IP Switching Cisco Express Forwarding Configuration Guide, Cisco IOS Release 15M&T

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2015 Cisco Systems, Inc. All rights reserved.
## CONTENTS

### CHAPTER 1

**CEF Overview**

- Finding Feature Information  
  - Information About CEF
  - Cisco Platform Support for Central CEF and dCEF
  - Cisco Express Forwarding Benefits
  - Media Supported by CEF
  - Main Components of CEF

- FIB Overview
  - CEF FIB and Load Balancing
  - CEF Adjacency Tables Overview
  - Adjacency Discovery
  - Adjacency Types That Require Special Handling
  - Unresolved Adjacency

- Central CEF Mode Operation
- Distributed CEF Mode Operation
- CEF Features Enabled by Default
  - CEF Distributed Tunnel Switching
  - CEF-Switched Multipoint GRE Tunnels

- Links for the CEF Features

- How to Configure CEF

- Configuration Examples for CEF

- Where to Go Next

- Additional References

- Feature Information for CEF

- Glossary

### CHAPTER 2

**Configuring Basic Cisco Express Forwarding**

- Finding Feature Information
Prerequisites for Cisco Express Forwarding 14
Restrictions for Cisco Express Forwarding 14
Information About Cisco Express Forwarding 14
  Cisco Platform Support for CEF and dCEF 14
  Cisco Express Forwarding Benefits 15
Main Components for CEF Operation 15
CEF Operation Modes Central and Distributed 16
  Central Cisco Express Forwarding Mode Operation 16
  Distributed Cisco Express Forwarding Mode Operation 16
How to Configure Basic Cisco Express Forwarding 16
How to Verify Basic Cisco Express Forwarding 17
  Determining How the Router Is Configured 17
  What to Do Next 18
Verifying Cisco Express Forwarding Operation 18
  Verifying That Cisco Express Forwarding Switching Is Enabled 18
  Locating the Prefix in a Forwarding Table on the RP 20
  Finding the Cisco Express Forwarding Output Information 21
  Verifying the Adjacency or Next-Hop Information 23
Verifying Distributed Cisco Express Forwarding Operation 25
  Cisco Express Forwarding Command Syntax on Line Cards 25
  Verifying That dCEF Switching Is Enabled 25
  Locating the Prefix in a Forwarding Table on a Line Card 26
  Finding the Distributed Cisco Express Forwarding Output Information 28
  Verifying the Adjacency or Next-Hop Information on a Line Card 30
Interpreting Cisco Express Forwarding Command Output 32
  Verifying That CEF Information Looks As Expected 32
  Interpreting MPLS Information in CEF Output 35
Configuration Examples for Basic CEF 37
Where to Go Next 37
Additional References 38
Feature Information for Basic CEF 40
Glossary 40

CHAPTER 3

Enabling or Disabling CEF or dCEF 43
  Finding Feature Information 43
Configuration Examples for a Load-Balancing Scheme 67
Example Enabling or Disabling Per-Destination Load Balancing 67
Example Configuring Per-Packet Load Balancing 67
Example Selecting a Tunnel Load-Balancing Algorithm 68
Example Selecting an Include-Ports Layer 4 Load-Balancing Algorithm 68
Additional References 68
Feature Information for a Load-Balancing Scheme 70
Glossary 71

CHAPTER 5

Configuring Epochs 73
Finding Feature Information 73
Prerequisites for Epochs for CEF Tables 74
Information About Epochs for CEF Tables 74
Cisco Platform Support for Central CEF and dCEF 74
Nonstop Forwarding Enhanced FIB Refresh 74
Epoch Numbering for CEF FIB and Adjacency Tables 75
Epoch Synchronization Between the RP and Line Cards 75
Epoch Numbering for Routers That Support HA 76
When to Refresh the CEF or Adjacency Tables 76
How to Configure Epochs 76
Incrementing the Epoch Number of the Adjacency Table 76
Incrementing the Epoch Number of One or All CEF Tables 77
Verifying Epoch Information 79
Configuration Examples for Epochs 80
Example Incrementing the Epoch Number of the Adjacency Table 80
Example Incrementing the Epoch Number of One or All CEF Tables 81
Additional References 81
Feature Information for Configuring Epochs 83
Glossary 84

CHAPTER 6

Configuring CEF Consistency Checkers 87
Finding Feature Information 87
Prerequisites for CEF Consistency Checkers 88
Restrictions for CEF Consistency Checkers 88
Information About CEF Consistency Checkers 88
Cisco Platform Support for CEF and dCEF 88
CEF Consistency Checker Types 88
How to Configure CEF Consistency Checkers 90
   Enabling CEF Consistency Checkers 90
   Displaying and Clearing Table Inconsistencies 92
Configuration Examples for CEF Consistency Checkers 94
   Example Enabling CEF Consistency Checkers 94
Additional References 94
Feature Information for CEF Consistency Checkers 96
Glossary 97

CHAPTER 7 Configuring CEF Network Accounting 99
   Finding Feature Information 99
   Prerequisites for CEF Network Accounting 100
   Restrictions for CEF Network Accounting 100
   Information About CEF Network Accounting 100
      Cisco Platform Support for Central CEF and dCEF 100
      Traffic Matrix Statistics 101
      TMS and CEF Nonrecursive Accounting 101
      How Backbone Routers Collect TMS 102
      TMS Viewing Options 104
         TMS Displayed with the NDA Display Module 104
         Nonrecursive Accounting Information Displayed 106
      Statistics in the timestats File 106
      Statistics in the tmsasinfo File 109
   How to Configure CEF Network Accounting 110
      Configuring CEF Network Accounting 110
      Enabling a Backbone Router to Collect TMS 112
         Using the CLI to Enable a Backbone Router to Collect TMS 112
         Enabling the NDA to Collect TMS on a Backbone Router 114
      Interpreting the tmstats File 117
      Viewing Information in the tmsasinfo File 118
      Verifying CEF Network Accounting Information 119
   Configuration Examples for CEF Network Accounting 120
      Example Configuring CEF Network Accounting 120
Example Enabling a Backbone Router to Collect TMS Data 121
Example IP CEF Nonrecursive Accounting 121
Example Interpreting the tmstats_ascii File 122
Additional References 122
Feature Information for CEF Network Accounting 124
Glossary 124

CHAPTER 8

Customizing the Display of Recorded CEF Events 127
Finding Feature Information 127
Prerequisites for the Display of Recorded CEF Events 128
Restrictions for the Display of Recorded CEF Events 128
Information About the Display of Recorded CEF Events 128
Cisco Platform Support for Central CEF and dCEF 128
CEF Event Log Overview 129
How to Customize the Display of Recorded CEF Events 129
Customizing CEF Event Logging 129
Displaying CEF Event-Log Information 130
Configuration Examples for the Display of Recorded CEF Events 132
Example Customizing CEF Event Logging 132
Additional References 132
Feature Information for the Display of Recorded CEF Events 134
Glossary 135

CHAPTER 9

Customizing the Display of CEF Event Trace Messages 137
Finding Feature Information 138
Prerequisites for the Display of CEF Event Trace Messages 138
Restrictions for the Display of CEF Event Trace Messages 138
Information About the Display of CEF Event Trace Messages 138
Cisco Platform Support for Central CEF and dCEF 138
Overview of CEF Event Trace Function 139
CEF Event Tracing Defaults and Options 139
CEF Event Tracing for IPv4 Events 140
CEF Event Tracing for IPv6 Events 140
How to Customize the Display of CEF Event Trace Messages 141
Customizing CEF Event Tracing 141
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customizing CEF Event Tracing for IPv4 Events</td>
<td>143</td>
</tr>
<tr>
<td>Customizing CEF Event Tracing for IPv6 Events</td>
<td>145</td>
</tr>
<tr>
<td>Displaying CEF Event Trace Information</td>
<td>147</td>
</tr>
<tr>
<td>Configuration Examples for the Display of CEF Event Trace Messages</td>
<td>152</td>
</tr>
<tr>
<td>Example Customizing CEF Event Tracing</td>
<td>152</td>
</tr>
<tr>
<td>Example Customizing CEF Event Tracing for IPv4 Events</td>
<td>152</td>
</tr>
<tr>
<td>Example Customizing CEF Event Tracing for IPv6 Events</td>
<td>153</td>
</tr>
<tr>
<td>Additional References</td>
<td>153</td>
</tr>
<tr>
<td>Feature Information for the Display of CEF Event Trace Messages</td>
<td>155</td>
</tr>
<tr>
<td>Glossary</td>
<td>155</td>
</tr>
</tbody>
</table>

**CHAPTER 10**

SNMP CEF-MIB Support 157

Finding Feature Information 157
Prerequisites for SNMP CEF-MIB Support 158
Information About SNMP CEF-MIB Support 158

CEF Functional Overview 158
Benefits of CISCO-CEF-MIB 158
Information Managed by the CISCO-CEF-MIB 159
CISCO-CEF-MIB Object Groups 160
CISCO-CEF-MIB Tables 160
Operations Available Through the CISCO-CEF-MIB 162
CISCO-CEF-MIB Notifications 171

How to Configure SNMP CEF-MIB Support 172
Configuring the Router to Use SNMP 172
Configuring a Host to Receive Notifications 174
Configuring SNMP Notifications with the CLI 177
Configuring SNMP Notifications with SNMP Commands 179
Configuring the Throttling Interval with the CLI 180
Configuring the Throttling Interval using SNMP Commands 182

Configuration Examples for SNMP CEF-MIB Support 183
Example Configuring a Host to Receive Notifications 183
Example Configuring SNMP Notifications 183
Example Configuring the Throttling Interval 184

Additional References 184
Feature Information for SNMP CEF-MIB Support 185
CEF Overview

This module contains an overview of the Cisco Express Forwarding feature. Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

- Finding Feature Information, page 1
- Information About CEF, page 2
- How to Configure CEF, page 8
- Configuration Examples for CEF, page 8
- Where to Go Next, page 8
- Additional References, page 8
- Feature Information for CEF, page 11
- Glossary, page 11

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About CEF

Cisco Platform Support for Central CEF and dCEF

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 or later. When Cisco Express Forwarding is enabled on a router, the Route Processor (RP) performs the express forwarding.

To find out if Cisco Express Forwarding is enabled on your platform, enter the `show ip cef` command. If Cisco Express Forwarding is enabled, you receive output that looks like this:

```
Router# show ip cef
Prefix        Next Hop        Interface
[...]
10.2.61.8/24  192.168.100.1   FastEthernet1/0/0
192.168.101.1 FastEthernet6/1
[...]
```

If Cisco Express Forwarding is not enabled on your platform, the output for the `show ip cef` command looks like this:

```
Router# show ip cef
%CEF not running
```

Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 Series Internet Router. When distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the `ip cef` command to enable (central) Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

Cisco Express Forwarding Benefits

- Improved performance--Cisco Express Forwarding is less CPU-intensive than fast switching route caching. As a result, more CPU processing power can be dedicated to Layer 3 services such as quality of service (QoS) and encryption.

- Scalability--Cisco Express Forwarding offers full switching capacity at each line card when distributed Cisco Express Forwarding mode is active. Distributed Cisco Express Forwarding is a distributed switching mechanism that scales linearly with the number of interface cards and the bandwidth installed in the router.

- Resilience--Cisco Express Forwarding offers an unprecedented level of switching consistency and stability in large dynamic networks. In dynamic networks, fast-switched cache entries are frequently invalidated by routing changes. These changes can cause traffic to be process-switched through use of the routing table, rather than fast switched through use of the route cache. Because the forwarding information base (FIB) lookup table contains all known routes that exist in the routing table, it eliminates the need for route cache maintenance and the steps involved with fast-switch or process-switch forwarding. Cisco Express Forwarding can switch traffic more efficiently than typical demand caching schemes.
You can use Cisco Express Forwarding in any part of a network. For example, the figure below shows Cisco Express Forwarding being run on routers at aggregation points at the core of a network where traffic levels are high and performance is critical.

**Figure 1: Cisco Express Forwarding Example**

Cisco Express Forwarding in platforms at the network core provides the performance and scalability that networks need to respond to continued growth and steadily increasing network traffic. Cisco Express Forwarding is a distributed switching mechanism that scales linearly with the number of interface cards and the bandwidth installed in the router.

### Media Supported by CEF

Cisco Express Forwarding supports the following media:

- ATM/AAL5snap, ATM/AAL5mux, and ATM/AAL5nlpid
- Ethernet
- FDDI
- Frame Relay
- High-Level Data Link Control (HDLC)
- PPP
- Spatial Reuse Protocol (SRP)
- Token Ring
- Tunnels

### Main Components of CEF

Information conventionally stored in a route cache is stored in several data structures for Cisco Express Forwarding switching. The data structures provide optimized lookup for efficient packet forwarding. The two main components of Cisco Express Forwarding operation are the forwarding information base (FIB) and the adjacency tables.
The FIB is conceptually similar to a routing table or information base. A router uses this lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The FIB is updated when changes occur in the network and contains all routes known at the time. For more information, see the FIB Overview section.

Adjacency tables maintain Layer 2 next-hop addresses for all FIB entries. For more information, see the CEF Adjacency Tables Overview section.

This separation of the reachability information (in the Cisco Express Forwarding table) and the forwarding information (in the adjacency table), provides a number of benefits:

- The adjacency table can be built separately from the Cisco Express Forwarding table, allowing both to be built without any packets being process-switched.
- The MAC header rewrite used to forward a packet is not stored in cache entries, so changes in a MAC header rewrite string do not require validation of cache entries.

**FIB Overview**

Cisco Express Forwarding uses a forwarding information base (FIB) to make IP destination prefix-based switching decisions.

The FIB contains the prefixes from the IP routing table structured in a way that is optimized for forwarding. When routing or topology changes occur in the network, the IP routing table is updated, and those changes are reflected in the FIB. The FIB maintains next-hop address information based on the information in the IP routing table.

Because there is a one-to-one correlation between FIB entries and routing table entries, the FIB contains all known routes and eliminates the need for the route cache maintenance that is associated with switching paths such as those used in fast switching and optimum switching.

**CEF FIB and Load Balancing**

Several paths can lead to a destination prefix. This occurs, for example, when a router is configured for simultaneous load balancing and redundancy. For each resolved path, the FIB contains a pointer for the adjacency corresponding to the next hop interface for that path.

**CEF Adjacency Tables Overview**

A node is said to be adjacent to another node if the node can be reached with a single hop across a link layer (Layer 2). Cisco Express Forwarding stores forwarding information (outbound interface and MAC header rewrite) for adjacent nodes in a data structure called the adjacency table. Cisco Express Forwarding uses adjacency tables to prepend Layer 2 addressing information to packets. The adjacency tables maintain Layer 2 next-hop addresses for all FIB entries.

The following sections provide additional information about adjacencies:

**Adjacency Discovery**

Each adjacency table is populated as adjacencies are discovered. Adjacencies are added to the table through indirect manual configuration or dynamically--discovered through a mechanism like Address Resolution
Protocol (ARP). Adjacencies can also be added through the use of a routing protocol, such as Border Gateway Protocol (BGP) or Open Shortest Path First (OSPF), which forms neighbor relationships. Each time an adjacency entry is created, a link-layer header for that adjacent node is computed and stored in the adjacency table.

The adjacency information is subsequently used for encapsulation during Cisco Express Forwarding switching of packets.

### Adjacency Types That Require Special Handling

In addition to adjacencies associated with next-hop interfaces (host-route adjacencies), other types of adjacencies are used to expedite switching when certain exception conditions exist. Prefixes requiring exception processing or special handling are cached with one of the special adjacencies listed in the table below.

**Table 1: Adjacency Types That Require Special Handling**

<table>
<thead>
<tr>
<th>Packets of This Adjacency Type</th>
<th>Receive This Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null adjacency</td>
<td>Packets destined for a Null0 interface are dropped. Null adjacency can be used as an effective form of access filtering.</td>
</tr>
<tr>
<td>Glean adjacency</td>
<td>When a device is connected to a multiaccess medium, the FIB table on the device maintains a prefix for the subnet rather than for the individual host prefixes. The subnet prefix points to a glean adjacency. A glean adjacency entry indicates that a particular next hop should be directly connected, but there is no MAC header rewrite information available. When the device needs to forward packets to a specific host on a subnet, Cisco Express Forwarding requests an ARP entry for the specific prefix, ARP sends the MAC address, and the adjacency entry for the host is built.</td>
</tr>
<tr>
<td>Punt adjacency</td>
<td>The device forwards packets requiring special handling or packets sent by features not yet supported in CEF switching paths to the next higher switching level for handling.</td>
</tr>
<tr>
<td>Discard adjacency</td>
<td>The device discards the packets.</td>
</tr>
<tr>
<td>Drop adjacency</td>
<td>The device drops the packets.</td>
</tr>
</tbody>
</table>

### Unresolved Adjacency

When a link-layer header is prepended to a packet, the FIB requires the prepended header to point to an adjacency corresponding to the next hop. If an adjacency was created by the FIB and not discovered through a mechanism such as ARP, the Layer 2 addressing information is not known and the adjacency is considered
incomplete or unresolved. Once the Layer 2 information is known, the packet is forwarded to the RP, and the adjacency is determined through ARP. Thus, the adjacency is resolved.

Central CEF Mode Operation

You can use central Cisco Express Forwarding mode when line cards are not available for Cisco Express Forwarding switching, when you need to use features not compatible with distributed Cisco Express Forwarding switching, or when you are running on a nondistributed platform. When central Cisco Express Forwarding mode is enabled, the Cisco Express Forwarding FIB and adjacency tables reside on the RP, and the RP performs the express forwarding.

The figure below shows the relationship between the routing table, the FIB, and the adjacency table during central Cisco Express Forwarding mode operation. The Catalyst switches forward traffic from workgroup LANs to a Cisco 7500 series router on the enterprise backbone running central Cisco Express Forwarding. The RP performs the express forwarding.

Distributed CEF Mode Operation

For additional scalability, Cisco Express Forwarding runs in the distributed Cisco Express Forwarding form on certain platforms by spreading processing tasks across two or more line cards. When distributed Cisco Express Forwarding mode is enabled, line cards maintain identical copies of the FIB and adjacency tables. The line cards perform the express forwarding between port adapters, relieving the RP of involvement in the switching operation, thus also enhancing system performance.

Distributed Cisco Express Forwarding uses an interprocess communication (IPC) mechanism to ensure synchronization of FIB tables and adjacency tables on the RP and line cards.

The figure below shows the relationship between the RP and line cards when distributed Cisco Express Forwarding mode is active.

In the Cisco 12000 Series Internet Router, shown in the figure above, the line cards perform the switching. In other routers where you can mix various types of cards in the same router, all cards might not support distributed Cisco Express Forwarding. When a line card that does not support distributed Cisco Express Forwarding receives a packet on one of these other routers, the line card forwards the packet to the next higher switching layer (the RP). This structure allows legacy interface processors to exist in the router with newer interface processors.

Note

The Cisco 12000 Series Internet routers operate only in distributed Cisco Express Forwarding mode.

CEF Features Enabled by Default

- Per-destination load balancing and the universal load sharing algorithm
- Distributed tunnel switching
- Multipoint generic routing encapsulation (GRE) tunnels
CEF Distributed Tunnel Switching

Cisco Express Forwarding supports distributed tunnel switching, such as that made possible by generic routing encapsulation (GRE) tunnels. Distributed tunnel switching is enabled automatically when you enable Cisco Express Forwarding or distributed Cisco Express Forwarding. You do not perform any additional tasks to enable distributed tunnel switching once you enable Cisco Express Forwarding or distributed Cisco Express Forwarding.

CEF-Switched Multipoint GRE Tunnels

The Cisco Express Forwarding-Switched Multipoint GRE Tunnels feature enables Cisco Express Forwarding switching of IP traffic to and from multipoint GRE tunnels. Traffic can be forwarded to a prefix through a tunnel destination when both the prefix and the tunnel destination are specified by the application. GRE creates a virtual point-to-point link to other routers at remote points over an IP internetwork. GRE can encapsulate a wide variety of protocol type packets. By connecting multiprotocol subnetworks in a single-protocol backbone environment, IP tunneling using GRE allows network expansion across a single-protocol backbone environment.

Links for the CEF Features

The table below contains links to information about features that you can configure for use with Cisco Express Forwarding or distributed Cisco Express Forwarding operation.

<table>
<thead>
<tr>
<th>For Information on This Feature...</th>
<th>See the Following Document...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring and verifying basic Cisco Express Forwarding operation</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks</td>
</tr>
<tr>
<td>Enabling or disabling Cisco Express Forwarding or distributed Cisco Express Forwarding switching and forwarding</td>
<td>Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express Forwarding to Customize Switching and Forwarding for Dynamic Networks</td>
</tr>
<tr>
<td>Changing your load-balancing scheme</td>
<td>Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic</td>
</tr>
<tr>
<td>Refreshing or rebuilding adjacency or Cisco Express Forwarding tables</td>
<td>Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables</td>
</tr>
<tr>
<td>Configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Configuring network accounting for Cisco Express Forwarding</td>
<td>Configuring Cisco Express Forwarding Network Accounting</td>
</tr>
<tr>
<td>Customizing the display of recorded Cisco Express Forwarding events</td>
<td>Customizing the Display of Recorded Cisco Express Forwarding Events</td>
</tr>
</tbody>
</table>
How to Configure CEF

There are no tasks for configuring Cisco Express Forwarding. Cisco Express Forwarding is enabled by default on most Cisco devices running Cisco software.

See the “Related Documents” section for links to configuration information for Cisco Express Forwarding features and services.

Configuration Examples for CEF

There are no configuration examples for the Cisco Express Forwarding.

See the “Related Documents” section for links to configuration information for Cisco Express Forwarding features and services.

Where to Go Next

See the "Related Documents" section for links to configuration information for Cisco Express Forwarding features and services.

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Tasks for verifying Cisco Express Forwarding information on your router</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for enabling or disabling Cisco Express Forwarding or distributed Cisco Express Forwarding</td>
<td>Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express Forwarding to Customize Switching and Forwarding for Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for configuring a load-balancing scheme for Cisco Express Forwarding</td>
<td>Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Tasks for configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Tasks for configuring epochs for Cisco Express Forwarding tables</td>
<td>Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables</td>
</tr>
<tr>
<td>Tasks for configuring and verifying Cisco Express Forwarding network accounting</td>
<td>Configuring Cisco Express Forwarding Network Accounting</td>
</tr>
<tr>
<td>Tasks for customizing the display of recorded Cisco Express Forwarding events</td>
<td>Customizing the Display of Recorded Cisco Express Forwarding Events</td>
</tr>
<tr>
<td>Description and use of the Cisco Express Forwarding consistency checkers available for the Cisco 7500 and 12000 series routers</td>
<td>Troubleshooting Prefix Inconsistencies with Cisco Express Forwarding</td>
</tr>
<tr>
<td>Information about troubleshooting Cisco Express Forwarding routing loops and suboptimal routing</td>
<td>Troubleshooting Cisco Express Forwarding Routing Loops</td>
</tr>
<tr>
<td>Causes of common Cisco Express Forwarding-related error messages on platforms running distributed Cisco Express Forwarding switching (Cisco 7500 series routers and Cisco 12000 Series Internet routers) and how to troubleshoot them</td>
<td>Troubleshooting Cisco Express Forwarding-Related Error Messages</td>
</tr>
<tr>
<td>Explanation of and troubleshooting information for the Cisco IOS software implementation of Layer 3 load balancing across multiple parallel links when Cisco Express Forwarding is used</td>
<td>Troubleshooting Load Balancing Over Parallel Links Using Cisco Express Forwarding</td>
</tr>
<tr>
<td>Troubleshooting guide for unicast IP routing on Catalyst 6500/6000 switches with Supervisor Engine 2, Policy Feature Card 2 (PFC2), or Multilayer Switch Feature Card 2 (MSFC2)</td>
<td>Troubleshoot Unicast IP Routing Involving CEF on Catalyst 6500/6000 Series Switches with a Supervisor Engine 2 and Running CatOS System Software</td>
</tr>
<tr>
<td>QoS features that require Cisco Express Forwarding</td>
<td>When Is CEF Required for Quality of Service</td>
</tr>
</tbody>
</table>

Additional References

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1701</td>
<td>Generic Route Encapsulation (GRE)</td>
</tr>
<tr>
<td>RFC 2784</td>
<td>Generic Routing Encapsulation (GRE)</td>
</tr>
<tr>
<td>RFC 2890</td>
<td>Key and Sequence Number Extensions to GRE</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Feature Information for CEF

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Express Forwarding-Switched Multipoint GRE Tunnels</td>
<td>12.2(8)T</td>
<td>This feature enables Cisco Express Forwarding switching of IP traffic to and from multipoint GRE tunnels. Prior to the introduction of this feature, only process switching was available for multipoint GRE tunnels.</td>
</tr>
<tr>
<td>CEF Support for IP Routing between IEEE 802.1Q vLANs</td>
<td>Cisco IOS XE Release 2.1 15.0(1)S</td>
<td>This feature was introduced on Cisco ASR 1000 Series Routers. This feature was integrated into Cisco IOS Release 15.0(1)S.</td>
</tr>
</tbody>
</table>

Glossary

adjacency --A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

Cisco Express Forwarding --A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

distributed Cisco Express Forwarding --A mode of Cisco Express Forwarding operation in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

FIB --forwarding information base. A component of Cisco Express Forwarding that is conceptually similar to a routing table or information base. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

GRE --generic routing encapsulation. A tunneling protocol developed by Cisco that enables encapsulation of a wide variety of protocol packet types inside IP tunnels, creating a virtual point-to-point link to Cisco routers at remote points over an IP internetwork. By connecting multiprotocol subnetworks in a single-protocol
backbone environment, IP tunneling using GRE allows the expansion of a network across a single-protocol backbone environment.

**IPC** -- interprocess communication. The mechanism that enables the distribution of Cisco Express Forwarding tables from the Route Switch Processor (RSP) to the line card when the router is operating in distributed Cisco Express Forwarding mode.

**label disposition** -- The removal of Multiprotocol Label Switching (MPLS) headers at the edge of a network. In MPLS label disposition, packets arrive on a router as MPLS packets and, with the headers removed, are transmitted as IP packets.

**label imposition** -- The action of putting a label on a packet.

**LER** -- label edge router. A router that performs label imposition.

**LFIB** -- label forwarding information base. The data structure used by switching functions to switch labeled packets.

**LIB** -- label information base. A database used by a label switch router (LSR) to store labels learned from other LSRs, as well as labels assigned by the local LSR.

**line card** -- A general term for an interface processor that can be used in various Cisco products. For example, a Versatile Interface Processor (VIP) is a line card for the Cisco 7500 series router.

**LSP** -- label switched path. A sequence of hops (Router 0...Router n). A packet travels from R0 to Rn by means of label switching mechanisms. An LSP can be chosen dynamically, based on normal routing mechanisms, or it can be configured manually.

**LSR** -- label switch router. A Layer 3 router that forwards a packet based on the value of a label encapsulated in the packet.

**MPLS** -- Multiprotocol Label Switching. An emerging industry standard for the forwarding of packets along the normal routing paths (sometimes called MPLS hop-by-hop forwarding).

**prefix** -- The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

**RIB** -- Routing Information Base. A central repository of routes that contains Layer 3 reachability information and destination IP addresses or prefixes. The RIB is also known as the routing table.

**RP** -- Route Processor. The processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.

**RSP** -- Route Switch Processor. The processor module used in the Cisco 7500 series routers that integrates the functions of the Route Processor (RP) and the Switch Processor (SP).

**SP** -- Switch Processor. The Cisco 7000-series processor module that acts as the administrator for all CxBus activities. It is sometimes called a CiscoBus controller.

**VIP** -- Versatile Interface Processor. An interface card used in Cisco 7000 and Cisco 7500 series routers. The VIP provides multilayer switching and runs Cisco IOS.

**VPN** -- Virtual Private Network. A router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

**VRF** -- A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.
Configuring Basic Cisco Express Forwarding

This module contains information about Cisco Express Forwarding and describes the required and optional tasks for verifying Cisco Express Forwarding and distributed Cisco Express Forwarding operation.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet, and networks characterized by intensive web-based applications or interactive sessions.

- Finding Feature Information, page 13
- Prerequisites for Cisco Express Forwarding, page 14
- Restrictions for Cisco Express Forwarding, page 14
- Information About Cisco Express Forwarding, page 14
- How to Configure Basic Cisco Express Forwarding, page 16
- How to Verify Basic Cisco Express Forwarding, page 17
- Configuration Examples for Basic CEF, page 37
- Where to Go Next, page 37
- Additional References, page 38
- Feature Information for Basic CEF, page 40
- Glossary, page 40

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Cisco Express Forwarding

Cisco Express Forwarding requires a software image that includes Cisco Express Forwarding and IP routing enabled on the device.

Restrictions for Cisco Express Forwarding

Cisco Express Forwarding has the following restrictions:

- The Cisco 12000 Series Internet routers operate only in distributed Cisco Express Forwarding mode.
- If you enable Cisco Express Forwarding and then create an access list that uses the `log` keyword, the packets that match the access list are not Cisco Express Forwarding switched. They are process switched. Logging disables Cisco Express Forwarding.

Information About Cisco Express Forwarding

If your network architecture requires that you disable or reenable Cisco Express Forwarding or distributed Cisco Express Forwarding switching and forwarding, change your load balancing scheme, refresh Cisco Express Forwarding tables, configure network accounting for Cisco Express Forwarding, or customize the display of Cisco Express Forwarding events, go to the "Related Documents" section for links to information on these tasks. Otherwise, you need do nothing more to configure Cisco Express Forwarding or distributed Cisco Express Forwarding operation in your network.

Note

Cisco Express Forwarding is supported on interfaces on which IEEE 802.1Q encapsulation has been enabled at the subinterface level. You no longer need to disable CEF operation on interfaces that are using IEEE 802.1Q encapsulation on VLAN subinterfaces.

Cisco Platform Support for CEF and dCEF

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 and later. When Cisco Express Forwarding is enabled on a router, the Route Processor (RP) performs the express forwarding.

To find out if Cisco Express Forwarding is enabled by default on your platform, enter the `show ip cef` command. If Cisco Express Forwarding is enabled, you receive output that looks like the following:

```
Router# show ip cef
Prefix       Next Hop       Interface
[...]        [192.168.100.1
192.168.101.1  FastEthernet1/0/0
192.168.101.1  FastEthernet6/1
[...]
```
If Cisco Express Forwarding is not enabled on your platform, the output for the `show ip cef` command looks like this:

```
Router# show ip cef
%CEF not running
```

Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 Series Internet Router. When distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the `ip cef` command to enable Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

### Cisco Express Forwarding Benefits

- **Improved performance**—Cisco Express Forwarding is less CPU-intensive than fast switching route caching. As a result, more CPU processing power can be dedicated to Layer 3 services such as quality of service (QoS) and encryption.

- **Scalability**—Cisco Express Forwarding offers full switching capacity at each line card when distributed Cisco Express Forwarding mode is active. Distributed Cisco Express Forwarding is a distributed switching mechanism that scales linearly with the number of interface cards and the bandwidth installed in the router.

- **Resiliency**—Cisco Express Forwarding offers an unprecedented level of switching consistency and stability in large dynamic networks. In dynamic networks, fast-switched cache entries are frequently invalidated by routing changes. These changes can cause traffic to be process-switched through use of the routing table, rather than fast-switched through use of the route cache. Because the forwarding information base (FIB) lookup table contains all known routes that exist in the routing table, it eliminates the need for route cache maintenance and the steps involved with fast-switch or process-switch forwarding. Cisco Express Forwarding can switch traffic more efficiently than typical demand caching schemes.

### Main Components for CEF Operation

Information conventionally stored in a route cache is stored in several data structures for Cisco Express Forwarding switching. The data structures provide optimized lookup for efficient packet forwarding. The two main components of Cisco Express Forwarding operation are the forwarding information base (FIB) and the adjacency tables.

The FIB is conceptually similar to a routing table or information base. A router uses this lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The FIB is updated as changes occur in the network and contains all routes known at the time. For more information on the FIB, see the "Cisco Express Forwarding Overview" module.

Adjacency tables maintain Layer 2 next-hop addresses for all FIB entries. For more information on adjacency tables, see the "Cisco Express Forwarding Overview" module.

This separation of the reachability information (in the Cisco Express Forwarding table) and the forwarding information (in the adjacency table), provides two main benefits:

- The adjacency table can be built separately from the Cisco Express Forwarding table, allowing both tables to build without the process switching of any packets.
• The MAC header rewrite used to forward a packet isn't stored in cache entries, so changes in a MAC header rewrite string do not require invalidation of cache entries.

CEF Operation Modes Central and Distributed

Central Cisco Express Forwarding Mode Operation

You can use central Cisco Express Forwarding mode when line cards are not available for Cisco Express Forwarding switching, when you need to use features not compatible with distributed Cisco Express Forwarding switching, or when you are running on a platform that is not a distributed platform. When central Cisco Express Forwarding mode is enabled, the Cisco Express Forwarding FIB and adjacency tables reside on the RP, and the RP performs the express forwarding.

The figure below shows the relationship between the routing table, the FIB, and the adjacency table during central Cisco Express Forwarding mode operation. The Catalyst switches forward traffic from workgroup LANs to a Cisco 7500 series router on the enterprise backbone running central Cisco Express Forwarding. The RP performs the express forwarding.

Distributed Cisco Express Forwarding Mode Operation

For additional scalability, Cisco Express Forwarding runs in the form of distributed Cisco Express Forwarding on certain platforms by spreading processing tasks across two or more line cards. When distributed Cisco Express Forwarding mode is enabled, line cards maintain identical copies of the FIB and adjacency tables. The line cards perform the express forwarding between port adapters, relieving the RP of involvement in the switching operation, thus also enhancing system performance.

Distributed Cisco Express Forwarding uses an interprocess communication (IPC) mechanism to ensure synchronization of FIB tables and adjacency tables on the RP and line cards.

The figure below shows the relationship between the RP and line cards when distributed Cisco Express Forwarding mode is active.

In the Cisco 12000 Series Internet Router, shown in the figure above, the line cards perform the switching. In other routers, where you can mix various types of cards in the same router, all cards might not support distributed Cisco Express Forwarding. When a line card that does not support distributed Cisco Express Forwarding receives a packet on one of these other routers, the line card forwards the packet to the next higher switching layer (the RP). This structure allows legacy interface processors to exist in the router with newer interface processors.

Note

The Cisco 12000 Series Internet routers operate only in distributed Cisco Express Forwarding mode.

How to Configure Basic Cisco Express Forwarding

There are no configuration tasks. Cisco Express Forwarding is enabled by default.
How to Verify Basic Cisco Express Forwarding

The following section contains instructions for verifying basic Cisco Express Forwarding or distributed Cisco Express Forwarding operation.

Before you perform the remaining tasks in this section you need to know which mode of Cisco Express Forwarding is running on your router. Cisco Express Forwarding is enabled by default on the Cisco 7100, 7200, and 7500 series routers. Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 switch and on Cisco 12000 Series Internet routers. To determine if Cisco Express Forwarding or distributed Cisco Express Forwarding is enabled on your router, you can enter the `show ip interface` command and look for the entry "IP CEF switching enabled" or "IP Distributed CEF switching enabled." If Cisco Express Forwarding is not enabled, the entry in the command display would indicate that "IP CEF switching is disabled."

To verify basic Cisco Express Forwarding or distributed Cisco Express Forwarding operation, perform the following procedures and tasks:

Determining How the Router Is Configured

To determine if the router is configured for Cisco Express Forwarding or distributed Cisco Express Forwarding, perform the following task.

SUMMARY STEPS

1. enable
2. `show ip interface [type number] [brief]`
3. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Displays the usability status of interfaces configured for IP.</td>
</tr>
<tr>
<td><code>show ip interface [type number] [brief]</code></td>
<td>• The <em>type</em> argument is the interface type.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The <em>number</em> argument is the interface number.</td>
</tr>
<tr>
<td>Router# <code>show ip interface</code></td>
<td>• The <em>brief</em> keyword displays a summary of the usability status information.</td>
</tr>
<tr>
<td></td>
<td>Look for the entry &quot;IP CEF switching enabled&quot; or &quot;IP Distributed CEF switching enabled.&quot;</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>exit</td>
<td>Exits to user EXEC mode.</td>
</tr>
</tbody>
</table>

**What to Do Next**

**Verifying Cisco Express Forwarding Operation**

Perform the following tasks, in the order presented, to verify Cisco Express Forwarding operation on your router or to look for Cisco Express Forwarding operation information on your router:

See the Verifying Distributed Cisco Express Forwarding Operation, on page 25 for the tasks to perform for distributed Cisco Express Forwarding operation.

**Verifying That Cisco Express Forwarding Switching Is Enabled**

To verify that Cisco Express Forwarding switching is enabled on the input (ingress) interface on the router, perform the following steps.

**SUMMARY STEPS**

1. enable
2. show ip cef
3. show cef interface type number detail
4. show ip interface type number
5. exit

**DETAILED STEPS**

**Step 1** enable
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

Example:
```
Router> enable
Router>
```

**Step 2** show ip cef
Use this command to verify that Cisco Express Forwarding is enabled globally. For example:
Example:

Router# show ip cef
%CEF not running

If Cisco Express Forwarding is not running, use the `ip cef` command to enable Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

When Cisco Express Forwarding or distributed Cisco Express Forwarding is enabled, the `show ip cef` command shows a brief display of all FIB entries.

**Step 3**  
`s show cef interface type number detail`

Use this command to verify that Cisco Express Forwarding is enabled on a particular ingress interface. Look for the entry "IP CEF switching enabled." For example:

Example:

Router# show cef interface fastetherent 1/0/0 detail
FastEtherent1/0/0 is up (if_number 9)
Corresponding hwidb fast_if_number 9
Corresponding hwidb firstsw->if_number 9
Internet address is 10.2.61.8/24
ICMP redirects are always sent
Per packet load-sharing is disabled
IP unicast RPF check is disabled
Inbound access list is not set
Outbound access list is not set
IP policy routing is disabled
Hardware idb is FastEtherent1/0/0
Fast switching type 1, interface type 5
IP CEF switching enabled
IP Feature Fast switching turbo vector
IP Feature CEF switching turbo vector
Input fast flags 0x0, Output fast flags 0x0
ifindex 7(7)
Slot 1 Slot unit 0 VC -1
Transmit limit accumulator 0x48001A82 (0x48001A82)
IP MTU 1500

**Step 4**  
`s show ip interface type number`

Use this command to display the Cisco IOS switching methods enabled on an interface. For example:

Example:

router# show ip interface fastetherent 1/0/0

FastEtherent1/0/0 is up, line protocol is up

IP fast switching is enabled
IP fast switching on the same interface is enabled
IP Flow switching is disabled
IP CEF switching is enabled
IP Distributed switching is enabled
IP Fast switching turbo vector
IP Normal CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, Distributed, No CEF

In the above output, the "IP CEF switching is enabled" entry indicates that Cisco Express Forwarding is enabled by default. The "No CEF" IP route-cache flag indicates that Cisco Express Forwarding is disabled because an administrator entered the `no ip route-cache cef` command on this interface.
To enable Cisco Express Forwarding on this interface, enter the `ip route-cache cef` command. Once you do that, the "CEF" flag indicates that Cisco Express Forwarding is running.

**Step 5**  
**exit**

Use this command to exit privileged EXEC mode. For example:

```
Example:
Router# exit
Router>
```

---

**Locating the Prefix in a Forwarding Table on the RP**

To locate the prefix in a forwarding table, perform the following steps.

**SUMMARY STEPS**

1. `enable`
2. `show ip cef`
3. `show ip cef vrf vrf-name`
4. Repeat Step 2 as many times as required to locate the prefix.
5. `exit`

**DETAILED STEPS**

**Step 1**  
**enable**

Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

```
Example:
Router> enable
Router#
```

**Step 2**  
**show ip cef**

Use this command to show entries in the FIB and confirm that prefixes are listed in the FIB. For example:

```
Example:
Router# show ip cef
Prefix  Next Hop     Interface
[...]
10.2.61.8/24    192.168.100.1  FastEthernet1/0/0
                        192.168.101.1  FastEthernet6/1
[...]
```

**Step 3**  
**show ip cef vrf vrf-name**
Use this command to locate prefixes in forwarding tables associated with Virtual Private Network (VPN) routing/forwarding table instances (VRFs). For example, this command shows prefixes in the left-hand column for a VRF named vpn1:

Example:

```
Router# show ip cef vrf vpn1
Prefix          Next Hop        Interface
0.0.0.0/32      receive        
10.1.0.0/8      10.0.0.1       Ethernet1/3
10.2.0.0/8      10.0.0.2       POS6/0
10.0.0.0/8      attached       Ethernet1/3
10.0.0.0/32     receive        
10.0.0.1/32     10.0.0.1       Ethernet1/3
10.0.0.2/32     receive        
10.255.255.255/32 receive      
10.3.0.0/8      10.0.0.2       POS6/0
10.50.0.0/24     receive        
255.255.255.255/32 receive      
```

Step 4
Repeat Step 2 as many times as required to locate the prefix.
If Cisco Express Forwarding is in a VPN, you might need to look at multiple VRFs.

