IP Multicast: Multicast Resiliency Configuration Guide

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
CONTENTS

CHAPTER 1

Read Me First 1

CHAPTER 2

Monitoring and Maintaining Multicast HA Operations 3

Finding Feature Information 3

Prerequisites for Monitoring and Maintaining HA Operations 3

Restrictions for Monitoring and Maintaining HA Operations 4

Information About Monitoring and Maintaining Multicast HA Operations 4

Multicast HA Support Differences from Other Routing Protocols 4

Multicast Graceful Restart Overview 4

 Multicast NSF 4

 Multicast SSO 4

Multicast Checkpointing for HA Operations 5

Multicast HA Operations 5

 Dynamic Multicast SSO Synchronization Events That Occur During Normal Operation 5

 MFIB Interactions on the Active and Standby RPs Before an RP Switchover 6

Unicast and Multicast NSF and SSO Hold-Off Period 6

MFIB Interactions During an RP Switchover 7

Unicast and Multicast NSF and SSO Events That Occur Following an RP Switchover 7

PIM and MFIB Interactions Following an RP Switchover to Replay DDEs 8

Operation After the RP Switchover 9

ISSU Support for IP Multicast 10

How to Monitor and Maintain Multicast HA Operations 10

 Monitoring Multicast HA Events 10

 Modifying the Stale Mroute Flush Timeout Period for Multicast HA Operations 12

Configuration Examples for Monitoring and Maintaining Multicast HA Operations 14

Example Monitoring Multicast NSF and SSO Events During an RP Switchover 14
CHAPTER 3

PIM Triggered Joins 27

Finding Feature Information 27
Restrictions for PIM Triggered Joins 27
Information About PIM Triggered Joins 27
 Functional Overview of PIM Triggered Joins 27
 Generation IDs 29
 PIM Triggered Joins and Multicast Traffic Flow 29
Additional References 29
Feature Information for PIM Triggered Joins 30

CHAPTER 4

Multicast Live-Live 31

Finding Feature Information 31
Prerequisites for Multicast Live-Live 31
Restrictions for Multicast Live-Live 31
Information About Multicast Live-Live 32
 Overview of Multicast Live-Live 32
 How to Configure Multicast Live-Live 33
 Configuring a Multicast Topology 33
 Enabling a Multicast Topology Under IGP 35
 Verifying the Configuration of Multicast Live-Live 37
Configuration Examples for Multicast Live-Live 38
 Example Configuring Multicast Live-Live 38
Additional References 39
Feature Information for Multicast Live-Live 40
Read Me First

Important Information about Cisco IOS XE 16

Effective Cisco IOS XE Release 3.7.0E for Catalyst Switching and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

Feature Information

Use Cisco Feature Navigator to find information about feature support, platform support, and Cisco software image support. An account on Cisco.com is not required.

Related References

- Cisco IOS Command References, All Releases

Obtaining Documentation and Submitting a Service Request

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.
CHAPTER 2

Monitoring and Maintaining Multicast HA Operations

This module describes IPv4 and IPv6 multicast high availability (HA) support and the concepts and tasks necessary to monitor and maintain multicast HA operations.

Multicast HA capabilities enable Cisco nonstop forwarding (NSF) with stateful switchover (SSO) support for IPv4 and IPv6 multicast, which—following a Route Processor (RP) switchover—reduces the reconvergence time of the multicast control plane to a level that is transparent to most multicast-based applications and In Service Software Upgrade (ISSU) support for Protocol Independent Multicast (PIM).

Finding Feature Information, on page 3
Prerequisites for Monitoring and Maintaining HA Operations, on page 3
Restrictions for Monitoring and Maintaining HA Operations, on page 4
Information About Monitoring and Maintaining Multicast HA Operations, on page 4
How to Monitor and Maintain Multicast HA Operations, on page 10
Configuration Examples for Monitoring and Maintaining Multicast HA Operations, on page 14
Additional References, on page 24
Feature Information for Monitoring and Maintaining Multicast HA Operations, on page 25

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Monitoring and Maintaining HA Operations

This module assumes that your device is configured for IP multicast and is participating in an IP multicast network. For more information about configuring IP multicast using PIM sparse mode (PIM-SM), Source Specific Multicast (PIM-SSM), or bidirectional PIM (bidir-PIM), see the “Configuring a Basic IP Multicast Network” module.
• SSO must be configured and working properly. If you do not have SSO enabled, see the “Stateful Switchover” module.

• This module assumes that you are familiar with NSF concepts. For more information about NSF, see the “Cisco Nonstop Forwarding” module.

• This module assumes that you are familiar with the ISSU process.

Restrictions for Monitoring and Maintaining HA Operations

• Multicast IPv6 multicast SSO is supported only for PIM-SSM mode and PIM sparse mode using static RP configuration. SSO for bidir-PIM is not supported for IPv6 multicast.

Information About Monitoring and Maintaining Multicast HA Operations

Multicast HA Support Differences from Other Routing Protocols

Multicast HA support is different than HA support for other routing protocols because multicast routing (mroute) state is dynamic; that is, mroute state depends on the presence of sources and receivers. At the beginning of SSO, multicast state information known by downstream PIM neighbors is refreshed by the control plane. In addition, mroute state creation can be triggered by data driven events (DDEs) in the following cases:

• Mroute state creation triggered on the first hop designated router (DR) as a result of active source traffic.

• Shortest path tree (SPT) switchovers on the last hop DR; this occurs when traffic on the shared tree is detected on the last hop router.

Mroute states created in these data driven event cases are not learned from PIM join and prune messages from PIM neighbors.

Multicast Graceful Restart Overview

Multicast Graceful Restart (GR) is achieved with a combination of the NSF/SSO--IPv4 Multicast feature, the NSF/SSO--IPv6 feature, and the PIM Triggered Joins feature.

Multicast NSF

Multicast NSF ensures uninterrupted flow of multicast traffic during an RP failure.

Multicast SSO

Multicast SSO ensures that necessary information such as RP information, DDEs, and other multicast information is checkpointed to ensure the seamless takeover of the standby RP after an RP failover.
Multicast Checkpointing for HA Operations

The following multicast information is synchronized between the active and standby RPs:

- Dynamically learned group-to-RP mappings learned from either Auto-RP or bootstrap router (BSR) (IPv4 only).
- Bidir-PIM designated forwarder (DF) information and bidir-PIM RP route information (IPv4 only).
- Multicast Call Admission Control (MCAC) reservation synchronization information (IPv6 only).
- Multicast VPN (MVPN) tunnel information (IPv4 only).
- Multicast Distribution Tree (MDT) data group state information (IPv4 only).
- PIM register tunnel information (IPv4/IPv6).
- Multicast forwarding state created by DDEs (IPv4/IPv6).

Multicast HA Operations

The following sections describe the multicast NSF/SSO operations that occur before, during, and following an RP switchover:

Dynamic Multicast SSO Synchronization Events That Occur During Normal Operation

During normal operation (steady state), the software dynamically synchronizes information corresponding to events that modify the multicast forwarding state on the standby RP. Instead of performing periodic bulk synchronization updates, the software sends updates only for modified entities within internal databases. These updates are triggered by events that cause internal database changes related to the multicast forwarding state.

Note

This functionality applies only to the dynamic synchronization on the standby RP for updates to the multicast forwarding state that occur during steady state operation. Bulk synchronization updates, however, are required whenever a standby RP is inserted, reloaded, or reset.

In steady state, the following internal multicast forwarding databases are dynamically synchronized on the standby RP:

- RP Mapping--Internal database that stores group-to-RP mapping information (IPv4 only).
- Bidirectional Route Information--Internal database that stores bidir-PIM RP route information (IPv4 only).
- Bootstrap Cache--Internal database that stores BSR candidate information (IPv4 only).
- AutoRP Discovery IDB--Internal database that stores Auto-RP discovery message information (IPv4 only).
- RPDF--Internal database that stores the set of interfaces enabled for the reception of bidir-PIM packets for a given bidir-PIM RP (IPv4 only).
- MDT Tunnel--Internal database that stores MVPN MDT tunnel information (IPv4 only).
- PIM Register Tunnel--Internal database that stores PIM register tunnel information (IPv4/IPv6).
MFIB Interactions on the Active and Standby RPs Before an RP Switchover

Before an RP switchover, each Multicast Forwarding Information Base (MFIB) instance keeps a permanent record of DDEs it generated that are passed through the Multicast Routing Information Base (MRIB) on the active RP to the MFIB on the standby RP.

