LISP Interface Configuration Commands

- ip lisp source-locator, on page 2
- ipv6 lisp source-locator, on page 4
- lisp mobility, on page 6
ip lisp source-locator

To configure a source locator to be used for IPv4 Locator/ID Separation Protocol (LISP) encapsulated packets, use the `ip lisp source-locator` command in interface configuration mode. To remove the configured source locator, use the `no` form of this command.

```
ip lisp source-locator interface
no ip lisp source-locator interface
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface</code></td>
<td>The name of the interface whose IPv4 address should be used as the source locator address for outbound LISP encapsulated packets.</td>
</tr>
</tbody>
</table>

Command Default

The IPv4 address of the outbound interface is used by default as the source locator address for outbound LISP encapsulated packets.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(1)XB</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Release 2.5.1XA</td>
<td>This command was integrated into Cisco IOS XE Release 2.5.1XA</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.3.0S</td>
<td>This command was integrated into Cisco IOS XE Release 3.3.0S.</td>
</tr>
<tr>
<td>15.1(4)M</td>
<td>This command was integrated into Cisco IOS Release 15.1(4)M.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When you send a LISP-encapsulated packet (data or control message), a destination lookup is done to determine the appropriate outgoing interface. By default, the IPv4 address of this outgoing interface is used as the source locator for the outbound LISP encapsulated packet.

It might be necessary to use the IPv4 address of a different interface as the source locator for the outbound LISP-encapsulated packets rather than that of the outgoing interface. For example, when an Ingress Tunnel Router (ITR) has multiple egress interfaces, you can configure a loopback interface for stability purposes and instruct the ITR to use the address of this loopback interface as the source locator for the outbound LISP-encapsulated packets rather than one or both of the physical interface addresses. The use of this command is also important for maintaining locator consistency between the two xTRs when rloc-probing is used.

Examples

The following example shows how to configure the ITR to use the IPv4 address of interface Loopback0 as the source-locator when LISP encapsulated packets are sent out interfaces FastEthernet0/0 and FastEthernet1/0:

```
Router(config)# interface FastEthernet0/0
Router(config-if)# ip lisp source-locator Loopback0
Router(config-if)# interface FastEthernet1/0
Router(config-if)# ip lisp source-locator Loopback0
```
In Cisco IOS XE Releases, the FastEthernet interfaces require three values to define the interface (for example, FastEthernet 1/0/1).

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ipv4 itr</td>
<td>Configures the router to act as an IPv4 LISP ITR.</td>
</tr>
</tbody>
</table>
ipv6 lisp source-locator

To configure a source locator to be used for IPv6 Locator/ID Separation Protocol (LISP)-encapsulated packets, use the `ipv6 lisp source-locator` command in interface configuration mode. To remove the configured source locator, use the `no` form of this command.

```
interface
no ipv6 lisp source-locator
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface</code></td>
<td>The name of the interface whose IPv6 address should be used as the source</td>
</tr>
<tr>
<td></td>
<td>locator address for outbound LISP-encapsulated packets.</td>
</tr>
</tbody>
</table>

Command Default

The IPv6 address of the outbound interface is used by default as the source locator address for outbound LISP encapsulated packets.

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1(1)XB1</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE 2.5.1XA</td>
<td>This command was integrated into Cisco IOS XE Release 2.5.1XA.</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.3.0S</td>
<td>This command was integrated into Cisco IOS XE Release 3.3.0S.</td>
</tr>
<tr>
<td>15.1(4)M</td>
<td>This command was integrated into Cisco IOS Release 15.1(4)M.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When a LISP-encapsulated packet (data or control message) is sent, a destination lookup is done to determine the appropriate outgoing interface. By default, the IPv6 address of this outgoing interface is used as the source locator for the outbound LISP encapsulated packet.

It might be necessary to use the IPv6 address of a different interface as the source locator for the outbound LISP-encapsulated packets rather than that of the outgoing interface. For example, when an Ingress Tunnel Router (ITR) has multiple egress interfaces you may configure a loopback interface for stability purposes and instruct the ITR to use the address of this loopback interface as the source locator for the outbound LISP-encapsulated packets rather than one or both of the physical interface addresses. The use of this command is also important for maintaining locator consistency between the two xTRs when rloc-probing is used.

Examples

The following example shows how to configure the ITR to use the IPv6 address of interface Loopback0 as the source-locator when sending LISP-encapsulated packets out interfaces FastEthernet0/0 and FastEthernet1/0.

```
Router(config)# interface FastEthernet0/0
Router(config-if)# ipv6 lisp source-locator Loopback0
Router(config-if)# interface FastEthernet1/0
Router(config-if)# ipv6 lisp source-locator Loopback0
```
In Cisco IOS XE Releases, the FastEthernet interfaces require three values to define the interface (for example, FastEthernet 1/0/1).

