Optimizing PIM Sparse Mode in a Large IP Multicast Deployment

Last Updated: January 11, 2012

This module describes how to optimize Protocol Independent Multicast (PIM) sparse mode for a large deployment of IP multicast. You can set a limit on the rate of PIM register messages sent in order to limit the load on the designated router and RP, you can reduce the PIM router query message interval to achieve faster convergence, and you can delay or prevent the use of the shortest path tree.

- Finding Feature Information, page 1
- Prerequisites for Optimizing PIM Sparse Mode in a Large IP Multicast Deployment, page 1
- Information About Optimizing PIM Sparse Mode in a Large IP Multicast Deployment, page 2
- How to Optimize PIM Sparse Mode in a Large IP Multicast Deployment, page 5
- Configuration Examples for Optimizing PIM Sparse Mode in a Large IP Multicast Deployment, page 7
- Additional References, page 7
- Feature Information for Optimizing PIM Sparse Mode in a Large IP Multicast Deployment, page 8

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Optimizing PIM Sparse Mode in a Large IP Multicast Deployment

- You have PIM sparse mode running in your network.
You understand the concepts in the “IP Multicast Technology Overview” module.
If you plan to use a group list to control which groups the shortest-path tree (SPT) threshold applies to, you have configured your access list before performing the task.

Information About Optimizing PIM Sparse Mode in a Large IP Multicast Deployment

- PIM Registering Process, page 2
- PIM Designated Router, page 3
- PIM Sparse-Mode Register Messages, page 3
- Preventing Use of Shortest-Path Tree to Reduce Memory Requirement, page 3

PIM Registering Process

IP multicast sources do not use a signaling mechanism to announce their presence. Sources just send their data into the attached network, as opposed to receivers that use Internet Group Management Protocol (IGMP) to announce their presence. If a source sends traffic to a multicast group configured in PIM sparse mode (PIM-SM), the Designated Router (DR) leading toward the source must inform the rendezvous point (RP) about the presence of this source. If the RP has downstream receivers that want to receive the multicast traffic (natively) from this source and has not joined the shortest path leading toward the source, then the DR must send the traffic from the source to the RP. The PIM registering process, which is individually run for each (S, G) entry, accomplishes these tasks between the DR and RP.

The registering process begins when a DR creates a new (S, G) state. The DR encapsulates all the data packets that match the (S, G) state into PIM register messages and unicasts those register messages to the RP.

If an RP has downstream receivers that want to receive register messages from a new source, the RP can either continue to receive the register messages through the DR or join the shortest path leading toward the source. By default, the RP will join the shortest path, because delivery of native multicast traffic provides the highest throughput. Upon receipt of the first packet that arrives natively through the shortest path, the RP will send a register-stop message back to the DR. When the DR receives this register-stop message, it will stop sending register messages to the RP.

If an RP has no downstream receivers that want to receive register messages from a new source, the RP will not join the shortest path. Instead, the RP will immediately send a register-stop message back to the DR. When the DR receives this register-stop message, it will stop sending register messages to the RP.

Once a routing entry is established for a source, a periodic reregistering takes place between the DR and RP. One minute before the multicast routing table state times out, the DR will send one dataless register message to the RP each second that the source is active until the DR receives a register-stop message from the RP. This action restarts the timeout time of the multicast routing table entry, typically resulting in one reregistering exchange every 2 minutes. Reregistering is necessary to maintain state, to recover from lost state, and to keep track of sources on the RP. It will take place independently of the RP joining the shortest path.

- PIM Version 1 Compatibility, page 2

PIM Version 1 Compatibility
If an RP is running PIM Version 1, it will not understand dataless register messages. In this case, the DR will not send dataless register messages to the RP. Instead, approximately every 3 minutes after receipt of a register-stop message from the RP, the DR encapsulates the incoming data packets from the source into register messages and sends them to the RP. The DR continues to send register messages until it receives another register-stop message from the RP. The same behavior occurs if the DR is running PIM Version 1.

When a DR running PIM Version 1 encapsulates data packets into register messages for a specific (S, G) entry, the entry is process-switched, not fast-switched or hardware-switched. On platforms that support these faster paths, the PIM registering process for an RP or DR running PIM Version 1 may lead to periodic out-of-order packet delivery. For this reason, we recommend upgrading your network from PIM Version 1 to PIM Version 2.

PIM Designated Router

Routers configured for IP multicast send PIM hello messages to determine which router will be the designated router (DR) for each LAN segment (subnet). The hello messages contain the router’s IP address, and the router with the highest IP address becomes the DR.

The DR sends Internet Group Management Protocol (IGMP) host query messages to all hosts on the directly connected LAN. When operating in sparse mode, the DR sends source registration messages to the rendezvous point (RP).

By default, multicast routers send PIM router query messages every 30 seconds. By enabling a router to send PIM hello messages more often, the router can discover unresponsive neighbors more quickly. As a result, the router can implement failover or recovery procedures more efficiently. It is appropriate to make this change only on redundant routers on the edge of the network.

PIM Sparse-Mode Register Messages

Dataless register messages are sent at a rate of one message per second. Continuous high rates of register messages might occur if a DR is registering bursty sources (sources with high data rates) and if the RP is not running PIM Version 2.

By default, PIM sparse-mode register messages are sent without limiting their rate. Limiting the rate of register messages will limit the load on the DR and RP, at the expense of dropping those register messages that exceed the set limit. Receivers may experience data packet loss within the first second in which packets are sent from bursty sources.