The figure illustrates the multicast NSF/SSO interactions between the MFIB components on the active and standby RPs before a switchover.

Figure 1: MFIB Interactions on the Active and Standby RPs Before an RP Switchover

MFIB Interactions on the Active and Standby RPs Before an RP Switchover

Unicast and Multicast NSF and SSO Hold-Off Period

Following an RP failure, data plane forwarding information is retained despite the fact that the new primary RP does not have a complete set of control plane information. The retention of this information enables forwarding to continue during unicast and multicast routing protocol reconvergence. While unicast and multicast routing protocol reconvergence is in progress, a hold-off period is observed during which no multicast forwarding updates are sent from the multicast routing protocol layer to the data plane layer. The hold-off period ends after unicast and multicast protocol convergence has completed.

Unicast routing protocol convergence begins before multicast protocol convergence. Multicast routing protocol (PIM) convergence does not begin until the multicast protocol layer receives explicit signaling that unicast routing protocol convergence has completed. Unicast protocols that are not SSO-aware are not covered by this signal and are not taken into account when waiting for convergence.

Note

Some SSO-aware routing protocols (for example, Border Gateway Protocol (BGP)) may generate logging messages indicating that the initial convergence has completed (based on an internal timer) before full convergence has occurred. PIM, however, does not provide any explicit indication of reconvergence.
The hold-off period may terminate before full convergence of unicast routing protocols, which will result in null RPF interfaces for any affected IP addresses. As additional unicast routing updates are received, the affected multicast routes are updated as needed. This is expected and acceptable behavior for SSO-aware routing protocols that are slower in converging.

Note

An RP switchover occurring on a system operating with unicast protocols that are not SSO-aware will cause undesirably long convergence times—but no routing loops—for multicast routes.

At the end of the hold-off period, the multicast data plane layer marks any existing data plane information as stale. That information is subsequently flushed if it is not refreshed through the downloading of the current reconverged control plane information.

MFIB Interactions During an RP Switchover

During an RP switchover, while the routing protocols are reconverging, no changes to the multicast tables will occur. All MFIB instances will enter NSF mode, as illustrated in the figure.

Figure 2: MFIB Interactions During an RP Switchover

Unicast and Multicast NSF and SSO Events That Occur Following an RP Switchover

In the event of an RP switchover, even with the continuous synchronization of unicast and multicast routing information from the primary to the standby RP, it is not possible to guarantee that the information most recently updated on the primary RP can be synchronized to the standby RP before a failure occurs on the primary RP. For this reason, following an RP switchover, both unicast and multicast routing protocols trigger the retransmission of routing information from neighboring routers to ensure that the unicast and multicast routing information is current.

For multicast protocol retransmission, the software triggers a refresh of all multicast routing information available from PIM neighbors using the PIM GenID capability described in RFC 4601. GenID support enables fast mroute reconvergence after a switchover. A GenID is a randomly generated 32-bit value regenerated each
time PIM forwarding is started or restarted on an interface. In the event of a switchover, the GenID value is used as a mechanism to trigger adjacent PIM neighbors on an interface to send PIM join messages for all (*, G) and (S, G) mroutes that use that interface as an RPF interface, immediately reestablishing those states on the new primary RP. Internet Group Management Protocol (IGMP) for IPv4 multicast and Multicast Listener Discovery (MLD) group membership information for IPv6 multicast is restored by executing IGMP/MLD queries on all IGMP/MLD interfaces.

The following multicast NSF/SSO events occur in parallel following an RP switchover:

- The software empties the queue containing unprocessed synchronization messages for multicast sent by the previous primary RP and starts a *unicast IGP convergence fail-safe timer* to handle the possibility that unicast Interior Gateway Protocol (IGP) convergence never completes.

- As interfaces come up on the new primary RP, unicast routing protocol reconvergence processing proceeds.

- As each PIM-enabled interface comes up, PIM hello messages are sent out using a new GenID value for the interface. The modified GenID value triggers PIM join and prune messages from all adjacent PIM neighbors on the network to which the interface is attached. As these messages are received, information about mroute states that were missing on the new primary RP are restored except for last hop SPT (S, G) routes and mroutes associated with directly connected hosts with no other intermediate routers. Because this routing information begins to arrive before unicast IGP convergence has occurred, mroutes may initially have NULL RPF ingress interfaces. As this state information is learned, the multicast protocol layer sends the corresponding update messages to the MRIB.

- IGMP/MLD group membership information is restored by the execution of IGMP/MLD queries on all IGMP/MLD interfaces.

- Following IGMP/MLD reporting, the control plane then sends out requests for the MFIB replay of DDEs to retrigger multicast route information that cannot be obtained from PIM neighbors or directly connected hosts.

- After DDE replay, the hold-off period ends. At the end of the hold-off period, the multicast data plane layer marks any existing data plane information as stale and that information is subsequently flushed if it is not refreshed via the downloading of the current reconverged control plane information.

PIM and MFIB Interactions Following an RP Switchover to Replay DDEs

The underlying components that make up the MFIB infrastructure coordinate to ensure successful multicast NSF/SSO operations. In particular, the internal exchange of instructions between PIM and the MFIB, as illustrated in the figure, ensure error-free operation and the successful replay of DDEs.
Operation After the RP Switchover

The new RP (the previous active RP that went down) will work as the standby RP after the repair, reboot, or reinstallation, as shown in the figure.
ISSU Support for IP Multicast

The ISSU process allows software to be updated or otherwise modified while packet forwarding continues. In most networks, planned software upgrades are a significant cause of downtime. ISSU allows software to be modified while packet forwarding continues, which increases network availability and reduces downtime caused by planned software upgrades.

To provide the required ISSU and SSO support necessary for IP multicast, a PIM ISSU client is introduced. The PIM ISSU client resides on both the primary and the standby RPs and enables PIM synchronization message transmission between two RPs using different versions of software. The PIM ISSU client performs transformation of PIM dynamic state synchronization messages sent from or received by the RP having the most recent software version. If synchronization messages are sent to a RP not using the most recent software version, the messages are translated to the older format used by this RP. If messages are received from this RP, the messages are translated to the newer format used by the receiving RP before being passed to the PIM HA software for processing.

How to Monitor and Maintain Multicast HA Operations

Monitoring Multicast HA Events

Perform this optional task to monitor multicast HA NSF/SSO and ISSU events.

SUMMARY STEPS

1. enable
2. debug ip multicast redundancy [verbose]
3. show ip pim neighbor
4. show ip multicast redundancy state [verbose]
5. show ip multicast redundancy statistics
6. clear ip multicast redundancy statistics

DETAILED STEPS

Step 1
enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Router> enable

Step 2
debug ip multicast redundancy [verbose]
Use this command to display IP multicast redundancy events.

This command logs events that are important in verifying the operation of NSF/SSO operation for IP multicast. The classes of events logged by `debug ip multicast redundancy` command include SSO events during an RP switchover and dynamic synchronization events that occur during steady state operation.
Use the optional `verbose` keyword to log events that may occur frequently during normal operation, but that may be useful for tracking in short intervals.

The following is output from the `debug ip multicast redundancy` command. The output displays the logging message that is displayed when the standby RP is recovered after a standby RP transition:

Example:

```text
RFstate=ACTIVE
```

Step 3 show ip pim neighbor

Use this command to display the PIM neighbors discovered by PIMv1 router query messages or PIMv2 hello messages that support the GenID capability.

The output of the `show ip pim neighbor` command displays the “G” flag to indicate GenID support status for each PIM neighbor. The “G” flag is displayed only if the neighbor supports the GenID capabilities provided by PIM.

GenID support enables fast mroute reconvergence after a switchover. A GenID is a randomly generated 32-bit value regenerated each time PIM forwarding is started or restarted on an interface. In the event of a switchover, the GenID value is used as a mechanism to trigger adjacent PIM neighbors on an interface to send PIM join messages for all (*, G) and (S, G) mroutes that use that interface as an RPF interface, immediately reestablishing those states on the newly active RP.

