Customizing IS-IS for Your Network Design

This module describes optional tasks that you can perform to customize Intermediate System-to-Intermediate System (IS-IS) for your network design. You can optimize network traffic flow by setting metrics, specifying an IS-IS system type, summarizing addresses, generating a default route, and configuring a global default metric.

- Finding Feature Information, on page 1
- Prerequisites for Customizing IS-IS for Your Network Design, on page 1
- Restrictions for Customizing IS-IS for Your Network Design, on page 2
- Information About Customizing IS-IS for Your Network Design, on page 2
- Configuration Examples for Customizing IS-IS for Your Network Design, on page 9
- Where to Go Next, on page 11
- Additional References, on page 12
- Feature Information for Customizing IS-IS for Your Network Design, on page 12

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Customizing IS-IS for Your Network Design

- Before performing the tasks in this module, you should be familiar with the concepts described in the "Integrated IS-IS Routing Protocol Overview" module.

- You should understand the concept of IP addressing. For more information on IP addressing, see the "Configuring IPv4 Addresses" module of the Cisco IOS IP Addressing Services Configuration Guide.

- You should know your network design and how you want traffic to flow through it before configuring IS-IS. Define areas, prepare an addressing plan for the routers (including defining the network entity titles [NETs]), and determine the interfaces that will run Integrated IS-IS.
Restrictions for Customizing IS-IS for Your Network Design

If you have already configured a metric for a specific interface by entering the `isis metric` command, the metric that has been configured for that specific interface will take precedence over any default set by the `metric` command.

Information About Customizing IS-IS for Your Network Design

You can enhance network traffic flow by configuring IS-IS metric values for Level-1 or Level-2 routing, in order to prioritize traffic through certain paths. You can customize network traffic flow by changing the metric cost for a specified interface. All IS-IS links use the metric of 10 by default. The protocol does not automatically incorporate link attributes such as bandwidth or delay when metric values are assigned. The total cost to a destination is the sum of the costs on all outgoing interfaces along a particular path from the source to the destination. The least-cost paths are preferred.

If you want to configure a global default metric, see the Configuring an IS-IS Default Metric, on page 8.

On multi-access networks, IS-IS elects a router to act as a pseudo-node representing the multi-access circuit. The elected router is known as the designated intermediate system (DIS). The DIS issues pseudo-node LSPs listing all of the routers which are reachable on the network. Each router on the network advertises in its non-pseudonode LSPs reachability to the DIS. This reduces the amount of information that needs to be advertised. A DIS is elected for each level that is operating on the network, for example both Level 1 and Level 2. By default, all routers have the same priority for being elected DIS. The MAC address of each router’s interface onto the network is used as the tiebreaker. When all routers have the same priority, the addition or removal of a router onto the network can result in a change in the DIS. This churn can be prevented by assigning a higher priority to the router which you wish to act as the DIS. Priorities can be configured individually for Level 1 and Level 2. By default the priority is 64. You can configure the priority in the range from 0 to 127.

You can configure a summary address to represent summarized (aggregate) addresses within the IS-IS routing table. This process is called route summarization. Using a summary address can enhance scalability and network stability because it reduces the amount of information that needs to be advertised and reduces the frequency of updates required. For example, a single route flap may not cause the summary advertisement to flap. The disadvantage of using the summary addresses is that routing may be sub-optimal, for example, the path to a specific destination covered by the summary address may be longer than it would have been, had all the individual addresses been advertised. Summary addresses are most commonly used to summarize routes from one Level-one area into the Level-2 subdomain. One summary address can include multiple groups of addresses for a given level. Routes learned from other routing protocols can also be summarized. The metric used to advertise the summary is the smallest metric of all the more-specific routes.