Step 5
```
exit
```
Use this command to exit privileged EXEC mode. For example:

Example:

```
Router# exit
Router>
```

Finding the Cisco Express Forwarding Output Information

To find the Cisco Express Forwarding output information associated with the prefix on the RP, perform the following steps.

SUMMARY STEPS

1. enable
2. show ip cef
3. show ip cef prefix
4. show ip cef prefix detail
5. exit

DETAILED STEPS

Step 1
```
enable
```
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:
Verifying Cisco Express Forwarding Operation

Example:

Router> enable
Router#

Step 2  show ip cef

Use this command to confirm that the prefix is listed in the FIB. For example:

Example:

router# show ip cef
Prefix     Next Hop     Interface
0.0.0.0/32  receive     Serial2/0/0:1
192.168.0.0/30 attached     FastEthernet1/0/0
192.168.0.0/32  receive     FastEthernet1/0/0
10.2.61.8/24    192.168.100.1 FastEthernet1/0/0

Step 3  show ip cef prefix

Use this command to display the prefix entry in the FIB for centralized Cisco Express Forwarding. For example:

Example:

Router# show ip cef 10.2.61.8 255.255.255.0
10.0.0.0/8, version 72, per-destination sharing
0 packets, 0 bytes
via 192.168.100.1, 0 dependencies, recursive
 traffic share 1
 next hop 192.168.100.1, FastEthernet1/0/0 via 192.168.100.1/32
 valid adjacency
via 192.168.101.1, 0 dependencies, recursive
 traffic share 1
 next hop 192.168.101.1, FastEthernet6/1 via 192.168.101.1/32
 valid adjacency
0 packets, 0 bytes switched through the prefix

Step 4  show ip cef prefix detail

Use this command to show more detail for each of the active paths associated with a destination prefix. For example:

Example:

Router# show ip cef 10.0.0.0 detail
10.0.0.0/8, version 72, per-destination sharing
0 packets, 0 bytes
via 192.168.100.1, 0 dependencies, recursive
 traffic share 1
 next hop 192.168.100.1, FastEthernet1/0/0 via 192.168.100.1/32
 valid adjacency
via 192.168.101.1, 0 dependencies, recursive
 traffic share 1
 next hop 192.168.101.1, FastEthernet6/1 via 192.168.101.1/32
 valid adjacency
0 packets, 0 bytes switched through the prefix

Step 5  exit

Use this command to exit privileged EXEC mode. For example:
Verifying the Adjacency or Next-Hop Information

To verify the adjacency or next-hop information on the RP, perform the following steps.

Adjacencies are added to the adjacency table when the adjacency is

- Indirectly configured manually
- Dynamically discovered through ARP
- Created when a routing protocol, for example, Border Gateway Protocol (BGP) or Open Shortest Path First (OSPF), forms a neighbor relationship

For more information on adjacencies, see the "Cisco Express Forwarding Overview" module.

### SUMMARY STEPS

1. `enable`
2. `show ip cef`
3. `show adjacency detail`
4. `show adjacency summary`
5. `show adjacency type number`
6. `show ip cef exact-route source-address destination-address`
7. `exit`

### DETAILED STEPS

**Step 1**
`enable`

Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

Example:

```
Router> enable
Router#
```

**Step 2**
`show ip cef`

Use this command to find the output interface. For example:
Example:

```
router# show ip cef
Prefix       Next Hop       Interface
0.0.0.0/32    receive      
192.168.0.0/30 attached    Serial2/0/0:1
192.168.0.0/32 receive    192.168.100.1 FastEthernet1/0/0
10.2.61.8/24    192.168.100.1
```

In this example, the output interface for the prefix 10.2.61.8/24 is FastEthernet 1/0/0, and the next hop address is 192.168.100.1.

**Step 3**

**show adjacency detail**

Use this command to display adjacency information, including Layer 2 information. For example:

Example:

```
Router# show adjacency detail
Protocol Interface Address
IP     Ethernet1/0/0 10.2.61.8(7)
0 packets, 0 bytes
00107BC30D5C
00500B32D8200800
ARP    02:01:49
```

The encapsulation string 00107BC30D5C00500B32D8200800 is that of an adjacency used for traffic switched out of a router on an Ethernet link by means of Ethernet II encapsulation.

**Step 4**

**show adjacency summary**

Use this command to display Cisco Express Forwarding adjacency table summary information. For example:

Example:

```
Router# show adjacency summary
Adjacency Table has 1 adjacency
Interface Adjacency Count
Ethernet1/0/0 1
```

**Step 5**

**show adjacency type number**

Use this command to display adjacency information for a particular interface. For example:

Example:

```
Router# show adjacency fastethernet 2/3
Protocol Interface Address
IP     FastEthernet2/3 172.20.52.1(3045)
IP     FastEthernet2/3 172.20.52.22(11)
```

**Step 6**

**show ip cef exact-route source-address destination-address**

Use this command to display the exact route for a source-destination IP address pair and verify the next-hop address. For example:

Example:

```
Router# show ip cef exact-route 10.1.1.1 10.2.61.8
10.1.1.1     => 10.2.61.8 :FastEthernet1/0/0 (next hop 192.168.100.1)
```
In this example, the exact route from source address 10.1.1.1 to destination address 10.2.61.8 is through interface Ethernet1/0/0 to next hop address 192.168.100.1.

**Step 7**

**exit**

Use this command to exit privileged EXEC mode. For example:

**Example:**

```
Router# exit
Router>
```

---

### Verifying Distributed Cisco Express Forwarding Operation

Perform the following tasks, in the order presented, to verify distributed Cisco Express Forwarding operation on your router:

---

#### Cisco Express Forwarding Command Syntax on Line Cards

To perform tasks on router line cards, you need to use the following syntax: `execute-on [slot slot-number | all] command`. The `execute-on` commands apply only to the Cisco 12000 Series Internet routers and the Cisco 7500 series routers. The `all` keyword is available only on the Cisco 12000 Series Internet routers.

For example, use the following command to display FIB entries on the line cards in the first slot:

```
Router# execute-on 0 show ip cef
```

To perform tasks on a Catalyst 6500 series switch, you use the following syntax: `remote command module mod command`. For example:

```
Router# remote command module 2 show ip cef
```

---

### Verifying That dCEF Switching Is Enabled

To verify that distributed Cisco Express Forwarding switching is enabled on the input (ingress) interface on the line card, perform the following steps:

---

**SUMMARY STEPS**

1. **enable**
2. **show ip cef**
3. **execute-on slot slot-number show ip cef prefix**
4. **exit**
DETAILED STEPS

Step 1  
**enable**
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

```
Example:
Router> enable
Router#
```

Step 2  
**show ip cef**
Use this command to verify that Cisco Express Forwarding is enabled globally. For example:

```
Example:
Router# show ip cef
%CEF not running
```

If Cisco Express Forwarding is not running, use the `ip cef` command to enable (central) Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

When Cisco Express Forwarding or distributed Cisco Express Forwarding is enabled, the `show ip cef` command shows a brief display of all FIB entries.

Step 3  
**execute-on slot slot-number show ip cef prefix**
Use this command to verify information about interfaces on a line card. For example:

```
Example:
Router# execute-on slot 0
  show ip cef 192.68.0.0 255.255.255.0
show ip cef 192.68.0.0 255.255.255.0 from slot 0:
  192.68.0.0/24, version 19, epoch 0, attached, connected
  0 packets, 0 bytes
  via Ethernet5/0/0, 0 dependencies
  valid glean adjacency
```

Step 4  
**exit**
Use this command to exit privileged EXEC mode. For example:

```
Example:
Router# exit
Router>
```

Locating the Prefix in a Forwarding Table on a Line Card

To locate the prefix in a forwarding table on the line card, perform the following steps.
SUMMARY STEPS

1. enable
2. execute-on slot slot-number show ip cef
3. execute-on all show ip cef vrf vrf-name
4. Repeat Step 2 as many times as required to locate the prefix.
5. show ip cef
6. exit

DETAILED STEPS

Step 1 enable
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

Example:

Router> enable
Router#

Step 2 execute-on slot slot-number show ip cef
Use this command to show entries in the FIB on the line card and confirm that prefixes are listed in the FIB. For example:

Example:

Router# execute-on slot 0 show ip cef
show ip cef from slot 0:
Prefix       Next Hop       Interface
0.0.0.0/0     192.168.0.1   Ethernet5/0/0
0.0.0.0/32    receive       Ethernet5/0/0
192.168.0.0/24 attached       Ethernet5/0/0
192.168.0.0/32 receive       Ethernet5/0/0
192.168.0.1/32 192.168.0.1   Ethernet5/0/0
192.168.0.141/32 receive
192.168.0.255/32 receive
239.224.0.0/4  drop
239.224.0.0/24 receive
255.255.255.255/32 receive

Step 3 execute-on all show ip cef vrf vrf-name
Use this command to locate prefixes in forwarding tables associated with Virtual Private Network (VPN) routing/forwarding instances (VRFs). For example, this command shows prefixes in the left-hand column for a VRF named vpn1:

Example:

Router# execute-on all show ip cef vrf vpn1
Prefix       Next Hop       Interface
0.0.0.0/32    receive       Ethernet1/3
10.1.0.0/8    10.0.0.1       Ethernet1/3
10.2.0.0/8    10.0.0.2       POS6/0
10.0.0.0/8    attached       Ethernet1/3
10.0.0.0/32   receive       Ethernet1/3
10.0.0.1/32   10.0.0.1       Ethernet1/3
10.0.0.2/32   receive       Ethernet1/3
10.255.255.255/32 receive
10.3.0.0/8 10.0.0.2 POS6/0
10.50.0.0/24 receive
255.255.255.255/32 receive

**Step 4**
Repeat Step 2 as many times as required to locate the prefix.
If distributed Cisco Express Forwarding is in a VPN, you might need to look at multiple VRFs.

**Step 5**
`show ip cef`
Use this command to show entries in the FIB on the RP and to verify that the FIB on the line card is synchronized with the FIB maintained by the router. For example:

**Example:**
```
Router# show ip cef
Prefix  Next Hop             Interface
 [...]  192.168.100.1           FastEthernet1/0/0
10.2.61.8/24 192.168.101.1     FastEthernet6/1
 [...]  192.168.101.1           FastEthernet6/1
```
Compare the prefixes, next hops, and interfaces in this output with those in the output from Step 1 to verify that FIB on the line card is synchronized with the FIB maintained by the router.

**Step 6**
`exit`
Use this command to exit privileged EXEC mode. For example:

**Example:**
```
Router# exit
Router>
```

---

## Finding the Distributed Cisco Express Forwarding Output Information

To find the distributed Cisco Express Forwarding output information associated with the prefix on a line card, perform the following steps.

**SUMMARY STEPS**

1. `enable`
2. `execute-on slot slot-number show ip cef`
3. `execute-on slot slot-number show ip cef prefix`
4. `execute-on slot slot-number show ip cef prefix detail`
5. `exit`

**DETAILED STEPS**

**Step 1**
`enable`
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

**Example:**

```
Router> enable
Router#  
```

**Step 2**  
`execute-on slot slot-number show ip cef`

Use this command to confirm that the prefix is listed in the FIB. For example:

**Example:**

```
Router# execute-on slot 0
show ip cef
show ip cef from slot 0:
Prefix          Next Hop          Interface
0.0.0.0/0       192.168.0.1       Ethernet5/0/0
0.0.0.0/32      receive           Ethernet5/0/0
192.168.0.0/24  attached          Ethernet5/0/0
192.168.0.0/32  receive           Ethernet5/0/0
192.168.0.1/32  192.168.0.1       Ethernet5/0/0
192.168.0.141/32 receive          Ethernet5/0/0
192.168.0.255/32 receive          Ethernet5/0/0
239.224.0.0/4   drop              
239.224.0.0/24  receive           
255.255.255.255/32 receive        
```

**Step 3**  
`execute-on slot slot-number show ip cef prefix`

Use this command to display the prefix entry in the FIB on a line card. For example:

**Example:**

```
Router# execute-on slot 0 show ip cef 192.168.0.0 255.255.255.0
show ip cef 192.168.0.0 255.255.255.0 from slot 0:
192.168.0.0/24, version 19, epoch 0, attached, connected
0 packets, 0 bytes
  via Ethernet5/0/0, 0 dependencies
  valid glean adjacency
```

**Step 4**  
`execute-on slot slot-number show ip cef prefix detail`

Use this command to show more detail for each of the active paths associated with a destination prefix on a line card. For example:

**Example:**

```
Router# execute-on slot 0 show ip cef 10.24.48.32 detail
show ip cef 192.168.0.0 255.255.255.0 from slot 0:
192.168.0.0/24, version 19, epoch 0, attached, connected
0 packets, 0 bytes
  via Ethernet5/0/0, 0 dependencies
  valid glean adjacency
```

**Step 5**  
`exit`

Use this command to exit privileged EXEC mode. For example:
Verifying the Adjacency or Next-Hop Information on a Line Card

To verify the adjacency or next-hop information on a line card, perform the following steps.
Cisco Express Forwarding adds an adjacency to the adjacency table when the adjacency is
• Indirectly configured manually
• Dynamically discovered through ARP
• Created when a routing protocol, for example, BGP or OSPF, forms a neighbor relationship

For more information on adjacencies, see the Cisco Express Forwarding Overview module.

SUMMARY STEPS

1. enable
2. show ip cef
3. show adjacency  detail
4. show adjacency  summary
5. show adjacency  type number
6. show ip cef exact-route  source-address  destination-address
7. execute-on all show ip cef  destination
8. exit

DETAILED STEPS

Step 1 enable
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

Example:

Router> enable
Router#
Example:

```
router# show ip cef
Prefix      Next Hop       Interface
0.0.0.0/32   receive       
192.168.0.0/30 attached  Serial2/0/0:1
192.168.0.0/32 receive      192.168.100.1  FastEthernet1/0/0
```

In this example, the output interface for the prefix 10.2.61.8/24 is FastEthernet 1/0/0, and the next hop address is 192.168.100.1.

**Step 3**  
**show adjacency detail**

Use this command to display adjacency information, including Layer 2 information. For example:

Example:

```
Router# show adjacency detail
Protocol Interface Address
IP Ethernet1/0/0 10.2.61.8(7)
    0 packets, 0 bytes
    00107BC30D5C00500B32D8200800
    ARP 02:01:49
```

The encapsulation string 00107BC30D5C00500B32D8200800 is that of an adjacency used for traffic switched out of a router on an Ethernet link by means of Ethernet II encapsulation. (The first 12 characters are the MAC address of the destination next-hop interface. The next 12 characters represent the MAC address of the source interface of the packet. The last 4 characters [0x0800] represent the Ethernet II encapsulation value for IP.)

**Step 4**  
**show adjacency summary**

Use this command to display Cisco Express Forwarding adjacency table summary information. For example:

Example:

```
Router# show adjacency summary
Adjacency Table has 1 adjacency
    Interface        Adjacency Count
    Ethernet1/0/0     1
```

**Step 5**  
**show adjacency type number**

Use this command to display adjacency information for a particular interface. For example:

Example:

```
Router# show adjacency fastethernet 2/3
Protocol Interface Address
IP    FastEthernet2/3  172.20.52.1(3045)
IP    FastEthernet2/3  172.20.52.22(11)
```

**Step 6**  
**show ip cef exact-route source-address destination-address**

Use this command to display the exact route for a source-destination IP address pair and verify the next-hop address. For example:
Example:

Router# show ip cef exact-route 10.1.1.1 10.2.61.8
10.1.1.1 -> 10.2.61.8 :FastEthernet1/0/0 (next hop 192.168.100.1)

In this example, the exact route from source address 10.1.1.1 to destination address 10.2.61.8 is through interface Ethernet1/0/0 to next hop address 192.168.100.1.

Step 7 execute-on all show ip cef  destination

Use this command to display output interfaces and next hops for all line cards. For example:

Example:

Router# execute-on all show ip cef 10.20.84.32
--------- Line Card (Slot 1) ---------
10.16.0.0/13, version 408935, cached adjacency 0.0.0.0
0 packets, 0 bytes
Flow: AS 6172, mask 13
via 172.16.213.1, 0 dependencies, recursive
next hop 172.16.213.1, POS1/0.500 via 172.16.213.0/30
valid cached adjacency
--------- Line Card (Slot 2) ---------
10.16.0.0/13, version 13719, cached adjacency 0.0.0.0
0 packets, 0 bytes
Flow: AS 6172, mask 13
via 172.16.213.1, 0 dependencies, recursive
next hop 172.16.213.1, POS1/0.500 via 172.16.213.0/30
valid cached adjacency

Step 8 exit

Use this command to exit privileged EXEC mode. For example:

Example:

Router# exit
Router>

Interpreting Cisco Express Forwarding Command Output

Perform the following tasks to interpret information in Cisco Express Forwarding command output:

Verifying That CEF Information Looks As Expected

Perform the following tasks to verify that the Cisco Express Forwarding information looks as you expected.
SUMMARY STEPS

1. enable
2. show ip route
3. show ip cef
4. Compare the command output in Steps 2 and 3.
5. (For distributed Cisco Express Forwarding operation only) execute-on slot slot-number show ip cef
6. (For distributed Cisco Express Forwarding operation only) Compare the command output in Steps 3 and 5.
7. exit

DETAILED STEPS

Step 1 enable
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

Example:

Router> enable
Router#

Step 2 show ip route
Use this command to look at the forwarding information contained in the IP routing table. For example:

Example:

Router# show ip route
...
  10.1.0.0/32 is subnetwork, 1 subnets
    O  10.1.0.2 [110/3] via 10.5.5.5, 00:00:03, POS2/0/0
    O  10.0.0.0/8 is variably subnetworked, 2 subnets, 2 masks
    C  10.5.5.3/32 is directly connected, POS2/0/0
    C  10.5.5.0/24 is directly connected, POS2/0/0
    O  10.7.8.0 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
    O  10.0.0.0/24 is subnetworked, 2 subnets
    O  10.23.64.0 [110/12] via 10.5.5.5, 00:00:04, POS2/0/0
    O  10.23.66.0 [110/12] via 10.5.5.5, 00:00:04, POS2/0/0
    O  10.47.0.0/32 is subnetworked, 1 subnets
    O  10.47.0.10 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
    O  172.16.57.0/24 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
    O  192.168.92.0/24 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
    O  172.16.57.0/24 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
    O  192.168.92.0/24 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
    O  192.168.92.0/24 [110/3] via 10.5.5.5, 00:00:04, POS2/0/0
    C  10.150.3.0 is directly connected, Fddi0/0/0
    O  192.168.92.0/24 [110/2] via 10.5.5.5, 00:00:04, POS2/0/0

In the example, c indicates a directly connected route and o represents a route discovered by means of OSPF.

Step 3 show ip cef
Use this command to display entries in the FIB. For example:

Example:

Router# show ip cef
**Step 4**  
Compare the command output in Steps 2 and 3.  
Cisco Express Forwarding maintains the information contained in the IP routing table structured in a way that optimizes forwarding. Check that there is a one-to-one correlation between FIB entries and routing table entries. For example, the following lines from the sample output in Step 2 and Step 3 show a one-to-one correlation. The destination prefix 192.168.92.0/24, the next hop IP address 10.5.5.5, and the next-hop interface POS2/0/0 are the same.

- From the `show ip route` command output in Step 2:

  **Example:**
  
  192.168.92.0/24 [110/2] via 10.5.5.5, 00:00:04, POS2/0/0

- From the `show ip cef` command output in Step 3:

  **Example:**
  
  192.168.92.0/24 10.5.5.5 POS2/0/0

If there is not a one-to-one correlation, you can recreate the central FIB table by clearing the IP routing table and allowing the routing table to be rebuilt, which in turn causes the central FIB table to be repopulated with up-to-date routing information.

**Step 5**  
(For distributed Cisco Express Forwarding operation only) `execute-on slot slot-number show ip cef`  
Use this command to display FIB entries on all line cards. For example:

**Example:**

```
Router# execute-on slot 2 show ip cef
show ip cef from slot 2:
Prefix   Next Hop    Interface
0.0.0.0/0    10.5.5.5    POS2/0/0
0.0.0.0/32   receive    POS2/0/0
10.1.2.3/32  10.5.5.5    POS2/0/0
10.5.5.0/24  receive    POS2/0/0
10.5.5.5/32  receive    POS2/0/0
10.5.5.6/32  receive    POS2/0/0
10.5.5.255/32 receive    POS2/0/0
10.7.8.0/24  10.5.5.5    POS2/0/0
10.23.64.0/24 10.150.3.9  Fddi0/0/0
10.23.66.0/24 10.150.3.9  Fddi0/0/0
10.47.0.10/32 10.150.3.9  Fddi0/0/0
10.150.3.0/24 10.150.3.0/24 attached Fddi0/0/0
10.150.3.1/32 receive
10.150.3.255/32 receive
192.168.92.0/24 10.5.5.5 POS2/0/0
172.16.57.0/24 10.5.5.5 POS2/0/0
239.224.0.0/4 receive (multicast)
255.255.255.255/32 receive (all 1s broadcast)
```
Step 6 (For distributed Cisco Express Forwarding operation only) Compare the command output in Steps 3 and 5. The output from the `show ip cef` command in Step 3 should be identical to the output from the `execute-on slot 2 show ip cef` command in Step 5. If the outputs are not identical, see the Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards module for information on synchronizing FIB entries on the RP and the line card.

Step 7 `exit`

Use this command to exit privileged EXEC mode. For example:

**Example:**

```
Router# exit
Router>
```
A customer-site VRF contains all the routes available to the site from the VPNs to which it belongs. VPN routing information is stored in the IP routing table and in the Cisco Express Forwarding table for each VRF. A separate set of tables is maintained for each VRF, which prevents information from being forwarded outside a VPN and prevents packets that are outside a VPN from being forwarded to a router within the VPN. Based on the routing information stored in the VRF IP routing table and the VRF Cisco Express Forwarding table, packets are forwarded to their destinations. Output from Cisco Express Forwarding commands shows details from the VRF Cisco Express Forwarding tables.

**SUMMARY STEPS**

1. **enable**
2. **show ip cef vrf vrf-name detail**
3. **exit**

**DETAILED STEPS**

**Step 1** **enable**
Use this command to enable privileged EXEC mode. You can also enter this command in user EXEC mode. Enter your password if prompted. For example:

**Example:**

```
Router> enable
Router>
```

**Step 2** **show ip cef vrf vrf-name detail**
Use this command to display detailed information from the Cisco Express Forwarding forwarding table that is associated with a VRF. For example:

**Example:**

```
Router# show ip cef vrf vpn1 detail
```

IP CEF with switching (Table Version 10), flags=0x0
8 routes, 0 reresolve, 0 unresolved (0 old, 0 new)
46 leaves, 51 nodes, 54640 bytes, 361 inserts, 315 invalidations
0 load sharing elements, 0 bytes, 0 references
universal per-destination load sharing algorithm, id F968AD29
5 CEF resets, 38 revisions of existing leaves
refcounts: 1400 leaf, 1392 node
Adjacency Table has 2 adjacencies
0.0.0.0/32, version 0, receive
192.168.6.0/24, version 9, cached adjacency to Serial0/1.1
0 packets, 0 bytes

The following section of the Cisco Express Forwarding output provides MPLS information for the first adjacency. The "tag rewrite" is an equivalent of a Cisco Express Forwarding adjacency. Look at the tags imposed field. The first tag {20} is the tag used to reach the next hop, 10.1.1.13. The second tag {30} is the tag advertised to the local provider edge (PE) router by the remote PE router.

**Example:**

```
tag information set
  local tag: VPN-route-head
  fast tag rewrite with Se0/1.1, point2point, tags imposed: (20 30)
```
Configuration Examples for Basic CEF

There are no configuration examples for Cisco Express Forwarding. Cisco Express Forwarding is enabled by default.

Where to Go Next

If you want to disable Cisco Express Forwarding or distributed Cisco Express Forwarding operation, refer to Enabling or Disabling Cisco Express Forwarding or distributed Cisco Express Forwarding to Customize Switching/Forwarding for Dynamic Networks.
## Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Overview of the Cisco Express Forwarding feature</td>
<td>Cisco Express Forwarding Overview</td>
</tr>
<tr>
<td>Tasks for enabling or disabling Cisco Express Forwarding or distributed Cisco Express Forwarding</td>
<td>Enabling or Disabling Cisco Express Forwarding or distributed Cisco Express Forwarding to Customize Switching/Forwarding for Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for configuring a load-balancing scheme for Cisco Express Forwarding</td>
<td>Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic</td>
</tr>
<tr>
<td>Tasks for configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Tasks for configuring epochs for Cisco Express Forwarding tables</td>
<td>Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables</td>
</tr>
<tr>
<td>Tasks for configuring and verifying Cisco Express Forwarding network accounting</td>
<td>Configuring Cisco Express Forwarding Network Accounting</td>
</tr>
<tr>
<td>Tasks for customizing the display of recorded Cisco Express Forwarding events</td>
<td>Customizing the Display of Recorded Cisco Express Forwarding Events</td>
</tr>
<tr>
<td>Description and use of the Cisco Express Forwarding consistency checkers available for the Cisco 7500 and 12000 series routers</td>
<td>Troubleshooting Prefix Inconsistencies with Cisco Express Forwarding</td>
</tr>
<tr>
<td>Information about troubleshooting Cisco Express Forwarding routing loops and suboptimal routing</td>
<td>Troubleshooting Cisco Express Forwarding Routing Loops</td>
</tr>
</tbody>
</table>
### Related Topic

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Troubleshooting Cisco Express Forwarding-Related Error Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes of common Cisco Express Forwarding-related error messages on platforms running distributed Cisco Express Forwarding switching (Cisco 7500 series routers and Cisco 12000 Series Internet routers) and how to troubleshoot them</td>
<td></td>
</tr>
<tr>
<td>Troubleshooting Load Balancing Over Parallel Links Using Cisco Express Forwarding</td>
<td></td>
</tr>
<tr>
<td>Explanation of and troubleshooting information for the Cisco IOS software implementation of Layer 3 load balancing across multiple parallel links when Cisco Express Forwarding is used</td>
<td></td>
</tr>
<tr>
<td>QoS features that require Cisco Express Forwarding</td>
<td></td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
Feature Information for Basic CEF

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.

**Table 4: Feature Information for Configuring Basic Cisco Express Forwarding**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEF/dCEF - Cisco Express Forwarding</td>
<td>Cisco IOS XE Release 2.1 15.0(1)S</td>
<td>This feature was introduced on Cisco ASR 1000 Series Routers. This feature was integrated into Cisco IOS Release 15.0(1)S.</td>
</tr>
</tbody>
</table>

Glossary

**adjacency** --A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

**Cisco Express Forwarding** --A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor (RP) to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

**distributed Cisco Express Forwarding** --A type of Cisco Express Forwarding switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.
FIB --forwarding information base. A component of Cisco Express Forwarding. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

IPC --interprocess communication. The mechanism that enables the distribution of Cisco Express Forwarding tables from the Route Switch Processor (RSP) to the line card when the router is operating in distributed Cisco Express Forwarding mode.

label disposition --The removal of Multiprotocol Label Switching (MPLS) headers at the edge of a network. In MPLS label disposition, packets arrive on a router as MPLS packets and, with the headers removed, are transmitted as IP packets.

label imposition --The action of putting a label on a packet.

LER --edge router. A router that performs label imposition.

LFIB --label forwarding information base. The data structure used by switching functions to switch labeled packets.

LIB --label information base. A database used by a label switch router (LSR) to store labels learned from other LSRs, as well as labels assigned by the local LSR.

line card --A general term for an interface processor that can be used in various Cisco products. For example, a Versatile Interface Processor (VIP) is a line card for the Cisco 7500 series router.

LSP --label switched path. A sequence of hops (Router 0...Router n). A packet travels from R0 to Rn by means of label switching mechanisms. An LSP can be chosen dynamically, based on normal routing mechanisms, or it can be configured manually.

LSR --label switch router. A Layer 3 router that forwards a packet based on the value of a label encapsulated in the packet.

MPLS --Multiprotocol Label Switching. An emerging industry standard for the forwarding of packets along the normal routing paths (sometimes called MPLS hop-by-hop forwarding).

prefix --The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

RIB --Routing Information Base. A central repository of routes that contains Layer 3 reachability information and destination IP addresses or prefixes. The RIB is also known as the routing table.

RP --Route Processor. The processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.

RSP --Route Switch Processor. The processor module used in the Cisco 7500 series routers that integrates the functions of the Route Processor (RP) and the Switch Processor (SP).

SP --Switch Processor. Cisco 7000 series processor module that acts as the administrator for all CxBus activities. It is also sometimes called a CiscoBus controller.

VIP --Versatile Interface Processor. An interface card used in Cisco 7000 and Cisco 7500 series routers. The VIP provides multilayer switching and runs Cisco IOS.

VPN --Virtual Private Network. The result of a router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF --A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing
protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.
Enabling or Disabling CEF or dCEF

This module contains information about Cisco Express Forwarding and describes the required and optional tasks for enabling or disabling Cisco Express Forwarding and distributed Cisco Express Forwarding. Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

- Finding Feature Information, page 43
- Prerequisites for Enabling or Disabling CEF or dCEF, page 44
- Restrictions for Enabling or Disabling CEF or dCEF, page 44
- Information About Enabling or Disabling CEF or dCEF, page 44
- How to Enable or Disable Central CEF or dCEF, page 46
- Configuration Examples for Central CEF or dCEF, page 50
- Additional References, page 52
- Feature Information for Enabling or Disabling CEF or dCEF, page 54
- Glossary, page 55

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Enabling or Disabling CEF or dCEF

Cisco Express Forwarding requires a software image that includes Cisco Express Forwarding and IP routing enabled on the switch or router.

Restrictions for Enabling or Disabling CEF or dCEF

Central Cisco Express Forwarding or distributed Cisco Express Forwarding has the following restrictions:

- The Cisco 12000 Series Internet routers operate only in distributed Cisco Express Forwarding mode.
- If you enable Cisco Express Forwarding and then create an access list that uses the log keyword, the packets that match the access list are not Cisco Express Forwarding switched. They are process switched. Logging disables Cisco Express Forwarding.
- Distributed Cisco Express Forwarding switching cannot be configured on the same Versatile Interface Processor (VIP) card on which distributed fast switching is configured.
- Distributed Cisco Express Forwarding is not supported on Cisco 7200 series routers.

Restrictions for Cisco Express Forwarding or Distributed Cisco Express Forwarding Operation on an Interface

- On the Cisco 12000 Series Internet Router, you must not disable distributed Cisco Express Forwarding on an interface.
- Not all switching methods are available on all platforms.

Information About Enabling or Disabling CEF or dCEF

Cisco Platform Support for Central CEF and dCEF

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 or later. When Cisco Express Forwarding is enabled on a router, the Route Processor (RP) performs the express forwarding.

To find out if Cisco Express Forwarding is enabled on your platform, enter the `show ip cef` command. If Cisco Express Forwarding is enabled, you receive output that looks like this:

```
Router# show ip cef
Prefix          Next Hop         Interface
10.2.61.8/24     192.168.100.1   FastEthernet1/0/0
                 192.168.101.1   FastEthernet6/1
```

If Cisco Express Forwarding is not enabled on your platform, the output for the `show ip cef` command looks like this:

```
Router# show ip cef
%CEF not running
```
Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 Series Internet Router. When distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the `ip cef` command to enable central Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

**When to Enable or Disable Central CEF on a Router**

Enable central Cisco Express Forwarding operation when line cards are not available for Cisco Express Forwarding switching or when you need to use features not compatible with distributed Cisco Express Forwarding switching. When central Cisco Express Forwarding operation is enabled, the Cisco Express Forwarding Forwarding Information Base (FIB) and adjacency tables reside on the RP, and the RP performs express forwarding.

Disable central Cisco Express Forwarding on a router when you want to turn off central Cisco Express Forwarding on the router and on all interfaces on the router. You might want to do this if your router and router interfaces are configured with a feature that central Cisco Express Forwarding or distributed Cisco Express Forwarding does not support.

To disable central Cisco Express Forwarding on a router and on all interfaces on the router, use the `no ip cef` command.

**When to Enable dCEF on a Line Card**

Enable distributed Cisco Express Forwarding on a line card when you want the line card to perform express forwarding so that the RP can handle routing protocols or switch packets from legacy interface processors. When distributed Cisco Express Forwarding is enabled, line cards, such as the VIP line cards or the Cisco 12000 Series Internet Router line cards, maintain an identical copy of the FIB and adjacency tables. The line cards perform express forwarding between port adapters, thus relieving the RP of involvement in the switching operation. Distributed Cisco Express Forwarding uses an interprocess communication (IPC) mechanism to ensure synchronization of FIB tables and adjacency tables on the RP and line cards.

The Cisco 12000 Series Internet routers operate only in distributed Cisco Express Forwarding mode. In other routers you can mix various types of line cards in the same router, and all of the line cards you are using need not support Cisco Express Forwarding. When a line card that does not support Cisco Express Forwarding receives a packet, the line card forwards the packet to the next higher switching layer (the RP) or forwards the packet to the next hop for processing. This structure allows legacy interface processors to exist in the router with newer interface processors.

**Note**

When you enable distributed Cisco Express Forwarding globally, all interfaces that support distributed Cisco Express Forwarding are enabled by default.

**When to Enable or Disable CEF on an Interface**

You need to decide whether or not you want Cisco Express Forwarding operation on an interface. In some instances, you might want to disable Cisco Express Forwarding or distributed Cisco Express Forwarding on a particular interface because that interface is configured with a feature that Cisco Express Forwarding or
distributed Cisco Express Forwarding does not support. Because all interfaces that support Cisco Express Forwarding or distributed Cisco Express Forwarding are enabled by default when you enable Cisco Express Forwarding operation globally, you must use the no form of the ip route-cache cef command to turn off Cisco Express Forwarding operation on a particular interface. To reenable Cisco Express Forwarding, use the ip route-cache cef command. To reenable distributed Cisco Express Forwarding, use the ip route-cache distributed command.

Disabling Cisco Express Forwarding or distributed Cisco Express Forwarding on an interface disables Cisco Express Forwarding switching for packets forwarded to the interface, but has no effect on packets forwarded out of the interface.

When you disable Cisco Express Forwarding or distributed Cisco Express Forwarding, Cisco IOS software switches packets received on the interface using the next fastest switching path. For Cisco Express Forwarding, the next fastest switching path is fast switching on the RP. For distributed Cisco Express Forwarding, the next fastest switching path is Cisco Express Forwarding on the RP.

The input interface determines the Cisco IOS switching path that a packet takes. Consider the following rules of thumb when enabling or disabling switching methods on a particular interface:

- You need Cisco Express Forwarding to be enabled on the incoming interface for packets to be Cisco Express Forwarding switched.
- Because Cisco Express Forwarding makes the forwarding decision on input, you need to use the no ip route-cache cef command on the ingress interface if you want to disable Cisco Express Forwarding.
- In contrast, because Cisco IOS builds a fast-switching cache entry after switching a packet, a packet coming in on a process-switched interface and going out through a fast-switched interface is fast switched.
- If you want to disable fast switching, use the no ip route-cache command on the egress interface.

How to Enable or Disable Central CEF or dCEF

To enable or disable Cisco Express Forwarding or distributed Cisco Express Forwarding, perform either of the following tasks depending on whether you want to enable or disable Cisco Express Forwarding or distributed Cisco Express Forwarding on the router or to enable or disable Cisco Express Forwarding or distributed Cisco Express Forwarding on an interface:

Enabling or Disabling CEF or dCEF on a Router

Perform the following task to enable or disable Cisco Express Forwarding or distributed Cisco Express Forwarding operation on a router. Cisco Express Forwarding can optimize your network performance and scalability.
SUMMARY STEPS

1. enable
2. show ip cef [vrf vrf-name] [unresolved [detail]] | [detail | [summary]]
3. configure terminal
4. Do one of the following:
   • [no] ip cef
   •
   • [no] ip cef distributed
5. exit
6. show ip cef [vrf vrf-name] [unresolved [detail]] | [detail | summary]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** show ip cef [vrf vrf-name] [unresolved [detail]] | Displays entries in the forwarding information base (FIB). |
| Example:          | Use this command to determine if Cisco Express Forwarding is enabled globally and on a particular interface. If Cisco Express Forwarding is not enabled, the output displays: |
| Router# show ip cef | %CEF not running |

| **Step 3** configure terminal | Enters global configuration mode. |
| Example:          | Routen# configure terminal |

| **Step 4** Do one of the following: | Enables Cisco Express Forwarding on the route processor card. |
| Example:          | or |
| Router(config)# ip cef | Enables distributed Cisco Express Forwarding operation. Cisco Express Forwarding information is distributed to line cards. Line cards perform express forwarding. |
### Enabling or Disabling CEF or dCEF on an Interface

Perform the following task to enable or disable Cisco Express Forwarding or distributed Cisco Express Forwarding operation on an interface. Cisco Express Forwarding can optimize your network performance and scalability.

**SUMMARY STEPS**

1. **enable**
2. **show cef interface** [type number] [statistics] [detail]
3. **configure terminal**
4. Do one of the following:
   - **interface** type slot / port
   - **interface** type slot / port-adapter / port
5. **[no] ip route-cache cef**
6. **end**
7. **show cef interface** [type number] [statistics] [detail]

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ip cef distributed</code></td>
<td></td>
</tr>
</tbody>
</table>
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> show cef interface [type number] [statistics] [detail]</td>
<td>Displays detailed Cisco Express Forwarding information for a specified interface or for all interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show cef interface fastethernet 1/0/0</td>
<td>Look for &quot;IP CEF switching enabled&quot; or &quot;IP Distributed CEF switching enabled&quot; in the output.</td>
</tr>
<tr>
<td><strong>Step 3</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> Do one of the following:</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>• interface type slot / port</td>
<td>• The type argument specifies the type of interface to be configured.</td>
</tr>
<tr>
<td>• interface type slot / port-adapter / port</td>
<td>• The slot/ argument specifies the slot number. Refer to the appropriate hardware manual for slot and port information.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The port argument specifies the port number. Refer to the appropriate hardware manual for slot and port information.</td>
</tr>
<tr>
<td>Router(config)# interface ethernet 1/1</td>
<td>• The port-adapter/ argument specifies the port adapter number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Refer to the appropriate hardware manual for information about port adapter compatibility.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastethernet 1/0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> [no] ip route-cache cef</td>
<td>Disables Cisco Express Forwarding operation on an interface or enables Cisco Express Forwarding operation on an interface after Cisco Express Forwarding operation was disabled.</td>
</tr>
<tr>
<td>Example:</td>
<td>Disables distributed Cisco Express Forwarding operation on an interface or enables distributed Cisco Express Forwarding operation</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td>on an interface after distributed Cisco Express Forwarding operation was disabled.</td>
</tr>
<tr>
<td>![no ip route-cache distributed](no ip route-cache distributed)</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>![Router(config-if)# no ip route-cache cef](Router(config-if)# no ip route-cache cef)</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>or</td>
</tr>
<tr>
<td>![Router(config-if)# no ip route-cache distributed](Router(config-if)# no ip route-cache distributed)</td>
<td></td>
</tr>
</tbody>
</table>

**Step 6** end

**Example:**

```
Router(config)# end
```

Exits to privileged EXEC mode.

**Step 7** show cef interface [type number] [statistics] [detail]

**Example:**

```
Router# show cef interface fastethernet 1/0/0
```

Displays detailed Cisco Express Forwarding information for a specified interface or for all interfaces.

Verify that "IP CEF switching enabled" or "IP Distributed CEF switching enabled" is displayed in the output.

---

**Configuration Examples for Central CEF or dCEF**

**Example Enabling or Disabling CEF or dCEF on a Router**

Cisco Express Forwarding is enabled by default on the Cisco 7100, 7200, and 7500 series routers. You might want to disable Cisco Express Forwarding if your router and router interfaces are configured with a feature that Cisco Express Forwarding does not support. The following example shows how to disable Cisco Express Forwarding on a router and on all interfaces on the router:

```
configure terminal
! no ip cef
end
```
Distributed Cisco Express Forwarding is enabled by default on the Cisco 6500 and 12000 series routers. The following example shows how to enable distributed Cisco Express Forwarding on the line cards of a router, such as the Cisco 7500 series router, that supports distributed Cisco Express Forwarding:

```bash
configure terminal
!
ip cef distributed
end
```

You might want to disable distributed Cisco Express Forwarding if your router and router interfaces are configured with a feature that distributed Cisco Express Forwarding does not support. The following example shows how to disable distributed Cisco Express Forwarding on a router:

```bash
configure terminal
!
no ip cef distributed
end
```

### Example Enabling or Disabling Central CEF or dCEF on an Interface

All interfaces that support Cisco Express Forwarding operation (central Cisco Express Forwarding or distributed Cisco Express Forwarding) are enabled by default when you enable Cisco Express Forwarding operation globally. You might want to disable central Cisco Express Forwarding or distributed Cisco Express Forwarding on a particular interface if that interface is configured with a feature that central Cisco Express Forwarding or distributed Cisco Express Forwarding does not support.

