Monitoring and Maintaining IP Multicast

This module describes many ways to monitor and maintain an IP multicast network, such as

- displaying which neighboring multicast routers are peering with the local router
- displaying multicast packet rates and loss information
- tracing the path from a source to a destination branch for a multicast distribution tree
- displaying the contents of the IP multicast routing table, information about interfaces configured for PIM, the PIM neighbors discovered by the router, and contents of the IP fast-switching cache
- clearing caches, tables, and databases
- monitoring the delivery of IP multicast packets and being alerted if the delivery fails to meet certain parameters (IP multicast heartbeat)
- using session description and announcement protocols and applications to assist the advertisement of multicast multimedia conferences and other multicast sessions and communicating the relevant session setup information to prospective participants (SAP listener support)
- storing IP multicast packet headers in a cache and displaying them to find out information such as who is sending IP multicast packets to what groups and any multicast forwarding loops in your network
- disabling fast switching of IP multicast in order to log debug messages

- Finding Feature Information, page 1
- Prerequisites for Monitoring and Maintaining IP Multicast, page 2
- Information About Monitoring and Maintaining IP Multicast, page 2
- How to Monitor and Maintain IP Multicast, page 3
- Configuration Examples for Monitoring and Maintaining IP Multicast, page 13
- Additional References, page 18

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Americas Headquarters:
Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA
Prerequisites for Monitoring and Maintaining IP Multicast

- Before performing the tasks in this module, you should be familiar with the concepts described in the “IP Multicast Technology Overview” module.
- You must also have enabled IP multicast and have Protocol Independent Multicast (PIM) configured and running on your network. Refer to the “Configuring Basic IP Multicast” module.

Information About Monitoring and Maintaining IP Multicast

- IP Multicast Delivery Using IP Multicast Heartbeat, page 2
- Session Announcement Protocol (SAP), page 3

IP Multicast Delivery Using IP Multicast Heartbeat

The IP multicast heartbeat feature provides a way to monitor the status of IP multicast delivery and be informed when the delivery fails (via Simple Network Management Protocol [SNMP] traps).

- IP Multicast Heartbeat, page 2
- SNMP Notifications, page 2

IP Multicast Heartbeat

The IP Multicast Heartbeat feature enables you to monitor the delivery of IP multicast packets and to be alerted if the delivery fails to meet certain parameters.

Although you could alternatively use MRM to monitor IP multicast, you can perform the following tasks with IP multicast heartbeat that you cannot perform with MRM:

- Generate an SNMP trap
- Monitor a production multicast stream

When IP multicast heartbeat is enabled, the router monitors IP multicast packets destined for a particular multicast group at a particular interval. If the number of packets observed is less than a configured minimum amount, the router sends an SNMP trap to a specified network management station to indicate a loss of heartbeat exception.

The `ip multicast heartbeat` command does not create a heartbeat if there is no existing multicast forwarding state for `group` in the router. This command will not create a multicast forwarding state in the router. Use the `ip igmp static-group` command on the router or on a downstream router to force forwarding of IP multicast traffic. Use the `snmp-server host ipmulticast` command to enable the sending of IP multicast traps to specific receiver hosts. Use the `debug ip mhbeat` command to debug the Multicast Heartbeat feature.

SNMP Notifications

A key feature of SNMP is the ability to generate notifications from an SNMP agent. These notifications do not require that requests be sent from the SNMP manager. Unsolicited (asynchronous) notifications can be generated as traps or inform requests. Traps are messages alerting the SNMP manager to a condition on the
network. Inform requests (informs) are traps that include a request for confirmation of receipt from the SNMP manager. Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of connection to a neighbor router, or other significant events.

Traps are less reliable than informs because the receiver does not send any acknowledgment when it receives a trap. The sender cannot determine if the trap was received. An SNMP manager that receives an inform request acknowledges the message with an SNMP response protocol data unit (PDU). If the manager does not receive an inform request, it does not send a response. If the sender never receives a response, the inform request can be sent again. Thus, informs are more likely to reach their intended destination.

