The Multicast VPN Extranet Support feature (sometimes referred to as the MVPN Extranet Support feature) enables service providers to distribute IP multicast content originated from one enterprise site to other enterprise sites. This feature enables service providers to offer the next generation of flexible extranet services, helping to enable business partnerships between different enterprise VPN customers.

This module describes the concepts and the tasks related to configuring Multicast VPN Extranet Support.

- Finding Feature Information, page 1
- Prerequisites for Configuring Multicast VPN Extranet Support, page 1
- Restrictions for Configuring Multicast VPN Extranet Support, page 2
- Information About Multicast VPN Extranet Support, page 2
- How to Configure Multicast VPN Extranet Support, page 8
- Configuration Examples for Multicast VPN Extranet Support, page 17
- Additional References, page 34
- Feature Information for Configuring Multicast VPN Extranet Support, page 36

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring Multicast VPN Extranet Support

- You are familiar with IP multicast concepts and configuration tasks.
- You are familiar with Multicast VPN (MVPN) concepts and configuration tasks.
- You are familiar with Multiprotocol Label Switching (MPLS) Layer 3 Virtual Private Network (VPN) concepts and configuration tasks.
Restrictions for Configuring Multicast VPN Extranet Support

- The Multicast VPN Extranet Support feature supports only Protocol Independent Multicast (PIM) sparse mode (PIM-SM) and Source Specific Multicast (SSM) traffic; PIM dense mode (PIM-DM) and bidirectional PIM (bidir-PIM) traffic are not supported.
- In Cisco IOS Release 12.2(33)SRC and subsequent 12.2SR releases, the Multicast VPN Extranet Support feature was not supported on Cisco 7600 series routers. In Cisco IOS Release 15.0(1)S, support for the Multicast VPN Extranet Support feature was introduced on Cisco 7600 series routers.
- When configuring extranet MVPNs in a PIM-SM environment, the source and the rendezvous point (RP) must reside in the same site of the MVPN behind the same provider edge (PE) router.

Information About Multicast VPN Extranet Support

- Overview of MVPN Extranet Support, page 2
- Configuration Guidelines for MVPN Extranet Support, page 4
- Multicast VPN Extranet VRF Select, page 7
- Hardware Acceleration for Multicast VPN Extranet Support on Catalyst 6500 Series Switches, page 7

Overview of MVPN Extranet Support

An extranet can be viewed as part of a company’s intranet that is extended to users outside the company. It has also been described as a “state of mind” in which a VPN is used as a way to do business with other companies as well as to sell products and content to customers and companies. An extranet is a VPN connecting the corporate site or sites to external business partners or suppliers to securely share part of a business’s information or operations among them.

MPLS VPNs inherently provide security, ensuring that users access only appropriate information. MPLS VPN extranet services offer extranet users unicast connectivity without compromising the integrity of their corporate data. The Multicast VPN Extranet Support feature extends this offer to include multicast connectivity to the extranet community of interest.

The Multicast VPN Extranet Support feature enables service providers to distribute IP multicast content originated from one enterprise site to other enterprise sites. This feature enables service providers to offer the next generation of flexible extranet services, helping to enable business partnerships between different enterprise VPN customers. Using this feature, service providers can offer multicast extranet contracts to meet various business partnership requirements, including short-term, annual, and rolling contracts.

- Benefits of MVPN Extranet Support, page 2
- Components of an Extranet MVPN, page 3
- Solution for MVPN Extranet Support, page 3

Benefits of MVPN Extranet Support

The Multicast VPN Extranet Support feature can be used to solve such business problems as:

- Efficient content distribution between enterprises
• Efficient content distribution from service providers or content providers to their different enterprise VPN customers

Components of an Extranet MVPN

The figure below illustrates the components that constitute an extranet MVPN.

• **MVRF** -- Multicast VPN routing and forwarding (VRF) instance. An MVRF is a multicast-enabled VRF. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a provider edge (PE) router.

• **Source MVRF** -- An MVRF that can reach the source through a directly connected customer edge (CE) router.

• **Receiver MVRF** -- An MVRF to which receivers are connected through one or more CE devices.

• **Source PE** -- A PE router that has a multicast source behind a directly connected CE router.

• **Receiver PE** -- A PE router that has one or more interested receivers behind a directly connected CE router.

Figure 1 Components of an Extranet MVPN

Solution for MVPN Extranet Support

For unicast, there is no difference between an intranet or extranet from a routing perspective; that is, when a VRF imports a prefix, that prefix is reachable through a label-switched path (LSP). If the enterprise owns the prefix, the prefix is considered a part of the corporate intranet; otherwise, the prefix is considered a part of an extranet. For multicast, however, the reachability of a prefix (especially through an LSP) is not sufficient to build a multicast distribution tree (MDT).

In order to provide support for extranet MVPN services, the same default MDT group must be configured in the source and receiver MVRF. Prior to the introduction of the Multicast VPN Extranet Support feature, there were challenges that prevented service providers from providing extranet MVPN services:

• The source MVRF may not have been configured with a default MDT group, or it may have been configured with a different MDT group as compared to the receiver MVRF. In the former case there
was no way for the source MVRF to forward multicast streams to extranet sites, and in the latter case, there was no way for the separate MVRFs to be linked.

