

IPv6 Routing: Route Redistribution

IPv6 route redistribution supports redistributing routes into an IPv6 IS-IS routing process and redistributing IPv6 IS-IS routes between IS-IS levels.

- Finding Feature Information, on page 1
- Information About IPv6 Routing: Route Redistribution, on page 1
- How to Configure IPv6 Routing: Route Redistribution, on page 2
- Configuration Examples for IPv6 Routing: Route Redistribution, on page 5
- Additional References for IPv6 Routing: Route Redistribution, on page 8
- Feature Information for IPv6 Routing: Route Redistribution, on page 9

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see **Bug Search** Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About IPv6 Routing: Route Redistribution

IS-IS Enhancements for IPv6

IS-IS in IPv6 functions the same and offers many of the same benefits as IS-IS in IPv4. IPv6 enhancements to IS-IS allow IS-IS to advertise IPv6 prefixes in addition to IPv4 and OSI routes. Extensions to the IS-IS command-line interface (CLI) allow configuration of IPv6-specific parameters. IPv6 IS-IS extends the address families supported by IS-IS to include IPv6, in addition to OSI and IPv4.

IS-IS in IPv6 supports either single-topology mode or multiple topology mode.

IPv6 IS-IS Route Redistribution

IS-IS for IPv6 supports redistributing routes into an IPv6 IS-IS routing process and redistributing IPv6 IS-IS routes between IS-IS levels.

Preserving Metrics During Redistribution

When ISIS redistributes a route, the prefix can be preserved as the original route installed in the routing information base (RIB) by using the options **rib-metric-as-external** or **rib-metric-as-internal** for the **metric-type** keyword in the **redistribute** command. The options are allowed when ISIS redistributes routes from any routing process, including another ISIS process.

How to Configure IPv6 Routing: Route Redistribution

Redistributing Routes into an IPv6 IS-IS Routing Process

SUMMARY STEPS

- 1. enable
- **2**. configure terminal
- 3. router isis area-tag
- 4. address-family ipv6 [unicast]
- **5.** redistribute *source-protocol* [*process-id*] [metric *metric-value*] [metric-type *type-value*] [route-map *map-tag*]
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	router isis area-tag	Enables IS-IS for the specified IS-IS routing process, and
	Example:	enters router configuration mode.
	Device(config)# router isis area2	
Step 4	address-family ipv6 [unicast]	Specifies the IPv6 address family, and enters address family
	Example:	configuration mode.

	Command or Action	Purpose
	Device(config-router)# address-family ipv6	• unicast —(Optional) Specifies the unicast IPv6 unicast address family. This is the default option.
Step 5	<pre>redistribute source-protocol [process-id] [metric metric-value] [metric-type type-value] [route-map map-tag] Example: Device(config-router-af)# redistribute bgp 64500 metric 100 route-map isismap</pre>	 Redistributes routes from the specified protocol into the IS-IS process. <i>source-protocol</i>—Can be one of the following: bgp, connected, isis, rip or static. <i>process-id</i>—(Optional) Routing process name. metric <i>metric-value</i>—Redistributes routes based on the metric value. metric-type <i>type-value</i>—Specifies the link type, which can be the following: external to set an external ISIS metric type, internal to set an internal ISIS metric type, rib-metric-as-external to set metric type to external and use the RIB metric, and rib-metric-as-internal to set metric type to internal and use the RIB metric.
Step 6	<pre>end Example: Device(config-router-af)# end</pre>	Exits address family configuration mode and returns to privileged EXEC mode.

Redistributing IPv6 IS-IS Routes Between IS-IS Levels

Perform this task to redistribute IPv6 routes learned at one IS-IS level into a different level.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. router isis area-tag
- 4. address-family ipv6 [unicast]
- **5.** redistribute isis [process-id] {level-1 | level-2} into {level-1 | level-2} distribute-list list-name
- 6. end

DETAILED STEPS

	Command or Action	Purpose
Step 1 enable		Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	

