Implementing Traffic Filters and Firewalls for IPv6 Security

Last Updated: August 1, 2012

This module describes how to configure Cisco IOS IPv6 traffic filter and firewall features for your Cisco networking devices. These security features can protect your network from degradation or failure and also from data loss or compromised security resulting from intentional attacks and from unintended but damaging mistakes by well-meaning network users.

- Finding Feature Information, page 1
- Restrictions for Implementing Traffic Filters and Firewalls for IPv6 Security, page 1
- Information About Implementing Traffic Filters and Firewalls for IPv6 Security, page 2
- How to Implement Traffic Filters and Firewalls for IPv6 Security, page 5
- Configuration Examples for Implementing Traffic Filters and Firewalls for IPv6 Security, page 35
- Additional References, page 38
- Feature Information for Implementing Traffic Filters and Firewalls for IPv6 Security, page 40

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Implementing Traffic Filters and Firewalls for IPv6 Security

Cisco IOS Release 12.2(2)T through Cisco IOS Release 12.2(13)T and Cisco IOS Release 12.0(22)S and later releases support only standard IPv6 access control list (ACL) functionality. In Cisco IOS Release 12.0(23)S and 12.2(13)T or later releases, the standard IPv6 ACL functionality is extended to support...
traffic filtering based on IPv6 option headers and optional, upper-layer protocol type information for finer granularity of control (functionality similar to extended ACLs in IPv4).

Information About Implementing Traffic Filters and Firewalls for IPv6 Security

- Access Control Lists for IPv6 Traffic Filtering, page 2
- Cisco IOS Firewall for IPv6, page 3
- Zone-Based Policy Firewall IPv6 Support, page 4
- ACL--Hardware and Software Counters Granularity for IPv4 and IPv6 ACL Statistics, page 4

Access Control Lists for IPv6 Traffic Filtering

The standard ACL functionality in IPv6 is similar to standard ACLs in IPv4. Access lists determine what traffic is blocked and what traffic is forwarded at router interfaces and allow filtering based on source and destination addresses, inbound and outbound to a specific interface. Each access list has an implicit deny statement at the end. IPv6 ACLs are defined and their deny and permit conditions are set using the `ipv6 access-list` command with the `deny` and `permit` keywords in global configuration mode.

IPv6 extended ACLs augments standard IPv6 ACL functionality to support traffic filtering based on IPv6 option headers and optional, upper-layer protocol type information for finer granularity of control (functionality similar to extended ACLs in IPv4).

- IPv6 ACL Extensions for IPsec Authentication Header, page 2
- Access Class Filtering in IPv6, page 2
- Tunneling Support, page 3
- Virtual Fragment Reassembly, page 3

IPv6 ACL Extensions for IPsec Authentication Header

This feature provides the ability to match on the upper layer protocol (ULP) (for example, TCP, User Datagram Protocol [UDP], ICMP, SCTP) regardless of whether an authentication header (AH) is present or absent.

TCP or UDP traffic can be matched to the upper-layer protocol (ULP) (for example, TCP, UDP, ICMP, SCTP) if an AH is present or absent. Before this feature was introduced, this function was only available if an AH was absent.

This feature introduces the keyword `auth` to the `permit` and `deny` commands. The `auth` keyword allows matching traffic against the presence of the authentication header in combination with the specified protocol; that is, TCP or UDP.

IPv6 traffic can be matched to a ULP when an AH header is present. To perform this function, enter the `ahp` option for the `protocol` argument when using the `permit` or `deny` command.

Access Class Filtering in IPv6

Filtering incoming and outgoing connections to and from the router based on an IPv6 ACL is performed using the `ipv6 access-class` command in line configuration mode. The `ipv6 access-class` command is similar to the `access-class` command, except the IPv6 ACLs are defined by a name. If the IPv6 ACL is
applied to inbound traffic, the source address in the ACL is matched against the incoming connection
source address and the destination address in the ACL is matched against the local router address on the
interface. If the IPv6 ACL is applied to outbound traffic, the source address in the ACL is matched against
the local router address on the interface and the destination address in the ACL is matched against the
outgoing connection source address. We recommend that identical restrictions are set on all the virtual
terminal lines because a user can attempt to connect to any of them.

Tunneling Support

IPv6 packets tunneled in IPv4 are not inspected. If a tunnel terminates on a router, and IPv6 traffic exiting
the tunnel is nonterminating, then the traffic is inspected.

Virtual Fragment Reassembly

When VFR is enabled, VFR processing begins after ACL input lists are checked against incoming packets.
The incoming packets are tagged with the appropriate VFR information.

Cisco IOS Firewall for IPv6

The Cisco IOS Firewall feature provides advanced traffic filtering functionality as an integral part of a
network’s firewall. Cisco IOS Firewall for IPv6 enables you to implement Cisco IOS Firewall in IPv6
networks. Cisco IOS Firewall coexists with Cisco IOS Firewall for IPv4 networks and is supported on all
dual-stack routers.

Cisco IOS Firewall for IPv6 features are as follows:

- Fragmented packet inspection--The fragment header is used to trigger fragment processing. Cisco IOS
 Firewall virtual fragment reassembly (VFR) examines out-of-sequence fragments and switches the
 packets into correct order, examines the number of fragments from a single IP given a unique
 identifier (Denial of Service [DoS] attack), and performs virtual reassembly to move packets to upper-
 layer protocols.
- IPv6 DoS attack mitigation--Mitigation mechanisms have been implemented in the same fashion as for
 IPv4 implementation, including SYN half-open connections.
- Tunneled packet inspection--Tunneled IPv6 packets terminated at a Cisco IOS firewall router can be
 inspected by the Cisco IOS Firewall for IPv6.
- Stateful packet inspection--The feature provides stateful packet inspection of TCP, UDP, Internet
 Control Message Protocol version 6 (ICMPv6), and FTP sessions.
- Stateful inspection of packets originating from the IPv4 network and terminating in an IPv6
 environment--This feature uses IPv4-to-IPv6 translation services.
- Interpretation or recognition of most IPv6 extension header information--The feature provides IPv6
 extension header information including routing header, hop-by-hop options header, and fragment
 header is interpreted or recognized.
- Port-to-application mapping (PAM)--Cisco IOS Firewall for IPv6 includes PAM.

- **PAM in Cisco IOS Firewall for IPv6, page 3**
- **Cisco IOS Firewall Alerts Audit Trails and System Logging, page 4**
- **IPv6 Packet Inspection, page 4**
- **Cisco IOS Firewall Restrictions, page 4**

PAM in Cisco IOS Firewall for IPv6
PAM allows you to customize TCP or UDP port numbers for network services or applications. PAM uses this information to support network environments that run services using ports that are different from the registered or well-known ports associated with an application.