- It was not possible to maintain a forwarding table in cases where the RPF interface and outgoing interfaces belong to different VRFs.

The Multicast VPN Extranet Support feature solves these challenges as follows:

- The receiver and source MVRF multicast route (mroute) entries are linked.
- The Reverse Path Forwarding (RPF) check relies on unicast routing information to determine the interface through which the source is reachable. This interface is used as the RPF interface.

Configuration Guidelines for MVPN Extranet Support

Two configuration options are available to provide extranet MVPN services:

- Option 1--Configure the receiver MVRF on the source PE router.
- Option 2--Configure the source MVRF on the receiver PE router.

- MVPN Extranet Support Configuration Guidelines for Option 1, page 4
- MVPN Extranet Support Configuration Guidelines for Option 2, page 5
- RPF for MVPN Extranet Support Using Imported Routes, page 6
- RPF for MVPN Extranet Support Using Static Mroutes, page 6

MVPN Extranet Support Configuration Guidelines for Option 1

To provide extranet MVPN services to enterprise VPN customers by configuring the receiver MVRF on the source PE router (Option 1), you would complete the following procedure:

- For each extranet site, you would configure an additional MVRF on the source PE router, that has the same default MDT group as the receiver MVRF, if the MVRF is not configured on the source PE.
- In the receiver MVRF configuration, you would configure the same unicast routing policy on the source and receiver PE routers to import routes from the source MVRF to the receiver MVRF.

The figure illustrates the flow of multicast traffic in an extranet MVPN topology where a receiver MVRF is configured on the source PE router (Option 1). In the topology, an MVRF is configured for VPN-Green and VPN-Red on PE1, the source PE router. A multicast source behind PE1 is sending out a multicast stream to the MVRF for VPN-Green, and there are interested receivers behind PE2 and PE3, the receiver PE routers for VPN-Red and VPN-Green, respectively. After PE1 receives the packets from the source in the MVRF for VPN-Green, it independently replicates and encapsulates the packets in the MVRF for VPN-Green and
VPN-Red and forwards the packets. After receiving the packets from this source, PE2 and PE3 decapsulate and forward the packets to the respective MVRFs.

Figure 2 Packet Flow for MVPN Extranet Support Configuration Option 1

The figure illustrates the flow of multicast traffic in an extranet MVPN topology where the source MVRF is configured on a receiver PE router (Option 2). In the topology, an MVRF is configured for VPN-Green and VPN-Red on PE1, a receiver PE router. A multicast source behind PE1, the source PE router, is sending out a multicast stream to the MVRF for VPN-Green, and there are interested receivers behind PE2, the receiver PE router for VPN-Red, and behind PE3, the receiver PE router for VPN-Green. After PE1 receives the packets from the source in the MVRF for VPN-Green, it replicates and forwards the packets to PE2 and PE3, because both routers are connected to receivers in VPN-Green. The packets that originated
from VPN-Green are then replicated on PE2 and forwarded to the interested receivers in VPN-Red and are replicated on PE3 and forwarded to the interested receivers in VPN-Green.

Figure 3 Packet Flow for MVPN Extranet Support Configuration Option 2

RPF for MVPN Extranet Support Using Imported Routes

You must configure either the receiver MVRF on the source PE router (Option 1) or the source MVRF on the receiver PE router (Option 2) for extranet links to be created. Once configured, RPF relies on unicast routing information to determine the interface through which the source is reachable. This interface is used as the RPF interface. No additional configuration is required for RPF resolution. The Multicast VPN Extranet Support feature supports RPF from one VRF to another VRF, from a VRF to the global routing table, and from the global routing table to a VRF.

RPF for MVPN Extranet Support Using Static Mroutes

By default, an extranet MVPN relies on unicast routing policies to determine the RPF interface. When the RPF lookup originates in a receiver MVRF, and it finds that the RPF interface does not lie in the same MVRF, the router uses the information in the Border Gateway Protocol (BGP) imported route to determine the source MVRF. The RPF lookup then continues and resolves in the source MVRF. In cases where the multicast and unicast topologies are incongruent, you can override the default behavior by configuring a static mroute in the receiver MVRF to explicitly specify the source MVRF using the `ip mroute` command with the **fallback-lookup** keyword and **vrf vrf-name** keyword and argument.

Static mroutes can also be configured to support RPF for extranet MVPN in the case where the source is present in an MVRF and the receiver is in the global table. In this case, because BGP does not allow VPNv4 routes to be imported into the IPv4 routing table, unicast cannot obtain the source MVRF information needed to resolve the RPF lookup. To enable the RPF lookup to be resolved in this case, a static mroute can be configured to explicitly specify the source MVRF using the `ip mroute` command with the **fallback-lookup** keyword and the **global** keyword.
Multicast VPN Extranet VRF Select

Prior to the introduction of the Multicast VPN Extranet VRF Select feature, RPF lookups for a source address could be performed only in a single VRF, that is, in the VRF where Internet Group Management Protocol (IGMP) or PIM joins are received, in the VRF learned from BGP imported routes, or in the VRF specified in static mroutes (when RPF for an extranet MVPN is configured using static mroutes). In those cases, the source VRF is solely determined by the source address or the way the source address was learned.