Preventing Use of Shortest-Path Tree to Reduce Memory Requirement

Understanding PIM shared tree and source tree will help you understand how preventing the use of the shortest-path tree can reduce memory requirements.

- **PIM Shared Tree and Source Tree - Shortest-Path Tree, page 3**
- **Benefit of Preventing or Delaying the Use of the Shortest-Path Tree, page 4**

PIM Shared Tree and Source Tree - Shortest-Path Tree

By default, members of a multicast group receive data from senders to the group across a single data distribution tree rooted at the rendezvous point (RP). This type of distribution tree is called shared tree, as
shown in the figure. Data from senders is delivered to the RP for distribution to group members joined to
the shared tree.

Figure 1 Shared Tree versus Source Tree (Shortest-Path Tree)

If the data rate warrants, leaf routers on the shared tree may initiate a switch to the data distribution tree
rooted at the source. This type of distribution tree is called a shortest-path tree (SPT) or source tree. By
default, the software switches to a source tree upon receiving the first data packet from a source.

The following process describes the move from shared tree to source tree in more detail:

1 Receiver joins a group; leaf Router C sends a Join message toward the RP.
2 The RP puts the link to Router C in its outgoing interface list.
3 Source sends data; Router A encapsulates data in a register message and sends it to the RP.
4 The RP forwards data down the shared tree to Router C and sends a Join message toward the source. At
 this point, data may arrive twice at Router C, once encapsulated and once natively.
5 When data arrives natively (through multicast) at the RP, the RP sends a register-stop message to
 Router A.
6 By default, reception of the first data packet prompts Router C to send a Join message toward the
 source.
7 When Router C receives data on (S, G), it sends a Prune message for the source up the shared tree.
8 The RP deletes the link to Router C from the outgoing interface of (S, G). The RP triggers a Prune
 message toward the source.

Join and Prune messages are sent for sources and RPs. They are sent hop-by-hop and are processed by each
PIM router along the path to the source or RP. Register and register-stop messages are not sent hop-by-hop.
They are sent by the designated router that is directly connected to a source and are received by the RP for
the group.

Multiple sources sending to groups use the shared tree.

Benefit of Preventing or Delaying the Use of the Shortest-Path Tree
The switch from shared to source tree happens upon the arrival of the first data packet at the last hop router (Router C in Benefit of Preventing or Delaying the Use of the Shortest-Path Tree, page 4). This switch occurs because the **ip pim spt-threshold** command controls that timing, and its default setting is 0 kbps.

The shortest-path tree requires more memory than the shared tree, but reduces delay. You might want to prevent or delay its use to reduce memory requirements. Instead of allowing the leaf router to move to the shortest-path tree immediately, you can prevent use of the SPT or specify that the traffic must first reach a threshold.

You can configure when a PIM leaf router should join the shortest-path tree for a specified group. If a source sends at a rate greater than or equal to the specified *kbps* rate, the router triggers a PIM Join message toward the source to construct a source tree (shortest-path tree). If the **infinity** keyword is specified, all sources for the specified group use the shared tree, never switching to the source tree.

How to Optimize PIM Sparse Mode in a Large IP Multicast Deployment

- Optimizing PIM Sparse Mode in a Large Deployment, page 5

Optimizing PIM Sparse Mode in a Large Deployment

Consider performing this task if your deployment of IP multicast is large.

Steps 3, 5, and 6 in this task are independent of each other and are therefore considered optional. Any one of these steps will help optimize PIM sparse mode. If you are going to perform Step 5 or 6, you must perform Step 4. Step 6 applies only to a designated router; changing the PIM query interval is only appropriate on redundant routers on the edge of the PIM domain.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip pim register-rate-limit *rate*
4. ip pim spt-threshold {**kbps**|**infinity**}[**group-list** **access-list**]
5. interface **type** number
6. ip pim query-interval *period* [**msec**]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>
How to Optimize PIM Sparse Mode in a Large IP Multicast Deployment

How to Optimize PIM Sparse Mode in a Large IP Multicast Deployment

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ip pim register-rate-limit rate</td>
<td>(Optional) Sets a limit on the maximum number of PIM sparse mode register messages sent per second for each (S, G) routing entry.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip pim register-rate-limit 10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ip pim spt-threshold {kbps</td>
<td>infinity}[group-list access-list]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip pim spt-threshold infinity group-list 5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface ethernet 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ip pim query-interval period [msec]</td>
<td>(Optional) Configures the frequency at which multicast routers send PIM router query messages.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip pim query-interval 1</td>
<td></td>
</tr>
</tbody>
</table>
Optimizing PIM Sparse Mode in a Large IP Multicast Deployment Example

The following example shows how to:

- Set the query interval to 1 second for faster convergence.
- Configure the router to never move to the SPT but to remain on the shared tree.
- Set a limit of 10 PIM sparse mode register messages sent per second for each (S, G) routing entry.

```
interface ethernet 0
  ip pim query-interval 1

  !
  ip pim spt-threshold infinity
  ip pim register-rate-limit 10

  !
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM Sparse Mode concepts and configuration</td>
<td>“Configuring Basic IP Multicast” module</td>
</tr>
<tr>
<td>IP multicast commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Multicast Command Reference</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS_XE releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

Description
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.

To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.

Feature Information for Optimizing PIM Sparse Mode in a Large IP Multicast Deployment

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIM Version 2</td>
<td>12.2(4)T</td>
<td>Protocol Independent Multicast (PIM) version 2 builds upon the success of the existing PIMv1 base, has two basic operating modes: sparse-mode and dense-mode, and is suitable for large networks with heterogeneous links and devices.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.