In Cisco IOS software, IS-IS has a default metric value of 10 for all active interfaces. If the interface is passive, the default value is zero. Rather than change the metric values for the active interfaces one by one, you can configure a different default metric value to be used by all interfaces. All interfaces that had the original IS-IS default metric 10 will be configured with the new default value. Besides offering the user the convenience of being able to globally configure the value for all IS-IS interfaces, the feature helps prevent errors that may occur when interfaces are individually configured to change the metric value. For example the user may remove configured metrics from an interface, thereby restoring the default metric value of 10--perhaps unintentionally making that interface a highly preferred one in the network. Such an occurrence on the wrong interface could mean the rerouting of traffic across the network on an undesirable path.
Enhancing Your IS-IS Network Design at the Interface Level

Setting the IS-IS Link-State Metrics

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type name`
4. `isis metric default-metric [level-1 | level-2]`
5. `end`
6. `show isis [process-tag] database [level-1] [level-2] [11] [12] [detail] [lspid]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>Step 2</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Step 3</td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface type name</code></td>
<td>Step 4</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures the metric for an interface.</td>
</tr>
<tr>
<td><code>Router(config)# interface ethernet 0</code></td>
<td>Note We highly recommend that you configure the metrics on all interfaces. If you do not do so, all links will have the same cost and the cost to reach any node in the network will be logically equivalent to the number of hops.</td>
</tr>
<tr>
<td>`isis metric default-metric [level-1</td>
<td>level-2]`</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Router(config-if)# isis metric 15 level-1</code></td>
<td>Step 6</td>
</tr>
<tr>
<td><code>end</code></td>
<td>(Optional) Displays the IS-IS link-state database.</td>
</tr>
<tr>
<td>Example:</td>
<td>• To display information about each LSP and the link-state database, enter the detail keyword.</td>
</tr>
<tr>
<td><code>Router(config-if)# end</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

- `Router# show isis database detail`

Prioritizing Designated Intermediate Systems for IS-IS

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type name`
4. `isis priority number-value [level-1 | level-2]`
5. `end`
6. `show clns interface type number`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface type name</code></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# interface ethernet 0/3</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 `isis priority number-value [level-1</td>
<td>level-2]`</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# ip priority 2 level-1</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>show clns interface type number</code></td>
<td>(Optional) Displays CLNS-specific information about the interfaces running IS-IS.</td>
</tr>
<tr>
<td>Example: <code>Router# show clns interface ethernet 0/3</code></td>
<td>• The command output will display the DIS for both Level 1 and Level 2.</td>
</tr>
</tbody>
</table>
Enhancing Your IS-IS Network Design at the Router Level

Limiting Level 1 and Level 2 Operations on the IS-IS Router

SUMMARY STEPS

1. enable
2. configure terminal
3. router isis
4. is-type [level-1 | level-1-2 | level-2-only]
5. end
6. show isis [ipv6] [*] topology[level-1] [level-2]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>router isis</td>
<td>Enables IS-IS as an IP routing protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router isis</td>
<td>• Enters router configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>is-type [level-1</td>
<td>level-1-2</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# is-type level-1</td>
<td>• By default Cisco IOS software enables both Level 1 and Level 2 operations on IS-IS routers. Specifying routers to act as Level 1, Level 2, or Level 1 and 2 can streamline your network design.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Exits router configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>show isis [ipv6] [*] topology[level-1] [level-2]</td>
<td>(Optional) Displays a list of all connected routers in all areas.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summarizing Address Ranges in the IS-IS Routing Table

SUMMARY STEPS

1. enable
2. configure terminal
3. router isis
4. summary-address address mask {level-1 | level-1-2 | level-2}[tag tag-number] [metric metric-value]
5. end
6. show isis database verbose

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

router isis

Example:

```
Router(config)# router isis
```

Enables IS-IS as an IP routing protocol.

- Enters router configuration mode.

Step 4

```
summary-address address mask {level-1 | level-1-2 | level-2} [tag tag-number] [metric metric-value]
```

Example:

```
Router(config-router)# summary-address 10.1.0.0 255.255.0.0 level-2
```

Creates aggregate addresses for IS-IS.

Note

Multiple groups of addresses can be summarized for a given level. Routes learned from other routing protocols can also be summarized. The metric used to advertise the summary is the smallest metric of all the more-specific routes. This command helps reduce the size of the routing table.

Step 5

```
end
```

Example:

```
Router(config-router)# end
```

Exits router configuration mode and returns to privileged EXEC mode.

Step 6

```
show isis database verbose
```

Example:

```
Router# show isis database verbose
```

(Optional) Displays detailed information about the IS-IS database.