The following example shows how to disable central Cisco Express Forwarding on a particular interface:

```bash
configure terminal
!
interface ethernet 1/1
no ip route-cache cef
end
```

The following example shows how to reenable central Cisco Express Forwarding operation on an interface:

```bash
configure terminal
!
interface ethernet 1/1
ip route-cache cef
end
```

The following example shows how to disable distributed Cisco Express Forwarding on Ethernet interface 0:

```bash
configure terminal
!
interface e0
no ip route-cache distributed
end
```

The following example shows how to reenable distributed Cisco Express Forwarding operation on Ethernet interface 0:

```bash
configure terminal
!
ip cef distributed
!
interface e0
# ip route-cache distributed
end
```
The following example shows how to enable Cisco Express Forwarding operation on the router (globally) and turn off Cisco Express Forwarding operation on Ethernet interface 0:

```conf
configure terminal
ip cef
interface e0
  no ip route-cache cef
end
```

The following example shows how to enable distributed Cisco Express Forwarding operation on the router (globally) and turn off Cisco Express Forwarding operation on Ethernet interface 0:

```conf
configure terminal
ip cef distributed
interface e0
  no ip route-cache cef
end
```

The following example shows how to reenable distributed Cisco Express Forwarding operation on Ethernet interface 0:

```conf
configure terminal
ip cef distributed
interface e0
  ip route-cache distributed
end
```

## Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Overview of the Cisco Express Forwarding feature</td>
<td>Cisco Express Forwarding Overview</td>
</tr>
<tr>
<td>Tasks for verifying Cisco Express Forwarding information on your router</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for configuring a load-balancing scheme for Cisco Express Forwarding</td>
<td>Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic</td>
</tr>
<tr>
<td>Tasks for configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Tasks for configuring epochs for Cisco Express Forwarding tables</td>
<td>Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables</td>
</tr>
<tr>
<td>Tasks for configuring and verifying Cisco Express Forwarding network accounting</td>
<td>Configuring Cisco Express Forwarding Network Accounting</td>
</tr>
<tr>
<td>Tasks for customizing the display of recorded Cisco Express Forwarding events</td>
<td>Customizing the Display of Recorded Cisco Express Forwarding Events</td>
</tr>
<tr>
<td>Description and use of the Cisco Express Forwarding consistency checkers available for the Cisco 7500 and 12000 series routers</td>
<td>Troubleshooting Prefix Inconsistencies with Cisco Express Forwarding</td>
</tr>
<tr>
<td>Information about troubleshooting Cisco Express Forwarding routing loops and suboptimal routing</td>
<td>Troubleshooting Cisco Express Forwarding Routing Loops</td>
</tr>
<tr>
<td>Causes of common Cisco Express Forwarding-related error messages on platforms running distributed Cisco Express Forwarding switching (Cisco 7500 series routers and Cisco 12000 Series Internet routers) and how to troubleshoot them</td>
<td>Troubleshooting Cisco Express Forwarding-Related Error Messages</td>
</tr>
<tr>
<td>Explanation of and troubleshooting information for the Cisco IOS software implementation of Layer 3 load balancing across multiple parallel links when Cisco Express Forwarding is used</td>
<td>Troubleshooting Load Balancing Over Parallel Links Using Cisco Express Forwarding</td>
</tr>
<tr>
<td>QoS features that require Cisco Express Forwarding</td>
<td>When Is CEF Required for Quality of Service</td>
</tr>
<tr>
<td>Cisco Express Forwarding command changes for MPLS HA application and the MFI infrastructure in Cisco IOS 12.2S releases</td>
<td>Cisco Express Forwarding: Command Changes</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Enabling or Disabling CEF or dCEF

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.
Table 5: Feature Information for Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express Forwarding

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This table is intentionally left blank because no features were introduced or modified in Cisco IOS Release 12.2(1) or later. This table will be updated when feature information is added to this module.</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Glossary

adjacency -- A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

Cisco Express Forwarding -- A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

distributed Cisco Express Forwarding -- A mode of Cisco Express Forwarding operation in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

FIB -- forwarding information base. A component of Cisco Express Forwarding that is conceptually similar to a routing table or information base. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

GRE -- generic routing encapsulation. A tunneling protocol developed by Cisco that enables encapsulation of a wide variety of protocol packet types inside IP tunnels. GRE creates a virtual point-to-point link to Cisco routers at remote points over an IP internetwork. By connecting multiprotocol subnetworks in a single-protocol backbone environment, IP tunneling using GRE allows the expansion of a network across a single-protocol backbone environment.

IPC -- interprocess communication. The mechanism that enables the distribution of Cisco Express Forwarding tables from the Route Switch Processor (RSP) to the line card when the router is operating in distributed Cisco Express Forwarding mode.

label disposition -- The removal of Multiprotocol Label Switching (MPLS) headers at the edge of a network. In MPLS label disposition, packets arrive on a router as MPLS packets and, with the header removed, are transmitted as IP packets.

label imposition -- The action of putting a label on a packet.

LER -- label edge router. A router that performs label imposition.

LFIB -- Label Forwarding Information Base. The data structure used by switching functions to switch labeled packets.
LIB --Label information base. A database used by a label switch router (LSR) to store labels learned from other LSRs, as well as labels assigned by the local LSR.

line card --A general term for an interface processor that can be used in various Cisco products. For example, a Versatile Interface Processor (VIP) is a line card for the Cisco 7500 series router.

LSP --label switched path. A sequence of hops (Router 0...Router n). A packet travels from R0 to Rn by means of label switching mechanisms. An LSP can be chosen dynamically, based on normal routing mechanisms, or you can configure the LSP manually.

LSR --label switch router. A Layer 3 router that forwards a packet based on the value of a label encapsulated in the packet.

MPLS --Multiprotocol Label Switching. An emerging industry standard for the forwarding of packets along the normal routing paths (sometimes called MPLS hop-by-hop forwarding).

prefix --The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

RIB --Routing Information Base. A central repository of routes that contains Layer 3 reachability information and destination IP addresses or prefixes. The RIB is also known as the routing table.

RP --Route Processor. The processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.

RSP --Route Switch Processor. The processor module used in the Cisco 7500 series routers that integrates the functions of the Route Processor (RP) and the Switch Processor (SP).

SP --Switch Processor. Cisco 7000-series processor module that acts as the administrator for all CxBus activities. It is also sometimes called a CiscoBus controller.

VIP --Versatile Interface Processor. An interface card used in Cisco 7000 and Cisco 7500 series routers. The VIP provides multilayer switching and runs Cisco IOS software.

VPN --Virtual Private Network. The result of a router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF --A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.
CHAPTER 4

Configuring a Load-Balancing Scheme

This module contains information about Cisco Express Forwarding and describes the tasks for configuring a load-balancing scheme for Cisco Express Forwarding traffic. Load-balancing allows you to optimize resources by distributing traffic over multiple paths.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

• Finding Feature Information, page 57
• Prerequisites for a Load-Balancing Scheme, page 58
• Restrictions for a Load-Balancing Scheme, page 58
• Information About a Load-Balancing Scheme, page 58
• How to Configure a Load-Balancing Scheme, page 61
• Configuration Examples for a Load-Balancing Scheme, page 67
• Additional References, page 68
• Feature Information for a Load-Balancing Scheme, page 70
• Glossary, page 71

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for a Load-Balancing Scheme

- Cisco Express Forwarding or distributed Cisco Express Forwarding must be enabled on your switch or router.
- If you enable per-packet load balancing for traffic going to a particular destination, all interfaces that can forward traffic to that destination must be enabled for per-packet load balancing.

Restrictions for a Load-Balancing Scheme

You must globally configure load balancing on Cisco 12000 Series Router E2 line cards in the same way: either in per-destination or per-packet mode. It is not possible (as in other Cisco IOS software-based platforms) to configure some packet prefixes in per-destination mode and others in per-packet mode.

Information About a Load-Balancing Scheme

Cisco Platform Support for Central CEF and dCEF

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 or later. When Cisco Express Forwarding is enabled on a router, the Route Processor (RP) performs the express forwarding.

To find out if Cisco Express Forwarding is enabled on your platform, enter the `show ip cef` command. If Cisco Express Forwarding is enabled, you receive output that looks like this:

```
Router# show ip cef
Prefix   Next Hop     Interface
[...]    192.168.100.1  FastEthernet1/0/0
10.2.61.8/24    192.168.101.1  FastEthernet6/1
[...]    192.168.100.1  FastEthernet1/0/0
```

If Cisco Express Forwarding is not enabled on your platform, the output for the `show ip cef` command looks like this:

```
Router# show ip cef
%CEF not running
```

Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 series router. When distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the `ip cef` command to enable (central) Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

CEF Load-Balancing Overview

Cisco Express Forwarding load balancing is based on a combination of source and destination packet information; it allows you to optimize resources by distributing traffic over multiple paths.
You can configure load balancing on a per-destination or per-packet basis. Because load-balancing decisions are made on the outbound interface, load balancing must be configured on the outbound interface.

Per-Destination Load Balancing

Per-destination load balancing allows the router to use multiple paths to achieve load sharing across multiple source-destination host pairs. Packets for a given source-destination host pair are guaranteed to take the same path, even if multiple paths are available. Traffic streams destined for different pairs tend to take different paths.

Per-destination load balancing is enabled by default when you enable Cisco Express Forwarding. To use per-destination load balancing, you do not perform any additional tasks once Cisco Express Forwarding is enabled. Per-destination is the load-balancing method of choice for most situations.

Because per-destination load balancing depends on the statistical distribution of traffic, load sharing becomes more effective as the number of source-destination host pairs increases.

You can use per-destination load balancing to ensure that packets for a given host pair arrive in order. All packets intended for a certain host pair are routed over the same link (or links).

Typically, you disable per-destination load balancing when you want to enable per-packet load balancing.

Note: The Cisco 10000 series router and the Cisco 12000 series router are configured by default to perform per-destination load balancing.

Per-Packet Load Balancing

Cisco Express Forwarding Per-packet load balancing allows the router to send successive data packets over different paths without regard to individual hosts or user sessions. It uses the round-robin method to determine which path each packet takes to the destination. Per-packet load balancing ensures that the traffic is balanced over multiple links.

Per-packet load balancing is good for single-path destinations, but packets for a given source-destination host pair might take different paths. Per-packet load balancing can therefore introduce reordering of packets. This type of load balancing is inappropriate for certain types of data traffic (such as voice traffic over IP) that depend on packets arriving at the destination in sequence.

Use per-packet load balancing to help ensure that a path for a single source-destination host pair does not get overloaded. If the bulk of the data passing through parallel links is for a single pair, per-destination load balancing overloads a single link while other links have very little traffic. Enabling per-packet load balancing allows you to use alternate paths to the same busy destination.

Note: Although per-packet load balancing is intended for use on the majority of Cisco IOS routers, it is not supported on the Cisco ASR 1000 (and higher) Series Aggregation Services Router. Also, per-packet load balancing can result in out-of-sequence (OOS) packet delivery errors on some routers, which can cause applications such as VoIP to malfunction. Therefore, per-packet load balancing is not recommended. For more information, see the release notes and caveats for your platform and software release.
Load-Balancing Algorithms

The following load-balancing algorithms are provided for use with Cisco Express Forwarding traffic. You select a load-balancing algorithm with the `ip cef load-sharing` algorithm command.

- **Original algorithm**—The original Cisco Express Forwarding load-balancing algorithm produces distortions in load sharing across multiple routers because the same algorithm was used on every router. Depending on your network environment, you should select either the universal algorithm (default) or the tunnel algorithm instead.

- **Universal algorithm**—The universal load-balancing algorithm allows each router on the network to make a different load sharing decision for each source-destination address pair, which resolves load-sharing imbalances. The router is set to perform universal load sharing by default.

- **Tunnel algorithm**—The tunnel algorithm is designed to balance the per-packet load when only a few source and destination pairs are involved.

- **Include-ports algorithm**—The include-ports algorithm allows you to use the Layer 4 source and destination ports as part of the load-balancing decision. This method benefits traffic streams running over equal cost paths that are not load shared because the majority of the traffic is between peer addresses that use different port numbers, such as Real-Time Protocol (RTP) streams. The include-ports algorithm is available in Cisco IOS Release 12.4(11)T and later releases.

**GTP-U TEID-Based ECMP Load-Balancing Algorithm for Cisco IOS XE Software**

GPRS Tunneling Protocol (GTP) is mainly used to deliver mobile data on wireless networks via the Cisco ASR 1000 Series Aggregation Services Routers as the core router. When two routers carrying GTP traffic are connected with equal-cost multi-path (ECMP) routing between them, you can use the `show ip cef exact-route source - ip address [src-port port number] destination-ip address [dest-port port number] [gtp-teid teid]` command in the User EXEC mode or the Privileged EXEC mode to verify the interface selected for load balancing.

To achieve load balancing, the Cisco ASR 1000 Series Aggregation Services Routers use a 4-tuple source IP address, destination IP address, L4 source and destination port (if traffic is TCP or UDP), and fields from the packet. However, for GTP traffic, the presence of limited number of unique values for these fields restricts the equal distribution of traffic load on the tunnel. To avoid polarization for GTP traffic in load balancing, a tunnel endpoint identifier (TEID) in the GTP header is used instead of the UDP port number. Because TEID is unique per tunnel, traffic can be evenly load balanced across ECMPs. This feature allows you to look inside the GTP header and balance the traffic over ECMP on a per subscriber basis.

The GTP-U TEID-Based ECMP Load-Balancing Algorithm feature adds support for:

- GTP with IPv4 and IPv6 transport header on physical interface
- GTP traffic over the Traffic Engineering (TE) tunnel, which supports load balancing between different TE tunnels
- GTPv1-U with UDP port 2152
- Up to 8 ECMP paths
Restrictions for GTP-U TEID-Based ECMP Load-Balancing Algorithm

The following restrictions apply to the GTP-U TEID-Based ECMP Load-Balancing Algorithm feature:

- GTPv0 is not supported to avoid extra performance impact.
- GTP-C and GTP over L2VPN are not supported.

Enabling the GTP-U TEID Load-Balancing Algorithm

Use the `ip cef load-sharing algorithm include-ports source destination gtp` command to enable the GTP-U TEID load-balancing algorithm for IPv4.

Use the `ipv6 cef load-sharing algorithm include-ports source destination gtp` command to enable the GTP-U TEID load-balancing algorithm for IPv6.

Use the `show ip cef exact-route source - ip address [src-port port number] destination-ip address [dest-port port number] [gtp-teid teid]` command to display the exact route of GTP-U TEID for IPv4.

Use the `show ipv6 cef exact-route source-ip address [src-port port number] destination-ip address [dest-port port number] [gtp-teid teid]` command to display the exact route of GTP-U TEID for IPv6.

How to Configure a Load-Balancing Scheme

Enabling or Disabling Per-Destination Load Balancing

Perform this task to enable or disable Cisco Express Forwarding per-destination load balancing.

Typically, you disable per-destination load balancing when you want to enable per-packet load balancing.

SUMMARY STEPS

1. enable
2. configure terminal
3. Do one of the following:
   - `interface type slot / port`
   - `interface type slot / port-adapter / port`
4. `[no] ip load-sharing per-destination`
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**

configure terminal

**Example:**

Router# configure terminal

Enters global configuration mode.

**Step 3**

Do one of the following:

- `interface type slot / port`
- `interface type slot / port-adapter / port`

**Example:**

Router(config)# interface ethernet 1/1

or

Router(config)# interface fastethernet 1/0/0

Configures an interface type and enters interface configuration mode.

- The `type` argument specifies the type of interface to be configured.
- The `slot` argument specifies the slot number. Refer to the appropriate hardware manual for slot and port information.
- The `port` argument specifies the port number. Refer to the appropriate hardware manual for slot and port information.
- The `port-adapter` argument specifies the port adapter number. Refer to the appropriate hardware manual for information about port adapter compatibility.

**Note**

The slashes after the `slot` argument and `port-adapter` argument are required.

**Step 4**

`[no] ip load-sharing per-destination`

**Example:**

Router(config-if)# no ip load-sharing per-destination

Enables per-destination load balancing for Cisco Express Forwarding on the interface.

**Note**

The `no ip load-sharing` command disables load balancing for Cisco Express Forwarding on the interface.

**Step 5**

end

**Example:**

Router(config-if)# end

Exits to privileged EXEC mode.
# Configuring Per-Packet Load Balancing

Perform the following task to configure Cisco Express Forwarding per-packet load balancing.

## SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. Do one of the following:
   - `interface type slot / port`
   - `interface type slot / port-adapter / port`
4. `ip load-sharing per-packet`
5. `end`

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

**Step 3**

Do one of the following:

- `interface type slot / port`
- `interface type slot / port-adapter / port`

**Example:**

Router(config)# interface ethernet 1/1

**Example:**

or

- **Note**: The slashes after the `slot` argument and `port-adapter` argument are required.
Selecting a Tunnel Load-Balancing Algorithm

Perform the following task to select a tunnel load-balancing algorithm for Cisco Express Forwarding traffic. Select the tunnel algorithm when your network environment contains only a few source and destination pairs.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip cef load-sharing algorithm {original | tunnel [id] | universal [id] | include-ports {source[id] | destination} [id] | source[id] destination [id]}
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>
### Selecting an Include-Ports Layer 4 Load-Balancing Algorithm

Perform the following task to select an include-ports load-balancing algorithm for Cisco Express Forwarding traffic. Select the include-port algorithm when your network environment contains traffic running over equal-cost paths that is not load shared because the majority of the traffic is between peer addresses with different port numbers, such as RTP streams.

#### Before You Begin

Your system must be using an image that supports Cisco Express Forwarding in Cisco IOS Release 12.4(11)T or a later release.

---

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ip cef load-sharing algorithm {original</td>
<td>Selects a Cisco Express Forwarding load-balancing algorithm.</td>
</tr>
<tr>
<td></td>
<td>tunnel [id]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>universal [id]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>include-ports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{source [id]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>destination [id]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip cef load-sharing algorithm tunnel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
The Layer 4 load-balancing algorithm applies to software switched packets.
For platforms that switch traffic using a hardware forwarding engine, the hardware load-balancing decision might be different from the software load-balancing decision for the same traffic stream. You might want to override the configured algorithm.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip cef load-sharing algorithm {original | tunnel [id] | universal [id] include-ports {source[id] | destination} [id] | source[id] destination [id]}`
4. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip cef load-sharing algorithm {original</td>
<td>tunnel [id]</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# ip cef load-sharing algorithm include-ports source destination</td>
<td>- The <strong>original</strong> keyword sets the load-balancing algorithm to the original algorithm, based on a source and destination hash.</td>
</tr>
<tr>
<td></td>
<td>- The <strong>tunnel</strong> keyword sets the load-balancing algorithm to one that can be used in tunnel environments or in environments where there are only a few IP source and destination address pairs.</td>
</tr>
<tr>
<td></td>
<td>- The <strong>universal</strong> keyword sets the load-balancing algorithm to one that uses a source and destination and an ID hash.</td>
</tr>
<tr>
<td></td>
<td>- The <strong>include-ports source</strong> keyword sets the load-balancing algorithm to one that uses the source port.</td>
</tr>
<tr>
<td></td>
<td>- The <strong>include-ports destination</strong> keyword sets the load-balancing algorithm to one that uses the destination port.</td>
</tr>
</tbody>
</table>
The `include-ports source destination` keyword sets the load-balancing algorithm to one that uses the source and destination ports.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Exits to privileged mode.</td>
</tr>
</tbody>
</table>

**Example Enabling or Disabling Per-Destination Load Balancing**

Per-destination load balancing is enabled by default when you enable Cisco Express Forwarding. Typically, you disable per-destination load balancing when you want to enable per-packet load balancing. The following example shows how to disable per-destination load balancing:

```bash
configure terminal
!
interface ethernet 1/1
no ip load-sharing per-destination
end
```

**Example Configuring Per-Packet Load Balancing**

The following example shows how to configure per-packet load balancing for Cisco Express Forwarding:

```bash
configure terminal
!
interface ethernet 1/1
ip load-sharing per-packet
end
```

If you want to enable per-packet load balancing for traffic intended for a particular destination, all interfaces that can forward traffic to that destination must be enabled for per-packet load-balancing.
Example Selecting a Tunnel Load-Balancing Algorithm

The following example shows how to select a tunnel load-balancing algorithm for Cisco Express Forwarding:

```
configure terminal
!
ip cef load-sharing algorithm tunnel
end
```

The following example shows how to disable the tunnel load-balancing algorithm:

```
configure terminal
!
no ip cef load-sharing algorithm tunnel
end
```

Example Selecting an Include-Ports Layer 4 Load-Balancing Algorithm

The following example shows how to select an include-ports Layer 4 load-balancing algorithm for Cisco Express Forwarding traffic:

```
configure terminal
!
ip cef load-sharing algorithm include-ports source
end
```

This example sets up load sharing that includes the source port in the load-balancing decision.

To disable the include-ports Layer 4 load-balancing algorithm and return to the default universal mode, enter the following commands:

```
configure terminal
!
no ip cef load-sharing algorithm
end
```

Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax,</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>command modes, command history, defaults, usage</td>
<td></td>
</tr>
<tr>
<td>guidelines, and examples.</td>
<td></td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Overview of the Cisco Express Forwarding feature</td>
<td>Cisco Express Forwarding Overview</td>
</tr>
<tr>
<td>Tasks for verifying basic Cisco Express Forwarding and distributed Cisco Express Forwarding operation</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for enabling or disabling Cisco Express Forwarding or distributed Cisco Express Forwarding</td>
<td>Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express Forwarding to Customize Switching and Forwarding for Dynamic Network</td>
</tr>
<tr>
<td>Tasks for configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Tasks for configuring epochs for Cisco Express Forwarding tables</td>
<td>Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables</td>
</tr>
<tr>
<td>Tasks for configuring and verifying Cisco Express Forwarding network accounting</td>
<td>Configuring Cisco Express Forwarding Network Accounting</td>
</tr>
<tr>
<td>Tasks for customizing the display of recorded Cisco Express Forwarding events</td>
<td>Customizing the Display of Recorded Cisco Express Forwarding Events</td>
</tr>
<tr>
<td>Explanation of and troubleshooting information for the Cisco IOS software implementation of Layer 3 load balancing across multiple parallel links when Cisco Express Forwarding is used</td>
<td>Troubleshooting Load Balancing Over Parallel Links Using Cisco Express Forwarding</td>
</tr>
</tbody>
</table>

**Standards**

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

**MIBs**

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for a Load-Balancing Scheme

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.

Table 6: Feature Information for Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Express Forwarding Support for Layer 4 Port-Based Load Balancing</td>
<td>12.4(11)T</td>
<td>This feature allows Cisco Express Forwarding (CEF) to include Layer 4 port information in the decision for load sharing on paths. In 12.4(11)T, this feature was introduced. The following commands were modified by this feature: <code>ip cef load-sharing algorithm</code> and <code>show ip cef exact-route</code>.</td>
</tr>
</tbody>
</table>
## Glossary

**adjacency** --A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

**Cisco Express Forwarding** --A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

**distributed Cisco Express Forwarding** --A mode of Cisco Express Forwarding operation in which line cards (such as Versatile Interface Processor [VIP] line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

**FIB** --forwarding information base. A component of Cisco Express Forwarding that is conceptually similar to a routing table or information base. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

**LSP** --label switched path. A sequence of hops (Router 0...Router n). A packet travels from R0 to Rn by means of label switching mechanisms. An LSP can be chosen dynamically, based on normal routing mechanisms, or you can configure the LSP manually.

**prefix** --The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

**RIB** --Routing Information Base. A central repository of routes that contains Layer 3 reachability.

### Feature Configuration Information

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTP-U TEID-Based ECMP Load-Balancing Algorithm for Cisco IOS XE Software</td>
<td>Cisco IOS XE Release 3.10S</td>
<td>This feature allows CEF to use the GPRS Tunneling Protocol Tunnel Endpoint Identifier (GTP TEID) load-balancing algorithm.</td>
</tr>
</tbody>
</table>
CHAPTER 5

Configuring Epochs

This document contains information about and instructions for configuring epochs for Cisco Express Forwarding tables. You can use this functionality to clear and rebuild Cisco Express Forwarding tables for consistency purposes without the loss of table information.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

- Finding Feature Information, page 73
- Prerequisites for Epochs for CEF Tables, page 74
- Information About About Epochs for CEF Tables, page 74
- How to Configure Epochs, page 76
- Configuration Examples for Epochs, page 80
- Additional References, page 81
- Feature Information for Configuring Epochs, page 83
- Glossary, page 84

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Epochs for CEF Tables

Cisco Express Forwarding must be up and running on the router or switch for you to configure epochs for Cisco Express Forwarding Forwarding Information Base (FIB) and adjacency tables.

Information About About Epochs for CEF Tables

Tasks for configuring epochs for Cisco Express Forwarding Forwarding Information Base (FIB) tables were introduced with the Nonstop Forwarding Enhanced FIB Refresh feature in Cisco IOS Release 12.2(8)T.

Before you configure epochs for Cisco Express Forwarding tables, you should understand the following:
(See the Nonstop Forwarding Enhanced FIB Refresh, on page 74 for an explanation of the term "epoch.")

Tasks for configuring epochs for Cisco Express Forwarding Forwarding Information Base (FIB) tables were introduced with the Nonstop Forwarding Enhanced FIB Refresh feature in Cisco IOS Release 12.2(8)T.

For links to information about other Cisco Express Forwarding and distributed Cisco Express Forwarding features you can configure, refer to the Additional References, on page 81.

Cisco Platform Support for Central CEF and dCEF

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 or later. When Cisco Express Forwarding is enabled on a router, the Route Processor (RP) performs the express forwarding.

To find out if Cisco Express Forwarding is enabled on your platform, enter the show ip cef command. If Cisco Express Forwarding is enabled, you receive output that looks like this:

```
Router# show ip cef
Prefix Next Hop Interface
[...] 10.2.61.8/24 192.168.100.1 FastEthernet1/0/0
192.168.101.1 FastEthernet6/1
[...]```

If Cisco Express Forwarding is not enabled on your platform, the output for the show ip cef command looks like this:

```
Router# show ip cef
%CEF not running```

Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 Series Internet Router. When Distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the ip cef command to enable (central) Cisco Express Forwarding or the ip cef distributed command to enable Distributed Cisco Express Forwarding.

Nonstop Forwarding Enhanced FIB Refresh

Networks must be configured to minimize traffic disruption and offer the most uptime possible. The Nonstop Forwarding (NSF) Enhanced FIB Refresh feature (included with Cisco IOS Release 12.2(8)T) enables users
to continue forwarding IP traffic while Cisco Express Forwarding database tables are being rebuilt. IP forwarding on the router is therefore uninterrupted.

NSF Enhanced FIB Refresh provides for the continuation of Cisco Express Forwarding forwarding by tracking epochs. The term "epoch" refers to a period of time. A new epoch for a Cisco Express Forwarding table begins when a table rebuild is initiated. The time after this instant is in an epoch different from the time before, and the different epochs are numbered between 0 and 255. Through the use of epochs, the software can distinguish between old and new forwarding information in the same database structure and can retain the old Cisco Express Forwarding database table while the software builds a new table. This is called epoch tracking and it allows Cisco Express Forwarding forwarding to continue uninterrupted while new Cisco Express Forwarding tables are being constructed, and it makes possible a seamless switchover when the new table becomes active.

### Epoch Numbering for CEF FIB and Adjacency Tables

A new epoch for a Cisco Express Forwarding table begins when a table rebuild is initiated. The time after this instant is in an epoch different from the time before. The first epoch is numbered 0, and it begins when the Cisco Express Forwarding table is created. The epoch number increases by 1 for each new revision of the Cisco Express Forwarding table until the epoch number reaches 255. The next epoch after 255 is 0. A new epoch cannot begin if any table entries remain from the last time the epoch number was used. The epoch number for a given table is the same for each instance of the table (for example, on each RP and on each line card where distributed Cisco Express Forwarding is active).

Each entry added to a FIB table or the adjacency table has a new field that records the current epoch for that table at the time the entry was added. When an entry is modified, the epoch of the entry is updated to record the table's current epoch. A record is kept of how many entries exist from each epoch. The epoch number cannot be incremented if any existing entries have the same epoch number as the next epoch value.

When the routing protocols signal that they have converged, all FIB and adjacency entries that have epoch numbers older than the current epoch number are removed from the FIB and adjacency tables.

When you need a Cisco Express Forwarding table to be rebuilt, the epoch number for that table is incremented, and the table is rebuilt in place. When rebuilding is complete, "stale" entries are removed from the table. You can increment the epoch of a single table or multiple tables at the same time when you enter the `clear ip cef epoch [all-vrfs] [full] [vrf[+table]]` command. See the When to Refresh the CEF or Adjacency Tables section for information on when you might need to rebuild a Cisco Express Forwarding table.

When you display information from a Cisco Express Forwarding table (for example, with the `show ip cef epoch` command), the table epoch is shown in the summary table. When detailed information is displayed for each table entry, the epoch number of each entry is shown.

### Epoch Synchronization Between the RP and Line Cards

When FIB or adjacency entries are distributed from the central tables on the RP, the updates contain the epoch of the entry, ensuring that the distinction between old and new entries is maintained in distributed systems.

When a table is initialized on a line card, the current epoch of the table on the RP is sent to the line card. When the epoch is incremented on the RP, an event indicating that a new epoch has begun is sent to each line card.
Epoch Numbering for Routers That Support HA

In a router that supports high availability (HA), the epoch numbers for all Cisco Express Forwarding tables are incremented when an RP transitions from standby mode to active. After switchover, the active secondary RP initially has FIB and adjacency databases that are the same as those of the primary RP. When the epoch number for each table is incremented, all existing entries are considered stale. However, forwarding continues as normal. As the routing protocols start to repopulate the FIB and adjacency databases, existing and new entries receive the new epoch number, indicating that the entries have been refreshed.

When to Refresh the CEF or Adjacency Tables

You refresh or rebuild the Cisco Express Forwarding or adjacency tables when the tables contain inconsistencies. Cisco 7500 series and Cisco 12000 Series Internet routers support distributed Cisco Express Forwarding, in which line cards make forwarding decisions based on stored copies of the same FIB and adjacency tables that are found on the RP. The tables on the line cards and the RP must remain synchronized.

Inconsistencies occur when forwarding information (a prefix) is missing on a line card, or the next-hop IP address on the line card is not the same as the next-hop IP address on the RP. Because updates to the RP and line card databases are not synchronous, fleeting inconsistencies can result.

Cisco Express Forwarding consistency checkers detect when forwarding information on the line cards and the RP lose synchronization. For more information on consistency checkers, see the Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards module.

How to Configure Epochs

This section contains instructions on how to configure epochs for Cisco Express Forwarding tables. Perform the following tasks to begin new epochs and increment the epoch number of the adjacency and Cisco Express Forwarding tables:

Incrementing the Epoch Number of the Adjacency Table

Perform the following task to begin a new epoch and increment the epoch number of the adjacency table. Use this task when you need to rebuild the adjacency table. A new adjacency table might be required because you need to remove inconsistencies from the table.

SUMMARY STEPS

1. enable
2. show ip cef epoch
3. clear adjacency table
4. show ip cef epoch
5. exit
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>show ip cef epoch</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# show ip cef epoch</td>
</tr>
<tr>
<td></td>
<td>Displays entries in the forwarding information base (FIB) or displays</td>
</tr>
<tr>
<td></td>
<td>a summary of the FIB.</td>
</tr>
<tr>
<td></td>
<td>• The <code>epoch</code> keyword displays the table epochs of the adjacency</td>
</tr>
<tr>
<td></td>
<td>table and all FIB tables.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>clear adjacency table</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# clear adjacency table</td>
</tr>
<tr>
<td></td>
<td>Begins a new epoch and increments the epoch number of the adjacency</td>
</tr>
<tr>
<td></td>
<td>table.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>show ip cef epoch</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# show ip cef epoch</td>
</tr>
<tr>
<td></td>
<td>Displays entries in the FIB or displays a summary of the FIB.</td>
</tr>
<tr>
<td></td>
<td>• The <code>epoch</code> keyword displays the table epochs of the adjacency</td>
</tr>
<tr>
<td></td>
<td>table and all FIB tables.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# exit</td>
</tr>
<tr>
<td></td>
<td>Exits to user EXEC mode.</td>
</tr>
</tbody>
</table>

### Incrementing the Epoch Number of One or All CEF Tables

Perform the following task to begin a new epoch and increment the epoch number of one or all of the Cisco Express Forwarding tables.

Use the `clear ip cef epoch` command when you want to rebuild a Cisco Express Forwarding table. This command increments the epoch and flushes entries associated with the old epoch. This command also clears any inconsistencies that might exist between Cisco Express Forwarding tables on the RP and Cisco Express Forwarding tables on the line cards. If everything in the system is working correctly, the command has no effect on the Cisco Express Forwarding forwarding tables, other than changing the current epoch values.
SUMMARY STEPS

1. enable
2. show ip cef epoch
3. clear ip cef epoch [all-vrfs | full | vrf [table]]
4. show ip cef epoch
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1    | enable            | Enables privileged EXEC mode.  
      | Example:          | • Enter your password if prompted. |
|      | Router> enable    |         |
| 2    | show ip cef epoch | Displays entries in the FIB or displays a summary of the FIB. |
|      | Example:          | • The epoch keyword displays the table epochs of the adjacency table and all FIB tables. |
|      | Router# show ip cef epoch |         |
| 3    | clear ip cef epoch [all-vrfs | full | vrf [table]] | Begins a new epoch and increments the epoch number of one or all Cisco Express Forwarding tables. |
|      | Example:          | • The all-vrfs keyword begins a new epoch for all FIB tables. |
|      | Router# clear ip cef epoch full |         |
|      |                   | • The full keyword begins a new epoch for all tables, including adjacency tables. |
|      |                   | • The vrf keyword begins a new epoch for the specified FIB table. |
|      |                   | • The table argument is the name of a specific Virtual Private Network (VPN) routing and forwarding instance (VRF). |
| 4    | show ip cef epoch | Displays entries in the FIB or displays a summary of the FIB. |
|      | Example:          | • The epoch keyword displays the epochs of the adjacency table and all FIB tables. |
|      | Router# show ip cef epoch |         |
| 5    | exit              | Exits to user EXEC mode. |
|      | Example:          |         |
|      | Router# exit      |         |
Verifying Epoch Information

Perform the following task to verify epoch information for Cisco Express Forwarding and adjacency tables.

SUMMARY STEPS

1. enable
2. show adjacency summary detail
3. show adjacency summary
4. show ip cef epoch
5. exit

DETAILED STEPS

Step 1 enable
Use this command to enable privileged EXEC mode. For example:

Example:

Router> enable
Enter your password if prompted.

Step 2 show adjacency summary detail
Use this command to verify that the epoch number is displayed for each entry in the adjacency table as you expect. For example:

Example:

Router# show adjacency detail
Protocol Interface Address
IP Serial5/0/0/1:1 point2point(7)
0 packets, 0 bytes
0F000800
CEF expires: 00:02:09
refresh: 00:00:09
Epoch: 14
IP Serial5/0/1/1:1 point2point(7)
0 packets, 0 bytes
0F000800
CEF expires: 00:02:09
refresh: 00:00:09
Epoch: 14

The epoch number is displayed for each entry in the adjacency table. In this example, the epoch number of each entry is 14.

Step 3 show adjacency summary
Use this command to verify that the epoch number for each adjacency in the adjacency table is as you expect. For example:

Example:

Router# show adjacency summary
Adjacency Table has 2 adjacencies
   Table epoch: 14 (2 entries at this epoch)

   Interface          Adjacency Count
   Serial5/0/0/1:1    1
   Serial5/0/1/1:1    1

Use the epoch information in the summary section to verify that the epoch number for each adjacency in the adjacency table is as expected. The epoch number is 14 in this example, the same as the epoch number displayed in the `show adjacency detail` command in the previous step.

**Step 4**

**show ip cef epoch**

Use this command to verify that Cisco Express Forwarding information in all FIB tables, including the adjacency table, is as you expect.

In the following example, Cisco Express Forwarding epoch information is verified for all FIB tables, including the adjacency table:

**Example:**

```
Router# show ip cef epoch
CEF epoch information:
   Table: Default-table
      Table epoch: 77 (19 entries at this epoch)
   Adjacency table
      Table epoch: 16 (2 entries at this epoch)
```

**Step 5**

**exit**

Use this command to exit to user EXEC mode. For example:

**Example:**

```
Router# exit
```

---

## Configuration Examples for Epochs

### Example Incrementing the Epoch Number of the Adjacency Table

The following example shows how to begin a new epoch and increment the epoch number of the adjacency table:

```
Router# show ip cef epoch
CEF epoch information:
   Table: Default-table
      Table epoch: 2 (43 entries at this epoch)
   Adjacency table
      Table epoch: 2 (5 entries at this epoch)
Router# clear adjacency table
```
After clearing:

Router# `show ip cef epoch`
CEF epoch information:
Table: Default-table
  Table epoch: 3 (43 entries at this epoch)
Adjacency table
  Table epoch: 3 (5 entries at this epoch)

Example Incrementing the Epoch Number of One or All CEF Tables

The following example shows how to begin a new epoch and increment the epoch number of all Cisco Express Forwarding tables:

Router# `clear ip cef epoch full`
The following example shows the output before and after you clear the epoch table and increment the epoch number. Before clearing:

router# `show ip cef epoch`
CEF epoch information:
Table: Default-table
  Table epoch: 3 (43 entries at this epoch)
Adjacency table
  Table epoch: 3 (5 entries at this epoch)
After clearing:

router# `clear ip cef epoch full`
router# `show ip cef epoch`
CEF epoch information:
Table: Default-table
  Table epoch: 4 (43 entries at this epoch)
Adjacency table
  Table epoch: 4 (5 entries at this epoch)

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax,</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>command modes, command history, defaults, usage</td>
<td></td>
</tr>
<tr>
<td>guidelines, and examples.</td>
<td></td>
</tr>
<tr>
<td>Overview of the Cisco Express Forwarding feature</td>
<td>Cisco Express Forwarding Overview</td>
</tr>
<tr>
<td>Tasks for verifying basic Cisco Express Forwarding</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks</td>
</tr>
<tr>
<td>and distributed Cisco Express Forwarding operation</td>
<td></td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Tasks for enabling or disabling Cisco Express Forwarding or distributed Cisco Express Forwarding</td>
<td>Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express Forwarding to Customize Switching and Forwarding for Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for configuring a load-balancing scheme for Cisco Express Forwarding</td>
<td>Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic</td>
</tr>
<tr>
<td>Tasks for configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Tasks for configuring and verifying Cisco Express Forwarding network accounting</td>
<td>Configuring Cisco Express Forwarding Network Accounting</td>
</tr>
<tr>
<td>Tasks for customizing the display of recorded Cisco Express Forwarding events</td>
<td>Customizing the Display of Recorded Cisco Express Forwarding Events</td>
</tr>
<tr>
<td>Description and use of the Cisco Express Forwarding consistency checkers available for the Cisco 7500 and 12000 series routers</td>
<td>Troubleshooting Prefix Inconsistencies with Cisco Express Forwarding</td>
</tr>
<tr>
<td>Explanation of and troubleshooting information for the Cisco IOS software implementation of Layer 3 load balancing across multiple parallel links when Cisco Express Forwarding is used</td>
<td>Troubleshooting Load Balancing Over Parallel Links Using Cisco Express Forwarding</td>
</tr>
<tr>
<td>Causes of common Cisco Express Forwarding-related error messages on platforms running distributed Cisco Express Forwarding switching (Cisco 7500 series routers and Cisco 12000 Series Internet routers) and how to troubleshoot them</td>
<td>Troubleshooting Cisco Express Forwarding-Related Error Messages</td>
</tr>
</tbody>
</table>

**Standard**

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
MIB

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFC

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Configuring Epochs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.
### Table 7: Feature Information for Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonstop Forwarding Enhanced FIB</td>
<td>12.2(8)T</td>
<td>This feature allows you to clear the forwarding table on demand and to continue forwarding through the use of the old entries in the table while the new forwarding table is being built.</td>
</tr>
</tbody>
</table>

### Glossary

**adjacency** -- A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

**Cisco Express Forwarding** -- A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

**distributed Cisco Express Forwarding** -- A mode of Cisco Express Forwarding operation in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

**FIB** -- forwarding information base. A component of Cisco Express Forwarding that is conceptually similar to a routing table or information base. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

**LIB** -- label information base. A database used by a label switch router (LSR) to store labels learned from other LSRs, as well as labels assigned by the local LSR.

**line card** -- A general term for an interface processor that can be used in various Cisco products. For example, a Versatile Interface Processor (VIP) is a line card for the Cisco 7500 series router.

**prefix** -- The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

**RIB** -- Routing Information Base. A central repository of routes that contains Layer 3 reachability information and destination IP addresses or prefixes. The RIB is also known as the routing table.

