THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2018 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

Bidirectional Forwarding Detection
- Finding Feature Information
- Prerequisites for Bidirectional Forwarding Detection
- Restrictions for Bidirectional Forwarding Detection
- Information About Bidirectional Forwarding Detection

BFD Operation
- Neighbor Relationships
- BFD Detection of Failures
- BFD Version Interoperability
- BFD Support on Cisco 12000 Routers

BFD Session Limits
- BFD Support for Nonbroadcast Media Interfaces
- BFD Support for VPN Routing and Forwarding Interfaces
- BFD Support for Nonstop Forwarding with Stateful Switchover
- BFD Support for Stateful Switchover
- BFD Support for Static Routing

BFD on Multiple Hops
- BFD Control Channel over VCCV Support for ATM Pseudowire

Benefits of Using BFD for Failure Detection
- Benefits of BFD Support on DMVPN

How to Configure Bidirectional Forwarding Detection
- Configuring BFD Session Parameters on the Interface
- Configuring BFD Support for Dynamic Routing Protocols
- Configuring BFD Support for BGP
- Configuring BFD Support for EIGRP
- Configuring BFD Support for IS-IS
Contents

CHAPTER 3 OSPFv3 for BFD 77
- Finding Feature Information 77
- Information About OSPFv3 for BFD 77
- How to Configure OSPFv3 for BFD 77
 - Configuring BFD Support for OSPFv3 77
 - Configuring Baseline BFD Session Parameters on the Interface 78
 - Configuring BFD Support for OSPFv3 for All Interfaces 79
 - Configuring OSPF Support for BFD over IPv4 for One or More Interfaces 80
 - Retrieving BFDv6 Information for Monitoring and Troubleshooting 81
- Configuration Examples for OSPFv3 for BFD 82
 - Example: Displaying OSPF Interface Information about BFD 82
- Additional References 83
- Feature Information for OSPFv3 for BFD 84

CHAPTER 4 BFD Single-Hop Authentication 85
- Finding Feature Information 85
- Prerequisites for BFD Single-Hop Authentication 85
- Restrictions for BFD Single-Hop Authentication 86
- Information About BFD Single-Hop Authentication 86
 - Benefits of BFD Single-Hop Authentication 86
 - Role of BFD Single-Hop Authentication in Preventing Denial of Service Attacks 86

Restrictions for BFD IPv6 Encapsulation Support 72
- Information About BFD IPv6 Encapsulation Support 72
 - Overview of the BFDv6 Protocol 72
 - BFDv6 Registration 72
 - BFDv6 Global and Link-Local Addresses 72
 - BFD for IPv4 and IPv6 on the Same Interface 73
- How to Configure BFD IPv6 Encapsulation Support 73
 - Configuring BFD Session Parameters on the Interface 73
- Configuration Examples for BFD IPv6 Encapsulation Support 74
 - Example: Configuring BFD Session Parameters on the Interface 74
- Additional References 75
- Feature Information for BFD IPv6 Encapsulation Support 76
How to Configure BFD Single-Hop Authentication 87
 Configuring Key Chains 87
 Configuring a BFD Template with Authentication 88
 Configuring a Single-Hop Template on an Interface 89
 Verifying BFD Single-Hop Authentication 89
Configuration Examples for BFD Single-Hop Authentication 90
 Example: Configuring Key Chains 90
 Example: Configuring a BFD Template with Authentication 90
 Example: Configuring a Single-Hop Template on an Interface 90
 Example: Verifying BFD Single-Hop Authentication 91
Additional References 92
Feature Information for BFD Single-Hop Authentication 92

CHAPTER 5
BFD Multihop Support for IPv4 Static Routes 95
 Finding Feature Information 95
 Prerequisites for BFD Multihop Support for IPv4 Static Routes 95
 Information About BFD Multihop Support for IPv4 Static Routes 96
 BFDv4 Associated Mode 96
 BFDv4 Unassociated Mode 96
 How to Configure BFD Multihop Support for IPv4 Static Routes 96
 Configuring BFD Multihop IPv4 Static Routes 96
 Verifying BFD Multihop Support for IPv4 Static Routes 97
 Configuration Examples for BFD Multihop Support for IPv4 Static Routes 98
 Additional References for BFD Multihop Support for IPv4 Static Routes 98
 Example: Configuring BFD Multihop for IPv4 Static Routes in Associated Mode 98
 Example: Configuring IPv4 Static Multihop for BFD in Unassociated Mode 99
 Feature Information for BFD Multihop Support for IPv4 Static Routes 99

CHAPTER 6
IS-IS IPv6 Client for BFD 101
 Finding Feature Information 101
 Prerequisites for IS-IS IPv6 Client for BFD 101
 Information About IS-IS IPv6 Client for BFD 102
 IS-IS BFD Topology 102
 IS-IS BFD IPv6 Session Creation 102
CHAPTER 1

Bidirectional Forwarding Detection

This document describes how to enable the Bidirectional Forwarding Detection (BFD) protocol. BFD is a detection protocol that is designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. It includes a description of how to configure multihop BFD sessions.

BFD provides a consistent failure detection method for network administrators, in addition to fast forwarding path failure detection. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning will be easier, and reconvergence time will be consistent and predictable.

From Cisco IOS Release 15.2(4)S, IS-IS support for BFD requires the BFD session to be started for the adjacency to work when both neighbors advertise support for BFD. For the ISIS session to be established, BFD should either be configured under both protocol and interface (complete configuration) or not configured at all.

- Finding Feature Information, on page 1
- Prerequisites for Bidirectional Forwarding Detection, on page 2
- Restrictions for Bidirectional Forwarding Detection, on page 2
- Information About Bidirectional Forwarding Detection, on page 6
- How to Configure Bidirectional Forwarding Detection, on page 13
- Configuration Examples for Bidirectional Forwarding Detection, on page 44
- Additional References, on page 64
- Feature Information for Bidirectional Forwarding Detection, on page 66

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Bidirectional Forwarding Detection

- Cisco Express Forwarding and IP routing must be enabled on all participating routers.

- You must enable Cisco Parallel eXpress Forwarding (PXF) on the Cisco 10720 Internet router in order for BFD to operate properly. PXF is enabled by default and is generally not turned off.

- One of the IP routing protocols supported by BFD must be configured on the routers before BFD is deployed. You should implement fast convergence for the routing protocol that you are using. See the IP routing documentation for your version of Cisco IOS software for information on configuring fast convergence. See the Restrictions for Bidirectional Forwarding Detection section for more information on BFD routing protocol support in Cisco IOS software.

- Before Virtual Circuit Connection Verification (VCCV) BFD on pseudowires can be run, pseudowires must be configured on the network.

- In Cisco IOS Release 15.1(2)S and later releases, support for offloading BFD sessions to ES+ line cards on Cisco 7600 series routers has the following prerequisites:
 - The router must be running BFD Version 1.
 - The BFD session type must be IPv4 single hop.
 - BFD echo mode must be disabled for the session.

 See the “Configuring Synchronous Ethernet on the Cisco 7600 Router with ES+ Line Card” section of the Cisco 7600 Series Ethernet Services Plus (ES+) and Ethernet Services Plus T (ES+T) Line Card Configuration Guide for more information about prerequisites for hardware offload.

- In Cisco IOS Release 15.1(3)S and later releases, support for multihop BFD sessions on Cisco 7600 series routers has the following prerequisites:
 - The client must support multihop.
 - A valid multihop template and map must be configured.
 - Each BFD multihop session must have a unique source-destination address pair.

Restrictions for Bidirectional Forwarding Detection

- With CSCts32440, the maximum number of supported VRF-aware IS-IS BFD sessions is 28.

- For the Cisco implementation of BFD for Cisco IOS Releases 12.2(18)SXE, 12.0(31)S, 12.4(4)T, 12.0(32)S, 12.2(33)SRA, and 12.2(33)SRB, only asynchronous mode is supported. In asynchronous mode, either BFD peer can initiate a BFD session.

- For Cisco IOS Releases 12.2(33)SRC, 12.2(33)SXH, and 12.2(33)SXI, echo mode is the default.

- The Cisco IOS software incorrectly allows configuration of BFD on virtual-template and dialer interfaces; however, BFD functionality on virtual-template and dialer interfaces is not supported. Avoid configuring BFD on virtual-template and dialer interfaces.

- For Cisco IOS Releases 12.2(18)SXE (and later SX releases), 12.0(31)S, 12.4(4)T, 12.0(32)S, 12.2(33)SRA, 12.2(33)SRB, 12.2(33)SRC, and 12.2(33)SB, the Cisco implementation of BFD is supported only for IPv4 networks.
• For Cisco IOS Release 12.2(33)SRB, the Cisco implementation of BFD supports only the following routing protocols: Border Gateway Protocol (BGP), Enhanced Interior Gateway Routing Protocol (EIGRP), Intermediate System-to-Intermediate System (IS-IS), and Open Shortest Path First (OSPF). In Cisco IOS Release 12.2(33)SRC, BFD supports static routing.

• For Cisco IOS Release 12.2(33)SRA, the Cisco implementation of BFD supports only the following routing protocols: BGP, IS-IS, and OSPF.

• For Cisco IOS Release 12.4(4)T, the Cisco implementation of BFD supports only the following routing protocols: BGP, EIGRP, IS-IS, and OSPF.

• For Cisco IOS Release 12.4(11)T, the Cisco implementation of BFD introduced support for the Hot Standby Router Protocol (HSRP). BFD support is not available for all platforms and interfaces.

• For Cisco IOS Releases 12.0(31)S and 12.0(32)S, the Cisco implementation of BFD supports only the following routing protocols: BGP, IS-IS, and OSPF.

• For Cisco IOS Release 12.2(18)SXE, the Cisco implementation of BFD supports only the following routing protocols: EIGRP, IS-IS, and OSPF.

• For Cisco IOS Release 12.2(18)SXH and 12.2(33)SB, the Cisco implementation of BFD supports the following routing protocols: BGP, EIGRP, IS-IS, and OSPF.

• BFD is not supported on IPsec.

• BFD works only for directly connected neighbors. BFD neighbors must be no more than one IP hop away. Multihop configurations are not supported.

• BFD support is not available for all platforms and interfaces. To confirm BFD support for a specific platform or interface and obtain the most accurate platform and hardware restrictions, see the Cisco IOS software release notes for your software version.

• For the following Cisco IOS Releases, BFD on PortChannel is not a supported configuration: 12.2SXF, 12.2SRC, and 12.2SRB.

• On the Cisco 10720 Internet router, BFD is supported only on Fast Ethernet, Gigabit Ethernet, and RPR-IEEE interfaces. BFD is not supported on Spatial Reuse Protocol (SRP) and Packet-over-SONET (POS) interfaces.

• When you configure the BFD session parameters on a Cisco 10720 interface using the bfd command (in interface configuration mode), the minimum configurable time period supported for the milliseconds argument in both the interval milliseconds and min_rx milliseconds parameters is 50 milliseconds (ms).

• A maximum of 100 BFD sessions is supported on the Cisco 10720 Internet router. When BFD tries to set up a connection between routing protocols and establish a 101st session between a Cisco 10720 Internet router and adjacent routers, the following error message is displayed:

```
00:01:24: %OSPF-5-ADJCHG: Process 100, Nbr 10.0.0.0 on RPR-IEEE1/1 from LOADING to FULL, Loading Done
00:01:24: %BFD-5-SESSIONLIMIT: Attempt to exceed session limit of 100 neighbors.
```

• BFD packets are not matched in the QoS policy for self-generated packets.

• BFD packets are matched in the class class-default command. So, the user must make sure of the availability of appropriate bandwidth to prevent dropping of BFD packets due to oversubscription.

• The Cisco 10720 Internet router does not support the following BFD features:
Bidirectional Forwarding Detection

Restrictions for Bidirectional Forwarding Detection

- Demand mode
- Echo packets
- BFD over IP Version 6

- On the Cisco 12000 series router, asymmetrical routing between peer devices may cause a BFD control packet to be received on a line card other than the line card that initiated the session. In this special case, the BFD session between the routing peers will not be established.

- A maximum 100 sessions per line card are supported for the distributed Cisco 12000 series Internet router. The minimum hello interval is 50 ms with up to three Max retries for a BFD control packet to be received from a remote system before a session with a neighbor is declared down.

- In Cisco IOS Release 12.2(33)SB, BFD is not stateful switchover (SSO) aware, and it is not supported with NSF/SSO and these features should not be used together. Enabling BFD along with NSF/SSO causes the nonstop forwarding capability to break during failover since BFD adjacencies are not maintained and the routing clients are forced to mark down adjacencies and reconverge.

- BFD is not supported on VTl tunnel.

- Effective with Cisco IOS release 15.6(3)M, BFD is also supported in the ipbasek9 image for Cisco ISR G2 modular routers. For example, if EIGRP feature is part of the ipbasek9 image, the BFD for EIGRP feature will be also part of the ipbasek9 image. When a feature is part of a software package other than IP Base which supports BFD, the associated BFD feature will be part of the equivalent software package.

BFD Control Channel over VCCV--Support for ATM Pseudowire

- The BFD Control Channel over VCCV--Support for Asynchronous Transfer Mode Pseudowire feature supports VCCV type 1 only, without IP/User Datagram Protocol (UDP) encapsulation.

- Any Transport over Multiprotocol Label Switching (AToM) is the only transport protocol supported by the BFD Control Channel over VCCV--Support for ATM Pseudowire feature.

- Layer 2 Transport Protocol version 3 (L2TPv3) is not supported.

- Pseudowire redundancy is not supported.

- Only ATM attachment circuits (AC) are supported.

Cisco IOS Release 12.2(33)SXII2 and Cisco Catalyst 6500 Series Switches

- Cisco Catalyst 6500 series switches support up to 100 BFD sessions with a minimum hello interval of 50 ms and a multiplier of 3. The multiplier specifies the minimum number of consecutive packets that can be missed before a session is declared down.

- If SSO is enabled on a dual RP system, the following limitations apply:
 - The maximum number of BFD sessions supported is 50.
 - The minimum hello interval is 500 ms with a multiplier of 3 or higher.
 - If EIGRP is enabled, the maximum number of BFD sessions supported is reduced to 30.
 - Echo mode is supported on Distributed Forwarding Cards (DFCs) only.

- BFD SSO is supported on Cisco Catalyst 6500 series switches using the E-chassis and 67xx line cards only. Centralized Forwarding Cards (CFCs) are not supported.
• To enable echo mode the system must be configured with the `no ip redirects` command.

• During the In Service Software Upgrade (ISSU) cycle the line cards are reset, causing a routing flap in the BFD session.

Cisco Catalyst 6000 Series Switches

• In the Cisco Catalyst 6000 series switches, the supervisor uplink ports have to be associated with the BFD timer value of 750*750*5 milliseconds because during the stateful switchover (SSO) or peer reload, the redundancy facility (RF) progression and EtherChannel (port-channel) load calculation takes 1.5 to 2.5 seconds. This is applicable even if the BFD echo packets are exchanged over the supervisor uplinks.

Cisco IOS Release 15.1(2)S and ES+ Line Cards for Cisco 7600 Series Routers

Cisco IOS Release 15.1(2)S, supports offloading BFD sessions to ES+ line cards on Cisco 7600 series routers. See the “Configuring Synchronous Ethernet on the Cisco 7600 Router with ES+ Line Card” section of the *Cisco 7600 Series Ethernet Services Plus (ES+) and Ethernet Services Plus T (ES+T) Line Card Configuration Guide* for more information about restrictions for hardware offload.

Cisco IOS Release 15.1(3)S-Support for BFD Multihop

• Only IPv4 and IPv6 BFD multihop sessions are supported.

• Multihop sessions will not be offloaded to hardware.

• IPv6 link local addresses are not supported for BFD multihop sessions.

• Echo mode is not supported in multihop.

Note

For the most accurate platform and hardware restrictions, see the Cisco IOS software release notes for your software version.

Support for Point-to-Point IPv4, IPv6, and GRE Tunnels

Depending on your release, Cisco software supports BFD forwarding on point-to-point IPv4, IPv6, and generic routing encapsulation (GRE) tunnels.

Only numbered interfaces are allowed. When the tunnel type is changed from a supported tunnel type to an unsupported one, BFD sessions are brought down for that tunnel and the BFD configuration is removed from the interface.

BFD detection time depends on the topology and infrastructure. For a single-hop IP tunnel that is deployed across physically adjacent devices, the 150 ms (that is, a hello interval of 50 ms with up to three retries) detection rate applies. However, when the source and destination endpoints of the tunnel are not connected back-to-back, the 150 ms detection rate is not guaranteed.

BFD uses the IP address configured on the tunnel interface. It does not use the tunnel source and destination addresses.

BFD support on DMVPN

• NHRP currently acts only on BFD down events and not on up events.
Both peers must configure BFD to get BFD support. If one of the peers is not configured with BFD, the other peer creates BFD sessions in down or unknown state.

To use this feature, all routers should be upgraded to Cisco IOS XE 16.3 release.

BFD intervals configured on the peers should be the same in the BFD echo mode for spoke to spoke refresh to work as expected.

Hub can be scaled to a maximum of 4095 DMVPN sessions on Cisco ASR 1000 Series Aggregation Services Routers since the number of BFD sessions is limited to 4095. This limitation arises from the number of BFD sessions supported on ASR 1000 currently.

Information About Bidirectional Forwarding Detection

BFD Operation

BFD provides a low-overhead, short-duration method of detecting failures in the forwarding path between two adjacent routers, including the interfaces, data links, and forwarding planes.

BFD is a detection protocol that is enabled at the interface and protocol levels. Cisco supports BFD asynchronous mode, which depends on the sending of BFD control packets between two systems to activate and maintain BFD neighbor sessions between routers. Therefore, in order for a BFD session to be created, BFD must be configured on both systems (or BFD peers). Once BFD has been enabled on the interfaces and at the router level for the appropriate protocols (NHRP and the routing protocol on overlay), a BFD session is created, BFD timers are negotiated, and the BFD peers will begin to send BFD control packets to each other at the negotiated interval.

Neighbor Relationships

BFD provides fast BFD peer failure detection times independently of all media types, encapsulations, topologies, and routing protocols BGP, EIGRP, IS-IS, and OSPF. By sending rapid failure detection notices to the routing protocols in the local router to initiate the routing table recalculcation process, BFD contributes to greatly reduced overall network convergence time. The figure below shows a simple network with two routers running OSPF and BFD. When OSPF discovers a neighbor (1) it sends a request to the local BFD process to initiate a BFD neighbor session with the OSPF neighbor router (2). The BFD neighbor session with the OSPF neighbor router is established (3).

The figure below shows what happens when a failure occurs in the network (1). The BFD neighbor session with the OSPF neighbor router is torn down (2). BFD notifies the local OSPF process that the BFD neighbor is no longer reachable (3). The local OSPF process tears down the OSPF neighbor relationship (4). If an alternative path is available, the routers will immediately start converging on it.
A routing protocol needs to register with BFD for every neighbor it acquires. Once a neighbor is registered, BFD initiates a session with the neighbor if a session does not already exist.

OSPF registers with BFD when:

- A neighbor finite state machine (FSM) transitions to full state.
- Both OSPF BFD and BFD are enabled.