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ipv6 itr</td>
<td>Configures the router to act as an IPv6 LISP ITR.</td>
</tr>
</tbody>
</table>
lisp mobility

To configure an interface on an Ingress Tunnel Router (ITR) to participate in Locator/ID Separation Protocol (LISP) virtual machine (VM)-mobility (dynamic-EID roaming) for a referenced dynamic-EID policy, use the `lisp mobility` command in interface configuration mode. To remove the configuration, use the `no` form of this command.

```
lisp mobility {dynamic-eid-name [[nbr-proxy-reply requests number]]|discover arp |liveness |{test |ttl value}}
no lisp mobility {dynamic-eid-name [[nbr-proxy-reply requests number]]|discover arp |liveness |{test |ttl}}
```

Syntax Description

- `dynamic-eid-name` Name of the LISP dynamic-EID policy to apply to this interface.
- `nbr-proxy-reply` The neighbor proxy reply behavior for the dynamic-EID group.
- `requests number` Sends neighbor proxy reply after reaching the request threshold and the number of the requests threshold. The range is from 0 to 5. The default is 1.
- `discover` Configures the mobility dynamic-EID discover settings.
- `arp` Dynamic-EID discover through ARP events on this interface.
- `liveness` Configures mobility liveness settings.
- `test` Performs liveness test on dynamic EID discovered on this interface.
- `ttl value` Configures the Time to Live (TTL) in the liveness test packet. The value range is from 2 to 255.

Command Default

By default, the interface does not participate in LISP VM-mobility (dynamic-EID roaming).

Command Modes

Interface configuration (config-if)

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3(1)T</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.8S</td>
<td>This command was integrated into Cisco IOS XE Release 3.8S.</td>
</tr>
</tbody>
</table>

Usage Guidelines

In order for an interface on a LISP ITR/ETR (xTR) to participate in LISP VM-mobility (dynamic-EID roaming), it must be associated by name with a specific LISP dynamic-EID roaming policy. A LISP dynamic-EID roaming policy is configured using the `dynamic-eid` command. This policy is then associated with an interface using the `lisp mobility` command, where the `dynamic-eid-name` argument provides the association.

When a packet is received on an interface configured for LISP VM-mobility, the packet is considered a candidate for LISP VM-mobility (dynamic-EID roaming) and its source address is compared against the EID prefix in the database-mapping entry included in the dynamic-eid roaming policy. If there is a match, the detected dynamic-EID roaming policy is registered with the mapping system and the packet is LISP encapsulated if the destination is an EID or it is forwarded natively.
Multiple **lisp mobility** commands referring to different LISP dynamic-EID policies can be applied to the same interface.

Note

The following caveats apply to LISP VM-mobility:

- When a dynamic EID will be roaming across subnets, the dynamic-EID prefix must be "more-specific" than the subnet configured on the interface.

- All LISP VM-router interfaces (the interface the dynamic EID will roam to) must have the same MAC address. Interfaces can be configured with the following command: `mac-address 0000.0e1d.010c`

- Note that any MAC address can be used; the MAC address in the example above, which approximates "EID" (0e1d) and "LOC" (010c), is an example.

Note

This feature is available for only IPv4 at this time. Support for IPv6, including necessary changes for IPv6 neighbor discovery (ND) has not yet been implemented.

Note

Any dynamic-EID prefixes configured using **lisp mobility** commands on the same interface must be equal or more specific prefixes than any subnet prefixes. For example, if an interface has a base subnet of /24, then the dynamic-EID prefix must be /24 or greater.

Note

When **lisp mobility** `dynamic-eid-name` is configured:

- Dynamic-EID discovery from arp packets is enabled by default in across subnet mode (ASM). Use the `no` form of the command to disable dynamic-EID discovery from arp packets.

- **liveness test** is enabled by default in ASM mode. The liveness test sends a ping every 60 seconds to the dynamic EIDs to check if the dynamic EID is attached to the subnet. Use the `no` form of the command to disable the liveness test on the interface for dynamic EIDs.

Example

The following example configures the Ethernet2/0 interface to use the **Site-1** policy defined under the LISP dynamic-EID configuration.

```
Device(config)# interface Ethernet2/0
Device(config-if)# lisp mobility site-1
```

The following example shows output for interface Ethernet2/0:

```
! interface Ethernet2/0
  mac-address 0000.0d0e.010c
  ip address 22.1.0.2 255.255.255.0
```
```
lisp mobility site-1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic-eid</td>
<td>Configures a LISP VM-mobility (dynamic-EID roaming) policy.</td>
</tr>
</tbody>
</table>