**RP** -- Route Processor. The processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.

**RSP** -- Route Switch Processor. The processor module used in the Cisco 7500 series routers that integrates the functions of the Route Processor (RP) and the Switch Processor (SP).
**SP** -- Switch Processor. Cisco 7000-series processor module that acts as the administrator for all CxBus activities. Sometimes called CiscoBus controller.
CHAPTER 6

Configuring CEF Consistency Checkers

This module contains information about and instructions for configuring Cisco Express Forwarding consistency checkers for route processors and line cards. Cisco Express Forwarding consistency checkers help you find any database inconsistencies, such as an IP prefix missing from a line card or a Route Processor (RP). You can investigate and resolve the inconsistency by examining the associated Cisco Express Forwarding system error messages that occur and by issuing Cisco Express Forwarding debug and show commands.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

- Finding Feature Information, page 87
- Prerequisites for CEF Consistency Checkers, page 88
- Restrictions for CEF Consistency Checkers, page 88
- Information About CEF Consistency Checkers, page 88
- How to Configure CEF Consistency Checkers, page 90
- Configuration Examples for CEF Consistency Checkers, page 94
- Additional References, page 94
- Feature Information for CEF Consistency Checkers, page 96
- Glossary, page 97

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for CEF Consistency Checkers

Cisco Express Forwarding must be up and running on the networking device before you can configure Cisco Express Forwarding consistency checkers.

Restrictions for CEF Consistency Checkers

The Cisco Express Forwarding consistency checkers lc-detect and scan-lc apply only to devices that have distributed Cisco Express Forwarding enabled.

Information About CEF Consistency Checkers

Cisco Platform Support for CEF and dCEF

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 or later. When Cisco Express Forwarding is enabled on a router, the RP performs the express forwarding.

To find out if Cisco Express Forwarding is enabled on your platform, enter the `show ip cef` command. If Cisco Express Forwarding is enabled, you receive output that looks like this:

```
Router# show ip cef
Prefix      Next Hop       Interface
[...]
10.2.61.8/24 192.168.100.1  FastEthernet1/0/0
192.168.101.1 FastEthernet6/1
[...]
```

If Cisco Express Forwarding is not enabled on your platform, the output for the `show ip cef` command looks like this:

```
Router# show ip cef
%CEF not running
```

Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 Series Internet Router. When distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the `ip cef` command to enable Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

CEF Consistency Checker Types

Cisco Express Forwarding uses routing information that is retrieved from the Routing Information Base (RIB), the RP, and the line card databases to perform express forwarding. As these databases are updated, inconsistencies might result, due to the asynchronous nature of the distribution mechanism for these databases. Inconsistencies caused by asynchronous database distribution are of the following types:

- Missing information, such as a particular prefix, on a line card
• Different information, such as different next hop IP addresses, on the line card

Cisco Express Forwarding supports passive and active consistency checkers that run independently to uncover these forwarding inconsistencies. The table below describes the consistency checkers and indicates whether the checker operates on the RP or the line card.

### Table 8: Types of Cisco Express Forwarding Consistency Checkers

<table>
<thead>
<tr>
<th>Checker Type</th>
<th>Operates On</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lc-detect</td>
<td>Line card</td>
<td>(Distributed Cisco Express Forwarding only) Retrieves IP prefixes found missing from the line card FIB table. If IP prefixes are missing, the line card cannot forward packets for the corresponding addresses. Lc-detect then sends IP prefixes to the RP for confirmation. If the RP finds that it has the relevant entry, an inconsistency is detected, and an error message is displayed. Also, the RP sends a signal back to the line card confirming that the IP prefix contributes to the creation of an inconsistency.</td>
</tr>
<tr>
<td>Scan-lc</td>
<td>Line card</td>
<td>(Distributed Cisco Express Forwarding only) Looks through the FIB table for a configurable time period and sends the next ( n ) prefixes to the RP. The RP does an exact lookup in its FIB table. If the RP finds that the prefix is missing, the RP reports an inconsistency. The RP sends a signal back to the line card for confirmation. The time period and number of prefixes sent are configured with the <code>ip cef table consistency-check</code> command.</td>
</tr>
</tbody>
</table>
Operates On |
--- |
Scan-rp |
Route Processor |

Description |
--- |
Looks through the RP FIB table for a configurable time period and sends the next n prefixes to the line card. (This action is opposite to the one that the scan-lc checker performs.) The line card does an exact lookup in the FIB table. If the line card finds the prefix missing, the line card reports an inconsistency and signals the RP for confirmation.

The time period and number of prefixes sent are configured with the `ip cef table consistency-check` command.

Scan-rib |
Route Processor |

Operates on all (even nondistributed) RPs, and scans the RIB to ensure that prefix entries are present in the RP FIB table.

Cisco Express Forwarding consistency checkers are enabled by default for Cisco IOS Releases 12.0(20)S and later. Console errors are disabled by default.

If you find a database inconsistency, such as an IP prefix missing from a line card or an RP, you can investigate and resolve it by examining the Cisco Express Forwarding system error messages and by issuing Cisco Express Forwarding `debug` and `show` commands.

For Cisco Express Forwarding consistency checker system error messages, see the *System Message Guide* for your Cisco IOS Release.

### How to Configure CEF Consistency Checkers

### Enabling CEF Consistency Checkers

Perform the following task to enable Cisco Express Forwarding consistency checkers.
SUMMARY STEPS

1. enabling
2. configuring terminal
3. ip cef table consistency-check [type \{lc-detect | scan-lc | scan-rib | scan-rp \}] [count count-number] [period seconds]
4. ip cef table consistency-check [settle-time seconds]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip cef table consistency-check [type {lc-detect</td>
<td>scan-lc</td>
</tr>
<tr>
<td>Example: Router(config)# ip cef table consistency-check scan-rib count 100 period 60</td>
<td>• The type keyword indicates the type of consistency check to enable.</td>
</tr>
<tr>
<td></td>
<td>• The lc-detect keyword enables the line card to detect a missing prefix, which is confirmed by the RP.</td>
</tr>
<tr>
<td></td>
<td>• The scan-lc keyword enables a passive scan check of tables on the line card.</td>
</tr>
<tr>
<td></td>
<td>• The scan-rib keyword enables a passive scan check of tables on the RP and a comparison with the RIB.</td>
</tr>
<tr>
<td></td>
<td>• The scan-rp keyword enables a passive scan check of tables on the RP.</td>
</tr>
<tr>
<td></td>
<td>• The count-number keyword-argument pair is the maximum number of prefixes to check per scan. The range is from 1 to 225.</td>
</tr>
<tr>
<td></td>
<td>• The period seconds keyword-argument pair is the time during which updates for a candidate prefix are ignored as inconsistencies. The range is from 1 to 3600 seconds.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip cef table consistency-check [settle-time seconds]</td>
<td>Suppresses inconsistency errors during route updates.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td>• The <code>settle-time seconds</code> keyword-argument pair is the time elapsed during which updates for a candidate prefix are ignored as inconsistencies. The range is from 1 to 3600 seconds.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# end</td>
</tr>
</tbody>
</table>

### Displaying and Clearing Table Inconsistencies

Perform the following task to display and clear Cisco Express Forwarding table inconsistency records found by the lc-detect, scan-rp, scan-rib, and scan-lc detection mechanisms.

#### SUMMARY STEPS

1. `enable`
2. `show ip cef inconsistency`
3. `clear ip cef inconsistency`
4. `clear cef linecard [slot-number] [adjacency | interface | prefix]`
5. `show ip cef inconsistency`
6. `exit`

#### DETAILED STEPS

**Step 1** `enable`

Use this command to enable privileged EXEC mode. For example:

**Example:**

Router> enable

Enter your password if prompted.

**Step 2** `show ip cef inconsistency`

Use this command to display Cisco Express Forwarding IP inconsistencies. For example:

**Example:**

Router# show ip cef inconsistency

Table consistency checkers (settle time 65s)
For each checker type, the output shows the number of prefixes that Cisco Express Forwarding must check and the number of seconds (the settle time) during which an inconsistency between RP and line card tables is ignored. The preceding output shows that 0 inconsistencies existed between these tables at the time the command was entered on the router.

**Step 3**

**clear ip cef inconsistency**

Use this command to clear the Cisco Express Forwarding inconsistency statistics and records found by the Cisco Express Forwarding consistency checkers. For example:

```
Example:

Router# clear ip cef inconsistency
```

**Step 4**

**clear cef linecard [slot-number] [adjacency | interface | prefix]**

Use this command to clear Cisco Express Forwarding information from line cards. For example:

```
Example:

Router# clear cef linecard
```

**Step 5**

**show ip cef inconsistency**

Use this command to verify that Cisco Express Forwarding statistics on inconsistencies are removed from the RP and the line cards. For example:

```
Example:

Router# show ip cef inconsistency
```

This sample output shows that four consistency checkers are enabled, that each checker sends 100 prefixes to be checked every 60 seconds, and that the time during which inconsistencies are ignored is 65 seconds. In this example, no inconsistencies were found.

```
Example:
```

**Step 6**

**exit**

Use this command to exit to user EXEC mode. For example:
Configuration Examples for CEF Consistency Checkers

Example Enabling CEF Consistency Checkers

The following example shows how to enable the scan-rp Cisco Express Forwarding consistency checker.

```
configure terminal
!
ip cef table consistency-check scan-rp count 225 period 3600
ip cef table consistency-check settle-time 2500
end
```

The RP is configured to send 3600 prefixes to the line cards every 225 seconds. After the prefixes are sent, the line cards are to wait 2500 seconds before signaling the RP to report an inconsistency (if there is one).

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Troubleshooting tips for incomplete adjacencies</td>
<td>Troubleshooting Incomplete Adjacencies with CEF</td>
</tr>
<tr>
<td>Description of and troubleshooting information for the consistency checker available for the Cisco 7500 series and Cisco 12000 Series Internet routers</td>
<td>Troubleshooting Prefix Inconsistencies with Cisco Express Forwarding</td>
</tr>
<tr>
<td>Overview of the Cisco Express Forwarding feature</td>
<td>Cisco Express Forwarding Overview</td>
</tr>
<tr>
<td>Tasks for verifying basic Cisco Express Forwarding and distributed Cisco Express Forwarding operation</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks</td>
</tr>
</tbody>
</table>
### Related Topic | Document Title
--- | ---
Tasks for enabling or disabling Cisco Express Forwarding or distributed Cisco Express Forwarding | Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express Forwarding to Customize Switching and Forwarding for Dynamic Networks
Tasks for configuring a load-balancing scheme for Cisco Express Forwarding | Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic
Tasks for configuring epochs for Cisco Express Forwarding tables | Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables
Tasks for configuring and verifying Cisco Express Forwarding network accounting | Configuring Cisco Express Forwarding Network Accounting
Tasks for customizing the display of recorded Cisco Express Forwarding events | Customizing the Display of Recorded Cisco Express Forwarding Events
Causes of common Cisco Express Forwarding-related error messages on platforms running distributed Cisco Express Forwarding switching (Cisco 7500 series routers and Cisco 12000 Series Internet routers) and how to troubleshoot them | Troubleshooting Cisco Express Forwarding-Related Error Messages

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for CEF Consistency Checkers

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.

Table 9: Feature Information for Configuring Basic Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This table is intentionally left blank because no features were introduced or modified in Cisco IOS Release 12.2(1) or later. This table will be updated when feature information is added to this module.</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Glossary

adjacency -- A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

Cisco Express Forwarding -- A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

distributed Cisco Express Forwarding -- A mode of Cisco Express Forwarding switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

FIB -- forwarding information base. A component of Cisco Express Forwarding that is conceptually similar to a routing table or information base. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

IPC -- interprocess communication. The mechanism that enables the distribution of Cisco Express Forwarding tables from the Route Switch Processor (RSP) to the line card when the router is operating in distributed Cisco Express Forwarding mode.

LIB -- label information base. A database used by a label switch router (LSR) to store labels learned from other LSRs, as well as labels assigned by the local LSR.

line card -- A general term for an interface processor that can be used in various Cisco products. For example, a Versatile Interface Processor (VIP) is a line card for the Cisco 7500 series router.

MPLS -- Multiprotocol Label Switching. An emerging industry standard for the forwarding of packets along the normal routing paths (sometimes called MPLS hop-by-hop forwarding).

prefix -- The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 10.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

RIB -- Routing Information Base. A central repository of routes that contains Layer 3 reachability information and destination IP addresses or prefixes. The RIB is also known as the routing table.

RP -- Route Processor. The processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.

VPN -- Virtual Private Network. The result of a router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF -- A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.
Configuring CEF Network Accounting

This module contains information about and instructions for configuring network accounting for Cisco Express Forwarding. Accounting produces the statistics that enable you to better understand Cisco Express Forwarding patterns in your network. For example, you might want to find out the number of packets and bytes switched to a destination or the number of packets switched through a destination.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

• Finding Feature Information, page 99
• Prerequisites for CEF Network Accounting, page 100
• Restrictions for CEF Network Accounting, page 100
• Information About CEF Network Accounting, page 100
• How to Configure CEF Network Accounting, page 110
• Configuration Examples for CEF Network Accounting, page 120
• Additional References, page 122
• Feature Information for CEF Network Accounting, page 124
• Glossary, page 124

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for CEF Network Accounting

Cisco Express Forwarding must be up and running on the networking device before you can configure network accounting for Cisco Express Forwarding. See the Cisco Platform Support for Central CEF and dCEF section for information on how to determine if Cisco Express Forwarding is enabled on your networking device.

Restrictions for CEF Network Accounting

- The **ip cef accounting** command is not supported on Cisco 7600 Series Routers.

Information About CEF Network Accounting

For links to information about other Cisco Express Forwarding and distributed Cisco Express Forwarding features that you can configure, go to the Additional References, on page 122.

Cisco Platform Support for Central CEF and dCEF

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 or later. When Cisco Express Forwarding is enabled on a router, the Route Processor (RP) performs the express forwarding.

To find out if Cisco Express Forwarding is enabled on your platform, enter the **show ip cef** command. If Cisco Express Forwarding is enabled, you will receive the following output:

```
Device# show ip cef
Prefix        Next Hop         Interface
[...]
10.2.61.8/24  192.168.100.1    FastEthernet1/0/0
192.168.101.1 FastEthernet6/1
[...]
```

If Cisco Express Forwarding is not enabled on your platform, the following output for the **show ip cef** command is displayed:

```
Device# show ip cef
%CEF not running
```

Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 Series Internet Router. When distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the **ip cef** command to enable (central) Cisco Express Forwarding or the **ip cef distributed** command to enable distributed Cisco Express Forwarding.

Central Cisco Express Forwarding or distributed Cisco Express Forwarding has the following restrictions:

- The Cisco 12000 Series Internet routers operate only in distributed Cisco Express Forwarding mode. On these routers, you must not disable distributed Cisco Express Forwarding on an interface.

- If you enable Cisco Express Forwarding and then create an access list that uses the **log** keyword, the packets that match the access list are not Cisco Express Forwarding switched. They are process switched. Logging disables Cisco Express Forwarding.
• Distributed Cisco Express Forwarding switching cannot be configured on the same VIP card on which distributed fast switching is configured.

• Distributed Cisco Express Forwarding is not supported on Cisco 7200 series routers.

See the Additional References, on page 122 for links to more information on the features and functionality of Cisco Express Forwarding.

Traffic Matrix Statistics

The traffic matrix statistics (TMS) feature allows an administrator to gather the following data:

• The number of packets and number of bytes that travel across the backbone from internal and external sources. The counts of packets and bytes are called TMS and are useful for determining how much traffic a backbone handles. You can analyze TMS using the following methods:
  • Collecting and viewing TMS through the application of the Network Data Analyzer (NDA)
  • Reading the TMS that reside on the backbone router

• The neighbor autonomous systems of a Border Gateway Protocol (BGP) destination. You can view these systems by reading the tmasinfo_ascii file on the backbone router.

The following sections explain how to collect and view the TMS using the command-line interface (CLI) and the NDA. For detailed instructions on using the NDA, see the Network Data Analyzer Installation and User Guide.

TMS and CEF Nonrecursive Accounting

TMS enables an administrator to capture and analyze data on traffic entering a backbone that is running BGP. The TMS feature also allows an administrator to determine the neighbor autonomous systems of a BGP destination. TMS are counted during packet forwarding by Cisco Express Forwarding nonrecursive accounting.

By enabling a backbone router to gather TMS, you can determine the amount of traffic that enters the backbone from sites outside of the backbone. You can also determine the amount of traffic that is generated within the backbone. This information helps you optimize and manage traffic across the backbone.

The following paragraphs explain how Cisco Express Forwarding nonrecursive accounting aggregates packet statistics for Interior Gateway Protocol (IGP) routes and their dependent BGP routes.

A BGP network deployed by a service provider might have the following components:

• IGP routes that describe the next hop to which traffic should be sent

• BGP routes that specify an intermediate address to which traffic should be sent

The intermediate address specified for the BGP route might be several hops away from the provider edge (PE) router. The next hop for the BGP route is the next hop for the intermediate address of the BGP route. The BGP route is called recursive, because it points through an intermediate address to an IGP route that provides the next hop for forwarding. However, a route lookup results in a next hop that is not directly reachable, as is the case with the BGP route’s intermediate address. A recursive lookup to an IGP route is used to decide how to reach the indirect next hop.
Cisco Express Forwarding represents IGP routes as nonrecursive entries and BGP routes as recursive entries that resolve through nonrecursive entries.

Cisco Express Forwarding nonrecursive accounting counts the packets for all of the Cisco Express Forwarding recursive entries (from BGP routes) that resolve through a Cisco Express Forwarding nonrecursive entry and the packets for the nonrecursive entry (from IGP routes). The number of packets is totalled in one location.

The packets forwarded based on a nonrecursive Cisco Express Forwarding entry can be split into two bins based on whether the input interface of the backbone router is configured as internal or external. Thus, all packets that arrive on external interfaces (external to the region of interest) and are forwarded based on a given IGP route (either directly or through a recursive BGP route) are counted together.

The following example shows how Cisco Express Forwarding nonrecursive accounting counts packets when BGP routes resolve to one IGP route and when they do not.

A multiaccess network access point (NAP) has BGP routes referring to hosts on the NAP network.

- If the network is advertised as a single IGP route, all of the BGP routes to the various hosts at that NAP resolve to a single IGP route. Cisco Express Forwarding nonrecursive accounting counts the number of packets sent to all BGP destinations.
- If a network administrator instead advertises individual host routes from the NAP network to the IGP, Cisco Express Forwarding nonrecursive accounting counts packets to those hosts separately.

### How Backbone Routers Collect TMS

You can determine the amount of traffic that enters the backbone from sites outside of the backbone if you enable a backbone router to gather TMS. You can also determine the amount of traffic that is generated within the backbone. This information helps you optimize and manage traffic across the backbone. The two figures below help illustrate the traffic statistics you can gather using TMS.

The figure below shows a sample network with backbone routers and links. The traffic that travels through the backbone is the area of interest for TMS collection. TMS are collected during packet forwarding. The
backbone is represented by the darkly shaded routers and bold links. The lighter shaded and unshaded routers are outside the backbone.

**Figure 6: Sample Network with Backbone Routers and Links**

The figure below shows an exploded view of the backbone router that links the Los Angeles point of presence (POP) in the figure above to the Atlanta POP. The bold line represents the backbone link going to the Atlanta POP.

The figure below shows the following types of traffic that travel through the backbone router:

- The dotted line marked A represents traffic entering the backbone from a router that is not part of the backbone. This is called external traffic.
- The dotted lines marked B and D represent traffic that is exiting the backbone. This is called internal traffic.
The dotted line marked C represents traffic that is not using the backbone and is not of interest to TMS.

Figure 7: Types of Traffic That Travel Through a Backbone Router

You can determine the amount of traffic the backbone handles by enabling a backbone router to track the number of packets and bytes that travel through the backbone router. You can separate the traffic into the categories "internal" and "external." You separate the traffic by designating incoming interfaces on the backbone router as internal or external.

Once you enable a backbone router to collect TMS, the router starts counters, which dynamically update when network traffic passes through the backbone router. You can retrieve a snapshot of the TMS, either through a command to the backbone router or through the NDA.

External traffic (path A in the figure above) is the most important for determining the amount of traffic that travels through a backbone router. Internal traffic (paths B and D in the figure above) is useful for ensuring that you are capturing all of the TMS data. When you receive a snapshot of the TMS, the packets and bytes are displayed in internal and external categories.

TMS Viewing Options

Once TMS are collected, you have three options for viewing the data:

TMS Displayed with the NDA Display Module

The NDA collects TMS from the backbone router and displays the data through the NDA Display module. The TMS can look similar to the data shown in the two figures below. The display format depends on the aggregation scheme you select. See the Network Data Analyzer Installation and User Guide for more information.
(The view of data that the NDA Display module provides is wide. Slide the scroll bar to the right and left to see all of the data. The two figures below taken together show all of the columns of data.)

**Figure 8: Displaying TMS Through the NDA (Part 1)**

![Traffic Matrix](image)

**Figure 9: Displaying TMS Through the NDA (Part 2)**

![Traffic Matrix](image)
Nonrecursive Accounting Information Displayed

You can use the `show ip cef` command to display nonrecursive accounting information, including the counts of internal and external packets and bytes that have traveled through the IP prefix address/mask (in the format `a.b.c.d/len`) for an IGP route. Here is an example that shows 0 packets and 0 bytes of external traffic and 1144 packets and 742 bytes of internal traffic for the router with the IP address 10.102.102.102:

```
router# show ip cef 10.102.102.102
10.102.102.10/32, version 34, epoch 0, per-destination sharing
0 packets, 0 bytes
tag information set
  local tag: 19
via 10.1.1.100, Ethernet0/0, 0 dependencies
next hop 10.1.1.100, Ethernet0/0
valid adjacency
tag rewrite with Et0/0, 10.1.1.100, tags imposed {17}
0 packets, 0 bytes switched through the prefix
tmstats: external 0 packets, 0 bytes
  internal 1144 packets, 742 bytes
30 second output rate 0 Kbits/sec
```

Statistics in the timestats File

Before you perform the task to interpret the statistics in the timestats_asciifile (an optional procedure described in the Interpreting the tmstats File section), you need to understand the following:

Virtual Files on the Backbone Router

You can read TMS that reside on the backbone router and are stored in the following virtual files:

- `tmstats_asciifile`-TMS in ASCII (human readable) format
- `tmstats_binary`-TMS in binary (space-efficient) format

The binary file `tmstats_binary` contains the same information as the ASCII file, except in a space-efficient format. You can copy this file from the router and read it with any utility that accepts files in binary format.

tmstats File Header Description

The `tmstats_asciifile` file header provides the address of the backbone router and information about how much time the router used to collect and export the TMS data. The header occupies one line and uses the following format:

```
VERSION 1 | ADDR
<address>
| AGGREGATION
TrafficMatrix.ascii | SYSTIME
<seconds>
| routerUTC
<routerUTC>
| NTP
<synchronized | unsynchronized>
| DURATION
<aggregateTime>
```

The table below describes the fields in the file header of the `tmstats_asciifile`. 
Table 10: Fields in timestats_ascii File Header

<table>
<thead>
<tr>
<th>Maximum Field Length</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>VERSION</td>
<td>File format version</td>
</tr>
<tr>
<td>21</td>
<td>ADDR</td>
<td>The IP address of the router</td>
</tr>
<tr>
<td>32</td>
<td>AGGREGATION</td>
<td>The type of data being aggregated</td>
</tr>
<tr>
<td>21</td>
<td>SYSUPTIME</td>
<td>The time of export (in seconds) since the router booted</td>
</tr>
<tr>
<td>21</td>
<td>routerUTC</td>
<td>The time of export (in seconds) since 1900-01-01 (Coordinated Universal Time (UTC)), as determined by the router</td>
</tr>
<tr>
<td>19</td>
<td>NTP</td>
<td>An indication of whether or not the UTC of the router has been synchronized by the Network Time Protocol (NTP) with an authoritative time source, such as a radio clock or an atomic clock attached to a time server</td>
</tr>
<tr>
<td>20</td>
<td>DURATION</td>
<td>The time needed to capture the data (in seconds) (trailing</td>
</tr>
</tbody>
</table>

Destination Prefix Record Description

The destination prefix record displays the internal and external packets and bytes for the IGP route and uses the following format:

```
p|<destPrefix/Mask> |<creationSysUpTime> |<internalPackets>|<internalBytes>|<externalPackets>|<externalBytes>
```

The per-prefix records display information only about label switched traffic data. Label forwarding across a backbone router or switch, is based on either dynamic label switching or traffic engineered paths.

The table below describes the fields in the destination prefix record.
Table 11: Destination Prefix Record Fields

<table>
<thead>
<tr>
<th>Maximum Field Length</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>&lt;recordType&gt;</td>
<td>( p ) means that the record represents dynamic label switching (for example, LDP) data or headend traffic engineering (TE) tunnel traffic data.</td>
</tr>
<tr>
<td>19</td>
<td>destPrefix/Mask</td>
<td>The IP prefix address/mask (in the format a.b.c.d/len) for this IGP route.</td>
</tr>
<tr>
<td>11</td>
<td>creationSysUpTime</td>
<td>How long the system had been running when the record was first created.</td>
</tr>
<tr>
<td>21</td>
<td>internalPackets</td>
<td>Internal packet count.</td>
</tr>
<tr>
<td>21</td>
<td>internalBytes</td>
<td>Internal byte count.</td>
</tr>
<tr>
<td>21</td>
<td>externalPackets</td>
<td>External packet count.</td>
</tr>
<tr>
<td>20</td>
<td>externalBytes</td>
<td>External byte count (no trailing (</td>
</tr>
</tbody>
</table>

### Tunnel Midpoint Record Description

The tunnel midpoint record displays the internal and external packets and bytes for the tunnel head and uses the following format:

\[
t| <headAddr><tun_id> |
| <creationSysUpTime> |
| <internalPackets> |
| <internalBytes> |
| <externalPackets> |
| <externalBytes> |
\]

The table below describes the fields in the tunnel midpoint record.
Table 12: Tunnel Midpoint Record Fields

<table>
<thead>
<tr>
<th>Maximum Field Length</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code>&lt;recordType&gt;</code></td>
<td>t means that the record contains TE tunnel midpoint data.</td>
</tr>
<tr>
<td>27</td>
<td>headAddr&lt;space&gt;tun_id</td>
<td>The IP address of the tunnel head and tunnel interface number.</td>
</tr>
<tr>
<td>11</td>
<td>creationSysUpTime</td>
<td>How long the system had been running when the record was first created.</td>
</tr>
<tr>
<td>21</td>
<td>internalPackets</td>
<td>Internal packet count.</td>
</tr>
<tr>
<td>21</td>
<td>internalBytes</td>
<td>Internal byte count.</td>
</tr>
<tr>
<td>21</td>
<td>externalPackets</td>
<td>External packet count.</td>
</tr>
<tr>
<td>20</td>
<td>externalBytes</td>
<td>External byte count (no trailing</td>
</tr>
</tbody>
</table>

Statistics in the tmsasinfo File

Before viewing the statistics in the tmsasinfo file (an optional procedure described in the Viewing Information in the tmsasinfo File, on page 118), you need to understand the following:

Header Format for tmsasinfo File

The file header provides the address of the router and indicates how much time the router used to collect and export the data. The file header uses the following format:

```
VERSION 1|ADDR
<address>
|AGGREGATION
ASList.ascii|SYSUPTIME
<seconds>|routerUTC

<routerUTC>
|DURATION
<aggregateTime>
```

The table below describes the fields in the file header.

Table 13: Fields in the tmsasinfo File Header

<table>
<thead>
<tr>
<th>Maximum Field Length</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>VERSION</td>
<td>File format version</td>
</tr>
<tr>
<td>15</td>
<td>ADDR</td>
<td>The IP address of the router</td>
</tr>
</tbody>
</table>
**Neighbor AS Record in the tmsasinfo File**

The neighbor AS record displays the neighbor AS and the underlying prefix/mask for each BGP route. The record uses the following format:

```
<nonrecursivePrefix/Mask>
|<AS>
|<destinationPrefix/Mask>
```

The table below describes the fields in the neighbor AS record.

**Table 14: Neighbor AS Record Fields**

<table>
<thead>
<tr>
<th>Maximum Field Length</th>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>nonrecursivePrefix/Mask</td>
<td>The IP prefix address/mask (a.b.c.d/len format) for this IGP route</td>
</tr>
<tr>
<td>5</td>
<td>AS</td>
<td>The neighbor AS</td>
</tr>
<tr>
<td>18</td>
<td>destinationPrefix/Mask</td>
<td>The prefix/mask for the Forwarding Information Base (FIB) entry (typically BGP route)</td>
</tr>
</tbody>
</table>

**How to Configure CEF Network Accounting**

**Configuring CEF Network Accounting**

Perform the following task to enable network accounting for Cisco Express Forwarding.
When you enable network accounting for Cisco Express Forwarding from the global configuration mode, accounting information is collected on the RP.

When you enable network accounting for distributed Cisco Express Forwarding from the global configuration mode, accounting information grouped by IP prefix (recursive or nonrecursive) is not sent to the RP, but is collected on the line card.

After accounting information is collected for Cisco Express Forwarding or distributed Cisco Express Forwarding, you can display the statistics using the `show ip cef` command. To verify the statistics on a line card, use the `show cef interface statistics` command.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. ip cef accounting {non-recursive} [per-prefix] [prefix-length]
4. exit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ip cef accounting {non-recursive} [per-prefix] [prefix-length]</td>
<td>Enables Cisco Express Forwarding network accounting.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# ip cef accounting per-prefix</td>
<td>• The <strong>non-recursive</strong> keyword enables you to count the number of packets and bytes express forwarded through nonrecursive prefixes.</td>
</tr>
<tr>
<td></td>
<td>This keyword is optional when the command is used in global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>per-prefix</strong> keyword enables you to count the number of packets and bytes express forwarded to a destination IP address (or prefix).</td>
</tr>
<tr>
<td></td>
<td>• The <strong>prefix-length</strong> keyword enables accounting based on prefix length.</td>
</tr>
</tbody>
</table>
Enabling a Backbone Router to Collect TMS

This section contains information about and instructions for enabling a backbone router to collect TMS for Cisco Express Forwarding. Enabling a backbone router to collect TMS requires enabling nonrecursive accounting and setting the interfaces on the router to collect internal or external TMS. The internal and external settings are used only for TMS collection. The interfaces are set to internal by default.

Note
Make sure you configure the collection of internal and external TMS on the incoming interface of the backbone router.

You can perform these tasks either through the CLI or through the NDA. The following sections explain each procedure:

Using the CLI to Enable a Backbone Router to Collect TMS

Perform the following task to use the CLI to enable a backbone router to collect TMS.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip cef
4. ip cef accounting {[non-recursive [per-prefix] [prefix-length]}
5. Do one of the following:
   • interface type slot/port
   •
   • interface type slot/port-adapter/port
6. ip cef accounting non-recursive {external | internal}
7. exit
8. Repeat Steps 5, 6, and 7 for each incoming interface that you want to configure for TMS.
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip cef</code></td>
<td>Enables Cisco Express Forwarding on the route processor card.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip cef</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip cef accounting {[non-recursive] [per-prefix] [prefix-length]}</code></td>
<td>Enables Cisco Express Forwarding network accounting.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip cef accounting non-recursive</td>
<td></td>
</tr>
<tr>
<td>This keyword is optional when the command is used in global configuration mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The <code>non-recursive</code> keyword enables you to count the number of packets and bytes express forwarded through nonrecursive prefixes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The <code>per-prefix</code> keyword enables you to count the number of packets and bytes express forwarded to a destination (or prefix).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The <code>prefix-length</code> keyword enables accounting based on prefix length.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Do one of the following:</td>
<td>Configures an interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>• <code>interface</code> type slot/port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <code>interface</code> type slot/port-adapter/port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface ethernet 1/1</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This command specifies the interface on the backbone router that you intend to configure.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Enabling a Backbone Router to Collect TMS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastethernet 1/0/0</td>
<td>Enables nonrecursive accounting on the router.</td>
</tr>
</tbody>
</table>

**Step 6**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>* ip cef accounting non-recursive {external</td>
<td>Enables nonrecursive accounting on the router.</td>
</tr>
<tr>
<td></td>
<td>internal}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip cef accounting non-recursive external</td>
<td>• The <em>external</em> keyword calls for a count of input traffic data in the nonrecursive external bin.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>That is, this keyword sets the specified incoming interface so that it can collect data on traffic entering the backbone router from external sources.</td>
</tr>
<tr>
<td></td>
<td>• The <em>internal</em> keyword calls for a count of input traffic data in the nonrecursive internal bin.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>That is, this keyword sets the specified incoming interface so that it can collect data on internal traffic in the backbone router.</td>
</tr>
</tbody>
</table>

**Step 7**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Step 8**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeat Steps 5, 6, and 7 for each incoming interface that you want to configure for TMS.</td>
<td>--</td>
</tr>
</tbody>
</table>

---

### Enabling the NDA to Collect TMS on a Backbone Router

Perform the following task to enable the NDA to collect TMS on a backbone router.

You can use the NDA to enable TMS collection and to set the incoming interfaces on the backbone router to collect internal or external traffic data.
SUMMARY STEPS

1. Open the Traffic Matrix Statistics Control window in the NDA.
2. Click the **New** button in the Traffic Matrix Statistics Control window.
4. Click **OK** in the New Collection panel.
5. Select the **TMS** tab in the Router Configuration window in the NDA.
6. Set internal and external interfaces on the router.
7. Click **Apply** in the Router Configuration window.

DETAILED STEPS

---

**Step 1**
Open the Traffic Matrix Statistics Control window in the NDA.
For specific instructions, see the *Network Data Analyzer Installation and User Guide*.

**Step 2**
Click the **New** button in the Traffic Matrix Statistics Control window.
If a valid directory of router configuration files exists on a designated Utility Server host in the network, the Traffic Matrix Statistics Control window shown in the figure below appears.

**Step 3**
Specify the new TMS collection parameters, using the Traffic Matrix Statistics Control window.
The window incorporates a New Collection panel that enables you to define a new TMS collection process. To use the NDA for TMS collection, you must specify the following information:

- The name of the collection (Collection ID)—Enter an alphanumeric name of any length without embedded spaces for the TMS collection process on the selected router (see next bullet).

- The router from which you want to collect TMS—Use the drop-down box to choose the name of a network device where you want to collect TMS.

- How often and how long to collect TMS—Specify each of the following in minutes:
  - How much time is to elapse before the TMS collection process begins ("Start in" field)
  - The overall duration of the TMS collection process ("collect for" field)
  - How often "snapshots" of the traffic counters in the selected router are to be exported to the designated TMS data repository ("every" field)
The window for entering this information on the NDA is similar to the one shown in the figure below.

*Figure 10: Setting the NDA Traffic Matrix Statistics Control Window Collection Parameters*

![Traffic Matrix Statistics Control Window]

**Step 4** Click **OK** in the New Collection panel. The Traffic Matrix Statistics Control window confirms the information you entered, and the new collection name appears at the top left corner of the window.

**Step 5** Select the **TMS** tab in the Router Configuration window in the NDA. The TMS Router Configuration panel shown in the figure below appears. This panel enables you to configure network devices to export TMS data. (For instructions on locating the Router Configuration window, see the Network Data Analyzer Installation and User Guide.)

**Step 6** Set internal and external interfaces on the router. The Router Configuration window allows you to set the interfaces on the backbone router to collect internal and external packet and byte data. By default, all interfaces are set to collect internal data. Single-selection buttons allow you to associate the interface with either internal data or external data. You can select only one radio button for an interface at one time. Set the interface to collect internal or external data by clicking the appropriate radio button.
The window for selecting this information on the NDA is similar to the one shown in the figure below.

*Figure 11: Setting the NDA Configuration Window*

![Figure 11: Setting the NDA Configuration Window](image)

**Step 7** Click **Apply** in the Router Configuration window.

Any changes that you have made to the configuration parameters in the TMS Router Configuration panel are applied to the currently selected device. The Apply button affects only changes made in the panel where the button is located. When the NDA asks if you want to enable Cisco Express Forwarding, click **Yes**.

---

### Interpreting the tmstats File

This section contains instructions for interpreting the statistics in the tmstats_ascii file. For conceptual information about the tmstats_ascii file, see the Statistics in the timestats File, on page 106.

### SUMMARY STEPS

1. `more system:/vfiles/tmstats_ascii`
2. Interpret the header and record information in the tmstats_ascii file.
DETAILED STEPS

Step 1

**more system:/vfiles/tmstats_ascii**

Enter this command on the backbone router to view the statistics in the ASCII file. For example:

**Example:**

```
Router# more system:/vfiles/tmstats_ascii
VERSION 1|ADDR 172.27.32.24|AGGREGATION TrafficMatrix.ascii|SYSUPTIME 41428|routerUTC 3104467160|NTP unsynchronized|DURATION 1|
p|10.1.0.0/16|242|1|50|2|100
p|172.27.32.0/22|242|0|0|0|0
```

This is an example of a tmstats_ascii file. The example contains a header information and two records. The header information and each record begin on a separate line. A bar (|) separates consecutive fields within a header or record. The first field in a record specifies the type of record.

Step 2

Interpret the header and record information in the tmstats_ascii file.

Each tmstats_ascii file displayed consists of header information and records. The file in the example in Step 1 contains header information and two destination prefix records.

See the following sections for a description of header and record information:

---

**Viewing Information in the tmsasinfo File**

Perform the following task to view information in the tmsasinfo file about BGP neighbor autonomous systems (ASs) for IGP destinations.

The TMS feature also displays the BGP neighbor ASs associated with each IGP destination. You can display all the neighbor ASs for any IGP destination. The tmsasinfo file is in ASCII format. It is the only format provided for this data.

For conceptual information about the tmsasinfo file, see the Statistics in the tmsasinfo File, on page 109.

SUMMARY STEPS

1. **more system:/vfiles/tmsasinfo**
2. View the header and record information in the tmsasinfo file.

DETAILED STEPS

Step 1

**more system:/vfiles/tmsasinfo**

Enter this command on the backbone router to view the statistics in the tmsasinfo ASCII file. For example:

**Example:**

```
Router# more system:/vfiles/tmsasinfo
VERSION 1|ADDR 10.10.10.10|AGGREGATION ASList.ascii|SYSUPTIME 619855|routerUTC 333407555|DURATION
```
Step 2  View the header and record information in the tmasinfo file.
See the following sections for a description of header and record information:

Verifying CEF Network Accounting Information

Perform the following task to verify that Cisco Express Forwarding networking accounting information is as you expected.

SUMMARY STEPS

1. show ip cef summary
2. show ip cef interface - type number detail

DETAILED STEPS

Step 1  show ip cef summary
Use this command to display the collected Cisco Express Forwarding network accounting information. For example:

Example:

Router# show ip cef summary
IP CEF with switching (Table Version 19), flags=0x0
19 routes, 0 reresolve, 0 unresolved (0 old, 0 new), peak 1
19 leaves, 17 nodes, 19960 bytes, 58 inserts, 39 invalidations
0 load sharing elements, 0 bytes, 0 references
universal per-destination load sharing algorithm, id E3296D5B
3(1) CEF resets, 0 revisions of existing leaves
Resolution Timer: Exponential (currently 1s, peak 1s)
0 in-place/0 aborted modifications
refcounts: 4628 leaf, 4608 node
Adjacency Table has 7 adjacencies

This command shows sample accounting information on a router with Central Cisco Express Forwarding enabled. In this example, the Cisco Express Forwarding table contains a total of 19 entries, 0 entries need to be reresolved, 0 entries do not have resolved recursions, and the highest number of unresolved entries is 1. The Cisco Express Forwarding Trie contains 19 leaves and 17 nodes, which take up 19960 bytes of memory. The number of routes inserted into the table is 58 and 39 routes have been invalidated. This command shows no load sharing elements. The per-destination load sharing algorithm is configured and the identifier is E3296D5D.

The following command is sample output for a router with distributed Cisco Express Forwarding enabled:

Example:

Router# show ip cef summary
IP Distributed CEF with switching (Table Version 36), flags=0x0
Configuration Examples for CEF Network Accounting

Example Configuring CEF Network Accounting

The following example shows how to enable the collection of Cisco Express Forwarding accounting information:

```
configure terminal
ip cef accounting
end
```
Example Enabling a Backbone Router to Collect TMS Data

The following example shows how to enable a backbone router to collect TMS data:

```plaintext
configure terminal
!
ip cef
ip cef accounting non-recursive
!
interface e1/0
  ip cef accounting non-recursive external
end
```

For a sample backbone configuration, see the Example IP CEF Nonrecursive Accounting, on page 121 section.

Example IP CEF Nonrecursive Accounting

The following example shows an IP Cisco Express Forwarding accounting configuration. The example shows how to enable routers to count the number of internal and external packets and bytes that travel through the backbone routers. The figure below shows the sample backbone configuration.