On broadcast interfaces, OSPF establishes a BFD session only with the designated router (DR) and backup designated router (BDR), but not between any two routers in DROTHER state.

BFD Detection of Failures

Once a BFD session has been established and timer negotiations are complete, BFD peers send BFD control packets that act in the same manner as an IGP hello protocol to detect liveliness, except at a more accelerated rate. The following information should be noted:

- BFD is a forwarding path failure detection protocol. BFD detects a failure, but the routing protocol must take action to bypass a failed peer.
- Cisco devices will use one BFD session for multiple client protocols in the Cisco implementation of BFD for Cisco IOS Releases 12.2(18)SXE, 12.0(31)S, and 12.4(4)T. For example, if a network is running OSPF and EIGRP across the same link to the same peer, only one BFD session will be established, and BFD will share session information with both routing protocols.

BFD Version Interoperability

All BFD sessions come up as Version 1 by default and will be interoperable with Version 0. The system automatically performs BFD version detection, and BFD sessions between neighbors will run in the highest common BFD version between neighbors. For example, if one BFD neighbor is running BFD Version 0 and the other BFD neighbor is running Version 1, the session will run BFD Version 0. The output from the `show bfd neighbors` command will verify which BFD version a BFD neighbor is running.

See the Example Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default for an example of BFD version detection.

BFD Support on Cisco 12000 Routers

The Cisco 12000 series routers support distributed BFD to take advantage of its distributed Route Processor (RP) and line card (LC) architecture. The BFD tasks will be divided and assigned to the BFD process on the RP and LC, as described in the following sections:
BFD Process on the RP

Client Interaction
The BFD process on the RP will handle the interaction with clients, which create and delete BFD sessions.

Session Management for the BFD Process on the RP
The BFD RP process will primarily own all BFD sessions on the router. It will pass the session creation and deletion requests to the BFD processes on all LCs. BFD LC sessions will have no knowledge of sessions being added or deleted by the clients. Only the BFD RP process will send session addition and deletion commands to the BFD LC process.

Session Database Management
The BFD RP process will maintain a database of all the BFD sessions on the router. This database will contain only the minimum required information.

Process EXEC Commands
The BFD RP process services the BFD show commands.

BFD Process on the LC

Session Management for the BFD Process on the LC
The BFD LC process manages sessions, adds and deletes commands from the BFD RP process, and creates and deletes new sessions based on the commands. In the event of transmit failure, receive failure, or session-down detection, the LC BFD instance will immediately notify the BFD RP process. It will also update transmit and receive counters. The BFD session is maintained completely on the LC. BFD control packets are received and processed, as well as sent, from the LC itself.

Session Database Management
The BFD LC process maintains a database of all the BFD sessions hosted on the LC.

Receive and Transmit
The BFD LC process is responsible for transmitting and receiving BFD packets for the sessions on the LC.

BFD Session Limits
In Cisco IOS Release 12.2(33)SRC, the number of BFD sessions that can be created has been increased to 128.

BFD Support for Nonbroadcast Media Interfaces
In Cisco IOS Release 12.2(33)SRC, the BFD feature is supported on nonbroadcast media interfaces including ATM, POS, serial, and VLAN interfaces. BFD support also extends to ATM, Frame Relay (FR), POS, and serial subinterfaces.

The bfd interval command must be configured on the interface to initiate BFD monitoring.
BFD Support for VPN Routing and Forwarding Interfaces

The BFD feature is extended in Cisco IOS Release 12.2(33)SRC to be VPN Routing and Forwarding (VRF) aware to provide fast detection of routing protocol failures between provider edge (PE) and customer edge (CE) routers.

BFD Support for Nonstop Forwarding with Stateful Switchover

Typically, when a networking device restarts, all routing peers of that device detect that the device went down and then came back up. This transition results in a routing flap, which could spread across multiple routing domains. Routing flaps caused by routing restarts create routing instabilities, which are detrimental to the overall network performance. Nonstop forwarding (NSF) helps to suppress routing flaps in devices that are enabled with stateful switchover (SSO), thereby reducing network instability.

NSF allows for the forwarding of data packets to continue along known routes while the routing protocol information is being restored after a switchover. With NSF, peer networking devices do not experience routing flaps. Data traffic is forwarded through intelligent line cards or dual forwarding processors while the standby RP assumes control from the failed active RP during a switchover. The ability of line cards and forwarding processors to remain up through a switchover and to be kept current with the Forwarding Information Base (FIB) on the active RP is key to NSF operation.

In devices that support dual RPs, SSO establishes one of the RPs as the active processor; the other RP is designated as the standby processor, and then synchronizes information between them. A switchover from the active to the standby processor occurs when the active RP fails, when it is removed from the networking device, or when it is manually taken down for maintenance.

BFD Support for Stateful Switchover

The BFD protocol provides short-duration detection of failures in the path between adjacent forwarding engines. In network deployments that use dual RP routers or switches (to provide redundancy), the routers have a graceful restart mechanism that protects the forwarding state during a switchover between the active RP and the standby RP.

The dual RPs have variable switchover times that depend on the ability of the hardware to detect a communication failure. When BFD is running on the RP, some platforms are not able to detect a switchover before the BFD protocol times out; these platforms are referred to as slow switchover platforms.

Stateful BFD on the Standby RP

To ensure a successful switchover to the standby RP, the BFD protocol uses checkpoint messages to send session information from the active RP Cisco IOS instance to the standby RP Cisco IOS instance. The session information includes local and remote discriminators, adjacent router timer information, BFD setup information, and session-specific information such as the type of session and the session version. In addition, the BFD protocol sends session creation and deletion checkpoint messages to create or delete a session on the standby RP.

The BFD sessions on the standby RP do not receive or send packets and do not process expired timers. These sessions wait for a switchover to occur and then send packets for any active sessions so that sessions do not time out on adjacent routers.

When the BFD protocol on the standby RP is notified of a switchover it changes its state to active, registers itself with Cisco Express Forwarding so that it can receive packets, and then sends packets for any elements that have expired.
BFD also uses checkpoint messages to ensure that sessions created by clients on the active RP are maintained during a switchover. When a switchover occurs, BFD starts an SSO reclaim timer. Clients must reclaim their sessions within the duration specified by the reclaim timer or else the session is deleted.

BFD Support for Static Routing

Unlike dynamic routing protocols, such as OSPF and BGP, static routing has no method of peer discovery. Therefore, when BFD is configured, the reachability of the gateway is completely dependent on the state of the BFD session to the specified neighbor. Unless the BFD session is up, the gateway for the static route is considered unreachable, and therefore the affected routes will not be installed in the appropriate Routing Information Base (RIB).

For a BFD session to be successfully established, BFD must be configured on the interface on the peer and there must be a BFD client registered on the peer for the address of the BFD neighbor. When an interface is used by dynamic routing protocols, the latter requirement is usually met by configuring the routing protocol instances on each neighbor for BFD. When an interface is used exclusively for static routing, this requirement must be met by configuring static routes on the peers.

If a BFD configuration is removed from the remote peer while the BFD session is in the up state, the updated state of the BFD session is not signaled to IPv4 static. This will cause the static route to remain in the RIB. The only workaround is to remove the IPv4 static BFD neighbor configuration so that the static route no longer tracks BFD session state. Also, if you change the encapsulation type on a serial interface to one that is unsupported by BFD, BFD will be in a down state on that interface. The workaround is to shut down the interface, change to a supported encapsulation type, and then reconfigure BFD.

A single BFD session can be used by an IPv4 static client to track the reachability of next hops through a specific interface. You can assign a BFD group for a set of BFD-tracked static routes. Each group must have one active static BFD configuration, one or more passive BFD configurations, and the corresponding static routes to be BFD-tracked. Nongroup entries are BFD-tracked static routes for which a BFD group is not assigned. A BFD group must accommodate static BFD configurations that can be part of different VRFs. Effectively, the passive static BFD configurations need not be in the same VRF as that of the active configuration.

For each BFD group, there can be only one active static BFD session. You can configure the active BFD session by adding a static BFD configuration and a corresponding static route that uses the BFD configuration. The BFD session in a group is created only when there is an active static BFD configuration and the static route that uses the static BFD configuration. When the active static BFD configuration or the active static route is removed from a BFD group, all the passive static routes are withdrawn from the RIB. Effectively, all the passive static routes are inactive until an active static BFD configuration and a static route to be tracked by the active BFD session are configured in the group.

Similarly, for each BFD group, there can be one or more passive static BFD configurations and their corresponding static routes to be BFD-tracked. Passive static session routes take effect only when the active BFD session state is reachable. Though the active BFD session state of the group is reachable, the passive static route is added to the RIB only if the corresponding interface state is up. When a passive BFD session is removed from a group, it will not affect the active BFD session if one existed, or the BFD group reachability status.

BFD Control Channel over VCCV Support for ATM Pseudowires

Multiprotocol Label Switching (MPLS) pseudowires enable L2 traffic to be carried over an IP/MPLS core network. The BFD control channel over VCCV--Support for ATM Pseudowires feature provides operations and management (OAM) functions for MPLS pseudowires.
This feature provides support for VCCV type 1 only. VCCV Type 1 is in-band VCCV and can be used only for MPLS pseudowires that use a control word.

The BFD detection protocol can be used to provide OAM functionality to the MPLS protocol. VCCV provides a control channel associated with the pseudowire to provide OAM functions over that pseudowire. BFD can use the VCCV control channel as a pseudowire fault mechanism to detect dataplane failures. BFD can also use the VCCV control channel to carry the fault status of an attachment circuit (AC).

MPLS pseudowires can dynamically signal or statically configure virtual circuit (VC) labels. In dynamically signaled pseudowires, the control channel (CC) types and connection verification (CV) types are also signaled. In statically configured pseudowires, the CC and CV types must be configured on both ends of the pseudowire.

The CC types define whether VCCV packets are in-band or out-of-band for the pseudowire. The CV types define whether BFD monitoring is required for the pseudowire. If BFD monitoring is required for the pseudowire, the CV types also define how the BFD packets are encapsulated and whether BFD provides status signaling functionality.

Any protocol that requires BFD monitoring must register with BFD as a client. For example, the Xconnect protocol registers as a BFD client, and BFD assigns a client ID to Xconnect. Xconnect uses this client ID to create the BFD sessions that monitor the pseudowire.

BFD can detect forwarding failures (end-to-end) in the pseudowire path. When BFD detects a failure in the pseudowire forwarding path it notifies the Xconnect client that created the session. In addition, BFD can signal the status in any concatenated path, or AC, to the remote device where the BFD session is terminated.

The figure below shows a dynamically signaled MPLS pseudowire carrying an ATM payload. In this example, BFD monitoring of the pseudowire occurs from the Node B device to the PE device. BFD also monitors the signal status of the ACs between the PE and CE2 device, and between the Node B and CE1 device.

BFD on Multiple Hops

Cisco IOS Release 15.1(3)S and later releases support BFD on arbitrary paths, which might span multiple network hops. The BFD Multihop feature provides subsecond forwarding failure detection for a destination more than one hop, and up to 255 hops, away.

A BFD multihop session is set up between a unique source-destination address pair provided by the client. A session can be set up between two endpoints that have IP connectivity.
You must configure the `bfd-template` and `bfd map` commands to create a multihop template and associate it with one or more maps of destinations and associated BFD timers. You can enable authentication and configure a key chain for BFD multihop sessions.

Multi-hop BFD over IPv6 is supported in software mode only.

Benefits of Using BFD for Failure Detection

When you deploy any feature, it is important to consider all the alternatives and be aware of any trade-offs being made.

The closest alternative to BFD in conventional EIGRP, IS-IS, and OSPF deployments is the use of modified failure detection mechanisms for EIGRP, IS-IS, and OSPF routing protocols.

If you set EIGRP hello and hold timers to their absolute minimums, the failure detection rate for EIGRP falls to within a one- to two-second range.

If you use fast hellos for either IS-IS or OSPF, these Interior Gateway Protocol (IGP) protocols reduce their failure detection mechanisms to a minimum of one second.

There are several advantages to implementing BFD over reduced timer mechanisms for routing protocols:

- Although reducing the EIGRP, IS-IS, and OSPF timers can result in minimum detection timer of one to two seconds, BFD can provide failure detection in less than one second.
- Because BFD is not tied to any particular routing protocol, it can be used as a generic and consistent failure detection mechanism for EIGRP, IS-IS, and OSPF.
- Because some parts of BFD can be distributed to the data plane, it can be less CPU-intensive than the reduced EIGRP, IS-IS, and OSPF timers, which exist wholly at the control plane.

Benefits of BFD Support on DMVPN

- Faster detection of link failure.
- In non-crypto deployments, spoke can detect hub failure only after NHRP registration timeout but hub cannot detect a spoke failure until cache on hub expires (even though routing can re-converge much earlier). BFD allows for a very fast detection for such a failure.
- BFD validates the forwarding path between non authoritative sessions, for example, in scenarios where the hub is configured to respond on behalf of the spoke.
- BFD validates end-to-end data path including the tunnel unlike IKE keepalives/DPD that doesn't pass through the tunnel.
- BFD probes can be off-loaded.

There is no special NHRP configuration needed for BFD support on DMVPN, enabling BFD on an NHRP enabled interface suffices. For DMVPN configuration refer [How to Configure Dynamic Multipoint VPN](#).
How to Configure Bidirectional Forwarding Detection

Configuring BFD Session Parameters on the Interface

The steps in this procedure show how to configure BFD on the interface by setting the baseline BFD session parameters on an interface. Repeat the steps in this procedure for each interface over which you want to run BFD sessions to BFD neighbors.

SUMMARY STEPS

1. enable
2. configure terminal
3. Perform one of the following steps:
 - ip address ipv4-address mask
 - ipv6 address ipv6-address/mask
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perform one of the following steps:</td>
<td>Configures an IP address for the interface.</td>
</tr>
<tr>
<td></td>
<td>• ip address ipv4-address mask</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ipv6 address ipv6-address/mask</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuring an IPv4 address for the interface:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# ip address 10.201.201.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuring an IPv6 address for the interface:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# ipv6 address 2001:db8:1:1::1/32</td>
<td></td>
</tr>
</tbody>
</table>
Configuring BFD Support for Dynamic Routing Protocols

You can enable BFD support for dynamic routing protocols at the router level to enable BFD support globally for all interfaces or you can configure BFD on a per-interface basis at the interface level.

For Cisco IOS Release 12.2(18)SX, you may configure BFD support for one or more of the following routing protocols: EIGRP, IS-IS, and OSPF.

For Cisco IOS Releases 12.2(33)SRA, you may configure BFD support for one or more of the following routing protocols: EIGRP, IS-IS, and OSPF.

For Cisco IOS Releases 12.2(33)SRB, you may configure BFD support for one or more of the following routing protocols: BGP, EIGRP, IS-IS, and OSPF.

For Cisco IOS Release 12.2(33)SRC, you may configure BFD support for static routing.

For Cisco IOS Releases 12.0(31)S and 12.4(4)T, you may configure BFD support for one or more of the following routing protocols: BGP, IS-IS, and OSPF.

For Cisco IOS Release 12.0(32)S, for the Cisco 10720 platform, you may configure BFD for one or more of the following routing protocols: BGP, IS-IS, and OSPF.

For Cisco IOS Release 12.4(11)T, BFD support for HSRP was introduced.

This section describes the following procedures:

Configuring BFD Support for BGP

This section describes the procedure for configuring BFD support for BGP so that BGP is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD.

Before you begin

BGP must be running on all participating routers.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the Configuring BFD Session Parameters on the Interface section for more information.

Note

Output from the `show bfd neighbors details` command shows the configured intervals. The output does not show intervals that were changed because hardware-offloaded BFD sessions were configured with Tx and Rx intervals that are not multiples of 50 ms.

SUMMARY STEPS

1. enable
Configuring BFD Support for BGP

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>enable</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>specifies a BGP process and enters router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# router bgp as-tag</td>
</tr>
<tr>
<td>Step 4</td>
<td>enables BFD support for failover.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# neighbor ip-address fall-over bfd</td>
</tr>
<tr>
<td>Step 5</td>
<td>exits router configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# end</td>
</tr>
<tr>
<td>Step 6</td>
<td>(optional) verifies that the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show bfd neighbors [details]</td>
</tr>
</tbody>
</table>

Note

In order to display the full output of the `show bfd neighbors details` command on a Cisco 12000 series router, you must enter the command on the line card. Enter the `attach slot-number` command to establish a CLI session with a line card. The registered protocols are not shown in the output of the `show bfd neighbors details` command when it is entered on a line card.
Configuring BFD Support for EIGRP

This section describes the procedure for configuring BFD support for EIGRP so that EIGRP is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. There are two methods for enabling BFD support for EIGRP:

- You can enable BFD for all of the interfaces for which EIGRP is routing by using the `bfd all-interfaces` command in router configuration mode.

- You can enable BFD for a subset of the interfaces for which EIGRP is routing by using the `bfd interface type number` command in router configuration mode.

Before you begin

EIGRP must be running on all participating routers.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the Configuring BFD Session Parameters on the Interface section for more information.

Note

Output from the `show bfd neighbors details` command shows the configured intervals. The output does not show intervals that were changed because hardware-offloaded BFD sessions were configured with Tx and Rx intervals that are not multiples of 50 ms.

Note

BFD for EIGRP is not supported on the Cisco 12000 series routers for Cisco IOS Releases 12.0(31)S, 12.0(32)S, 12.4(4)T, and 12.2(33)SRA.

What to Do Next

See the Monitoring and Troubleshooting BFD section for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router eigrp as-number`
4. Do one of the following:
 - `bfd all-password`
 - `bfd interface type number`
5. `end`
6. `show bfd neighbors [details]`
7. `show ip eigrp interfaces [type number] [as-number] [detail]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router eigrp as-number</td>
<td>Configures the EIGRP routing process and enters router configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# router eigrp 123</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables BFD globally on all interfaces associated with the EIGRP routing process.</td>
</tr>
<tr>
<td>Do one of the following:</td>
<td>or Enables BFD on a per-interface basis for one or more interfaces associated with the EIGRP routing process.</td>
</tr>
<tr>
<td>- <code>bfd all-password</code></td>
<td></td>
</tr>
<tr>
<td>- <code>bfd interface type number</code></td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-router)# bfd all-password</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-router)# bfd interface FastEthernet 6/0</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits router configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-router) end</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 6</th>
<th>show bfd neighbors [details]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router# show bfd neighbors details</td>
</tr>
</tbody>
</table>

Purpose

(Optional) Verifies that the BFD neighbor is active and displays the routing protocols that BFD has registered.

Note

In order to see the full output of the `show bfd neighbors details` command on a Cisco 12000 series router, you must enter the command on the line card. Enter the `attach slot-number` command to establish a CLI session with a line card. The registered protocols are not shown in the output of the `show bfd neighbors details` command when it is entered on a line card.

Note

If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the `show bfd neighbors details` command will show the configured intervals, not the changed ones.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>show ip eigrp interfaces [type number] [as-number] [detail]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router# show ip eigrp interfaces detail</td>
</tr>
</tbody>
</table>

Purpose

(Optional) Displays the interfaces for which BFD support for EIGRP has been enabled.

What to Do Next

See the Monitoring and Troubleshooting BFD section for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections.