Generating an IS-IS Default Route

SUMMARY STEPS

1. enable
2. configure terminal
3. router isis
4. default-information originate [route-map map-name]
5. end
6. show ip route

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router isis</td>
<td>Enables IS-IS as an IP routing protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enters router configuration mode.</td>
</tr>
<tr>
<td>Router(config)# router isis</td>
<td></td>
</tr>
<tr>
<td>Step 4 default-information originate [route-map map-name]</td>
<td>Generates a default route into an IS-IS routing domain.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Use the route map to identify the level into which the default route is to be announced, whether a particular non-default prefix must be reachable, etc.</td>
</tr>
<tr>
<td>Router(config-router)# default-information originate</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits router configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-router)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show ip route</td>
<td>(Optional) Displays the current state of the routing table.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip route</td>
<td></td>
</tr>
</tbody>
</table>

Configuring an IS-IS Default Metric

SUMMARY STEPS

1. enable
2. configure terminal
3. router isis
4. metric default-value [level-1 | level-2]
5. end
6. show clns interface [type number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

| Step 2 | configure terminal
| | Example:
| | Router# configure terminal |

Enters global configuration mode.

| Step 3 | router isis
| | Example:
| | Router(config)# router isis 1 |

Enables IS-IS as an IP routing protocol.
- Enters router configuration mode.

| Step 4 | metric default-value [level-1 | level-2]
| | Example:
| | Router(config-router)# metric 25 level-2 |

Globally sets a new default metric value for all IS-IS interfaces.
- The value 25 shown in the example will apply only to Level 2 IS-IS interfaces. If you do not enter the level-1 or level-2 keyword, the metric will be applied to both Level 1 and Level 2 IS-IS interfaces.

| Step 5 | end
| | Example:
| | Router(config-router)# end |

Exits router configuration mode and returns to privileged EXEC mode.

| Step 6 | show clns interface [type number]
| | Example:
| | Router# show clns interface |

(Optional) Displays the CLNS-specific information about each interface.
- Enter this command if you want to verify the IS-IS global default metric that is set for the interface.

Configuration Examples for Customizing IS-IS for Your Network Design

Example Configuring a Global Default Metric for IPv4

The following configuration example for an IS-IS routing process called area1 sets a global default metric of 111 for the IS-IS interfaces:

```plaintext
interface Ethernet3/1  
ip address 172.16.10.2 255.255.0.0  
ip router isis area1  
noc ip route-cache  
duplex half  
!  
interface Ethernet3/2  
ip address 192.168.242.2 255.255.255.0  
ip router isis area1
```

no ip route-cache
duplex half
router isis area1
net 01.0000.0309.1234.00
metric-style wide
metric 111

In the following example, the `show clns interface` command confirms that the IS-IS IPv4 interface metric for both Level 1 and Level 2 interfaces is assigned the new default metric value 111:

```
Router# show clns interface
Ethernet3/1 is up, line protocol is up
   Checksums enabled, MTU 1497, Encapsulation SAP
   ERPDUs enabled, min. interval 10 msec.
   CLNS fast switching enabled
   CLNS SSE switching disabled
   DEC compatibility mode OFF for this interface
   Next ESH/ISH in 39 seconds
   Routing Protocol: IS-IS
      Circuit Type: level-1-2
      Interface number 0x0, local circuit ID 0x1
      Level-1 Metric: 111, Priority: 64, Circuit ID: mekong.01
      Level-1 IPv6 Metric: 10
      Number of active level-1 adjacencies: 0
      Level-2 Metric: 111, Priority: 64, Circuit ID: mekong.01
      Level-2 IPv6 Metric: 10
      Number of active level-2 adjacencies: 0
      Next IS-IS LAN Level-1 Hello in 922 milliseconds
      Next IS-IS LAN Level-2 Hello in 1 seconds

Ethernet3/2 is up, line protocol is up
   Checksums enabled, MTU 1497, Encapsulation SAP
   ERPDUs enabled, min. interval 10 msec.
   CLNS fast switching enabled
   CLNS SSE switching disabled
   DEC compatibility mode OFF for this interface
   Next ESH/ISH in 20 seconds
   Routing Protocol: IS-IS
      Circuit Type: level-1-2
      Interface number 0x1, local circuit ID 0x2
      Level-1 Metric: 111, Priority: 64, Circuit ID: mekong.02
      Level-1 IPv6 Metric: 10
      Number of active level-1 adjacencies: 1
      Level-2 Metric: 111, Priority: 64, Circuit ID: mekong.02
      Level-2 IPv6 Metric: 10
      Number of active level-2 adjacencies: 1
      Next IS-IS LAN Level-1 Hello in 2 seconds
      Next IS-IS LAN Level-2 Hello in 1 seconds
```