**Figure 12: Sample Backbone Configuration**

![Sample Backbone Configuration Diagram]

**Router A Configuration**

Router(config)# ip cef
Router(config)# ip cef accounting non-recursive
Router(config)# interface e1/0
Router(config-if)# ip cef accounting non-recursive external

**Router B Configuration: e1/1**

Router(config)# ip cef
Router(config)# ip cef accounting non-recursive
Router(config)# interface e1/1
Router(config-if)# ip cef accounting non-recursive external

**Router B Configuration: e1/0**

Router(config)# interface e1/0
Router(config-if)# ip cef accounting non-recursive internal

**Router C Configuration: e1/1:**

Router(config)# ip cef
Example Interpreting the `tmstats_ascii` File

The following example shows the contents of `tmstats_ascii` file:

```
Router# more system:/vfiles/tmstats_ascii
VERSION 1|ADDR 172.27.32.24|AGGREGATION TrafficMatrix.ascii|SYSUPTIME 41428|routerUTC
3104467160|NTP unsynchronized|DURATION 1|
p|10.1.0.0/16|242|1|50|2|100
p|172.27.32.0/22|242|0|0|0|0
```

This example contains header information and two destination prefix records. The records represent dynamic label switching or traffic engineering (TE) tunnel data indicated by the initial "p."

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax,</td>
<td><code>Cisco IOS IP Switching Command Reference</code></td>
</tr>
<tr>
<td>command modes, command history, defaults, usage</td>
<td></td>
</tr>
<tr>
<td>guidelines, and examples.</td>
<td></td>
</tr>
<tr>
<td>Overview of the Cisco Express Forwarding feature</td>
<td>Cisco Express Forwarding Overview</td>
</tr>
<tr>
<td>Tasks for verifying basic Cisco Express Forwarding</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability,</td>
</tr>
<tr>
<td>and distributed Cisco Express Forwarding operation</td>
<td>and Resiliency in Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for enabling or disabling Cisco Express</td>
<td>Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express</td>
</tr>
<tr>
<td>Forwarding or distributed Cisco Express Forwarding</td>
<td>Forwarding to Customize Switching and Forwarding for Dynamic Networks</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Tasks for configuring load-balancing schemes for Cisco Express Forwarding</td>
<td>Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic</td>
</tr>
<tr>
<td>Tasks for configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Tasks for configuring epochs for Cisco Express Forwarding tables</td>
<td>Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables</td>
</tr>
<tr>
<td>Tasks for customizing the display of recorded Cisco Express Forwarding events</td>
<td>Customizing the Display of Recorded Cisco Express Forwarding Events</td>
</tr>
<tr>
<td>How to determine which Cisco IOS switching or forwarding path your packets are taking</td>
<td>How to Verify Cisco Express Forwarding Switching</td>
</tr>
<tr>
<td>How to use the Cisco Network Data Analyzer to view TMS</td>
<td>Network Data Analyzer Installation and User Guide</td>
</tr>
<tr>
<td>Commands for configuring and monitoring Cisco Express Forwarding</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support</td>
</tr>
<tr>
<td></td>
<td>for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

### Feature Information for CEF Network Accounting

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to. An account on Cisco.com is not required.

**Table 15: Feature Information for Configuring Cisco Express Forwarding Network Accounting**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This table is intentionally left blank because no features were introduced or modified in Cisco IOS Release 12.2(1) or later.</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

### Glossary

**AS** -- autonomous system. A collection of networks under a common administration sharing a common routing strategy. Autonomous systems are subdivided by areas. An autonomous system must be assigned a unique 16-bit number by the Internet Assigned Numbers Authority (IANA).
adjacency -- A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

BGP -- Border Gateway Protocol. An interdomain routing protocol that replaces Exterior Gateway Protocol (EGP). BGP exchanges reachability information with other BGP systems. It is defined by RFC 1163.

Cisco Express Forwarding -- A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

distributed Cisco Express Forwarding -- A type of Cisco Express Forwarding switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the Forwarding Information Base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

FIB -- forwarding information base. A component of Cisco Express Forwarding. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

IGP -- Interior Gateway Protocol. An internet protocol used to exchange routing information within an autonomous system. Examples of common Internet IGPs include Interior Gateway Routing Protocol (IGRP), Open Shortest Path First (OSPF), and Routing Information Protocol (RIP).

label -- A short fixed-length data construct that tells switching nodes how to forward data (packets or cells).

line card -- A general term for an interface processor that can be used in various Cisco products. For example, a Versatile Interface Processor (VIP) is a line card for the Cisco 7500 series router.

prefix -- The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

RP -- Route Processor. The processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.

TE -- traffic engineering. Techniques and processes that cause routed traffic to travel through the network on a path other than the one that would have been chosen if standard routing methods were used.

traffic engineering tunnel -- A label-switched tunnel that is used for traffic engineering. Such a tunnel is set up through means other than normal Layer 3 routing; it is used to direct traffic over a path different from the one that Layer 3 routing could cause the tunnel to take.

TMS -- Traffic Matrix Statistics. An IOS feature that enables an administrator to capture and analyze traffic data entering a backbone that is running the Border Gateway Protocol (BGP). This feature also allows an administrator to determine the neighbor autonomous systems of a BGP destination.

VPN -- Virtual Private Network. The result of a router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF -- A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.
Customizing the Display of Recorded CEF Events

This module contains information about and instructions for customizing the display of recorded Cisco Express Forwarding events for Cisco IOS releases prior to 12.2(25)S, 12.2(33)SB, 12.2(33)SRA, 12.2.(33)SXH, and 12.4(20)T.

For information about and instructions for customizing the display of recorded Cisco Express Forwarding events for Cisco IOS Releases 12.2(25)S, 12.2(33)SB, 12.2(33)SRA, 12.2.(33)SXH, 12.4(20)T, and later releases, see Customizing the Display of Cisco IOS Event Trace Messages.

You can customize the Cisco Express Forwarding event log display by specifying the size of the Cisco Express Forwarding event log or by choosing to display events by prefix and mask or by Cisco Express Forwarding Virtual Private Network (VPN) routing/forwarding instance (VRF).

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

- Finding Feature Information, page 127
- Prerequisites for the Display of Recorded CEF Events, page 128
- Restrictions for the Display of Recorded CEF Events, page 128
- Information About the Display of Recorded CEF Events, page 128
- How to Customize the Display of Recorded CEF Events, page 129
- Configuration Examples for the Display of Recorded CEF Events, page 132
- Additional References, page 132
- Feature Information for the Display of Recorded CEF Events, page 134
- Glossary, page 135

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release.
find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

**Prerequisites for the Display of Recorded CEF Events**

Cisco Express Forwarding must be running on the networking device before you can customize the display of recorded Cisco Express Forwarding events.

**Restrictions for the Display of Recorded CEF Events**

If you enable Cisco Express Forwarding and then create an access list that uses the `log` keyword, the packets that match the access list are not Cisco Express Forwarding switched. They are fast switched. Logging disables Cisco Express Forwarding.

**Information About the Display of Recorded CEF Events**

For links to information about other Cisco Express Forwarding and distributed Cisco Express Forwarding features that you can configure, go to the [Additional References](#), on page 132.

**Cisco Platform Support for Central CEF and dCEF**

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 or later. When Cisco Express Forwarding is enabled on a router, the Route Processor (RP) performs the express forwarding.

To find out if Cisco Express Forwarding is enabled on your platform, enter the `show ip cef` command. If Cisco Express Forwarding is enabled, you receive output that looks like this:

```
Router# show ip cef
Prefix Next Hop Interface
[...]
10.2.61.8/24 192.168.100.1 FastEthernet1/0/0
[...]
```

If Cisco Express Forwarding is not enabled on your platform, the output for the `show ip cef` command looks like this:

```
Router# show ip cef
%CEF not running
```

Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 Series Internet Router. When distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the `ip cef` command to enable (central) Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.
CEF Event Log Overview

The Cisco Express Forwarding event log collects Cisco Express Forwarding events as they occur, even when debugging is not enabled. This allows the tracing of an event immediately after it occurs. Cisco technical personnel can use the event log to help resolve problems with the Cisco Express Forwarding feature.

When the Cisco Express Forwarding event log has reached its capacity, the oldest event is written over by the newest event. You can use the following commands to change the capacity of the Cisco Express Forwarding event log:

- The `ip cef table event-log` command allows you to increase or decrease the number of entries that the event log can hold.
- The `clear ip cef event-log` command allows you to clear all event log entries.

You can use the following commands to display Cisco Express Forwarding events:

- The `show ip cef events` command displays all recorded Cisco Express Forwarding forwarding information base (FIB) and adjacency events.
- The `debug ip cef` command and the `events` keyword record general Cisco Express Forwarding events as they occur.
- The `debug ip cef table` command enables the real-time collection of events that affect entries in the Cisco Express Forwarding tables.

How to Customize the Display of Recorded CEF Events

Customizing CEF Event Logging

This section contains information about and instructions for customizing Cisco Express Forwarding event logging.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `ip cef table event-log [size event-number] [match ip-prefix mask] [vrf vrf-name]`
4. `exit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step 2</th>
<th>configure terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>

### Command or Action

<table>
<thead>
<tr>
<th>Step 3</th>
<th>ip cef table event-log [size event-number] [match ip-prefix mask] [vrf vrf-name]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# ip cef table event-log size 25000</td>
</tr>
</tbody>
</table>

### Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# exit</td>
</tr>
</tbody>
</table>

### Displaying CEF Event-Log Information

Perform the following task to display Cisco Express Forwarding event-log information.

#### SUMMARY STEPS

1. enable
2. clear ip cef event-log
3. debug ip cef table
4. show ip cef events summary
5. show ip cef events within seconds
6. exit
DETAILED STEPS

Step 1 enable
Use this command to enable privileged EXEC mode. For example:

Example:

Router> enable

Enter your password if prompted.

Step 2 clear ip cef event-log
Use this command to clear the Cisco Express Forwarding event-log buffer. For example:

Example:

Router# clear ip cef event-log

Step 3 debug ip cef table
Use this command to enable the collection of events that affect entries in the Cisco Express Forwarding tables. For example:

Example:

Router# debug ip cef table
01:25:46:CEF-Table:Event up, 10.1.1.1/32 (rdbs:1, flags:1000000)
01:25:46:CEF-IP:Checking dependencies of 0.0.0.0/0
01:25:47:CEF-Table:attempting to resolve 10.1.1.1/32
01:26:02:CEF-Table:Event up, default, 0.0.0.0/0 (rdbs:1, flags:400001)
01:26:02:CEF-IP:Prefix exists - no-op change

Step 4 show ip cef events summary
Use this command to display a summary of recorded Cisco Express Forwarding FIB and adjacency events. For example:

Example:

Router# show ip cef events summary
CEF table events summary:
  Storage for 10000 events (320000 bytes), 822/0 events recorded/ignored
  Matching all events, traceback depth 16
  Last event occurred 00:00:06.516 ago.

Step 5 show ip cef events within seconds
Use this command to display Cisco Express Forwarding events that occurred within (during) a specified number of seconds. For example, within 1 second:

Example:

Router# show ip cef events within 1
CEF table events (storage for 10000 events, 14 events recorded)
+00:00:00.000:[Default-table] *.*.*.*/ New FIB table [OK]
+00:00:00.000:[Default-table] 10.1.80.194/32 FIB insert in mtrie [OK]
+00:00:00.000:[Default-table] 10.1.80.0/32 FIB insert in mtrie [OK]
+00:00:00.000:[Default-table] 10.1.80.255/32 FIB insert in mtrie [OK]
**Configuration Examples for the Display of Recorded CEF Events**

**Example Customizing CEF Event Logging**

The following example shows how to enable event logging for Cisco Express Forwarding:

```
clear ip cef event-log
debug ip cef table
configure terminal
ip cef table event-log size 25000
exit
```

In this example, the Cisco Express Forwarding event log is configured to hold 25000 entries.

**Additional References**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Cisco Express Forwarding commands</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Overview of the Cisco Express Forwarding feature</td>
<td>Cisco Express Forwarding Overview</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>------------------------------------------------------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Tasks for verifying basic Cisco Express Forwarding and distributed Cisco Express Forwarding operation</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for enabling or disabling Cisco Express Forwarding or distributed Cisco Express Forwarding</td>
<td>Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express Forwarding to Customize Switching and Forwarding for Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for configuring load-balancing schemes for Cisco Express Forwarding</td>
<td>Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic</td>
</tr>
<tr>
<td>Tasks for configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Tasks for configuring epochs for Cisco Express Forwarding tables</td>
<td>Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables</td>
</tr>
<tr>
<td>Tasks for configuring and verifying Cisco Express Forwarding network accounting</td>
<td>Configuring Cisco Express Forwarding Network Accounting</td>
</tr>
<tr>
<td>Tasks for customizing the display of recorded Cisco Express Forwarding events trace messages for Cisco IOS Releases 12.2(25)S, 12.2(33)SB, 12.2(33)SRA, 12.2.(33)SXH, 12.4(20)T and later releases</td>
<td>Customizing the Display of Cisco IOS Event Trace Messages</td>
</tr>
<tr>
<td>Causes of common Cisco Express Forwarding-related error messages on platforms running distributed Cisco Express Forwarding switching (Cisco 7500 series routers and Cisco 12000 series Internet routers) and how to troubleshoot them</td>
<td>Troubleshooting Cisco Express Forwarding-Related Error Messages</td>
</tr>
</tbody>
</table>

**Standards**

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

### Feature Information for the Display of Recorded CEF Events

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.
Table 16: Feature Information for Configuring the Display of Recorded Cisco Express Forwarding Events

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This table is intentionally left blank because no features were introduced or modified in Cisco IOS Release 12.2(1) or later. This table will be updated when feature information is added to this module.</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Glossary

adjacency -- A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

Cisco Express Forwarding -- A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

distributed Cisco Express Forwarding -- A mode of Cisco Express Forwarding operation in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

FIB -- forwarding information base. A component of Cisco Express Forwarding that is conceptually similar to a routing table or information base. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

line card -- A general term for an interface processor that can be used in various Cisco products. For example, a Versatile Interface Processor (VIP) is a line card for the Cisco 7500 series router.

prefix -- The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

VPN -- Virtual Private Network. The result of a router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

VRF -- A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.
Customizing the Display of CEF Event Trace Messages

This module contains information about and instructions for customizing the display of recorded Cisco Express Forwarding events for Cisco IOS Releases 12.2(25)S, 12.2(33)SB, 12.2(33)SRA, 12.2.(33)SXH, 12.4(20)T, and later releases.

For information about and instructions for customizing the display of recorded Cisco Express Forwarding events for Cisco IOS releases prior to 12.2(25)S, 12.2(33)SB, 12.2(33)SRA, 12.2.(33)SXH, and 12.4(20)T, see Customizing the Display of Cisco Express Forwarding Events.

You can customize the Cisco Express Forwarding event-tracing message display by specifying the size of the file stored in memory or by choosing to display event trace messages by prefix and mask, by a specified interface, or by a Cisco Express Forwarding Virtual Private Network (VPN) routing and forwarding instance (VRF) for an IPv4 or IPv6 address family.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

- Finding Feature Information, page 138
- Prerequisites for the Display of CEF Event Trace Messages, page 138
- Restrictions for the Display of CEF Event Trace Messages, page 138
- Information About the Display of CEF Event Trace Messages, page 138
- How to Customize the Display of CEF Event Trace Messages, page 141
- Configuration Examples for the Display of CEF Event Trace Messages, page 152
- Additional References, page 153
- Feature Information for the Display of CEF Event Trace Messages, page 155
- Glossary, page 155
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for the Display of CEF Event Trace Messages

Cisco Express Forwarding must be running on the networking device before you can customize the display of recorded Cisco Express Forwarding events.

Restrictions for the Display of CEF Event Trace Messages

If you enable Cisco Express Forwarding and then create an access list that uses the log keyword, the packets that match the access list are not Cisco Express Forwarding switched. They are fast switched. Logging disables Cisco Express Forwarding.

Information About the Display of CEF Event Trace Messages

For links to information about other Cisco Express Forwarding and distributed Cisco Express Forwarding features that you can configure, go to the Additional References, on page 153.

 Cisco Platform Support for Central CEF and dCEF

Cisco Express Forwarding is enabled by default on most Cisco platforms running Cisco IOS software Release 12.0 or later. When Cisco Express Forwarding is enabled on a router, the Route Processor (RP) performs the express forwarding.

To find out if Cisco Express Forwarding is enabled on your platform, enter the show ip cef command. If Cisco Express Forwarding is enabled, you receive output that looks like this:

```
Router# show ip cef
Prefix   Next Hop     Interface
[...]   
10.2.61.8/24 192.168.100.1 FastEthernet1/0/0
192.168.101.1 FastEthernet6/1
[...]   
```

If Cisco Express Forwarding is not enabled on your platform, the output for the show ip cef command looks like this:

```
Router# show ip cef
%CEF not running
```
Distributed Cisco Express Forwarding is enabled by default on the Catalyst 6500 series switch, the Cisco 7500 series router, and the Cisco 12000 Series Internet Router. When distributed Cisco Express Forwarding is enabled on your platform, the line cards perform the express forwarding.

If Cisco Express Forwarding is not enabled on your platform, use the `ip cef` command to enable (central) Cisco Express Forwarding or the `ip cef distributed` command to enable distributed Cisco Express Forwarding.

**Overview of CEF Event Trace Function**

The Cisco Express Forwarding event trace function collects Cisco Express Forwarding events as they occur, even when debugging is not enabled. This function allows the tracing of an event immediately after it occurs. Cisco technical personnel can use the event trace function to help resolve any problems with the Cisco Express Forwarding feature.

Cisco Express Forwarding event trace messages are saved in memory on the device. When the event trace messages exceed the configured size, the newest message in the trace will begin to overwrite the older messages. You can use the following commands to change the capacity of the Cisco Express Forwarding event message file:

- The `monitor event-trace cef events size` global configuration command allows you to increase or decrease the number of messages that can be written to memory for a single instance of a trace. To display the size parameter, use the `show monitor event-trace events parameters` command.

- The `monitor event-trace cef events clear` privileged EXEC command allows you to clear existing trace messages.

- The `monitor event-trace cef` (global) command configures event tracing for Cisco Express Forwarding events. To monitor and control the event trace function for Cisco Express Forwarding events, use the `monitor event-trace cef` (EXEC) command.

You can use the following commands to display Cisco Express Forwarding events:

- The `show monitor event-trace cef all` command displays all event trace messages currently in memory for Cisco Express Forwarding.

- The `debug ip cef` command and the `events` keyword record general Cisco Express Forwarding events as they occur.

- The `debug ip cef table` command enables the real-time collection of events that affect entries in the Cisco Express Forwarding tables.

**CEF Event Tracing Defaults and Options**

Event tracing for distributed Cisco Express Forwarding events is enabled by default. The Cisco IOS XE software allows Cisco Express Forwarding to define whether support for event tracing is enabled or disabled by default. The command interface for event tracing allows you to change the default value in one of two ways: using the `monitor event-trace cef` command in privileged EXEC mode or using the `monitor event-trace cef` command in global configuration mode.

To configure the file in which you want to save trace information, use the `monitor event-trace cef` command in global configuration mode. By default, the trace messages are saved in a binary format. If you want to save trace messages in ASCII format, possibly for additional application processing, use the `monitor event-trace cef dump pretty` command in privileged EXEC mode. The amount of data collected from a trace depends on
the trace message size configured using the `monitor event-trace cef` command in global configuration mode for each instance of a trace.

To specify the trace call stack at tracepoints, you must first clear the trace buffer.

**CEF Event Tracing for IPv4 Events**

Event tracing for Cisco Express Forwarding IPv4 events is enabled by default. The software allows Cisco Express Forwarding to define whether support for event tracing is enabled or disabled by default. The command interface for event tracing allows you to change the default value in one of two ways: using the `monitor event-trace cef ipv4` command in privileged EXEC mode or using the `monitor event-trace cef ipv4` command in global configuration mode.

To configure the file in which you want to save trace information for Cisco Express Forwarding IPv4 events, use the `monitor event-trace cef ipv4` command in global configuration mode. By default, the trace messages are saved in a binary format. If you want to save trace messages in ASCII format, possibly for additional application processing, use the `monitor event-trace cef ipv4 dump pretty` command in privileged EXEC mode. The amount of data collected from the trace depends on the trace message size configured using the `monitor event-trace cef ipv4` command for each instance of a trace.

To determine whether event tracing is enabled by default for Cisco Express Forwarding, use the `show monitor event-trace cef ipv4` command to display trace messages.

To specify the trace call stack at tracepoints, you must first clear the trace buffer.

**CEF Event Tracing for IPv6 Events**

Event tracing for Cisco Express Forwarding IPv6 events is enabled by default. The Cisco IOS XE software allows Cisco Express Forwarding to define whether support for event tracing is enabled or disabled by default. The command interface for event tracing allows you to change the default value in one of two ways: using the `monitor event-trace cef ipv6` command in privileged EXEC mode or using the `monitor event-trace cef ipv6` command in global configuration mode.

To configure the file in which you want to save trace information for Cisco Express Forwarding IPv6 events, use the `monitor event-trace cef ipv6` command in global configuration mode. By default, the trace messages are saved in a binary format. If you want to save trace messages in ASCII format, possibly for additional application processing, use the `monitor event-trace cef ipv6 dump pretty` command in privileged EXEC mode. The amount of data collected from the trace depends on the trace message size configured using the `monitor event-trace cef ipv6` command for each instance of a trace.

To determine whether event tracing is enabled by default for Cisco Express Forwarding, use the `show monitor event-trace cef ipv6` command to display trace messages.

To specify the trace call stack at tracepoints, you must first clear the trace buffer.
How to Customize the Display of CEF Event Trace Messages

Customizing CEF Event Tracing

Perform the following task to customize Cisco Express Forwarding event tracing. Event trace messages can be used to monitor Cisco Express Forwarding and to help resolve any issues with the Cisco Express Forwarding feature.

SUMMARY STEPS

1. enable
2. configure terminal
3. monitor event-trace cef {dump-file dump-file-name | {events | interface} {disable | dump-file
dump-file-name| enable | size number | stacktrace [depth]}}
4. exit
5. monitor event-trace cef {dump [merged pretty | pretty] | {events | interface | ipv4 | ipv6} {clear |
continuous [cancel] | disable | dump [pretty] | enable | one-shot}}
6. disable

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
| **Step 3** | monitor event-trace cef {dump-file dump-file-name | | {events | interface} {disable | dump-file
dump-file-name| enable | size number | stacktrace [depth]}} | Configures event tracing for Cisco Express Forwarding. |
<p>| Example: | Router(config)# monitor event-trace cef dump-file tftp://172.16.10.5/cef-events | | • The <strong>dump-file</strong> <strong>dump-file-name</strong> keyword and argument pair specify the file to which event trace messages are written from memory on the networking device. The maximum length of the filename (path and filename) is 100 characters, and the path can point to flash memory on the networking device or to a TFTP or FTP server. |
| | | • The <strong>events</strong> keyword turns on event tracing for Cisco Express Forwarding events. |
| | | • The <strong>interface</strong> keyword turns on event tracing for Cisco Express Forwarding interface events. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The <strong>disable</strong> keyword turns off event tracing for Cisco Express Forwarding events.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>enable</strong> keyword turns on event tracing for Cisco Express Forwarding events if it had been enabled with the <strong>monitor event-trace cef</strong> privileged EXEC command.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>size number</strong> keyword and argument pair sets the number of messages that can be written to memory for a single instance of a trace. Range: 1 to 65536.</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Some Cisco IOS software subsystem components set the size by default. To display the size parameter, use the <strong>show monitor event-trace cef events parameters</strong> command.</td>
</tr>
<tr>
<td>• The <strong>stacktrace</strong> keyword enables the stack trace at tracepoints.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>depth</strong> argument specifies the depth of the stack trace stored. Range: 1 to 16.</td>
<td></td>
</tr>
</tbody>
</table>

**Step 4**

**exit**

**Example:**

Router(config)# exit

Exits to privileged EXEC mode.

**Step 5**

**monitor event-trace cef {dump [merged pretty | pretty] | {events | interface | ipv4 | ipv6} {clear | continuous [cancel] | disable | dump [pretty] | enable | one-shot} |

**Example:**

Router# monitor event-trace cef events dump pretty

Monitors and controls the event trace function for Cisco Express Forwarding.

• The **dump** keyword writes the event trace results to the file configured with the **monitor event-trace cef** global configuration command. The trace messages are saved in binary format.

• The **merged pretty** keywords sort all event trace entries by time and write the entries to a file in ASCII format.

• The **pretty** keyword saves the event trace message in ASCII format.

• The **events** keyword monitors Cisco Express Forwarding events.

• The **interface** keyword monitors Cisco Express Forwarding interface events.

• The **ipv4** keyword monitors Cisco Express Forwarding IPv4 events.

• The **ipv6** keyword monitors Cisco Express Forwarding IPv6 events.

• The **clear** keyword clears existing trace messages for Cisco Express Forwarding from memory on the networking device.

• The **continuous** keyword continuously displays the latest event trace entries.

• The **cancel** keyword cancels the continuous display of the latest trace entries.

• The **disable** keyword turns off Cisco Express Forwarding event tracing.

• The **enable** keyword turns on Cisco Express Forwarding event tracing.
Customizing CEF Event Tracing for IPv4 Events

Perform the following task to customize Cisco Express Forwarding event tracing for Cisco Express Forwarding IPv4 events. Use event tracing to monitor Cisco Express Forwarding IPv4 events as they occur and to help resolve any issues with Cisco Express Forwarding and related IPv4 events.

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **monitor event-trace cef ipv4 {disable | distribution | dump-file dump-file-name} enable | match {global | ip-address mask} | size number | stacktrace [depth] | vrf vrf-name [distribution | match {global | ip-address mask}]}
4. **exit**
5. **monitor event-trace cef ipv4 {clear | continuous [cancel] | disable | dump [pretty] | enable | one-shot}
6. **disable**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Step 3**  
Configure event-tracing for Cisco Express Forwarding IPv4 events.

- **disable** keyword turns off event tracing.
- **distribution** keyword logs events related to distribution.
- **dump-file** keyword and argument pair specify the file to which event trace messages are written.
- **enable** keyword turns on event tracing.
- **match** keyword turns on event tracing.
- **size** keyword sets the number of messages written to memory.
- **stacktrace** keyword enables stack trace.
- **vrf** keyword turns on event tracing for a Cisco Express Forwarding VRF table.

**Example:**

Router(config)# monitor event-trace cef ipv4 size 10000

**Note**  
Some Cisco IOS software subsystem components set the size by default. To display the size parameter, use the `show monitor event-trace cef ipv4 parameters` command.

**Step 4**  
Exits to privileged EXEC mode.

**Example:**

Router(config)# exit

**Step 5**  
Monitors and controls the event trace function.

- **clear** keyword clears existing trace messages.
- **continuous** keyword enables continuous tracing.
- **one-shot** keyword enables one-shot tracing.

**Example:**

Router(config)# monitor event-trace cef ipv4 clear
### Command or Action

**Example:**

```plaintext
Router# monitor event-trace cef ipv4 continuous
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The <strong>continuous</strong> keyword continuously displays the latest event trace entries.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>cancel</strong> keyword cancels the continuous display of the latest trace entries.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>disable</strong> keyword turns off Cisco Express Forwarding event tracing.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>dump</strong> keyword writes the event trace results to the file configured with the global configuration <strong>monitor event-trace cef</strong> command. The trace messages are saved in binary format.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>pretty</strong> keyword saves the event trace message in ASCII format.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>enable</strong> keyword turns on Cisco Express Forwarding event tracing.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>one-shot</strong> keyword clears any existing trace information from memory, starts event tracing again, and disables the trace when the size of the trace message file configured in the global configuration command is exceeded.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>disable</th>
</tr>
</thead>
</table>

**Example:**

```plaintext
Router# disable
```

Exits to user EXEC mode.

---

### Customizing CEF Event Tracing for IPv6 Events

Perform the following task to customize Cisco Express Forwarding event tracing for Cisco Express Forwarding IPv6 events. Use event tracing to monitor Cisco Express Forwarding IPv6 events as they occur and to help resolve any issues with Cisco Express Forwarding and related IPv6 events.

**SUMMARY STEPS**

1. **enable**
2. **configure terminal**
3. **monitor event-trace cef ipv4 {disable | distribution | dump-file dump-file-name| enable | match {global | ipv6-address/n} | size number | stacktrace [depth] | vrf vrf-name [distribution | match {global | ipv6-address/n}]}
4. **exit**
5. **monitor event-trace cef ipv6 {clear | continuous [cancel] | disable | dump [pretty] | enable | one-shot}**
6. **disable**
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> monitor event-trace cef ipv4 {disable</td>
<td>distribution</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# monitor event-trace cef ipv6 match global</td>
<td></td>
</tr>
</tbody>
</table>

### Note
Some Cisco IOS software subsystem components set the size by default. To display the size parameter, use the show monitor event-trace cef ipv6 parameters command. 

\* The stacktrace keyword enables the stack trace at tracepoints. 
\* The depth argument specifies the depth of the stack trace stored. Range: 1 to 16.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> exit</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> monitor event-trace cef ipv6 {clear</td>
<td>continuous [cancel]</td>
</tr>
<tr>
<td>Example: Router# monitor event-trace cef ipv6 one-shot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The clear keyword clears existing trace messages for Cisco Express Forwarding from memory on the networking device.</td>
</tr>
<tr>
<td></td>
<td>• The continuous keyword continuously displays the latest event trace entries.</td>
</tr>
<tr>
<td></td>
<td>• The cancel keyword cancels the continuous display of the latest trace entries.</td>
</tr>
<tr>
<td></td>
<td>• The disable keyword turns off Cisco Express Forwarding event tracing.</td>
</tr>
<tr>
<td></td>
<td>• The dump keyword writes the event trace results to the file configured with the global configuration monitor event-trace cef command. The trace messages are saved in binary format.</td>
</tr>
<tr>
<td></td>
<td>• The pretty keyword saves the event trace message in ASCII format.</td>
</tr>
<tr>
<td></td>
<td>• The enable keyword turns on Cisco Express Forwarding event tracing.</td>
</tr>
<tr>
<td></td>
<td>• The one-shot keyword clears any existing trace information from memory, starts event tracing again, and disables the trace when the size of the trace message file configured in the global configuration command is exceeded.</td>
</tr>
<tr>
<td><strong>Step 6</strong> disable</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router# disable</td>
<td></td>
</tr>
</tbody>
</table>

### Displaying CEF Event Trace Information

Perform the following task to display Cisco Express Forwarding event trace information.
SUMMARY STEPS

1. enable
2. monitor event-trace cef events clear
3. debug ip cef table
4. show monitor events-trace cef all
5. show monitor event-trace cef latest
6. show monitor event-trace cef events all
7. show monitor event-trace cef interface latest
8. show monitor event-trace cef ipv4 all
9. show monitor event-trace cef ipv6 parameters
10. disable

DETAILED STEPS

Step 1  enable
Use this command to enable privileged EXEC mode. Enter your password if prompted. For example:

Example:
Router> enable
Router#

Step 2  monitor event-trace cef events clear
Use this command to clear the Cisco Express Forwarding event trace buffer. For example:

Example:
Router# monitor event-trace cef clear

Step 3  debug ip cef table
Use this command to display events that affect entries in the Cisco Express Forwarding tables. For example:

Example:
Router# debug ip cef table
01:25:46:CEF-Table:Event up, 10.1.1.1/32 (rdbs:1, flags:1000000)
01:25:46:CEF-IP:Checking dependencies of 0.0.0.0/0
01:25:47:CEF-Table:attempting to resolve 10.1.1.1/32
01:26:02:CEF-Table:Event up, default, 0.0.0.0/0 (rdbs:1, flags:400001)
01:26:02:CEF-IP:Prefix exists - no-op change

Step 4  show monitor events-trace cef all
Use this command to display event trace messages for Cisco Express Forwarding. For example:

Example:
Router# show monitor event-trace cef all
The output is in table format where the first column contains a time stamp, the second column lists the type of event, and the third column lists the detail for the event.

**Step 5**

`show monitor event-trace cef latest`

Use this command to display only the event trace message that have been sent since the last instance of the `show monitor event-trace cef` command. For example:

**Example:**

```bash
Router# show monitor event-trace cef latest
```

cf_events:
*Jul 22 20:14:58.999: SubSys ipv4fib_ios_def_cap init
*Jul 22 20:14:58.999: SubSys ipv6fib_ios_def_cap init
*Jul 22 20:14:58.999: Inst unknown -> RP
*Jul 22 20:14:59.075: SubSys fib_init init
*Jul 22 20:14:59.075: SubSys ipv4fib init
*Jul 22 20:14:59.075: SubSys fib_ios init
*Jul 22 20:14:59.075: SubSys fib_ios_if init
*Jul 22 20:14:59.075: SubSys ipv4fib_ios init
*Jul 22 20:14:59.075: Flag Common CEF enabled set to yes
*Jul 22 20:14:59.075: Flag IPv4 CEF enabled set to yes
*Jul 22 20:14:59.075: Flag IPv4 CEF switching enabled set to yes
*Jul 22 20:14:59.075: GState CEF enabled
*Jul 22 20:14:59.075: SubSys ipv6fib_ios init
*Jul 22 20:14:59.075: SubSys ipv4fib_util init
*Jul 22 20:14:59.075: SubSys ipv4fib_les init
*Jul 22 20:15:02.907: Process Background created
*Jul 22 20:15:02.907: Process Background event loop enter
*Jul 22 20:15:02.927: Flag IPv4 CEF running set to yes

cf_interface:
*Jul 22 20:14:58.999: Et0/0 (hw 3) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et0/1 (hw 4) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et0/2 (hw 5) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et0/3 (hw 6) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et1/0 (hw 7) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et1/1 (hw 8) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et1/2 (hw 9) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et1/3 (hw 10) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Se2/0 (hw 11) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Se2/1 (hw 12) SWvecLES <unknown> (0x01096A3C)

The output is in table format where the first column contains a time stamp, the second column lists the type of event, and the third column lists the detail for the event.
**Step 6**

**show monitor event-trace cef events all**

Use this command to display information about Cisco Express Forwarding events. For example:

**Example:**

```
Router# show monitor event-trace cef events all
*Jul 13 17:38:27.999: SubSys ipv4fib_ios_def_cap init
*Jul 13 17:38:27.999: SubSys ipv6fib_ios_def_cap init
*Jul 13 17:38:27.999: Inst unknown -> RP
*Jul 13 17:38:27.999: SubSys fib_ios_chain init
*Jul 13 17:38:28.199: SubSys fib_init
*Jul 13 17:38:28.199: SubSys ipv4fib_init
*Jul 13 17:38:28.199: SubSys fib_ios init
*Jul 13 17:38:28.199: SubSys fib_ios_if init
*Jul 13 17:38:28.199: SubSys ipv4fib_init
*Jul 13 17:38:28.199: Flag Common CEF enabled set to yes
*Jul 13 17:38:28.199: Flag IPv4 CEF enabled set to yes
*Jul 13 17:38:28.199: Flag IPv4 CEF switching enabled set to yes
*Jul 13 17:38:28.199: GState CEF enabled
*Jul 13 17:38:28.199: SubSys ipv6fib_init
*Jul 13 17:38:28.199: SubSys ipv4fib_util init
*Jul 13 17:38:28.199: SubSys ipv4fib_les init
*Jul 13 17:38:34.059: Process Background created
*Jul 13 17:38:34.059: Flag IPv4 CEF running set to yes
*Jul 13 17:38:34.059: Process Background event loop enter
*Jul 13 17:38:34.059: Flag IPv4 CEF switching running set to yes
```

The output is in table format where the first column contains a time stamp, the second column lists the type of event, and the third column lists the detail for the event.

For example, the Subsys event type is related to the initialization of a subset of Cisco Express Forwarding functionality. The "ipv4fib_ios_def_cap init" entry is the initialization of IPv4 Cisco Express Forwarding default capabilities.

**Step 7**

**show monitor event-trace cef interface latest**

Use this command to display only the event trace messages generated since the last `show monitor event-trace cef interface command was entered. For example:

**Example:**

```
Router# show monitor event-trace cef interface latest
*Jul 22 20:14:58.999: Et0/0 (hw 3) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et0/1 (hw 4) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et0/2 (hw 5) SWvecLES <unknown> (0x01096A3C)
*Jul 22 20:14:58.999: Et0/3 (hw 6) SWvecLES <unknown> (0x01096A3C)
```

IP Switching Cisco Express Forwarding Configuration Guide, Cisco IOS Release 15M&T
Step 8  
**show monitor event-trace cef ipv4 all**

Use this command to display information about Cisco Express Forwarding IPv4 events. For example:

**Example:**

```bash
Router# show monitor event-trace cef ipv4 all
* Jul 22 20:14:59.075: [Default] *.**/* OK
   * Jul 22 20:14:59.075: [Default] **/*'00 OK
   * Jul 22 20:14:59.075: [Default] 0.0.0.0/0'00 OK
   * Jul 22 20:14:59.075: [Default] **/*'00 OK
   * Jul 22 20:15:02.927: [Default] **/*'00 OK
```

Step 9  
**show monitor event-trace cef ipv6 parameters**

Use this commands to display parameters configured for Cisco Express Forwarding IPv6 events. For example:

**Example:**

```bash
Router# show monitor event-trace cef ipv6 parameters
Trace has 1000 entries
Stacktrace is disabled by default
Matching all events
```

Step 10  
**disable**

Use this command to exit to user EXEC mode. For example:

**Example:**

```bash
Router# disable
Router>
```
Configuration Examples for the Display of CEF Event Trace Messages

Example Customizing CEF Event Tracing

The following example shows how to enable event tracing for Cisco Express Forwarding and configure the buffer size to 2500 messages. The trace messages file is set to cef-dump in slot0 (flash memory).

```
configure terminal
!
monitor event-trace cef events enable
monitor event-trace cef dump-file slot0:cef-dump
monitor event-trace cef events size 2500
exit
```

The following example shows what happens when you try to enable event tracing for Cisco Express Forwarding events when it is already enabled:

```
configure terminal
!
monitor event-trace cef events enable
00:04:33: %EVENT_TRACE-6-ENABLE: Trace already enabled.
```

The following example shows the privileged EXEC commands that stop event tracing, clear the current contents of memory, and reenable the trace function for Cisco Express Forwarding events. This example assumes that the tracing function is configured and enabled on the networking device.

