 route vrf**command. This forces the routing table to purge and repopulate.

If the repopulate is successful, then the error condition is cleared. If the automatic or manual purging and repopulate are unsuccessful, the error message in the **show ipv6 route vrf** command output remains.

For Cisco IOS Releases 12.2(1st)SRC and 12.2(33)SB, the notifications generated in the MPLS-L3VPN-STD-MIB for the route maximum, middle, 3or warnings, and for threshold-cleared objects are an aggregate of the IPv4 and IPv6 route limits and route counts when both routing tables are configured for the VRF.

MPLS-L3VPN-STD-MIB Data Security

Requirements of the network-facing operator and customers to ensure MPLS-L3VPN-STD-MIB data security are as follows:

- Network-facing operators need to poll all the data in the VRF-aware MPLS-L3VPN-STD-MIB
 without compromising security. Operators managing the network need to poll all available data in a
 single SNMP walk.
- Customers managing VRFs from an NMS need to be able to poll data only on VRFs for which they
 are responsible. Customer VRF information should be visible only to that particular customer. In the
 configuration example that follows, the customer associated with VRF vrf1 should see only VRF vrf1
 information and the customer associated with VRF vrf2 should see only VRF vrf2 information.

Network operators can enter an **snmp-server community** command that contains an access control list (ACL) to make sure that all data is accessible in a single SNMP walk and that customer routers cannot access the data. For example, the operator can enter the following global configuration command: **snmp-server community** *any-community-name* **rw access-list** *acl-number*. The *acl-number* argument can be configured to allow requests from the PE network. This ensures that customer-facing routers cannot access any data using the specified community string.

To ensure that a customer's VRF information is secure, you can configure an SMNP context that is peculiar to the customer's VRF. For example, the following sample configuration ensures that the customer

associated with VRF vrf1 and the customer associated with VRF vrf2 both connected to the same PE can access information pertaining only to their own VRF and nothing else:

```
vrf definition vrf1
  rd 100:110
  address-family ipv4
  route-target export 100:1000
  route-target import 100:1000
  exit-address-family
vrf definition vrf2
  rd 100:120
  address-family ipv4
  route-target export 100:2000
  route-target import 100:2000
  exit-address-family
interface Ethernet3/1
  description Belongs to VPN vrf1
  vrf forwarding vrf1
  ip address 10.20.1.20 255.255.0.0
interface Ethernet3/2
  description Belongs to vrf2
  vrf forwarding vrf2
  ip address 10.30.1.10 255.255.0.0
access-list 10 permit 10.20.1.21
access-list 10 deny
                     any
access-list 20 permit 10.30.1.11
access-list 20 deny
                      any
snmp-server view vrf1View mplsL3VpnMIB.*.*.*.*.3.114.101.100 included
snmp-server view vrf2View mplsL3VpnMIB.*.*.*.5.103.114.101.101.110 included
snmp-server community vrf1Comm view vrf1View rw 10
snmp-server community vrf2Comm view vrf2View rw 20
```

The **snmp-server view** commands include mplsL3VpnMIB with OIDs in this format: **mplsL3VpnMIB.*.*.*.*.**!ength-of-vrf-name.vrf-name-converted-to-octet-character-representation- of-the-name. For example:

- VRF vrf1 would be represented as 3.114.101.100.
- VRF vrf2 would be represented as 5.103.114.101.101.110.

You should not enter the snmp-server community community-name rw command unless a firewall protects SNMP requests entered at the PE router. The community string is unprotected and can be used to poll any data from any network.

Major Differences Between the MPLS-VPN-MIB and the MPLS-L3VPN-STD-MIB

The MPLS-L3VPN-STD-MIB based on RFC 4382 provides the same basic functionality as the MPLS-VPN-MIB, draft Version 3 (draft-ieft-ppvpn-mpls-vpn-mib-03.txt). They both provide an interface for MPLS Layer 3 VPNs through the use of SNMP.

After the implementation of the MPLS-L3VPN-STD-MIB (RFC 4382) in Cisco IOS Release 12.2(33)SRC, the MPLS-VPN-MIB will exist for a period of time before support is completely removed. This gives you

the chance to migrate to the MPLS-L3VPN-STD-MIB. Both MIBs can coexist in the same image because the MPLS-L3VPN-STD-MIB and the MPLS-VPN-MIB have different root OIDs.

The following sections provide information about the major differences between the MPLS-VPN-MIB and the MPLS-L3VPN-STD-MIB:

- Global Name Changes for the MPLS-L3VPN-STD-MIB Objects, page 413
- MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Scalar Object Differences, page 413
- MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Table Object Differences, page 413
- Tables Not Supported in the MPLS-L3VPN-STD-MIB, page 417
- MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Notification Differences, page 417

Global Name Changes for the MPLS-L3VPN-STD-MIB Objects

For the MPLS-L3VPN-STD-MIB, the names of all objects were changed from mplsVpn*name*(MPLS-VPN-MIB object name) to mplsL3Vpn*name*. For example, the VRF configuration table name was changed from mplsVpnVrfTable to mplsL3VpnVrfTable.

The following sections describe major differences between the MPLS-VPN-MIB and the MPLS-L3VPN-STD-MIB objects where the name change is more significant than the global name change.

MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Scalar Object Differences

The table below shows the major difference between the MPLS-VPN-MIB objects and the MPLS-L3VPN-STD-MIB objects for each scalar object.

Table 108 MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Scalar Objects

MPLS-VPN-MIB Object	MPLS-L3VPN-STD-MIB Object	Difference
mplsVpnVrfConfMaxPossibleRoutes	mplsL3VpnVrfConfMaxPossRts	Object name changed.
_	mplsL3VpnVrfConfRteMxThrshTime	New object.
_	mplsL3VpIllLblRcvThrsh	New object.

MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Table Object Differences

The following tables show the major differences between the MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB objects for each table.

- VRF Configuration Table (mplsL3VpnVrfTable), page 413
- VPN Interface Configuration Table (mplsL3VpnIfConfTable), page 414
- VRF Route Target Table (mplsL3VpnVrfRTTable), page 414
- VRF Security Table (mplsL3VpnVrfSecTable), page 415
- VRF Performance Table (mplsL3VpnVrfPerfTable), page 415
- VRF Routing Table (mplsL3VpnVrfRteTable), page 415

VRF Configuration Table (mplsL3VpnVrfTable)

The table below shows the major differences between the MPLS-VPN-MIB objects and the MPLS-L3VPN-STD-MIB objects for the VRF configuration table (mplsL3VpnVrfTable, formerly mplsVpnVrfTable).

Table 109 VRF Configuration Table: MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Object Differences

MPLS-VPN-MIB Object	MPLS-L3VPN-STD-MIB Object	Difference
_	mplsL3VpnVrfVpnId	New object.
mplsVpnVrfRouteDistinguisher	mplsL3VpnVrfRD	Object name changed.
mplsVpnVrfConfMidRouteThreshold	mplsL3VpnVrfConfMidRteThresh	Object name changed.
mplsVpnVrfConfHighRouteThreshold	mplsL3VpnVrfConfHighRteThresh	Object name changed.
_	mplsL3VpnVrfConfAdminStatus	New object.

VPN Interface Configuration Table (mplsL3VpnlfConfTable)

The table below shows the major differences between the MPLS-VPN-MIB objects and the MPLS-L3VPN-STD-MIB objects for the VPN interface configuration table (mplsL3VpnIfConfTable, formerly mplsVpnInterfaceConfTable).

Table 110 VPN Interface Configuration Table: MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Object Differences

MPLS-VPN-MIB Object	MPLS-L3VPN-STD-MIB Object	Difference
mplsVpnInterfaceConfTable	mplsL3VpnIfConfTable	Table name changed.
mplsVpnInterfaceConfIndex	mplsL3VpnIfConfIndex	Object name changed.
mplsVpnInterfaceLabelEdgeType	_	Object deleted.
mplsVpnInterfaceVpnClassification	mplsL3VpnIfVpnClassification	Object name changed.
mpls Vpn Interface VPN Route Dist Protocol	mplsL3VpnIfVpnRouteDist Protocol	Object name changed.
mplsVpnInterfaceConfStorageType	mplsL3VpnIfConfStorageType	Object name changed.
mplsVpnInterfaceConfRowStatus	mplsL3VpnIfConfRowStatus	Object name changed.

VRF Route Target Table (mplsL3VpnVrfRTTable)

The table below shows the major differences between the MPLS-VPN-MIB objects and the MPLS-L3VPN-STD-MIB objects for the VRF route target table (mplsL3VpnVrfRTTable, formerly mplsVpnVrfRouteTargetTable).

Table 111 VRF Route Target Table: MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Object Differences

MPLS-VPN-MIB Object	MPLS-L3VPN-STD-MIB Object	Difference
mpls Vpn Vrf Route Target Table	mplsL3VpnVrfRTTable	Table named changed.

MPLS-VPN-MIB Object	MPLS-L3VPN-STD-MIB Object	Difference
mplsVpnVrfRouteTargetIndex	mplsL3VpnVrfRTIndex	Object name changed.
mplsVpnVrfRouteTargetType	mplsL3VpnVrfRTType	Object name changed.
mplsVpnVrfRouteTarget	mplsL3VpnVrfRT	Object name changed.
mplsVpnVrfRouteTargetDescr	mplsL3VpnVrfRTDescr	Object name changed.
mplsVpnVrfRouteTargetRowStatus	mplsL3VpnVrfRTRowStatus	Object name changed.
_	mplsL3VpnVrfRTStorageType	New object.

VRF Security Table (mplsL3VpnVrfSecTable)

The table below shows the major differences between the MPLS-VPN-MIB objects and the MPLS-L3VPN-STD-MIB objects for the VRF security table (mplsL3VpnVrfSecTable, formerly mplsVpnVrfSectTable).

Table 112 VRF Security Table: MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Object Differences

MPLS-VPN-MIB Object	MPLS-L3VPN-STD-MIB Object	Difference
mplsVpnVrfSecIllegalLabelViolations	mplsL3VpnVrfSecIllegalLblVtns	Object name changed.
mplsVpnVrfSecIllegalLabelRcvThresh	_	Object deleted.
_	mplsL3VpnVrfSecDiscontinuityTime	New object.