However, traps are often preferred because informs consume more resources in the router and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request must be held in memory until a response is received or the request times out. Also, traps are sent only once, while an inform may be retried several times. The retries increase traffic and contribute to a higher overhead on the network. Thus, traps and inform requests provide a trade-off between reliability and resources. If it is important that the SNMP manager receives every notification, use inform requests. However, if you are concerned about traffic on your network or memory in the router and you need not receive every notification, use traps.

Session Announcement Protocol (SAP)

Session Announcement Protocol (SAP) listener support is needed to use session description and announcement protocols and applications to assist the advertisement of multicast multimedia conferences and other multicast sessions and to communicate the relevant session setup information to prospective participants.

Sessions are described by the Session Description Protocol (SDP), which is defined in RFC 2327. SDP provides a formatted, textual description of session properties (for example, contact information, session lifetime, and the media) being used in the session (for example, audio, video, and whiteboard) with their specific attributes such as time-to-live (TTL) scope, group address, and User Datagram Protocol (UDP) port number.

Many multimedia applications rely on SDP for session descriptions. However, they may use different methods to disseminate these session descriptions. For example, IP/TV relies on the web to disseminate session descriptions to participants. In this example, participants must know of a web server that provides the session information.

MBONE applications (for example, vic, vat, and wb) and other applications rely on multicast session information sent throughout the network. In these cases, SAP is used to transport the SDP session announcements. SAP Version 2 uses the well-known session directory multicast group 224.2.127.254 to disseminate SDP session descriptions for global scope sessions and group 239.255.255.255 for administrative scope sessions.

Note

The Session Directory (SDR) application is commonly used to send and receive SDP/SAP session announcements.

How to Monitor and Maintain IP Multicast

- Displaying Multicast Peers Packet Rates and Loss Information and Tracing a Path, page 4
- Displaying IP Multicast System and Network Statistics, page 5
- Clearing IP Multicast Routing Table or Caches, page 7
Displaying Multicast Peers Packet Rates and Loss Information and Tracing a Path

Monitor IP multicast routing when you want to know which neighboring multicast routers are peering with the local router, what the multicast packet rates and loss information are, or when you want to trace the path from a source to a destination branch for a multicast distribution tree.

SUMMARY STEPS

1. `enable`
2. `mrinfo [host-name | host-address] [source-address | interface]`
3. `mstat [source-name | source-address] [destination-name | destination-address] [group-name | group-address]`
4. `mtrace [source-name | source-address] [destination-name | destination-address] [group-name | group-address]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |

 Example:

  ```plaintext
  Router> enable
  ```

| **Step 2** mrinfo [host-name | host-address] [source-address | interface] | (Optional) Queries which neighboring multicast routers are “peering” with the local router. |
|--------------------------|----------------------------------|
| Example: | |
| ```plaintext
 Router# mrinfo
  ``` |

| **Step 3** mstat [source-name | source-address] [destination-name | destination-address] [group-name | group-address] | (Optional) Displays IP multicast packet rate and loss information. |
|--------------------------|--------------------------|
| Example: | |
| ```plaintext
  Router# mstat allsource
  ``` |
Displaying IP Multicast System and Network Statistics

Display IP multicast system statistics to show the contents of the IP multicast routing table, information about interfaces configured for PIM, the PIM neighbors discovered by the router, contents of the IP fast-switching cache, and the contents of the circular cache header buffer.