```
enable
!
monitor event-trace cef events disable
monitor event-trace cef events clear
monitor event-trace cef events enable
disable
```

Example Customizing CEF Event Tracing for IPv4 Events

The following example shows how to enable event tracing for Cisco Express Forwarding IPv4 events and configure the buffer size to 5000 messages:

```
configure terminal
!
monitor event-trace cef ipv4 enable
monitor event-trace cef ipv4 size 5000
exit
```

The following example shows how to enable event tracing for events that match Cisco Express Forwarding IPv4 VRF vpn1:

```
configure terminal
!
monitor event-trace cef ipv4 enable
monitor event-trace cef ipv4 vrf vpn1
exit
```

The following example shows the privileged EXEC commands to configure the continuous display of the latest Cisco Express Forwarding event trace entries for IPv4 events:

```
enable
!
monitor event-trace cef ipv4 continuous
disable
```
The following example shows how to stop the continuous display of the latest trace entries:

```
enable
!
monitor event-trace cef ipv4 continuous cancel
disable
```

### Example Customizing CEF Event Tracing for IPv6 Events

The following example shows how to enable event tracing for Cisco Express Forwarding IPv6 events and configure the buffer size to 10000:

```
configure terminal
!
monitor event-trace cef ipv6 enable
monitor event-trace cef ipv6 size 10000
exit
```

### Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Cisco Express Forwarding commands</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Overview of the Cisco Express Forwarding feature</td>
<td>Cisco Express Forwarding Overview</td>
</tr>
<tr>
<td>Tasks for verifying basic Cisco Express Forwarding and distributed Cisco Express Forwarding operation</td>
<td>Configuring Basic Cisco Express Forwarding for Improved Performance, Scalability, and Resiliency in Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for enabling or disabling Cisco Express Forwarding or distributed Cisco Express Forwarding</td>
<td>Enabling or Disabling Cisco Express Forwarding or Distributed Cisco Express Forwarding to Customize Switching and Forwarding for Dynamic Networks</td>
</tr>
<tr>
<td>Tasks for configuring load-balancing schemes for Cisco Express Forwarding</td>
<td>Configuring a Load-Balancing Scheme for Cisco Express Forwarding Traffic</td>
</tr>
<tr>
<td>Tasks for configuring Cisco Express Forwarding consistency checkers</td>
<td>Configuring Cisco Express Forwarding Consistency Checkers for Route Processors and Line Cards</td>
</tr>
<tr>
<td>Tasks for configuring epochs for Cisco Express Forwarding tables</td>
<td>Configuring Epochs to Clear and Rebuild Cisco Express Forwarding and Adjacency Tables</td>
</tr>
<tr>
<td>Tasks for configuring and verifying Cisco Express Forwarding network accounting</td>
<td>Configuring Cisco Express Forwarding Network Accounting</td>
</tr>
</tbody>
</table>
### Related Topic

| Tasks for customizing the display of recorded Cisco Express Forwarding events in Cisco IOS releases prior to Cisco IOS Releases 12.2(25)S, 12.2(33)SB, 12.2(33)SRA, 12.2(33)SXH, and 12.4(20)T | Customizing the Display of Recorded Cisco Express Forwarding Events |
| Causes of common Cisco Express Forwarding-related error messages on platforms running distributed Cisco Express Forwarding switching (Cisco 7500 series routers and Cisco 12000 series Internet routers) and how to troubleshoot them | Troubleshooting Cisco Express Forwarding-Related Error Messages |

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for the Display of CEF Event Trace Messages

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>This table is intentionally left blank because no features were introduced or modified in Cisco IOS Release 12.2(1) or later. This table will be updated when feature information is added to this module.</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Glossary

**adjacency** -- A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

**Cisco Express Forwarding** -- A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

**distributed Cisco Express Forwarding** -- A mode of Cisco Express Forwarding operation in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information
base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

**FIB** -- forwarding information base. A component of Cisco Express Forwarding that is conceptually similar to a routing table or information base. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

**line card** -- A general term for an interface processor that can be used in various Cisco products. For example, a Versatile Interface Processor (VIP) is a line card for the Cisco 7500 series router.

**prefix** -- The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 1.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

**VPN** -- Virtual Private Network. The result of a router configuration that enables IP traffic to use tunneling to travel securely over a public TCP/IP network.

**VRF** -- A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a PE router.
SNMP CEF-MIB Support

The Cisco Express Forwarding--SNMP CEF-MIB Support feature introduces the CISCO-CEF-MIB, which allows management applications through the use of the Simple Network Management Protocol (SNMP) to configure and monitor Cisco Express Forwarding operational data and to provide notification when Cisco Express Forwarding encounters specific configured events. This module describes how to use the CISCO-CEF-MIB to manage and monitor objects related to Cisco Express Forwarding operation.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet and networks characterized by intensive web-based applications or interactive sessions.

- Finding Feature Information, page 157
- Prerequisites for SNMP CEF-MIB Support, page 158
- Information About SNMP CEF-MIB Support, page 158
- How to Configure SNMP CEF-MIB Support, page 172
- Configuration Examples for SNMP CEF-MIB Support, page 183
- Additional References, page 184
- Feature Information for SNMP CEF-MIB Support, page 185
- Glossary, page 186

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for SNMP CEF-MIB Support

- Cisco Express Forwarding or distributed Cisco Express Forwarding must be configured on your system.
- The Cisco Express Forwarding infrastructure introduced in Cisco IOS Release 12.2(25)S must be included in the image on your system.
- The router on which the Cisco Express Forwarding--SNMP CEF-MIB Support features is to be used must be configured for SNMP access. See the Configuring the Router to Use SNMP, on page 172 of this document for more information.

Information About SNMP CEF-MIB Support

CEF Functional Overview

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It uses a Forwarding Information Base (FIB) to make IP destination prefix-based switching decisions. The FIB is conceptually similar to a routing table or information base. It maintains the forwarding information contained in the IP routing table. When routing or topology changes occur in the network, the IP routing table is updated, and those changes are propagated to the FIB. The FIB maintains next-hop address information based on the information in the IP routing table. The two main components of Cisco Express Forwarding operation are the FIB and adjacency tables.

Cisco Express Forwarding uses adjacency tables to prepend Layer 2 addressing information. An adjacency table maintains Layer 2 next-hop addresses for all FIB entries. Nodes in the network are said to be adjacent if they can reach each other with a single hop across a link layer. Cisco Express Forwarding discovers and solves adjacencies and populates the adjacency tables.

The CISCO-CEF-MIB prefix database and its related database can be very large. Therefore, executing a command that displays the prefix table could take a considerable amount of time.

Benefits of CISCO-CEF-MIB

Command-line interface (CLI) show commands are available to obtain Cisco Express Forwarding operational information. Managing Cisco Express Forwarding using the CLI can be a time-consuming task. The increasing capacity of Cisco routers makes parsing the show commands output to obtain the needed Cisco Express Forwarding operational parameters more and more difficult.

In Cisco IOS Release 12.2(31)SB and later releases, the CISCO-CEF-MIB allows you to manage and monitor the Cisco Express Forwarding operation using SNMP. In addition, you can configure SNMP to notify you if Cisco Express Forwarding encounters errors.

The CISCO-CEF-MIB introduced with the Cisco Express Forwarding--SNMP CEF-MIB Support feature gives you real-time access to operational information stored in the FIB and adjacency tables, switching statistics, and information on resource failures. The feature enables you to configure parameters related to
Cisco Express Forwarding features by utilizing a MIB implementation based on SNMP. This information is accessed using `get` and `set` commands entered on the network management system (NMS) workstation or host system for which SNMP has been implemented. The NMS workstation is also known as the SNMP manager.

Cisco Express Forwarding is available in all Cisco routers. However, CISCO-CEF-MIB support of Cisco Express Forwarding management is dependent on the infrastructure introduced in Cisco IOS Release 12.2(22)S.

The implementation of the CISCO-CEF-MIB in Cisco IOS Release 12.2(31)SB2, Cisco IOS Release 12.2(33)SRC, and Cisco IOS Release 12.2(33)SB manages Cisco Express Forwarding instances running on the Route Processor (RP). Information about Cisco Express Forwarding running on the line cards is available to the RP in reference to Cisco Express Forwarding peers only.

The CISCO-CEF-MIB supports configuration and monitoring for both IP versions, IP Version 4 (IPv4) and IP Version 6 (IPv6).

### Information Managed by the CISCO-CEF-MIB

SNMP has historically been used to collect network information. SNMP permits retrieval of critical information from network elements such as routers, switches, and workstations.

The CISCO-CEF-MIB provides managed objects that enable a network administrator to monitor the following:

- Cisco Express Forwarding administrative and operational states as displayed in the output of the `show ip cef summary` command
- Notifications for Cisco Express Forwarding events: Cisco Express Forwarding state changes, Cisco Express Forwarding failures (with a predefined reason), and Route Processor (RP) and line card inconsistencies
- Parameters related to Cisco Express Forwarding for the associated interface as displayed by the `show cef interface` command
- Line card Cisco Express Forwarding states and line card Cisco Express Forwarding FIB states in the Linecard table as displayed by the `show cef linecard` command
- Cisco Express Forwarding statistics: switching statistics, punt counters and punt-to-host counters as displayed by the `show ip cef switching stats` command, and per-prefix counters and nonrecursive counters
- IPv4 and IPv6 notification, when Cisco Express Forwarding is switched between disable and enable and between Cisco Express Forwarding and distributed Cisco Express Forwarding

The SNMP CISCO-CEF-MIB provides managed objects that enable a network administrator to configure the following:

- Cisco Express Forwarding and distributed Cisco Express Forwarding administration status
- Cisco Express Forwarding accounting-related parameters
- Cisco Express Forwarding load sharing-related parameters
- Traffic-related configuration parameters
CISCO-CEF-MIB Object Groups

The SNMP CISCO-CEF-MIB allows the configuration and management of objects related to Cisco Express Forwarding. The MIB contains the following object groups:

- CEF FIB group
- CEF Adjacency group
- CEF Forwarding Element group
- CEF Cfg group
- CEF Interface group
- CEF Peer group
- CEF Consistency (CC) group
- CEF State Group
- CEF Notification Control group

In the CISCO-CEF-MIB, configuration objects are defined as read-write, and the other objects are defined as read only.

The CISCO-CEF-MIB contains tables related to the Cisco Express Forwarding object groups. These tables provide information about prefixes, forwarding paths, adjacencies, output chain elements (OCEs), prefix-based statistics, information about Cisco Express Forwarding configuration, consistency checkers, switching statistics, and managed objects specific to line card-specific.

The CISCO-CEF-MIB also defines Cisco Express Forwarding notifications that you can enable or disable through the MIB or CLI commands.

The index for most tables in the CISCO-CEF-MIB is entPhysicalIndex.

CISCO-CEF-MIB Tables

- The CEF FIB Summary table (cefFIBSummaryTable) contains the number of forwarding prefixes for both IPv4 and IPv6 protocols. It is a summary of the CEF Forwarding table.
- The CEF Forwarding table (cefPrefixTable) lists all the prefixes and related counters. It also contains a pointer to the CEF Forwarding Element Selection table.
- The CEF Longest Match Prefix table (cefLMPrefixTable) returns the longest prefix match for the given destination address. An optional cefLMPrefixSpinLock object is provided to reduce conflict in instances when more than one application acts on the CEF Longest Match Prefix table.
- The CEF Path table (cefPathTable) lists all the Cisco Express Forwarding paths.
- The CEF Adjacency Summary table (cefAdjSummaryTable) contains the total number of complete, incomplete, fixup, and redirect adjacencies for all link types.
- The CEF Adjacency table (cefAdjTable) lists all the adjacencies. It contains the adjacency source, encapsulation string, fixup, and Layer 3 maximum transmission unit (MTU) associated with the adjacency entry. It contains a pointer to the forwarding element selection table (if the adjacency is a MID chain adjacency).
• The CEF Forwarding Element Selection table (cefFESelectionTable) represents the OCE chains in flattened format. This table shows only the labels, table ID, and adjacency traversed in the OCE chain. It also contains the weight associated with each OCE chain.

• CEF Cfg table (cefCfgTable) contains all the global configuration parameters related to Cisco Express Forwarding: administration and operational status, accounting-related configuration parameters, load-sharing algorithms and IDs, and traffic statistics parameters.

• CEF Resource table (cefResourceTable) contains information about resources for Cisco Express Forwarding: the memory status of the process memory pool and reasons for the Cisco Express Forwarding resource failure notifications.

• CEF Interface table (cefIntTable) contains the interface-specific Cisco Express Forwarding parameters: interface switching state, interface load sharing (per packet and per destination), and interface nonrecursive routing (internal and external).

• CEF Peer table or Linecard table (cefPeerTable) contains Cisco Express Forwarding information related to peers on a managed line card: line card operational state and the number of times the line card session resets.

• CEF Peer FIB table (cefPeerFIBTable) contains information about the operational state of the Forwarding Information Bases (FIBs) on each line card.

• The CEF Prefix Length Statistics table (cefStatsPrefixTable) maintains prefix length-based statistics.

• CEF Switching Statistics table (cefSwitchingStatsTable) contains the switching statistics for each switching path: drop counters, punt counters, and punt-to-host counters.

• CEF IP Prefix Consistency Checker Global group (cefCCGlobalTable) contains all global configuration parameters for the consistency checkers: auto repair, enable and disable, delay, and hold down; enable or disable the passive consistency checkers; enable or disable the error messages for consistency detection; and the mechanism to activate the full scan consistency checkers. This table also displays the state of full scan consistency checkers.

• CEF Consistency Checker Type table (cefCCTypeTable) contains the consistency checker type specific parameters: frequency and count of scan for passive scanners and the queries sent, ignored, checked, and iterated.

• CEF Inconsistency Record table (cefInconsistencyRecordTable) contains the detected inconsistency records: prefix address and length, table ID, consistency checker type, slot ID, and the reason for the inconsistency (missing or checksum error).

See the Operations Available Through the CISCO-CEF-MIB, on page 162 for information about the specific objects available through the CISCO-CEF-MIB tables.
The figure below shows the contents of the CISCO-CEF-MIB main tables and the relationships of the tables to one another.

**Figure 13: CISCO-CEF-MIB Main Tables, Table Contents, and Relationships**

The figure below shows the contents of the CISCO-CEF-MIB main tables and the relationships of the tables to one another.

**Operations Available Through the CISCO-CEF-MIB**

You can use SNMP `get` and `set` commands to configure and monitor Cisco Express Forwarding operations that are available through the CISCO-CEF-MIB tables. This section describes the configuration and monitoring operations for each table.

The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF FIB Summary table (`cefFIBSummaryTable`).

**Table 18: CEF FIB Summary Table—Cisco Express Forwarding Operation and Associated MIB Object**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the number of forwarding prefixes for IPv4 and IPv6</td>
<td><code>cefFIBSummaryFwdPrefixes</code></td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Forwarding table (`cefPrefixTable`).

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the number of forwarding prefixes for IPv4 and IPv6</td>
<td><code>cefFIBSummaryFwdPrefixes</code></td>
</tr>
</tbody>
</table>
### Table 19: CEF Forwarding Table--Cisco Express Forwarding Operations and Associated MIB Objects

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the forwarding information for the entry</td>
<td>cefPrefixForwardingInfo</td>
</tr>
<tr>
<td>Gets the number of packets forwarded by the prefix</td>
<td>cefPrefixPkts</td>
</tr>
<tr>
<td>Gets the number of packets forwarded by the prefix in a 64-bit value</td>
<td>cefPrefixHCPkts</td>
</tr>
<tr>
<td>Gets the number of bytes forwarded by the prefix</td>
<td>cefPrefixBytes</td>
</tr>
<tr>
<td>Gets the number of bytes forwarded by the prefix in a 64-bit value</td>
<td>cefPrefixHCBYtes</td>
</tr>
<tr>
<td>Gets the number of internal nonrecursive packets forwarded by the prefix</td>
<td>cefPrefixInternalNRPkts</td>
</tr>
<tr>
<td>Gets the number of internal nonrecursive packets forwarded by the prefix in a 64-bit value</td>
<td>cefPrefixInternalNRHCPkts</td>
</tr>
<tr>
<td>Gets the number of internal nonrecursive bytes forwarded by the prefix</td>
<td>cefPrefixInternalNRBytes</td>
</tr>
<tr>
<td>Gets the number of internal nonrecursive bytes forwarded by the prefix in a 64-bit value</td>
<td>cefPrefixInternalNRHCBYtes</td>
</tr>
<tr>
<td>Gets the number of external nonrecursive packets forwarded by the prefix</td>
<td>cefPrefixExternalNRPkts</td>
</tr>
<tr>
<td>Gets the number of external nonrecursive packets forwarded by the prefix in a 64-bit value</td>
<td>cefPrefixExternalNRHCPkts</td>
</tr>
<tr>
<td>Gets the number of external nonrecursive bytes forwarded by the prefix</td>
<td>cefPrefixExternalNRBytes</td>
</tr>
<tr>
<td>Gets the number of external nonrecursive bytes forwarded by the prefix in a 64-bit value</td>
<td>cefPrefixExternalNRHCBYtes</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Longest Match Prefix table (cefLMPrefixTable).

### Table 20: CEF Longest Match Prefix Table--Cisco Express Forwarding Operations and Associated MIB Objects

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets or sets the lock for creation or modification of the longest match prefix entries</td>
<td>cefLMPrefixSpinLock</td>
</tr>
</tbody>
</table>
The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Path table (cefPathTable).

**Table 21: CEF Path Table--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the type of Cisco Express Forwarding path for a prefix</td>
<td>cefPathType</td>
</tr>
<tr>
<td>Gets the interface associated with this Cisco Express Forwarding path</td>
<td>cefPathInterface</td>
</tr>
<tr>
<td>Gets the next-hop address for the Cisco Express Forwarding path</td>
<td>cefPathNextHopAddr</td>
</tr>
<tr>
<td>Gets the recursive Virtual Private Network (VPN) routing and forwarding (VRF) instance name associated with this path</td>
<td>cefPathRecurseVrfName</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Adjacency Summary table (cefAdjSummaryTable).

**Table 22: CEF Adjacency Summary Table--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the number of complete adjacencies</td>
<td>cefAdjSummaryComplete</td>
</tr>
<tr>
<td>Gets the number of incomplete adjacencies</td>
<td>cefAdjSummaryInComplete</td>
</tr>
<tr>
<td>Gets the number of adjacencies for Layer 2 encapsulation</td>
<td>cefAdjSummaryFixup</td>
</tr>
<tr>
<td>Gets the number of adjacencies for IP redirect</td>
<td>cefAdjSummaryRedirect</td>
</tr>
</tbody>
</table>
The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Adjacency table (cefAdjTable).

**Table 23: CEF Adjacency Table--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the adjacency source</td>
<td>cefAdjSource</td>
</tr>
<tr>
<td>Gets the adjacency Layer 2 encapsulation</td>
<td>cefAdjEncap</td>
</tr>
<tr>
<td>Gets the adjacency fixup</td>
<td>cefAdjFixup</td>
</tr>
<tr>
<td>Gets the Layer 3 maximum transmission unit (MTU) for the adjacency</td>
<td>cefAdjMTU</td>
</tr>
<tr>
<td>Gets the forwarding information in cefFESelectionTable</td>
<td>cefAdjForwardingInfo</td>
</tr>
<tr>
<td>Gets the number of packets transmitted</td>
<td>cefAdjPks</td>
</tr>
<tr>
<td>Gets the number of packets transmitted in a 64-bit version</td>
<td>cefAdjHCPks</td>
</tr>
<tr>
<td>Gets the number of bytes transmitted</td>
<td>cefAdjBytes</td>
</tr>
<tr>
<td>Gets the number of bytes transmitted in a 64-bit version</td>
<td>cefAdjHCBytes</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Forwarding Element Selection table (cefFESelectionTable).

**Table 24: CEF Forwarding Element Selection Table--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets any special processing for a forwarding element</td>
<td>cefFESelectionSpecial</td>
</tr>
<tr>
<td>Gets the Multiprotocol Label Switching (MPLS) labels for a forwarding element</td>
<td>cefFESelectionLabels</td>
</tr>
<tr>
<td>Gets the adjancency type for a forwarding element</td>
<td>cefFESelectionAdjLinkType</td>
</tr>
<tr>
<td>Getting the interface for the adjacency for a forwarding element</td>
<td>cefFESelectionAdjInterface</td>
</tr>
<tr>
<td>Gets the next-hop address type for the adjacency for a forwarding element</td>
<td>cefFESelectionAdjNextHopAddrType</td>
</tr>
</tbody>
</table>
The table below lists the Cisco Express Forwarding configuration and monitoring operations and associated MIB objects provided by the CEF Cfg table (cefCfgTable).

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the next-hop address for the adjacency for a forwarding element</td>
<td>cefFESelectionAdjNextHopAddr</td>
</tr>
<tr>
<td>Gets the connection ID for the adjacency for a forwarding element</td>
<td>cefFESelectionAdjConnId</td>
</tr>
<tr>
<td>Gets the VRF name for the lookup for a forwarding element</td>
<td>cefFESelectionVrfName</td>
</tr>
<tr>
<td>Gets the weighting for load balancing for a forwarding element</td>
<td>cefFESelectionWeight</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding configuration and monitoring operations and associated MIB objects provided by the CEF Cfg table (cefCfgTable).

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables or disables a Cisco Express Forwarding instance</td>
<td>cefCfgAdminState</td>
</tr>
<tr>
<td>Queries a Cisco Express Forwarding operational instance</td>
<td>cefCfgOperState</td>
</tr>
<tr>
<td>Enables or disables a distributed Cisco Express Forwarding instance</td>
<td>cefCfgDistributionAdminState</td>
</tr>
<tr>
<td>Queries a distributed Cisco Express Forwarding operational instance</td>
<td>cefCfgDistributionOperState</td>
</tr>
<tr>
<td>Gets or sets Cisco Express Forwarding network accounting options</td>
<td>cefCfgAccountingMap</td>
</tr>
<tr>
<td>• nonRecursive (0)</td>
<td></td>
</tr>
<tr>
<td>• perPrefix (1)</td>
<td></td>
</tr>
<tr>
<td>• prefixLength (2)</td>
<td></td>
</tr>
<tr>
<td>Gets or sets Cisco Express Forwarding load sharing algorithm options</td>
<td>cefCfgLoadSharingAlgorithm</td>
</tr>
<tr>
<td>• none (1) - Load sharing is disabled.</td>
<td></td>
</tr>
<tr>
<td>• original (2)</td>
<td></td>
</tr>
<tr>
<td>• tunnel (3)</td>
<td></td>
</tr>
<tr>
<td>• universal (4)</td>
<td></td>
</tr>
<tr>
<td>Gets or sets a load sharing ID</td>
<td>cefCfgLoadSharingID</td>
</tr>
</tbody>
</table>
The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Resource table (cefResourceTable).

**Table 26: CEF Resource Table--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the memory status of process memory pool for Cisco Express Forwarding</td>
<td>cefResourceMemoryUsed</td>
</tr>
<tr>
<td>Gets the reason for the Cisco Express Forwarding resource failure notification</td>
<td>cefResourceFailureReason</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding configuration and monitoring operations and associated MIB objects provided by the CEF Interface table (cefIntTable).

**Table 27: CEF Interface Table--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets or sets the Cisco Express Forwarding switching state of the interface</td>
<td>cefIntSwitchingState</td>
</tr>
<tr>
<td></td>
<td>• cefEnabled (1)</td>
</tr>
<tr>
<td></td>
<td>• distCefEnabled (2)</td>
</tr>
<tr>
<td></td>
<td>• cefDisabled (3)</td>
</tr>
<tr>
<td>Gets or sets the type of Cisco Express Forwarding Load sharing on the interface</td>
<td>cefIntLoadSharing</td>
</tr>
<tr>
<td></td>
<td>• perPacket (1)</td>
</tr>
<tr>
<td></td>
<td>• perDestination (2)</td>
</tr>
<tr>
<td>Gets or sets Cisco Express Forwarding nonrecursive accounting on the interface</td>
<td>cefIntNonrecursiveAccounting</td>
</tr>
<tr>
<td></td>
<td>• internal (1)</td>
</tr>
<tr>
<td></td>
<td>• external (2)</td>
</tr>
</tbody>
</table>
The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Peer table (or Linecard table) (cefPeerTable).

### Table 28: CEF Peer Table--Cisco Express Forwarding Operations and Associated MIB Objects

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the Cisco Express Forwarding operational instance of the peer entity</td>
<td>cefPeerOperState</td>
</tr>
<tr>
<td>Gets how many times the session with the Peer resets</td>
<td>cefPeerNumberOfResets</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding monitoring operation and associated MIB object provided by the CEF Peer FIB table (cefPeerFIBTable).

### Table 29: CEF Peer FIB Table--Cisco Express Forwarding Operation and Associated MIB Object

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the current Cisco Express Forwarding FIB operation state of the peer entity</td>
<td>cefPeerFIBOperState</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Prefix Length Statistics table (cefStatsPrefixTable).

### Table 30: CEF Prefix Length Statistics Table--Cisco Express Forwarding Operations and Associated MIB Objects

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the number of queries (lookups) in the FIB database for a prefix length</td>
<td>cefStatsPrefixQueries</td>
</tr>
<tr>
<td>Gets the number of queries (lookups) in the FIB database for a prefix length in a 64-bit value</td>
<td>cefStatsPrefixHCQueries</td>
</tr>
<tr>
<td>Gets the number of inserts in the FIB database for a prefix length</td>
<td>cefStatsPrefixInserts</td>
</tr>
<tr>
<td>Gets the number of inserts in the FIB database for a prefix length in a 64-bit value</td>
<td>cefStatsPrefixHCInsert</td>
</tr>
<tr>
<td>Gets the number of deletes in the FIB database for a prefix length</td>
<td>cefStatsPrefixDeletes</td>
</tr>
<tr>
<td>Gets the number of deletes in the FIB database for a prefix length in a 64-bit version</td>
<td>cefStatsPrefixHCDeletes</td>
</tr>
<tr>
<td>Gets the number of elements in the FIB database for a prefix length</td>
<td>cefStatsPrefixElements</td>
</tr>
</tbody>
</table>
**Cisco Express Forwarding Operation** | **MIB Object**
--- | ---
Gets the number of elements in the FIB database for a prefix length in a 64-bit value | cefStatsPrefixHCElements

The table below lists the Cisco Express Forwarding monitoring operations and associated MIB objects provided by the CEF Switching Statistics table (cefSwitchingStatsTable).

**Table 31: CEF Switching Statistics Table--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the switching path of a Cisco Express Forwarding instance</td>
<td>cefSwitchingPath</td>
</tr>
<tr>
<td>Gets the number of packets dropped by a Cisco Express Forwarding instance</td>
<td>cefSwitchingDrop</td>
</tr>
<tr>
<td>Gets the number of packets dropped by a Cisco Express Forwarding instance in a 64-bit value</td>
<td>cefSwitchingHCDrop</td>
</tr>
<tr>
<td>Gets the number of packets that could be punted</td>
<td>cefSwitchingPunt</td>
</tr>
<tr>
<td>Gets the number of packets that could be punted in a 64-bit value</td>
<td>cefSwitchingHCPunt</td>
</tr>
<tr>
<td>Gets the number of packets that are punted to the host</td>
<td>cefSwitchingPunt2Host</td>
</tr>
<tr>
<td>Gets the number of packets that are punted to the host in a 64-bit value</td>
<td>cefSwitchingHCPunt2Host</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding configuration and monitoring operations and associated MIB objects provided by the CEF IP Prefix Consistency Global Checker group (cefCCGlobalTable).

**Table 32: CEF IP Prefix Consistency Global Checker Group--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables or disables auto repairing of the consistency checkers</td>
<td>cefCCGlobalAutoRepairEnabled</td>
</tr>
<tr>
<td>Gets or sets the consistency checker wait time before fixing the inconsistency</td>
<td>cefCCGlobalAutoRepairDelay</td>
</tr>
<tr>
<td>Gets or sets the consistency checker wait time to reenable auto repair after auto repair runs</td>
<td>cefCCGlobalAutoRepairHoldDown</td>
</tr>
<tr>
<td>Cisco Express Forwarding Operation</td>
<td>MIB Objects</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Enables or disables error message generation for an inconsistency</td>
<td>cefCCGlobalErrorMsgEnabled</td>
</tr>
<tr>
<td>Gets or sets the maximum number of prefixes per scan</td>
<td>cefCCCount</td>
</tr>
<tr>
<td>Gets or sets the period between scans for the consistency checker</td>
<td>cefCCPeriod</td>
</tr>
<tr>
<td>Gets the number of prefix consistency queries sent to the Cisco Express Forwarding FIB</td>
<td>cefCCQueriesSent</td>
</tr>
<tr>
<td>Gets the number of prefix consistency queries ignored by the consistent checker</td>
<td>cefCCQueriesIgnored</td>
</tr>
<tr>
<td>Gets the number of prefix consistent queries iterated back to the database</td>
<td>cefCCQueriesIterated</td>
</tr>
<tr>
<td>Gets the number of prefix consistent queries processed</td>
<td>cefCCQueriesChecked</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding configuration and monitoring operations and associated MIB objects provided by the CEF Consistency Checker Type table (cefCCTypeTable).

**Table 33: CEF Consistency Checker Type Table--Cisco Express Forwarding Operations and Associated MIB Objects**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables or disables the passive consistency checker</td>
<td>cefCCEnabled</td>
</tr>
<tr>
<td>Gets the network prefix type for the inconsistency</td>
<td>cefInconsistencyPrefixType</td>
</tr>
<tr>
<td>Gets the network prefix address for the inconsistency</td>
<td>cefInconsistencyPrefixAddr</td>
</tr>
<tr>
<td>Gets the network prefix length for the inconsistency</td>
<td>cefInconsistencyPrefixLen</td>
</tr>
<tr>
<td>Gets the VRF name for the inconsistency</td>
<td>cefInconsistencyVrfName</td>
</tr>
<tr>
<td>Gets the consistency checker type that found the inconsistency</td>
<td>cefInconsistencyCCType</td>
</tr>
</tbody>
</table>

The table below lists the Cisco Express Forwarding configuration and monitoring operations and associated MIB objects provided by the CEF Inconsistency Record table (cefInconsistencyRecordTable).

**Table 34: CEF Inconsistency Record Table--Cisco Express Forwarding Operations and Associated MIB Objects**
### Cisco Express Forwarding Operation

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gets the entity in which this inconsistency occurred</td>
<td>cefInconsistencyEntity</td>
</tr>
<tr>
<td>Gets the reason for generating the inconsistency</td>
<td>cefInconsistencyReason</td>
</tr>
<tr>
<td></td>
<td>• missing (1)</td>
</tr>
<tr>
<td></td>
<td>• checksumErr (2)</td>
</tr>
<tr>
<td></td>
<td>• unknown (3)</td>
</tr>
</tbody>
</table>

### Global Objects for Cisco Express Forwarding Inconsistency

<table>
<thead>
<tr>
<th>Gets the value of the system uptime at the time an inconsistency was detected</th>
<th>entLastInconsistencyDetectTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets an object to restart all active consistency checkers</td>
<td>cefInconsistencyReset</td>
</tr>
<tr>
<td>Gets the status of the inconsistency reset request</td>
<td>cefInconsistencyResetStatus</td>
</tr>
</tbody>
</table>

### CISCO-CEF-MIB Notifications

The table below lists the Cisco Express Forwarding operations associated with the CISCO-CEF-MIB objects that enable the sending of Cisco Express Forwarding notifications.

**Table 35: Cisco Express Forwarding Notifications—Cisco Express Forwarding Operations and CISCO-CEF-MIB Objects That Enable Them**

<table>
<thead>
<tr>
<th>Cisco Express Forwarding Operation</th>
<th>MIB Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enables the sending of a notification on the detection of a Cisco Express Forwarding resource failure</td>
<td>cefResourceFailureNotifEnable</td>
</tr>
<tr>
<td>Enables the sending of a notification on the detection of a Cisco Express Forwarding peer state change</td>
<td>cefPeerStateChangeNotifEnable</td>
</tr>
<tr>
<td>Enables the sending of a notification on the detection of a Cisco Express Forwarding FIB peer state change</td>
<td>cefPeerFIBStateChangeNotifEnable</td>
</tr>
<tr>
<td>Sets the period of time after the sending of each notification event</td>
<td>cefNotifThrottlingInterval</td>
</tr>
<tr>
<td>Enables the sending of a notification on the detection of an inconsistency</td>
<td>cefInconsistencyNotifEnable</td>
</tr>
</tbody>
</table>
You can enable or disable these notifications through the MIB or by entering a CLI command. The table below contains a description of the notifications and the commands you use to enable each notification.

Note: You must enter a `snmp-server host` command before you enter a command to enable or disable a CISCO-CEF-MIB notification.

<table>
<thead>
<tr>
<th>Notification</th>
<th>Generated for</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Express Forwarding resource failure notification</td>
<td>A malloc failure, an Inter-Process Communication (IPC) failure, and any other type of failure related to External Data Representation (XDR) messages</td>
<td>CLI: <code>snmp-server enable traps cef resource-failure</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIB: <code>setany version ip-address community-string</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>cefResourceFailureNotifEnable.0 -i 1</code></td>
</tr>
<tr>
<td>Cisco Express Forwarding peer state change notification</td>
<td>A change in the operational state of a peer on the line cards</td>
<td>CLI: <code>snmp-server enable traps cef peer-state-change</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIB: <code>setany version ip-address community-string</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>cefPeerStateChangeNotifEnable.0 -i 1</code></td>
</tr>
<tr>
<td>Cisco Express Forwarding peer FIB state change notification</td>
<td>A change in the operational state of the peer FIB</td>
<td>CLI: <code>snmp-server enable traps cef peer-fib-state-change</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIB: <code>setany version ip-address community-string</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>cefPeerFIBStateChangeNotifEnable.0 -i 1</code></td>
</tr>
<tr>
<td>Cisco Express Forwarding inconsistency detection notification</td>
<td>An inconsistency detected by the consistency checkers</td>
<td>CLI: <code>snmp-server enable traps cef inconsistency</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIB: <code>setany version ip-address community-string</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>cefInconsistencyNotifEnable.0 -i 1</code></td>
</tr>
</tbody>
</table>

**How to Configure SNMPCEF-MIB Support**

**Configuring the Router to Use SNMP**

Perform the following task to configure a router to use SNMP.

Before you can use the Cisco Express Forwarding--SNMP CEF-MIB Support feature, you must configure the SNMP server for the router.
SUMMARY STEPS

1. enable
2. configure terminal
3. snmp-server community string [view view-name] [ro | rw] [ipv6 nacl] [access-list-number]
4. snmp-server community string2 rw
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>snmp-server community string [view view-name] [ro</td>
<td>rw] [ipv6 nacl] [access-list-number]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# snmp-server community public ro</td>
<td></td>
</tr>
</tbody>
</table>

Note: The string argument (Step 3) and string2 argument (Step 4) provide a minimal level of security. It is advisable to provide the string for read-only access to others who need only to view and not to modify the MIB objects, and reserve the read-write access string for administrators only. The string2 argument (Step 4) should be different from the read-only string argument specified in this step.
Configuring a Host to Receive Notifications

Perform the following task to configure an SNMP host to receive CISCO-CEF-MIB notifications. Notifications provide information to assist you in the monitoring and managing of Cisco Express Forwarding operations.

SUMMARY STEPS

1. enable
2. configure terminal
3. snmp-server community string [ro | rw]
4. snmp-server community string2 rw
5. snmp-server host ip-address [vrf vrf-name] [traps | informs] [version {1 | 2c | 3} [auth | noauth | priv]] community-string [udp-port port] cef
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Command or Action</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>`snmp-server community string [ro</td>
<td>rw]`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# snmp-server community public ro</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The <code>string</code> argument is a community string that consists of from 1 to 32 alphanumeric characters and functions much like a password, permitting access to the SNMP protocol. Blank spaces are not permitted in the community string.</td>
</tr>
<tr>
<td></td>
<td>- The <code>ro</code> keyword specifies read-only access. Authorized management stations can only retrieve MIB objects.</td>
</tr>
<tr>
<td></td>
<td>- The <code>rw</code> keyword specifies read-write access. Authorized management stations can retrieve and modify MIB objects.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>snmp-server community string2 rw</code></td>
<td>Sets up the community access string to permit access to SNMP.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# snmp-server community private rw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The <code>string2</code> argument is a community string that consists of from 1 to 32 alphanumeric characters and functions much like a password, permitting access to the SNMP protocol. Blank spaces are not permitted in the community string.</td>
</tr>
<tr>
<td></td>
<td>- The <code>rw</code> keyword specifies read-write access. Authorized management stations can retrieve and modify MIB objects.</td>
</tr>
<tr>
<td></td>
<td>This example allows MIB objects to be retrieved and set because a string is specified with read-write access.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The <code>string</code> argument (Step 3) and <code>string2</code> argument (Step 4) provide a minimal level of security. It is advisable to provide the string for read-only access to others who need only to view and not to modify the MIB objects, and retain the read-write access string for administrators only. The <code>string2</code> argument (Step 4) should be different from the read-only <code>string</code> argument specified in the preceding step (Step 3).</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>`snmp-server host ip-address [vrf vrf-name] [traps</td>
<td>informs] [version {1</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# snmp-server host 10.56.125.47 informs version 2c public cef</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The <code>ip-address</code> argument is the IP address or IPv6 address of the SNMP notification host.</td>
</tr>
<tr>
<td></td>
<td>The SNMP notification host is typically a network management station (NMS or SNMP manager). This host is the recipient of the SNMP traps or informs.</td>
</tr>
<tr>
<td></td>
<td>- The <code>vrf vrf-name</code> keyword and argument specify that the specified VRF be used to send SNMP notifications.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• The <em>traps</em> keyword specifies that notifications should be sent as traps. This is the default.</td>
<td></td>
</tr>
<tr>
<td>• The <em>informs</em> keyword specifies that notifications should be sent as informs.</td>
<td></td>
</tr>
<tr>
<td>• The <em>version</em> keyword specifies the version of the SNMP used to send the traps. The default is 1.</td>
<td></td>
</tr>
</tbody>
</table>

If you use the *version* keyword, one of the following keywords must be specified:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1</td>
<td>SNMPv1. This option is not available with informs.</td>
</tr>
<tr>
<td>• 2c</td>
<td>SNMPv2c.</td>
</tr>
<tr>
<td>• 3</td>
<td>SNMPv3. The most secure model because it allows packet encryption with the <em>priv</em> keyword. The default is <em>noauth</em>.</td>
</tr>
</tbody>
</table>

• One of the following three optional security level keywords can follow the *version* 3 keywords:
  - *auth*—Enables Message Digest 5 (MD5) and Secure Hash Algorithm (SHA) packet authentication.
  - *noauth*—Specifies that the noAuthNoPriv security level applies to this host. This is the default security level for SNMPv3.
  - *priv*—Enables Data Encryption Standard (DES) packet encryption (also called "privacy").

• The *community-string* argument specifies that a password-like community string be sent with the notification operation.

• The *udp-port* port keyword and argument specify that SNMP notifications or informs are to be sent to the User Datagram Protocol (UDP) port number of the NMS host. The default is 162.

• The *cef* keyword specifies that the Cisco Express Forwarding notification type is to be sent to the host. If no type is specified, all available notifications are sent.

**Step 6**

**end**

Example:

```
Router(config)# end
```
Configuring SNMP Notifications with the CLI

Perform the following task to configure SNMP notifications for Cisco Express Forwarding events. To configure this feature using SNMP commands instead of the CLI, see the Configuring SNMP Notifications with SNMP Commands, on page 179.

Before You Begin

You must have configured an NMS or SNMP agent to receive the SNMPcisco-CEF-MIB notification. See the Configuring a Host to Receive Notifications, on page 174.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. snmp-server enable traps cef [peer-state-change] [resource-failure] [inconsistency] [peer-fib-state-change]
4. snmp-server host ip-address [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string cef
5. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> snmp-server enable traps cef [peer-state-change] [resource-failure] [inconsistency] [peer-fib-state-change]</td>
<td>Enables Cisco Express Forwarding support of SNMP notifications on an NMS.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# snmp-server enable traps cef resource-failure</td>
<td>• The <strong>peer-state change</strong> keyword enables the sending of CISCO-CEF-MIB SNMP notifications for changes in the operational state of Cisco Express Forwarding peers.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>resource-failure</strong> keyword enables the sending of CISCO-CEF-MIB SNMP notifications for resource failures that affect Cisco Express Forwarding operations.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>inconsistency</strong> keyword enables the sending of CISCO-CEF-MIB SNMP notifications for inconsistencies that occur when routing information is updated from the Routing Information Base (RIB) to the CISCO-CEF-MIB on the RP and to the CISCO-CEF-MIB on the line cards.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>You can set the throttling interval for sending inconsistency notifications. See the Configuring the Throttling Interval with the CLI, on page 180.</td>
<td></td>
</tr>
<tr>
<td>• The <strong>peer-fib-state-change</strong> keyword enables the sending of CISCO-CEF-MIB SNMP notifications for changes in the operational state of the Cisco Express Forwarding peer FIB.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 4 | snmp-server host *ip-address* [traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}] community-string cef |
|-------------------|--------------------------|
| Specifies the recipient of an SNMP notification operation. |
| • The *ip-address* argument is the IP address or IPv6 address of the SNMP notification host. |
| The SNMP notification host is typically a network management station (NMS or SNMP manager). This host is the recipient of the SNMP traps or informs. |
| • The **traps** keyword specifies that notifications should be sent as traps. This is the default. |
| • The **informs** keyword specifies that notifications should be sent as informs. |
| • The **version** keyword specifies the version of the SNMP used to send the traps or informs. The default is 1. |
| If you use the **version** keyword, one of the following keywords must be specified: |
| • • 1 --SNMPv1. This option is not available with informs. |
| • 2c --SNMPv2C. |
| • 3 --SNMPv3. The most secure model because it allows packet encryption with the **priv** keyword. The default is **noauth**. |
| • One of the following three optional security level keywords can follow the **version 3** keywords: |
| • **auth**--Enables Message Digest 5 (MD5) and Secure Hash Algorithm (SHA) packet authentication. |
| • **noauth**--Specifies that the noAuthNoPriv security level applies to this host. This is the default security level for SNMPv3. |
| • **priv**--Enables Data Encryption Standard (DES) packet encryption (also called "privacy"). |
| • The **community-string** argument specifies that a password-like community string be sent with the notification operation. |
| • The **cef** keyword specifies that the Cisco Express Forwarding notification type is to be sent to the host. If no type is specified, all available notifications are sent. |
### Purpose

Command or Action | Purpose
--- | ---

**Step 5**

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>end</strong></td>
<td></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config) # end
```

---

### Configuring SNMP Notifications with SNMP Commands

Perform the following task to configure SNMP notifications for Cisco Express Forwarding events. To configure this feature using the CLI instead of SNMP commands, see the Configuring SNMP Notifications with the CLI, on page 177.

#### Before You Begin

You must have configured an NMS or SNMP agent to receive the SNMP CISCO-CEF-MIB notification. See the Configuring a Host to Receive Notifications, on page 174.

#### SUMMARY STEPS

1. `setany version ip-address community-string cefPeerStateChangeNotifEnable.0 -i TruthValue`
2. `setany version ip-address community-string cefPeerFIBStateChangeNotifEnable.0 -i TruthValue`
3. `setany version ip-address community-string cefResourceFailureNotifEnable.0 -i TruthValue`
4. `setany version ip-address community-string cefInconsistencyNotifEnable.0 -i TruthValue`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>setany version ip-address community-string cefPeerStateChangeNotifEnable.0 -i TruthValue</code></td>
<td>Enables the sending of CISCO-CEF-MIB SNMP notifications for changes in operational state of Cisco Express Forwarding peers.</td>
<td></td>
</tr>
</tbody>
</table>

- The **version** argument specifies the version of SNMP that is used. Options are
  - `v1`--SNMPv1
  - `v2c`--SNMPv2C
  - `v3`--SNMPv3

- The **ip-address** argument is the IP address or IPv6 address of the SNMP notification host.

The SNMP notification host is typically a network management station (NMS or SNMP manager). This host is the recipient of the SNMP traps or informs.
### Purpose

- The `community-string` argument specifies that a password-like community string be sent with the notification operation.
- The `-i`keywords indicate that the variable that follows is an integer.
- Values for the `TruthValue` argument are:
  - 1—enable sending of the notification
  - 2—disable sending of the notification

These arguments and keywords apply to the Cisco-CEF-MIB notifications in Steps 2, 3, and 4.