Configuring BFD Support for IS-IS

This section describes the procedures for configuring BFD support for IS-IS so that IS-IS is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. There are two methods for enabling BFD support for IS-IS:

- You can enable BFD for all of the interfaces on which IS-IS is supporting IPv4 routing by using the `bfd all-interfaces` command in router configuration mode. You can then disable BFD for one or more of those interfaces using the `isis bfd disable` command in interface configuration mode.

- You can enable BFD for a subset of the interfaces for which IS-IS is routing by using the `isis bfd` command in interface configuration mode.

To configure BFD support for IS-IS, perform the steps in one of the following sections:

Prerequisites

IS-IS must be running on all participating routers.
The baseline parameters for BFD sessions on the interfaces that you want to run BFD sessions to BFD neighbors over must be configured. See the Configuring BFD Session Parameters on the Interface section for more information.

Output from the `show bfd neighbors details` command shows the configured intervals. The output does not show intervals that were changed because hardware-offloaded BFD sessions were configured with Tx and Rx intervals that are not multiples of 50 ms.

Configuring BFD Support for IS-IS for All Interfaces

To configure BFD on all IS-IS interfaces that support IPv4 routing, perform the steps in this section.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router isis area-tag`
4. `bfd all-interfaces`
5. `exit`
6. `interface type number`
7. `ip router isis [tag]`
8. `isis bfd [disable]`
9. `end`
10. `show bfd neighbors [details]`
11. `show clns interface`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies an IS-IS process and enters router configuration mode.</td>
</tr>
<tr>
<td><code>router isis area-tag</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# router isis tag1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables BFD globally on all interfaces associated with the IS-IS routing process.</td>
</tr>
<tr>
<td><code>bfd all-interfaces</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-router)# bfd all-interfaces</td>
<td>(Optional) Returns the router to global configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-router)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface fastethernet 6/0</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip router isis [tag]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip router isis tag1</td>
</tr>
<tr>
<td>Step 8</td>
<td>isis bfd [disable]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# isis bfd</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 10</td>
<td>show bfd neighbors [details]</td>
</tr>
</tbody>
</table>
If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the `show bfd neighbors details` command will show the configured intervals, not the changed ones.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the <code>show bfd neighbors details</code> command will show the configured intervals, not the changed ones.</td>
</tr>
</tbody>
</table>

Step 11

Example:

```
Router# show clns interface
```

(Optional) Displays information that can be used to verify if BFD for IS-IS has been enabled for a specific IS-IS interface that is associated.

What to Do Next

See the Monitoring and Troubleshooting BFD section for more information on monitoring and troubleshooting BFD. If you want to configure only for a specific subset of interfaces, perform the tasks in the Configuring BFD Support for IS-IS for One or More Interfaces section.

Configuring BFD Support for IS-IS for One or More Interfaces

To configure BFD for only one or more IS-IS interfaces, perform the steps in this section.

Note

Output from the `show bfd neighbors details` command shows the configured intervals. The output does not show intervals that were changed because hardware-offloaded BFD sessions were configured with Tx and Rx intervals that are not multiples of 50 ms.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip router isis [tag]`
5. `isis bfd [disable]`
6. `end`
7. `show bfd neighbors [details]`
8. `show clns interface`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>interface type number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface fastethernet 6/0</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables support for IPv4 routing on the interface.</td>
</tr>
<tr>
<td>ip router isis [tag]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ip router isis tag1</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables or disables BFD on a per-interface basis for one or more interfaces associated with the IS-IS routing process.</td>
</tr>
<tr>
<td>isis bfd [disable]</td>
<td>You should use the disable keyword only if you enabled BFD on all of the interfaces that IS-IS is associated with using the bfd all-interfaces command in router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# isis bfd</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>Exits interface configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# end</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) Displays information that can help verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>show bfd neighbors [details]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show bfd neighbors details</code></td>
</tr>
</tbody>
</table>

Note
- In order to display the full output of the `show bfd neighbors details` command on a Cisco 12000 series router, you must enter the command on the line card. Enter the `attach slot-number` command to establish a CLI session with a line card. The registered protocols are not shown in the output of the `show bfd neighbors details` command when it is entered on a line card.

Note
- If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the `show bfd neighbors details` command will show the configured intervals, not the changed ones.
<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show clns interface</td>
<td>(Optional) Displays information that can help verify if BFD for IS-IS has been enabled for a specific IS-IS interface that is associated.</td>
</tr>
</tbody>
</table>

What to Do Next

See the Monitoring and Troubleshooting BFD section for more information on monitoring and maintaining BFD. If you want to configure BFD support for another routing protocol, see one of the following sections.

Configuring BFD Support for OSPF

This section describes the procedures for configuring BFD support for OSPF so that OSPF is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. You can either configure BFD support for OSPF globally on all interfaces or configure it selectively on one or more interfaces.

There are two methods for enabling BFD support for OSPF:

- You can enable BFD for all of the interfaces for which OSPF is routing by using the `bfd all-interfaces` command in router configuration mode. You can disable BFD support on individual interfaces using the `ip ospf bfd [disable]` command in interface configuration mode.

- You can enable BFD for a subset of the interfaces for which OSPF is routing by using the `ip ospf bfd` command in interface configuration mode.

See the following sections for tasks for configuring BFD support for OSPF:

Configuring BFD Support for OSPF for All Interfaces

To configure BFD for all OSPF interfaces, perform the steps in this section.

If you do not want to configure BFD on all OSPF interfaces and would rather configure BFD support specifically for one or more interfaces, see the Configuring BFD Support for OSPF for One or More Interfaces section.

Before you begin

OSPF must be running on all participating routers.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the Configuring BFD Session Parameters on the Interface section for more information.

Note

Output from the `show bfd neighbors details` command shows the configured intervals. The output does not show intervals that were changed because hardware-offloaded BFD sessions were configured with Tx and Rx intervals that are not multiples of 50 ms.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>router ospf process-id</code></td>
<td>Specifies an OSPF process and enters router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# router ospf 4</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>bfd all-interfaces</code></td>
<td>Enables BFD globally on all interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-router)# bfd all-interfaces</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>(Optional) Returns the router to global configuration mode. Enter this command only if you want to perform Step 7 to disable BFD for one or more interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-router)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>interface type number</code></td>
<td>(Optional) Enters interface configuration mode. Enter this command only if you want to perform Step 7 to disable BFD for one or more interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface fastethernet 6/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>ip ospf bfd [disable]</code></td>
<td>(Optional) Disables BFD on a per-interface basis for one or more interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ip ospf bfd disable</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Note You should use the <code>disable</code> keyword only if you enabled BFD on all of the interfaces that OSPF is associated with using the <code>bfd all-interfaces</code> command in router configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Exits interface configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# end</code></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>show bfd neighbors [details]</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays information that can help verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td></td>
<td>Note In order to display the full output of the <code>show bfd neighbors details</code> command on a Cisco 12000 series router, you must enter the command on the line card. Enter the <code>attach slot-number</code> command to establish a CLI session with a line card. The registered protocols are not shown in the output of the <code>show bfd neighbors details</code> command when it is entered on a line card.</td>
</tr>
<tr>
<td></td>
<td>Note If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the <code>show bfd neighbors details</code> command will show the configured intervals, not the changed ones.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router# show bfd neighbors detail</code></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>show ip ospf</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays information that can help verify if BFD for OSPF has been enabled.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router# show ip ospf</code></td>
</tr>
</tbody>
</table>

What to Do Next

See the Monitoring and Troubleshooting BFD section for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections.

Configuring BFD Support for OSPF for One or More Interfaces

To configure BFD on one or more OSPF interfaces, perform the steps in this section.

Before you begin

OSPF must be running on all participating routers.
The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the Configuring BFD Session Parameters on the Interface section for more information.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ip ospf bfd [disable]`
5. `end`
6. `show bfd neighbors [details]`
7. `show ip ospf`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface fastethernet 6/0</td>
</tr>
<tr>
<td>Step 4 ip ospf bfd [disable]</td>
<td>Enables or disables BFD on a per-interface basis for one or more interfaces associated with the OSPF routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td>You should use the <code>disable</code> keyword only if you enabled BFD on all of the interfaces that OSPF is associated with using the <code>bfd all-interfaces</code> command in router configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip ospf bfd</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits interface configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 6 show bfd neighbors [details]</td>
<td>(Optional) Displays information that can help verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show bfd neighbors details</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 7</th>
<th>show ip ospf</th>
</tr>
</thead>
</table>

Example:

`Router# show ip ospf`

Purpose

Note
In order to display the full output of the `show bfd neighbors details` command on a Cisco 12000 series router, you must enter the command on the line card. Enter the `attach slot-number` command to establish a CLI session with a line card. The registered protocols are not shown in the output of the `show bfd neighbors details` command when it is entered on a line card.

Note
If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the `show bfd neighbors details` command will show the configured intervals, not the changed ones.

What to Do Next

See the Monitoring and Troubleshooting BFD section for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections.

Configuring BFD Support for HSRP

Perform this task to enable BFD support for Hot Standby Router Protocol (HSRP.) Repeat the steps in this procedure for each interface over which you want to run BFD sessions to HSRP peers.

HSRP supports BFD by default. If HSRP support for BFD has been manually disabled, you can reenable it at the router level to enable BFD support globally for all interfaces or on a per-interface basis at the interface level.

Before you begin

- HSRP must be running on all participating routers.
- Cisco Express Forwarding must be enabled.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip cef [distributed]`
4. `interface type number`
5. `ip address ip-address mask`
6. `standby [group-number] ip [ip-address [secondary]]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
</tbody>
</table>

| **Step 2** | Enters global configuration mode. |
| `configure terminal` | Example: Router# configure terminal |

| **Step 3** | Enables Cisco Express Forwarding or distributed Cisco Express Forwarding. |
| `ip cef [distributed]` | Example: Router(config)# ip cef |

| **Step 4** | Enters interface configuration mode. |
| `interface type number` | Example: Router(config)# interface FastEthernet 6/0 |

| **Step 5** | Configures an IP address for the interface. |
| `ip address ip-address mask` | Example: Router(config-if)# ip address 10.0.0.11 255.255.255.0 |

| **Step 6** | Activates HSRP. |
| `standby [group-number] ip [ip-address [secondary]]` | Example: Router(config-if)# standby 1 ip 10.0.0.11 |

| **Step 7** | (Optional) Enables HSRP support for BFD on the interface. |
| `standby bfd` | Example: Router(config-if)# standby bfd |

| **Step 8** | Exits interface configuration mode. |
| `exit` | Example: |

Bidirectional Forwarding Detection

Configuring BFD Support for HSRP

7. `standby bfd`
8. `exit`
9. `standby bfd all-interfaces`
10. `exit`
11. `show standby neighbors`
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# exit</code></td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) Enables HSRP support for BFD on all interfaces.</td>
</tr>
<tr>
<td><code>standby bfd all-interfaces</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router(config)# standby bfd all-interfaces</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router(config)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>(Optional) Displays information about HSRP support for BFD.</td>
</tr>
<tr>
<td><code>show standby neighbors</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router# show standby neighbors</code></td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

See the Monitoring and Troubleshooting BFD section for more information on monitoring and troubleshooting BFD. If you want to configure BFD support for another routing protocol, see the following sections.

Configuring BFD Support for Static Routing

Perform this task to configure BFD support for static routing. Repeat the steps in this procedure on each BFD neighbor. For more information, see the "Example: Configuring BFD Support for Static Routing" section.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. Perform one of the following steps:
 - `ip address ipv4-address mask`
 - `ipv6 address ipv6-address/mask`
5. `exit`
6. Perform one of the following steps:
 - `ip route static bfd interface-type interface-number ip-address [group group-name [passive]]`
 - `ipv6 route static bfd interface-type interface-number ip-address [unaasiosiated]`
7. Perform one of the following steps:
 - `ip route [vrf vrf-name] prefix mask [ip-address | interface-type interface-number [ip-address]] [dhcpp] [distance] [name next-hop-name] [permanent | track number] [tag tag]`
• `ipv6 route [vrf vrf-name] ipv6-prefix/mask {ipv6-address | interface-type interface-number [ipv6-address]} [name next-hop-name] [track number] [tag tag]`

8. **exit**

9. Perform one of the following steps:
 • `show ip static route`
 • `show ipv6 static`

10. Perform one of the following steps:
 • `show ip static route bfd`
 • `show ipv6 static bfd`

11. **exit**

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number
Example:
Device(config)# interface serial 2/0</td>
</tr>
<tr>
<td>Step 4</td>
<td>Perform one of the following steps:
• <code>ip address ipv4-address mask</code>
• <code>ipv6 address ipv6-address/mask</code>
Example:
Configuring an IPv4 address for the interface:
Device(config-if)# ip address 10.201.201.1 255.255.255.0
Configuring an IPv6 address for the interface:
Device(config-if)# ipv6 address 2001:db8:1:1::1/32</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit
Example:
Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-if)# exit</td>
<td>Specifies a static route BFD neighbor.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Perform one of the following steps:</td>
</tr>
<tr>
<td></td>
<td>• <code>ip route static bfd</code> <code>interface-type</code> <code>interface-number</code> <code>ip-address</code> <code>[group group-name [passive]]</code></td>
</tr>
<tr>
<td></td>
<td>• <code>ipv6 route static bfd</code> <code>interface-type</code> <code>interface-number</code> <code>ip-address</code> <code>[unaasosiated]</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ip route static bfd serial 2/0 10.1.1.1 group group1 passive</td>
</tr>
<tr>
<td></td>
<td>Device(config)# ipv6 route static bfd TenGigabitEthernet 0/0/7 19:1:1::2</td>
</tr>
<tr>
<td>Step 7</td>
<td>Perform one of the following steps:</td>
</tr>
<tr>
<td></td>
<td>• <code>ip route</code> <code>[vrf vrf-name]</code> <code>prefix mask</code> `{ip-address</td>
</tr>
<tr>
<td></td>
<td>• <code>ipv6 route</code> <code>[vrf vrf-name]</code> <code>ipv6 prefix/mask</code> `{ipv6-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ip route 10.0.0.0 255.0.0.0</td>
</tr>
<tr>
<td></td>
<td>Device(config)# ipv6 route 19:1:1::/64 TenGigabitEthernet0/0/7 19:1:1::2</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Device(config)# exit</td>
</tr>
<tr>
<td>Step 9</td>
<td>Perform one of the following steps:</td>
</tr>
<tr>
<td></td>
<td>• <code>show ip static route</code></td>
</tr>
<tr>
<td></td>
<td>• <code>show ipv6 static</code></td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Displays static route database information.</td>
</tr>
<tr>
<td></td>
<td>Device# show ip static route</td>
</tr>
<tr>
<td></td>
<td>Device# show ipv6 static route</td>
</tr>
</tbody>
</table>
Configuring BFD Echo Mode

BFD echo mode is enabled by default, but you can disable it such that it can run independently in each direction. BFD echo mode works with asynchronous BFD. Echo packets are sent by the forwarding engine and forwarded back along the same path in order to perform detection—the BFD session at the other end does not participate in the actual forwarding of the echo packets. The echo function and the forwarding engine are responsible for the detection process; therefore, the number of BFD control packets that are sent out between two BFD neighbors is reduced. In addition, because the forwarding engine is testing the forwarding path on the remote (neighbor) system without involving the remote system, there is an opportunity to improve the interpacket delay variance, thereby achieving quicker failure detection times than when using BFD Version 0 with BFD control packets for the BFD session.

Echo mode is described as without asymmetry when it is running on both sides (both BFD neighbors are running echo mode).

Prerequisites

BFD must be running on all participating routers.

Before using BFD echo mode, you must disable the sending of Internet Control Message Protocol (ICMP) redirect messages by entering the `no ip redirects` command, in order to avoid high CPU utilization.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the Configuring BFD Session Parameters on the Interface section for more information.

Restrictions

BFD echo mode, which is supported in BFD Version 1, is available only in Cisco IOS Releases 12.4(9), and 12.2(33)SRA.

Note

BFD echo mode does not work in conjunction with Unicast Reverse Path Forwarding (uRPF) configuration. If BFD echo mode and uRPF configurations are enabled, then the sessions will flap.
Configuring the BFD Slow Timer

The steps in this procedure show how to change the value of the BFD slow timer. Repeat the steps in this procedure for each BFD router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bfd slow-timer milliseconds`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code>
Example:
Switch> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code>
Example:
Switch# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>bfd slow-timer milliseconds</code>
Example:
Switch(config)# bfd slow-timer 12000</td>
</tr>
<tr>
<td></td>
<td>Configures the BFD slow timer.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code>
Example:
Switch(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits global configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Disabling BFD Echo Mode Without Asymmetry

The steps in this procedure show how to disable BFD echo mode without asymmetry—no echo packets will be sent by the router, and the router will not forward BFD echo packets that are received from any neighbor routers.

Repeat the steps in this procedure for each BFD router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `no bfd echo`
4. `end`
Creating and Configuring BFD Templates

You can configure a single-hop template to specify a set of BFD interval values. BFD interval values specified as part of the BFD template are not specific to a single interface. You can configure a multihop template to associate these values with one or more maps of destinations and associated BFD timers. You can enable authentication and configure a key chain for BFD multihop sessions.

Configuring a Single-Hop Template

Perform this task to create a BFD single-hop template and configure BFD interval timers.

SUMMARY STEPS

1. enable
2. configure terminal
3. bfd-template single-hop template-name
4. interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable | Enables privileged EXEC mode.
 Example: Router> enable |
| Step 2 configure terminal | Enters global configuration mode.
 Example: Router# configure terminal |
| Step 3 no bfd echo | Disables BFD echo mode.
 Example: Router(config)# no bfd echo |
| Step 4 end | Exits global configuration mode and returns to privileged EXEC mode.
 Example: Router(config)# end |
Configuring a Multihop Template

Perform this task to create a BFD multihop template and configure BFD interval timers, authentication, and key chain.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bfd-template multi-hop template-name`
4. `interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value`
5. `authentication authentication-type keychain keychain-name`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 <code>bfd-template single-hop template-name</code></td>
<td>Creates a single-hop BFD template and enters BFD configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# bfd-template single-hop bfdtemplate1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 <code>interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value</code></td>
<td>Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 <code>end</code></td>
<td>Exits BFD configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(bfd-config)# end</td>
<td></td>
</tr>
</tbody>
</table>
What to Do Next

The BFD templates that you create can be applied to pseudowire classes to enable BFD control channel over VCCV on ATM pseudowire networks. For more information, see the Configuring BFD Control Channel over VCCV Support for ATM Pseudowire section.

Configuring a BFD Map

Perform this task to configure a BFD map that associates the interval timers and authentication configured in a template with unique source-destination address pairs for multihop BFD sessions.

Before you begin

You must configure a BFD multihop template before you associate it with a map.