VRF Performance Table (mplsL3VpnVrfPerfTable)

The table below shows the major differences between the MPLS-VPN-MIB objects and the MPLS-L3VPN-STD-MIB objects for the VRF performance table (mplsL3VpnVrfPerfTable, formerly mplsVpnVrfPerfTable).

Table 113 VRF Performance Table: MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Object Differences

MPLS-VPN-MIB Object	MPLS-L3VPN-STD-MIB Object	Difference
_	mplsL3VpnVrfPerfRoutesDropped	New object.
_	mplsL3VpnVrfPerfDiscTime	New object.

VRF Routing Table (mplsL3VpnVrfRteTable)

The table below shows the major differences between the MPLS-VPN-MIB objects and the MPLS-L3VPN-STD-MIB objects for the VRF routing table (mplsL3VpnVrfRteTable, formerly mplsVpnVrfRouteTable).

The indexing for the VRF routing table has also changed:

 MPLS-VPN-MIB indexing—mplsVpnVrfName, mplsVpnVrfRouteDest, mplsVpnVrfRouteMask, mplsVpnVrfRouteTos, mplsVpnVrfRouteNextHop • MPLS-L3VPN-STD-MIB indexing—mplsL3VpnVrfName, mplsL3VpnVrfRteInetCidrDestType, mplsL3VpnVrfRteInetCidrDest, mplsL3VpnVrfRteInetCidrPfxLen, mplsL3VpnVrfRteInetCidrPolicy, mplsL3VpnVrfRteInetCidrNHopType, mplsL3VpnVrfRteInetCidrNextHop

Table 114 VRF Routing Table: MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Object Differences

MPLS-VPN-MIB Object	MPLS-L3VPN-STD-MIB Object	Difference
mplsVpnVrfRouteTable	mplsL3VpnVrfRteTable	Table name changed.
mplsVpnVrfRouteDest	mplsL3VpnVrfRteInetCidrDest	Object name changed.
mplsVpnVrfRouteDestAddrType	mplsL3VpnVrfRteInetCidrDestType	Object name changed.
mplsVpnVrfRouteMask	_	Object deleted.
mplsVpnVrfRouteMaskAddrType	_	Object deleted.
_	mplsL3VpnVrfRteInetCidrPfxLen	New object.
mplsVpnVrfRouteTos	_	Object deleted.
_	mplsL3VpnVrfRteInetCidrPolicy	New object.
mplsVpnVrfRouteNextHop	mplsL3VpnVrfRteInetCidrNextHop	Object name changed.
mplsVpnVrfRouteNextHopAddrType	mplsL3VpnVrfRteInetCidrNHopType	Object name changed.
mplsVpnVrfRouteIfIndex	mplsL3VpnVrfRteInetCidrIfIndex	Object name changed.
mplsVpnVrfRouteType	mplsL3VpnVrfRteInetCidrType	Object name changed.
mplsVpnVrfRouteProto	mplsL3VpnVrfRteInetCidrProto	Object name changed.
mplsVpnVrfRouteAge	mplsL3VpnVrfRteInetCidrAge	Object name changed.
mplsVpnVrfRouteInfo	_	Object deleted.
mplsVpnVrfRouteNextHopAS	mplsL3VpnVrfRteInetCidrNextHopAS	Object name changed.
mplsVpnVrfRouteMetric1	mplsL3VpnVrfRteInetCidrMetric1	Object name changed.
mplsVpnVrfRouteMetric2	mplsL3VpnVrfRteInetCidrMetric2	Object name changed.
mplsVpnVrfRouteMetric3	mplsL3VpnVrfRteInetCidrMetric3	Object name changed.
mplsVpnVrfRouteMetric4	mplsL3VpnVrfRteInetCidrMetric4	Object name changed.
mplsVpnVrfRouteMetric5	mplsL3VpnVrfRteInetCidrMetric5	Object name changed.
_	mplsL3VpnVrfRteXCPointer	New object.
mplsVpnVrfRouteStatus	mplsL3VpnVrfRteInetCidrStatus	Object name changed.
mplsVpnVrfRouteStorageType	_	Object deleted.

Tables Not Supported in the MPLS-L3VPN-STD-MIB

The following tables from the MPLS-VPN-MIB are deleted in the MPLS-L3VPN-STD-MIB (RFC 4382):

- BGP neighbor address table (mplsVpnVrfBgpNbrAddrTable)
- BGP neighbor prefix table (mplsVpnVrfBgpNeighborPrefixTable)

The mplsVpnVrfBgpNeighborPrefixTable was not supported in the Cisco IOS implementation of the MPLS-VPN-MIB.

The Cisco-BGP4-MIB based on *Definitions of Managed Objects for BGP-4* (RFC 4273) provides the information related to BGP.

MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Notification Differences

The table below shows the major differences between MPLS-VPN-MIB and the MPLS-L3VPN-STD-MIB notifications.

