IPv6 Multicast Address Family Support for Multiprotocol BGP

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About IPv6 Multicast Address Family Support for Multiprotocol BGP

Multicast BGP is an enhanced BGP that allows the deployment of interdomain IPv6 multicast. Multiprotocol BGP carries routing information for multiple network layer protocol address families; for example, IPv6 address family and for IPv6 multicast routes. The IPv6 multicast address family contains routes used for RPF...
lookup by the IPv6 PIM protocol, and multicast BGP IPv6 provides for interdomain transport of the same. Users must use multiprotocol BGP for IPv6 multicast when using IPv6 multicast with BGP because the unicast BGP learned routes will not be used for IPv6 multicast.

Multicast BGP functionality is provided through a separate address family context. A subsequent address family identifier (SAFI) provides information about the type of the network layer reachability information that is carried in the attribute. Multiprotocol BGP unicast uses SAFI 1 messages, and multiprotocol BGP multicast uses SAFI 2 messages. SAFI 1 messages indicate that the routes are usable only for IP unicast, not IP multicast. Because of this functionality, BGP routes in the IPv6 unicast RIB must be ignored in the IPv6 multicast RPF lookup.

A separate BGP routing table is maintained to configure incongruent policies and topologies (for example, IPv6 unicast and multicast) by using IPv6 multicast RPF lookup. Multicast RPF lookup is very similar to the IP unicast route lookup.

No MRIB is associated with the IPv6 multicast BGP table. However, IPv6 multicast BGP operates on the unicast IPv6 RIB when needed. Multicast BGP does not insert or update routes into the IPv6 unicast RIB.

How to Implement IPv6 Multicast Address Family Support for Multiprotocol BGP

Configuring an IPv6 Peer Group to Perform Multicast BGP Routing

SUMMARY STEPS

1. enable
2. configure terminal
3. router bgp as-number
4. neighbor peer-group-name peer-group
5. neighbor {ip-address | ipv6-address | peer-group-name} remote-as as-number
6. address-family ipv6 [unicast | multicast]
7. neighbor {ip-address | peer-group-name | ipv6-address} activate
8. neighbor {ip-address | ipv6-address} peer-group peer-group-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 3	router bgp \(as\text{-}number \)

Example:

```
Device(config)# router bgp 65000
```

Purpose:
Enters router configuration mode for the specified BGP routing process.

Step 4	neighbor peer-group-name peer-group

Example:

```
Device(config-router)# neighbor group1 peer-group
```

Purpose:
Creates a BGP peer group.

| Step 5 | neighbor \{ ip-address | ipv6-address | peer-group-name \} remote-as \(as\text{-}number \)
|--------------|---|

Example:

```
Device(config-router)# neighbor 2001:DB8:0:CC00::1 remote-as 64600
```

Purpose:
Adds the IPv6 address of the neighbor in the specified autonomous system to the IPv6 multicast BGP neighbor table of the local router.

- The \(ipv6\text{-}address \) argument in the neighbor remote-as command must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.

| Step 6 | address-family ipv6 [unicast | multicast]
|--------------|-----------------------------|

Example:

```
Device(config-router)# address-family ipv6 multicast
```

Purpose:
Specifies the IPv6 address family, and enters address family configuration mode.

- The \(unicast \) keyword specifies the IPv6 unicast address family. By default, the router is placed in configuration mode for the IPv6 unicast address family if a keyword is not specified in the address-family ipv6 command.
- The \(multicast \) keyword specifies IPv6 multicast address prefixes.

| Step 7 | neighbor \{ ip-address | peer-group-name | ipv6-address \} activate
|--------------|-----------------------------|

Example:

```
Device(config-router-af)# neighbor 2001:DB8:0:CC00::1 activate
```

Purpose:
Enables the neighbor to exchange prefixes for the specified family type with the neighbor and the local router.

- To avoid extra configuration steps for each neighbor, use the neighbor activate command with the peer-group-name argument as an alternative in this step.

| Step 8 | neighbor \{ ip-address | ipv6-address \} peer-group peer-group-name
|--------------|---|

Example:

```
Device(config-router-af)# neighbor 2001:DB8:0:CC00::1 peer-group group1
```

Purpose:
Assigns the IPv6 address of a BGP neighbor to a peer group.