Example:

```text
Router# show ip pim neighbor
PIM Neighbor Table
Mode: B - Bidir Capable, DR - Designated Router, N - Default DR Priority,
P - Proxy Capable, S - State Refresh Capable, G - GenID Capable
Neighbor Interface Uptime/Expires Ver DR
Address Prio/Mode
192.168.10.5 GigabitEthernet0/1 00:01:35/00:01:37 v2 1 / DR B S P G
```

Step 4 show ip multicast redundancy state [verbose]

Use this command to display the current redundancy state for IP multicast.

The output displays information about the current multicast redundancy state of the RPs and the current synchronization state of the standby RP.

Example:

```text
Router# show ip multicast redundancy state
Multicast IPv4 Redundancy Mode: SSO
Multicast IPv6 Redundancy Mode: Not enabled
Multicast IPv4 HA state machine status: Idle
Multicast IPv6 HA state machine status: Idle
Sync message epoch: 0
Sync message sequence number: 24
Stale NSF state flush timeout: 30000 ms
Current sync state: Synched
Multicast ISSU Client Status:
  PIM MIC client ISSU compatible
  MRIB MIC client ISSU compatible
  MFIB IPv4 MIC client ISSU compatible
  MFIB IPv6 MIC client No ISSU result reported
  PLATFORM IPv4 MIC client Unregistered - ignored
  PLATFORM IPv6 MIC client Unregistered - ignored
```
IPv4 SSO supported for: PIM, MRIB, MFIBV4
IPv6 SSO blocked by: MFIBV6

Step 5 show ip multicast redundancy statistics

Use this command to display IP multicast redundancy statistics.

The output displays the following information:

• A summary statistic showing the current number of synchronization messages awaiting transmission from the active RP to the standby RP. (This count is summed across all synchronization database types.)

• A summary statistic showing the current number of synchronization messages that have been sent from the active RP to the standby RP, but for which the active RP has not yet received acknowledgment from the standby for successful reception. (This count is summed across all synchronization database types.)

• The last two statistics, displaying the count of messages awaiting transmission or acknowledgment, provide a way to measure the load on the internal synchronization message-sending mechanism.

Example:

Router# show ip multicast redundancy statistics
Multicast Redundancy Statistics
Sync Type Updates Syncs Sync failures
RP mapping 0 0 0
Bidir. RP route info 0 0 0
Bootstrap cache 4 4 0
Autorp discovery IDB 4 4 0
RPDF 0 0 0
MDT tunnel 0 0 0
PIM register tunnel 13 13 0
MCAC Reservation 0 0 0
Requests Awaiting Sync Msg Transmission: 0
Requests Awaiting Sync Msg Acknowledgement: 0
Average Sync Wait Time = 1 ms
Average Sync Ack Time = 7 ms

Step 6 clear ip multicast redundancy statistics

Use this command to reset IP multicast redundancy statistics.

Example:

Router# clear ip multicast redundancy statistics

Modifying the Stale Mroute Flush Timeout Period for Multicast HA Operations

Perform this optional task to configure an additional timeout period before stale forwarding plane mroute information is flushed. This timeout period is added on to the default NSF route flush time as a delay between the downloading of refreshed multicast control plane route information to the forwarding plane and the flushing of “stale” NSF forwarding plane information retained from SSO before the RP switchover.

⚠️ Caution

It is not recommended that you configure this additional delay unless it is specifically required for your topology because it could increase the risk of routing loops during NSF.
You would need to perform this task only if you have a routing protocol that requires additional time to populate routing information after the signaling of unicast routing convergence (for example, BGP in a configuration with a large number of VPN routing and forwarding (VRF) instances). The need to configure this timeout period may be determined during predeployment SSO stress testing.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip multicast redundancy routeflush maxtime seconds`
4. `end`
5. `show ip multicast redundancy state`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>ip multicast redundancy routeflush maxtime seconds</code></td>
<td>Configures an additional timeout period before stale forwarding plane mroute information is flushed following an RP switchover.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ip multicast redundancy routeflush maxtime 900</code></td>
<td>• The range is from 0 to 3600 seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Ends the current configuration session and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Purpose</td>
</tr>
<tr>
<td><code>show ip multicast redundancy state</code></td>
<td>Displays the current redundancy state for IP multicast.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# show ip multicast redundancy state</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use this command to confirm the stale NSF state flush timeout period being used. The “Stale NSF state flush timeout” output field will display the timeout period setting.</td>
</tr>
</tbody>
</table>
Configuration Examples for Monitoring and Maintaining Multicast HA Operations

Example Monitoring Multicast NSF and SSO Events During an RP Switchover

The following example shows how to monitor IP multicast NSF/SSO events during an RP switchover using the `debug ip multicast redundancy` command. The example shows IP multicast events occurring as a standby RP assumes the role of active RP during an SSO switchover. The events labeled “MCAST-HA” are logged by the IP multicast SSO debug facility.

Initial Switchover Detection

The following output is from the `debug ip multicast redundancy` command. The output shows the initial logging messages that display when the system detects an RP switchover.

```
00:10:33: %REDUNDANCY-3-SWITCHOVER: RP switchover (PEER_DOWN_INTERRUPT)
00:10:33: %REDUNDANCY-5-PEER_MONITOR_EVENT: Standby received a switchover (raw-event=PEER_DOWN_INTERRUPT(11))
*Aug 7 02:31:28.051: MCAST-HA: Received cf status CHKPT_STATUS_PEER_NOT_READY
*Aug 7 02:31:28.063: MCAST-HA: Received cf status CHKPT_STATUS_PEER_NOT_READY
*Aug 7 02:31:28.103: MCAST-HA: Received cf status CHKPT_STATUS_IPC_Flow_ON
*Aug 7 02:31:28.103: MCAST-HA-RF: Progression event: RF_Event=RF_PROG_ACTIVE RFState=ACTIVE
```

Unicast Convergence Detection and Multicast Route Control Plane Convergence

The following output is from the `debug ip multicast redundancy` command. As interfaces come up on the new active RP, unicast convergence occurs in parallel with multicast route refresh from PIM neighbors. Unicast convergence is followed by RPF adjustments to the refreshed mroute information.

```
*Aug 7 02:31:28.107: MCAST-HA: Triggering unicast convergence notification process handling for MVRf mvrf1
```
for MVRF mvrf3
*Aug 7 02:31:28.107: MCAST-HA: Triggering unicast convergence notification process handling for all MVRFs
*Aug 7 02:31:28.111: MCAST-HA: Unicast convergence notification has been received for the only unconverged VRF. Stopping the unicast routing convergence failsafe timer.
*Aug 7 02:31:28.111: MCAST-HA: Beginning unicast convergence notification process handling. Triggering RPF updates for all MVRFs and stopping the unicast IGP convergence failsafe timer.
00:10:34: %PIM-5-DRCHG: DR change from neighbor 0.0.0.0 to 172.16.1.1 on interface Loopback0
00:10:34: %PIM-5-DRCHG: DR change from neighbor 0.0.0.0 to 172.31.10.1 on interface Loopback1
00:10:35: %LINK-3-UPDOWN: Interface Null0, changed state to up
00:10:35: %LINK-3-UPDOWN: Interface Loopback0, changed state to up
00:10:35: %LINK-3-UPDOWN: Interface Loopback1, changed state to up
00:10:35: %LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to administratively down
00:10:35: %LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to administratively down
00:10:35: %LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state to administratively down
00:10:35: %LINK-5-CHANGED: Interface GigabitEthernet0/3, changed state to administratively down
00:10:35: %LINK-5-CHANGED: Interface GigabitEthernet1/0, changed state to administratively down
00:10:35: %LINK-5-CHANGED: Interface GigabitEthernet1/1, changed state to administratively down
00:10:35: %LINK-5-CHANGED: Interface GigabitEthernet1/2, changed state to administratively down
00:10:35: %LINK-5-CHANGED: Interface GigabitEthernet1/3, changed state to administratively down
00:10:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface Null0, changed state to up
00:10:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback0, changed state to up
00:10:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface Loopback1, changed state to up
00:10:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel0, changed state to up
00:10:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel1, changed state to up
00:10:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel2, changed state to up
00:10:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel3, changed state to up
00:10:38: %PIM-5-DRCHG: VRF mvrf1: DR change from neighbor 0.0.0.0 to 172.16.1.1 on interface Tunnel0
The following output is from the `debug ip multicast redundancy` command. After the processing of unicast and multicast route convergence, time is allowed for IGMP reporting. Following IGMP reporting, the control plane then sends out requests for the MFIB replay of DDEs to retrigger multicast route information that cannot be obtained from PIM neighbors or directly connected hosts. After this processing completes, the control plane waits for the NSF hold-off time period to terminate. The refreshed multicast control plane information is then downloaded to the forwarding plane and when this is completed, the stale multicast forwarding plane information is subsequently flushed.