The Multicast VPN Extranet VRF Select feature provides the capability for RPF lookups to be performed to the same source address in different VRFs using the group address as the VRF selector. This feature enhances extranet MVPNs by enabling service providers to distribute content streams coming in from different MVPNs and redistributing them from there.

The Multicast VPN VRF Select feature is configured by creating group-based VRF selection policies. Group-based VRF selection policies are configured using the `ip multicast rpf select` command. The `ip multicast rpf select` command is used to configure RPF lookups originating in a receiver MVRF or in the global routing table to be resolved in a source MVRF or in the global routing table based on group address. Access Control Lists (ACLs) are used to define the groups to be applied to group-based VRF selection policies.

The figure illustrates an extranet MVPN topology with the Multicast VPN VRF Select feature configured. In this topology, (S, G1) and (S, G2) PIM joins originating from VPN-Green, the receiver VRF, are forwarded to PE1, the receiver PE. Based on the group-based VRF selection policies configured, PE1 sends the PIM joins to VPN-Red and VPN-Blue for groups G1 and G2, respectively.

![Figure 4: RPF Lookups Using Group-Based VRF Selection Policies](image)

Hardware Acceleration for Multicast VPN Extranet Support on Catalyst 6500 Series Switches

Beginning in Cisco IOS Release 12.2(33)SXH, when the Multicast VPN Extranet Support feature is configured on Catalyst 6500 series switches, forwarding entries for source and receiver MVRFs are linked
in hardware (similar to how they are linked in software for this feature) and packets are replicated in hardware when being forwarded to extranet MVPN sites. This functionality is referred to as the Hardware Acceleration for Multicast VPN Extranet Support feature.

How to Configure Multicast VPN Extranet Support

- Configuring MVPN Extranet Support, page 8
- Configuring RPF for MVPN Extranet Support Using Static Mroutes, page 13
- Configuring Group-Based VRF Selection Policies with MVPN Extranet Support, page 15

Configuring MVPN Extranet Support

Perform this task to configure support for extranet MVPN services. Extranet MVPN services enable service providers to distribute IP multicast content originated from a corporate site to the sites of external business partners or suppliers.

Perform one of the following tasks to provide extranet MVPN capabilities:

- Configuring the Receiver MVRF on the Source PE - Option 1, page 8
- Configuring the Source MVRF on the Receiver PE - Option 2, page 10

Configuring the Receiver MVRF on the Source PE - Option 1

Perform this task to configure the receiver MVRF on the source PE router (Option 1) and provide support for extranet MVPN services.

In the following figure, the source PE router is PE1. To provide extranet MVPN services from one enterprise VPN site (VPN-Green) to another enterprise VPN site (VPN-Red) using Option 1, configure the receiver MVRF on the source PE router. In the receiver MVRF configuration, the default MDT group must be the same on both the source and receiver PE routers. In addition, you must configure the same unicast routing policy to import routes from the source MVRF (the MVRF for VPN-Green) to the receiver MVRF (the MVRF for VPN-Red).

Figure 5 Topology for MVPN Extranet Support Configuration Option 1
Intranet VPN in the source and receiver VPNs must be already configured.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. route-target import route-target-ext-community
6. mdt default group-address
7. end
8. show ip mroute [vrf vrf-name] group-address
9. show mls ip multicast group group-address

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Example:** | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** ip vrf vrf-name | Defines the VPN routing instance by assigning a VRF name and enters VRF configuration mode.
• The vrf-name argument is the name assigned to a VRF. |
| **Example:** | Router(config)# ip vrf VPN-Red |
| **Step 4** rd route-distinguisher | Creates routing and forwarding tables.
• Specify the route-distinguisher argument to add an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter an RD in either of these formats:
 ◦ 16-bit autonomous system number: your 32-bit number, for example, 101:3
 ◦ 32-bit IP address: your 16-bit number, for example, 192.168.122.15:1 |
<p>| Example: | Router(config-vrf)# rd 55:2222 |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5** route-target import route-target-ext-community | Creates a route-target extended community for a VRF.
 • The **import** keyword imports routing information from the target VPN extended community.
 • The **route-target-ext-community** argument adds the route-target extended community attributes to the VRF’s list of import, export, or both (import and export) route-target extended communities. |
| **Example:** Router(config-vrf)# route-target import 55:1111 | For content to be distributed from the source MVRF to the receiver MVRF, you must configure the same unicast routing policy on the source and receiver PE routers to import routes from the source VRF to the receiver VRF. |
| **Step 6** mdt default group-address | Configures the multicast group address range for data MDT groups for a VRF.
 • A tunnel interface is created as a result of this command.
 • By default, the destination address of the tunnel header is the **group-address** argument. |
| **Example:** Router(config-vrf)# mdt default 232.3.3.3 | In Cisco IOS Release 12.2(33)SX12 and later releases, when VRF lite is configured as part of an extranet MVPN topology, the MVPN extranet traffic is switched in hardware regardless of the state of the MDF tunnel. |
| **Step 7** end | Exits VRF configuration mode and returns to privileged EXEC mode. |
| **Example:** Router(config-vrf)# end | |
| **Step 8** show ip mroute [vrf vrf-name] group-address | (Optional) Displays the contents of the IP multicast mroute table for a specific group address. |
| **Example:** Router# show ip mroute 232.3.3.3 | |
| **Step 9** show mls ip multicast group group-address | (Optional) Displays multilayer switching (MLS) information related to a specific multicast group. |
| **Example:** Router# show mls ip multicast group 232.3.3.3 | This command can be used only to verify support for extranet MVPN services on Catalyst 6500 series switches running Cisco IOS Release 12.2(33)SXH and later releases. |