Table 115 MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB Notification Differences

MPLS-VPN-MIB Notification	MPLS-L3VPN-STD-MIB Notification	Difference
mplsVpnVrfIfUp	_	Notification deleted.
mplsVpnVrfIfDown	_	Notification deleted.
_	mplsL3VpnVrfUp	New notification.
_	mplsL3VpnVrfDown	New notification.
mplsNumVrfRouteMidThresExceeded	mplsL3VpnVrfRouteMidThreshExceede d	Returned objects changed. Notification name change.
mplsNumVrfRouteMaxThreshExceeded	mplsL3VpnVRFNumVrfRouteMaxThres hExceeded	Returned objects changed. Notification name change.
mplsNumVrfSecIllegalLabelThreshExce eded	mplsL3VpnNumVrfSecIllglLblThrshExc d	Returned objects changed. Notification name change.
cMplsNumVrfRouteMaxThreshCleared (from the CISCO-IETF-PPVPN-MPLS- VPN-MIB)	mplsL3VpnNumVrfRouteMaxThreshCle ared	Notification name changed.

How to Configure MPLS EM—MPLS VPN MIB RFC 4382 Upgrade

This section contains tasks to configure the MPLS EM—MPLS VPN MIB RFC 4382 Upgrade feature. The MPLS EM—MPLS VPN MIB RFC 4382 Upgrade feature introduces the MPLS-L3VPN-STD-MIB.

Perform the following tasks to configure your router to use SNMP to monitor and manage MPLS Layer 3 VPNs:

• Configuring the SNMP Community, page 418

- Configuring the Router to Send MPLS Layer 3 VPN SNMP Notifications to a Host, page 419
- Configuring Threshold Values for MPLS Layer 3 VPN SNMP Notifications, page 422
- Configuring SNMP Controls for MPLS VPN Notification Thresholds, page 424

Configuring the SNMP Community

The SNMP agent for the MPLS-L3VPN-STD-MIB is disabled by default and must be enabled for you to use SNMP for monitoring and managing MPLS Layer 3 VPNs on your network.

An SNMP community string defines the relationship between the SNMP manager and the agent. The community string acts like a password to regulate access to the agent on the router. The SNMP agent for the MPLS-L3VPN-STD-MIB is enabled when you configure an SNMP community.

Perform this task to configure an SNMP community.

SUMMARY STEPS

- 1. enable
- 2. show running-config
- 3. configure terminal
- **4. snmp-server community** *string* [**view** *view-name*] [**ro** | **rw**] [*acl-number*]
- 5. do copy running-config startup-config
- 6. exit
- 7. show running-config | include [option]

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	show running-config	Displays the running configuration to determine if an SNMP agent is already running.
	Example:	If no SNMP information is displayed, continue with the next step.
	Router# show running-config	If any SNMP information is displayed, you can modify the information or change it as needed.
Step 3	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 4	snmp-server community string [view view-name] [ro rw] [acl-number]	Configures the community access string to permit access to the SNMP protocol.
	Example: Router(config)# snmp-server community comaccess ro	 The <i>string</i> argument acts like a password and permits access to the SNMP protocol. The view <i>view-name</i> keyword and argument pair specifies the name of a previously defined view. The view defines the objects available to the community. The ro keyword specifies read-only access. Authorized management stations are able to retrieve only MIB objects. The rw keyword specifies read/write access. Authorized management stations are able to both retrieve and modify MIB objects. The <i>acl-number</i> argument is an integer from 1 to 99 that specifies an access list of IP addresses that are allowed to use the community string to gain access to the SNMP agent.
Step 5	do copy running-config startup-config	Saves the modified configuration to NVRAM as the startup configuration file.
	Example:	The do command allows you to perform EXEC-level commands in configuration mode.
	Router(config)# do copy running- config startup-config	
Step 6	exit	Returns to privileged EXEC mode.
	Example:	
	Router(config)# exit	
Step 7	show running-config include [option]	(Optional) Displays the configuration information currently on the router, the configuration for a specific interface, or map-class information.
	Example:	• Use the show running-config command to confirm that the snmp-server statements appear in the output.
	Router# show-running config include snmp-server	

Configuring the Router to Send MPLS Layer 3 VPN SNMP Notifications to a Host

Perform this task to configure the router to send MPLS Layer 3 VPN SNMP notifications or traps to a host.

The **snmp-server host** command specifies which hosts receive the notifications. The **snmp-server enable traps** command globally enables the trap production mechanism for the specified notifications.

For a host to receive a notification, an **snmp-server host** command must be configured for that host, and, generally, the notification must be enabled globally through the **snmp-server enable traps** command.

Note

Although you can set the *community-string* argument using the **snmp-server host** command by itself, we recommend you define this string using the **snmp-server community** command before using the **snmp-server host** command.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. snmp-server host** *host-addr* [**traps** | **informs**] [**version** {1 | 2c | 3 [auth | noauth | priv]}] *community-string* [**udp-port** *port*] [*notification-type*] [**vrf** *vrf-name*]
- 4. snmp-server enable traps mpls rfc vpn [illegal-label] [max-thresh-cleared] [max-threshold] [mid-threshold] [vrf-down] [vrf-up]
- 5. end

Command or Action Purpose Step 1 enable Enables privileged EXEC mode.		Purpose
		Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2 configure terminal Enters global configuration mode.		Enters global configuration mode.
	Example:	
	Router# configure terminal	

Command or Action	Action Purpose	
Step 3 snmp-server host host-add [traps informs] [version 2c 3 [auth noauth prive community-string [udp-port port] [notification-type] [vertical vertical	 The host-addr argument specifies the name or Internet address of the host (the targeted recipient). The traps keyword sends SNMP traps to this host. This is the default. The informs keyword sends SNMP informs to this host. The version keyword specifies the version of the SNMP used to send the traps. Version 3 is the most secure model, because it allows packet encryption with the priv keyword. If you use the version keyword, you must specify one of the following: 1—SNMPv1. This option is not available with informs. 	