Advertising Routes into IPv6 Multiprotocol BGP

By default, networks that are defined in router configuration mode using the `network` command are injected into the IPv4 unicast database. To inject a network into another database, such as the IPv6 BGP database, you must define the network using the `network` command in address family configuration mode for the other database, as shown for the IPv6 BGP database.
SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **router bgp** `as-number`
4. **address-family ipv6** `[vrf vrf-name] [unicast | multicast | vpnv6]`
5. **network** `{network-number [mask network-mask] | nsap-prefix} [route-map map-tag]`
6. **exit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>router bgp</code> <code>as-number</code></td>
<td>Enters router configuration mode for the specified BGP routing process.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# router bgp 65000</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>address-family ipv6</code> `[vrf vrf-name] [unicast</td>
<td>multicast</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-router)# address-family ipv6 unicast</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>network</code> `{network-number [mask network-mask]</td>
<td>nsap-prefix} [route-map map-tag]`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-router-af)# network 2001:DB8::/24</code></td>
<td></td>
</tr>
</tbody>
</table>
Redistributing Prefixes into IPv6 Multiprotocol BGP

Redistribution is the process of redistributing, or injecting, prefixes from one routing protocol into another routing protocol. This task explains how to inject prefixes from a routing protocol into IPv6 multiprotocol BGP. Specifically, prefixes that are redistributed into IPv6 multiprotocol BGP using the `redistribute` router configuration command are injected into the IPv6 unicast database.

SUMMARY STEPS

1. *enable*
2. *configure terminal*
3. *router bgp* `as-number`
4. *address-family ipv6* `[vrf vrf-name] [unicast | multicast | vpnv6]`
5. *redistribute bgp* `[process-id][metric metric-value][route-map map-name][source-protocol-options]`
6. *exit*

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| `enable`
| Example:
| Device> enable | Enables privileged EXEC mode. |
| | • Enter your password if prompted. |
| **Step 2**
| `configure terminal`
| Example:
| Device# configure terminal | Enters global configuration mode. |
| **Step 3**
| `router bgp as-number`
| Example:
| | Enters router configuration mode for the specified BGP routing process. |
Assigning a BGP Administrative Distance

Caution
Changing the administrative distance of BGP internal routes is not recommended. One problem that can occur is the accumulation of routing table inconsistencies, which can break routing.

SUMMARY STEPS
1. `enable`
2. `configure terminal`
3. `router bgp as-number`
4. `address-family ipv6 [unicast | multicast]`
5. `distance bgp external-distance internal-distance local-distance`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>router bgp as-number</code></td>
<td></td>
</tr>
<tr>
<td>`address-family ipv6 [unicast</td>
<td>multicast]`</td>
</tr>
<tr>
<td><code>distance bgp external-distance internal-distance local-distance</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Device> enable` | Enters privileged EXEC mode. |}

Step 2

Example:

```
Device# configure terminal
```

Enters global configuration mode.

Step 3

Example:

```
Device(config)# router bgp 100
```

Enters router configuration mode for the specified routing process.

Step 4

Example:

```
Device(config-router)# address-family ipv6 multicast
```

Enters address family configuration mode for configuring routing sessions such as BGP that use standard IPv6 address prefixes.

Step 5

Example:

```
Device(config-router)# distance bgp 20 20 200
```

Assigns a BGP administrative distance.