*Aug 7 02:31:43.651: MCAST-HA: MFIB DDE replay completed for mvrf mvrf3
*Aug 7 02:31:43.651: MCAST-HA: No NSF Holdoff extension requested for mvrf mvrf3 at completion of DDE replay.
*Aug 7 02:31:43.651: MCAST-HA: Terminating multicast NSF holdoff for MVRF mvrf3
*Aug 7 02:31:43.651: MCAST-HA: Still awaiting MFIB DDE replay for mvrf mvrf2
DDE replay: NOT COMPLETED, MRIB update: NOT PENDING
*Aug 7 02:31:43.651: MCAST-HA: MFIB DDE replay completed for mvrf mvrf2
*Aug 7 02:31:43.651: MCAST-HA: No NSF Holdoff extension requested for mvrf mvrf2 at completion of DDE replay.
*Aug 7 02:31:43.651: MCAST-HA: Terminating multicast NSF holdoff for MVRF mvrf2
*Aug 7 02:31:43.651: MCAST-HA: Still awaiting MFIB DDE replay for mvrf mvrf1
DDE replay: NOT COMPLETED, MRIB update: NOT PENDING
*Aug 7 02:31:43.651: MCAST-HA: IGMP response timer expired. Ready for DDE replay for MVRF mvrf1
*Aug 7 02:31:43.651: MCAST-HA: MFIB DDE replay completed for mvrf mvrf1
*Aug 7 02:31:43.651: MCAST-HA: No NSF Holdoff extension requested for mvrf mvrf1 at completion of DDE replay.
*Aug 7 02:31:43.651: MCAST-HA: Terminating multicast NSF holdoff for MVRF mvrf1
*Aug 7 02:31:43.651: MCAST-HA: Still awaiting MFIB DDE replay for mvrf IPv4 default
DDE replay: NOT COMPLETED, MRIB update: NOT PENDING
*Aug 7 02:31:43.651: MCAST-HA: MFIB DDE replay completed for mvrf IPv4 default
*Aug 7 02:31:43.651: MCAST-HA: No NSF Holdoff extension requested for mvrf IPv4 default at completion of DDE replay.
*Aug 7 02:31:43.651: MCAST-HA: Terminating multicast NSF holdoff for MVRF IPv4 default
*Aug 7 02:31:43.651: MCAST-HA: MFIB DDE replay completed for all MVRFs.
*Aug 7 02:31:43.651: MCAST-HA: Stopping the MFIB DDE replay failsafe timer.
The following is sample output from the `debug ip multicast redundancy` command. This output shows events related to the reloading of the standby RP; in particular, events related to ISSU negotiation between the active and standby RP and events related to the synchronization of dynamic multicast forwarding information from the active RP to the standby RP. Synchronization events are also logged in steady state for events that occur that affect dynamic group-to-RP mapping information or dynamic tunnel state.

```
00:11:50: %HA-6-MODE: Operating RP redundancy mode is SSO
*Aug 7 02:32:46.039: MCAST-HA-RF: Progression event: RF_Event=RF_PROG_PLATFORM_SYNC RFState=ACTIVE
*Aug 7 02:32:46.979: MCAST-HA: Received cf status CHKPT_STATUS_PEER_READY
*Aug 7 02:32:46.979: MCAST-ISSU Handling communication up transition for PIM HA transport type 0, RF comm = TRUE, renegotiation NOT PENDING
*Aug 7 02:32:46.979: MCAST-HA: Received cf status CHKPT_STATUS_IPC_FLOW_ON
*Aug 7 02:32:47.043: MCAST-HA-RF: Progression event: RF_Event=RF_PROG_STANDBY_ISSU_NEGOTIATION_LATE RFState=ACTIVE
*Aug 7 02:32:50.943: MCAST-HA-RF: Progression event: RF_Event=RF_PROG_STANDBY_CONFIG RFState=ACTIVE
*Aug 7 02:32:50.947: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.947: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.947: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.951: MCAST-ISSU Negotiation message sent from primary, rc = 0
*Aug 7 02:32:50.955: MCAST-ISSU Negotiation completed for PIM Checkpoint Facility client, negotiation rc = 4, negotiation result = COMPATIBLE
*Aug 7 02:32:59.927: MCAST-HA-RF: Progression event: RF_Event=RF_PROG_STANDBY_FILESYS RFState=ACTIVE
*Aug 7 02:32:59.927: MCAST-HA-RF: Progression event: RF_Event=RF_PROG_STANDBY_BULK
```

Standby RP Bringup

The following is sample output from the `debug ip multicast redundancy` command. This output shows events related to the reloading of the standby RP; in particular, events related to ISSU negotiation between the active and standby RP and events related to the synchronization of dynamic multicast forwarding information from the active RP to the standby RP. Synchronization events are also logged in steady state for events that occur that affect dynamic group-to-RP mapping information or dynamic tunnel state.
RFState=ACTIVE