Using the port information, PAM establishes a table of default port-to-application mapping information at the firewall. The information in the PAM table enables Context-based Access Control (CBAC) supported services to run on nonstandard ports. CBAC is limited to inspecting traffic using only the well-known or registered ports associated with an application, whereas PAM allows network administrators to customize network access control for specific applications and services.

PAM also supports host- or subnet-specific port mapping, which allows you to apply PAM to a single host or subnet using standard ACLs. Host- or subnet-specific port mapping is done using standard ACLs.

Cisco IOS Firewall Alerts Audit Trails and System Logging

Cisco IOS Firewall generates real-time alerts and audit trails based on events tracked by the firewall. Enhanced audit trail features use system logging to track all network transactions; to record time stamps, source host, destination host, and ports used; and to record the total number of transmitted bytes for advanced, session-based reporting. Real-time alerts send system logging error messages to central management consoles when the system detects suspicious activity. Using Cisco IOS Firewall inspection rules, you can configure alerts and audit trail information on a per-application protocol basis. For example, if you want to generate audit trail information for TCP traffic, you can specify the generation of this information in the Cisco IOS Firewall rule that defines TCP inspection.

The Cisco IOS Firewall provides audit trail messages to record details about inspected sessions. Audit trail information is configurable on a per-application basis using the CBAC inspection rules. To determine which protocol was inspected, use the port number associated with the responder. The port number appears immediately after the address.

IPv6 Packet Inspection

The following header fields are all used for IPv6 inspection—traffic class, flow label, payload length, next header, hop limit, and source or destination address. For further information on and descriptions of the IPv6 header fields, see RFC 2474.

Cisco IOS Firewall Restrictions

Cisco IOS Intrusion Detection System (IDS) is not supported for IPv6.

Zone-Based Policy Firewall IPv6 Support

The zone-based policy firewall for IPv6 coexists with the zone-based policy firewall for IPv4 in order to support IPv6 traffic. The feature provides MIB support for TCP, UDP, ICMPv6, and FTP sessions.

ACL--Hardware and Software Counters Granularity for IPv4 and IPv6 ACL Statistics

Each IPv6 and IPv4 ACL entry maintains a global counter per entry for the number of matches applied to the ACL entry. The counters reflect all matches applied to the ACL, regardless of where the match was applied (such as on the platform or in the software feature path). This feature allows both IPv4 and IPv6 ACLs on the Cisco Catalyst 6500 platform to update the ACL entry statistics with a platform entry count.
How to Implement Traffic Filters and Firewalls for IPv6 Security

- Configuring IPv6 Traffic Filtering, page 5
- Controlling Access to a vty, page 8
- Configuring TCP or UDP Matching, page 11
- Creating an IPv6 ACL for Traffic Filtering in Cisco IOS Release 12.2(11)T 12.0(22)S or Earlier Releases, page 12
- Configuring the Cisco IOS Firewall for IPv6, page 15
- Configuring Zone-Based Firewall in IPv6, page 21
- Configuring ACL Hardware and Software Counters Granularity for IPv4 and IPv6 ACL Statistics, page 26
- Verifying IPv6 Security Configuration and Operation, page 27
- Troubleshooting IPv6 Security Configuration and Operation, page 29

Configuring IPv6 Traffic Filtering

If you are running Cisco IOS Release 12.2(13)T, 12.0(23)S, or later releases, proceed to the Creating and Configuring an IPv6 ACL for Traffic Filtering, page 5 section. If you are running Cisco IOS Release 12.2(11)T, 12.0(22)S, or earlier releases, proceed to the Creating an IPv6 ACL for Traffic Filtering in Cisco IOS Release 12.2(11)T 12.0(22)S or Earlier Releases, page 12 section.

- Creating and Configuring an IPv6 ACL for Traffic Filtering, page 5
- Applying the IPv6 ACL to an Interface, page 7

Creating and Configuring an IPv6 ACL for Traffic Filtering

This section describes how to configure your networking devices to filter traffic, function as a firewall, or detect potential viruses.

Note

- Each IPv6 ACL contains implicit permit rules to enable IPv6 neighbor discovery. These rules can be overridden by the user by placing a deny ipv6 any any statement within an ACL. The IPv6 neighbor discovery process makes use of the IPv6 network layer service; therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, makes use of a separate data link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.
- Time-based and reflexive ACLs are not supported for IPv4 or IPv6 on the Cisco 12000 series platform. The reflect, timeout, and time-range keywords of the permit command in IPv6 are excluded on the Cisco 12000 series.
SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 access-list access-list-name
4. Do one of the following:
 - permit protocol { source-ipv6-prefix / prefix-length | any | host source-ipv6-address | auth } [operator [port-number]] [destination-ipv6-prefix / prefix-length | any | host destination-ipv6-address | auth] [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]
 - deny protocol { source-ipv6-prefix / prefix-length | any | host source-ipv6-address | auth } [operator port-number] [destination-ipv6-prefix / prefix-length | any | host destination-ipv6-address | auth] [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv6 access-list access-list-name</td>
<td>Defines an IPv6 ACL, and enters IPv6 access list configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 access-list outbound</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | **Purpose**
--- | ---
Step 4 Do one of the following:

- **permit protocol** `{source-ipv6-prefix prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] {destination-ipv6-prefix prefix-length | any | host destination-ipv6-address | auth} [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]

-

- **deny protocol** `{source-ipv6-prefix prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] {destination-ipv6-prefix prefix-length | any | host destination-ipv6-address | auth} [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [routing] [routing-type routing-number] [sequence value] [time-range name] [undetermined-transport]

Example:

```
Router(config-ipv6-acl)# permit tcp 2001:DB8:0300:0201::/32 eq telnet any reflect reflectout
```

Example:

```
Router(config-ipv6-acl)# deny tcp host 2001:DB8:1::1 any log-input
```

Applying the IPv6 ACL to an Interface

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 traffic-filter access-list-name {in | out}
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface ethernet 0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ipv6 traffic-filter access-list-name {in</td>
<td>out}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 traffic-filter outbound out</td>
<td></td>
</tr>
</tbody>
</table>

Controlling Access to a vty

- Creating an IPv6 ACL to Provide Access Class Filtering, page 8
- Applying an IPv6 ACL to the Virtual Terminal Line, page 10