SUMMARY STEPS

1. `enable`
2. `ping [group-name | group-address]`
3. `show ip mroute [group-address | group-name] [source-address | source-name] [type number] [summary] [count] [active kbps]`
4. `show ip pim interface [type number] [df | count] [rp-address] [detail]`
5. `show ip pim neighbor [type number]`
6. `show ip mcache [group-address | group-name] [source-address | source-name]`
7. `show ip mpacket [group-address | group-name] [source-address | source-name] [detail]`
8. `show ip pim rp [mapping | metric] [rp-address]`
9. `show ip rpf {source-address | source-name} [metric]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 ping [group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# ping cbone-audio</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>`show ip mroute [group-address</td>
<td>group-name] [source-address</td>
</tr>
</tbody>
</table>

Example:
```
Router# show ip mroute cbone-audio
```

| Step 4 | `show ip pim interface [type number] [df | count] [rp-address] [detail]` | (Optional) Displays information about interfaces configured for PIM. |

Example:
```
Router# show ip pim interface ethernet1/0 detail
```

| Step 5 | `show ip pim neighbor [type number]` | (Optional) Lists the PIM neighbors discovered by the router. |

Example:
```
Router# show ip pim neighbor
```

| Step 6 | `show ip mcach e [group-address | group-name] [source-address | source-name]` | (Optional) Displays the contents of the IP fast-switching cache. |

Example:
```
Router# show ip mcache
```

| Step 7 | `show ip mpacket [group-address | group-name] [source-address | source-name] [detail]` | (Optional) Displays the contents of the circular cache header buffer. |

Example:
```
Router# show ip mpacket smallgroup
```

| Step 8 | `show ip pim rp [mapping | metric] [rp-address]` | (Optional) Displays the RP routers associated with a sparse mode multicast group. |

Example:
```
Router# show ip pim rp metric
```

| Step 9 | `show ip rpf [source-address | source-name] [metric]` | (Optional) Displays how the router is doing RPF (that is, from the unicast routing table, DVMRP routing table, or static mroutes). Also displays the unicast routing metric. |

Example:
```
Router# show ip rpf 172.16.10.13
```
Clearing IP Multicast Routing Table or Caches

Clear IP multicast caches and tables to delete entries from the IP multicast routing table, the Auto-RP cache, the IGMP cache, and the caches of Catalyst switches. When these entries are cleared, the information is refreshed by being relearned, thus eliminating any incorrect entries.

SUMMARY STEPS

1. enable
2. clear ip mroute { * | group-name [source-name | source-address] | group-address [source-name | source-address]}
3. clear ip pim auto-rp rp-address
4. clear ip mcache
5. clear ip igmp group [group-name | group-address | interface-type interface-number]
6. clear ip cgmp [interface-type interface-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 clear ip mroute { *</td>
<td>group-name [source-name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear ip mroute 224.2.205.42 228.3.0.0</td>
<td></td>
</tr>
<tr>
<td>Step 3 clear ip pim auto-rp rp-address</td>
<td>(Optional) Clears the Auto-RP cache.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear ip pim auto-rp 224.5.6.7</td>
<td></td>
</tr>
<tr>
<td>Step 4 clear ip mcache</td>
<td>(Optional) Clears the multicast cache.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router # clear ip mcache</td>
<td></td>
</tr>
</tbody>
</table>
Monitoring IP Multicast Delivery Using IP Multicast Heartbeat

SUMMARY STEPS

1. enable
2. configure terminal
3. ip multicast-routing
4. snmp-server host {hostname | ip-address} {traps | informs} {version {1 | 2c | 3} [auth | noauth | priv]} community-string [udp-port port] [notification-type]
5. snmp-server enable traps ipmulticast
6. ip multicast heartbeat group-address minimum-number window-size interval

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Command or Action | Purpose
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 clear ip igmp group [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>Example: Router# clear ip igmp group 224.0.255.1</td>
<td></td>
</tr>
<tr>
<td>Step 6 clear ip cgmp [interface-type interface-number]</td>
<td>(Optional) Clears all group entries from the caches of Catalyst switches.</td>
</tr>
<tr>
<td>Example: Router# clear ip cgmp</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring IP Multicast Delivery Using IP Multicast Heartbeat

How to Monitor and Maintain IP Multicast
Advertising Multicast Multimedia Sessions Using SAP Listener