	Command or Action	Purpose
1 (snmp-server enable traps mpls rfc vpn [illegal-label] [max-thresh-cleared] [max- threshold] [mid-threshold] [vrf-down] [vrf-up]	 Enables the router to send MPLS Layer 3 VPN-specific SNMP notifications (traps and informs). The illegal-label keyword enables a notification for any illegal labels received on a VRF interface. Labels are illegal if they are outside the legal range, do not have an LFIB entry, or do not match table IDs for the label. The max-thresh-cleared keyword enables a notification when the number of routes
E	Example:	falls below the limit after the maximum route limit was attempted.
5	Router(config)# snmp- server enable traps mpls rfc vpn vrf-down vrf-up	Note For information on notifications if a VRF has both IPv4 and IPv6 address-family configurations, see the MPLS-L3VPN-STD-MIB Notifications Support for IPv6 VPNs over MPLS, page 410.
		The max-threshold keyword enables a notification that a route creation attempt was unsuccessful because the maximum route limit was reached. Another mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification is not sent until the number of routes falls below the maximum threshold and reaches the maximum threshold again. The max-threshold value is determined by the maximum routes command in VRF configuration mode.
		Note For more information on the maximum threshold notification if both IPv4 and IPv6 address family configurations are present in the VRF, see the MPLS-L3VPN-STD-MIB Notifications Support for IPv6 VPNs over MPLS, page 410.
		The mid-threshold keyword enables a notification of a warning that the number of routes created has crossed the warning threshold. This warning is sent only at the time the warning threshold is exceeded.
		Note For more information on the maximum threshold notification if both IPv4 and IPv6 address family configurations are present in the VRF, see the MPLS-L3VPN-STD-MIB Notifications Support for IPv6 VPNs over MPLS, page 410.
		The vrf-down keyword enables a notification when the last interface in a VRF goes from the up state to the down state.
		• The vrf-up keyword enables a notification when all interfaces in a VRF are previously in a down state and one VRF interface goes to the up state.
Step 5	end	(Optional) Exits to privileged EXEC mode.
i	Example:	
F	Router(config)# end	

Configuring Threshold Values for MPLS Layer 3 VPN SNMP Notifications

Perform this task to configure the following threshold values for MPLS Layer 3 VPN SNMP notifications:

The mplsL3VpnVrfRouteMidThreshExceeded notification event is generated and sent when the
middle threshold (warning) is crossed. You can configure this threshold in the CLI by using the
maximum routes command in VRF configuration mode. This notification is sent to the NMS only at

the time the threshold is exceeded. Whenever the number of routes falls below this threshold and exceeds the threshold again, a notification is sent to the NMS.

If both IPv4 and IPv6 address-family configurations are present in the VRF, the threshold is an aggregate of the warning threshold values. An mplsL3VpnVrfRouteMidThreshExceeded notification is not sent until the second address family reaches its warning threshold.

• The mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification event is generated and sent when you attempt to create a route on a VRF that already contains the maximum number of routes as defined by the **maximum routes** command in VRF configuration mode. A trap notification is sent to the NMS when you attempt to exceed the maximum threshold. Another mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification is not sent until the number of routes falls below the maximum threshold and reaches the maximum threshold again.

If both IPv4 and IPv6 address-family configurations are present in the VRF, the threshold is an aggregate of the maximum threshold values. An mplsL3VpnVrfNumVrfRouteMaxThreshExceeded notification is not sent until the second address family reaches its maximum route threshold. Routes are not added to the address family that has already reached its maximum route threshold.

See the figure above for an example of how this notification works and for a comparison of the maximum and warning thresholds.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. vrf definition vrf-name
- 4. address-family {ipv4 | ipv6}
- 5. maximum routes limit warn-threshold
- 6. exit-address-family
- **7**. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	vrf definition vrf-name	Configures a VRF routing table and enters VRF configuration mode.
		• The <i>vrf-name</i> argument specifies the name assigned to a VRF.
	Example:	
	Router(config)# vrf definition vpn1	
Step 4	address-family {ipv4 ipv6}	Enters VRF address family configuration mode.
		• The ipv4 keyword specifies an address family for an IPv4 VPN.
	Example:	• The ipv6 keyword specifies an address family for an IPv6 VPN.
	Router(config-vrf) address-family ipv4	
Step 5	maximum routes limit warn-threshold	Limits the maximum number of routes in a VRF to prevent a PE router from importing too many routes.
	Example:	• The <i>limit</i> argument specifies the maximum number of routes allowed in a VRF. The range is from 1 to 4,294,967,295.
	Router(config-vrf-af)# maximum routes 10000 80	• The <i>warn-threshold</i> argument generates a warning when the number of routes set by the <i>warn-threshold</i> argument is reached and rejects routes that exceed the maximum number set in the <i>limit</i> argument. The warning threshold is a percentage from 1 to 100 of the maximum number of
	Example:	routes specified in the <i>limit</i> argument.
	Router(config-vrf-af)# maximum routes 10000 warn-only	 The warn-only keyword specifies that a system message logging (syslog) error message is issued when the maximum number of routes allowed for a VRF exceeds the limit threshold. However, additional routes are still allowed.
Step 6	exit-address-family	Exits from VRF address family configuration mode.
	Example:	
	Router(config-vrf-af)# exit- address-family	
Step 7	end	(Optional) Exits to privileged EXEC mode.
	Example:	
	Router(config-vrf)# end	