Creating an IPv6 ACL to Provide Access Class Filtering

Perform this task to control access to a vty on a router by creating an IPv6 ACL to provide access class filtering.
SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 access-list access-list-name
4. Do one of the following:
 • permit protocol {source-ipv6-prefix / prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] [destination-ipv6-prefix / prefix-length | any | host destination-ipv6-address | auth] [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]

 •

 •

 • deny protocol {source-ipv6-prefix / prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] [destination-ipv6-prefix / prefix-length | any | host destination-ipv6-address | auth] [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [routing] [routing-type routing-number] [sequence value] [time-range name] [undetermined-transport]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv6 access-list access-list-name</td>
<td>Defines an IPv6 ACL, and enters IPv6 access list configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 access-list cisco</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Specifies permit or deny conditions for an IPv6 ACL.</td>
</tr>
<tr>
<td>• `permit protocol {source-ipv6-prefix / prefix-length</td>
<td>any</td>
</tr>
<tr>
<td>•</td>
<td></td>
</tr>
<tr>
<td>• `deny protocol {source-ipv6-prefix / prefix-length</td>
<td>any</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-ipv6-acl)# permit ipv6 host 2001:DB8:0:4::32 any eq telnet
```

Example:

```
Router(config-ipv6-acl)# deny ipv6 host 2001:DB8:0:6::32 any
```

Applying an IPv6 ACL to the Virtual Terminal Line

SUMMARY STEPS

1. enable
2. configure terminal
3. line [aux| console| tty| vty] line-number[ending-line-number]
4. ipv6 access-class ipv6-access-list-name {in| out}
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal |
| **Step 3** line [aux|console|tty|vty] line-number[ending-line-number] | Identifies a specific line for configuration and enters line configuration mode.
• In this example, the *vty* keyword is used to specify the virtual terminal lines for remote console access. |
| **Example:** Router(config)# line vty 0 4 |
| **Step 4** ipv6 access-class ipv6-access-list-name {in|out} | Filters incoming and outgoing connections to and from the router based on an IPv6 ACL. |
| **Example:** Router(config-line)# ipv6 access-class cisco in |

Configuring TCP or UDP Matching

TCP or UDP traffic can be matched to the ULP (for example, TCP, UDP, ICMP, SCTP) if an AH is present or absent. Before this feature was introduced, this function was only available if an AH was absent.

Use of the keyword `auth` with the `permit icmp` and `deny icmp` commands allows TCP or UDP traffic to be matched to the ULP if an AH is present. TCP or UDP traffic without an AH will not be matched.

IPv6 traffic can be matched to a ULP when an AH header is present. To perform this function, enter the `ahp` option for the `protocol` argument when using the `permit` or `deny` command.

Perform this task to allow TCP or UDP traffic to be matched to the ULP if an AH is present.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ipv6 access-list access-list-name`
4. `permit icmp auth`
Creating an IPv6 ACL for Traffic Filtering in Cisco IOS Release 12.2(11)T 12.0(22)S or Earlier Releases

Perform the following tasks to create and apply ACLs in Cisco IOS Release 12.2(11)T, 12.0(22)S, or earlier releases.
Creating an IPv6 ACL in Cisco IOS Release 12.2(11)T 12.0(22)S or Earlier Releases

Perform this task to create an IPv6 ACL and configure the IPv6 ACL to pass or block traffic in Cisco IOS Release 12.2(11)T, 12.0(22)S, or earlier releases.

Note
- The `source-ipv6-prefix` argument filters traffic by packet source address, and the `destination-ipv6-prefix` argument filters traffic by packet destination address.
- The Cisco IOS software compares an IPv6 prefix against the permit and deny condition statements in the access list. Every IPv6 access list, including access lists that do not have any permit and deny condition statements, has an implicit deny any any statement as its last match condition. The priority or sequence value applied to each condition statement dictates the order in which the statement is applied in the access list.

SUMMARY STEPS

1. **enable**
 - Example: `Router> enable`
 - Enables privileged EXEC mode.
 - Enter your password if prompted.

2. **configure terminal**
 - Example: `Router# configure terminal`
 - Enters global configuration mode.

3. **ipv6 access-list** *access-list-name* {permit | deny} {source-ipv6-prefix | any} {destination-ipv6-prefix | any} [priority value]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Step 3 ipv6 access-list access-list-name {permit | deny} {source-ipv6-prefix / prefix-length | any} {destination-ipv6-prefix / prefix-length | any} {priority value}

Example:
Router(config)# ipv6 access-list list2 deny fec0:0:0:2::/64 any

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 ipv6 access-list access-list-name {permit</td>
<td>deny} {source-ipv6-prefix / prefix-length</td>
</tr>
</tbody>
</table>

Applying the IPv6 ACL to an Interface in Cisco IOS Release 12.2(11)T 12.0(22)S or Earlier Releases

Perform this task to apply the IPv6 ACL to an interface in Cisco IOS Release 12.2(11)T, 12.0(22)S, or earlier releases.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 traffic-filter access-list-name {in | out}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface ethernet 0</td>
</tr>
</tbody>
</table>
Configuring the Cisco IOS Firewall for IPv6

This configuration scenario uses both packet inspection and ACLs.

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 unicast-routing
4. ipv6 inspect name inspection-name protocol [alert {on | off}] [audit-trail {on | off}] [timeout seconds]
5. interface type number
6. ipv6 address {ipv6-address / prefix-length | prefix-name sub-prefix-length / prefix-length}
7. ipv6 enable
8. ipv6 traffic-filter access-list-name {in | out}
9. ipv6 inspect inspection-name {in | out}
10. ipv6 access-list access-list-name
11. Do one of the following:

 - permit protocol {source-ipv6-prefix / prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] [destination-ipv6-prefix / prefix-length | any | host destination-ipv6-address | auth] [operator [port-number]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]

 - deny protocol {source-ipv6-prefix / prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] [destination-ipv6-prefix / prefix-length | any host destination-ipv6-address | auth] [operator [port-number]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [routing] [routing-type routing-number] [sequence value] [time-range name] [undetermined-transport]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv6 unicast-routing</td>
<td>Enables IPv6 unicast routing.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 unicast-routing</td>
<td></td>
</tr>
<tr>
<td>Step 4 ipv6 inspect name inspection-name protocol</td>
<td>Defines a set of IPv6 inspection rules for the firewall.</td>
</tr>
<tr>
<td>{alert [on</td>
<td>off]}</td>
</tr>
<tr>
<td>[audit-trail[on</td>
<td>off]]</td>
</tr>
<tr>
<td>[timeout seconds]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 inspect name ipv6_test icmp timeout 60</td>
<td></td>
</tr>
<tr>
<td>Step 5 interface type number</td>
<td>Specifies the interface on which the inspection will occur.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface FastEthernet0/0</td>
<td></td>
</tr>
<tr>
<td>Step 6 ipv6 address {ipv6-address / prefix-length</td>
<td>Provides the address for the inspection interface.</td>
</tr>
<tr>
<td></td>
<td>prefix-name sub-bits / prefix-length</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 address 3FFE:0000:0:7::/64 eui-64</td>
<td></td>
</tr>
<tr>
<td>Step 7 ipv6 enable</td>
<td>Enables IPv6 routing.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 enable</td>
<td>This step is optional if the IPv6 address is specified in step 6.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 8 ipv6 traffic-filter access-list-name *(in</td>
<td>out)*</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 traffic-filter outbound out</td>
<td></td>
</tr>
<tr>
<td>Step 9 ipv6 inspect inspection-name *(in</td>
<td>out)*</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 inspect ipv6_test in</td>
<td></td>
</tr>
<tr>
<td>Step 10 ipv6 access-list access-list-name</td>
<td>Defines an IPv6 ACL and enters IPv6 access list configuration mode. The router prompt changes to Router(config-ipv6-acl)#.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 access-list outbound</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 11 Do one of the following:

- **permit protocol** `{source-ipv6-prefix/prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address | auth} [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]

-

-

- **deny protocol** `{source-ipv6-prefix/prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address | auth} [operator [port-number]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name] [undetermined-transport]

Example:

```
Router(config-ipv6-acl)# permit tcp 2001:DB8:0300:0201::/32 any reflect reflectout
```

Example:

```
Router(config-ipv6-acl)# deny tcp fec0:0:0:0201::/64 any
```

- Configuring PAM for IPv6, page 18

Configuring PAM for IPv6

- Creating an IPv6 Access Class Filter for PAM, page 18
- Applying the IPv6 Access Class Filter to PAM, page 20

Creating an IPv6 Access Class Filter for PAM
SUMMARY STEPS

1. enable
2. configure terminal
3. `ipv6 access-list access-list-name`
4. Do one of the following:

 - `permit protocol {source-ipv6-prefix/prefix-length | any | host source-ipv6-address | auth} [operator [port-number]] [destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address | auth] [operator [port-number]] [dest-option-type {doh-number | doh-type}] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type {mh-number | mh-type}] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]

 - `deny protocol source-ipv6-prefix/prefix-length | any | host source-ipv6-address | auth} [operator port-number] destination-ipv6-prefix/prefix-length any host destination-ipv6-address | auth} [operator port-number] dest-option-type {doh-number | doh-type} [dscp value flow-label value fragments log log-input] [mobility] [mobility-type {mh-number | mh-type}] [routing] [routing-type routing-number] [sequence value] [time-range name undetermined-transport]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ipv6 access-list access-list-name</code></td>
<td>Defines an IPv6 ACL and enters IPv6 access list configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# ipv6 access-list outbound</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 4 Do one of the following:

- **permit protocol** `{ source-ipv6-prefix/prefix-length | any | host source-ipv6-address [auth] [operator [port-number]] [destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address [auth] [operator [port-number]]] [dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]`

- **deny protocol** `{ source-ipv6-prefix/prefix-length | any | host source-ipv6-address [auth] [operator port-number]] destination-ipv6-prefix/prefix-length any host destination-ipv6-address [auth] [operator port-number]] dest-option-type [doh-number | doh-type]] [dscp value] [flow-label value] [fragments] [log] [log-input] [mobility] [mobility-type [mh-number | mh-type]] [reflect name [timeout value]] [routing] [routing-type routing-number] [sequence value] [time-range name]

Example:

```
Router(config-ipv6-acl)# permit tcp 2001:DB8:0300:0201::/32 any reflect reflectout
```

Example:

```
Router(config-ipv6-acl)# deny tcp fec0:0:0:0201::/64 any
```

Applying the IPv6 Access Class Filter to PAM

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 port-map application-name port port-num [list acl-name]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |

Example:
```
Router> enable
```

| **Step 2** configure terminal | Enters global configuration mode. |

Example:
```
Router# configure terminal
```

| **Step 3** ipv6 port-map application-name port port-num [list acl-name] | Establishes PAM for the system. |

Example:
```
Router(config)# ipv6 port-map ftp port 8090 list PAMACL
```

Configuring Zone-Based Firewall in IPv6

- Configuring an Inspect-Type Parameter Map, page 21
- Creating and Using an Inspect-Type Class Map, page 22
- Creating and Using an Inspect-Type Policy Map, page 24
- Creating Security Zones and Zone Pairs, page 25

Configuring an Inspect-Type Parameter Map

SUMMARY STEPS

1. enable
2. configure terminal
3. parameter-map type inspect \{parameter-map-name | global | default\}
4. sessions maximum sessions
5. ipv6 routing-enforcement-header loose
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 parameter-map type inspect</td>
<td>Configures an inspect type parameter map for connecting thresholds, timeouts, and other parameters pertaining to the inspect action, and places the router in parameter map configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# parameter-map type inspect v6-param-map</td>
<td></td>
</tr>
<tr>
<td>Step 4 sessions maximum sessions</td>
<td>Sets the maximum number of allowed sessions that can exist on a zone pair.</td>
</tr>
<tr>
<td>Example: Router(config-profile)# sessions maximum 10000</td>
<td></td>
</tr>
<tr>
<td>Step 5 ipv6 routing-enforcement-header loose</td>
<td>Provides backward compatibility with legacy IPv6 inspection.</td>
</tr>
<tr>
<td>Example: Router(config-profile)# ipv6 routing-enforcement-header loose</td>
<td></td>
</tr>
</tbody>
</table>

Creating and Using an Inspect-Type Class Map
SUMMARY STEPS

1. enabled
2. configure terminal
3. class-map type inspect {match-any | match-all} class-map-name
4. match protocol tcp
5. match protocol udp
6. match protocol icmp
7. match protocol ftp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 class-map type inspect {match-any</td>
<td>match-all} class-map-name</td>
</tr>
<tr>
<td>Example: Router(config-profile)# class-map type inspect match-any v6-class</td>
<td></td>
</tr>
<tr>
<td>Step 4 match protocol tcp</td>
<td>Configures the match criterion for a class map based on TCP.</td>
</tr>
<tr>
<td>Example: Router(config-cmap)# match protocol tcp</td>
<td></td>
</tr>
<tr>
<td>Step 5 match protocol udp</td>
<td>Configures the match criterion for a class map based on UDP.</td>
</tr>
<tr>
<td>Example: Router(config-cmap)# match protocol udp</td>
<td></td>
</tr>
</tbody>
</table>
Creating and Using an Inspect-Type Policy Map

SUMMARY STEPS

1. enable
2. configure terminal
3. policy-map type inspect policy-map-name
4. class type inspect class-map-name
5. inspect [parameter-map-name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 policy-map type inspect policy-map-name</td>
<td>Creates an inspect-type policy map, and places the router in policy-map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# policy-map type inspect v6-policy</td>
<td></td>
</tr>
</tbody>
</table>
Creating Security Zones and Zone Pairs

SUMMARY STEPS

1. enable
2. configure terminal
3. zone security { zone-name | default }
4. zone security { zone-name | default }
5. zone-pair security zone-pair-name source { source-zone-name | self | default } destination { destination-zone-name | self | default }
6. service-policy type inspect policy-map-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Step 3 zone security {zone-name | default} | Creates a security zone.
 - Cisco recommends that you create at least two security zones so that you can create a zone pair. |
| Example: | Router(config)# zone security 1 |
| Step 4 zone security {zone-name | default} | Creates a security zone.
 - Cisco recommends that you create at least two security zones so that you can create a zone pair. |
| Example: | Router(config)# zone security 2 | | | | |
| Step 5 zone-pair security zone-pair-name source {source-zone-name | self | default} destination {destination-zone-name | self | default} | Creates a zone pair, and places the router in zone-pair configuration mode. |
| Example: | Router(config)# zone-pair security zp source z1 destination z2 |
| Step 6 service-policy type inspect policy-map-name | Attaches a firewall policy map to a zone pair. |
| Example: | Router(config-sec-zone-pair)# service-policy type inspect v6-policy |

Configuring ACL Hardware and Software Counters Granularity for IPv4 and IPv6 ACL Statistics

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 access-list access-list-name
4. hardware statistics
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** ipv6 access-list *access-list-name* | Defines an IPv6 ACL and enters IPv6 access list configuration mode. |
| **Example:** | |
| Router(config)# ipv6 access-list outbound | |
| **Step 4** hardware statistics | Enables the collection of hardware statistics. |
| **Example:** | |
| Router(config-ipv6-acl)# hardware statistics | |

Verifying IPv6 Security Configuration and Operation

SUMMARY STEPS

1. show crypto ipsec sa [map *map-name* | address | identity | interface interface-type interface-number | peer [vrf *vrf-name*] address | vrf *vrf-name* | ipv6 [interface-type interface-number]] [detail]
2. show crypto isakmp peer [config | detail]
3. show crypto isakmp profile
4. show crypto isakmp sa [active | standby | detail | nat
5. show ipv6 access-list [access-list-name]
6. show ipv6 inspect {name inspection-name | config | interfaces | session [detail] | all}
7. show ipv6 port-map [application | port port-number]
8. show ipv6 prefix-list [detail | summary] [list-name]
9. show ipv6 virtual-reassembly interface interface-type
10. show logging [slot slot-number | summary]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>`show crypto ipsec sa [map map-name</td>
<td>address</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show crypto ipsec sa ipv6</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`show crypto isakmp peer [config</td>
<td>detail]`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show crypto isakmp peer</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>show crypto isakmp profile</code></td>
<td>Lists all the ISAKMP profiles that are defined on a router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show crypto isakmp profile</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>`show crypto isakmp sa [active</td>
<td>standby</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show crypto isakmp sa</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show ipv6 access-list [access-list-name]</code></td>
<td>Displays the contents of all current IPv6 access lists.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show ipv6 access-list</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>`show ipv6 inspect {name inspection-name</td>
<td>config</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show ipv6 inspect interfaces</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

| Step 7 | show ipv6 port-map \[application | port port-number\] | Displays PAM configuration. |
|--------|--|-----------------------------|
| Example: | Router# show ipv6 port-map ftp | |
| Step 8 | show ipv6 prefix-list [detail | summary] [list-name] | Displays information about an IPv6 prefix list or IPv6 prefix list entries. |
| Example: | Router# show ipv6 prefix-list | |
| Step 9 | show ipv6 virtual-reassembly interface interface-type | Displays configuration and statistical information of VFR. |
| Example: | Router# show ipv6 virtual-reassembly interface e1/1 | |
| Step 10 | show logging [slot slot-number | summary] | Displays the state of system logging (syslog) and the contents of the standard system logging buffer. |
| Example: | Router# show logging | • Access list entries with the log or log-input keywords will be logged when a packet matches the access list entry. |

Troubleshooting IPv6 Security Configuration and Operation

SUMMARY STEPS

1. enable
2. clear ipv6 access-list \[access-list-name\]
3. clear ipv6 inspect \{session session-number | all\}
4. clear ipv6 prefix-list \[prefix-list-name] \[ipv6-prefix / prefix-length\]
5. debug crypto ipsec
6. debug crypto engine packet [detail]
7. debug ipv6 inspect \{function-trace | object-creation | object-deletion | events | timers | protocol | detailed\}
8. debug ipv6 packet \[access-list access-list-name\] \[detail\]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 clear ipv6 access-list</td>
<td>Resets the IPv6 access list match counters.</td>
</tr>
<tr>
<td>[access-list-name]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear ipv6 access-list tin</td>
<td></td>
</tr>
<tr>
<td>Step 3 clear ipv6 inspect</td>
<td>Removes a specific IPv6 session or all IPv6 inspection sessions.</td>
</tr>
<tr>
<td>{session session-number</td>
<td>all}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear ipv6 inspect all</td>
<td></td>
</tr>
<tr>
<td>Step 4 clear ipv6 prefix-list</td>
<td>Resets the hit count of the IPv6 prefix list entries.</td>
</tr>
<tr>
<td>[prefix-list-name] [ipv6-prefix / prefix-length]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear ipv6 prefix-list</td>
<td></td>
</tr>
<tr>
<td>Step 5 debug crypto ipsec</td>
<td>Displays IPsec network events.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug crypto ipsec</td>
<td></td>
</tr>
<tr>
<td>Step 6 debug crypto engine packet</td>
<td>Displays the contents of IPv6 packets.</td>
</tr>
<tr>
<td>[detail]</td>
<td>Caution Using this command could flood the system and increase CPU usage if several packets are being encrypted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug crypto engine packet</td>
<td></td>
</tr>
<tr>
<td>Step 7 debug ipv6 inspect</td>
<td>Displays messages about Cisco IOS Firewall events.</td>
</tr>
<tr>
<td>{function-trace</td>
<td>object-creation</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug ipv6 inspect timers</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>debug ipv6 packet [access-list access-list-name] [detail]</td>
<td>Displays debugging messages for IPv6 packets.</td>
</tr>
</tbody>
</table>

Example:

```
Router# debug ipv6 packet access-list PAK-ACL
```

Examples

Sample Output from the show crypto ipsec sa ipv6 Command

The following is sample output from the `show crypto ipsec sa ipv6` command:

```
Router# show crypto ipsec sa ipv6
interface: Tunnel0
    Crypto map tag: Tunnel0-head-0, local addr 3FFE:2002::A8BB:CCFF:FE01:9002
    protected vrf: (none)
    local ident (addr/mask/prot/port): (::/0/0/0)
    remote ident (addr/mask/prot/port): (::/0/0/0)
    current peer 3FFE:2002::A8BB:CCFF:FE01:2C02 port 500
    PERMIT, flags={origin_is_acl,}
    #pkts encaps: 133, #pkts encrypt: 133, #pkts digest: 133
    #pkts decaps: 133, #pkts decrypt: 133, #pkts verify: 133
    #pkts compressed: 0, #pkts decompressed: 0
    #pkts not compressed: 0, #pkts compr. failed: 0
    #pkts not decompressed: 0, #pkts decompress failed: 0
    #send errors 60, #recv errors 0
    local crypto endpt.: 3FFE:2002::A8BB:CCFF:FE01:9002,
    remote crypto endpt.: 3FFE:2002::A8BB:CCFF:FE01:2C02
    path mtu 1514, ip mtu 1514
    current outbound spi: 0x28551D9A(676666778)
    inbound esp sas:
        spi: 0x2104850C(553944332)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 93, flow_id: SW:93, crypto map: Tunnel0-head-0
        sa timing: remaining key lifetime (k/sec): (4397507/148)
        IV size: 8 bytes
        replay detection support: Y
        Status: ACTIVE
    inbound ah sas:
        spi: 0x967698CB(2524354763)
        transform: ah-sha-hmac ,
        in use settings ={Tunnel, }
        conn id: 93, flow_id: SW:93, crypto map: Tunnel0-head-0
        sa timing: remaining key lifetime (k/sec): (4397507/147)
        replay detection support: Y
        Status: ACTIVE
    inbound pcp sas:
    outbound esp sas:
        spi: 0x28551D9A(676666778)
        transform: esp-des ,
        in use settings ={Tunnel, }
        conn id: 94, flow_id: SW:94, crypto map: Tunnel0-head-0
        sa timing: remaining key lifetime (k/sec): (4397508/147)
        IV size: 8 bytes
        replay detection support: Y
        Status: ACTIVE
    outbound ah sas:
        spi: 0xA83E05B5(2822636981)
```

Troubleshooting IPv6 Security Configuration and Operation

Examples

- Examples, page 31

Examples
transform: ah-sha-hmac,
in use settings = (Tunnel,)
conn id: 94, flow id: SW:94, crypto map: Tunnel0-head-0
sa timing: remaining key lifetime (k/sec): (4397508/147)
replay detection support: Y
Status: ACTIVE
outbound pcp sas:

Sample Output from the show crypto isakmp peer Command

The following sample output shows peer descriptions on an IPv6 router:

Router# show crypto isakmp peer detail
Peer: 2001:DB8:0:1::1 Port: 500 Local: 2001:DB8:0:2::1
Phase1 id: 2001:DB8:0:1::1
flags:
NAS Port: 0 (Normal)
IKE SAs: 1 IPsec SA bundles: 1
last_locker: 0x141A188, last_last_locker: 0x0
last_unlocker: 0x0, last_last_unlocker: 0x0

Sample Output from the show crypto isakmp profile Command

The following sample output shows the ISAKMP profiles that are defined on an IPv6 router:

Router# show crypto isakmp profile
ISAKMP PROFILE tom
Identities matched are:
ipv6-address 2001:DB8:0:1::1/32
Certificate maps matched are:
Identity presented is: ipv6-address fqdn
keyring(s): <none>
trustpoint(s): <all>
Sample Output from the show crypto isakmp sa Command

The following sample output shows the SAs of an active IPv6 device. The IPv4 device is inactive:

Router# show crypto isakmp sa detail

Codes: C - IKE configuration mode, D - Dead Peer Detection
 K - Keepalives, N - NAT-traversal
 X - IKE Extended Authentication
 psk - Preshared key, rsig - RSA signature
 renc - RSA encryption

IPv4 Crypto ISAKMP SA

<table>
<thead>
<tr>
<th>C-id</th>
<th>Local</th>
<th>Remote</th>
<th>I-VRF</th>
<th>Status</th>
<th>Encr</th>
<th>Hash</th>
<th>Auth</th>
<th>DH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPv6 Crypto ISAKMP SA

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DH: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DH: 1</td>
</tr>
</tbody>
</table>

Sample Output from the show ipv6 access-list Command

In the following example, the show ipv6 access-list command is used to verify that IPv6 ACLs are configured correctly:

Router> show ipv6 access-list
IPv6 access list inbound
permit tcp any any eq bgp reflect tcptraffic (8 matches) sequence 10
permit tcp any any eq telnet reflect tcptraffic (15 matches) sequence 20
permit udp any any reflect udptraffic sequence 30
IPv6 access list tcptraffic (reflexive) (per-user)
permit tcp host 2001:DB8:1::32 eq bgp host 2001:DB8:2::32 eq 11000 timeout 300
(time left 243) sequence 1
permit tcp host 2001:DB8:1::32 eq telnet host 2001:DB8:2::32 eq 11001 timeout 300
(time left 296) sequence 2
IPv6 access list outbound
evaluate udptraffic
evaluate tcptraffic

Sample Output from the show ipv6 prefix-list Command

The following example shows the output of the `show ipv6 prefix-list` command with the `detail` keyword:

```
Router# show ipv6 prefix-list detail
Prefix-list with the last deletion/insertion: bgp-in
ipv6 prefix-list 6to4:
  count: 1, range entries: 0, sequences: 5 - 5, refcount: 2
  seq 5 permit 2001:DB8::/32 (hit count: 313, refcount: 1)
ipv6 prefix-list aggregate:
  count: 2, range entries: 2, sequences: 5 - 10, refcount: 30
  seq 5 deny 3FFE:C00::/24 ge 25 (hit count: 568, refcount: 1)
  seq 10 permit ::/0 le 48 (hit count: 31310, refcount: 1)
ipv6 prefix-list bgp-in:
  count: 6, range entries: 3, sequences: 5 - 30, refcount: 31
  seq 5 deny 5F00::/8 le 128 (hit count: 0, refcount: 1)
  seq 10 deny ::/0 (hit count: 0, refcount: 1)
  seq 15 deny ::/1 (hit count: 0, refcount: 1)
  seq 20 deny ::/2 (hit count: 0, refcount: 1)
  seq 25 deny ::/3 ge 4 (hit count: 0, refcount: 1)
  seq 30 permit ::/0 le 128 (hit count: 240664, refcount: 0)
```

Sample Output from the show ipv6 virtual-reassembly Command

The following example shows the output of the `show ipv6 virtual-reassembly` command with the `interface` keyword:

```
Router# show ipv6 virtual-reassembly interface e1/1
Configuration Information:
---------------------------------
Virtual Fragment Reassembly (VFR) is ENABLED...
Maximum number of datagram that can be reassembled at a time: 64
Maximum number of fragments per datagram: 8
Timeout value of a datagram: 3 seconds
Statistical Information:
----------------------------
Number of datagram being reassembled:12
Number of fragments being processed:48
Total number of datagram reassembled:6950
Total number of datagram failed: 9
```

Sample Output from the show logging Command

In the following example, the `show logging` command is used to display logging entries that match the first line (sequence 10) of the access list named list1:

```
Router> show logging
00:00:36: %IPV6-6-ACCESSLOGP: list list1/10 permitted tcp 2001:DB8:1::1(11001)
  (Ethernet0/0) -> 2001:DB8:1::2(179), 1 packet
```

Sample Output from the clear ipv6 access-list Command

In the following example, the `show ipv6 access-list` command is used to display some match counters for the access list named list1. The `clear ipv6 access-list` command is issued to reset the match counters for the
access list named list1. The `show ipv6 access-list` command is used again to show that the match counters have been reset.

Router> `show ipv6 access-list list1`
IPv6 access list list1
 permit tcp any any log-input (6 matches) sequence 10
 permit icmp any any echo-request log-input sequence 20
 permit icmp any any echo-reply log-input sequence 30
Router> `clear ipv6 access-list list1`
Router> `show ipv6 access-list list1`
IPv6 access list list1
 permit tcp any any log-input sequence 10
 permit icmp any any echo-request log-input sequence 20
 permit icmp any any echo-reply log-input sequence 30

Configuration Examples for Implementing Traffic Filters and Firewalls for IPv6 Security

- Examples Creating and Applying IPv6 ACLs, page 35
- Example Controlling Access to a vty, page 36
- Example: Configuring TCP or UDP Matching, page 37
- Example: Configuring Cisco IOS Firewall for IPv6, page 37
- Example: Configuring Cisco IOS Zone-Based Firewall for IPv6, page 38

Examples Creating and Applying IPv6 ACLs

- Example: Creating and Applying an IPv6 ACL, page 35
- Example Creating and Applying an IPv6 ACL for 12.2(11)T 12.0(22)S or Earlier Releases, page 36

Example: Creating and Applying an IPv6 ACL

This example configures two IPv6 ACLs named OUTBOUND and INBOUND and applies both ACLs to outbound and inbound traffic on Ethernet interface 0. The first and second permit entries in the OUTBOUND list permit all TCP and User Datagram Protocol (UDP) packets from network 2001:DB8:0300:0201::/32 to exit out of Ethernet interface 0. The entries also configure the temporary IPv6 reflexive ACL named REFLECTOUT to filter returning (incoming) TCP and UDP packets on Ethernet interface 0. The first deny entry in the OUTBOUND list keeps all packets from the network fec0:0:0:0201::/64 (packets that have the site-local prefix fec0:0:0:0201 as the first 64 bits of their source IPv6 address) from exiting out of Ethernet interface 0.

The `evaluate` command in the INBOUND list applies the temporary IPv6 reflexive ACL named REFLECTOUT to inbound TCP and UDP packets on Ethernet interface 0. When outgoing TCP or UDP packets are permitted on Ethernet interface 0 by the OUTBOUND list, the INBOUND list uses the REFLECTOUT list to match (evaluate) the returning (incoming) TCP and UDP packets.

ipv6 access-list OUTBOUND
 permit tcp 2001:DB8:0300:0201::/32 any reflect REFLECTOUT
 permit udp 2001:DB8:0300:0201::/32 any reflect REFLECTOUT
 deny fec0:0:0:0201::/64 any
ipv6 access-list INBOUND
 evaluate REFLECTOUT
interface ethernet 0
ipv6 traffic-filter OUTBOUND out
ipv6 traffic-filter INBOUND in

Note
Given that a permit any any statement is not included as the last entry in the OUTBOUND or INBOUND ACL, only TCP and UDP packets matching the configured permit entries in the ACL and ICMP packets matching the implicit permit conditions in the ACL are permitted out of and in to Ethernet interface 0 (the implicit deny all condition at the end of the ACL denies all other packet types on the interface).

The example configure HTTP access to be restricted to certain hours during the day, and to log any activity outside of the permitted hours:

time-range lunchtime
periodic weekdays 12:00 to 13:00
ipv6 access-list OUTBOUND
permit tcp any any eq www time-range lunchtime
deny tcp any any eq www log-input
permit tcp 2001:DB8::/32 any
permit udp 2001:DB8::/32 any

Example Creating and Applying an IPv6 ACL for 12.2(11)T 12.0(22)S or Earlier Releases

The following example is from a router running Cisco IOS Release 12.2(11)T, 12.0(22)S, or earlier releases.

The example configures the IPv6 ACL named list2 and applies the ACL to outbound traffic on Ethernet interface 0. Specifically, the first ACL entry keeps all packets from the network fec0:0:0:2::/64 (packets that have the site-local prefix fec0:0:0:2 as the first 64 bits of their source IPv6 address) from exiting out of Ethernet interface 0. The second entry in the ACL permits all other traffic to exit out of Ethernet interface 0. The second entry is necessary because an implicit deny all condition is at the end of each IPv6 ACL.

ipv6 access-list list2 deny fec0:0:0:2::/64 any
ipv6 access-list list2 permit any any
interface ethernet 0
ipv6 traffic-filter list2 out

If the same configuration was used on a router running Cisco IOS Release 12.2(13)T, 12.0(23)S, or later releases, the configuration would be translated into IPv6 access list configuration mode as follows:

ipv6 access-list list2
deny ipv6 fec0:0:0:2::/64 any
permit ipv6 any any
interface ethernet 0
ipv6 traffic-filter list2 out

Note
IPv6 is automatically configured as the protocol type in permit any any and deny any any statements that are translated from global configuration mode to IPv6 access list configuration mode.

Example Controlling Access to a vty

In the following example, incoming connections to the virtual terminal lines 0 to 4 are filtered based on the IPv6 access list named acl1:

ipv6 access-list acl1
permit ipv6 host 2001:DB8:0:4::2/32 any
Example: Configuring TCP or UDP Matching

The following example allows any TCP traffic regardless of whether or not an AH is present:

IPv6 access list example1
 permit tcp any any

The following example allows TCP or UDP parsing only when an AH header is present. TCP or UDP traffic without an AH will not be matched:

IPv6 access list example2
 deny tcp host 2001::1 any log sequence 5
 permit tcp any any auth sequence 10
 permit udp any any auth sequence 20

The following example allows any IPv6 traffic containing an authentication header:

IPv6 access list example3
 permit ahp any any

Example: Configuring Cisco IOS Firewall for IPv6

This Cisco IOS Firewall configuration example uses inbound and outbound filters for inspection and makes use of access lists to manage the traffic. The inspect mechanism is the method of permitting return traffic based upon a packet being valid for an existing session for which the state is being maintained:

```
enable
configure terminal
ipv6 unicast-routing
ipv6 inspect name ipv6_test icmp timeout 60
ipv6 inspect name ipv6_test tcp timeout 60
ipv6 inspect name ipv6_test udp timeout 60

interface FastEthernet0/0
  ipv6 address 3FFE:C000:0:7::/64 eui-64
  ipv6 enable
  ipv6 traffic-filter INBOUND out
  ipv6 inspect ipv6_test in

interface FastEthernet0/1
  ipv6 address 3FFE:C000:1:7::/64 eui-64
  ipv6 enable
  ipv6 traffic-filter OUTBOUND in

! This is used for 3745b connection to tftpboot server
interface FastEthernet4/0
  ip address 192.168.17.33 255.255.255.0
  duplex auto
  speed 100
  ip default-gateway 192.168.17.8
! end of tftpboot server config

! Access-lists to deny everything except for Neighbor Discovery ICMP messages
ipv6 access-list INBOUND
  permit icmp any any nd-na
  permit icmp any any nd-ns
  deny ipv6 any any log

ipv6 access-list OUTBOUND
  permit icmp any any nd-na
```
permit icmp any any nd-ns
deny ipv6 any any log

Example: Configuring Cisco IOS Zone-Based Firewall for IPv6

parameter-map type inspect v6-param-map
 sessions maximum 10000
 ipv6 routing-header-enforcement loose
 !
class-map type inspect match-any v6-class
 match protocol tcp
 match protocol udp
 match protocol icmp
 match protocol ftp
 !
policy-map type inspect v6-policy
 class type inspect v6-class
 inspect
 !
zone security z1
zone security z2
! zone-pair security zp source z1 destination z2
 service-policy type inspect v6-policy

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic IPv6 configuration</td>
<td>"Implementing IPv6 Addressing and Basic Connectivity," Cisco IOS IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Zone-based firewalls</td>
<td>"Zone-Based Policy Firewall," Cisco IOS Security Configuration Guide: Securing the Data Plane</td>
</tr>
<tr>
<td>IPv6 commands: complete command syntax, command mode, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
</tbody>
</table>
Standards

No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.

MIBs

• CISCO-UNIFIED-FIREWALL-MIB

To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

RFC 2401 Security Architecture for the Internet Protocol
RFC 2402 IP Authentication Header
RFC 2428 FTP Extensions for IPv6 and NATs
RFC 2460 Internet Protocol, Version 6 (IPv6) Specification
RFC 2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
RFC 3576 Change of Authorization

Technical Assistance

The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

Feature Information for Implementing Traffic Filters and Firewalls for IPv6 Security

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 Feature Information for Implementing Traffic Filters and Firewalls for IPv6 Security

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL--Hardware and Software Counters Granularity for IPv4 and IPv6 ACL Statistics</td>
<td>12.2(50)SY</td>
<td>This feature allows both IPv4 and IPv6 ACLs on the Cisco Catalyst 6500 platform to update the ACL entry statistics with a platform entry count.</td>
</tr>
<tr>
<td>IOS Zone-Based Firewall</td>
<td>15.1(2)T</td>
<td>Cisco IOS Zone-Based Firewall for IPv6 coexists with Cisco IOS Zone-Based Firewall for IPv4 in order to support IPv6 traffic.</td>
</tr>
<tr>
<td>IPv6 ACL Extensions for IPsec Authentication Header</td>
<td>12.4(20)T</td>
<td>The IPv6 ACL extensions for IPsec authentication headers feature allows TCP or UDP parsing when an IPv6 IPsec authentication header is present.</td>
</tr>
<tr>
<td>IPv6 Services--Extended Access Control Lists(^1)</td>
<td>12.0(23)S 12.2(14)S 12.2(28)SB 12.2(25)SG 12.2(33)SRA 12.2(17a)SX112.2(13)T 12.3 12.3(2)T 12.4 12.4(2)T 15.0(1)S</td>
<td>Standard IPv6 ACL functionality was extended to support traffic filtering based on IPv6 option headers and optional, upper-layer protocol type information for finer granularity of control.</td>
</tr>
<tr>
<td>IPv6 Services--IPv6 IOS Firewall</td>
<td>12.3(7)T 12.4 12.4(2)T</td>
<td>This feature provides advanced traffic filtering functionality as an integral part of a network’s firewall.</td>
</tr>
<tr>
<td>IPv6 Services--IPv6 IOS Firewall FTP Application Support</td>
<td>12.3(11)T 12.4 12.4(2)T</td>
<td>IPv6 supports this feature.</td>
</tr>
</tbody>
</table>

\(^1\) IPv6 extended access control lists and IPv6 provider edge router over Multiprotocol Label Switching (MPLS) are implemented with hardware acceleration on the Cisco 12000 series Internet router IP service engine (ISE) line cards in Cisco IOS routers in Cisco IOS Release 12.0(25)S and later releases.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Services--Standard Access Control Lists</td>
<td>12.0(22)S 12.2(14)S 12.2(28)SB 12.2(25)SG 12.2(33)SRA 12.2(17a)SX1 12.2(2)T 12.3 12.3(2)T 12.4 12.4(2)T 15.0(1)S</td>
<td>Access lists determine what traffic is blocked and what traffic is forwarded at router interfaces and allow filtering based on source and destination addresses, inbound and outbound to a specific interface.</td>
</tr>
</tbody>
</table>