SUMMARY STEPS

1. `enable`
2. `configure terminal`

Table: Command or Action vs Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 bfd-template multi-hop template-name</td>
<td>Creates a BFD multihop BFD template and enters BFD configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# bfd-template multi-hop mh-template1</td>
<td></td>
</tr>
<tr>
<td>Step 4 interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value</td>
<td>Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.</td>
</tr>
<tr>
<td>Example: Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3</td>
<td></td>
</tr>
<tr>
<td>Step 5 authentication authentication-type keychain keychain-name</td>
<td>Configures authentication for the multihop template and specifies the authentication type.</td>
</tr>
<tr>
<td>Example: Router(bfd-config)# authentication keyed-sha-1 keychain bfd-multihop</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Exits BFD configuration mode and returns the router to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(bfd-config)# end</td>
<td></td>
</tr>
</tbody>
</table>
3. `bfd map ipv4 vrf vrf-name destination length source-address length template-name`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>bfd map ipv4 vrf vrf-name destination length source-address length template-name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# bfd map ipv4 vrf vpn1 192.168.0.0/24 192.168.42.5/32 mh-template1</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# end</code></td>
</tr>
</tbody>
</table>

Configuring BFD Control Channel over VCCV Support for ATM Pseudowire

Perform this task to configure BFD over VCCV Support for ATM Pseudowire networks.

Before you begin

You must create and configure the BFD template before you assign it to the pseudowire class. For more information, see the Creating and Configuring BFD Templates section.

Before VCCV BFD can be run on pseudowires, pseudowires must be configured on the network.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class name`
4. `encapsulation type`
5. `protocol {ldp | none}`
6. `vccv {control-word | router-alert | ttl}`
7. `vccv bfd template name {udp | raw-bfd}`
8. `vcc bfd status signaling`
9. `exit`
10. `interface atm interface-number`
11. `atm asynchronous`
12. `pvc vpi/ vci l2transport`
13. `xconnect peer-ip-address vc-id {encapsulation mpls [manual] | pw-class pw-class-name} [pw-class pw-class-name] [sequencing {transmit | receive | both}]`
14. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 pseudowire-class name</td>
<td>Specifies the name of the pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# pseudowire-class vccv-bfd1</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation type</td>
<td>Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.</td>
</tr>
<tr>
<td>Example: Router(config-pw-class)# encapsulation mpls</td>
<td>• You must specify mpls encapsulation as part of the <code>xconnect</code> command or as part of a pseudowire class for the AToM Virtual Circuits to work properly.</td>
</tr>
<tr>
<td>Step 5 protocol {ldp</td>
<td>none}</td>
</tr>
<tr>
<td>Example: Router(config-pw-class)# protocol none</td>
<td>• To configure static pseudowires, you must specify the <code>none</code> keyword.</td>
</tr>
<tr>
<td>Step 6 vccv {control-word</td>
<td>router-alert</td>
</tr>
<tr>
<td>Example: Router(config-pw-class)# vccv control-word</td>
<td>• For MPLS pseudowires that use a CV type that does not include IP/UDP headers, you must set the CC type to CC type 1: pseudowire control word.</td>
</tr>
<tr>
<td>Step 7 vcc bfd template name {udp</td>
<td>raw-bfd}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>Router(config-pw-class)# vccv bfd template bfdtemplate1 raw-bfd</code></td>
<td>Enables status signaling for BFD VCCV.</td>
</tr>
<tr>
<td>Step 8 vccv bfd status signaling</td>
<td>Enables status signaling for BFD VCCV.</td>
</tr>
<tr>
<td>Example: <code>Router(config-pw-class)# vccv bfd status signaling</code></td>
<td>Enables status signaling for BFD VCCV.</td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Exits pseudowire class configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-pw-class)# exit</code></td>
<td>Exits pseudowire class configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 10 interface atm interface-number</td>
<td>Configures an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# interface atm 9/0/0</code></td>
<td>Configures an ATM interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 11 atm asynchronous</td>
<td>Enables synchronous mode on the ATM interface.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# atm asynchronous</code></td>
<td>Enables synchronous mode on the ATM interface.</td>
</tr>
<tr>
<td>Step 12 pvc vpi/ vci l2transport</td>
<td>Creates the ATM permanent virtual circuit (PVC), specifies the encapsulation type on an ATM PVC, and enters ATM virtual circuit configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# pvc 0/100 l2transport</code></td>
<td>Creates the ATM permanent virtual circuit (PVC), specifies the encapsulation type on an ATM PVC, and enters ATM virtual circuit configuration mode.</td>
</tr>
<tr>
<td>Step 13 xconnect peer-ip-address vc-id {encapsulation mpls [manual]</td>
<td>Binds an attachment circuit to a pseudowire, configures an ATOM static pseudowire, and specifies the pseudowire class.</td>
</tr>
<tr>
<td>[pw-class pw-class-name] [pw-class pw-class-name] [sequencing {transmit</td>
<td>receive</td>
</tr>
<tr>
<td>Example: <code>Router(cfg-if-atm-l2trans-pvc)# xconnect 10.0.0.7 100 pw-class vccv-bfd1</code></td>
<td>Binds an attachment circuit to a pseudowire, configures an ATOM static pseudowire, and specifies the pseudowire class.</td>
</tr>
<tr>
<td>Step 14 end</td>
<td>Exits ATM virtual circuit configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(cfg-if-atm-l2trans-pvc)# end</code></td>
<td>Exits ATM virtual circuit configuration mode and returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Configuring BFD Support on DMVPN

BFD intervals can be directly configured on tunnel interface as shown below:

```
enable
```
configure terminal
interface tunnel1
bfd interval 1000 min_rx 1000 multiplier 5
no echo

BFD intervals can also be configured by defining a template and attaching it to the tunnel interface as shown below

enable
configure terminal
bfd-template single-hop sample
interval min-tx 1000 min-rx 1000 multiplier 5
interface tunnel1
bfd template sample

Monitoring and Troubleshooting BFD

This section describes how to retrieve BFD information for maintenance and troubleshooting. The commands in these tasks can be entered as needed, in any order desired.

For more information about BFD session initiation and failure, refer to the BFD Operation, on page 6.

This section contains information for monitoring and troubleshooting BFD for the following Cisco platforms:

Monitoring and Troubleshooting BFD for Cisco 7600 Series Routers

To monitor or troubleshoot BFD on Cisco 7600 series routers, perform one or more of the steps in this section.

Note

See the “Configuring Synchronous Ethernet on the Cisco 7600 Router with ES+ Line Card” section of the Cisco 7600 Series Ethernet Services Plus (ES+) and Ethernet Services Plus T (ES+T) Line Card Configuration Guide for more information about troubleshooting BFD on Cisco 7600 series routers.

SUMMARY STEPS

1. enable
2. show bfd neighbors [details]
3. debug bfd [packet | event]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>show bfd neighbors [details]</td>
<td>(Optional) Displays the BFD adjacency database.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
The `show bfd neighbors details` command on a Cisco 12000 series router, you must enter the command on the line card. Enter the `attach slot-number` command to establish a CLI session with a line card. The registered protocols are not shown in the output of the `show bfd neighbors details` command when it is entered on a line card.

Note: If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the `show bfd neighbors details` command will show the configured intervals, not the changed ones.

Step 3
```
Step 3  debug bfd [packet | event]
Example:
Router# debug bfd packet
```

(Optional) Displays debugging information about BFD packets.

Monitoring and Troubleshooting BFD for Cisco 10720 Internet Routers

To monitor or troubleshoot BFD on Cisco 10720 Internet routers, perform one or more of the steps in this section.

SUMMARY STEPS

1. `enable`
2. `show bfd neighbors [details]`
3. `debug bfd event`
4. `debug bfd packet`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show bfd neighbors [details]</code></td>
<td>(Optional) Displays the BFD adjacency database.</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td>• The <code>details</code> keyword will show all BFD protocol parameters and timers per neighbor.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# show bfd neighbors details</td>
<td>Note: The registered protocols are not shown in the output of the <code>show bfd neighbors details</code> when it is entered on a line card.</td>
</tr>
</tbody>
</table>

Step 3

debug bfd event

Example:

Router# debug bfd event

(Optional) Displays debugging information about BFD state transitions.

Step 4

debug bfd packet

Example:

Router# debug bfd packet

(Optional) Displays debugging information about BFD control packets.

Monitoring and Troubleshooting BFD for Cisco 12000 Series Routers

To monitor or troubleshoot BFD on Cisco 12000 series routers, perform one or more of the steps in this section.

SUMMARY STEPS

1. `enable`
2. `attach slot-number`
3. `show bfd neighbors [details]`
4. `show monitor event-trace bfd [all]`
5. `debug bfd event`
6. `debug bfd packet`
7. `debug bfd ipc-error`
8. `debug bfd ipc-event`
9. `debug bfd oir-error`
10. `debug bfd oir-event`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 `enable`
 Example:
 Router> enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Step 2**
 `attach slot-number`
 Example:
 Router# attach 6 | Connects you to a specific line card for the purpose of executing monitoring and maintenance commands on the specified line card. Slot numbers range from 0 to 11 for the Cisco 12012 and from 0 to 7 for the Cisco 12008.
 • If the slot number is omitted, you are prompted for the slot number. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note In order to display the full output of the <code>show bfd neighbors details</code> command on a Cisco 12000 series router, you must enter the command on the line card. Enter the <code>attach slot-number</code> command to establish a CLI session with a line card.</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

show bfd neighbors [details]

Example:

```bash
Router# show bfd neighbors details
```

Displays the BFD adjacency database.

- The `details` keyword shows all BFD protocol parameters and timers per neighbor.

Note The registered protocols are not shown in the output of the `show bfd neighbors details` when it is entered on a line card.

Note If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the `show bfd neighbors details` command will show the configured intervals, not the changed ones.

Step 4

show monitor event-trace bfd [all]

Example:

```bash
Router# show monitor event-trace bfd all
```

Displays logged messages for important events in “recent past” on BFD activities that occur on the line cards. This is a rolling buffer based log, so “distant past” events would be lost. Depending on traffic and frequency of events, these events could be seen over a variable time window.

Step 5

debug bfd event

Example:

```bash
Router# debug bfd event
```

Displays debugging information about BFD state transitions.

Step 6

debug bfd packet

Example:

```bash
Router# debug bfd packet
```

Displays debugging information about BFD control packets.

Step 7

debug bfd ipc-error

Example:

```bash
Router# debug bfd ipc-error
```

Displays debugging information with IPC errors on the RP and LC.

Step 8

debug bfd ipc-event

Example:

```bash
Router# debug bfd ipc-event
```

Displays debugging information with IPC events on the RP and LC.
Configuration Examples for Bidirectional Forwarding Detection

Example: Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default

In the following example, the EIGRP network contains RouterA, RouterB, and RouterC. Fast Ethernet interface 1/0 on RouterA is connected to the same network as Fast Ethernet interface 1/0 on Router B. Fast Ethernet interface 1/0 on RouterB is connected to the same network as Fast Ethernet interface 1/0 on RouterC.

RouterA and RouterB are running BFD Version 1, which supports echo mode, and RouterC is running BFD Version 0, which does not support echo mode. The BFD sessions between RouterC and its BFD neighbors are said to be running echo mode with asymmetry because echo mode will run on the forwarding path for RouterA and RouterB, and their echo packets will return along the same path for BFD sessions and failure detections, while their BFD neighbor RouterC runs BFD Version 0 and uses BFD control packets for BFD sessions and failure detections.

The figure below shows a large EIGRP network with several routers, three of which are BFD neighbors that are running EIGRP as their routing protocol.

![EIGRP Network Diagram](image)

The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for RouterA

```plaintext
interface Fast Ethernet0/0
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9 debug bfd oir-error</td>
<td>Displays debugging information with OIR errors on the RP and LC.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug bfd oir-error</td>
</tr>
<tr>
<td>Step 10 debug bfd oir-event</td>
<td>Displays debugging information with OIR events on the RP and LC.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug bfd oir-event</td>
</tr>
</tbody>
</table>
no shutdown
ip address 10.4.9.14 255.255.255.0
duplex auto
speed auto
!
interface Fast Ethernet1/0
ip address 172.16.1.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
no shutdown
duplex auto
speed auto
!
router eigrp 11
network 172.16.0.0
bfd all-interfaces
auto-summary
!
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
ip route 172.16.1.129 255.255.255.255 10.4.9.1
!
no ip http server
!
logging alarm informational
!
control-plane
!
line con 0
exec-timeout 30 0
stopbits 1
line aux 0
stopbits 1
line vty 0 4
login
!
!
end

Configuration for RouterB

!
interface Fast Ethernet0/0
no shutdown
ip address 10.4.9.34 255.255.255.0
duplex auto
speed auto
!
interface Fast Ethernet1/0
ip address 172.16.1.2 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
no shutdown
duplex auto
speed auto
!
router eigrp 11
network 172.16.0.0
bfd all-interfaces
auto-summary
!
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
ip route 172.16.1.129 255.255.255.255 10.4.9.1
!
no ip http server
!
logging alarm informational
!
control-plane
!
line con 0
 exec-timeout 30 0
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 login

end

Configuration for RouterC

!
!
interface Fast Ethernet0/0
 no shutdown
 ip address 10.4.9.34 255.255.255.0
 duplex auto
 speed auto
!
interface Fast Ethernet1/0
 ip address 172.16.1.2 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3
 no shutdown
 duplex auto
 speed auto
!
router eigrp 11
 network 172.16.0.0
 bfd all-interfaces
 auto-summary
!
ip default-gateway 10.4.9.1
ip default-network 0.0.0.0
ip route 0.0.0.0 0.0.0.0 10.4.9.1
ip route 172.16.1.129 255.255.255.255 10.4.9.1
!
no ip http server
!
logging alarm informational
!
control-plane
!
line con 0
 exec-timeout 30 0
 stopbits 1
line aux 0
 stopbits 1
line vty 0 4
 login

end
The output from the `show bfd neighbors details` command from RouterA verifies that BFD sessions have been created among all three routers and that EIGRP is registered for BFD support. The first group of output shows that RouterC with the IP address 172.16.1.3 runs BFD Version 0 and therefore does not use the echo mode. The second group of output shows that RouterB with the IP address 172.16.1.2 does run BFD Version 1, and the 50 millisecond BFD interval parameter had been adopted. The relevant command output is shown in bold in the output.

```
RouterA# show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>172.16.1.3</td>
</tr>
<tr>
<td>5/3</td>
<td>1(RH)</td>
</tr>
<tr>
<td>150 (3)</td>
<td>Up Fa1/0</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holdown (hits): 150(0), Hello (hits): 50(1364284)
Rx Count: 1351813, Rx Interval (ms) min/max/avg: 28/64/49 last: 4 ms ago
Tx Count: 1364289, Tx Interval (ms) min/max/avg: 40/68/49 last: 32 ms ago
Registered protocols: EIGRP
Uptime: 18:42:45
Last packet: Version: 0
- Diagnostic: 0
  I Hear You bit: 1 - Demand bit: 0
  Poll bit: 0 - Final bit: 0
  Multiplier: 3 - Length: 24
  My Discr.: 3 - Your Discr.: 5
  Min tx interval: 50000 - Min rx interval: 50000
  Min Echo interval: 0

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>172.16.1.2</td>
</tr>
<tr>
<td>6/1</td>
<td>Up 0 (3)</td>
</tr>
<tr>
<td>Up Fa1/0</td>
<td></td>
</tr>
</tbody>
</table>

Session state is UP and using echo function with 50 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(317)
Rx Count: 305, Rx Interval (ms) min/max/avg: 1/1016/887 last: 448 ms ago
Tx Count: 319, Tx Interval (ms) min/max/avg: 1/1008/880 last: 532 ms ago
Registered protocols: EIGRP
Uptime: 00:04:30
Last packet: Version: 1
- Diagnostic: 0
  State bit: Up - Demand bit: 0
  Poll bit: 0 - Final bit: 0
  Multiplier: 3 - Length: 24
  My Discr.: 1 - Your Discr.: 6
  Min tx interval: 1000000 - Min rx interval: 1000000
  Min Echo interval: 50000
```

The output from the `show bfd neighbors details` command on Router B verifies that BFD sessions have been created and that EIGRP is registered for BFD support. As previously noted, RouterA runs BFD Version 1, therefore echo mode is running, and RouterC runs BFD Version 0, so echo mode does not run. The relevant command output is shown in bold in the output.
RouterB# show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.2</td>
<td>172.16.1.1</td>
</tr>
<tr>
<td>1/6</td>
<td>Up</td>
</tr>
<tr>
<td>0</td>
<td>(3)</td>
</tr>
<tr>
<td>Up</td>
<td>Fa1/0</td>
</tr>
</tbody>
</table>

Session state is UP and using echo function with 50 ms interval.

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(337)
Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago
Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago
Registered protocols: EIGRP
Uptime: 00:05:00

Last packet: Version: 1
- Diagnostic: 0
 - State bit: Up
 - Demand bit: 0
 - Poll bit: 0
 - Final bit: 0
 - Multiplier: 3
 - Length: 24
 - My Discr.: 6
 - Your Discr.: 1
 - Min tx interval: 1000000
 - Min rx interval: 1000000
 - Min Echo interval: 50000

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.2</td>
<td>172.16.1.3</td>
</tr>
<tr>
<td>3/6</td>
<td>1(RH)</td>
</tr>
<tr>
<td>118</td>
<td>(3)</td>
</tr>
<tr>
<td>Up</td>
<td>Fa1/0</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holdown (hits): 150(0), Hello (hits): 50(5735)
Rx Count: 5731, Rx Interval (ms) min/max/avg: 32/72/49 last: 32 ms ago
Tx Count: 5740, Tx Interval (ms) min/max/avg: 40/64/50 last: 44 ms ago
Registered protocols: EIGRP
Uptime: 00:04:45

Last packet: Version: 0
- Diagnostic: 0
 - I Hear You bit: 1
 - Demand bit: 0
 - Poll bit: 0
 - Final bit: 0
 - Multiplier: 3
 - Length: 24
 - My Discr.: 6
 - Your Discr.: 3
 - Min tx interval: 50000
 - Min rx interval: 50000
 - Min Echo interval: 0

The figure below shows that Fast Ethernet interface 1/0 on RouterB has failed. When Fast Ethernet interface 1/0 on RouterB is shut down, the BFD statistics of the corresponding BFD sessions on RouterA and RouterB are reduced.
When Fast Ethernet interface 1/0 on RouterB fails, BFD will no longer detect Router B as a BFD neighbor for RouterA or for RouterC. In this example, Fast Ethernet interface 1/0 has been administratively shut down on RouterB.

The following output from the `show bfd neighbors` command on RouterA now shows only one BFD neighbor for RouterA in the EIGRP network. The relevant command output is shown in bold in the output.

```
RouterA# show bfd neighbors
OurAddr   NeighAddr
LD/RD    RH/RS    Holdown(mult)  State  Int
172.16.1.1 172.16.1.3
  5/3     1(RH)  134 (3)     Up    Fast/0
```

The following output from the `show bfd neighbors` command on RouterC also now shows only one BFD neighbor for RouterC in the EIGRP network. The relevant command output is shown in bold in the output.