Configuring SNMP Controls for MPLS VPN Notification Thresholds

Perform this task to configure the following SNMP controls for MPLS VPN notification thresholds:

• The mplsL3VpnVrfConfRteMxThrshTime is the interval at which the maximum route exceeded notification (mplsL3VpnVrfNumVrfRouteMaxThreshExceeded) is reissued after the maximum value is exceeded (or reached) and after the initial notification was sent. You can configure this interval in

- the CLI by using the **snmp mib mpls vpn max-threshold** *seconds* command in global configuration mode. Configure this command if you want to receive more than the initial notification that the maximum route value is exceeded.
- The mplsL3VpnNumVrfSecIllglLblThrshExcd notification is generated and sent when the number of illegal label violations on a VRF has exceeded the number indicated by the mplsL3VpnIllLblRcvThrsh scalar. You can configure the number of illegal labels that generate the mplsL3VpnNumVrfSecIllglLblThrshExcd notification in the CLI by using the **snmp mib mpls vpn illegal-label** *number* command in global configuration mode. Configure this command if you want to allow a certain number of illegal label violations before you receive the mplsL3VpnNumVrfSecIllglLblThrshExcd notification.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. snmp mib mpls vpn max-threshold seconds
- 4. snmp mib mpls vpn illegal-label number
- **5**. **end**

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	snmp mib mpls vpn max-threshold seconds	Configures SNMP controls for MPLS VPN notification thresholds.
		The max-threshold keyword controls MPLS VPN maximum
	Example:	 threshold exceeded notifications. The <i>seconds</i> argument is the time in seconds before SNMP resends
	Router(config)# snmp mib mpls vpn max-threshold 3600	maximum threshold notifications. The valid range is from 0 to 4,294,967,295. The default is 0.
Step 4	snmp mib mpls vpn illegal-label number	Configures simple SNMP controls for MPLS VPN notification thresholds.
	<pre>Example: Router(config)# snmp mib mpls vpn illegal-label 10</pre>	 The illegal-label keyword controls MPLS VPN illegal label threshold exceeded notifications. The <i>number</i> argument is the number of illegal labels allowed before SNMP sends an illegal label threshold notification. The valid range is from 1 to 4,294,967,295. The default is 0.

	Command or Action	Purpose
Step 5	end	Exits to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuration Examples for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade

- Example Configuring the SNMP Community, page 426
- Example Configuring the Router to Send MPLS Layer 3 VPN SNMP Traps, page 426
- Example Configuring Threshold Values for MPLS Layer 3 VPN SNMP Notifications, page 427
- Example Configuring SMNP Controls for MPLS Layer 3 VPN Notification Thresholds, page 427

Example Configuring the SNMP Community

The following example shows enabling a simple SNMP community group. This configuration permits any SNMP client to access all MPLS-L3VPN-STD-MIB objects with read-only access using the community string comaccess.

```
configure terminal
!
snmp-server community comaccess ro
```

Use the following command to verify that the SNMP master agent is enabled for the MPLS EM—MPLS VPN MIB RFC 4382 Upgrade feature:

```
Router# show running-config | include snmp-server
Building configuration...
....
snmp-server community comaccess RO
....
```


If you do not see any "snmp-server" statements, SNMP is not enabled on the router.

Example Configuring the Router to Send MPLS Layer 3 VPN SNMP Traps

The following example shows you how to enable the router to send MPLS Layer 3 VPN notifications to host 172.20.2.160 using the comaccess community string if a VRF transitions from an up or down state:

```
configure terminal
!
snmp-server host 172.20.2.160 traps comaccess mpls-vpn
snmp-server enable traps mpls rfc vpn vrf-down vrf-up
```

Example Configuring Threshold Values for MPLS Layer 3 VPN SNMP Notifications

The following example shows how to set a maximum threshold of 10,000 routes and a warning threshold that is 80 percent of the maximum threshold for a VRF named vpn1 on a router:

```
configure terminal!
vrf definition vpn1
address-family ipv4
maximum routes 10000 80
exit address-family
end
```

The following example shows how to set a warning threshold of 10,000 routes for a VRF named vpn2 on a router. An error message is generated; however, additional routes are still allowed because a maximum route threshold is not set with this command.

```
configure terminal!
vrf definition vpn2
address-family ipv4
maximum routes 10000 warn-only
exit address-family
```

Example Configuring SMNP Controls for MPLS Layer 3 VPN Notification Thresholds

The following examples show how to configure SNMP controls for MPLS Layer 3 VPN notification thresholds.