Enable SAP listener support when you want to use session description and announcement protocols and applications to assist the advertisement of multicast multimedia conferences and other multicast sessions and to communicate the relevant session setup information to prospective participants.
SUMMARY STEPS

1. enable
2. configure terminal
3. `ip sap cache-timeout minutes`
4. `interface type number`
5. `ip sap listen`
6. `end`
7. `clear ip sap [group-address | “session-name “]`
8. `show ip sap [group-address | “session-name “| detail]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable | Enables privileged EXEC mode.
| Example: | • Enter your password if prompted. |
| | Router> enable |
| Step 2 configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal |
| | Step 3 `ip sap cache-timeout minutes`
| Example: | (Optional) Limits how long a SAP cache entry stays active in the cache.
| | • By default, SAP cache entries are deleted 24 hours after they are received from the network. |
| | Router(config)# ip sap cache-timeout 600 |
| Step 4 interface type number | Selects an interface that is connected to hosts on which IGMPv3 can be enabled. |
| Example: | Router(config)# interface ethernet 1 |
| Step 5 ip sap listen | Enables the software to listen to session directory announcements. |
| Example: | Router(config-if)# ip sap listen |
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 end</td>
<td>Ends the session and returns to EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-if)# end
```

| **Step 7** clear ip sap [group-address | “session-name”] | Deletes a SAP cache entry or the entire SAP cache. |
|-------------------|--|

Example:

```
Router# clear ip sap "Sample Session"
```

| **Step 8** show ip sap [group-address | “session-name”] [detail] | (Optional) Displays the SAP cache. |
|---------------------------|-----------------------------------|

Example:

```
Router# show ip sap 224.2.197.250 detail
```

Storing IP Multicast Headers

You can store IP multicast packet headers in a cache and then display them to determine any of the following information:

- Who is sending IP multicast packets to what groups
- Interpacket delay
- Duplicate IP multicast packets (if any)
- Multicast forwarding loops in your network (if any)
- Scope of the group
- UDP port numbers
- Packet length

Perform this task if you need any of the information listed above.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip multicast cache-headers [rtp]
4. exit
5. show ip mpacket [group-address | group-name] [source-address | source-name] [detail]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip multicast cache-headers [rtp]</td>
<td>Allocates a circular buffer to store IP multicast packet headers that the router receives.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip multicast cache-headers</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Returns to privilege EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5 show ip mpacket [group-address</td>
<td>group-name] [source-address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip mpacket smallgroup</td>
<td></td>
</tr>
</tbody>
</table>

Disabling Fast Switching of IP Multicast

Disable fast switching if you want to log debug messages, because when fast switching is enabled, debug messages are not logged.

You might also want to disable fast switching, which places the router in process switching, if packets are not reaching their destinations. If fast switching is disabled and packets are reaching their destinations, then switching may be the cause.

Fast switching of IP multicast packets is enabled by default on all interfaces (including generic routing encapsulation [GRE] and DVMRP tunnels), with one exception: It is disabled and not supported over X.25 encapsulated interfaces. The following are properties of fast switching:

- If fast switching is disabled on an *incoming* interface for a multicast routing table entry, the packet is sent at process level for all interfaces in the outgoing interface list.
- If fast switching is disabled on an outgoing interface for a multicast routing table entry, the packet is process-level switched for that interface, but may be fast switched for other interfaces in the outgoing interface list.
- When fast switching is enabled, debug messages are not logged.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. no ip mroutecache

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface ethernet 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 no ip mroutecache</td>
<td>Disables fast switching of IP multicast.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# no ip mroutecache</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Monitoring and Maintaining IP Multicast

- Example Displaying Multicast Peers Packet Rates and Loss Information and Tracing a Path, page 14
- Example Displaying IP Multicast System and Network Statistics, page 15
- Example Monitoring IP Multicast Delivery Using IP Multicast Heartbeat, page 17
Example Displaying Multicast Peers Packet Rates and Loss Information and Tracing a Path

The following is sample output from the `mrinfo` command:

```
Router# mrinfo
192.31.7.37 (labs-allcompany) [version cisco 12.3] [flags: PMSA]:
192.31.7.37 -> 192.31.7.34 (lab-southwest) [1/0/pim]
192.31.7.37 -> 192.31.7.47 (lab-northwest) [1/0/pim]
192.31.7.37 -> 192.31.7.44 (lab-southeast) [1/0/pim]
131.119.26.10 -> 131.119.26.9 (lab-northeast) [1/32/pim]
```

The following is sample output from the `mstat` command in user EXEC mode:

```
Router> mstat labs-in-china 172.16.0.1 224.0.255.255
Type escape sequence to abort.
Mtrace from 172.16.0.0 to 172.16.0.10 via group 224.0.255.255
>From source (labs-in-china) to destination (labs-in-africa)
Waiting to accumulate statistics......
Results after 10 seconds:
Source Response Dest Packet Statistics For Only For Traffic
172.16.0.0      172.16.0.10 All Multicast Traffic From 172.16.0.0
 | __ rtt 48 ms Lost/Sent = Pct Rate To 224.0.255.255
v / hop 48 ms --------------------- --------------------
172.16.0.1      labs-in-england
 | ^ ttl 1
v | hop 31 ms 0/12 = 0% 1 pps 0/1 = --% 0 pps
172.16.0.2
172.16.0.3      infolabs.com
 | ^ ttl 2
v | hop -17 ms -735/12 = --% 1 pps 0/1 = --% 0 pps
172.16.0.4
172.16.0.5      infolabs2.com
 | ^ ttl 3
v | hop -21 ms -678/23 = --% 2 pps 0/1 = --% 0 pps
172.16.0.6
172.16.0.7
172.16.0.8      infolabs3.com
 | ^ ttl 4
v | hop 5 ms 605/639 = 95% 63 pps 1/1 = --% 0 pps
172.16.0.9
172.16.0.10     infolabs.cisco.com
 | __ ttl 5
v \ hop 0 ms 4 0 pps 0 0 pps
172.16.0.0      172.16.0.10
Receiver Query Source
```

The following is sample output from the `mtrace` command in user EXEC mode:

```
Router> mtrace 172.16.0.0 172.16.0.10 239.254.254.254
Type escape sequence to abort.
Mtrace from 172.16.0.0 to 172.16.0.10 via group 239.254.254.254
From source (?) to destination (?)
Querying full reverse path...
0 172.16.0.10
-1 172.16.0.8 PIM thresh^ 0 0 ms
-2 172.16.0.6 PIM thresh^ 0 2 ms
-3 172.16.0.5 PIM thresh^ 0 894 ms
-4 172.16.0.3 PIM thresh^ 0 893 ms
-5 172.16.0.2 PIM thresh^ 0 894 ms
-6 172.16.0.1 PIM thresh^ 0 893 ms
```

Example Displaying Multicast Peers Packet Rates and Loss Information and Tracing a Path
Example Displaying IP Multicast System and Network Statistics

show ip mroute

The following is sample output from the `show ip mroute` command for a router operating in sparse mode:

```
Router# show ip mroute
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URP, I - Received Source Specific Host Report, Z - Multicast Tunnel,
Y - Joined MDT-data group, y - Sending to MDT-data group
Timers: Uptime/Expires
Incoming interface: Tunnel0, RPF neighbor 10.3.35.1, Dvmrp
Incoming interface list:
(*, 224.0.255.3), uptime 5:29:15, RP is 192.168.37.2, flags: SC
Outgoing interface list:
Ethernet0, Forward/Sparse, 5:29:15/0:02:57 (192.168.46.0/24, 224.0.255.3), uptime 5:29:15, expires 0:02:59, flags: C
```

show ip pim interface

The following is sample output from the `show ip pim interface` command when an interface is specified:

```
Router# show ip pim interface Ethernet1/0
Address          Interface                Ver/ Mode  Nbr  Query  DR     DR
              Mode   Count  Intvl  Prior
172.16.1.4       Ethernet1/0              v2/S   1      100 ms 1      172.16.1.4
```

show ip mcache

The following is sample output from the `show ip mcache` privileged EXEC command when multicast distributed switching (MDS) is in effect:

```
Router# show ip mcache
IP Multicast Fast-Switching Cache
(*, 239.2.3.4), Fddi3/0/0, Last used: mds
Tunnel3         MAC Header: 5000602F9C150000603E473F60AAAA030000000800 (Fddi3/0/0)
Tunnel10        MAC Header: 5000602F9C150000603E473F60AAAA030000000800 (Fddi3/0/0)
Tunnel11        MAC Header: 5000602F9C150000603E473F60AAAA030000000800 (Fddi3/0/0)
```

show ip mpacket

The following is sample output from the `show ip mpacket` command with the `group-name` argument:

```
Router# show ip mpacket smallgroup
IP Multicast Header Cache - entry count:6, next index: 7
Key: id/ttl timestamp (name) source group
D782/117 206416.908 (company1.company.com) 192.168.228.10 224.5.6.7
7302/113 206417.908 (school.edu) 172.16.2.17 224.5.6.7
6CB2/114 206417.412 (company2.company.com) 172.16.19.40 224.5.6.7
D782/117 206417.868 (company1.company.com) 192.168.228.10 224.5.6.7
E2E9/123 206418.488 (company3.com) 239.1.8.10 224.5.6.7
1CA7/127 206418.544 (company4.company.com) 192.168.6.10 224.5.6.7
```
The following is sample output from the `show ip pim rp` command:

```
Router# show ip pim rp
Group:227.7.7.7, RP:10.10.0.2, v2, v1, next RP-reachable in 00:00:48
```

show ip pim rp

The following is sample output from the `show ip pim rp` command when the `mapping` keyword is specified:

```
Router# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent
Group(s) 227.0.0.0/8
  RP 10.10.0.2 (?, v2v1, bidir
    Info source:10.10.0.2 (?), via Auto-RP
    Uptime:00:01:42, expires:00:00:32
  Group(s) 228.0.0.0/8
    RP 10.10.0.3 (?, v2v1, bidir
    Info source:10.10.0.3 (?), via Auto-RP
    Uptime:00:01:26, expires:00:00:34
Group(s) 229.0.0.0/8
  RP 10.10.0.5 (mcast1.cisco.com), v2v1, bidir
    Info source:10.10.0.5 (mcast1.cisco.com), via Auto-RP
    Uptime:00:00:52, expires:00:00:37
Group(s) (-)230.0.0.0/8
  RP 10.10.0.5 (mcast1.cisco.com), v2v1, bidir
    Info source:10.10.0.5 (mcast1.cisco.com), via Auto-RP
    Uptime:00:00:52, expires:00:00:37
```

The following is sample output from the `show ip pim rp` command when the `metric` keyword is specified:

```
Router# show ip pim rp metric
RP Address      Metric Pref    Metric       Flags   RPF Type   Interface
10.10.0.2       0              0              L     unicast    Loopback0
10.10.0.3       90             409600         L     unicast    Ethernet3/3
10.10.0.5       90             435200         L     unicast    Ethernet3/3
```

show ip rpf

The following is sample output from the `show ip rpf` command:

```
Router# show ip rpf 172.16.10.13
RPF information for host1 (172.16.10.13)
  RPF interface: BRI0
  RPF neighbor: sj1.cisco.com (172.16.121.10)
  RPF route/mask: 172.16.0.0/255.255.0.0
  RPF type: unicast
  RPF recursion count: 0
  Doing distance-preferred lookups across tables
```

The following is sample output from the `show ip rpf` command when the `metric` keyword is specified:

```
Router# show ip rpf 172.16.10.13 metric
RPF information for host1.cisco.com (172.16.10.13)
  RPF interface: BRI0
  RPF neighbor: neighbor.cisco.com (172.16.121.10)
  RPF route/mask: 172.16.0.0/255.255.0.0
  RPF type: unicast
  RPF recursion count: 0
  Doing distance-preferred lookups across tables
  Metric preference: 110
  Metric: 11
```
Example Monitoring IP Multicast Delivery Using IP Multicast Heartbeat

The following example shows how to monitor IP multicast packets forwarded through this router to group address 244.1.1.1. If no packet for this group is received in a 10-second interval, an SNMP trap will be sent to the SNMP management station with the IP address of 224.1.0.1.

```
!  ip multicast-routing
!  snmp-server host 224.1.0.1 traps public
  snmp-server enable traps ipmulticast
  ip multicast heartbeat ethernet0 224.1.1.1 1 1 10
```

Example Advertising Multicast Multimedia Sessions Using SAP Listener

The following example enables a router to listen to session directory announcements and changes the SAP cache timeout to 30 minutes.

```
ip multicast routing
ip sap cache-timeout 30
interface loopback 0
  ip address 10.0.0.51 255.255.255.0
  ip pim sparse-dense mode
  ip sap listen
```

The following is sample output from the `show ip sap` command for a session using multicast group 224.2.197.250:

```
Router# show ip sap 224.2.197.250
SAP Cache - 198 entries
Session Name: Session1
  Description: This broadcast is brought to you courtesy of Name1.
  Group: 0.0.0.0, ttl: 0, Contiguous allocation: 1
  Lifetime: from 10:00:00 PDT Jul 4 1999 until 10:00:00 PDT Aug 1 1999
  Uptime: 4d05h, Last Heard: 00:01:40
  Announcement source: 128.102.84.134
  Created by: sample 3136541828 3139561476 IN IP4 128.102.84.134
  Phone number: Sample Digital Video Lab (555) 555-5555
  Email: email1 <name@email.com>
  URL: http://url.com/
  Media: audio 20890 RTP/AVP 0
    Media group: 224.2.197.250, ttl: 127
  Attribute: ptime:40
  Media: video 62806 RTP/AVP 31
    Media group: 224.2.190.243, ttl: 127
```

Example Storing IP Multicast Headers

The following is sample output from the `show ip mpacket` command for the group named “smallgroup.”

```
Router# show ip mpacket smallgroup
IP Multicast Header Cache - entry count:6, next index: 7
  Key: id/ttl timestamp (name) source group
  D782/117 206416.908 (company1.company.com) 192.168.228.10 224.5.6.7
  7302/113 206417.908 (school.edu) 172.16.2.17 224.5.6.7
  6CB2/114 206417.412 (company2.company.com) 172.16.19.40 224.5.6.7
  D782/117 206417.868 (company1.company.com) 192.168.228.10 224.5.6.7
  E2E9/123 206418.488 (company3.com) 239.1.8.10 224.5.6.7
  1CA7/127 206418.544 (company4.company.com) 192.168.6.10 224.5.6.7
```
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP multicast SNMP notifications</td>
<td>“Configuring SNMP Support” module</td>
</tr>
<tr>
<td>IP multicast commands: complete command syntax, command mode, defaults, usage</td>
<td>Cisco IOS IP Multicast Command Reference</td>
</tr>
<tr>
<td>guidelines, and examples</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-IPMROUTE-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE releases,</td>
</tr>
<tr>
<td>MSDP-MIB</td>
<td>and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td>IGMP-STD-MIB</td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2934</td>
<td>Protocol Independent Multicast for IPv4 MIB</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you</td>
<td></td>
</tr>
<tr>
<td>can subscribe to various services, such as the Product Alert Tool</td>
<td></td>
</tr>
<tr>
<td>(accessed from Field Notices), the Cisco Technical Services Newsletter,</td>
<td></td>
</tr>
<tr>
<td>and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>