```
RouterC# show bfd neighbors
OurAddr   NeighAddr
LD/RD    RH    Holdown(mult)  State  Int
172.16.1.3 172.16.1.1
  3/5     1     114 (3)     Up    Fast/0
```

Example: Configuring BFD in an OSPF Network

In the following example, the simple OSPF network consists of Router A and Router B. Fast Ethernet interface 0/1 on Router A is connected to the same network as Fast Ethernet interface 6/0 in Router B. The example, starting in global configuration mode, shows the configuration of BFD. For both Routers A and B, BFD is configured globally for all interfaces associated with the OSPF process.

Configuration for Router A

```
!
interface Fast Ethernet 0/1
 ip address 172.16.10.1 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3
!
interface Fast Ethernet 3/0.1
 ip address 172.17.0.1 255.255.255.0
```
Example: Configuring BFD in an OSPF Network

! router ospf 123
 log-adjacency-changes detail
 network 172.16.0.0 0.0.0.255 area 0
 network 172.17.0.0 0.0.0.255 area 0
 bfd all-interfaces

Configuration for Router B

! interface Fast Ethernet 6/0
 ip address 172.16.10.2 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3
! interface Fast Ethernet 6/1
 ip address 172.18.0.1 255.255.255.0
! router ospf 123
 log-adjacency-changes detail
 network 172.16.0.0 0.0.0.255 area 0
 network 172.18.0.0 0.0.0.255 area 0
 bfd all-interfaces

The output from the `show bfd neighbors details` command verifies that a BFD session has been created and that OSPF is registered for BFD support. The relevant command output is shown in bold in the output.

Router A

RouterA# show bfd neighbors details
OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
172.16.10.1 172.16.10.2 1/2 1 532 (3) Up Fa0/1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 200000, MinRxInt: 200000, Multiplier: 5
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600(22), Hello (hits): 200(84453)
Rx Count: 49824, Rx Interval (ms) min/max/avg: 208/440/332 last: 68 ms ago
Tx Count: 84488, Tx Interval (ms) min/max/avg: 152/248/196 last: 192 ms ago
Registered protocols: OSPF

Uptime: 02:18:49
Last packet: Version: 0
- Diagnostic: 0
 I Hear You bit: 1 - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 3 - Length: 24
 My Discr.: 2 - Your Discr.: 1
 Min tx interval: 50000 - Min rx interval: 1000
 Min Echo interval: 0

The output from the `show bfd neighbors details` command from the line card on Router B verifies that a BFD session has been created:

Router B

RouterB# attach 6
Entering Console for 8 Port Fast Ethernet in Slot: 6
Type "exit" to end this session
Press RETURN to get started!
Router> show bfd neighbors details
The output of the `show ip ospf` command verifies that BFD has been enabled for OSPF. The relevant command output is shown in bold in the output.

Router A

RouterA# show ip ospf

Routing Process "ospf 123" with ID 172.16.10.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Maximum wait time between two consecutive SPFs 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of opaque AS LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
BFD is enabled

Area BACKBONE(0)
Number of interfaces in this area is 2 (1 loopback)
Area has no authentication
SPF algorithm last executed 00:00:08.828 ago
SPF algorithm executed 9 times
Area ranges are
Number of LSA 3. Checksum Sum 0x028417
Number of opaque link LSA 0. Checksum Sum 0x000000
Number of DCbitless LSA 0
Number of indication LSA 0
The output of the `show ip ospf interface` command verifies that BFD has been enabled for OSPF on the interfaces connecting Router A and Router B. The relevant command output is shown in bold in the output.

Router A

```
RouterA# show ip ospf interface Fast Ethernet 0/1
show ip ospf interface Fast Ethernet 0/1
Fast Ethernet0/1 is up, line protocol is up
  Internet Address 172.16.10.1/24, Area 0
  Process ID 123, Router ID 172.16.10.1, Network Type BROADCAST, Cost: 1
  Transmit Delay is 1 sec, State BDR, Priority 1, BFD enabled
  Designated Router (ID) 172.18.0.1, Interface address 172.16.10.2
  Backup Designated router (ID) 172.16.10.1, Interface address 172.16.10.1
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:03
    Supports Link-local Signaling (LLS)
    Index 1/1, flood queue length 0
```
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 172.18.0.1 (Designated Router)
Suppress hello for 0 neighbor(s)

Router B

RouterB# show ip ospf interface Fast Ethernet 6/1
Fast Ethernet6/1 is up, line protocol is up
 Internet Address 172.18.0.1/24, Area 0
 Process ID 123, Router ID 172.18.0.1, Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1, BFD enabled
 Designated Router (ID) 172.18.0.1, Interface address 172.18.0.1
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
 oob-resync timeout 40
 Hello due in 00:00:01
 Supports Link-local Signaling (LLS)
 Index 1/1, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)

Example: Configuring BFD in a BGP Network

In the following example, the simple BGP network consists of Router A and Router B. Fast Ethernet interface 0/1 on Router A is connected to the same network as Fast Ethernet interface 6/0 in Router B. The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for Router A

! interface Fast Ethernet 0/1
 ip address 172.16.10.1 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3

! interface Fast Ethernet 3/0.1
 ip address 172.17.0.1 255.255.255.0

! router bgp 40000
 bgp log-neighbor-changes
 neighbor 172.16.10.2 remote-as 45000
 neighbor 172.16.10.2 fall-over bfd

! address-family ipv4
 neighbor 172.16.10.2 activate
 no auto-summary
 no synchronization
 network 172.18.0.0 mask 255.255.255.0
 exit-address-family

Configuration for Router B

interface Fast Ethernet 6/0
 ip address 172.16.10.2 255.255.255.0
 bfd interval 50 min_rx 50 multiplier 3
interface Fast Ethernet 6/1
 ip address 172.18.0.1 255.255.255.0
router bgp 45000
 bgp log-neighbor-changes
 neighbor 172.16.10.1 remote-as 40000
 neighbor 172.16.10.1 fall-over bfd
 address-family ipv4
 neighbor 172.16.10.1 activate
 no auto-summary
 no synchronization
 network 172.17.0.0 mask 255.255.255.0
 exit-address-family

The output from the show bfd neighbors details command from Router A verifies that a BFD session has been created and that BGP is registered for BFD support. The relevant command output is shown in bold in the output.

Router A

RouterA# show bfd neighbors details

OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
172.16.10.1 172.16.10.2 1/8 1 332 (3) Up Fa0/1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 200000, MinRxInt: 200000, Multiplier: 5
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600(0), Hello (hits): 200(15491)
Rx Count: 9160, Rx Interval (ms) min/max/avg: 200/440/332 last: 268 ms ago
Tx Count: 15494, Tx Interval (ms) min/max/avg: 152/248/197 last: 32 ms ago
Registered protocols: BGP
Uptime: 00:50:45
Last packet: Version: 0 - Diagnostic: 0
 I Hear You bit: 1 - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 3 - Length: 24
 My Discr.: 8 - Your Discr.: 1
 Min tx interval: 50000 - Min rx interval: 1000
 Min Echo interval: 0

The output from the show bfd neighbors details command from the line card on Router B verifies that a BFD session has been created:

Router B

RouterB# attach 6
Entering Console for 8 Port Fast Ethernet in Slot: 6
Type "exit" to end this session
Press RETURN to get started!
Router> show bfd neighbors details
Cleanup timer hits: 0
The output of the `show ip bgp neighbors` command verifies that BFD has been enabled for the BGP neighbors:

Router A

```
RouterA# show ip bgp neighbors
BGP neighbor is 172.16.10.2, remote AS 45000, external link
  Using BFD to detect fast failover

```

Router B

```
RouterB# show ip bgp neighbors
BGP neighbor is 172.16.10.1, remote AS 40000, external link
  Using BFD to detect fast failover
```

Example: Configuring BFD in an IS-IS Network

In the following example, the simple IS-IS network consists of Router A and Router B. Fast Ethernet interface 0/1 on Router A is connected to the same network as Fast Ethernet interface 6/0 for Router B. The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for Router A

```
!
interface Fast Ethernet 0/1
  ip address 172.16.10.1 255.255.255.0
  ip router isis
  bfd interval 50 min_rx 50 multiplier 3
!
```
ip address 172.17.0.1 255.255.255.0
ip router isis
router isis
net 49.0001.1720.1600.1001.00
 bfd all-interfaces

Configuration for Router B

interface Fast Ethernet 6/0
ip address 172.16.10.2 255.255.255.0
ip router isis
 bfd interval 50 min_rx 50 multiplier 3
interface Fast Ethernet 6/1
ip address 172.18.0.1 255.255.255.0
ip router isis
router isis
 net 49.0000.0000.0002.00
 bfd all-interfaces

The output from the `show bfd neighbors details` command from Router A verifies that a BFD session has been created and that IS-IS is registered for BFD support:

RouterA# show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RO RH</th>
<th>Holdown (multi)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.10.1</td>
<td>172.16.10.2</td>
<td>1/8 1</td>
<td>536 (3)</td>
<td>Up</td>
<td>Fa0/1</td>
</tr>
</tbody>
</table>

Local Diag: 0, Demand mode: 0, Poll bit: 0
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600 (0), Hello (hits): 200 (23543)
Rx Count: 13877, Rx Interval (ms) min/max/avg: 200/448/335 last: 64 ms ago
Tx Count: 23546, Tx Interval (ms) min/max/avg: 152/248/196 last: 32 ms ago
Registered protocols: ISIS
Uptime: 01:17:09
Last packet: Version: 0 - Diagnostic: 0
 I Hear You bit: 1 - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 3 - Length: 24
 My Discr.: 8 - Your Discr.: 1
 Min tx interval: 50000 - Min rx interval: 1000
 Min Echo interval: 0

The output from the `show bfd neighbors details` command from the line card on Router B verifies that a BFD session has been created:

RouterB# attach 6

Entering Console for 8 Port Fast Ethernet in Slot: 6
Type "exit" to end this session
Press RETURN to get started!
Router> show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RO RH</th>
<th>Holdown (multi)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.10.2</td>
<td>172.16.10.1</td>
<td>8/1 1</td>
<td>1000 (5)</td>
<td>Up</td>
<td>Fa6/0</td>
</tr>
</tbody>
</table>

Local Diag: 0, Demand mode: 0, Poll bit: 0
Example: Configuring BFD in an HSRP Network

In the following example, the HSRP network consists of Router A and Router B. Fast Ethernet interface 2/0 on Router A is connected to the same network as Fast Ethernet interface 2/0 on Router B. The example, starting in global configuration mode, shows the configuration of BFD.

Note

In the following example, the `standby bfd` and the `standby bfd all-interfaces` commands are not displayed. HSRP support for BFD peering is enabled by default when BFD is configured on the router or interface using the `bfd interval` command. The `standby bfd` and `standby bfd all-interfaces` commands are needed only if BFD has been manually disabled on a router or interface.

Router A

```
ip cef
interface Fast Ethernet2/0
  no shutdown
  ip address 10.0.0.2 255.0.0.0
  ip router-cache cef
  bfd interval 200 min_rx 200 multiplier 3
  standby 1 ip 10.0.0.11
  standby 1 preempt
  standby 1 priority 110

  standby 2 ip 10.0.0.12
  standby 2 preempt
  standby 2 priority 110
```

Router B

```
interface Fast Ethernet2/0
  ip address 10.1.0.22 255.255.0.0
  no shutdown
  bfd interval 200 min_rx 200 multiplier 3
  standby 1 ip 10.0.0.11
  standby 1 preempt
```
Example: Configuring BFD Support for Static Routing

In the following example, the network consists of Device A and Device B. Serial interface 2/0 on Device A is connected to the same network as serial interface 2/0 on Device B. In order for the BFD session to come up, Device B must be configured.

Device A

```
configure terminal
interface Serial 2/0
ip address 10.201.201.1 255.255.255.0
bfd interval 500 min_rx 500 multiplier 5
ip route static bfd Serial 2/0 10.201.201.2
ip route 10.0.0.0 255.0.0.0 Serial 2/0 10.201.201.2
```

Device B

```
configure terminal
interface Serial 2/0
ip address 10.201.201.2 255.255.255.0
bfd interval 500 min_rx 500 multiplier 5
ip route static bfd Serial 2/0 10.201.201.1
ip route 10.1.1.1 255.255.255.255 Serial 2/0 10.201.201.1
```

Note that the static route on Device B exists solely to enable the BFD session between 10.201.201.1 and 10.201.201.2. If there is no useful static route that needs to be configured, select a prefix that will not affect packet forwarding, for example, the address of a locally configured loopback interface.

In the following example, there is an active static BFD configuration to reach 209.165.200.225 through Ethernet interface 0/0 in the BFD group testgroup. As soon as the static route is configured that is tracked by the configured static BFD, a single hop BFD session is initiated to 209.165.200.225 through Ethernet interface 0/0. The prefix 10.0.0.0/8 is added to the RIB if a BFD session is successfully established.

```
configure terminal
```
ip route static bfd Ethernet 0/0 209.165.200.225 group testgroup
ip route 10.0.0.0 255.255.255.224 Ethernet 0/0 209.165.200.225

In the following example, a BFD session to 209.165.200.226 through Ethernet interface 0/0.1001 is marked to use the group testgroup. That is, this configuration is a passive static BFD. Though there are static routes to be tracked by the second static BFD configuration, a BFD session is not triggered for 209.165.200.226 through Ethernet interface 0/0.1001. The existence of the prefixes 10.1.1.1/8 and 10.2.2.2/8 is controlled by the active static BFD session (Ethernet interface 0/0 209.165.200.225).

configure terminal
ip route static bfd Ethernet 0/0 209.165.200.225 group testgroup
ip route 10.0.0.0 255.255.255.224 Ethernet 0/0 209.165.200.225
ip route static bfd Ethernet 0/0.1001 209.165.200.226 group testgroup passive
ip route 10.1.1.1 255.255.255.224 Ethernet 0/0.1001 209.165.200.226
ip route 10.2.2.2 255.255.255.224 Ethernet 0/0.1001 209.165.200.226

Example: Configuring BFD Control Channel over VCCV--Support for ATM Pseudowire

The figure below shows a typical ATM pseudowire configuration. The network consists of a MPLS pseudowire carrying an ATM payload between two terminating provider edge (T-PE) devices: T-PE1 and T-PE2. BFD monitoring of the pseudowire occurs between the T-PE1 device and the switching providing edge (S-PE) device, and between the S-PE device and the T-PE2 device. BFD also monitors the signal status of the ACs between the customer edge (CE) devices and the T-PE devices.

Note

No configuration specific to BFD control channel over VCCV is required for the S-PEs.

CE1

interface ATM 0/0
description connect to mfi6 atm9/0/0
no ip address
no ip directed-broadcast
atm clock INTERNAL
atm sonet atm-1
no atm enable-ilmi-trap
no atm ilmi-keepalive
!
interface ATM 0/0.2 point-to-point
ip address 10.25.1.1 255.255.255.0
no ip directed-broadcast
no atm enable-ilmi-trap
pvc 0/100
encapsulation aal5snap

T-PE1

interface Loopback 0
ip address 10.0.0.6 255.255.255.255
bfd-template single-hop nsn
interval min-tx 500 min-rx 500 multiplier 3
pseudowire-class vccv-bfd1
encapsulation mpls
vccv bfd template nsn raw-bfd
vccv bfd status signaling
interface ATM 9/0/0
description connect mfr4 atm0/0
no ip address
atm asynchronous
atm clock INTERNAL
no atm ilmi-keepalive
no atm enable-ilmi-trap
pvc 0/100 l2transport
xconnect 10.0.0.7 100 pw-class vccv-bfd1

T-PE2

interface Loopback 0
ip address 10.54.0.1 255.255.255.255
bfd-template single-hop nsn
interval min-tx 500 min-rx 500 multiplier 3
pseudowire-class vccv-bfd1
encapsulation mpls
vccv bfd template nsn raw-bfd
vccv bfd status signaling
interface ATM 2/0
no ip address
atm asynchronous
no atm ilmi-keepalive
no atm enable-ilmi-trap
pvc 0/100 l2transport
xconnect 10.0.0.7 102 pw-class vccv-bfd1

CE2

interface ATM 4/0.2 point-to-point
ip address 10.25.1.2 255.255.255.0
no snmp trap link-status
pvc 0/100
encapsulation aal5snap
Example: BFD Support on DMVPN

The following is an example of configuring BFD support on DMVPN on hub.

```
bfd-template single-hop sample
  interval min-tx 1000 min-rx 1000 multiplier 5

interface Tunnel0
  ip address 10.0.0.1 255.255.255.0
  no ip redirects
  ip nhrp authentication cisco123
  ip nhrp network-id 5
  ip nhrp redirect
  ip mtu 1400
  ip tcp adjust-mss 1360
  bfd template sample
  tunnel source GigabitEthernet0/0/0
  tunnel mode gre multipoint
  tunnel key 6

interface GigabitEthernet0/0/0
  negotiation auto

router eigrp 2
  network 10.0.0.0 0.0.0.255
  bfd all-interfaces
  auto-summary
```

The following is an example of configuring BFD support on DMVPN on spoke.