Generating Translate Updates for IPv6 Multicast BGP

The multicast BGP translate-update feature generally is used in a multicast BGP-capable router that peers with a customer site that has only a BGP-capable router; the customer site has not or cannot upgrade its router to a multicast BGP-capable image. Because the customer site cannot originate multicast BGP advertisements, the router with which it peers will translate the BGP prefixes into multicast BGP prefixes, which are used for multicast-source RPF lookup.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router bgp as-number`
4. `address-family ipv6 [unicast | multicast]`
5. `neighbor ipv6-address translate-update ipv6 multicast [unicast]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Resetting IPv6 BGP Sessions

SUMMARY STEPS

1. **enable**
2. **clear bgp ipv6 {unicast | multicast} {* | autonomous-system-number | ip-address | ipv6-address | peer-group peer-group-name} [soft] [in | out]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Step 2** clear bgp ipv6 {unicast | multicast} {* | autonomous-system-number | ip-address | ipv6-address | peer-group peer-group-name} [soft] [in | out] | Resets IPv6 BGP sessions. |
Clearing External BGP Peers

SUMMARY STEPS

1. `enable`
2. `clear bgp ipv6 {unicast | multicast} external [soft] [in | out]`
3. `clear bgp ipv6 {unicast | multicast} peer-group name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| **Example:**
 Device> enable | • Enter your password if prompted. |
| **Step 2** clear bgp ipv6 {unicast | multicast} external [soft] [in | out] | Clears external IPv6 BGP peers. |
| **Example:**
 Device# clear bgp ipv6 unicast external soft in | |
| **Step 3** clear bgp ipv6 {unicast | multicast} peer-group name | Clears all members of an IPv6 BGP peer group. |
| **Example:**
 Device# clear bgp ipv6 unicast peer-group marketing | |

Clearing IPv6 BGP Route Dampening Information

SUMMARY STEPS

1. `enable`
2. `clear bgp ipv6 {unicast | multicast} dampening [ipv6-prefix/prefix-length]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| **Example:**
 Device> enable | • Enter your password if prompted. |
Clearing IPv6 BGP Flap Statistics

SUMMARY STEPS

1. enable
2. clear bgp ipv6 {unicast | multicast} flap-statistics [ipv6-prefix/prefix-length | regexp regexp | filter-list list]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 clear bgp ipv6 {unicast</td>
<td>multicast} flap-statistics [ipv6-prefix/prefix-length</td>
</tr>
<tr>
<td>Example: Device# clear bgp ipv6 unicast flap-statistics</td>
<td></td>
</tr>
<tr>
<td>filter-list 3</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for IPv6 Multicast Address Family Support for Multiprotocol BGP

Example: Configuring an IPv6 Multiprotocol BGP Peer Group

The following example configures the IPv6 multiprotocol BGP peer group named group1:

```
routing bgp 65000
no bgp default ipv4-unicast
neighbor group1 peer-group
neighbor 2001:DB8::CC00::1 remote-as 64600
```
address-family ipv6 unicast
neighbor group1 activate
neighbor 2001:DB8::0:CC00::1 peer-group group1

Example: Advertising Routes into IPv6 Multiprotocol BGP

The following example injects the IPv6 network 2001:DB8::/24 into the IPv6 unicast database of the local device. (BGP checks that a route for the network exists in the IPv6 unicast database of the local device before advertising the network.)

```
router bgp 65000
  no bgp default ipv4-unicast
  address-family ipv6 unicast
    network 2001:DB8::/24
```

Example: Redistributing Prefixes into IPv6 Multiprotocol BGP

The following example redistributes RIP routes into the IPv6 unicast database of the local device:

```
router bgp 64900
  no bgp default ipv4-unicast
  address-family ipv6 unicast
    redistribute rip
```

Example: Generating Translate Updates for IPv6 Multicast BGP

The following example shows how to generate IPv6 multicast BGP updates that correspond to unicast IPv6 updates:

```
router bgp 64900
  no bgp default ipv4-unicast
  address-family ipv6 multicast
    neighbor 2001:DB8:7000::2 translate-update ipv6 multicast
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for IPv6 Multicast Address Family Support for Multiprotocol BGP

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1: Feature Information for IPv6 Multicast Address Family Support for Multiprotocol BGP

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Multicast Address Family Support for Multiprotocol BGP</td>
<td>12.0(26)S</td>
<td>This feature provides multicast BGP extensions for IPv6 and supports the same features and functionality as IPv4 BGP.</td>
</tr>
<tr>
<td></td>
<td>12.2(25)S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(25)SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SXH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.3(4)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4(2)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0(1)S</td>
<td></td>
</tr>
</tbody>
</table>