Configuring the Source MVRF on the Receiver PE - Option 2

Perform this task to configure the source MVRF on the receiver PE router (Option 2) and provide support for extranet MVPN services.
In the following figure, the receiver PE router is PE2. To provide support for extranet MVPN services from one enterprise VPN site (VPN-Green) to another enterprise VPN site (VPN-Red) using Option 2, configure the source MVRF on the receiver PE router. The MDT group configuration of the source MVRF must be the same on both the source and receiver PE routers. In addition, you must configure the same unicast routing policy to import routes from the source MVRF (the MVRF for VPN-Green) to the receiver MVRF (the MVRF for VPN-Red).

Figure 6 Topology for MVPN Extranet Support Configuration Option 2

Intranet VPN in the source and receiver VPNs must be already configured.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip vrf vrf-name`
4. `rd route-distinguisher`
5. `route-target import route-target-ext-community`
6. `mdt default group-address`
7. `end`
8. `show ip mroute [vrf vrf-name] group-address`
9. `show mls ip multicast group group-address`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Example:** Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal | |
| **Step 3** ip vrf vrf-name | Defines the VPN routing instance by assigning a VRF name and enters VRF configuration mode.
 - The vrf-name argument is the name assigned to a VRF. |
| **Example:** Router(config)# ip vrf VPN-Red | |
| **Step 4** rd route-distinguisher | Creates routing and forwarding tables.
 - The route-distinguisher argument adds an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter an RD in either of these formats:
 - 16-bit autonomous system number: your 32-bit number, for example, 101:3
 - 32-bit IP address: your 16-bit number, for example, 192.168.122.15:1 |
| **Example:** Router(config-vrf)# rd 55:1111 | |
| **Step 5** route-target import route-target-ext-community | Creates a route-target extended community for a VRF.
 - The import keyword exports routing information to the target VPN extended community.
 - The route-target-ext-community argument adds the route-target extended community attributes to the VRF’s list of import, export, or both (import and export) route-target extended communities. |
| **Example:** Router(config-vrf)# route-target import 55:1111 | |
| **Note** | For content to be distributed from the source MVRF to the receiver MVRF, you must configure the same unicast routing policy on the source and receiver PE routers to import routes from the source VRF to the receiver VRF. |
Configuring RPF for MVPN Extranet Support Using Static Mroutes

Perform this task to configure RPF for extranet MVPNs using static mroutes.

You must configure support for extranet MVPN services prior to performing this task.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip mroute vrf vrf-name source-address mask fallback-lookup {global | vrf vrf-name} [distance]
4. end
5. show ip mroute [vrf vrf-name] group-address
6. show mls ip multicast group group-address
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip mroute vrf vrf-name source-address mask fallback-lookup (global</td>
<td>Configures the RPF lookup originating in a receiver MVRF to continue and be resolved in a source MVRF or in the global routing table using a static mroute.</td>
</tr>
<tr>
<td>vrf vrf-name)</td>
<td></td>
</tr>
<tr>
<td>[distance]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip mroute vrf VPN-Red 224.100.0.5 255.255.255.255 fallback-lookup vrf VPN-Green</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show ip mroute [vrf vrf-name] group-address</td>
<td>(Optional) Displays the contents of the IP multicast mroute table for a specific group address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip mroute 224.100.0.5</td>
<td></td>
</tr>
<tr>
<td>Step 6 show mls ip multicast group group-address</td>
<td>(Optional) Displays MLS information related to a specific multicast group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show mls ip multicast group 232.3.3.3</td>
<td></td>
</tr>
</tbody>
</table>

Note This command can be used only to verify support for extranet MVPN services on Catalyst 6500 series switches running Cisco IOS Release 12.2(33)SXH or a subsequent 12.2SX release.
Configuring Group-Based VRF Selection Policies with MVPN Extranet Support

Perform this task to configure group-based VRF selection policies with MVPN.

This task enables RPF lookups to be performed to the same source address in different VRFs using the group address as the VRF selector. This feature enhances extranet MVPNs by enabling service providers to distribute content streams coming in from different MVPNs and redistributing them from there.