```
bfd-template single-hop sample
  interval min-tx 1000 min-rx 1000 multiplier 5

interface Tunnel1
  ip address 10.0.0.10 255.255.255.0
  no ip redirects
  ip nhrp authentication cisco123
  ip nhrp network-id 5
  ip nhrp nhs 10.0.0.1 nbma 10.0.0.10 multicast
  bfd template sample
  tunnel source GigabitEthernet0/0/0
  tunnel mode gre multipoint
  tunnel key 6

interface GigabitEthernet0/0/0
  mtu 4000
  ip address 11.0.0.1 255.0.0.0
  media-type rj45
  negotiation auto

interface GigabitEthernet0/0/1
  mtu 6000
  ip address 111.0.0.1 255.255.255.0
  negotiation auto
```
router eigrp 2
 network 11.0.0.0 0.0.0.255
 network 111.0.0.0 0.0.0.255
 network 10.0.0.0 0.0.0.255
 bfd all-interfaces
 auto-summary

ip route 0.0.0.0 0.0.0.0 10.0.0.2

The following is an example to illustrate faster convergence on spoke.

interface Tunnel1
 ip address 18.0.0.10 255.255.255.0
 no ip redirects
 ip nhrp authentication cisco123
 ip nhrp network-id 12
 ip nhrp nhs 10.0.0.1 nbma 10.0.0.10 multicast
 bfd template sample
 tunnel source GigabitEthernet0/0/0
 tunnel mode gre multipoint
 tunnel key 18
 tunnel protection ipsec profile MY_PROFILE

With the above configuration, as soon as BFD is reported down (3 seconds to detect), EIGRP will remove the routes installed from RIB.

The following sample output shows a summary output on hub:

device# show dmvpn

Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete
 N - NATed, L - Local, X - No Socket
 T1 - Route Installed, T2 - Nexthop-override
 C - CTS Capable
 # Ent --> Number of NHRP entries with same NBMA peer
 NHS Status: E --> Expecting Replies, R --> Responding, W --> Waiting
 UpDn Time --> Up or Down Time for a Tunnel

Interface: Tunnel1, IPv4 NHRP Details
Type: Hub, NHRP Peers:2,

<table>
<thead>
<tr>
<th>#</th>
<th>Ent</th>
<th>Peer NBMA Addr</th>
<th>Peer Tunnel Add</th>
<th>State</th>
<th>UpDn Tm</th>
<th>Attrb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>172.17.0.1</td>
<td>10.0.0.1</td>
<td>UP 00:00:14</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>172.17.0.2</td>
<td>10.0.0.2</td>
<td>BFD 00:00:03</td>
<td>D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BFD is a new state which implies that while the session is UP as seen by lower layers (IKE, IPSec and NHRP), BFD sees the session as DOWN. As usual, the state is an indication of the lower most layer where the session is not UP. Also, this applies only to the parent cache entry. This could be because it was detected as DOWN by BFD or BFD is not configured on the other side.

The following sample output shows a summary output on spoke:

```
device# show dmvpn
Legend: Attrb --> S - Static, D - Dynamic, I - Incomplete
       N - NATed, L - Local, X - No Socket
       T1 - Route Installed, T2 - Nexthop-override
       C - CTS Capable
# Ent --> Number of NHRP entries with same NBMA peer
NHS Status: E --> Expecting Replies, R --> Responding, W --> Waiting
UpDn Time --> Up or Down Time for a Tunnel

Interface: Tunnel2, IPv4 NHRP Details
Type: Spoke, NHRP Peers: 2,

# Ent Peer NBMA Addr Peer Tunnel Add State UpDn Tm Attrb
----- --------------- --------------- ----- -------- ----- ----- -----
  2 172.17.0.2 10.0.0.2 BFD 00:00:02 DT1
  1 172.17.0.11 10.0.0.11 UP 00:05:35 S
```

The following sample shows output for `show ip/ipv6 nhrp` command

```
device# show ip nhrp
10.0.0.2/32 via 10.0.0.2
  Tunnel2 created 00:00:15, expire 00:04:54
  Type: dynamic, Flags: router nhop rib bfd
  NBMA address: 172.17.0.2
10.0.0.11/32 via 10.0.0.11
  Tunnel2 created 00:09:04, never expire
  Type: static, Flags: used bfd
  NBMA address: 172.17.0.11
192.168.1.0/24 via 10.0.0.1
  Tunnel2 created 00:00:05, expire 00:04:54
  Type: dynamic, Flags: router unique local
  NBMA address: 172.17.0.1
  (no-socket)
192.168.2.0/24 via 10.0.0.2
  Tunnel2 created 00:00:05, expire 00:04:54
  Type: dynamic, Flags: router rib nho
  NBMA address: 172.17.0.2
```

BFD flag here implies that there is a BFD session for this peer. This marking is only for parent entries.

The following sample shows output for `show tunnel endpoints` command

```
device# show tunnel endpoints
Tunnel2 running in multi-GRE/IP mode

Endpoint transport 172.17.0.2 Refcount 3 Base 0x2ABF53ED09F0 Create Time 00:00:07
  overlay 10.0.0.2 Refcount 2 Parent 0x2ABF53ED09F0 Create Time 00:00:07
  Tunnel Subblocks:
    tunnel-nhrp-sb:
      NHRP subblock has 2 entries: BFD(0x2):U
```
For every tunnel endpoint, a new text "BFD(handle):state" is added. State here is UP(U), DOWN(D), NONE(N) or INVALID(I).

- In case, BFD is not configured on peer or a session is not UP for the first time, then the state will be N.

The following sample shows output for `show nhrp interfaces` command. This shows the configuration (and not operational) states on the interface or globally.

```
device#show nhrp interfaces
NHRP Config State
-----------------
Global:
    BFD: Registered
Tunnel1:
    BFD: Disabled
Tunnel2:
    BFD: Enabled
```

This is an internal and hidden command. This will currently display if NHRP is client of BFD and if BFD is enabled on the NHRP interface.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Configuring and monitoring BGP</td>
<td>“Cisco BGP Overview” module of the Cisco IOS IP Routing Protocols Configuration Guide</td>
</tr>
<tr>
<td>BFD hardware offload</td>
<td>“Configuring Synchronous Ethernet on the Cisco 7600 Router with ES+ Line Card” section of the Cisco 7600 Series Ethernet Services Plus (ES+) and Ethernet Services Plus T (ES+T) Line Card Configuration Guide</td>
</tr>
<tr>
<td>Configuring and monitoring EIGRP</td>
<td>“Configuring EIGRP” module of the Cisco IOS IP Routing Protocols Configuration Guide</td>
</tr>
<tr>
<td>Configuring and monitoring HSRP</td>
<td>“Configuring HSRP” module of the Cisco IOS IP Application Services Configuration Guide</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Configuring and monitoring IS-IS</td>
<td>“Configuring Integrated IS-IS” module of the Cisco IOS IP Routing Protocols Configuration Guide</td>
</tr>
<tr>
<td>Configuring and monitoring OSPF</td>
<td>“Configuring OSPF” module of the Cisco IOS IP Routing Protocols Configuration Guide</td>
</tr>
<tr>
<td>BFD commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
<tr>
<td>BGP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
<tr>
<td>EIGRP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
<tr>
<td>HSRP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Application Services Command Reference</td>
</tr>
<tr>
<td>IS-IS commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
<tr>
<td>OSPF commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
<tr>
<td>BFD IPv6 Encapsulation Support</td>
<td>“BFD IPv6 Encapsulation Support” module</td>
</tr>
<tr>
<td>OSPFv3 for BFD</td>
<td>“OSPFv3 for BFD” module</td>
</tr>
<tr>
<td>Static Route Support for BFD over IPv6</td>
<td>“Static Route Support for BFD over IPv6” module</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IETF Draft</td>
<td>Bidirectional Forwarding Detection, February 2009</td>
</tr>
<tr>
<td>IETF Draft</td>
<td>BFD for IPv4 and IPv6 (Single Hop), February 2009</td>
</tr>
<tr>
<td></td>
<td>(http://tools.ietf.org/html/draft-ietf-bfd-v4v6-1hop-09)</td>
</tr>
</tbody>
</table>
Technical Assistance

| Description | Link |
| The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password. |

Feature Information for Bidirectional Forwarding Detection

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for Bidirectional Forwarding Detection

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD Control Channel over VCCV—Support for ATM Pseudowire</td>
<td>15.0(1)S</td>
<td>VCCV provides a control channel that is associated with an ATM pseudowire to perform operations and management functions over the pseudowire. BFD uses the VCCV control channel to detect dataplane failures for pseudowires. In Cisco IOS Release 15.0(1)S the BFD control channel over VCCV Support for ATM Pseudowire feature is supported for VCCV type-1 (without an IP/UDP header) only. The following commands were introduced or modified by this feature: bfd-template, debug mpls l2transport vc vccv, interval(BFD), vccv, vccv bfd template, vccv bfd status signaling.</td>
</tr>
<tr>
<td>BFD Echo Mode</td>
<td>12.2(33)SRB 12.4(9)T 15.0(1)S</td>
<td>BFD echo mode works with asynchronous BFD. Echo packets are sent by the forwarding engine and forwarded back along the same path in order to perform detection—the BFD session at the other end does not participate in the actual forwarding of the echo packets. The echo function and the forwarding engine are responsible for the detection process, therefore the number of BFD control packets that are sent out between two BFD neighbors is reduced. And since the forwarding engine is testing the forwarding path on the remote (neighbor) system without involving the remote system, there is an opportunity to improve the interpacket delay variance, thereby achieving quicker failure detection times than when using BFD Version 0 with BFD control packets for the BFD session.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>BFD—BFD Hardware Offload Support</td>
<td>15.1(2)S 15.1(1)SG</td>
<td>This feature supports offloading BFD sessions to ES+ line cards on Cisco 7600 series routers. The following command was introduced or modified: <code>show bfd neighbors</code>.</td>
</tr>
<tr>
<td>BFD IPv6 Encapsulation Support</td>
<td>Cisco IOS XE Release 3.11S</td>
<td>This feature extends IPv6 support for BFD. The following command was introduced or modified: <code>bfd interval</code>.</td>
</tr>
<tr>
<td>BFD Multihop</td>
<td>15.1(3)S 15.4(1)S</td>
<td>This feature supports multihop BFD for IPv4 and IPv6 addresses. In Cisco IOS Release 15.4(1)S, support was added for the Cisco ASR 901S Series Routers. The following commands were introduced or modified: <code>authentication, bfd map, bfd-template, interval, show bfd neighbors, show bfd neighbor drops</code>.</td>
</tr>
<tr>
<td>BFD—Static Route Support</td>
<td>12.2(33)SRC 15.0(1)M 15.0(1)S 15.0(1)SY 15.1(2)S 15.1(1)SG 15.4(1)S</td>
<td>Unlike dynamic routing protocols, such as OSPF and BGP, static routing has no method of peer discovery. Therefore, when BFD is configured, the reachability of the gateway is completely dependent on the state of the BFD session to the specified neighbor. Unless the BFD session is up, the gateway for the static route is considered unreachable, and therefore the affected routes will not be installed in the appropriate RIB. A single BFD session can be used by an IPv4 static client to track the reachability of next hops through a specific interface. A BFD group can be assigned for a set of BFD-tracked static routes. In Cisco IOS Release 15.4(1)S, support was added for the Cisco ASR 901S Series Routers. The following commands were introduced or modified: <code>ip route static bfd</code> and <code>show ip static route bfd</code>.</td>
</tr>
<tr>
<td>BFD Support for IP Tunnel (GRE, with IP address)</td>
<td>15.1(1)SY</td>
<td>This feature supports BFD forwarding on point-to-point IPv4, IPv6, and GRE tunnels. The following commands were introduced or modified: <code>bfd</code> .</td>
</tr>
<tr>
<td>BFD Support over Port Channel</td>
<td>15.1(1)SY 15.1(2)SY</td>
<td>This feature supports configuring BFD timers on port channel interface. The following commands were introduced or modified: <code>bfd</code> .</td>
</tr>
<tr>
<td>BFD—VRF Support</td>
<td>12.2(33)SRC 15.0(1)M 15.0(1)S 15.1(1)SY</td>
<td>The BFD feature support is extended to be VPN Routing and Forwarding (VRF) aware to provide fast detection of routing protocol failures between provider edge (PE) and customer edge (CE) devices.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>BFD—WAN Interface Support</td>
<td>12.2(33)SRC 15.0(1)M 15.0(1)S</td>
<td>The BFD feature is supported on nonbroadcast media interfaces including ATM, POS, serial, and VLAN interfaces. BFD support also extends to ATM, FR, POS, and serial subinterfaces. The <code>bfd interval</code> command must be configured on the interface to initiate BFD monitoring.</td>
</tr>
<tr>
<td>Bidirectional Forwarding Detection (standard implementation, Version 1)</td>
<td>12.0(31)S 12.0(32)S 12.2(33)SRB 12.2(33)SRC 12.2(18)SXE 12.2(33)SXH 12.4(9)T 12.4(11)T 12.4(15)T 15.0(1)S 15.4(1)S</td>
<td>This document describes how to enable the Bidirectional Forwarding Detection (BFD) protocol. BFD is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning will be easier, and reconvergence time will be consistent and predictable. In Release 12.0(31)S, support was added for the Cisco 12000 series Internet router. In Release 12.0(32)S, support was added for the Cisco 10720 Internet router and IP Services Engine (Engine 3) and Engine 5 shared port adapters (SPAs) and SPA interface processors (SIPs) on the Cisco 12000 series Internet router. In Cisco IOS Release 15.4(1)S, support was added for the Cisco ASR 901S Series Routers.</td>
</tr>
<tr>
<td>HSRP Support for BFD</td>
<td>12.2(33)SRC 12.4(11)T 12.4(15)T</td>
<td>In Release 12.4(11)T, support for HSRP was added. In Release 12.4(15)T, BFD is supported on the Integrated Services Router (ISR) family of Cisco routers, for example, the Cisco 3800 ISR series routers. In Release 12.2(33)SRC, the number of BFD sessions that can be created has been increased, BFD support has been extended to ATM, FR, POS, and serial subinterfaces, the BFD feature has been extended to be VRF-aware, BFD sessions are placed in an “Admin Down” state during a planned switchover, and BFD support has been extended to static routing.</td>
</tr>
<tr>
<td>IS-IS Support for BFD over IPv4</td>
<td>12.0(31)S 12.2(18)SXE 12.2(33)SRA 12.4(4)T 15.0(1)S 15.4(1)S</td>
<td>BFD support for OSPF can be configured globally on all interfaces or configured selectively on one or more interfaces. When BFD support is configured with IS-IS as a registered protocol with BFD, IS-IS receives forwarding path detection failure messages from BFD. In Cisco IOS Release 15.4(1)S, support was added for the Cisco ASR 901S Series Routers.</td>
</tr>
</tbody>
</table>
Feature Information for Bidirectional Forwarding Detection

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPF Support for BFD over IPv4</td>
<td>12.0(31)S, 12.2(18)SXE, 12.2(33)SRA, 12.4(4)T, 15.0(1)S, 15.1(1)SG</td>
<td>BFD support for OSPF can be configured globally on all interfaces or configured selectively on one or more interfaces. When BFD support is configured with OSPF as a registered protocol with BFD, OSPF receives forwarding path detection failure messages from BFD.</td>
</tr>
<tr>
<td>SSO—BFD</td>
<td>12.2(33)SRE, 12.2(33)SXI2, 12.2(33)XNE, 15.0(1)S, 15.1(1)SG</td>
<td>Network deployments that use dual RP routers and switches have a graceful restart mechanism to protect forwarding states across a switchover. This feature enables BFD to maintain sessions in an up state across switchovers.</td>
</tr>
<tr>
<td>SSO—BFD (Admin Down)</td>
<td>12.2(33)SRC, 15.0(1)S</td>
<td>To support SSO, BFD sessions are placed in an “Admin Down” state during a planned switchover. The BFD configuration is synched from the active to standby processor, and all BFD clients re-register with the BFD process on the standby processor.</td>
</tr>
<tr>
<td>BFD Support on IPbasek9 Image for Cisco ISR G2 Modular Routers.</td>
<td>15.6(3)M</td>
<td>Effective with Cisco IOS release 15.6(3)M, BFD is also supported in the ipbasek9 image for Cisco ISR G2 modular routers. For example, if EIGRP feature is part of the ipbasek9 image, the BFD for EIGRP feature will be also part of the ipbasek9 image. When a feature is part of a software package other than IP Base which supports BFD, the associated BFD feature will be part of the equivalent software package.</td>
</tr>
</tbody>
</table>
BFD IPv6 Encapsulation Support

Bidirectional Forwarding Detection for IPv6 encapsulations are described within a session information structure. These session information structures are defined by BFDv6 for the protocols supported. BFDv6 uses information from the session information structures to determine the correct encapsulation for BFDv6 packets on that session.

- Finding Feature Information, on page 71
- Prerequisites for BFD IPv6 Encapsulation Support, on page 71
- Restrictions for BFD IPv6 Encapsulation Support, on page 72
- Information About BFD IPv6 Encapsulation Support, on page 72
- How to Configure BFD IPv6 Encapsulation Support, on page 73
- Configuration Examples for BFD IPv6 Encapsulation Support, on page 74
- Additional References, on page 75
- Feature Information for BFD IPv6 Encapsulation Support, on page 76

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for BFD IPv6 Encapsulation Support

- When using Bidirectional Forwarding Detection over IPv6 (BFDv6), IPv6 Cisco Express Forwarding and IPv6 unicast routing must be enabled on all participating routers.

- When you configure BFD IPv6 software sessions, you should configure the following CLI command:

 no ipv6 nd nud igp

 If the peer is also an ASR device, the above command should be configured on the peer device too.
Restrictions for BFD IPv6 Encapsulation Support

- BFDv6 supports only global IPv6 neighbor addresses if a global IPv6 address is configured on the interface.
- Only asynchronous mode is supported. In asynchronous mode, either BFDv6 peer can initiate a BFDv6 session.

Information About BFD IPv6 Encapsulation Support

Overview of the BFDv6 Protocol

This section describes the BFDv6 protocol, how it is different from BFD for IPv4, and how it works with BFD for IPv4. BFD is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. BFDv6 provides IPv6 support by accommodating IPv6 addresses and provides the ability to create BFDv6 sessions.

BFDv6 Registration

BFD clients register with BFD using a registry application program interface (API). The registry arguments include protocol type and the address and interface description block (IDB) of the route to be monitored. These APIs and arguments are all assumed by BFD to be IPv4.

BFDv6 has registries from which these arguments have been removed, and the protocol and encapsulation are described within a session information structure. These session information structures are defined by BFDv6 for the protocols supported. BFDv6 uses information from the session information structures to determine the correct encapsulation for BFDv6 packets on that session.

BFDv6 Global and Link-Local Addresses

BFDv6 supports both global and link-local IPv6 addresses for neighbor creation. BFDv6 sessions select source addresses to match the neighbor address types (for example, global IPv6 address neighbors must be paired with global IPv6 source addresses and link-local IPv6 address neighbors must be paired with link-local IPv6 source addresses). The table below shows the address pairings that BFDv6 supports.

<table>
<thead>
<tr>
<th>Source Address</th>
<th>Destination Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>Global</td>
<td>Supported</td>
</tr>
<tr>
<td>Global</td>
<td>Link local</td>
<td>Not supported</td>
</tr>
<tr>
<td>Link local</td>
<td>Global</td>
<td>Not supported</td>
</tr>
<tr>
<td>Link local</td>
<td>Link local</td>
<td>Supported</td>
</tr>
</tbody>
</table>
Because all IPv6-enabled interfaces have a link-local address and BFDv6 selects the source address, link-local address neighbors are always paired with a link-local interface address. The link-local source address with global destination address is not supported by Cisco Express Forwarding. Therefore, a global IPv6 address must be configured on an interface before a session with a global address neighbor may be established in BFDv6. BFDv6 rejects any sessions in which the neighbor address is global and no global address is configured on the interface.

Note
The behavior of a unique local address (ULA) in BFDv6 is the same as a global address.

BFD for IPv4 and IPv6 on the Same Interface

BFD supports multiple IPv4 and IPv6 sessions per interface, with no restriction on the protocol of those sessions.

How to Configure BFD IPv6 Encapsulation Support

Configuring BFD Session Parameters on the Interface

The steps in this procedure show how to configure BFD on the interface by setting the baseline BFD session parameters on an interface. Repeat the steps in this procedure for each interface over which you want to run BFD sessions to BFD neighbors.

SUMMARY STEPS

1. enable
2. configure terminal
3. Perform one of the following steps:
 - `ip address` ipv4-address mask
 - `ipv6 address` ipv6-address/mask
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Step 2 configure terminal	Enters global configuration mode.
Example:	
Device# configure terminal	
Command or Action

Step 3

Perform one of the following steps:
- `ip address ipv4-address mask`
- `ipv6 address ipv6-address/mask`

Example:

Configuring an IPv4 address for the interface:

```
Device(config-if)# ip address 10.201.201.1 255.255.255.0
```

Configuring an IPv6 address for the interface:

```
Device(config-if)# ipv6 address 2001:db8:1:1::1/32
```

Step 4

`end`

Example:

```
Device(config-if)# end
```

Configuration Examples for BFD IPv6 Encapsulation Support

Example: Configuring BFD Session Parameters on the Interface

```
Device# show ipv6 ospf neighbor detail

Neighbor 172.16.4.4
  In the area 0 via interface POS4/0
  Neighbor: interface-id 14, link-local address FE80::205:5FFF:FED3:5406
  Neighbor priority is 1, State is FULL, 6 state changes
  Options is 0x63AD1B0D
  Dead timer due in 00:00:33
  Neighbor is up for 00:48:56
  Index 1/1/1, retransmission queue length 0, number of retransmission 1
  First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
  Last retransmission scan length is 1, maximum is 1
  Last retransmission scan time is 0 msec, maximum is 0 msec