*Aug 7 02:32:59.963: MCAST-HA: Successfully created the bulk sync process
*Aug 7 02:32:59.963: MCAST-HA: Starting Bulk sync
*Aug 7 02:32:59.963: MCAST-HA Base cache sync request received for mvrf IPv4 default
*Aug 7 02:32:59.963: MCAST-HA: Creating Bootstrap cache sync request chunk size=112 max=585 align=8
*Aug 7 02:32:59.963: MCAST-HA: Allocating Bootstrap cache sync request sync request
*Aug 7 02:32:59.963: MCAST-HA Formatting Bootstrap cache sync message:
search for mvrf IPv4 default result is 0 mvrf at 0x4A21680
*Aug 7 02:32:59.971: MCAST-HA: Allocating Bootstrap cache sync request sync request
*Aug 7 02:32:59.971: MCAST-HA Formatting Bootstrap cache sync message:
search for mvrf mvrf1 result is 0 mvrf at 0x50EE660
*Aug 7 02:32:59.983: MCAST-HA: Allocating Bootstrap cache sync request sync request
*Aug 7 02:32:59.983: MCAST-HA Formatting Bootstrap cache sync message:
search for mvrf mvrf2 result is 0 mvrf at 0x5103300
*Aug 7 02:32:59.991: MCAST-HA: Allocating Bootstrap cache sync request sync request
*Aug 7 02:32:59.991: MCAST-HA Formatting Bootstrap cache sync message:
search for mvrf mvrf3 result is 0 mvrf at 0x5135FE0
*Aug 7 02:33:00.003: MCAST-HA Executing AutoRP discovery IDB bulk sync.
*Aug 7 02:33:00.003: MCAST-HA: Creating AutoRP discovery IDB sync request chunk size=112 max=585 align=8
*Aug 7 02:33:00.003: MCAST-HA: Allocating AutoRP discovery IDB sync request sync request
*Aug 7 02:33:00.003: MCAST-HA Formatting AutoRP discovery IDB sync message:
search for mvrf IPv4 default result is 0 mvrf at 0x4A21680
*Aug 7 02:33:00.011: MCAST-HA: Allocating AutoRP discovery IDB sync request sync request
*Aug 7 02:33:00.011: MCAST-HA Formatting AutoRP discovery IDB sync message:
search for mvrf mvrf1 result is 0 mvrf at 0x50EE660
*Aug 7 02:33:00.023: MCAST-HA: Allocating AutoRP discovery IDB sync request sync request
*Aug 7 02:33:00.023: MCAST-HA Formatting AutoRP discovery IDB sync message:
search for mvrf mvrf2 result is 0 mvrf at 0x5103300
*Aug 7 02:33:00.031: MCAST-HA: Allocating AutoRP discovery IDB sync request sync request
*Aug 7 02:33:00.031: MCAST-HA Formatting AutoRP discovery IDB sync message:
search for mvrf mvrf3 result is 0 mvrf at 0x5135FE0
*Aug 7 02:33:00.043: MCAST-HA Executing dummy bulk sync function.
*Aug 7 02:33:00.043: MCAST-HA Executing dummy bulk sync function.
*Aug 7 02:33:00.043: MCAST-HA Executing dummy bulk sync function.
*Aug 7 02:33:00.043: MCAST-HA Executing MDT tunnel bulk sync.
*Aug 7 02:33:00.043: MCAST-HA MDT tunnel sync request received for mvrf mvrf1
*Aug 7 02:33:00.043: MCAST-HA: Creating MDT tunnel sync request chunk size=112 max=585 align=8
*Aug 7 02:33:00.043: MCAST-HA: Allocating MDT tunnel sync request sync request
*Aug 7 02:33:00.043: MCAST-HA Formatting MDT tunnel sync message:
search for mvrf mvrf1 result is 0 mvrf at 0x50EE660
*Aug 7 02:33:00.051: MCAST-HA MDT tunnel sync request received for mvrf mvrf2
*Aug 7 02:33:00.051: MCAST-HA: Allocating MDT tunnel sync request sync request
*Aug 7 02:33:00.051: MCAST-HA Formatting MDT tunnel sync message:
search for mvrf mvrf2 result is 0 mvrf at 0x5103300
*Aug 7 02:33:00.063: MCAST-HA MDT tunnel sync request received for mvrf mvrf3
*Aug 7 02:33:00.063: MCAST-HA: Allocating MDT tunnel sync request sync request
Aug 7 02:33:00.063: MCAST-HA: Formatting MDT tunnel sync message; search for mvrf mvrf3 result is 0 mvrf at 0x5135FE0
Aug 7 02:33:00.071: MCAST-HA: Executing Bidir RP DF bulk sync.
Aug 7 02:33:00.071: MCAST-HA: Executing register tunnel bulk sync.
Aug 7 02:33:00.071: MCAST-HA: Completed enqueuing of bulk sync messages.
Aug 7 02:33:00.071: MCAST-HA: Bulk sync message queue has drained.
Aug 7 02:33:00.071: MCAST-HA: Received acknowledgement from standby for all bulk sync messages.
Aug 7 02:33:00.071: MCAST-HA: Creating bulk sync completion message for peer.
Aug 7 02:33:00.071: MCAST-HA: Primary has notified standby of bulk sync completion. Waiting for final bulk sync ACK from stby.
Aug 7 02:33:00.075: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
Aug 7 02:33:00.075: MCAST-HA: Sent message type is 2
Aug 7 02:33:00.075: MCAST-HA: Searching for sync request corresponding to the successfully received message.
Aug 7 02:33:00.075: MCAST-HA: Transmission from primary and reception by standby confirmed for sync type 2. Cleanup is complete.
Aug 7 02:33:00.075: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
Aug 7 02:33:00.075: MCAST-HA: Sent message type is 2
Aug 7 02:33:00.075: MCAST-HA: Searching for sync request corresponding to the successfully received message.
Aug 7 02:33:00.075: MCAST-HA: Transmission from primary and reception by standby confirmed for sync type 2. Cleanup is complete.
Aug 7 02:33:00.075: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
Aug 7 02:33:00.075: MCAST-HA: Sent message type is 3
Aug 7 02:33:00.075: MCAST-HA: Searching for sync request corresponding to the successfully received message.
Aug 7 02:33:00.075: MCAST-HA: Transmission from primary and reception by standby confirmed for sync type 3. Cleanup is complete.
Aug 7 02:33:00.075: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
Aug 7 02:33:00.075: MCAST-HA: Sent message type is 3
Aug 7 02:33:00.075: MCAST-HA: Searching for sync request corresponding to the successfully received message.
Aug 7 02:33:00.075: MCAST-HA: Transmission from primary and reception by standby confirmed for sync type 3. Cleanup is complete.
Aug 7 02:33:00.075: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
Aug 7 02:33:00.075: MCAST-HA: Sent message type is 3
Aug 7 02:33:00.075: MCAST-HA: Searching for sync request corresponding to the successfully received message.
Aug 7 02:33:00.075: MCAST-HA: Transmission from primary and reception by standby confirmed for sync type 3. Cleanup is complete.
Aug 7 02:33:00.075: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
Aug 7 02:33:00.075: MCAST-HA: Sent message type is 8
Aug 7 02:33:00.075: MCAST-HA: Searching for sync request corresponding to the successfully received message.
Aug 7 02:33:00.087: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
Aug 7 02:33:00.087: MCAST-HA: Sent message type is 8
Aug 7 02:33:00.087: MCAST-HA: Searching for sync request corresponding to the successfully received message.
for sync type 8. Cleanup is complete.
*Aug 7 02:33:00.087: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
*Aug 7 02:33:00.087: MCAST-HA: Sent message type is 8
*Aug 7 02:33:00.087: MCAST-HA Searching for sync request corresponding to the successfully received message.
*Aug 7 02:33:00.087: MCAST-HA Transmission from primary and reception by standby confirmed for sync type 8. Cleanup is complete.
*Aug 7 02:33:00.087: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
*Aug 7 02:33:00.087: MCAST-HA: Sent message type is 8
*Aug 7 02:33:00.087: MCAST-HA Searching for sync request corresponding to the successfully received message.
*Aug 7 02:33:00.087: MCAST-HA: Received cf status CHKPT_STATUS_SEND_OK
*Aug 7 02:33:00.087: MCAST-HA: Sent message type is 11
*Aug 7 02:33:00.087: MCAST-HA Process: Primary RP received standby ACK for reception of bulk sync completion message.
*Aug 7 02:33:00.087: MCAST-HA Notifying RF to continue progression.
*Aug 7 02:33:00.087: MCAST-HA: Wakeup received for bulk sync completion.

Example Monitoring the Transition from Standby RP to Active RP Following a Switchover

The following example shows how to monitor the transition from standby RP to active RP and confirm the IP multicast redundancy state and the status on the standby RP after it has resynchronized with the new active RP.

In this example scenario, a router is configured for IPv4 multicast routing operation, but not for IPv6 multicast. As a result, some of the output fields that are specific to IPv6 multicast will indicate status such as “Not enabled” or “Idle” in the example outputs.

Initial State on Standby RP Before Switchover

The following output is from the `show ip multicast redundancy state` command on a standby RP before an active RP goes down. In the sample output, notice that the “Current sync state” field displays “Not synching,” indicating that the standby RP is not synchronizing data to the active RP. The standby RP serves only as a passive recipient of synchronization updates and does not initiate synchronization updates to the active RP.

```
Router_Standby# show ip multicast redundancy state
Multicast IPv4 Redundancy Mode: Not enabled
Multicast IPv6 Redundancy Mode: Not enabled
Sync message epoch: 0
Sync message sequence number: 24
Stale NSF state flush timeout: 30000 ms
Current sync state: Not synching
Multicast ISSU Client Status:
```
Standby RP Transition to Active RP After an RP Switchover

The following output from the `show ip multicast redundancy state` command on the standby RP during its transition from standby RP to active RP. Notice that the “Multicast IPv4 HA state machine status” field displays “Unicast converging,” indicating that unicast convergence on the new active RP has begun. At this point in the RP switchover, the standby RP is waiting for unicast convergence.

Router-Standby# show ip multicast redundancy state
Multicast IPv4 Redundancy Mode: Not enabled
Multicast IPv6 Redundancy Mode: Not enabled
Multicast IPv4 HA state machine status: Unicast converging
Multicast IPv6 HA state machine status: Idle
Sync message epoch: 0
Sync message sequence number: 24
Stale NSF state flush timeout: 30000 ms
Current sync state: Not synching
Multicast ISSU Client Status:
PIM MIC client No ISSU result reported
MRIB MIC client No ISSU result reported
MFIB IPv4 MIC client No ISSU result reported
MFIB IPv6 MIC client No ISSU result reported
PLATFORM IPv4 MIC client Unregistered - ignored
PLATFORM IPv6 MIC client Unregistered - ignored
IPv4 SSO blocked by: PIM, MRIB, MFIBV4
IPv6 SSO blocked by: PIM, MRIB, MFIBV6

The following output from the `debug ip multicast redundancy state` command shows messages indicating that the interfaces on the new active RP are coming up. As interfaces come up on the new active RP, unicast convergence occurs in parallel with multicast route refresh from PIM neighbors. Unicast convergence is followed by RPF adjustments to the refreshed mroute information.