- You must configure support for extranet MVPN services prior to performing this task.
- ACLs are used to define the groups to be applied to group-based VRF selection policies. This task assumes that you have configured the ACLs to be applied to group-based VRF selection policies.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip multicast [vrf receiver-vrf-name] rpf select [global | vrf source-vrf-name] group-list access-list
4. Repeat Step 3 to create additional group-based VRF selection policies.
5. end
6. show ip rpf [vrf vrf-name] select
7. show ip rpf [vrf vrf-name] source-address [group-address]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3 ip multicast [vrf receiver-vrf-name] rpf select {global</td>
<td>vrf source-vrf-name} group-list access-list</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip multicast vrf VPN-Green rpf select vrf VPN-Red group-list 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 Repeat Step 3 to create additional group-based VRF selection policies.</td>
<td>--</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
<tr>
<td>Step 6 show ip rpf [vrf vrf-name] select</td>
<td>Displays group-to-VRF mapping information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip rpf select</td>
<td></td>
</tr>
<tr>
<td>Step 7 show ip rpf [vrf vrf-name] source-address [group-address]</td>
<td>Displays information about how IP multicast routing does RPF.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show ip rpf 172.16.10.13</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Multicast VPN Extranet Support

- Example Configuring the Receiver VRF on the Source PE Router - Option 1, page 17
- Example Configuring the Source VRF on the Receiver PE - Option 2, page 24
- Example: Displaying Statistics for MVPN Extranet Support, page 31
- Example Configuring RPF for MVPN Extranet Support Using Static Mroutes, page 34
- Example Configuring Group-Based VRF Selection Policies with MVPN Extranet Support, page 34

Example Configuring the Receiver VRF on the Source PE Router - Option 1

The following example shows the configurations for PE1, the source PE router, and PE2, the receiver PE router, in the figure. In this example, extranet MVPN services are supported between VPN-Green and VPN-Red by configuring the receiver MVRF for VPN-Red on PE1, the source PE router. The MVRF configuration for VPN-Red is configured to import routes from the MVRF for VPN-Green to the MVRF for VPN-Red.

Figure 7
Topology for MVPN Extranet Support Option 1 Configuration Example

PE1 Configuration

```text
ip cef

ip vrf VPN-Green
rd 55:1111
route-target export 55:1111
route-target import 55:1111
mdt default 232.1.1.1

ip vrf VPN-Red
rd 55:2222
route-target export 55:2222
```

```text
route-target import 55:1111
mdt default 232.1.1.1

ip vrf VPN-Red
rd 55:2222
route-target export 55:2222
mdt default 232.2.2.2
```
route-target import 55:2222
route-target import 55:1111
mdt default 232.3.3.3
ip multicast-routing
ip multicast-routing vrf VPN-Green
ip multicast-routing vrf VPN-Red
interface Loopback0
 ip address 10.1.0.1 255.255.255.0
 ip pim sparse-dense-mode
 .
 .
 .
router bgp 55
 no synchronization
 bgp log-neighbor-changes
 neighbor 10.2.0.2 remote-as 55
 neighbor 10.2.0.2 update-source Loopback0
 .
 .
 address-family ipv4 mdt
 neighbor 10.2.0.2 activate
 neighbor 10.2.0.2 send-community extended
 .
 .
 .
 address-family vpnv4
 neighbor 10.2.0.2 activate
 neighbor 10.2.0.2 send-community extended
 .

PE2 Configuration

ip vrf VPN-Red
 rd 55:2222
 route-target export 55:2222
 route-target import 55:2222
 route-target import 55:1111
 mdt default 232.3.3.3
 .
 .
 .
router bgp 55
 no synchronization
 bgp log-neighbor-changes
 neighbor 10.1.0.1 remote-as 55
 neighbor 10.1.0.1 update-source Loopback0
 .
 .
 .
 address-family ipv4 mdt
 neighbor 10.1.0.1 activate
 neighbor 10.1.0.1 send-community extended
 .
 .
 .
 address-family vpnv4
 neighbor 10.1.0.1 activate
 neighbor 10.1.0.1 send-community extended
 .
States in the Global Table on PE1 and PE2 for the MDT Default Group 232.3.3.3

The following are sample outputs from the `show ip mroute` command on PE1 and PE2. The sample outputs show the global table for the MDT default group 232.3.3.3 on PE1 and PE2.

PE1# show ip mroute 232.3.3.3
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URO, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(10.1.0.1, 232.3.3.3), 00:46:27/00:03:27, flags: sT
Incoming interface: Loopback0, RPF nbr 0.0.0.0
Outgoing interface list:
Ethernet0/0, Forward/Sparse-Dense, 00:45:17/00:02:44
(10.2.0.2, 232.3.3.3), 00:45:17/00:02:57, flags: sTIZ
Incoming interface: Ethernet0/0, RPF nbr 224.0.1.4
Outgoing interface list:
MVRF VPN-Red, Forward/Sparse-Dense, 00:45:17/00:01:09

PE2# show ip mroute 232.3.3.3
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URO, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(10.1.0.1, 232.3.3.3), 00:46:27/00:03:27, flags: sT
Incoming interface: Loopback0, RPF nbr 0.0.0.0
Outgoing interface list:
Ethernet0/0, Forward/Sparse-Dense, 00:45:17/00:02:44
(10.2.0.2, 232.3.3.3), 00:45:17/00:02:57, flags: sTIZ
Incoming interface: Ethernet0/0, RPF nbr 224.0.1.4
Outgoing interface list:
MVRF VPN-Red, Forward/Sparse-Dense, 00:45:17/00:01:09

States in the Global Table on PE1 and PE2 for the MDT Default Group 232.3.3.3 When PE1 and PE2 Are Catalyst 6500 Series Switches Configured for MVPN Extranet Support

The following are sample outputs from the `show ip mroute` and `show mls ip multicast` commands on PE1 and PE2, when PE1 and PE2 are Catalyst 6500 series switches that have been configured to support extranet MVPN services. The sample output from the `show ip mroute` command shows the global table for the MDT default group 232.3.3.3 on PE1 and PE2. In the output, the “RPF-MFD” flag indicates that a multicast flow is completely hardware switched and “H” flag indicates that the flow is being hardware switched on an outgoing interface. The sample output from the `show mls ip multicast` command shows MLS information related to group 232.3.3.3 on PE1 and PE2.