In this example, an interval of 2 hours (7200 seconds) is configured for the resending of maximum threshold exceeded notifications after the first notification was sent and the attempt to add routes continues:

```
configure terminal
!
snmp mib mpls vpn max-threshold 7200
end
```

If you do not configure an interval to resend maximum route exceeded notifications, SNMP sends a single maximum threshold notification at the time that the maximum threshold is exceeded.

In the following example, the number of illegal labels allowed for a VRF is configured as 5 before SNMP sends an illegal label threshold exceeded notification:

```
configure terminal
!
snmp mib mpls vpn illegal-label 5
end
```

If you do not configure an illegal label threshold, then SNMP sends an illegal label notification on the first occurrence of an illegal label.

Additional References

Related Documents

Related Topic	Document Title
Configuration tasks and information about MPLS Layer 3 VPNs	MPLS Layer 3 VPNs Configuration Guide
Configuration tasks and information about IPv6 VPNs over MPLS	"Implementing IPv6 VPN over MPLS (6VPE)" chapter in the IPv6 Configuration Library
Description of commands related to Cisco IPv6	IPv6 Command Reference
Description of commands related to MPLS Layer 3 VPNs	Multiprotocol Label Switching Command Reference

Standards

Standard	Title
http://www.rfc-editor.org/rfc/rfc2578.txt	Structure of Management Information Version 2 (SMIv2)

MIBs

MIB	MIBs Link
MPLS-L3VPN-STD-MIB	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
RFC 2578	Structure of Management Information Version 2 (SMIv2)
RFC 2685	Virtual Private Networks Identifier
RFC 2863	The Interfaces Group MIB
RFC 3031	Multiprotocol Label Switching Architecture
RFC 3410	Introduction and Applicability Statements for the Internet-Standard Management Framework
RFC 3413	Simple Network Management Protocol (SNMP) Applications

RFC	Title
RFC 3813	Multiprotocol Label Switching (MPLS) Label Switching Router (LSR) Management Information Base (MIB)
RFC 4001	Textual Conventions for Internet Network Addresses
RFC 4273	Definitions of Managed Objects for BGP-4
RFC 4364	BGP/MPLS IP Virtual Private Networks (VPNs)
RFC 4382	MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information Base

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 116 Feature Information for MPLS EM—MPLS VPN MIB RFC 4382 Upgrade

Feature Name	Releases	Feature Information
MPLS EM—MPLS VPN MIB RFC 4382 Upgrade	12.2(33)SRC 12.2(33)SB	The MPLS EM—MPLS VPN MIB RFC 4382 Upgrade feature document describes the MIB that supports Multiprotocol Label Switching (MPLS) Virtual Private Networks (VPNs) based on RFC 4382, MPLS/BGP Virtual Private Network (VPN) Management Information Base. This document also describes the differences between RFC 4382 and the MPLS-VPN-MIB based on the Internet Engineering Task Force (IETF) draft Version 3 (draft-ieft-ppvpn-mpls-vpn- mib-03.txt) and describes the changes needed to implement MPLS-L3VPN-STD-MIB (RFC 4382). The MPLS-VPN-MIB and MPLS-L3VPN-STD-MIB provide an interface for managing the MPLS VPN feature in Cisco
		the MPLS VPN feature in Cisco IOS software through the use of the Simple Network Management Protocol (SNMP). Cisco IOS MPLS Embedded Management (EM) is a set of standards and value-added services that facilitate the deployment, operation, administration, and management of MPLS-based networks according to the fault, configuration, accounting, performance, and security (FCAPS) model.
		In 12.2(33)SRC, this feature was introduced on the Cisco 7600 series router. In 12.2(33)SB, the feature was implemented for the Cisco 10000
		series router on the Cisco 10000 Performance Routing Engine 2 (PRE-2) and PRE-3.

Feature Name	Releases	Feature Information
		The following sections provide information about this feature:
		The following commands were introduced or modified: maximum routes, snmp mib mpls vpn, snmp-server enable traps mpls rfc vpn.

Glossary

6VPE router—Provider edge router that provides BGP-MPLS IPv6 VPN service over an IPv4-based MPLS core. It is a IPv6 VPN PE, dual-stack router that implements 6PE concepts on the core-facing interfaces.

autonomous system—A collection of networks that share the same routing protocol and that are under the same system administration.

ASN.1 —Abstract Syntax Notation One. The data types independent of particular computer structures and representation techniques. Described by ISO International Standard 8824.

BGP—Border Gateway Protocol. The exterior Border Gateway Protocol used to exchange routing information between routers in separate autonomous systems. BGP uses TCP. Because TCP is a reliable protocol, BGP does not experience problems with dropped or fragmented data packets.

BGP prefixes—A route announcement using the BGP. A prefix is composed of a path of autonomous system numbers, indicating which networks the packet must pass through, and the IP block that is being routed. A BGP prefix would look something like: 701 1239 42 206.24.14.0/24. (The /24 part is referred to as a CIDR mask.) The /24 indicates that there are 24 ones in the netmask for this block starting from the left side. A /24 corresponds to the natural mask 255.255.255.0.

CE router—customer edge router. A router on the border between a VPN provider and a VPN customer that belongs to the customer.