00:00:51: %LINK-3-UPDOWN: Interface Null0, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Loopback0, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Loopback1, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel0, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel1, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel2, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel3, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel4, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel5, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel6, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel7, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel8, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel9, changed state to up
00:00:51: %LINK-3-UPDOWN: Interface Tunnel10, changed state to up

The following output is unconditionally logged by the Redundancy Facility (RF) software when the standby RP detects that it has become the active RP due to a failure of the original active RP. The output shows the message used to indicate that an RP switchover has occurred:

00:00:49: %REUDANCY-3-SWITCHOVER: RP switchover (PEER_DOWN_INTERRUPT)
The following is output from the `show ip multicast redundancy state` command during the transition from the standby RP to the new active RP. Notice that the “Multicast IPv4 HA state machine status” displays “DDE replaying,” indicating that the MFIB is replaying DDEs. After the processing of unicast and multicast route convergence, time is allowed for IGMP reporting. Following IGMP reporting, the control plane then sends out requests for the MFIB replay of DDEs to retrigger multicast route information that cannot be obtained from PIM neighbors or directly connected hosts.

Router# show ip multicast redundancy state
Multicast IPv4 Redundancy Mode: Not enabled
Multicast IPv6 Redundancy Mode: Not enabled
Multicast IPv4 HA state machine status: DDE replaying
Multicast IPv6 HA state machine status: Idle
Sync message epoch: 0
Sync message sequence number: 24
Stale NSF state flush timeout: 30000 ms
Current sync state: Not synching
Multicast ISSU Client Status:
 PIM MIC client: No ISSU result reported
 MRIB MIC client: No ISSU result reported
 MFIB IPv4 MIC client: No ISSU result reported
 MFIB IPv6 MIC client: No ISSU result reported
 PLATFORM IPv4 MIC client: Unregistered - ignored
 PLATFORM IPv6 MIC client: Unregistered - ignored
 IPv4 SSO blocked by: PIM, MRIB, MFIBV4
 IPv6 SSO blocked by: PIM, MRIB, MFIBV6

After this processing completes, the control plane terminates the NSF hold-off or, if the platform multicast driver software requests an extension to the hold-off period, allows additional time for the platform multicast driver software to release the NSF hold-off extension.

The refreshed multicast control plane information is then downloaded to the forwarding plane. Although reconvergence is considered complete at this point, additional “refresh” updates may occur after this point in time. An additional time interval is provided for any remaining updates before stale multicast forwarding plane information is subsequently flushed.

The following is output from the `show ip multicast redundancy state` command. Notice that the “Multicast IPv4 HA state machine status” field displays, “Flush pending,” indicating that stale NSF data plane state is...
still being temporarily retained to allow for any additional refreshed multicast control plane information to be downloaded to the forwarding plane.

Router# show ip multicast redundancy state
Multicast IPv4 Redundancy Mode: Not enabled
Multicast IPv6 Redundancy Mode: Not enabled
Multicast IPv4 HA state machine status: Flush pending
Multicast IPv6 HA state machine status: Idle
Sync message epoch: 0
Sync message sequence number: 24
Stale NSF state flush timeout: 30000 ms
Current sync state: Not synching
Multicast ISSU Client Status:
 PIM MIC client No ISSU result reported
 MRIB MIC client No ISSU result reported
 MFIB IPv4 MIC client No ISSU result reported
 MFIB IPv6 MIC client No ISSU result reported
 PLATFORM IPv4 MIC client Unregistered - ignored
 PLATFORM IPv6 MIC client Unregistered - ignored
IPv4 SSO blocked by: PIM, MRIB, MFIBV4
IPv6 SSO blocked by: PIM, MRIB, MFIBV6

The following is output from the show ip multicast redundancy state command after the refreshed multicast control plane information has been downloaded to the forwarding plane and the stale multicast forwarding plane information has been flushed. Notice that at this stage in the RP switchover the “Multicast IPv4 HA state machine status” field displays “Idle” because multicast IPv4 HA state machine operations have completed.

Router# show ip multicast redundancy state
Multicast IPv4 Redundancy Mode: Not enabled
Multicast IPv6 Redundancy Mode: Not enabled
Multicast IPv4 HA state machine status: Idle
Multicast IPv6 HA state machine status: Idle
Sync message epoch: 0
Sync message sequence number: 24
Stale NSF state flush timeout: 30000 ms
Current sync state: Not synching
Multicast ISSU Client Status:
 PIM MIC client No ISSU result reported
 MRIB MIC client No ISSU result reported
 MFIB IPv4 MIC client No ISSU result reported
 MFIB IPv6 MIC client No ISSU result reported
 PLATFORM IPv4 MIC client Unregistered - ignored
 PLATFORM IPv6 MIC client Unregistered - ignored
IPv4 SSO blocked by: PIM, MRIB, MFIBV4
IPv6 SSO blocked by: PIM, MRIB, MFIBV6

Standby RP Resynchronization

The following is sample output from the debug ip multicast redundancy command. The output shows the messages used to indicate that a standby RP has been resynchronized.

00:25:42: %HA-6-MODE: Operating RP redundancy mode is SSO
00:26:04: %HA_CONFIG_SYNC-6-BULK_CFGSYNC_SUCCEED: Bulk Sync succeeded
00:26:04: %HA-6-STANDBY_READY: Standby RP in slot 7 is operational in SSO mode
00:26:04: %RF-5-RF_TERMINAL_STATE: Terminal state reached for (SSO).
00:15:28: %RF-5-RF_TERMINAL_STATE: Terminal state reached for (SSO)

The following is output from the show ip multicast redundancy state command after the standby RP has completed resynchronization with the new active RP. Notice that the “Multicast IPv4 Redundancy Mode”
field displays “SSO,” indicating that all information between the standby RP and active RP has been synchronized. Also, notice that the “Current sync state” field displays “Synched,” indicating that the standby has resynchronized with the new active RP.

Router# show ip multicast redundancy state
Multicast IPv4 Redundancy Mode: SSO
Multicast IPv6 Redundancy Mode: Not enabled
Multicast IPv4 HA state machine status: Idle
Multicast IPv6 HA state machine status: Idle
Sync message epoch: 0
Sync message sequence number: 24
Stale NSF state flush timeout: 30000 ms
Current sync state: Synched
Multicast ISSU Client Status:
PIM MIC client ISSU compatible
MRIB MIC client ISSU compatible
MFIB IPv4 MIC client ISSU compatible
MFIB IPv6 MIC client No ISSU result reported
PLATFORM IPv4 MIC client Unregistered - ignored
PLATFORM IPv6 MIC client Unregistered - ignored
IPv4 SSO supported for: PIM, MRIB, MFIBV4
IPv6 SSO blocked by: MFIBV6

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP multicast commands</td>
<td>Cisco IOS IP Multicast Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td></td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies. Access to most tools on the Cisco</td>
<td></td>
</tr>
<tr>
<td>Support and Documentation website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Monitoring and Maintaining Multicast HA Operations

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Monitoring and Maintaining Multicast HA Operations

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSU - IPv6 Multicast</td>
<td>15.1(1)SY</td>
<td>The ISSU - IPv6 Multicast feature enhances IPv6 multicast HA by providing support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for ISSU.</td>
</tr>
<tr>
<td>ISSU - MFIB IPv4 Multicast</td>
<td>Cisco IOS XE Release 2.1 12.2(50)SY</td>
<td>The ISSU - IPv4 Multicast feature enhances IPv4 multicast HA by providing support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for ISSU.</td>
</tr>
<tr>
<td>NSF/SSO - IPv4 Multicast</td>
<td>Cisco IOS Xe Release 2.1 12.2(50)SY</td>
<td>This feature extends NSF/SSO functionality to IPv4 Multicast protocols. Multicast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSF ensures uninterrupted flow of multicast traffic during an RP failure. Multicast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSO ensures that necessary information such as RP information, data driven events,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and other multicast information is checkpointed to ensure the seamless takeover of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the standby RP after an RP failover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: clear ip multicast redundancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>statistics, debug ip multicast redundancy, ip multicast redundancy routeflush</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maxtime, show ip multicast redundancy state, show ip multicast redundancy statistics,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show ip pim neighbor.</td>
</tr>
<tr>
<td>NSF/SSO - IPv6 Multicast</td>
<td>Cisco IOS XE Release 2.6 15.1(1)SY</td>
<td>This feature extends NSF/SSO functionality to IPv6 Multicast protocols.</td>
</tr>
</tbody>
</table>
PIM Triggered Joins

The PIM Triggered Joins feature is a high availability (HA) multicast enhancement that improves the reconvergence of multicast routes (mroutes) after an RP switchover.