PE1# show ip mroute 232.3.3.3
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URO, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(10.1.0.1, 232.3.3.3), 00:46:27/00:03:27, flags: sT
Incoming interface: Loopback0, RPF nbr 0.0.0.0
Outgoing interface list:
Ethernet0/0, Forward/Sparse-Dense, 00:45:17/00:02:44
(10.2.0.2, 232.3.3.3), 00:45:17/00:02:57, flags: sTIZ
Incoming interface: Ethernet0/0, RPF nbr 224.0.1.4
Outgoing interface list:
MVRF VPN-Red, Forward/Sparse-Dense, 00:45:17/00:01:09
States in the VRF Table for VPN-Green on PE1 After Receivers in VPN-Red Join Multicast Group 228.8.8.8

The following is sample output from the `show ip mroute` command on PE1. The sample output shows the state of the VRF table for VPN-Green on PE1 when receivers join the multicast group 228.8.8.8. The output indicates that extranet receivers in VPN-Red are receiving content from a source in VPN-Green that is sending to multicast group 228.8.8.8. The “E” flag in the output indicates that a (*, G) or (S, G) entry in the VRF routing table is a source VRF entry and has extranet receiver MVRF mroute entries linked to it.

```
PE1# show ip mroute vrf VPN-Green 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
Outgoing interface list: MVRF VPN-Red, Forward/Sparse-Dense, 00:44:17/00:02:44, H
Incoming interface: GigabitEthernet4/1, Forward/Sparse-Dense, 00:44:17/00:02:44, H
```

```
PE2# show ip mroute vrf VPN-Green 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
Outgoing interface list: MVRF VPN-Red, Forward/Sparse-Dense, 00:44:17/00:02:44, H
Incoming interface: GigabitEthernet4/1, Forward/Sparse-Dense, 00:44:17/00:02:44, H
```

Example Configuring the Receiver VRF on the Source PE Router - Option 1
Example Configuring the Receiver VRF on the Source PE Router - Option 1

States in the VRF Table for VPN-Green on PE1 After Receivers in VPN-Red Join Multicast Group 228.8.8.8

When PE1 Is a Catalyst 6500 Series Switch Configured for MVPN Extranet Support

The following are sample outputs from the `show ip mroute` and `show mls ip multicast` commands on PE1, when PE1 is a Catalyst 6500 series switch configured to support extranet MVPN services. The sample output from the `show ip mroute` command shows the state of the VRF table for VPN-Green on PE1 when receivers join the multicast group 228.8.8.8. The sample output from the `show mls ip multicast` command shows MLS information related to group 228.8.8.8 in VPN-Green after receivers in VPN-Red join multicast group 228.8.8.8. The sample output from both the `show ip mroute` and `show mls ip multicast` commands indicate that extranet receivers in VPN-Red are receiving content from a source in VPN-Green that is sending to multicast group 228.8.8.8.

PE1# show ip mroute vrf VPN-Green 228.8.8.8

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet, X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement, U - URP, I - Received Source Specific Host Report, Z - Multicast Tunnel, z - MDT-data group sender, Y - Joined MDT-data group, y - Sending to MDT-data group, V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:01:38/stopped, RP 10.100.0.5, flags: SE
Incoming interface: Ethernet3/0, RF nbr 10.1.1.5
Outgoing interface list: Null
Extranet receivers in vrf VPN-Red:
(*, 228.8.8.8), 00:01:38/stopped, RP 10.100.0.5, OIF count: 1, flags: S
(10.1.1.200, 228.8.8.8), 00:00:05/00:02:54, flags: TE
Incoming interface: Ethernet3/0, RF nbr 10.1.1.5
Outgoing interface list: Null
Extranet receivers in vrf VPN-Red:
(10.1.1.200, 228.8.8.8), 00:00:05/stopped, OIF count: 1, flags:

PE1# show mls ip multicast vrf VPN-Green group 228.8.8.8

vrf VPN-Green tableid 1
Multicast hardware switched flows:
(*, 228.8.8.8) Incoming interface: Gi3/1, Packets switched: 4
Hardware switched outgoing interfaces:
Extranet VPN-Red
RPF-MFD installed
Extranet receivers in vrf VPN-Red(2):
(*, 228.8.8.8) Incoming interface: Gi3/1, Packets switched: 4
Hardware switched outgoing interfaces:
Tu2
RPF-MFD installed
(10.1.1.200, 228.8.8.8) Incoming interface: Gi3/1, Packets switched: 2179579
Hardware switched outgoing interfaces:
Extranet VPN-Red
RPF-MFD installed
Extranet receivers in vrf VPN-Red(2):
(10.1.1.200, 228.8.8.8) Incoming interface: Gi3/1, Packets switched: 2179579
Hardware switched outgoing interfaces:
Tu2
RPF-MFD installed
Total hardware switched flows : 4

States in the VRF Table for VPN-Red on PE1 After Receivers in VPN-Red Join Multicast Group 228.8.8.8

The following is sample output from the `show ip mroute` command on PE1. The sample output shows the state of the VRF table for VPN-Red on PE1 when receivers join the multicast group 228.8.8.8. The “using vrf VPN-Green” field indicates that VPN-Red is using unicast routing information from VPN-Green to determine the RPF interface through which the source is reachable.