CIDR —classless interdomain routing. A technique supported by BGP4 and based on route aggregation. CIDR allows routers to group routes to reduce the quantity of routing information carried by the core routers. With CIDR, several IP networks appear to networks outside the group as a single, larger entity. With CIDR, IP addresses and their subnet masks are written as four octets, separated by periods, followed by a forward slash and a two-digit number that represents the subnet mask.

Cisco Express Forwarding—An advanced Layer 3 IP switching technology. Cisco Express Forwarding optimizes network performance and scalability for networks with large and dynamic traffic patterns.

community —In SNMP, a logical group of managed devices and NMSs in the same administrative domain.

community name—See community string.

community string—A text string that acts as a password and is used to authenticate messages sent between a managed station and a router containing an SNMP agent. The community string is sent in every packet between the manager and the client. Also called a community name.

IETF —Internet Engineering Task Force. A task force consisting of over 80 working groups responsible for developing Internet standards. The IETF operates under the auspices of ISOC. *See also* ISOC.

informs —A type of notification message that is more reliable than a conventional trap notification message, because the informs message notification requires acknowledgment, and a trap notification does not.

ISOC —Internet Society. An international nonprofit organization, founded in 1992, that coordinates the evolution and use of the Internet. In addition, ISOC delegates authority to other groups related to the Internet, such as the IAB. ISOC is headquartered in Reston, Virginia (United States).

label —A short, fixed-length data construct that tells switching nodes how to forward data (packets or cells).

LDP—Label Distribution Protocol. A standard protocol between MPLS-enabled routers that is used for the negotiation of the labels (addresses) used to forward packets.

LFIB — Label Forwarding Information Base. In the Cisco Label Switching system, the data structure for storing information about incoming and outgoing tags (labels) and associated equivalent packets suitable for labeling.

LSR—label switch router. A device that forwards MPLS packets based on the value of a fixed-length label encapsulated in each packet.

MIB —Management Information Base. A database of network management information that is used and maintained by a network management protocol such as SNMP or CMIP. The value of a MIB object can be changed or retrieved using SNMP or CMIP commands, usually through a GUI network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

MPLS —Multiprotocol Label Switching. A method for forwarding packets (frames) through a network. It enables routers at the edge of a network to apply labels to packets (frames). ATM switches or existing routers in the network core can switch packets according to the labels with minimal lookup overhead.

MPLS interface—An interface on which MPLS traffic is enabled.

MPLS VPN—Multiprotocol Label Switching Virtual Private Network. An IP network infrastructure delivering private network services over a public infrastructure using a Layer 3 backbone. Using MPLS VPNs in a Cisco IOS network provides the capability to deploy and administer scalable Layer 3 VPN backbone services including applications, data hosting network commerce, and telephony services to business customers.

For an MPLS VPN solution, an MPLS VPN is a set of provider edge routers that are connected by means of a common "backbone" network to supply private IP interconnectivity between two or more customer sites for a given customer. Each VPN has a set of provisioning templates and policies and can span multiple provider administrative domains (PADs).

NMS —network management system. A powerful, well-equipped computer (typically an engineering workstation) that is used by a network administrator to communicate with other devices in the network. An NMS is typically used to manage network resources, gather statistics, and perform a variety of network administration and configuration tasks.

notification —A message sent by an SNMP agent to a network management station, console, or terminal to indicate that a significant event within Cisco IOS software has occurred. *See also* trap.

PE router—provider edge router. A router on the border between a VPN provider and a VPN customer that belongs to the provider.

QoS —quality of service. A measure of performance for a transmission system that reflects its transmission quality and service availability.

RIB —Routing Information Base. Also called the routing table.

RT—route target. An extended community attribute that identifies a group of routers and, in each router of that group, a subset of forwarding tables maintained by the router that can be populated with a BGP route

carrying that extended community attribute. The RT is a 64-bit value by which Cisco IOS software discriminates routes for route updates in VRFs.

SNMP—Simple Network Management Protocol. The network management protocol used almost exclusively in TCP/IP networks. SNMP provides a means to monitor and control network devices, and to manage configurations, statistics collection, performance, and security. *Seealso* SNMP2.

SNMP2 —SNMP Version 2. Version 2 of the popular network management protocol. SNMP2 supports centralized and distributed network management strategies, and includes improvements in the Structure of Management Information (SMI), protocol operations, management architecture, and security. *See also* SNMP.

trap —A message sent by an SNMP agent to a network management station, console, or terminal, indicating that a significant event occurred. Traps (notifications) are less reliable than inform requests, because the receiver does not send an acknowledgment when it receives a trap. The sender cannot determine if the trap was received. *See also* notification.

VPN —Virtual Private Network. A group of sites that, as the result of a set of administrative policies, are able to communicate with each other over a shared backbone network. A VPN is a secure IP-based network that shares resources on one or more physical networks. A VPN contains geographically dispersed sites that can communicate securely over a shared backbone. *Seealso* MPLS VPN.

VPN ID —A mechanism that identifies a VPN based on RFC 2685. A VPN ID consists of an Organizational Unique Identifier (OUI), a three-octet hex number assigned by the IEEE Registration Authority, and a VPN index, a four-octet hex number, which identifies the VPN within the company.

VRF —VPN routing and forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.