	Command or Action	Purpose	
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Device# configure terminal		
Step 3	router isis area-tag	Enables IS-IS for the specified IS-IS routing process, and	
	Example:	enters router configuration mode.	
	Device(config)# router isis area2		
Step 4	address-family ipv6 [unicast]	Specifies the IPv6 address family, and enters address family	
	Example:	configuration mode.	
	<pre>Device(config-router)# address-family ipv6</pre>	• unicast —(Optional) Specifies the unicast IPv6 unicast address family. This is the default option.	
Step 5	redistribute isis [process-id] {level-1 level-2} into {level-1 level-2} distribute-list list-name	Redistributes IPv6 routes from one IS-IS level into anoth IS-IS level.	
	Example:	• By default, the routes learned by Level 1 instances are redistributed by the Level 2 instance.	
	Device(config-router-af)# redistribute isis level-1		
	into level-2	Note The <i>protocol</i> argument must be isis in this	
		configuration of the redistribute command.	
		Only the arguments and keywords relevant to this task are specified here.	
Step 6	end	Exits address family configuration mode and returns to	
F	Example:	privileged EXEC mode.	
	Device(config-router-af)# end		
	bevice (config-foucer-al)# end		

Verifying IPv6 IS-IS Configuration and Operation

SUMMARY STEPS

- 1. enable
- **2**. show ipv6 protocols [summary]
- **3**. show isis [process-tag] [ipv6 | *] topology
- 4. show clns [process-tag] neighbors interface-type interface-number] [area] [detail]
- 5. show clns area-tag is-neighbors [type number] [detail]
- 6. show isis [process-tag] database [level-1] [level-2] [l1] [l2] [detail] [lspid]
- 7. show isis ipv6 rib [*ipv6-prefix*]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	• Enter your password if prompted.
	Device> enable	
Step 2	show ipv6 protocols [summary]	Displays the parameters and current state of the active IPv6
	Example:	routing processes.
	Device# show ipv6 protocols	
Step 3	show isis [process-tag] [ipv6 *] topology	Displays a list of all connected routers running IS-IS in all
	Example:	areas.
	Device# show isis topology	
Step 4	show clns [process-tag] neighbors interface-type interface-number] [area] [detail]	Displays end system (ES), intermediate system (IS), and multitopology IS-IS (M-ISIS) neighbors.
	Example:	
	Device# show clns neighbors detail	
Step 5	show clns area-tag is-neighbors [type number] [detail]	Displays IS-IS adjacency information for IS-IS neighbors.
	Example:	• Use the detail keyword to display the IPv6 link-local
	Device# show clns is-neighbors detail	addresses of the neighbors.
Step 6	show isis [process-tag] database [level-1] [level-2] [11]	Displays the IS-IS link-state database.
	[12] [detail] [lspid]	• In this example, the contents of each LSP are displayed
	Example:	using the detail keyword.
	Device# show isis database detail	
Step 7	show isis ipv6 rib [ipv6-prefix]	Displays the IPv6 local RIB.
	Example:	
	Device# show isis ipv6 rib	

Configuration Examples for IPv6 Routing: Route Redistribution

Example: Redistributing Routes into an IPv6 IS-IS Routing Process

The following example redistributes IPv6 BGP routes into the IPv6 IS-IS Level 2 routing process:

```
router isis
address-family ipv6
redistribute bgp 64500 metric 100 route-map isismap
exit
```

Example: Redistributing IPv6 IS-IS Routes Between IS-IS Levels

The following example redistributes IPv6 IS-IS Level 1 routes into the IPv6 IS-IS Level 2 routing process:

```
router isis
address-family ipv6
redistribute isis level-1 into level-2
```

Example: Configuring IS-IS for IPv6

In the following example, output information about the parameters and current state of that active IPv6 routing processes is displayed using the **show ipv6 protocols**command:

```
Device# show ipv6 protocols
IPv6 Routing Protocol is "connected"
IPv6 Routing Protocol is "static"
IPv6 Routing Protocol is "isis"
 Interfaces:
   GigabitEthernet0/0/3
   GigabitEthernet0/0/1
   Serial1/0/1
   Loopback1 (Passive)
   Loopback2 (Passive)
   Loopback3 (Passive)
    Loopback4 (Passive)
   Loopback5 (Passive)
  Redistribution:
   Redistributing protocol static at level 1
  Address Summarization:
   L2: 2001:DB8:33::/16 advertised with metric 0
   L2: 2001:DB8:44::/16 advertised with metric 20
   L2: 2001:DB8:66::/16 advertised with metric 10
    L2: 2001:DB8:77::/16 advertised with metric 10
```

In the following example, output information about all connected routers running IS-IS in all areas is displayed using the **show isis topology** command:

Device# show is IS-IS paths to	-	51		
-	Metric	Next-Hop	Interface	SNPA
0000.0000.000C				
0000.0000.000D	20	0000.0000.00AA	Se1/0/1	*HDLC*
0000.0000.000F	10	0000.0000.000F	GE0/0/1	0050.e2e5.d01d
0000.0000.00AA	10	AA00.0000.00AA	Se1/0/1	*HDLC*
IS-IS paths to	level-2	routers		
System Id	Metric	Next-Hop	Interface	SNPA
A000.0000.000A	10	A000.0000.000A	GE0/0/3	0010.f68d.f063
0000.0000.000B	20	A000.0000.000A	GE0/0/3	0010.f68d.f063
0000.0000.000C				
0000.0000.000D	30	A000.0000.000A	GE0/0/3	0010.f68d.f063
0000.0000.000E	30	0000.0000.000A	GE0/0/3	0010.f68d.f063

In the following example, output information to confirm that the local router has formed all the necessary IS-IS adjacencies with other IS-IS neighbors is displayed using the **show clns is-neighbors**command. To display the IPv6 link-local addresses of the neighbors, specify the **detail** keyword.

```
Device# show clns is-neighbors detail
System Id
              Interface
                         State Type Priority Circuit Id
                                                                   Format
0000.0000.00AA Se1/0/1
                        Up
                                                00
                                                                   Phase V
                                 L1 0
 Area Address(es): 49.0001
 IPv6 Address(es): FE80::YYYY:D37C:C854:5
 Uptime: 17:21:38
0000.0000.000F Et0/0/1
                                                0000.0000.000C.02 Phase V
                          Up
                                 L1
                                      64
 Area Address(es): 49.0001
 IPv6 Address(es): FE80::XXXX:E2FF:FEE5:D01D
 Uptime: 17:21:41
                                                0000.0000.000C.01 Phase V
0000.0000.000A Et0/0/3
                          Up
                                 L2
                                      64
 Area Address(es): 49.000b
  IPv6 Address(es): FE80::ZZZZ:F6FF:FE8D:F063
 Uptime: 17:22:06
```

In the following example, detailed output information that displays both end system (ES) and intermediate system (IS) neighbors is displayed using the **show clns neighbors** command with the **detail** keyword.

Device# show clns	Device# show clns neighbors detail					
System Id	Interface	SNPA	State	Holdtime	Туре	Protocol
0000.0000.0007	GE3/3	aa00.0400.6408	UP	26	L1	IS-IS
Area Address(es):	20					
IP Address(es): 17	2.16.0.42*					
Uptime: 00:21:49						
0000.0C00.0C35	GE3/2	0000.0c00.0c36	Up	91	L1	IS-IS
Area Address(es):	20					
IP Address(es): 19	2.168.0.42*					
Uptime: 00:21:52						
0800.2B16.24EA	GE3/3	aa00.0400.2d05	Up	27	L1	M-ISIS
Area Address(es):	20					
IP Address(es): 19	2.168.0.42*					
IPv6 Address(es):	FE80::2B0:8EF	F:FE31:EC57				
Uptime: 00:00:27						
0800.2B14.060E	GE3/2	aa00.0400.9205	Up	8	L1	IS-IS
Area Address(es):	20					
IP Address(es): 19	2.168.0.30*					
Uptime: 00:21:52						

In the following example, detailed output information about LSPs received from other routers and the IPv6 prefixes they are advertising is displayed using the **show isis database**command with the **detail** keyword specified:

Device# show isis dat	abase detail			
IS-IS Level-1 Link St	ate Database			
LSPID	LSP Seq Num	LSP Checksum	LSP Holdtime	ATT/P/OL
0000.0C00.0C35.00-00	0x000000C	0x5696	325	0/0/0
Area Address: 47.00	04.004D.0001			
Area Address: 39.00	01			
Metric: 10 IS 000	0.0C00.62E6.03	3		
Metric: 0 ES 000	0.0C00.0C35			
More				
0000.0C00.40AF.00-00*	0x0000009	0x8452	608	1/0/0
Area Address: 47.00	04.004D.0001			
Topology: IPv4 (0x0) IPv6 (0x2)			

```
NLPID: 0xCC 0x8E
 IP Address: 172.16.21.49
 Metric: 10 IS 0800.2B16.24EA.01
 Metric: 10 IS 0000.0C00.62E6.03
 Metric: 0 ES 0000.0C00.40AF
 IPv6 Address: 2001:DB8::/32
 Metric: 10 IPv6 (MT-IPv6) 2001:DB8::/64
 Metric: 5
             IS-Extended cisco.03
 Metric: 10 IS-Extended ciscol.03
 Metric: 10 IS (MT-IPv6) cisco.03
IS-IS Level-2 Link State Database:
                    LSP Seq Num LSP Checksum LSP Holdtime
                                                              ATT/P/OL
LSPID
0000.0000.000A.00-00 0x00000059 0x378A
                                             949
                                                              0/0/0
 Area Address: 49.000b
 NLPID: 0x8E
 IPv6 Address: 2001:DB8:1:1:1:1:1:1
 Metric: 10 IPv6 2001:DB8:2:YYYY::/64
 Metric: 10
                   IPv6 2001:DB8:3:YYYY::/64
 Metric: 10
                  IPv6 2001:DB8:2:YYYY::/64
 Metric: 10
                  IS-Extended 0000.0000.000A.01
                 IS-Extended 0000.0000.000B.00
 Metric: 10
 Metric: 10
                 IS-Extended 0000.0000.000C.01
 Metric: 0
                   IPv6 11:1:YYYY:1:1:1:1:1/128
                 IPv6 11:2:YYYY:1:1:1:1:1/128
 Metric: 0
 Metric: 0
                  IPv6 11:3:YYYY:1:1:1:1:1/128
 Metric: 0
                  IPv6 11:4:YYYY:1:1:1:1:1/128
 Metric: 0
                  IPv6 11:5:YYYY:1:1:1:1:1/128
0000.0000.000A.01-00 0x00000050 0xB0AF
                                            491
                                                              0/0/0
 Metric: 0
                   IS-Extended 0000.0000.000A.00
 Metric: 0
                   IS-Extended 0000.0000.000B.00
```

The following example shows output from the **show isis ipv6 rib** command. An asterisk (*) indicates prefixes that have been installed in the master IPv6 RIB as IS-IS routes. Following each prefix is a list of all paths in order of preference, with optimal paths listed first and suboptimal paths listed after optimal paths.

```
Device# show isis ipv6 rib
```

```
IS-IS IPv6 process "", local RIB
2001:DB8:88:1::/64
via FE80::210:7BFF:FEC2:ACC9/GigabitEthernet2/0/0, type L2 metric 20 LSP [3/7]
via FE80::210:7BFF:FEC2:ACCC/GigabitEthernet2/1/0, type L2 metric 20 LSP [3/7]
* 2001:DB8:1357:1::/64
via FE80::202:7DFF:FE1A:9471/GigabitEthernet2/1/0, type L2 metric 10 LSP [4/9]
* 2001:DB8:45A::/64
via FE80::210:7BFF:FEC2:ACC9/GigabitEthernet2/0/0, type L1 metric 20 LSP [C/6]
via FE80::210:7BFF:FEC2:ACCC/GigabitEthernet2/1/0, type L2 metric 20 LSP [C/6]
via FE80::210:7BFF:FEC2:ACC9/GigabitEthernet2/0/0, type L1 metric 20 LSP [3/7]
via FE80::210:7BFF:FEC2:ACC9/GigabitEthernet2/1/0, type L2 metric 20 LSP [3/7]
```

Additional References for IPv6 Routing: Route Redistribution

Related Topic	Document Title		
	Cisco IOS Master Commands List, All Releases		

Related Documents

Related Topic	Document Title
IPv6 commands	Cisco IOS IPv6 Command Reference
IP Routing ISIS commands	Cisco IOS IP Routing: ISIS Command Reference
Cisco IOS IPv6 features	Cisco IOS IPv6 Feature Mapping
IPv6 addressing and connectivity	IPv6 Configuration Guide
ISIS overview	IS-IS Overview and Basic Configuration

Standards and RFCs

Standard/RFC	Title
RFCs for	IPv6
IPv6	RFCs

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	

Feature Information for IPv6 Routing: Route Redistribution

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Feature Name	Releases	Feature Information
IPv6 Routing: Route Redistribution	Cisco IOS XE Release 2.4	IS-IS for IPv6 supports redistributing routes into an IPv6 IS-IS routing process and redistributing IPv6 IS-IS routes between IS-IS levels. The following commands were introduced or modified: address-family ipv6, redistribute isis (IPv6) .
Preserve ISIS metrics when redistributing routes between ISIS instances	Cisco IOS XE Release 3.15S	This feature preserves the prefix as the original route installed in the routing information base (RIB). The following command was modified: redistribute isis (IPv6) .

Table 1: Feature Information for IPv6 Routing: Route Redistribution