PE1# show ip mroute vrf VPN-Red 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:01:45/stopped, RP 10.100.0.5, flags: S
Incoming interface: Ethernet3/0, RPF nbr 10.1.1.5, using vrf VPN-Green
Outgoing interface list:
Tunnel2, Forward/Sparse-Dense, 00:01:45/00:02:49
(10.1.1.200, 228.8.8.8), 00:00:12/00:03:27, flags:
Incoming interface: Ethernet3/0, RPF nbr 10.1.1.5, using vrf VPN-Green
Outgoing interface list:
Tunnel2, Forward/Sparse-Dense, 00:00:12/00:03:18

States in the VRF Table for VPN-Red on PE1 After Receivers in VPN-Red Join Multicast Group 228.8.8.8
When PE1 is a Catalyst 6500 Series Switches Configured for MVPN Extranet Support

The following are sample outputs from the `show ip mroute` and `show mls ip multicast` commands on PE1, when PE1 is a Catalyst 6500 series switch configured to support extranet MVPN services. The sample output from the `show ip mroute` command shows the state of the VRF table for VPN-Red on PE1 when receivers join the multicast group 228.8.8.8. The “using vrf VPN-Green” field indicates that VPN-Red is using unicast routing information from VPN-Green to determine the RPF interface through which the source is reachable. The sample output from the `show mls ip multicast` shows MLS information related to the group 228.8.8.8 in VPN-Red.

PE1# show ip mroute vrf VPN-Red 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:01:45/stopped, RP 10.100.0.5, flags: S
Incoming interface: GigabitEthernet3/1, RPF nbr 10.1.1.5, using vrf VPN-Green, RPF-MFD
Outgoing interface list:
Tunnel2, Forward/Sparse-Dense, 00:01:45/00:02:49, H
Example Configuring the Receiver VRF on the Source PE Router - Option 1

Configuration Examples for Multicast VPN Extranet Support

(10.1.1.200, 228.8.8.8), 00:00:12/00:03:27, flags:
 Incoming interface: GigabitEthernet3/1, RPF nbr 10.1.1.5, using vrf VPN-Green, RPF-MFD
 Outgoing interface list:
 Tunnel2, Forward/Sparse-Dense, 00:00:12/00:03:18, H

PE1# show mls ip multicast vrf VPN-Red group 228.8.8.8
 vrf VPN-Red tableid 2
 Multicast hardware switched flows:
 (*, 228.8.8.8) Incoming interface: Gi3/1, Packets switched: 4
 Hardware switched outgoing interfaces:
 Tu2
 RPF-MFD installed
 (10.1.1.200, 228.8.8.8) Incoming interface: Gi3/1, Packets switched: 2179579
 Hardware switched outgoing interfaces:
 Tu2
 RPF-MFD installed
 Total hardware switched flows : 2
 PE1#

States in the VRF Table for VPN-Red on PE2 After Receivers in VPN-Red Join Multicast Group 228.8.8.8

The following is sample output from the `show ip mroute` command on PE2. The sample output shows the VRF table for VPN-Red on PE2 when receivers join the multicast group 228.8.8.8.

PE2# show ip mroute vrf VPN-Red 228.8.8.8
 IP Multicast Routing Table
 Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
 L - Local, P - Pruned, R - RP-bit set, F - Register flag,
 T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
 X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
 U - UDR, I - Received Source Specific Host Report,
 Z - Multicast Tunnel, z - MDT-data group sender,
 Y - Joined MDT-data group, y - Sending to MDT-data group,
 V - RD & Vector, v - Vector
 Outgoing interface flags: H - Hardware switched, A - Assert winner
 Timers: Uptime/Expires
 Interface state: Interface, Next-Hop or VCD, State/Mode
 (*, 228.8.8.8), 00:00:28/stopped, RP 10.100.0.5, flags: S
 Incoming interface: Tunnel1, RPF nbr 10.1.0.1
 Outgoing interface list:
 Ethernet9/0, Forward/Sparse-Dense, 00:00:28/00:03:02
 (10.1.1.200, 228.8.8.8), 00:00:00/00:03:29, flags:
 Incoming interface: Tunnel1, RPF nbr 10.1.0.1
 Outgoing interface list:
 Ethernet9/0, Forward/Sparse-Dense, 00:00:00/00:03:29

States in the VRF Table for VPN-Red on PE2 After Receivers in VPN-Red Join Multicast Group 228.8.8.8 When PE2 Is a Catalyst 6500 Series Switch Configured for MVPN Extranet Support

The following are sample outputs from the `show ip mroute` and `show mls ip multicast` commands on PE2, when PE2 is a Catalyst 6500 series switch configured to support extranet MVPN services. The sample output from the `show ip mroute` command shows the VRF table for VPN-Red on PE2 when receivers join the multicast group 228.8.8.8. The sample output from the `show mls ip multicast` command shows MLS information related to the group 228.8.8.8 in VPN-Red.