Neighbor 172.16.3.3
  In the area 1 via interface FastEthernet0/0
  Neighbor: interface-id 3, link-local address FE80::205:5FFF:FED3:5808
  Neighbor priority is 1, State is FULL, 6 state changes
  DR is 172.16.6.6 BDR is 172.16.3.3
  Options is 0x63F813E9
  Dead timer due in 00:00:33
  Neighbor is up for 00:09:00
  Index 1/1/2, retransmission queue length 0, number of retransmission 2
  First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
  Last retransmission scan length is 1, maximum is 2
  Last retransmission scan time is 0 msec, maximum is 0 msec

Neighbor 172.16.5.5
  In the area 2 via interface ATM3/0
```
Neighbor: interface-id 13, link-local address FE80::205:5FFF:FED3:6006
Neighbor priority is 1, State is FULL, 6 state changes
Options is 0x63F7D249
Dead timer due in 00:00:38
Neighbor is up for 00:10:01
Index 1/1/3, retransmission queue length 0, number of retransmission 0
First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
Last retransmission scan length is 0, maximum is 0
Last retransmission scan time is 0 msec, maximum is 0 msec

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>Cisco IOS IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
<tr>
<td>OSPFv3 for BFD</td>
<td>“Bidirectional Forwarding Detection” module</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Additional References

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>Cisco IOS IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
<tr>
<td>OSPFv3 for BFD</td>
<td>“Bidirectional Forwarding Detection” module</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Additional References

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>Cisco IOS IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
<tr>
<td>OSPFv3 for BFD</td>
<td>“Bidirectional Forwarding Detection” module</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for BFD IPv6 Encapsulation Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 3: Feature Information for BFD IPv6 Encapsulation Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD IPv6 Encapsulation Support</td>
<td>12.2(33)SRE</td>
<td>BFDv6 encapsulations are described within a session information structure. These session information structures are defined by BFDv6 for the protocols supported. BFDv6 uses information from the session information structures to determine the correct encapsulation for BFDv6 packets on that session. The following commands were introduced or modified: bfd interval, show ipv6 ospf neighbor.</td>
</tr>
<tr>
<td></td>
<td>15.0(1)SY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.1(1)SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.1(1)SY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.1(2)T</td>
<td></td>
</tr>
</tbody>
</table>
OSPFv3 for BFD

The Bidirectional Forwarding Detection protocol supports OSPFv3.

- Finding Feature Information, on page 77
- Information About OSPFv3 for BFD, on page 77
- How to Configure OSPFv3 for BFD, on page 77
- Configuration Examples for OSPFv3 for BFD, on page 82
- Additional References, on page 83
- Feature Information for OSPFv3 for BFD, on page 84

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About OSPFv3 for BFD

The Bidirectional Forwarding Detection (BFD) protocol supports Open Shortest Path First version 3 (OSPFv3).

How to Configure OSPFv3 for BFD

Configuring BFD Support for OSPFv3

This section describes the procedures for configuring BFD support for OSPFv3, so that OSPFv3 is a registered protocol with BFD and will receive forwarding path detection failure messages from BFD. You can either configure BFD support for OSPFv3 globally on all interfaces or configure it selectively on one or more interfaces.

There are two methods for enabling BFD support for OSPFv3:
• You can enable BFD for all of the interfaces for which OSPFv3 is routing by using the `bfd all-interfaces` command in router configuration mode. You can disable BFD support on individual interfaces using the `ipv6 ospf bfd disable` command in interface configuration mode.

• You can enable BFD for a subset of the interfaces for which OSPFv3 is routing by using the `ipv6 ospf bfd` command in interface configuration mode.

Note
OSPF will only initiate BFD sessions for OSPF neighbors that are in the FULL state.

Configuring Baseline BFD Session Parameters on the Interface

Repeat this task for each interface over which you want to run BFD sessions to BFD neighbors.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 Device> enable |
| **Step 2** configure terminal | Enters global configuration mode.
 Example:
 Device# configure terminal |
| **Step 3** interface type number | Specifies an interface type and number, and places the device in interface configuration mode.
 Example:
 Device(config)# interface GigabitEthernet 0/0/0 |
| **Step 4** bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier | Enables BFD on the interface.
 Example:
 Device(config-if)# bfd interval 50 min_rx 50 multiplier 5 |
Configuring BFD Support for OSPFv3 for All Interfaces

Before you begin

OSPFv3 must be running on all participating devices. The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured.

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 router ospf \texttt{process-id [vrf vpn-name]}
4. bfd all-interfaces
5. exit
6. show bfd neighbors \texttt{[vrf vrf-name] [client \{bgp | eigrp | isis | ospf | rsvp | te-frr\}] [ip-address | ipv6 ipv6-address] [details]}
7. show ipv6 ospf \texttt{[process-id] [area-id] [rate-limit]}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>ipv6 router ospf \texttt{process-id [vrf vpn-name]}</td>
<td>Configures an OSPFv3 routing process.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# ipv6 router ospf 2</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>bfd all-interfaces</td>
<td>Enables BFD for all interfaces participating in the routing process.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-router)# bfd all-interfaces</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>exit</td>
<td>Enter this command twice to go to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-router)# exit</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>show bfd neighbors \texttt{[vrf vrf-name] [client {bgp</td>
<td>eigrp</td>
</tr>
</tbody>
</table>
Configuring OSPF Support for BFD over IPv4 for One or More Interfaces

To configure BFD on one or more OSPF interfaces, perform the steps in this section.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip ospf bfd [disable]
5. end
6. show bfd neighbors [details]
7. show ip ospf

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
| Example: Device> enable | • Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: Device# configure terminal | |
| **Step 3** interface type number | Enters interface configuration mode. |
| Example: Device(config)# interface fastethernet 6/0 | |
| **Step 4** ip ospf bfd [disable] | Enables or disables BFD on a per-interface basis for one or more interfaces associated with the OSPF routing process. |
| Example: Device(config-if)# ip ospf bfd | **Note** Use the disable keyword only if you enable BFD on all of the interfaces that OSPF is associated with using the bfd all-interfaces command in router configuration mode. |
Purpose

Command or Action	**Purpose**
Step 5 | **end**
Example:
Device(config-if)# end
Exits interface configuration mode and returns the device to privileged EXEC mode.

Step 6 | **show bfd neighbors [details]**
Example:
Device# show bfd neighbors details
(Optional) Displays information that can help verify if the BFD neighbor is active and displays the routing protocols that BFD has registered.
Note If hardware-offloaded BFD sessions are configured with Tx and Rx intervals that are not multiples of 50 ms, the hardware intervals are changed. However, output from the **show bfd neighbors details** command displays only the configured intervals, not the interval values that change.

Step 7 | **show ip ospf**
Example:
Device# show ip ospf
(Optional) Displays information that can help verify if BFD support for OSPF has been enabled.

Retrieving BFDv6 Information for Monitoring and Troubleshooting

SUMMARY STEPS

1. **enable**
2. **monitor event ipv6 static** [enable | disable]
3. **show ipv6 static** [ipv6-address | ipv6-prefix/prefix-length] [interface type number | recursive] [vrf vrf-name] [bfd] [detail]
4. **show ipv6 static** [ipv6-address | ipv6-prefix/prefix-length] [interface type number | recursive] [vrf vrf-name] [bfd] [detail]
5. **debug ipv6 static**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable**
Example:
Device> enable
Enables privileged EXEC mode.
- Enter your password if prompted.

| **Step 2** | **monitor event ipv6 static** [enable | disable]
Example:
Device# monitor event ipv6 static enable
Enables the use of event trace to monitor the operation of the IPv6 static and IPv6 static BFDv6 neighbors.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 show ipv6 static [ipv6-address</td>
<td>Displays the BFDv6 status for a static route associated with a static BFDv6 neighbor.</td>
</tr>
<tr>
<td>[ipv6-prefix/prefix-length]</td>
<td></td>
</tr>
<tr>
<td>[interface type number</td>
<td></td>
</tr>
<tr>
<td>[recursive] [vrf vrf-name] [bfd]</td>
<td></td>
</tr>
<tr>
<td>[detail]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show ipv6 static vrf vrf1 detail</td>
<td></td>
</tr>
<tr>
<td>Step 4 show ipv6 static [ipv6-address</td>
<td>Displays static BFDv6 neighbors and associated static routes.</td>
</tr>
<tr>
<td>[ipv6-prefix/prefix-length]</td>
<td></td>
</tr>
<tr>
<td>[interface type number</td>
<td></td>
</tr>
<tr>
<td>[recursive] [vrf vrf-name] [bfd]</td>
<td></td>
</tr>
<tr>
<td>[detail]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show ipv6 static vrf vrf1 bfd</td>
<td></td>
</tr>
<tr>
<td>Step 5 debug ipv6 static</td>
<td>Enables BFDv6 debugging.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# debug ipv6 static</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for OSPFv3 for BFD

Example: Displaying OSPF Interface Information about BFD

The following display shows that the OSPF interface is enabled for BFD:

```
Device# show ipv6 ospf interface
Serial10/0 is up, line protocol is up
  Link Local Address FE80::A8BB:CCFF:FE00:6500, Interface ID 42
  Area 1, Process ID 1, Instance ID 0, Router ID 10.0.0.1
  Network Type POINT_TO_POINT, Cost: 64
  Transmit Delay is 1 sec, State POINT_TO_POINT, BFD enabled
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
  Hello due in 00:00:07
  Index 1/1/1, flood queue length 0
  Next 0x0(0)/0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 1
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
  Adjacent with neighbor 10.1.0.1
  Suppress hello for 0 neighbor(s)
```
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>Cisco IOS IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
<tr>
<td>OSPFv3 for BFD</td>
<td>“Bidirectional Forwarding Detection” module</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for OSPFv3 for BFD

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 4: Feature Information for OSPFv3 for BFD

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSPFv3 for BFD</td>
<td>15.1(2)T</td>
<td>BFD supports the dynamic routing protocol OSPFv3.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0(1)SY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.2(1)E</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: bfd, bfd all-interfaces, debug bfd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>router ospf, show bfd neighbors, show ipv6 ospf, show ipv6 ospf interface, show</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ospfv3, show ospfv3 interface.</td>
</tr>
</tbody>
</table>
BFD Single-Hop Authentication

The BFD Single-Hop Authentication feature enables authentication for single-hop Bidirectional Forwarding Detection (BFD) sessions between two directly connected devices. This feature supports Message Digest 5 (MD5) and Secure Hash Algorithm 1 (SHA-1) authentication types.

This module explains the BFD Single-Hop Authentication feature.

- Finding Feature Information, on page 85
- Prerequisites for BFD Single-Hop Authentication, on page 85
- Restrictions for BFD Single-Hop Authentication, on page 86
- Information About BFD Single-Hop Authentication, on page 86
- How to Configure BFD Single-Hop Authentication, on page 87
- Configuration Examples for BFD Single-Hop Authentication, on page 90
- Additional References, on page 92
- Feature Information for BFD Single-Hop Authentication, on page 92

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for BFD Single-Hop Authentication

You must configure keys and key chains on both connected devices that are involved in a BFD session. You must configure the algorithm and the key chain on both devices in such a way that the configurations match.
Restrictions for BFD Single-Hop Authentication

- If key chains are removed from the established BFD single-hop sessions or no active keys are present in the key chain, the BFD template and the map entry are invalidated. Such invalidation is considered as a map entry deletion.
- Meticulous keyed MD5 authentication and meticulous keyed SHA-1 are not supported in In-Service Software Upgrade (ISSU) because checkpointing of sequence numbers does not occur in all packets.
- Meticulous MD5 and meticulous SHA-1 authentication types are not preserved after Route Processor (RP) failures in Stateful Switchover (SSO) mode. The sessions could flap causing link instability of the registered protocols.
- Only timers with values greater than or equal to 50 milliseconds are supported.
- The authentication type negotiation and key exchange between two BFD peers does not occur.
- When there is a missing key chain or when keys are not configured in a key chain, the BFD template and its associated map entries are invalidated, and the BFD session is not created.
- You can apply Bidirectional Forwarding Detection (BFD) single-hop Authentication in a BFD-template configuration only. You cannot apply BFD single-hop authentication in legacy configurations.

Information About BFD Single-Hop Authentication

Benefits of BFD Single-Hop Authentication

Using the Message Digest 5 (MD5) and Secure Hash Algorithm 1 (SHA-1) authentication methods defined in RFC 5880, the BFD Single Hop Authentication feature provides security against attacks on data links between a pair of directly connected devices involved in a BFD session. This feature is applied on data links between a BFD source-destination pair that communicates through IPv4 and IPv6 protocols across a single IP hop that is associated with an incoming interface. The communication may occur through physical media, virtual circuits, and tunnels.

Role of BFD Single-Hop Authentication in Preventing Denial of Service Attacks

To prevent denial of service (DoS) attacks, a BFD single-hop session validates the sequence number of a packet on receiving the packet. Detect multiplier is the number of missing BFD hello messages from another BFD device before the local device detects a fault in the forwarding path. The detect multiplier is used to determine the detect timer. The following are the ranges of valid sequence numbers that are accepted by the BFD Single-Hop Authentication feature:

- For nonmeticulous keyed types: Last received sequence number to (last received sequence number + 3 * detect multiplier)
- For meticulous keyed types: Last received sequence number + 1) to (last received sequence number + 3 * detect multiplier)
For BFD, (transmit interval) * (detect multiplier) = detect timer. If a BFD control packet is not received from the remote system within the detect-timer interval, a failure has occurred.

How to Configure BFD Single-Hop Authentication

Configuring Key Chains

Perform this task on one of the two devices that are involved in a BFD session, and repeat the steps on the other device.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `key chain chain-name`
4. `key key-id`
5. `key-string text`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. - Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Device> <code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>key chain chain-name</code></td>
<td>Defines an authentication key chain needed to enable authentication for routing protocols and enters key-chain configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# <code>key chain chain1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>key key-id</code></td>
<td>Defines an authentication key on the key chain and enters keychain-key configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-keychain)# <code>key 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>key-string text</code></td>
<td>Defines an authentication string for a key.</td>
</tr>
<tr>
<td>Example: Device(config-keychain-key)# <code>key-string key1</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring a BFD Template with Authentication

SUMMARY STEPS

1. enable
2. configure terminal
3. bfd-template single-hop template-name
4. interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
5. authentication authentication-type keychain keychain-name
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>bfd-template single-hop template-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# bfd-template single-hop template1</td>
</tr>
<tr>
<td>Purpose</td>
<td>Creates a BFD template and enters BFD configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-bfd)# interval min-tx 120 min-rx 100 multiplier 3</td>
</tr>
<tr>
<td>Purpose</td>
<td>Configures transmit and receive intervals between BFD packets and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.</td>
</tr>
<tr>
<td>Step 5</td>
<td>authentication authentication-type keychain keychain-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-bfd)# authentication sha-1 keychain keychain1</td>
</tr>
<tr>
<td>Purpose</td>
<td>Configures authentication in a BFD template for single-hop sessions.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-keychain-key)# end</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits keychain-key configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring a Single-Hop Template on an Interface

SUMMARY STEPS
1. `enable`
2. `configure terminal`
3. `interface type number`
4. `bfd template template-name`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device> enable</td>
<td>· Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface type number</code></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# interface gigabitethernet 0/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>bfd template template-name</code></td>
<td>Binds a single-hop BFD template to an interface.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# bfd template bfdtemplate</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verifying BFD Single-Hop Authentication

SUMMARY STEPS
1. `show bfd drops`
2. `show bfd neighbor`
DETAILED STEPS

Step 1
show bfd drops
Example:
Device> show bfd drops
This command displays the number of dropped packets in BFD.

Step 2
show bfd neighbor
Example:
Device> show bfd neighbor
This command displays a line-by-line listing of existing BFD adjacencies.

Configuration Examples for BFD Single-Hop Authentication

Example: Configuring Key Chains

Device> enable
Device# configure terminal
Device(config)# key chain chain1
Device(config-keychain)# key 1
Device(config-keychain-key)# key-string key1
Device(config-keychain-key)# end

Example: Configuring a BFD Template with Authentication

Device> enable
Device# configure terminal
Device(config)# bfd-template single-hop template1
Device(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3
Device(bfd-config)# authentication sha-1 keychain keychain1
Device(bfd-config)# end

Example: Configuring a Single-Hop Template on an Interface

Device> enable
Device# configure terminal
Device(config)# key chain chain1
Device(config-keychain)# key 1
Device(config-keychain-key)# key-string key1
Device(config-keychain-key)# end
Example: Verifying BFD Single-Hop Authentication

Sample Output for the show bfd neighbor command

Device> show bfd neighbor

IPv4 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.2</td>
<td>1/12</td>
<td>Up</td>
<td>Up</td>
<td>Et0/0</td>
</tr>
</tbody>
</table>

Session state is UP and using echo function with 300 ms interval.
Session Host: Software
OurAddr: 192.168.0.1
Handle: 12
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holddown (hits): 0(0), Hello (hits): 1000(62244)
Rx Count: 62284, Rx Interval (ms) min/max/avg: 1/2436/878 last: 239 ms ago
Tx Count: 62247, Tx Interval (ms) min/max/avg: 1/1545/880 last: 246 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: Stub CEF
Template: my-template
Authentication (Type/Keychain): sha-1/my-chain
Uptime: 00:22:06
Last packet: Version: 1
State bit: Up
Poll bit: 0
Multiplier: 3
My Discr.: 12
Min tx interval: 1000000
Min Echo interval: 300000

Sample Output for the show bfd drops command.

Device> show bfd drops

BFD Drop Statistics

<table>
<thead>
<tr>
<th></th>
<th>IPV4</th>
<th>IPV6</th>
<th>IPV4-M</th>
<th>IPV6-M</th>
<th>MPLS_PW</th>
<th>MPLS_TP_LSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invalid TTL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BFD Not Configured</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No BFD Adjacency</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Invalid Header Bits</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Invalid Discriminator</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Session AdminDown</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Authen invalid BFD ver</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Authen invalid len</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Authen invalid seq</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Authen failed</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 5880</td>
<td>Bidirectional Forwarding Detection</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for BFD Single-Hop Authentication

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 5: Feature Information for BFD Single Hop Authentication

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD Single-Hop Authentication</td>
<td>15.2(4)S</td>
<td>The BFD Single-Hop Authentication feature enables authentication for single hop BFD sessions between directly connected devices. This feature supports Message Digest 5 (MD5) and Secure Hash Algorithm 1 (SHA1) authentication types. The following commands were introduced or modified: authentication (BFD), bfd template, bfd-template, show bfd drops and show bfd neighbors.</td>
</tr>
</tbody>
</table>
BFD Multihop Support for IPv4 Static Routes

The BFD Multihop Support for IPv4 Static Routes feature enables detection of IPv4 network failure between paths that are not directly connected. If a Bidirectional Forwarding Detection (BFD) session is up (that is, the next-hop destination is reachable), IPv4 static routes that are associated with IPv4 static BFD configuration are added to a routing table. If the BFD session is down, the routing table removes all associated static routes from the routing table.

This feature is applicable on different kinds of interfaces such as physical, subinterface, and virtual tunnels and across intra-area and interarea topologies.

• Finding Feature Information, on page 95
• Prerequisites for BFD Multihop Support for IPv4 Static Routes, on page 95
• Information About BFD Multihop Support for IPv4 Static Routes, on page 96
• How to Configure BFD Multihop Support for IPv4 Static Routes, on page 96
• Verifying BFD Multihop Support for IPv4 Static Routes, on page 97
• Configuration Examples for BFD Multihop Support for IPv4 Static Routes, on page 98
• Additional References for BFD Multihop Support for IPv4 Static Routes, on page 98
• Feature Information for BFD Multihop Support for IPv4 Static Routes, on page 99

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for BFD Multihop Support for IPv4 Static Routes

• The BFD destination for which an IPv4 static route has to be configured must be reachable by all devices.
• The configured device must have at least one static route with the next-hop destination as a BFD destination for an associated session. If not, the BFD session is not created on the device.
Information About BFD Multihop Support for IPv4 Static Routes

BFDv4 Associated Mode

In Bidirectional Forwarding Detection for IPv4 (BFDv4) associated mode, an IPv4 static route is automatically associated with an IPv4 static BFDv4 multihop destination address if the static route next hop exactly matches the static BFDv4 multihop destination address.

The state of the BFDv4 session is used to determine whether the associated IPv4 static routes are added in the IPv4 routing information base (RIB). For example, static routes are added in the IPv4 RIB only if the BFDv4 multihop destination is reachable, and the static routes are removed from the IPv4 RIB if the BFDv4 multihop destination subsequently becomes unreachable.

BFDv4 Unassociated Mode

In Bidirectional Forwarding Detection for IPv4 (BFDv4), an IPv4 static BFD multihop destination can be configured in unassociated mode. In unassociate mode, a BFD neighbor is not associated with a static route, and the BFD sessions are requested if the IPv4 static BFD is configured.

Unassociated mode is useful in the following scenario:

- Absence of an IPv4 static route—This scenario occurs when a static route is on device A, and device B is the next hop. In associated mode, you must create both a static BFD multihop destination address and a static route on both devices to bring up the BFDv4 session from device B to device A. Specifying the static BFD multihop destination in unassociated mode on device B avoids the need to configure an unwanted static route.

How to Configure BFD Multihop Support for IPv4 Static Routes

Configuring BFD Multihop IPv4 Static Routes

Before you begin

- Specify a BFD destination address which is same as the IPv4 static route next hop or gateway address.
- Configure a BFD map and a BFD multihop template for an interface on the device. The destination address and source address configured for a BFD map must match the BFD static multihop configuration and the source address must be a valid IP address configured for an interface in the routing table.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip route prefix mask ip-address
4. ip route static bfd multihop-destination-address multihop-source-address
5. ip route static bfd multihop-destination-address multihop-source-address unassociate
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip route prefix mask ip-address</td>
<td>Configures an IPv4 static route that BFD multihop uses to monitor static routes.</td>
</tr>
<tr>
<td>Example: Device(config)# ip route 192.0.2.0 255.255.255.0 10.1.1.2</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip route static bfd multihop-destination-address multihop-source-address</td>
<td>Configures the static IPv4 BFD multihop to be associated with a static IPv4 route.</td>
</tr>
<tr>
<td>Example: Device(config)# ip route static bfd 192.0.2.1 10.1.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 5 ip route static bfd multihop-destination-address multihop-source-address unassociate</td>
<td>(Optional) Configures the static IPv4 BFD multihop to be associated with a static IPv4 route in unassociated mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ip route static bfd 192.0.2.1 10.1.1.1 unassociate</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verifying BFD Multihop Support for IPv4 Static Routes

The following show commands can be used to verify IPv4 static routes for BFD multihop:

SUMMARY STEPS

1. **show bfd neighbor**
2. **show ip static route bfd**

DETAILED STEPS

Step 1 show bfd neighbor

Displays a line-by-line listing of existing BFD adjacencies.
Step 2