### Command or Action

<table>
<thead>
<tr>
<th>Step 2</th>
<th>setany version ip-address community-string cefPeerFIBStateChangeNotifEnable 0 -i TruthValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>workstation% setany -v2c 10.56.125.47 public cefPeerFIBStateChangeNotifEnable.0 -i 1</td>
</tr>
</tbody>
</table>

Enables the sending of CISCO-CEF-MIB SNMP notifications for changes in the operational state of the Cisco Express Forwarding peer FIB.

- See Step 1 for a description of the command arguments and keywords.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>setany version ip-address community-string cefResourceFailureNotifEnable 0 -i TruthValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>workstation% setany -v2c 10.56.125.47 public cefResourceFailureNotifEnable.0 -i 1</td>
</tr>
</tbody>
</table>

Enables the sending of CISCO-CEF-MIB SNMP notifications for resource failures that affect Cisco Express Forwarding operations.

- See Step 1 for a description of the command arguments and keywords.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>setany version ip-address community-string cefInconsistencyNotifEnable 0 -i TruthValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>workstation% setany -v2c 10.56.125.47 public cefInconsistencyNotifEnable.0 -i 1</td>
</tr>
</tbody>
</table>

Enables the sending of CISCO-CEF-MIB SNMP notifications for inconsistencies that occur when routing information is updated from the RIB to the Cisco Express Forwarding FIB on the RP and to the Cisco Express Forwarding FIB on the line cards.

- See Step 1 for a description of the command arguments and keywords.

### Configuring the Throttling Interval with the CLI

Perform the following task to configure the throttling interval for CISCO-CEF-MIB inconsistency notifications. To configure this feature using SNMP commands instead of the CLI, see the Configuring the Throttling Interval with SNMP Commands section.
Configuring a throttling interval allows some time before an inconsistency notification is sent during the process of updating forwarding information from the Routing Information Base (RIB) to the RP and to the line card databases. As these databases are updated, inconsistencies might occur as a result of the asynchronous nature of the distribution mechanism for these databases. The throttling interval allows fleeting inconsistencies to resolve themselves before an inconsistency notification is sent.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `snmp-server enable traps cef inconsistency`
4. `snmp mib cef throttling-interval seconds`
5. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>enable</code> Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>configure terminal</code> Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>snmp-server enable traps cef inconsistency</code> Enables the sending of CISCO-CEF-MIB SNMP notifications for inconsistencies in Cisco Express Forwarding.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# snmp-server enable traps cef inconsistency</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>snmp mib cef throttling-interval seconds</code> Sets the throttling interval for the CISCO-CEF-MIB inconsistency notifications.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# snmp mib cef throttling-interval 2500</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>end</code> Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# end</td>
</tr>
</tbody>
</table>
Configuring the Throttling Interval using SNMP Commands

Perform the following task to configure the throttling interval for CISCO-CEF-MIB inconsistency notifications. To configure this feature using the CLI instead of SNMP commands, see the Configuring the Throttling Interval with the CLI, on page 180.

Configuring a throttling interval allows some time before an inconsistency notification is sent during the process of updating forwarding information from the Routing Information Base (RIB) to the RP and to the line card databases. As these databases are updated, inconsistencies might occur as a result of the asynchronous nature of the distribution mechanism for these databases. The throttling interval allows fleeting inconsistencies to resolve themselves before an inconsistency notification is sent.

SUMMARY STEPS

1. setany version ip-address community-string cefNotifThrottlingInterval.0 -i seconds

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> setany version ip-address community-string cefNotifThrottlingInterval.0 -i seconds</td>
<td>Sets the throttling interval for the CISCO-CEF-MIB inconsistency notifications.</td>
</tr>
</tbody>
</table>

- The `version` argument specifies the version of SNMP that is used. Options are:
  - `-v1`--SNMPv1
  - `-v2c`--SNMPv2C
  - `-v3`--SNMPv3

- The `ip-address` argument is the IP address or IPv6 address of the SNMP notification host.

- The `community-string` argument specifies that a password-like community string be sent with the notification operation.

- The `-i`keywords indicate that the variable that follows is an integer.

- The `seconds` argument is the time to allow before an inconsistency notification is sent during the process of updating forwarding information from the RIB to the RP and to the line card databases. A valid value is from 0 to 3600 seconds. A value of 0 disables throttle control.

Example:

workstation% setany -v2c 10.56.125.47 public cefNotifThrottlingInterval.0 -i 3600
Configuration Examples for SNMP CEF-MIB Support

Example Configuring a Host to Receive Notifications

The following example shows how to configure an SNMP host to receive CISCO-CEF-MIB notifications:

```
configure terminal
!
snmp-server community public ro
snmp-server community private rw
snmp-server host 10.56.125.47 informs version 2vc public cef
end
```

This example sets up SNMP host 10.56.125.47 to receive CISCO-CEF-MIB notifications as informs.

Example Configuring SNMP Notifications

This section contains examples for configuring SNMP notifications for Cisco Express Forwarding events using the CLI and using SNMP commands.

Configuring SNMP Notifications for Cisco Express Forwarding Events Using the CLI

This example shows how to use the CLI to configure CISCO-CEF-MIB SNMP notifications to be sent to host 10.56.125.47 as informs for changes in Cisco Express Forwarding peer states and peer FIB states, for Cisco Express Forwarding resource failures, and for inconsistencies in Cisco Express Forwarding events:

```
configure terminal
!
snmp-server community public ro
snmp-server host 10.56.125.47 informs version 2c public cef
!
snmp-server enable traps cef peer-state-change
snmp-server enable traps cef peer-fib-state-change
snmp-server enable traps cef inconsistency
snmp-server enable traps cef resource-failure
end
```

Configuring SNMP Notifications for Cisco Express Forwarding Events Using SNMP Commands

This example shows the use of SNMP command to configure CISCO-CEF-MIB SNMP notifications to be sent to host 10.56.125.47 for changes in Cisco Express Forwarding peer states and peer FIB states, for Cisco Express Forwarding resource failures, and for inconsistencies in Cisco Express Forwarding events:

```
setany -v2c 10.56.125.47 public cefPeerStateChangeNotifEnable.0 -i 1
setany -v2c 10.56.125.47 public cefPeerFIBStateChangeNotifEnable.0 -i 1
setany -v2c 10.56.125.47 public cefResourceFailureNotifEnable.0 -i 1
setany -v2c 10.56.125.47 public cefInconsistencyNotifEnabled.0 -i 1
```
Example Configuring the Throttling Interval

This example shows the configuration of a throttling interval for the sending of Cisco Express Forwarding inconsistency notifications to the SNMP host using CLI commands and SNMP commands. The throttling interval is the amount of time that passes between the time that the inconsistency occurs and the sending of the notification to the SNMP host.

Configuring the Throttling Interval for CISCO-CEF-MIB Inconsistency Notifications Using CLI Commands

This example shows the addition of a throttling interval of 1000 seconds for the sending of Cisco Express Forwarding inconsistency notifications to the SNMP host using CLI commands:

```plaintext
configure terminal
snmp-server community public ro
snmp-server host 10.56.125.47 informs version 2c public cef
snmp-server enable traps cef peer-state-change
snmp-server enable traps cef peer-fib-state-change
snmp-server enable traps cef inconsistency
snmp-server enable traps cef resource-failure
snmp mib cef throttling-interval 1000
end
```

Configuring the Throttling Interval for CISCO-CEF-MIB Inconsistency Notifications Using SNMP Commands

This example shows the addition of a throttling interval of 1000 seconds for the sending of Cisco Express Forwarding inconsistency notifications to the SNMP host using an SNMP command:

```plaintext
setany -v2c 10.56.125.47 public cefNotifThrottlingInterval.0 -1 1000
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Overview of Cisco Express Forwarding, and links to related Cisco Express Forwarding documents</td>
<td>&quot;Cisco Express Forwarding Overview&quot; module</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3291</td>
<td>Textual Conventions for Internet Network Addresses</td>
</tr>
<tr>
<td>RFC 3413</td>
<td>Simple Network Management Protocol (SNMP) Applications</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for SNMP CEF-MIB Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.

### Table 37: Feature Information for Cisco Express Forwarding--SNMP CEF-MIB Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Release</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Express Forwarding--SNMP CEF-MIB Support</td>
<td>12.2(31)SB 12.2(33)SRC 12.2(33)SB 12.4(20)T 15.0(1)M 12.2(33)SRE 12.2(50)SY</td>
<td>The Cisco Express Forwarding--SNMP CEF-MIB Support feature introduces the CISCO-CEF-MIB that allows management applications through the use of the Simple Network Management Protocol (SNMP) to configure and monitor Cisco Express Forwarding operational data and to provide notification when Cisco Express Forwarding encounters specific configured events. This module describes how to use the CISCO-CEF-MIB to manage and monitor objects related to Cisco Express Forwarding operation. The following commands were introduced or modified: \texttt{snmp mib cef throttling-interval}, \texttt{snmp-server enable traps cef}, \texttt{snmp-server host}.</td>
</tr>
</tbody>
</table>

### Glossary

**inform** -- A type of notification message that is more reliable than a conventional trap notification message because the informs message notification requires acknowledgment, but a trap notification does not.

**IPC** -- Inter-Process Communication. The protocol used by routers that support distributed packet forwarding. The Cisco IOS version of IPC provides a reliable ordered delivery of messages using an underlying platform driver transport or User Date Protocol (UDP) transport protocol. Cisco IOS software IPC services allow line cards (LCs) and the central route processor (RP) in a distributed system, such as a Cisco 7500 series router, to communicate with each other by exchanging messages from the RP to the LCs. Communication messages are also exchanged between active and standby RPs. The IPC messages include configuration commands, responses to the configuration commands, and other events that are reported by an LC to the RP.

**MIB** -- Management Information Base. A database of network management information that is used and maintained by a network management protocol such as Simple Network Management Protocol (SNMP). The value of a MIB object can be changed or retrieved by the use of SNMP commands, usually through a network management system. MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.
NMS --network management station. A powerful, well-equipped computer (typically an engineering workstation) that is used by a network administrator to communicate with other devices in the network. An NMS is typically used to manage network resources, gather statistics, and perform a variety of network administration and configuration tasks. In the context of SNMP, an NMS is a device that performs SNMP queries to the SNMP agent of a managed device to retrieve or modify information.

notification -- A message sent by a Simple Network Management Protocol (SNMP) agent to a network management station, console, or terminal to indicate that a significant network event has occurred.


SNMP community -- An authentication scheme that enables an intelligent network device to validate SNMP requests.

SNMPv2c -- Version 2c of the Simple Network Management Protocol. SNMPv2c supports centralized as well as distributed network management strategies and includes improvements in the Structure of Management Information (SMI), protocol operations, management architecture, and security.

SNMPv3 -- Version 3 of the Simple Network Management Protocol. Interoperable standards-based protocol for network management. SNMPv3 provides secure access to devices by a combination of authenticating and encrypting packets over the network.

trap -- A message sent by an SNMP agent to a network management station, console, or terminal to indicate that a significant network event has occurred. Traps are less reliable than inform requests, because the receiver of the trap does not send an acknowledgment of receipt; furthermore, the sender of the trap cannot determine if the trap was received.
Chapter 11

Cisco Express Forwarding Command Changes

This feature module details changes to commands that are required to support updates to Cisco Express Forwarding.

In Cisco IOS Releases 12.2(25)S, 12.2(28)SB, 12.2(33)SRA, 12.2(33)SXH, and 12.4(20)T, Cisco Express Forwarding has been updated to support new features and new hardware. These updates enable Cisco Express Forwarding to operate with the Multiprotocol Label Switching (MPLS) High Availability (HA) applications and the MPLS Forwarding Infrastructure (MFI).

Cisco Express Forwarding provides a forwarding path and maintains a complete forwarding and adjacency table for both the software and hardware forwarding engines.

- Finding Feature Information, page 189
- Information About Command Changes, page 190
- Additional References, page 192
- Feature Information for Cisco Express Forwarding Command Changes, page 193

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About Command Changes

Deleted Commands

The following commands are obsolete and are no longer available from Cisco IOS Releases 12.2(25)S, 12.2(28)SB, 12.2(33)SRA, 12.2(33)SXH, 12.4(20)T, and future releases (no replacement commands are provided):

- clear adjacency epoch
- clear cef linecard events
- clear ip cef epoch
- clear ip cef events
- clear ip cef * prefix-statistics
- debug adjacency adjlist
- debug ip cef bulk-xfer
- debug ip cef elog-cef
- debug ip cef elog-plat
- debug ip cef stats
- ip cef switch
- ip cef linecard event-log
- ip cef linecard reloader
- ip cef load-sharing algorithm jittered
- ip cef nsf sync
- ip cef table event-log
- ip cef table resolution-timer
- ip cef table short-mask-protection
- show cef events
- show cef linecard events

Replaced Commands

The table below lists all replaced Cisco Express Forwarding commands, starting with Cisco IOS Releases 12.2(25)S, 12.2(28)SB, 12.2(33)SRA, 12.2(33)SXH, and 12.4(20)T, for the Cisco 7500 series routers:
### Table 38: Replaced Cisco Express Forwarding Commands—Cisco 7500 Series Routers

<table>
<thead>
<tr>
<th>Command</th>
<th>Replacement Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef table consistency-check</td>
<td>cef table consistency-check</td>
</tr>
<tr>
<td>debug ip cef adjfib</td>
<td>debug cef fib attached export</td>
</tr>
<tr>
<td>ip cef switch</td>
<td>ip cef</td>
</tr>
<tr>
<td>clear ip cef event-log</td>
<td>monitor event-trace cef ipv4 clear</td>
</tr>
<tr>
<td>ip cef linecard event-log max-events</td>
<td>monitor event-trace cef linecard size</td>
</tr>
<tr>
<td>show adjacency nexthop</td>
<td>show adjacency</td>
</tr>
<tr>
<td>show cef drop</td>
<td>show ip cef switching statistics</td>
</tr>
<tr>
<td>show cef not-cef-switched</td>
<td>show ip cef switching statistics</td>
</tr>
<tr>
<td>show cef events</td>
<td>show monitor event-trace</td>
</tr>
<tr>
<td>show ip cef events (still visible)</td>
<td>show monitor event-trace cef events</td>
</tr>
<tr>
<td>show cef events [internal]</td>
<td>show monitor event-trace cef events all</td>
</tr>
<tr>
<td>show cef linecard events</td>
<td>show monitor event-trace cef linecard</td>
</tr>
</tbody>
</table>

The table below lists all replaced Cisco Express Forwarding commands, starting with Cisco IOS Releases 12.2(25)S, 12.2(28)SB, 12.2(33)SRA, 12.2(33)SXH, and 12.4(20)T for the Cisco 10000 series routers:

### Table 39: Replaced Cisco Express Forwarding Commands—Cisco 10000 Series Routers

<table>
<thead>
<tr>
<th>Command</th>
<th>Replacement Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef table consistency-check</td>
<td>cef table consistency-check</td>
</tr>
<tr>
<td>debug ip cef adjfib</td>
<td>debug cef fib attached export</td>
</tr>
<tr>
<td>clear ip cef event-log</td>
<td>monitor event-trace cef ipv4 clear</td>
</tr>
<tr>
<td>show adjacency nexthop</td>
<td>show adjacency</td>
</tr>
<tr>
<td>show cef drop</td>
<td>show ip cef switching statistics</td>
</tr>
<tr>
<td>show cef events</td>
<td>show monitor event-trace</td>
</tr>
<tr>
<td>show ip cef events (still visible)</td>
<td>show monitor event-trace cef events</td>
</tr>
<tr>
<td>show cef events [internal]</td>
<td>show monitor event-trace cef events all</td>
</tr>
</tbody>
</table>
## Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP switching commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>MPLS HA applications and MFI</td>
<td>MPLS High Availability: Overview</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Feature Information for Cisco Express Forwarding Command Changes

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.
### Table 40: Feature Information for Cisco Express Forwarding: Command Changes

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Express Forwarding: Command Changes</td>
<td>12.2(25)S 12.2(28)SB 12.2(33)SRA 12.2(33)SXH 12.4(20)T</td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for Cisco Express Forwarding Command Changes

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
|              |          | In Cisco IOS Releases 12.2(25)S, 12.2(28)SB, 12.2(33)SRA and 12.2(33)SXH, Cisco Express Forwarding has been updated to support new features and new hardware. These updates enable Cisco Express Forwarding to operate with the Multiprotocol Label Switching (MPLS) High Availability (HA) applications and the MPLS Forwarding Infrastructure (MFI).
This feature module details changes to commands that are required to support updates to Cisco Express Forwarding.
In 12.2(25)S, this feature was introduced and supported on the Cisco 7500 series routers.
In 12.2(28)SB, this feature was integrated into Cisco IOS Release 12.2(28)SB and implemented on the Cisco 10000 series routers.
In 12.2(33)SRA, this feature was integrated into Cisco IOS Release 12.2(33)SRA.
In 12.2(33)SXH, this feature was integrated into Cisco IOS Release 12.2(33)SXH.
In 12.4(20)T, this feature was integrated into a Cisco IOS 12.4T release.
The following commands were modified: cef table consistency-check, clear adjacency, clear cef linecard, clear cef table, clear ip cef inconsistency, debug adjacency, debug cef, debug ip cef, debug ip cef accounting non-recursive, debug ip cef fragmentation, debug ip cef hash, debug ip cef subblock, debug ip cef table, ip route-cache, monitor event-trace (EXEC), monitor event-trace (global), show adjacency, show... |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>cef, show cef features global, show cef interface, show ip cef, show ip cef adjacency, show ip cef non-recursive, show ip cef switching statistics, show ip cef tree, show ip cef unresolved, show ip traffic, show monitor event-trace, show xdr.</td>
</tr>
</tbody>
</table>
The purpose of this document is to describe the changes based on the Cisco Express Forwarding infrastructure scalability enhancements that have been implemented to adapt to the evolution of the Internet and to support new platforms and features. The changes are the removal of IP fast switching and the introduction of command line interface (CLI) modifications.

This document lists Cisco Express Forwarding CLI commands that are removed, replaced, changed, and new. To help you transition to the new CLI format, the document illustrates the output for new commands and changed commands.

Enhancements to Cisco Express Forwarding enable it to operate with the Multiprotocol Label Switching (MPLS) Forwarding Infrastructure (MFI) and guarantee consistency across Cisco IOS release trains. Cisco Express Forwarding infrastructure changes were introduced and implemented in the Cisco IOS 12.2(25)S-based releases and were added for T releases in Cisco IOS Release 12.4(20)T.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet, and networks characterized by intensive web-based applications or interactive sessions.

• Finding Feature Information, page 197
• Information About CEF, page 198
• Additional References, page 222
• Feature Information for CEF Enhancements, page 222
• Glossary, page 225

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About CEF

This document presents the following topics to explain the changes you will find with the implementation of the Cisco Express Forwarding enhancements. This information should be helpful as you transition to Cisco IOS software that includes the Cisco Express Forwarding and MFI enhancements.

The fifth and sixth topics provide information about the CLI changes implemented as part of the Cisco Express Forwarding enhancements. In each section, the commands that are changed are listed, followed by an explanation of how they are changed. Sample command output is included in sections to compare "before" and "after" output information and to provide new output information.

The information about the commands is presented in the following order:

- Removed or existing, but unsupported, commands
- Commands with modified output
- New commands created for output consistency
- Related commands with unchanged output

Introduction of CEF Enhancements

Cisco Express Forwarding is at the heart of switching in every router. Improvements have been made to the Cisco Express Forwarding infrastructure to enhance and scale switching. Cisco Express Forwarding enhancements were introduced in Cisco IOS Release 12.2(25)S and first adopted by Cisco IOS 12.2(25)S-based releases. In Cisco IOS Release 12.4(20)T, the Cisco Express Forwarding enhancements were added for Cisco IOS 12.4(20)T releases and later T-based releases.

The table below lists the Cisco IOS releases and platforms that support the Cisco Express Forwarding enhancements and the changes described in this document.

<table>
<thead>
<tr>
<th>Cisco IOS Release</th>
<th>Platforms Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(25)SE</td>
<td>Catalyst 2970 series switches Catalyst 3500 series</td>
</tr>
<tr>
<td></td>
<td>switches Catalyst 3750 series switches</td>
</tr>
<tr>
<td>12.2(25)SG</td>
<td>Catalyst 4500 series Switches</td>
</tr>
<tr>
<td>12.2(28)SB</td>
<td>Cisco 7200 series routers Cisco 7301 series routers</td>
</tr>
<tr>
<td></td>
<td>Cisco 7304 series routers Cisco 10000 series routers</td>
</tr>
<tr>
<td>12.2(33)SRA</td>
<td>Cisco 7600 series routers</td>
</tr>
<tr>
<td>12.2(33)SXH</td>
<td>Catalyst 6500 series switches</td>
</tr>
<tr>
<td>Cisco IOS Release</td>
<td>Platforms Supported</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>

**CEF Enhancements Described**

Cisco IOS Release 12.4(20)T incorporates the following Cisco Express Forwarding infrastructure changes:

- Cisco Express Forwarding Scalability and Selective Rewrite (CSSR) for enhanced scalable, distributed Layer 3 switching
- Enhanced Multiprotocol Label Switching (MPLS) Forwarding Infrastructure (MFI)

For information on MFI enhancements, see MPLS Infrastructure Changes: Introduction of MFI and Removal of MPLS LSC and LC-ATM Features.

The Cisco Express Forwarding infrastructure changes provide the following:

- Simplified fast switching path decisions for both IPv4 and IPv6 traffic, which improve performance and provide more CPU cycles for other Cisco IOS services
- Enhanced scalability to support large numbers of the following:
  - IPv4 and IPv6 prefixes and adjacencies
  - Load balancing paths over multiple links based on Layer 3 routing information
  - Virtual Private Network (VPN) routing and forwarding (VRF) instances
- Improved manageability of the following:
  - Cisco Express Forwarding logging for both IPv4 and IPv6
  - Unicast Reverse Path Forwarding (uRPF) strict and loose mode
  - Cisco Express Forwarding MIB (CEF-MIB)
  - uRPF MIB
  - CLI display enhancements for Cisco Express Forwarding

No new features are introduced in Cisco IOS Release 12.4(20)T. However, some features that previously shipped with a Cisco IOS 12.2(25)S-based release are new to the Cisco IOS 12.4T release.
CSSR and MFI enhancements in Cisco IOS Release 12.4(20)T might result in changed performance characteristics in your network. We suggest that you test configurations before upgrading to this software.

**Removal of Support for IPv4 Fast Switching**

IPv4 fast switching is removed with the implementation of the Cisco Express Forwarding infrastructure enhancements for Cisco IOS 12.2(25)S-based releases and Cisco IOS Release 12.4(20)T. For these and later Cisco IOS releases, switching path are Cisco Express Forwarding switched or process switched. This makes the switching decision easier for future development of software features.

**Note**

Starting with the implementation of the Cisco Express Forwarding enhancements and the removal of IPv4 fast switching, components that do not support Cisco Express Forwarding will work only in process switched mode.

**CEF Command Changes**

The following commands are obsolete and have been removed from Cisco IOS software with the present Cisco Express Forwarding enhancements:

- `show ip cef inconsistency records`
- `show ip cef inconsistency now`
- `show ip cef inconsistency now detail`

The table below lists the commands that replace the removed commands.

<table>
<thead>
<tr>
<th>Command Before Cisco Express Forwarding Enhancements</th>
<th>Replacement Command After Cisco Express Forwarding Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef table adjacency-prefix</td>
<td>--</td>
</tr>
<tr>
<td>ip cef table resolution-timer</td>
<td>--</td>
</tr>
<tr>
<td>show ip cef inconsistency records</td>
<td>test cef table consistency</td>
</tr>
<tr>
<td>show ip cef inconsistency now</td>
<td>test cef table consistency</td>
</tr>
<tr>
<td>show ip cef inconsistency now detail</td>
<td>test cef table consistency detail</td>
</tr>
</tbody>
</table>

The following commands still exist, but are no longer supported in Cisco IOS software:
• show cef events
• show cef dropped
• show cef non-cef-switched

The table below lists commands that still exist, but are no longer supported, and the commands that replaces the unsupported commands. You should start using the replacement commands.

### Table 43: Replaced Cisco Express Forwarding Commands—Cisco Express Forwarding Feature

<table>
<thead>
<tr>
<th>Command Before Cisco Express Forwarding Enhancements</th>
<th>Replacement Command After Cisco Express Forwarding Enhancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip cef event -log</td>
<td>monitor event-log cef event</td>
</tr>
<tr>
<td>ip cef interface event-log</td>
<td>monitor event-log cef interface</td>
</tr>
<tr>
<td>ip cef table event-log</td>
<td>monitor event-log cef ipv4</td>
</tr>
<tr>
<td>ip cef table consistency-check</td>
<td>cef table consistency-check</td>
</tr>
<tr>
<td>ip cef loadinfo</td>
<td>cef table output-chain</td>
</tr>
<tr>
<td>show cef events</td>
<td>show monitor event-trace cef events all</td>
</tr>
<tr>
<td>show cef drop</td>
<td>show {ip</td>
</tr>
<tr>
<td>show cef not-cef-switched</td>
<td>show {ip</td>
</tr>
</tbody>
</table>

¹ If you enter the optional feature keyword, the output shows per-feature drop and punt counters.

### CEF show Command Output Changes

This section describes the CLI command output changes introduced with the Cisco Express Forwarding feature. In some commands the output format is changed. In other commands, pieces of information are added or removed from the output. The output of the following commands is changed with this feature:

• show ip cef summary
• show ipv6 cef summary
• show ip cef internal
• show ipv6 cef internal
• show ip cef detail
• show ipv6 cef detail
• show ip cef internal
• show ipv6 cef internal
• show ip cef
• show ip cef exact-route detail
• show ip cef exact-route
• show ip cef adjacency
• show adjacency summary
• show adjacency detail
• show adjacency internal
• show cef state
• show cef timers
• show ip cef epoch
• show ipv6 cef epoch
• show ip cef unresolved detail
• show ipv6 cef unresolved detail
• show ipv6 cef non-recursive

For a full description of these commands, see the Cisco IOS IP Switching Command Reference and the Cisco IOS IPv6 Command Reference.

**show ip cef summary**

This feature provides the following changes to the output of the **show ip cef summary** command:

• IPv4 and IPv6 are separately addressed.

• Figures related to adjacencies are moved to the **show adjacency summary** command (see the **show adjacency summary**, on page 211).

• Mtrie data structure descriptions are moved to a new command, the **show ip cef tree** command (see the New Commands for the CEF Feature, on page 219).

The table below compares the **show ip cef summary** command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

---

**CEF show Command Output Changes**

---

IP Switching Cisco Express Forwarding Configuration Guide, Cisco IOS Release 15M&T
### Table 44: show ip cef summary Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Router# show ip cef summary</strong></td>
<td><strong>Router# show ip cef summary</strong></td>
</tr>
<tr>
<td>IP CEF with switching (Table Version 32), flags=0x0</td>
<td>IPv4 CEF is enabled and running</td>
</tr>
<tr>
<td>26 routes, 0 reresolve, 0 unresolved (0 old, 0 new), peak 2</td>
<td>VRF Default:</td>
</tr>
<tr>
<td>26 leaves, 19 nodes, 23400 bytes, 53 inserts, 27 invalidations</td>
<td>22 prefixes (22/0 fwd/non-fwd)</td>
</tr>
<tr>
<td>0 load sharing elements, 0 bytes, 0 references</td>
<td>Table id 0</td>
</tr>
<tr>
<td>universal per-destination load sharing algorithm, id DF940F94</td>
<td>Database epoch: 0 (22 entries at this epoch)</td>
</tr>
<tr>
<td>3(0) CEF resets, 0 revisions of existing leaves</td>
<td></td>
</tr>
<tr>
<td>Resolution Timer: Exponential (currently 1s, peak 1s)</td>
<td></td>
</tr>
<tr>
<td>0 in-place/0 aborted modifications</td>
<td></td>
</tr>
<tr>
<td>refcounts: 1342 leaf, 1321 node</td>
<td></td>
</tr>
<tr>
<td>Table epoch: 0 (26 entries at this epoch)</td>
<td></td>
</tr>
<tr>
<td>Adjacency Table has 4 adjacencies</td>
<td></td>
</tr>
<tr>
<td>2 IPv4 adjacencies</td>
<td></td>
</tr>
<tr>
<td>2 IPv6 adjacencies</td>
<td></td>
</tr>
</tbody>
</table>

**show ipv6 cef summary**

This feature provides the following change to the output of the `show ipv6 cef summary` command:

- Output is reformatted (information provided is similar to what was provided before the Cisco Express Forwarding enhancement.)

The table below compares the `show ipv6 cef summary` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.
Table 45: show ipv6 cef summary Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ipv6 cef summary</td>
<td>Router# show ipv6 cef summary</td>
</tr>
<tr>
<td>IPv6 CEF is enabled and running</td>
<td>IPv6 CEF is enabled and running</td>
</tr>
<tr>
<td>Slow processing intvl = 1 seconds backoff level current/max 0/0</td>
<td>VRF Default: 20 prefixes (20/0 fwd/non-fwd)</td>
</tr>
<tr>
<td>0 unresolved prefixes, 0 requiring adjacency update</td>
<td>Table id 0</td>
</tr>
<tr>
<td>IPv6 CEF default table</td>
<td>Database epoch: 0 (20 entries at this epoch)</td>
</tr>
<tr>
<td>19 prefixes</td>
<td>20 prefixes</td>
</tr>
</tbody>
</table>

show ip cef internal

This feature provides the following changes to the output of the `show ip cef internal` command:

- IPv4 and IPv6 are separately addressed.
- Mtrie data structure descriptions are moved to a new command, the `show ip cef tree` command (see the New Commands for the CEF Feature, on page 219).
- Troubleshooting is made easier with the addition of references to internal structure pointers.
- The concept of output chain (chain of output features) is introduced.

The table below compares the `show ip cef internal` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.
Table 46: show ip cef internal Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ip cef internal&lt;br&gt;IP CEF with switching (Table Version 32), flags=0x0&lt;br&gt;26 routes, 0 reresolve, 0 unresolved (0 old, 0 new), peak 2&lt;br&gt;26 leaves, 19 nodes, 23400 bytes, 53 inserts, 27 invalidations&lt;br&gt;0 load sharing elements, 0 bytes, 0 references&lt;br&gt;universal per-destination load sharing algorithm, id DF940F94&lt;br&gt;3(0) CEF resets, 0 revisions of existing leaves&lt;br&gt;Resolution Timer: Exponential (currently 1s, peak 1s)&lt;br&gt;0 in-place/0 aborted modifications&lt;br&gt;refcounts: 1342 leaf, 1321 node&lt;br&gt;Table epoch: 0 (26 entries at this epoch)&lt;br&gt;Adjacency Table has 3 adjacencies&lt;br&gt;1 IPv4 adjacency&lt;br&gt;2 IPv6 adjacencies&lt;br&gt;0.0.0.0/32, version 0, epoch 0, receive&lt;br&gt;10.10.1.1/32, version 22, epoch 0, cached adjacency&lt;br&gt;172.17.24.1 (0x629E1B60)&lt;br&gt;0 packets, 0 bytes&lt;br&gt;via 172.17.24.1, FastEthernet0/1, 0 dependencies&lt;br&gt;next hop 172.17.24.1, FastEthernet0/1&lt;br&gt;valid cached adjacency (0x629E1B60)</td>
<td>Router# show ip cef internal&lt;br&gt;IP CEF with switching (Table Version 32), flags=0x0&lt;br&gt;26 routes, 0 reresolve, 0 unresolved (0 old, 0 new), peak 2&lt;br&gt;26 leaves, 19 nodes, 23400 bytes, 53 inserts, 27 invalidations&lt;br&gt;0 load sharing elements, 0 bytes, 0 references&lt;br&gt;universal per-destination load sharing algorithm, id DF940F94&lt;br&gt;3(0) CEF resets, 0 revisions of existing leaves&lt;br&gt;Resolution Timer: Exponential (currently 1s, peak 1s)&lt;br&gt;0 in-place/0 aborted modifications&lt;br&gt;refcounts: 1342 leaf, 1321 node&lt;br&gt;Table epoch: 0 (26 entries at this epoch)&lt;br&gt;Adjacency Table has 3 adjacencies&lt;br&gt;1 IPv4 adjacency&lt;br&gt;2 IPv6 adjacencies&lt;br&gt;0.0.0.0/32, version 0, epoch 0, receive&lt;br&gt;10.10.1.1/32, version 22, epoch 0, cached adjacency&lt;br&gt;172.17.24.1 (0x629E1B60)&lt;br&gt;0 packets, 0 bytes&lt;br&gt;via 172.17.24.1, FastEthernet0/1, 0 dependencies&lt;br&gt;next hop 172.17.24.1, FastEthernet0/1&lt;br&gt;valid cached adjacency (0x629E1B60)</td>
</tr>
</tbody>
</table>

show ipv6 cef internal

This feature provides the following changes to the output of the show ipv6 cef internal command:

- More references to pointers are added.
- The concept of output chain (chain of output features) is introduced.

The previous version of the command output is very similar to the output of the command after the Cisco Express Forwarding enhancements.

The table below compares the show ipv6 cef internal command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.
### Table 47: `show ipv6 cef internal` Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ipv6 cef internal</code></td>
<td>Router# <code>show ipv6 cef internal</code></td>
</tr>
<tr>
<td>IPv6 CEF is enabled and running</td>
<td>IPv6 CEF is enabled and running</td>
</tr>
<tr>
<td>Slow processing intvl = 1 seconds backoff level</td>
<td>VRF Default:</td>
</tr>
<tr>
<td>current/max 0/0</td>
<td>20 prefixes (20/0 fwd/non-fwd)</td>
</tr>
<tr>
<td>0 unresolved prefixes, 0 requiring adjacency update</td>
<td>Table id 0</td>
</tr>
<tr>
<td>IPv6 CEF default table</td>
<td>Database epoch: 0 (20 entries at this epoch)</td>
</tr>
<tr>
<td>19 prefixes tableid 0</td>
<td>2001:1:12::/64, epoch 0, RIB, refcount 3</td>
</tr>
<tr>
<td>root 63038970</td>
<td>sources: RIB</td>
</tr>
<tr>
<td>2001:1:12::/64 RIBfib</td>
<td>feature space:</td>
</tr>
<tr>
<td>Using cached adjacency 0x629E1CE0</td>
<td>MFI: path extension list empty</td>
</tr>
<tr>
<td>path list pointer 62A2C310</td>
<td>IPRM: 0x00038000</td>
</tr>
<tr>
<td>1 path</td>
<td>IPV6 adj out of POS1/0 635BAFE0</td>
</tr>
<tr>
<td>nexthop 680::..2D0::1FF:FE4:6800 FastEthernet0/1</td>
<td>ifnums: (none)</td>
</tr>
</tbody>
</table>
| path_list pointer 62A297B0 traffic share 1 | path 633A9A18, path list 633A732C, share 1, type
| nexthop FE80::2D0::1FF:FE4:6800 FastEthernet0/1 | attached nexthop
| next_hop_len 0 adjacency pointer 629E1CE0 | path_list contains at least one resolved
| refcount 10                               | destination(s). HW IPv6 notified.       |
| no loadinfo                               | nexthop FE80::2D0::DCFF:FE26:4800 POS1/0, adjacency
|                                          | IPV6 adj out of POS1/0 635BAFE0          |
|                                          | output chain: IPV6 adj out of POS1/0 635BAFE0 |

**show ip cef detail**

This feature provides the following changes to the output of the `show ip cef detail` command:

- IPv4 and IPv6 are now separately addressed.
- Mtrie data structure descriptions are moved to a new command, the `show ip cef tree` command (see the [New Commands for the CEF Feature, on page 219](#)).
- The per-prefix output is reformatted (however, the information provided is the same).
- The table below compares the `show ip cef detail` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.
Table 48: show ip cef detail Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Router# show ip cef detail</strong></td>
<td><strong>Router# show ip cef detail</strong></td>
</tr>
<tr>
<td>IP CEF with switching (Table Version 32), flags=0x0</td>
<td>IPv4 CEF is enabled and running</td>
</tr>
<tr>
<td>26 routes, 0 reresolve, 0 unresolved (0 old, 0 new), peak 2</td>
<td>VRF Default:</td>
</tr>
<tr>
<td>26 leaves, 19 nodes, 23400 bytes, 53 inserts, 27 invalidations</td>
<td>22 prefixes (22/0 fwd/non-fwd)</td>
</tr>
<tr>
<td>0 load sharing elements, 0 bytes, 0 references</td>
<td>Table id 0</td>
</tr>
<tr>
<td>universal per-destination load sharing algorithm, id DF940F94</td>
<td>Database epoch: 0 (22 entries at this epoch)</td>
</tr>
<tr>
<td>3(0) CEF resets, 0 revisions of existing leaves</td>
<td>0.0.0.0/32, epoch 0, flags receive</td>
</tr>
<tr>
<td>Resolution Timer: Exponential (currently 1s, peak 1s)</td>
<td>Special source: receive</td>
</tr>
<tr>
<td>0 in-place/0 aborted modifications</td>
<td>receive</td>
</tr>
<tr>
<td>refcounts: 1342 leaf, 1321 node</td>
<td>10.10.1.1/32, epoch 0</td>
</tr>
<tr>
<td>Table epoch: 0 (26 entries at this epoch)</td>
<td>nexthop 172.17.13.1 POS1/0</td>
</tr>
<tr>
<td>Adjacency Table has 3 adjacencies</td>
<td>10.10.1.2/32, epoch 0</td>
</tr>
<tr>
<td>1 IPv4 adjacency</td>
<td>nexthop 172.17.13.1 POS1/0</td>
</tr>
<tr>
<td>2 IPv6 adjacencies</td>
<td>10.20.12.0/24, epoch 0</td>
</tr>
<tr>
<td>0.0.0.0/32, version 0, epoch 0, receive</td>
<td>nexthop 172.17.13.1 POS1/0</td>
</tr>
<tr>
<td>10.10.1.1/32, version 22, epoch 0, cached adjacency</td>
<td>10.60.17.0/24, epoch 0, flags receive</td>
</tr>
<tr>
<td>172.17.24.1</td>
<td>10.10.1.1/32, epoch 0, flags receive</td>
</tr>
<tr>
<td>0 packets, 0 bytes</td>
<td>10.10.1.2/32, epoch 0, flags receive</td>
</tr>
<tr>
<td>via 172.17.24.1, FastEthernet0/1, 0 dependencies</td>
<td>10.60.17.0/32, epoch 0, flags receive</td>
</tr>
<tr>
<td>next hop 172.17.24.1, FastEthernet0/1</td>
<td>10.60.17.251/32, epoch 0, flags receive</td>
</tr>
<tr>
<td>valid cached adjacency</td>
<td></td>
</tr>
</tbody>
</table>

**show ipv6 cef detail**

This feature provides the following change to the output of the **show ipv6 cef detail** command:

- Output is reformatted (the information provided is the same as before the Cisco Express Forwarding enhancements).

The table below compares the **show ipv6 cef detail** command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.
### Table 49: show ipv6 cef detail Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
</table>
| **Router# show ipv6 cef detail**  
IPv6 CEF is enabled and running  
Slow processing intvl = 1 seconds backoff level  
current/max 0/0  
0 unresolved prefixes, 0 requiring adjacency update  
IPv6 CEF default table  
19 prefixes  
2001:1:12::/64 RIBfib  
nexthop FE80::205:DCFF:FE26:4800 FastEthernet0/1  
2001:2:13::/64 RIBfib  
nexthop FE80::2D0:1FF:FE4:6800 FastEthernet0/1  
2001:2:24::/2/128 Receive, RIBfib  
Receive  
2001:2:24::/64 Attached, Connected, RIBfib  
attributed to FastEthernet0/1 | **Router# show ipv6 cef detail**  
IPv6 CEF is enabled and running  
Slow processing intvl = 1 seconds backoff level  
current/max 0/0  
0 unresolved prefixes, 0 requiring adjacency update  
IPv6 CEF default table  
20 prefixes (20/0 fwd/non-fwd)  
Table id 0  
Database epoch: 0 (20 entries at this epoch)  
2001:1:12::/64, epoch 0  
nexthop FE80::205:DCFF:FE26:4800 POS1/0  
2001:2:13::/64, epoch 0, flags attached, connected  
attached to POS1/0  
2001:2:24::/2/128, epoch 0, flags receive |

### show ip cef internal

This feature provides the following changes to the output of the **show ip cef prefix internal** command:

- Troubleshooting is made easier with the addition of references to internal structure pointers.
- The concept of output chain (chain of output features) is introduced.

The table below compares the **show ip cef prefix internal** command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

### Table 50: show ip cef prefix internal Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
</table>
| **Router# show ip cef 10.20.12.0/24 internal**  
10.20.12.0/24, version 17, epoch 0, cached adjacency  
172.17.24.1 (0x629E1B60)  
0 packets, 0 bytes  
via 172.17.24.1, FastEthernet0/1, 0 dependencies  
next hop 172.17.24.1, FastEthernet0/1  
valid cached adjacency (0x629E1B60) | **Router# show ip cef 172.16.1.0/24 internal**  
172.16.1.0/24, epoch 0, RIB, refcount 5  
sources: RIB  
feature space:  
MFI: path extension list empty  
IPRM: 0x00038000  
IP adj out of POS1/0 635BB2A0  
path 633A9504, path list 633A6FB8, share 1, type  
attached next hop, for IPv4  
ifnums: (none)  
path_list contains at least one resolved  
destination(s). HW IPv4 notified.  
next hop 172.17.13.1 POS1/0, adjacency IP adj out of  
POS1/0 635BB2A0  
output chain: IP adj out of POS1/0 635BB2A0 |

### show ipv6 cef internal

This feature provides the following changes to the output of the **show ipv6 cef prefix internal** command:
• More references to structure pointers are added.
• The concept of output chain (chain of output features) is introduced.

The previous version of the command output is very similar to the output in the command after the Cisco Express Forwarding enhancements.

The table below compares the `show ipv6 cef prefix internal` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

### Table 51: show ipv6 cef prefix internal Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ipv6 cef 2001:2:25::/64 internal</code> 2001:2:25::/64, epoch 0, RIB, refcount 4 sources: RIB feature space: MFI: path extension list empty IPRM: 0x00038000 IPV6 adj out of POS1/0 635BAFE0 path 633A9568, path list 633A6FFC, share 1, type attached nexthop, for IPV6 ifnums: (none) path_list contains at least one resolved destination(s). HW IPv6 notified. nexthop FE80::205:DCFF:FE26:4800 POS1/0, adjacency</td>
<td>Router# <code>show ipv6 cef 2001:2:25::/64 internal</code> 2001:2:25::/64, epoch 0, RIB, refcount 4 sources: RIB feature space: MFI: path extension list empty IPRM: 0x00038000 IPV6 adj out of POS1/0 635BAFE0 path 633A9568, path list 633A6FFC, share 1, type attached nexthop, for IPV6 ifnums: (none) path_list contains at least one resolved destination(s). HW IPv6 notified. nexthop FE80::205:DCFF:FE26:4800 POS1/0, adjacency IPV6 adj out of POS1/0 635BAFE0</td>
</tr>
<tr>
<td>path_list pointer 62A2C310 1 path - Nexthop path_pointer 62A297B0 traffic share 1 path_list pointer 62A2C310 nexthop FE80::2001:2:25::/6408:6800 FastEthernet0/1 nexthop_len 0 adjacency pointer 629E1CE0 refcount 10 no loadinfo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### show ip cef

This feature provides the following changes to the output of the `show ip cef prefix` command:

• Output is reformatted; the key information provided is similar to the command output provided before the Cisco Express Forwarding enhancements.

• Adjacency information is moved to the `show adjacency prefix detail` command (see the New Commands for the CEF Feature, on page 219).

The table below compares the `show ip cef prefix` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

### Table 52: show ip cef prefix Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ip cef 172.16.1.0/24</code> 172.16.1.0/24, version 17, epoch 0, cached adjacency 172.17.24.1 0 packets, 0 bytes via 172.17.24.1, FastEthernet0/1, 0 dependencies next hop 172.17.24.1, FastEthernet0/1 valid cached adjacency</td>
<td>Router# <code>show ip cef 172.16.1.0/24</code> 172.16.1.0/24 nexthop 172.17.13.1 POS1/0</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The command output of the `show ipv6 prefix` command is the same after the Cisco Express Forwarding enhancement changes as it was before the changes.

**show ip cef exact-route detail**

This feature provides the following change to the output of the `show ip cef exact-route source destination detail` command:

- Output is reformatted (the information provided is the same as the information provided before the Cisco Express Forwarding enhancements).

The table below compares the command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ip cef exact-route 172.16.1.1 172.16.1.5 detail</code> 172.16.1.1 -&gt; 172.16.1.5 : FastEthernet0/1 (next hop 172.17.24.1)</td>
<td>Router# <code>show ip cef exact-route 172.16.1.3 172.16.1.2 detail</code> 172.16.1.3 -&gt; 172.16.1.2 =&gt; IP adj out of FastEthernet0/1, addr 172.17.25.1</td>
</tr>
</tbody>
</table>

**show ip cef exact-route**

This feature provides the following change to the output of the `show ip cef exact-route source destination` command:

- Output is reformatted (the information provided is the same as the information provided before the Cisco Express Forwarding enhancements).

The table below compares the `show ip cef exact-route source destination` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ip cef exact-route 172.16.1.1 172.16.1.5</code> 172.16.1.1 -&gt; 172.16.1.5 : FastEthernet0/1 (next hop 172.17.24.1)</td>
<td>Router# <code>show ip cef exact-route 172.16.1.3 172.16.1.2</code> 172.16.1.3 -&gt; 172.16.1.2 =&gt; IP adj out of FastEthernet0/1, addr 172.17.25.1</td>
</tr>
</tbody>
</table>
show ip cef adjacency

This feature provides the following change to the output of the `show ip cef adjacency interface next-hop` command:

- Output is reformatted (the information provided is the same as the information provided before the Cisco Express Forwarding enhancements).

The table below compares the `show ip cef adjacency interface next-hop` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

**Table 55: show ip cef adjacency interface next-hop Command Output Before and After Cisco Express Forwarding Enhancements**

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ip cef adjacency FastEthernet0/1 172.17.24.1</code></td>
<td>Router# <code>show ip cef adjacency FastEthernet0/1 172.17.22.1</code></td>
</tr>
<tr>
<td>Prefix</td>
<td>Next Hop</td>
</tr>
<tr>
<td>10.10.1.1/32</td>
<td>172.17.24.1</td>
</tr>
<tr>
<td>FastEthernet0/1</td>
<td>10.10.1.2/32</td>
</tr>
<tr>
<td>FastEthernet0/1</td>
<td>10.20.12.0/24</td>
</tr>
<tr>
<td>FastEthernet0/1</td>
<td></td>
</tr>
</tbody>
</table>

show adjacency summary

This feature provides the following change to the output of the `show adjacency summary` command:

- The new output provides a detailed description of the database, high availability information, and epoch concept information.

- The per-protocol and interface summary table is moved to the `show adjacency link` command (see the New Commands for the CEF Feature, on page 219).

The table below compares the `show adjacency summary` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.
Table 56: show adjacency summary Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show adjacency summary</td>
<td>Router# show adjacency summary</td>
</tr>
<tr>
<td>Adjacency Table has 6 adjacencies</td>
<td>Adjacency table has 9 adjacencies:</td>
</tr>
<tr>
<td>4 IPv4 adjacencies</td>
<td>each adjacency consumes 348 bytes (0 bytes platform extension)</td>
</tr>
<tr>
<td>2 IPv6 adjacencies</td>
<td>7 complete adjacencies</td>
</tr>
<tr>
<td>Table epoch: 0 (6 entries at this epoch)</td>
<td>2 incomplete adjacencies</td>
</tr>
<tr>
<td>Interface IPv4 Adjacencies IPv6</td>
<td>4 adjacencies of linktype IP</td>
</tr>
<tr>
<td>FastEthernet0/0</td>
<td>4 complete adjacencies of linktype IP</td>
</tr>
<tr>
<td>1 IPv4 adjacencies</td>
<td>0 incomplete adjacencies of linktype IP</td>
</tr>
<tr>
<td>FastEthernet0/1</td>
<td>0 adjacencies with fixups of linktype IP</td>
</tr>
<tr>
<td>2 IPv6 adjacencies</td>
<td>4 adjacencies with IP redirect of linktype IP</td>
</tr>
<tr>
<td>FastEthernet1/1</td>
<td>4 adjacencies of linktype IPV6</td>
</tr>
<tr>
<td>1 IPv4 adjacencies</td>
<td>2 complete adjacencies of linktype IPV6</td>
</tr>
<tr>
<td>1 IPv6 adjacencies</td>
<td>2 incomplete adjacencies of linktype IPV6</td>
</tr>
<tr>
<td>Adjacency database high availability:</td>
<td>1 adjacency of linktype TAG</td>
</tr>
<tr>
<td>Database epoch: 0 (9 entries at this epoch)</td>
<td>1 complete adjacency of linktype TAG</td>
</tr>
<tr>
<td>Adjacency manager summary event processing:</td>
<td>0 incomplete adjacencies of linktype TAG</td>
</tr>
<tr>
<td></td>
<td>Adjacency database high availability:</td>
</tr>
<tr>
<td></td>
<td>Database epoch: 0 (9 entries at this epoch)</td>
</tr>
<tr>
<td></td>
<td>Adjacency manager summary event processing:</td>
</tr>
<tr>
<td></td>
<td>Summary events epoch is 3</td>
</tr>
<tr>
<td></td>
<td>Summary events queue contains 0 events (high water mark 7 events)</td>
</tr>
</tbody>
</table>

**show adjacency detail**

This feature provides the following change to the output of the `show adjacency detail` command:

- Output is reformatted (the information provided is the same as the information provided before the Cisco Express Forwarding enhancements).

The table below compares the `show adjacency detail` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.
### Table 57: show adjacency detail Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Router# show adjacency detail</strong></td>
<td><strong>Router# show adjacency detail</strong></td>
</tr>
<tr>
<td><strong>Protocol Interface</strong></td>
<td><strong>Protocol Interface</strong></td>
</tr>
<tr>
<td>IP</td>
<td>IP</td>
</tr>
<tr>
<td>FastEthernet1/1</td>
<td>FastEthernet0/1</td>
</tr>
<tr>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>20.0.0.2(5)</td>
<td>172.17.22.1(16)</td>
</tr>
<tr>
<td>4 packets, 456 bytes</td>
<td>0 packets, 0 bytes</td>
</tr>
<tr>
<td>003085641F11</td>
<td>epoch 0</td>
</tr>
<tr>
<td>0055F26F81D0800</td>
<td>sourced in sev-epoch 3</td>
</tr>
<tr>
<td>ARP</td>
<td>Encap length 14</td>
</tr>
<tr>
<td>Epoch: 0</td>
<td>01:47:23</td>
</tr>
<tr>
<td>IPV6</td>
<td>IPV6</td>
</tr>
<tr>
<td>FastEthernet1/1</td>
<td>FastEthernet0/1</td>
</tr>
<tr>
<td>2011:41::2(5)</td>
<td>2001:2:22::1(6)</td>
</tr>
<tr>
<td>0 packets, 0 bytes</td>
<td>0 packets, 0 bytes</td>
</tr>
<tr>
<td>003085641F11</td>
<td>epoch 0</td>
</tr>
<tr>
<td>0055F26F81D86DD</td>
<td>sourced in sev-epoch 3</td>
</tr>
<tr>
<td>IPv6 ND</td>
<td>Encap length 14</td>
</tr>
<tr>
<td>Epoch: 0</td>
<td>never</td>
</tr>
</tbody>
</table>

**show adjacency internal**

This feature provides the following changes to the output of the **show adjacency internal** command:

- Output is reformatted.
- An output chain of features was added. Otherwise, the information provided is the same as the information provided before the Cisco Express Forwarding enhancements.

The table below compares the **show adjacency internal** command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.
### show adjacency internal Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Router# show adjacency internal</strong> Protocol Interface Address</td>
<td><strong>Router# show adjacency internal</strong> Protocol Interface Address</td>
</tr>
<tr>
<td>IP FastEthernet1/1 20.0.0.2(5) 4 packets, 456 bytes</td>
<td>IP FastEthernet0/0 10.60.17.2(6) 0 packets, 0 bytes</td>
</tr>
<tr>
<td>003085641F11 0005F26F81D0800</td>
<td>epoch 0 sourced in sev-epoch 3</td>
</tr>
<tr>
<td>ARP 01:32:30 Epoch: 0</td>
<td>Encap length 14</td>
</tr>
<tr>
<td>Fast adjacency enabled IP redirect enabled IP mtu 1500 (0x0) Fixup disabled</td>
<td>Fast adjacency enabled [OK]</td>
</tr>
<tr>
<td>Adjacency pointer</td>
<td>L3 mtu 1500 Flags (0x100E) Fixup disabled</td>
</tr>
<tr>
<td>0x63148358/0x63148FD8</td>
<td>HWIDB/IDB pointers</td>
</tr>
<tr>
<td>IPv6 ND never Epoch: 0</td>
<td>IP redirect enabled Switching vector: IPv4 no fixup adv oce</td>
</tr>
<tr>
<td>0 packets, 0 bytes</td>
<td>Adjacency pointer 0x636F31A0</td>
</tr>
<tr>
<td>00D001E46800000055FAF2C0686DD IPv6 ND never</td>
<td>Next-hop 172.17.13.1 ...</td>
</tr>
<tr>
<td>0x629E16E0, refCount 5</td>
<td>IPV6 FastEthernet0/1 FE80::2D0:1FF:FEE4:686DD(13)</td>
</tr>
<tr>
<td>IPv6 FastEthernet0/1 FE80::2D0:1FF:FEE4:686DD(13)</td>
<td>0 packets, 0 bytes</td>
</tr>
<tr>
<td>0 packets, 0 bytes</td>
<td>003085641F11 0005F26F81D0800</td>
</tr>
<tr>
<td>00D001E46800000055FAF2C0686DD IPv6 ND never</td>
<td>epoch 0 sourced in sev-epoch 3</td>
</tr>
<tr>
<td>Epoch: 0</td>
<td>Encap length 14</td>
</tr>
<tr>
<td>Fast adjacency enabled IP redirect enabled IP mtu 1500 (0x0) Fixup disabled</td>
<td>Fast adjacency enabled [OK]</td>
</tr>
<tr>
<td>Adjacency pointer</td>
<td>L3 mtu 1500 Flags (0x100E) Fixup disabled</td>
</tr>
<tr>
<td>0x63148358/0x63148FD8</td>
<td>HWIDB/IDB pointers</td>
</tr>
<tr>
<td>IPv6 ND never Epoch: 0</td>
<td>IP redirect enabled Switching vector: IPv6 adjacency oce</td>
</tr>
<tr>
<td>0 packets, 0 bytes</td>
<td>Adjacency pointer 0x631C738</td>
</tr>
<tr>
<td>00D001E46800000055FAF2C0686DD IPv6 ND</td>
<td>Next-hop</td>
</tr>
<tr>
<td>0x629E1CE0, refCount 13</td>
<td></td>
</tr>
<tr>
<td>0x629E1CE0, refCount 13</td>
<td></td>
</tr>
<tr>
<td>Bucket 32</td>
<td></td>
</tr>
<tr>
<td>Adjacency flags 0x000000 Connection Id 0x000000</td>
<td></td>
</tr>
<tr>
<td>Adjacency flags 0x000000 Connection Id 0x000000</td>
<td></td>
</tr>
</tbody>
</table>

### show cef state

This feature provides the following changes to the output of the `show cef state` command:

- New output is more concise.
- Load sharing anti-polarization ID is added to the command output.
- The `show cef state` command adds a new `capabilities` keyword. Capability details now display with the new keyword.
The table below compares the `show cef state` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

### Table 59: `show cef state` Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show cef state</code></td>
<td>Router# <code>show cef state</code></td>
</tr>
<tr>
<td>CEF Status [RP]</td>
<td>CEF Status:</td>
</tr>
<tr>
<td>CEF enabled/running</td>
<td>RP instance</td>
</tr>
<tr>
<td>dCEF disabled/not running</td>
<td>common CEF enabled</td>
</tr>
<tr>
<td>CEF switching enabled/running</td>
<td>IPv4 CEF Status:</td>
</tr>
<tr>
<td>Always CEF switching:</td>
<td>CEF enabled/running</td>
</tr>
<tr>
<td>Always dCEF switching:</td>
<td>dCEF disabled/not running</td>
</tr>
<tr>
<td>Default CEF switching:</td>
<td>CEF switching enabled/running</td>
</tr>
<tr>
<td>Default dCEF switching:</td>
<td>universal per-destination load sharing algorithm, id A189DD49</td>
</tr>
<tr>
<td>Drop multicast packets:</td>
<td>IPv6 CEF Status:</td>
</tr>
<tr>
<td>no</td>
<td>CEF enabled/running</td>
</tr>
<tr>
<td>OK to punt packets:</td>
<td>dCEF disabled/not running</td>
</tr>
<tr>
<td>yes</td>
<td>original per-destination load sharing algorithm, id A189DD49</td>
</tr>
<tr>
<td>NVGEN CEF state:</td>
<td>RPR+/SSO standby capable:</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>fastsend() used:</td>
<td>IPC delayed func on SSO:</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>CEF NSF capable:</td>
<td>Checker auto-repair supported:</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>RPR+/SSO standby capable:</td>
<td>Crashdump on memory failure:</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>IPC delayed func on SSO:</td>
<td>Support load-sharing alg config:</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>FIB auto repair supported:</td>
<td>Blocking STANDBY_HOT until synced:</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>LRs not running at init time:</td>
<td>IPv4 CEF Capabilities:</td>
</tr>
<tr>
<td>no</td>
<td>Default CEF switching:</td>
</tr>
<tr>
<td>Hardware forwarding supported:</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>Always FIB switching:</td>
</tr>
<tr>
<td>Hardware forwarding in use:</td>
<td>no</td>
</tr>
<tr>
<td>no</td>
<td>Default dCEF switching:</td>
</tr>
<tr>
<td>Load-sharing pr. packet supported:</td>
<td>no</td>
</tr>
<tr>
<td>yes</td>
<td>Always dCEF switching:</td>
</tr>
<tr>
<td></td>
<td>Drop multicast packets:</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>OK to punt packets:</td>
</tr>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>NVGEN CEF state:</td>
</tr>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>fastsend() used:</td>
</tr>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Support L4 ports in load sharing:</td>
</tr>
<tr>
<td></td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Multicast (*.G) groups in CEF:</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>Install local entries from RIB:</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
</tbody>
</table>

IPv4 CEF Capabilities:

- Default CEF switching: yes
- Always FIB switching: no
- Default dCEF switching: no
- Always dCEF switching: no
- Drop multicast packets: no
- OK to punt packets: yes
- NVGEN CEF state: yes
- fastsend() used: yes
- L4 ports in load balancing support: yes

IPv6 CEF Capabilities:

- Default CEF switching: yes
- Always FIB switching: no
- Default dCEF switching: no
- Always dCEF switching: no
- Drop multicast packets: no
- OK to punt packets: yes
- NVGEN CEF state: yes
- fastsend() used: yes
- L4 ports in load balancing support: yes

---

2 This is the continuation of the output of the `show cef state capabilities` command.
show cef timers

This feature provides the following change to the output of the `show cef timers` command:

- The command output has been updated to reflect the new timers.

The table below compares the `show cef timers` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

### Table 60: show cef timers Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th></th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router# <code>show cef timers</code></td>
<td>Router# <code>show cef timers</code></td>
</tr>
<tr>
<td>CEF background process</td>
<td></td>
<td>CEF background process</td>
</tr>
<tr>
<td>Expiration Type</td>
<td>0.740 (parent)</td>
<td>13.248 (parent)</td>
</tr>
<tr>
<td></td>
<td>0.740 ARP throttle</td>
<td>13.248 FIB checkers: IPv4 scan-rib-ios scanner</td>
</tr>
<tr>
<td></td>
<td>0.908 adjacency update hwidb</td>
<td>13.248 FIB checkers: IPv4 scan-ios-rib scanner</td>
</tr>
<tr>
<td></td>
<td>0.908 slow resolution</td>
<td>13.248 FIB checkers: IPv6 scan-iods-rib scanner</td>
</tr>
<tr>
<td></td>
<td>8.572 <a href="">unknown:6240E510/0</a></td>
<td>Platform counter polling is not enabled</td>
</tr>
<tr>
<td>CEF FIB scanner process</td>
<td></td>
<td>IPv4 CEF background process</td>
</tr>
<tr>
<td>Expiration Type</td>
<td>5.764 (parent)</td>
<td>0.600 (parent)</td>
</tr>
<tr>
<td></td>
<td>5.764 checker scan-rib</td>
<td>0.600 ARP throttle</td>
</tr>
<tr>
<td></td>
<td>6.340 checker scan-sw-hw</td>
<td>0.600 adjacency update hwidb</td>
</tr>
<tr>
<td></td>
<td>49.588 checker scan-hw-sw</td>
<td></td>
</tr>
</tbody>
</table>

show ip cef epoch

This feature provides the following change to the output of the `show ip cef epoch` command:

The table below compares the `show ip cef epoch` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

### Table 61: show ip cef epoch Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th></th>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router# <code>show ip cef epoch</code></td>
<td>Router# <code>show ip cef epoch</code></td>
</tr>
<tr>
<td>CEF epoch information:</td>
<td></td>
<td>Table: Default</td>
</tr>
<tr>
<td></td>
<td>Table epoch: 0 (33 entries at this epoch)</td>
<td>Database epoch: 0 (24 entries at this epoch)</td>
</tr>
<tr>
<td></td>
<td>Adjacency table</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Table epoch: 0 (7 entries at this epoch)</td>
<td></td>
</tr>
</tbody>
</table>

show ipv6 cef epoch

This feature provides the following change to the output of the `show ipv6 cef epoch` command:
The table below compares the `show ipv6 cef epoch` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

**Table 62: show ipv6 cef epoch Command Output Before and After Cisco Express Forwarding Enhancements**

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ipv6 cef epoch</td>
<td>Router# show ipv6 cef epoch</td>
</tr>
<tr>
<td>CEF epoch information:</td>
<td>Table: Default</td>
</tr>
<tr>
<td>Table: Default</td>
<td>Database epoch: 1 (2 entries at this epoch)</td>
</tr>
<tr>
<td>Adjacency table</td>
<td></td>
</tr>
<tr>
<td>Table epoch: 0 (1 entries at this epoch)</td>
<td></td>
</tr>
</tbody>
</table>

**show ip cef unresolved detail**

This feature provides the following changes to the output of the `show ip cef unresolved detail` command:

- The new command output lists only unresolved prefixes.
- IPv4 and IPv6 are now separately addressed.
- Figures related to adjacencies are moved to the `show adjacency summary` command (see the `show adjacency summary`, on page 211).
- Mtrie data structure descriptions are moved to a new command, the `show ip cef tree` command (see the New Commands for the CEF Feature, on page 219).
- Nothing is displayed if no unresolved adjacencies exist.

The table below compares the `show ip cef unresolved detail` command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

**Table 63: show ip cef unresolved detail Command Output Before and After Cisco Express Forwarding Enhancements**

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ip cef unresolved detail</td>
<td>Router# show ip cef unresolved detail</td>
</tr>
<tr>
<td>IP CEF with switching (Table Version 59), flags=0x0</td>
<td>IPv4 CEF is enabled and running</td>
</tr>
<tr>
<td>34 routes, 0 reresolve, 0 unresolved (0 old, 0 new), peak 2</td>
<td>VRF Default</td>
</tr>
<tr>
<td>34 leaves, 22 nodes, 27640 bytes, 80 inserts, 46 invalidations</td>
<td>25 prefixes (25/0 fwd/non-fwd)</td>
</tr>
<tr>
<td>0 load sharing elements, 0 bytes, 0 references</td>
<td>Table id 0x0</td>
</tr>
<tr>
<td>universal per-destination load sharing algorithm, id</td>
<td>Database epoch: 0 (25 entries at this epoch)</td>
</tr>
<tr>
<td>DF940F94</td>
<td>101.1.1.1/32, epoch 0, flags rib only nolabel, rib defined all labels recursive via 102.2.2.2, unresolved</td>
</tr>
<tr>
<td>0 CEF resets, 0 revisions of existing leaves</td>
<td></td>
</tr>
<tr>
<td>Resolution Timer: Exponential (current 1s, peak 1s)</td>
<td></td>
</tr>
<tr>
<td>0 in-place/0 aborted modifications</td>
<td></td>
</tr>
<tr>
<td>refcounts: 5933 leaf, 5888 node</td>
<td></td>
</tr>
<tr>
<td>Table epoch: 0 (34 entries at this epoch)</td>
<td></td>
</tr>
<tr>
<td>Adjacency Table has 7 adjacencies</td>
<td></td>
</tr>
<tr>
<td>4 IPv4 adjacencies</td>
<td></td>
</tr>
<tr>
<td>3 IPv6 adjacencies</td>
<td></td>
</tr>
</tbody>
</table>
show ipv6 cef unresolved detail

This feature provides the following changes to the output of the show ipv6 cef unresolved detail command:

- Figures related to adjacencies are moved to the show adjacency summary command (see the show adjacency summary, on page 211).
- Nothing is displayed in the output if there are no unresolved adjacencies.

The table below compares the show ipv6 cef unresolved detail command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

Table 64: show ipv6 cef unresolved detail Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
</table>
| Router# show ipv6 cef unresolved detail  
IPv6 CEF is enabled and running  
Slow processing intvl = 1 seconds backoff level  
current/max 0/0  
0 unresolved prefixes, 0 requiring adjacency update  
IPv6 CEF default table  
20 prefixes | Router# show ipv6 cef unresolved detail  
IPv6 CEF is enabled and running centrally.  
VRF Default  
6 prefixes (6/0 fwd/non-fwd)  
Table id 0x1E000000  
Database epoch: 0 (6 entries at this epoch)  
2002::/128, epoch 0, flags rib only nolabel, rib defined all labels  
recursive via 2003::BEEF, unresolved |

show ipv6 cef non-recursive

This feature provides the following change to the output of the show ipv6 cef non-recursive command:

- The path information is changed to be more consistent with IPv4 path information.

The table below compares the show ipv6 cef non-recursive command output before ("Old" heading) and after ("New" heading) the Cisco Express Forwarding enhancements.

Table 65: show ipv6 cef non-recursive Command Output Before and After Cisco Express Forwarding Enhancements

<table>
<thead>
<tr>
<th>Old</th>
<th>New</th>
</tr>
</thead>
</table>
| Router# show ipv6 cef non-recursive  
2001:1:12::/64  
nexthop FE80::2D0:1FF:FEE4:6800 FastEthernet0/1  
2001:2:13::/64  
nexthop FE80::2D0:1FF:FEE4:6800 FastEthernet0/1  
2001:2:22::/64  
nexthop FE80::2D0:1FF:FEE4:6800 FastEthernet0/1 | Router# show ipv6 cef non-recursive  
::/0  
no route  
::/127  
discard  
2003::/128  
nexthop 3003::DEAD Ethernet2/0  
FE80::/10  
receive for Null0  
FF00::/8  
multicast |
New Commands for the CEF Feature

This section does not contain all new Cisco Express Forwarding commands. It contains only new commands introduced with the Cisco Express Forwarding enhancements to provide the same level of information that was available with the use of other commands before the Cisco Express Forwarding enhancements were implemented. Sample output is provided for the following new commands:

- show adjacency link
- show adjacency
- show adjacency detail
- show cef tree
- test cef table consistency detail

**show adjacency link**

The `show adjacency link ipv4` command and the `show adjacency link ipv6` command display information about IPv4 and IPv6 traffic, respectively, in the Cisco Express Forwarding adjacency table or the hardware Layer 3-switching adjacency table.

Per-protocol and interface summary adjacency information was moved from the `show adjacency summary` command to the `show adjacency link` command.

Following is sample output of the `show adjacency link ipv4` command.