In the following example, the `isis metric` command is entered so that it will assign a metric value of 10. The metric value that is set with the `isis metric` command for Ethernet interface 3/1 will take precedence over the metric value that was previously set with the `metric` command.

```
interface Ethernet3/1
ip address 172.30.10.2 255.255.0.0
ip router isis area1
no ip route-cache
duplex half
isis metric 10

interface Ethernet3/2
ip address 192.168.224.2 255.255.255.0
ip router isis area1
```
no ip route-cache
duplex half
router isis area1
net 01.0000.0309.1234.00
metric-style wide
metric 111

When the `show clns interface` command is entered, the router output confirms that the interface has an assigned IS-IS IPv4 metric value of 10:

```
Router# show clns interface
Ethernet3/1 is up, line protocol is up
  Checksums enabled, MTU 1497, Encapsulation SAP
  ERPDUs enabled, min. interval 10 msec.
  CLNS fast switching enabled
  CLNS SSE switching disabled
  DEC compatibility mode OFF for this interface
  Next ESH/ISH in 53 seconds
  Routing Protocol: IS-IS
    Circuit Type: level-1-2
    Interface number 0x0, local circuit ID 0x1
    Level-1 Metric: 10, Priority: 64, Circuit ID: mekong.01
    Level-1 IPv6 Metric: 10
    Number of active level-1 adjacencies: 0
    Level-2 Metric: 10, Priority: 64, Circuit ID: mekong.01
    Level-2 IPv6 Metric: 10
    Number of active level-2 adjacencies: 0
    Next IS-IS LAN Level-1 Hello in 4 seconds
    Next IS-IS LAN Level-2 Hello in 4 seconds
Ethernet3/2 is up, line protocol is up
  Checksums enabled, MTU 1497, Encapsulation SAP
  ERPDUs enabled, min. interval 10 msec.
  CLNS fast switching enabled
  CLNS SSE switching disabled
  DEC compatibility mode OFF for this interface
  Next ESH/ISH in 30 seconds
  Routing Protocol: IS-IS
    Circuit Type: level-1-2
    Interface number 0x1, local circuit ID 0x2
    Level-1 Metric: 111, Priority: 64, Circuit ID: mekong.02
    Level-1 IPv6 Metric: 10
    Number of active level-1 adjacencies: 1
    Level-2 Metric: 111, Priority: 64, Circuit ID: mekong.02
    Level-2 IPv6 Metric: 10
    Number of active level-2 adjacencies: 1
    Next IS-IS LAN Level-1 Hello in 2 seconds
    Next IS-IS LAN Level-2 Hello in 922 milliseconds
```

Where to Go Next

- To customize IS-IS for achieving fast convergence and scalability, see the "Overview of IS-IS Fast Convergence" module.
- To enhance IS-IS network security, see the "Enhancing Security in an IS-IS Network" module.
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-IS commands: complete command syntax, command mode, defaults, command</td>
<td>Cisco IOS IP Routing: ISIS Command Reference</td>
</tr>
<tr>
<td>history, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Overview of Integrated IS-IS conceptual information with links to all the</td>
<td>"Integrated IS-IS Routing Protocol Overview" module</td>
</tr>
<tr>
<td>individual IS-IS modules</td>
<td></td>
</tr>
<tr>
<td>Configuring IPv6</td>
<td>"Implementing IPv6 Addressing and Basic Connectivity" module in the</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Configuring the IS-IS protocol for IPv6 networks</td>
<td>"Implementing IS-IS for IPv6" module in the Cisco IOS IPv6</td>
</tr>
<tr>
<td></td>
<td>Configuration Guide</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1195</td>
<td>Use of OSI IS-IS for Routing in TCP/IP and Dual Environments</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Customizing IS-IS for Your Network Design

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for Customizing IS-IS for Your Network Design

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated IS-IS Global Default Metric</td>
<td>12.0(27)S 12.2(25)S 12.3(4)T</td>
<td>The Integrated IS-IS Global Default Metric feature allows you to change the global IS-IS default metric for interfaces so that you need not change the metric values for the interfaces one by one. All interfaces that had the original IS-IS default metric 10 will be configured with the new global default value.</td>
</tr>
</tbody>
</table>