```bash
show ip static route bfd
```

Displays information about the IPv4 static BFD configured parameters.

Configuration Examples for BFD Multihop Support for IPv4 Static Routes

Additional References for BFD Multihop Support for IPv4 Static Routes

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 5883</td>
<td>BFD for Multihop Paths</td>
</tr>
</tbody>
</table>

Technical Assistance

The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.

To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.

Example: Configuring BFD Multihop for IPv4 Static Routes in Associated Mode

```bash
Device> enable
Device# configure terminal
```
Example: Configuring IPv4 Static Multihop for BFD in Unassociated Mode

Device> enable
Device# configure terminal
Device(config)# bfd map ipv4 192.0.2.1/32 10.1.1.1/32 test
Device(config)# bfd-template multi-hop test
Device(config-bfd)# interval min-tx 51 min-rx 51 multiplier 3
Device(config-bfd)# exit
Device(config)# ip route 192.0.2.0 255.255.255.0 10.1.1.2
Device(config)# interface GigabitEthernet 1/1
Device(config-if)# ip address 10.1.1.1 255.255.0.0
Device(config-if)# exit
Device(config)# ip route static bfd 192.0.2.1 10.1.1.1 unassociate
Device(config)# end

Feature Information for BFD Multihop Support for IPv4 Static Routes

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 6: Feature Information for BFD Multihop Support for IPv4 Static Routes

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD Multihop Support for IPv4 Static Routes</td>
<td>15.2(3)S</td>
<td>The BFD Multihop Support for IPv4 Static Routes feature enables detection of IPv4 network failure between paths that are not directly connected. If a Bidirectional Forwarding Detection (BFD) session is up (that is, the next-hop destination is reachable), IPv4 static routes that are associated with IPv4 static BFD configuration are added to a routing table. If the BFD session is down, the routing table removes all associated static routes from the routing table. The following commands were modified: <code>ip route static bfd</code> and <code>show ip static route bfd</code>.</td>
</tr>
<tr>
<td></td>
<td>15.3(3)M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.2(1)SY</td>
<td></td>
</tr>
</tbody>
</table>
IS-IS IPv6 Client for BFD

When Bidirectional Forwarding Detection (BFD) support is configured with Intermediate System To Intermediate System (IS-IS) as a registered protocol with BFD, IS-IS receives forwarding path detection failure messages from BFD.

- Finding Feature Information, on page 101
- Prerequisites for IS-IS IPv6 Client for BFD, on page 101
- Information About IS-IS IPv6 Client for BFD, on page 102
- How to Configure ISIS IPv6 Client for BFD, on page 103
- Configuration Examples for ISIS IPv6 Client for BFD, on page 105
- Additional References, on page 106
- Feature Information for IS-IS IPv6 Client for BFD, on page 107

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for IS-IS IPv6 Client for BFD

- IS-IS must be running on all participating devices.
- The baseline parameters for BFD sessions must be configured on the interfaces that run BFD sessions to BFD neighbors.
Information About IS-IS IPv6 Client for BFD

IS-IS BFD Topology

When BFD support is configured with IS-IS as a registered protocol with BFD, IS-IS receives forwarding path detection failure messages from BFD. BFD support for IS-IS can be configured in either router address-family configuration mode or interface configuration mode. IS-IS IPv6 can run in single-topology or in Multi-Topology (MT) mode.

IS-IS BFD supports both IPv4 and IPv6 on the same adjacency for single-topology or multi-topology mode. If BFD is enabled for both IPv4 and IPv6, IS-IS sends two BFD session creation requests to BFD. For single-topology mode, the IS-IS adjacency state can only be UP if both BFD sessions are UP. If either of the BFD sessions is DOWN, the associated IS-IS adjacency state is also DOWN. For MT mode, the IS-IS adjacency state can be UP as long as one of topologies has a BFD session in an UP state.

IS-IS BFD IPv6 Session Creation

IS-IS requests a BFD session for the interface and IPv6 address of the neighboring device when all of the following conditions are met:

- An IS-IS adjacency entry exists.
- The Address Family Identifier (AFI) specific peer interface address is known.
- IS-IS BFD is enabled for that AFI on an interface.
- IS-IS is enabled for that AFI on the local interface.
- If the neighboring device supports RFC 6213, BFD must be enabled for the specified Multi-Topology Identifier (MTID) or Network Layer Protocol Identifier (NLPID).

IS-IS BFD IPv6 Session Deletion

When IS-IS BFD IPv6 is disabled on an interface, IS-IS removes related BFD sessions for IPv6 from the adjacent device. When the IS-IS adjacency entry is deleted, all BFD sessions are also deleted. IS-IS requests BFD to remove each BFD session that it has requested when any of the following events occur:

- The IS-IS instance is deleted or un-configured.
- The IS-IS adjacency entry is deleted.
- IS-IS BFD is disabled on the next hop interface for an address-family.
- The neighboring device supports RFC 6213 and indicates that it no longer supports BFD for the specified MTID or NLPID.
How to Configure ISIS IPv6 Client for BFD

Configuring IS-IS IPv6 Client Support for BFD on an Interface

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ipv6 address ipv6-address/mask`
5. `isis ipv6 bfd`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode. *
| Example: Device> enable | Enter your password if prompted. |
| **Example:** | |
| **Step 2** `configure terminal` | Enters global configuration mode. |
| Example: Device# configure terminal | |
| **Step 3** `interface type number` | Enters interface configuration mode. |
| Example: Device(config)# interface gigabitethernet 6/0/0 | |
| **Step 4** `ipv6 address ipv6-address/mask` | Configures IPv6. |
| Example: Device(config-if)# ipv6 address 19:1:1::4/64 | |
| **Step 5** `isis ipv6 bfd` | Enables IPv6 BFD on a specific interface that is configured for IS-IS. |
| Example: Device(config-if)# isis ipv6 bfd | |
| **Step 6** `end` | Exits interface configuration mode and returns to privileged EXEC mode. |
| Example: Device(config-if)# end | |
Configuring IS-IS IPv6 Client Support for BFD on All Interfaces

SUMMARY STEPS

1. enable
2. configure terminal
3. router isis
4. metric-style wide
5. address-family ipv6
6. multi-topology
7. bfd all-interfaces
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
<p>| Example: Device> enable | • Enter your password if prompted. |
| Step 2 configure terminal | Enters global configuration mode. |
| Example: Device# configure terminal | |
| Step 3 router isis | Enables the IS-IS routing protocol and enters router configuration mode. |
| Example: Device(config)# router isis | |
| Step 4 metric-style wide | (Optional) Configures a device that is running IS-IS so that it generates and accepts only new-style type, length, value objects (TLVs). |
| Example: Device(config-router)# metric-style wide | |
| Step 5 address-family ipv6 | Enters address family configuration mode for configuring IS-IS routing sessions that use standard IPv6 address prefixes. |
| Example: Device(config-router)# address-family ipv6 | |
| Example: Device(config-router-af)# multi-topology | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Enables BFD for all interfaces participating in the routing process.</td>
</tr>
<tr>
<td>bfd all-interfaces</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-router-af)# bfd all-interfaces</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Exits address family configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-router-af)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for ISIS IPv6 Client for BFD

Example: IS-IS IPv6 Client Support for BFD on a Single Interface

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 6/0/0
Device(config-if)# ipv6 address 19:111:112::2/64
Device(config-if)# isis ipv6 bfd
Device(config-if)# end

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 6/0/0
Device(config-if)# ipv6 address 19:111:112::1/64
Device(config-if)# isis ipv6 bfd
Device(config-if)# end

Example: IS-IS IPv6 Client Support for BFD on All Interfaces

Device> enable
Device# configure terminal
Device(config)# router isis
Device(config-router)# metric-style wide
Device(config-router)# address-family ipv6
Device(config-router-af)# multi-topology
Device(config-router-af)# bfd all-interfaces
Device(config-router-af)# end

The following is a sample configuration where interface 0/0/7 of Router A is connected to interface 0/4/6 of router B.

Configuration for Router A

bfd-template single-hop BFDM
interval min-tx 50 min-rx 50 multiplier 3
interface TenGigabitEthernet0/0/7
ipv6 address 19:1:1::1/64
ipv6 router isis
bfd template BFDM
isis ipv6 bfd
!
router isis
net 49.0001.1720.1600.1001.00
!

Configuration on Router B

Router B

bfd-template single-hop BFDM
 interval min-tx 50 min-rx 50 multiplier 3
!
interface TenGigabitEthernet0/4/6
ipv6 address 19:1:1::2/64
ipv6 router isis
bfd template BFDM
isis ipv6 bfd
!
router isis
net 49.0000.0000.0002.00
!

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>BFD commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples.</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
<tr>
<td>Configuring and monitoring IS-IS</td>
<td>“Configuring Integrated IS-IS” module of the IP Routing Protocols Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for IS-IS IPv6 Client for BFD

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 7: Feature Information for IS-IS IPv6 Client for BFD

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-IS IPv6 Client for BFD</td>
<td>15.1(1)SY</td>
<td>When BFD support is configured with IS-IS as a registered protocol with BFD, IS-IS receives forwarding path detection failure messages from BFD.</td>
</tr>
<tr>
<td></td>
<td>15.2(4)S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.3(1)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: <code>bfd all-interfaces</code>, <code>isis ipv6 bfd</code>.</td>
</tr>
</tbody>
</table>

Static Route Support for BFD over IPv6

• Finding Feature Information, on page 109
• Information About Static Route Support for BFD over IPv6, on page 109
• How to Configure Bidirectional Forwarding Detection for IPv6, on page 110
• Configuration Examples for Static Route Support for BFD over IPv6, on page 112
• Additional References, on page 113
• Feature Information for Static Route Support for BFD over IPv6, on page 114

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Static Route Support for BFD over IPv6

Using the BFDv6 protocol to reach the static route next hop ensures that an IPv6 static route is inserted only in the IPv6 Routing Information Base (RIB) when the next-hop neighbor is reachable. Using the BFDv6 protocol also can remove the IPv6 static route from the IPv6 RIB when the next hop becomes unreachable.

A user can configure IPv6 static BFDv6 neighbors. These neighbor can operate in one of two modes: associated (which is the default) and unassociated. A neighbor can be transitioned between the two modes without interrupting the BFDv6 session associated with the neighbor.

BFDv6 Associated Mode

In Bidirectional Forwarding Detection for IPv6 (BFDv6) associated mode, an IPv6 static route is automatically associated with an IPv6 static BFDv6 neighbor if the static route next hop exactly matches the static BFDv6 neighbor.

An IPv6 static route requests a BFDv6 session for each static BFDv6 neighbor that has one or more associated IPv6 static routes and is configured over an interface on which BFD has been configured. The state of the
BFDv6 session will be used to determine whether the associated IPv6 static routes are inserted in the IPv6 RIB. For example, static routes are inserted in the IPv6 RIB only if the BFDv6 neighbor is reachable, and the static route is removed from the IPv6 RIB if the BFDv6 neighbor subsequently becomes unreachable.

BFDv6 associated mode requires you to configure a BFD neighbor and static route on both the device on which the BFD-monitored static route is required and on the neighboring device.

BFDv6 Unassociated Mode

An IPv6 static BFD neighbor may be configured as unassociated. In this mode, the neighbor is not associated with static routes, and the neighbor always requests a BFDv6 session if the interface has been configured for BFDv6.

Unassociated mode is useful in the following situations:

- **Bringing up a BFDv6 session in the absence of an IPv6 static route**—This case occurs when a static route is on router A, with router B as the next hop. Associated mode requires you to create both a static BFD neighbor and static route on both routers in order to bring up the BFDv6 session from B to A. Specifying the static BFD neighbor in unassociated mode on router B avoids the need to configure an unwanted static route.

- **Transition to BFD monitoring of a static route**—This case occurs when existing IPv6 static routes are inserted in the IPv6 RIB. Here, you want to enable BFD monitoring for these static routes without any interruption to traffic. If you configure an attached IPv6 static BFD neighbor, then the static routes will immediately be associated with the new static BFD neighbor. However, because a static BFD neighbor starts in a down state, the associated static routes are then removed from the IPv6 RIB and are reinserted when the BFDv6 session comes up. Therefore, you will see an interruption in traffic. This interruption can be avoided by configuring the static BFD neighbor as unassociated, waiting until the BFDv6 session has come up, and then reconfiguring the static BFD neighbor as associated.

- **Transition from BFD monitoring of a static route**—In this case, IPv6 static routes are monitored by BFD and inserted in the RIB. Here, you want to disable BFD monitoring of the static routes without interrupting traffic flow. This scenario can be achieved by first reconfiguring the static BFD neighbor as detached (thus disassociating the neighbor from the static routes) and then deconfiguring the static BFD neighbor.

How to Configure Bidirectional Forwarding Detection for IPv6

Specifying a Static BFDv6 Neighbor

An IPv6 static BFDv6 neighbor is specified separately from an IPv6 static route. An IPv6 static BFDv6 neighbor must be fully configured with the interface and neighbor address and must be directly attached to the local router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Specifies static route IPv6 BFDv6 neighbors.</td>
</tr>
<tr>
<td>ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ipv6 route static bfd gigabitethernet 0/0/0 2001::1</td>
<td></td>
</tr>
</tbody>
</table>

Associating an IPv6 Static Route with a BFDv6 Neighbor

IPv6 static routes are automatically associated with a static BFDv6 neighbor. A static neighbor is associated with a BFDv6 neighbor if the static next-hop explicitly matches the BFDv6 neighbor.

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]
4. ipv6 route [vrf vrf-name] ipv6-prefix/prefix-length prefix-length {ipv6-address | interface-type [interface-number ipv6-address]} [nexthop-vrf [vrf-name] | default] [administrative-distance] [administrative-multicast-distance | unicast | multicast] [next-hop-address] [tag tag]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Static Route Support for BFD over IPv6

Example: Specifying an IPv6 Static BFDv6 Neighbor

The following example shows how to specify a fully configured IPv6 static BFDv6 neighbor. The interface is Ethernet 0/0 and the neighbor address is 2001::1.

```
Device(config)# ipv6 route static bfd ethernet 0/0 2001::1
```

Example: Associating an IPv6 Static Route with a BFDv6 Neighbor

In this example, the IPv6 static route 2001:DB8::/32 is associated with the BFDv6 neighbor 2001::1 over the Ethernet 0/0 interface:

```
Device(config)# ipv6 route static bfd ethernet 0/0 2001::1
Device(config)# ipv6 route 2001:DB8::/32 ethernet 0/0 2001::1
```
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
<tr>
<td>Static Route Support for BFD over IPv6</td>
<td>“Bidirectional Forwarding Detection” module</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Static Route Support for BFD over IPv6

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software images support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 8: Feature Information for Static Route Support for BFD over IPv6

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Route Support for BFD over IPv6</td>
<td>15.1(1)SG, 15.1(1)SY, 15.1(2)T, 15.2(1)E, 15.4(1)S</td>
<td>Using the BFDv6 protocol to reach the static route next hop ensures that an IPv6 static route is inserted only in the IPv6 Routing Information Base (RIB) when the next-hop neighbor is reachable. Using the BFDv6 protocol also can remove the IPv6 static route from the IPv6 RIB when the next hop becomes unreachable. The following commands were introduced or modified: debug bfd, debug ipv6 static, ipv6 route, ipv6 route static bfd, monitor event ipv6 static, show ipv6 static. In Cisco IOS 15.4(1)S Release, support was added for the Cisco ASR 901S router.</td>
</tr>
</tbody>
</table>