```
Router# show adjacency link ipv4
Protocol Interface Address
IP  FastEthernet0/0  10.60.17.2(6)
IP  FastEthernet0/0  10.60.17.20(6)
IP  FastEthernet0/0  10.60.17.254(7)
IP  FastEthernet0/1  172.17.22.1(16)
```

Following is sample output of the `show adjacency link ipv6` command.

```
Router# show adjacency link ipv6
Protocol Interface Address
IPV6 FastEthernet0/1  2001:2:22::1(6)
IPV6 FastEthernet0/1  2001:2:22::2(3) (incomplete)
IPV6 FastEthernet0/1  FE80::2D0:1FF:FEE4:6800(14)
IPV6 Serial3/0 point2point(7)
IPV6 Serial3/1 point2point(10)
```

**show adjacency**

The `show adjacency prefix` command shows adjacency information for the specified prefix.

Following are sample outputs from the `show adjacency prefix` command for an IPv4 prefix and an IPv6 prefix:

```
Router# show adjacency 172.17.22.1/24
Protocol Interface Address
IP  FastEthernet0/1  172.17.22.1(16)
Router# show adjacency 2001:2:22::1/64
Protocol Interface Address
IPV6 FastEthernet0/1  2001:2:22::1(6)
```
show adjacency detail

The `show adjacency prefix detail` command provides additional adjacency information for a specified prefix. Information about the adjacency epoch was removed from the `show ip cef epoch` and `show ipv6 cef epoch` commands and is available from the `show adjacency prefix detail` command.

Following are sample outputs from the `show adjacency prefix detail` command for an IPv4 prefix and an IPv6 prefix:

```
Router# show adjacency 172.17.22.1/24 detail

Protocol Interface    Address                        epoch 0 sourced in sev-epoch 3
                      172.17.22.1(16)                        0 packets, 0 bytes
                      172.17.22.16(16)                       Encap length 14
                      00D001E4680000055FAF2C060800          ARP

Router# show adjacency 2001:2:22::1/64 detail

Protocol Interface    Address                        epoch 0 sourced in sev-epoch 3
                      2001:2:22::1(6)                         0 packets, 0 bytes
                      2001:2:22::16(6)                        Encap length 14
                      00D001E4680000055FAF2C0686DD          IPv6 ND
```

show cef tree

The `show {ip | ipv6} cef tree` command displays summary information about the underlying data structures representing the specified FIB tree.

Mtrie data structure information was removed from several commands for the implementation of the Cisco Express Forwarding enhancements. This command provides the Mtrie information removed from the `show ip cef summary`, `show ip cef internal`, and `show ip cef detail` commands.

Following is sample output for the `show ip cef tree` command:

```
Router# show ip cef tree
VRF Default tree information:
MTRIE/RTREE storing IPv4 addresses
24 entries (24/0 fwd/non-fwd)
Forwarding tree:
  Forwarding lookup routine: IPv4 mtrie 8-8-8-8 optimized
  33 inserts, 9 deletes
  8-8-8-8 stride pattern
  short mask protection enabled for <= 4 bits without process suspension
  24 leaves (672 bytes), 22 nodes (22880 bytes)
  25208 total bytes
  leaf ops: 33 inserts, 9 deletes
  leaf ops with short mask protection: 2 inserts, 1 delete
  per-prefix length stats: lookup off, insert off, delete off
  refcounts: 1356 leaf, 1324 node
  node pools:
    pool[C/8 bits]: 22 allocated (0 failed), 22880 bytes
Non-Forwarding tree:
  38 inserts, 38 deletes
  0 leaves (0 bytes), 0 nodes (0 bytes)
  0 total bytes
```
The `test cef table consistency detail` command displays recorded Cisco Express Forwarding consistency records found by the following detection mechanisms: lc-detect, scan-rib-ios, scan-ios-rib, scan-lc-rp, and scan-rp-lc. The scan-lc-rp and scan-rp-lc detection mechanisms are available only on routers with line cards. You can configure the Cisco Express Forwarding prefix consistency-detection mechanisms using the `cef table consistency-check` command.

This command provides output that replaces the output provided by the removed and obsolete `show ip cef inconsistency records`, `show ip cef inconsistency now`, and `show ip cef inconsistency now detail` commands.

Following is sample output for the `test cef table consistency detail` command:

```
Router# test cef table consistency detail
full-scan-rib-ios: Checking IPv4 RIB to FIB consistency
full-scan-rios-ib: FIB checked 12 prefixes, and found 0 missing.
full-scan-ios-rib: Checking IPv4 FIB to RIB consistency
full-scan-ios-rib: Checked 12 FIB prefixes in 1 pass, and found 0 extra.
full-scan-rp-lc: Sent 26 IPv4 prefixes to linecards in 1 pass
full-scan-rp-lc: Initiated IPv4 FIB check on linecards..4..1..0..
full-scan-rp-lc: FIB IPv4 check completed on linecards..1..0..4..
full-scan-rp-lc: Linecard 4 checked 26 IPv4 prefixes (ignored 0). 0 inconsistent.
full-scan-rp-lc: Linecard 1 checked 26 IPv4 prefixes (ignored 0). 0 inconsistent.
full-scan-rp-lc: Linecard 0 checked 26 IPv4 prefixes (ignored 0). 0 inconsistent.
full-scan-rib-ios: Checking IPv6 RIB to FIB consistency
full-scan-rios-ib: FIB checked 16 prefixes, and found 5 missing.
full-scan-ios-rib: Checking IPv6 FIB to RIB consistency
full-scan-ios-rib: Checked 11 FIB prefixes in 1 pass, and found 0 extra.
full-scan-rp-lc: Sent 16 IPv6 prefixes to linecards in 1 pass
full-scan-rp-lc: Initiated IPv6 FIB check on linecards..4..1..0..
full-scan-rp-lc: FIB IPv6 check completed on linecards..1..4..0..
full-scan-rp-lc: Linecard 4 checked 11 IPv6 prefixes (ignored 0). 0 inconsistent.
full-scan-rp-lc: Linecard 1 checked 11 IPv6 prefixes (ignored 0). 0 inconsistent.
full-scan-rp-lc: Linecard 0 checked 11 IPv6 prefixes (ignored 0). 0 inconsistent.
No IPv4 inconsistencies found, check took 00:00:01.444
Warning: 5 IPv6 inconsistencies found, check took 00:00:01.240
```

### Unchanged CEF show Commands

Some Cisco Express Forwarding `show` commands related to the Cisco Express Forwarding enhancements were not changed with the introduction of the enhancements. The output of the following commands was not changed:

- `show cef idb`
- `show cef interface`
- `show ip cef`
- `show ip cef non-recursive`
- `show ipv6 cef`
- `show ipv6 cef adjacency`
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Description of Cisco Express Forwarding commands</td>
<td>Cisco IOS IP Switching Command Reference</td>
</tr>
<tr>
<td>Description of Cisco Express Forwarding IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Information on MFI enhancements</td>
<td>MPLS Infrastructure Changes: Introduction of MFI and Removal of MPLS LSC and LC-ATM Features</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for CEF Enhancements

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.
### Table 66: Feature Information for Cisco Express Forwarding

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Express Forwarding Enhancements: Introduction of CLI Changes and Removal of IPv4 Fast Switching</td>
<td>12.4(20)T</td>
<td></td>
</tr>
</tbody>
</table>
The purpose of this document is to describe the changes based on the Cisco Express Forwarding infrastructure scalability enhancements that have been implemented to adapt to the evolution of the Internet and to support new platforms and features. The changes are the removal of IP fast switching and the introduction of command line interface (CLI) modifications.

This document lists Cisco Express Forwarding CLI commands that are removed, replaced, changed, and new. To help you transition to the new CLI format, the document illustrates the output for new commands and changed commands.

Enhancements to Cisco Express Forwarding enable it to operate with the Multiprotocol Label Switching (MPLS) Forwarding Infrastructure (MFI) and guarantee consistency across Cisco IOS release trains. Cisco Express Forwarding infrastructure changes were introduced and implemented in the Cisco IOS 12.2(25)S-based releases and were added for T releases in Cisco IOS Release 12.4(20)T.

Cisco Express Forwarding is an advanced Layer 3 IP switching technology. It optimizes network performance and scalability for all kinds of networks: those that carry small amounts of traffic and those that carry large amounts of traffic in complex patterns, such as the Internet, and networks characterized by intensive web-based applications or interactive sessions.

In Cisco IOS Release 12.4(20)T, this feature was introduced.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Describes changes based on Cisco Express Forwarding infrastructure scalability enhancements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removal of IP fast switching and introduction of CLI modifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lists removed, replaced, changed, and new CLI commands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Illustrates output for new and changed commands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enhancements enable operation with MPLS Forwarding Infrastructure (MFI) and consistency across releases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changes introduced and implemented in Cisco IOS 12.2(25)S-based releases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added for T releases in Cisco IOS Release 12.4(20)T.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimizes network performance and scalability.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suitable for various networks, including the Internet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Characterized by intensive web-based applications or interactive sessions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduced in Cisco IOS Release 12.4(20)T.</td>
</tr>
</tbody>
</table>
adjacency -- A relationship formed between selected neighboring routers and end nodes for the purpose of exchanging routing information. Adjacency is based upon the use of a common media segment by the routers and nodes involved.

Cisco Express Forwarding -- A Layer 3 switching technology. Cisco Express Forwarding can also refer to central Cisco Express Forwarding mode, one of two modes of Cisco Express Forwarding operation. Cisco Express Forwarding enables a Route Processor (RP) to perform express forwarding. Distributed Cisco Express Forwarding is the other mode of Cisco Express Forwarding operation.

distributed Cisco Express Forwarding -- A type of Cisco Express Forwarding switching in which line cards (such as Versatile Interface Processor (VIP) line cards) maintain identical copies of the forwarding information base (FIB) and adjacency tables. The line cards perform the express forwarding between port adapters; this relieves the Route Switch Processor of involvement in the switching operation.

FIB -- forwarding information base. A component of Cisco Express Forwarding. The router uses the FIB lookup table to make destination-based switching decisions during Cisco Express Forwarding operation. The router maintains a mirror image of the forwarding information in an IP routing table.

IDB -- Interface Descriptor Block. An IDB is a special control structure internal to the Cisco IOS software that contains information such as the IP address, interface state, and packet statistics. Cisco IOS software maintains one IDB for each interface present on a platform and one IDB for each subinterface.

IPRM -- IP Rewrite Manager. The IPRM is a module that manages the interaction between Cisco Express Forwarding, the IP Label Distributions Modules (LDM), and the Multiprotocol Label Switching (MPLS) Forwarding Infrastructure (MFI).

Mtrie -- multiway tree. The Mtrie is a data structure in which routes are stored. The Mtrie is part of the IP lookup algorithm used in Cisco Express Forwarding.

prefix -- The network address portion of an IP address. A prefix is specified by a network and mask and is generally represented in the format network/mask. The mask indicates which bits are the network bits. For example, 10.0.0.0/16 means that the first 16 bits of the IP address are masked, making them the network bits. The remaining bits are the host bits. In this example, the network number is 10.0.

RIB -- Routing Information Base. A central repository of routes that contains Layer 3 reachability information and destination IP addresses or prefixes. The RIB is also known as the routing table.

RP -- Route Processor. The processor module in the Cisco 7000 series routers that contains the CPU, system software, and most of the memory components that are used in the router. It is sometimes called a supervisory processor.

VRF -- A Virtual Private Network (VPN) routing/forwarding instance. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a provider edge (PE) router.
IPv6 CEF-Switched Tunnels

Cisco Express Forwarding switching can be used for IPv6 manually configured tunnels.

- Finding Feature Information, page 227
- Information About IPv6 CEF-Switched Tunnels, page 227
- Additional References, page 228
- Feature Information for IPv6 CEF-Switched Tunnels, page 229

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About IPv6 CEF-Switched Tunnels

IPv6 Manually Configured Tunnels

A manually configured tunnel is equivalent to a permanent link between two IPv6 domains over an IPv4 backbone. The primary use is for stable connections that require regular secure communication between two edge devices or between an end system and an edge device, or for connection to remote IPv6 networks.

An IPv6 address is manually configured on a tunnel interface, and manually configured IPv4 addresses are assigned to the tunnel source and the tunnel destination. The host or device at each end of a configured tunnel must support both the IPv4 and IPv6 protocol stacks. Manually configured tunnels can be configured between border devices or between a border device and a host. Cisco Express Forwarding switching can be used for IPv6 manually configured tunnels, or Cisco Express Forwarding switching can be disabled if process switching is needed.
# Additional References

## Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Tunnels</td>
<td>Interface and Hardware Component Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
</tbody>
</table>

## Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for IPv6 CEF-Switched Tunnels

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.

Table 67: Feature Information for IPv6 CEF-Switched Tunnels

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEFv6 Switching for 6to4 Tunnels</td>
<td>12.2(28)SB</td>
<td>Cisco Express Forwarding switching can be used for IPv6 manually configured tunnels.</td>
</tr>
<tr>
<td></td>
<td>12.2(25)SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(18)SXE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(12)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0(1)S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE 3.9(S)</td>
<td></td>
</tr>
<tr>
<td>IPv6 Switching: CEFv6 Switched Automatic IPv4-Compatible Tunnels</td>
<td>12.2(2)T</td>
<td>IPv6 supports this feature.</td>
</tr>
<tr>
<td></td>
<td>12.2(52)SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(17a)SX1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE 3.9(S)</td>
<td></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>IPv6 Switching: CEFv6 Switched Configured IPv6 over IPv4 Tunnels</td>
<td>12.2(13)T 12.2(52)SG 12.2(33)SRA 12.2(17a)SX1 Cisco IOS XE 3.9(S)</td>
<td>IPv6 supports this feature.</td>
</tr>
<tr>
<td>IPv6 Switching: CEFv6 Switched ISATAP Tunnels</td>
<td>12.2(15)T 12.2(25)SG 3.2.0SG 15.0(2)SG 12.2(33)SRA 12.2(17a)SX1 Cisco IOS XE 3.9(S)</td>
<td>IPv6 supports this feature.</td>
</tr>
</tbody>
</table>