- Finding Feature Information, on page 27
- Restrictions for PIM Triggered Joins, on page 27
- Information About PIM Triggered Joins, on page 27
- PIM Triggered Joins and Multicast Traffic Flow, on page 29
- Additional References, on page 29
- Feature Information for PIM Triggered Joins, on page 30

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for PIM Triggered Joins

All PIM neighbors must be compliant with RFC 4601 and be able to process GenID differences in PIM hello messages.

Information About PIM Triggered Joins

Functional Overview of PIM Triggered Joins

The PIM Triggered Joins feature is an HA multicast enhancement that improves the reconvergence of mroutes after an RP switchover. In the event of an RP switchover, this feature utilizes the Protocol Independent Multicast sparse mode (PIM-SM) GenID value as a mechanism to trigger adjacent PIM neighbors on an interface to send PIM join messages for all (*, G) and (S, G) mroutes that use that interface as an RPF interface, immediately...
reestablishing those states on the newly active RP. A GenID is a randomly generated 32-bit value regenerated each time PIM forwarding is started or restarted on an interface.

Note

In order to process the GenID value in PIM hello messages, PIM neighbors must be running Cisco IOS software with an implementation of PIM that is compliant with RFC 4601. For more information about RFC 4601, see the Additional References, on page 24 section.

After an RP switchover, all instances of PIM running on the newly active RP will modify the value of the GenID that is included in PIM hello messages sent to adjacent PIM neighbors. When an adjacent PIM neighbor receives a PIM hello message on an interface with a new GenID, the PIM neighbor will process the modified GenID as an indication that the PIM neighbor has gone down. A modified GenID, thus, is a mechanism to alert all adjacent PIM neighbors that PIM forwarding on that interface has been lost, which then triggers adjacent PIM neighbors to send PIM joins for all (*, G) and (S, G) mroute states that use that interface as an RPF interface.

The figure illustrates the operations that occur in association with the PIM Triggered Joins feature during an RP switchover.

Figure 5: Operation of PIM Triggered Joins During a Switchover

The mechanics of the PIM Triggered Joins feature are as follows:

- In steady state, PIM neighbors exchange periodic PIM hello messages.
- An active RP receives PIM joins to periodically refresh mroute states.
- When an active RP fails, the standby RP takes over to become the new active RP.
- The new active RP then modifies the GenID value and sends the new GenID in PIM hello messages to adjacent PIM neighbors.
- Adjacent PIM neighbors that receive PIM hello messages on an interface with a new GenID then send PIM triggered joins for all (*, G) and (S, G) mroutes that use that interfaces as an RPF interface.
- Those mroute states are then immediately reestablished on the newly active RP.
Prior to the introduction of the PIM Triggered Joins feature, in the event of an RP switchover, all hardware entries would have been suspended until the control plane was reestablished. States for mroutes on the new active RP, thus, would not have been rebuilt until the periodic joins sent by adjacent PIM neighbors were received by PIM neighbors on the new active RP. The PIM Triggered Joins feature, thus, improves the recovergence time of mroutes after an RP switchover, enabling mroute states to be rebuilt promptly after an RP switchover.

Note

If a PIM neighbor is unable to process the GenID value, the PIM neighbor will ignore the GenID value and behave in the manner that it would prior to the introduction of the PIM Triggered Joins feature.

Generation IDs

A Generation ID (GenID) is a randomly generated 32-bit value that is regenerated each time PIM forwarding is started or restarted on an interface. In order to process the GenID value in PIM hello messages, PIM neighbors must be running software with an implementation of PIM that is compliant with RFC 4601.

Note

PIM neighbors that are not compliant with RFC 4601 and are unable to process GenID differences in PIM hello messages will ignore the GenIDs.

PIM Triggered Joins and Multicast Traffic Flow

Multicast traffic flow on the neighbors is not affected if it detects a PIM triggered join or PIM hello message from a node with the failing RP within the default PIM hello hold-time interval. Multicast traffic flow on a failing RP is not affected if it is NSF capable.

Caution

The default PIM hello hold-time interval is 3.5 x the PIM hello period. Multicast HA operations may not behave properly if the PIM hello interval is configured with a value lower than the default value of 30 seconds.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP multicast commands</td>
<td>Cisco IOS IP Multicast Command Reference</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for PIM Triggered Joins

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM Triggered Joins</td>
<td>12.2(33)SXH</td>
<td>The PIM Triggered Joins feature is an HA multicast enhancement that improves the reconvergence of mroutes after an RP switchover. In the event of an RP switchover, this feature utilizes the PIM-SM GenID value as a mechanism to trigger adjacent PIM neighbors on an interface to send PIM join messages for all (*, G) and (S, G) mroutes that use that interface as an RPF interface, immediately reestablishing those states on the newly active RP.</td>
</tr>
<tr>
<td></td>
<td>15.0(1)M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.1(1)SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 3.3SG</td>
<td></td>
</tr>
</tbody>
</table>
Multicast Live-Live

The Multicast Live-Live feature delivers two multicast streams with the same content over diverse paths in the network. This functionality reduces packet loss due to network failures on any one of the paths.

- Finding Feature Information, on page 31
- Prerequisites for Multicast Live-Live, on page 31
- Restrictions for Multicast Live-Live, on page 31
- Information About Multicast Live-Live, on page 32
- How to Configure Multicast Live-Live, on page 33
- Configuration Examples for Multicast Live-Live, on page 38
- Additional References, on page 39
- Feature Information for Multicast Live-Live, on page 40

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Multicast Live-Live

- The Multicast Live-Live feature requires multitopology Interior Gateway Protocol (IGP) support.

Restrictions for Multicast Live-Live

- Multicast traffic splitting and merging is the responsibility of the application. Applications that use multicast technology include video conferencing, corporate communications, distance learning, and distribution of software, stock quotes, and news.
- Multicast Live-Live is supported for the IPv4 multicast address family.
• Multicast Live-Live is supported for global Virtual Routing and Forwarding (VRF).
• Multicast Live-Live is supported for Protocol Independent Multicast Source-Specific Multicast (PIM-SSM) mode and PIM Sparse Mode (PIM-SM).
• Multicast Live-Live is supported for the Intermediate System-to-Intermediate System (IS-IS) IGP.

Information About Multicast Live-Live

Overview of Multicast Live-Live

This feature delivers two multicast streams with the same content over diverse paths in the network. This functionality reduces packet loss due to network failures on any one of the paths. The feature uses multitopology IGP technology in order to deliver the two streams over diverse paths.

The Multicast Live-Live feature can be divided into three distinct processes as shown in the figure. The processes are visually separated by vertical lines in the figure.

• The first process consists of splitting the multicast stream into dual streams. The splitting is performed by the application.

• The second process consists of transmitting the dual streams over the network. Topology selection for transmitting these dual streams can be done in two different ways:
 • Multicast topology selection by group range: This action allows multicast Reverse Path Forwarding (RPF) lookups to perform the RPF check against more than one RPF topology.
 • Multicast topology selection by source prefix: This action allows the replication of routes from more than one (unicast) topology into multicast topology.

• The third process consists of merging the streams that have been split. The merging is performed by the application.

Figure 6: Overview of Multicast Live-Live
How to Configure Multicast Live-Live

Configuring a Multicast Topology

Perform this task to configure a multicast topology.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip multicast-routing
4. ip multicast rpf multitopology
5. global-address-family ipv4 multicast
6. topology { base | topology-name }
7. Repeat Step 6 to configure another global topology instance.
8. exit
9. interface type number
10. ip address ip-address mask [secondary [vrf vrf-name]]
11. ip pim sparse-dense-mode
12. ip router isis
13. topology ipv4 [multicast | unicast] { topology-name [disable] | base}
14. exit
15. Repeat Steps 9 through 14 for each interface to be configured.
16. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip multicast-routing</td>
<td>Enables IP multicast routing.</td>
</tr>
<tr>
<td>Example: Device(config)# ip multicast-routing</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip multicast rpf multitopology</td>
<td>Enables multicast RPF lookup in multiple topologies.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Device(config)# ip multicast rpf multtopology</td>
<td>Enters global address family configuration mode to configure a topology.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>global-address-family ipv4 multicast</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# global-address-family ipv4 multicast</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>topology { base</td>
<td>topology-name }</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-af)# topology live-A</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Repeat Step 6 to configure another global topology instance.</td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits global address family configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-af)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>interface type number</td>
<td>Enters interface configuration mode for the specified interface type and number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface Gigabitethernet 1/0</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>ip address ip-address mask [secondary [vrf vrf-name]]</td>
<td>Sets a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# ip address 10.1.1.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>ip pim sparse-dense-mode</td>
<td>Enables PIM sparse dense mode on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# ip pim sparse-dense-mode</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# ip router isis</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>topology ipv4 [multicast</td>
<td>unicast] { topology-name [disable]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# topology ipv4 multicast live-A</td>
<td></td>
</tr>
</tbody>
</table>
Enabling a Multicast Topology Under IGP

Perform this task to enable a multicast topology under IGP.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `router isis`
4. `net net1`
5. `metric-style wide [transition] [level-1 | level-2 | level-1-2]`
6. `address-family ipv4 multicast`
7. `topology topology-name tid number`
8. `end`
9. `configure terminal`
10. `ip multicast topology {multicast | unicast} topology-name tid topology-number`
11. Repeat Step 10 to assign an additional multicast identifier to a topology.
12. `ip multicast rpf select topology {multicast | unicast} topology-name access-list-number`
13. Repeat Step 12 to specify an additional topology for an RPF lookup.
14. `ip access-list {standard | extended} {access-list-name | access-list-number}`
15. `permit protocol { source-addr source-wildcard } | {object-group object-group-name} | any` `| host { address | name } | {destination-addr destination-wildcard } | {object-group object-group-name} | any | host { address | name }
16. Repeat Steps 14 and 15 to enumerate an additional (S,G) mroute entry if required.
17. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 * enable
 * Example:
 * Device(config)# enable
| Enables privileged EXEC mode.
 * Enter your password if prompted. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 router isis</td>
<td>Enables the IS-IS routing protocol and specifies an IS-IS process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# router isis</td>
<td></td>
</tr>
<tr>
<td>Step 4 net net1</td>
<td>Configures an IS-IS network entity (NET) for the routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router)# net 49.1234.1234.1234.00</td>
<td></td>
</tr>
<tr>
<td>Step 5 metric-style wide [transition] [level-1</td>
<td>level-2</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router)# metric-style wide</td>
<td></td>
</tr>
<tr>
<td>Step 6 address-family ipv4 multicast</td>
<td>Enters router address family configuration mode under IS-IS router configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router)# address-family ipv4 multicast</td>
<td></td>
</tr>
<tr>
<td>Step 7 topology topology-name tid number</td>
<td>Enables a multicast topology under IGP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router-af)# topology live-A tid 10</td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-router-af-topology)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 10 ip multicast topology {multicast</td>
<td>unicast}</td>
</tr>
<tr>
<td>topology-name tid topology-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Device(config)# ip multicast topology multicast live-A tid 100</code></td>
<td></td>
</tr>
<tr>
<td>Step 11 Repeat Step 10 to assign an additional multicast identifier to a topology.</td>
<td>--</td>
</tr>
<tr>
<td>Step 12 `ip multicast rpf select topology {multicast</td>
<td>unicast} topology-name access-list-number`</td>
</tr>
<tr>
<td>Example: <code>Device(config)# ip multicast rpf select topology multicast live-A 111</code></td>
<td></td>
</tr>
<tr>
<td>Step 13 Repeat Step 12 to specify an additional topology for an RPF lookup.</td>
<td>--</td>
</tr>
<tr>
<td>Step 14 `ip access-list {standard</td>
<td>extended} {access-list-name</td>
</tr>
<tr>
<td>Example: <code>Device(config)# ip access-list extended 111</code></td>
<td></td>
</tr>
<tr>
<td>Step 15 `permit protocol {{ source-addr source-wildcard }</td>
<td>object-group object-group-name</td>
</tr>
<tr>
<td>Example: <code>Device(config-ext-nacl)# permit ip any 225.1.1.1 0.0.0.0</code></td>
<td></td>
</tr>
<tr>
<td>Step 16 Repeat Steps 14 and 15 to enumerate an additional (S,G) mroute entry if required.</td>
<td>--</td>
</tr>
<tr>
<td>Step 17 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config-ext-nacl)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Verifying the Configuration of Multicast Live-Live

Perform this task to verify the configuration of the Multicast Live-Live feature.

SUMMARY STEPS

1. `enable`
2. `show ip multicast topology [{multicast | unicast} topology-name]`
DETAILED STEPS

Step 1 enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Device> enable

Step 2 show ip multicast topology [{multicast | unicast} topology-name]

Enter the show ip multicast topology command to display multicast topology information:

Example:
Device# show ip multicast topology multicast live-A
Topology: ipv4 multicast live-A
TID: 1
Extended IP ACL: 101
Associated VPN VRF is IPv4 default

Configuration Examples for Multicast Live-Live

Example Configuring Multicast Live-Live

The following example shows how to configure the Multicast Live-Live feature. In the example, two multicast topologies are enabled under IGP, the multicast topologies are assigned a topology identifier, and each multicast topology identifier is associated with a multicast group that has a specific (S,G) mroute entry.

ip multicast-routing
! Enable multi-topology mode
ip multicast rpf multitopology
! Create 2 IPv4 multicast topologies
global-address-family ipv4 multicast
topology live-A
topology live-B
interface Gigabitethernet 1/0
ip address 10.1.1.1 255.255.255.0
ip pim sparse-dense-mode
ip router isis
topology ipv4 multicast live-A
interface Gigabitethernet 2/0
ip address 2.2.2.2 255.255.255.0
ip pim sparse-dense-mode
ip router isis
topology ipv4 multicast live-B
router isis
net 49.1234.1234.1234.00
metric-style wide
address-family ipv4 multicast
! CLIs to enable 2 multicast topologies under IGP
topology live-A tid 10
topology live-B tid 20
! CLIs to assign multicast tid to topology
ip multicast topology multicast live-A tid 100
ip multicast topology multicast live-B tid 200
! CLIs to specify topology for RPF lookup
ip multicast rpf select topology multicast live-A 111
ip multicast rpf select topology multicast live-B 122
! Use IP access-list extended to specify (S, G)
ip access-list extended 111
 permit ip any 225.1.1.1 0.0.0.0
ip access-list extended 122
 permit ip any 239.1.1.1 0.0.0.0

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Overview of the IP multicast technology area</td>
<td>“IP Multicast Technology Overview”</td>
</tr>
<tr>
<td>Concepts, tasks, and examples for configuring an IP</td>
<td>“Configuring a Basic IP Multicast Network”</td>
</tr>
<tr>
<td>multicast network using PIM</td>
<td></td>
</tr>
<tr>
<td>IP multicast commands: complete command syntax,</td>
<td>Cisco IOS IP Multicast Command Reference</td>
</tr>
<tr>
<td>command mode, defaults, command history, usage</td>
<td></td>
</tr>
<tr>
<td>guidelines, and examples</td>
<td></td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported, and support for existing standards has not been modified.</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Multicast Live-Live

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 3: Feature Information for Multicast Live-Live

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast Live-Live</td>
<td>Cisco IOS XE Release 3.2S 15.2(3)T</td>
<td>The Multicast Live-Live feature delivers two multicast streams with the same content over diverse paths in the network. This functionality reduces packet loss due to network failures on any one of the paths. The following commands were introduced or modified: debug ip multicast topology, ip multicast rpf select topology, ip multicast topology, show ip multicast topology.</td>
</tr>
</tbody>
</table>