PE2# show ip mroute vrf VPN-Red 228.8.8.8
 IP Multicast Routing Table
 Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
 L - Local, P - Pruned, R - RP-bit set, F - Register flag,
 T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
 X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
 U - UDR, I - Received Source Specific Host Report,
 Z - Multicast Tunnel, z - MDT-data group sender,
 Y - Joined MDT-data group, y - Sending to MDT-data group,
 V - RD & Vector, v - Vector
 Outgoing interface flags: H - Hardware switched, A - Assert winner
 Timers: Uptime/Expires
 Interface state: Interface, Next-Hop or VCD, State/Mode
 (*, 228.8.8.8), 00:00:28/stopped, RP 10.100.0.5, flags: S
Example Configuring the Source VRF on the Receiver PE - Option 2

The following configuration example is based on the extranet MVPN topology illustrated in the figure. This example shows the configurations for PE2, the receiver PE router, and PE1, the source PE router. In this example, extranet MVPN services are supported between VPN-Green and VPN-Red by configuring the source MVRF for VPN-Green on PE2. The same unicast routing policy is configured to import routes from VPN-Green to VPN-Red.

Figure 8 Topology for MVPN Extranet Support Option 2 Configuration Example
Example Configuring the Source VRF on the Receiver PE - Option 2

Configuration Examples for Multicast VPN Extranet Support

PE2 Configuration

```
ip cef  
!
ip vrf VPN-Red  
   rd 55:2222  
   route-target export 55:2222  
   route-target import 55:2222  
   mdt default 232.3.3.3  
!
ip vrf VPN-Green  
   rd 55:1111  
   route-target export 55:1111  
   route-target import 55:1111  
   mdt default 232.1.1.1  
!
ip multicast-routing  
ip multicast-routing vrf VPN-Red  
ip multicast-routing vrf VPN-Green  
!
interface Loopback0  
ip address 10.2.0.2 255.255.255.0  
ip pim sparse-dense-mode  
!  .  .  .  .  
!
router bgp 55  
no synchronization  
bgp log-neighbor-changes  
neighbor 10.1.0.1 remote-as 55  
neighbor 10.1.0.1 update-source Loopback0  
!  address-family ipv4 mdt  
neighbor 10.1.0.1 activate  
neighbor 10.1.0.1 send-community extended  
!  address-family vpnv4  
neighbor 10.1.0.1 activate  
neighbor 10.1.0.1 send-community extended  
!```

**PE1 Configuration**

```
ip cef
!
ip vrf VPN-Green
 rd 55:1111
 route-target export 55:1111
 route-target import 55:1111
 mdt default 232.1.1.1
!
ip multicast-routing
ip multicast-routing vrf VPN-Green
!
interface Loopback0
ip address 10.1.0.1 255.255.255.0
ip pim sparse-dense-mode
!
!
router bgp 55
no synchronization
bgp log-neighbor-changes
neighbor 10.2.0.2 remote-as 55
neighbor 10.2.0.2 update-source Loopback0
!```
address-family ipv4 mdt
neighbor 10.2.0.2 activate
neighbor 10.2.0.2 send-community extended

address-family vpnv4
neighbor 10.2.0.2 activate
neighbor 10.2.0.2 send-community extended

States in the Global Table on PE1 and PE2 for the MDT Default Group 232.1.1.1

The following are sample outputs from the `show ip mroute` command on PE1 and PE2. The sample outputs show the global table for the MDT default group 232.1.1.1 on PE1 and PE2.

PE1# show ip mroute 232.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - UDLD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(10.2.0.2, 232.1.1.1), 00:01:19/00:02:42, flags: sTIZ
Incoming interface: Ethernet0/0, RPF nbr 10.0.1.4
Outgoing interface list:
MVRF VPN-Green, Forward/Sparse-Dense, 00:01:19/00:02:07
(10.1.0.1, 232.1.1.1), 00:02:19/00:03:11, flags: sT
Incoming interface: Loopback0, RPF nbr 0.0.0.0
Outgoing interface list:
Ethernet0/0, Forward/Sparse-Dense, 00:02:00/00:02:36

PE2# show ip mroute 232.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - UDLD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(10.1.0.1, 232.1.1.1), 00:02:04/00:02:38, flags: sTIZ
Incoming interface: Ethernet1/0, RPF nbr 10.0.2.4
Outgoing interface list:
MVRF VPN-Green, Forward/Sparse-Dense, 00:02:04/00:02:09
(10.2.0.2, 232.1.1.1), 00:02:04/00:03:09, flags: sT
Incoming interface: Loopback0, RPF nbr 0.0.0.0
Outgoing interface list:
Ethernet1/0, Forward/Sparse-Dense, 00:01:22/00:03:09

States in the Global Table on PE1 and PE2 for the MDT Default Group 232.1.1.1 When PE1 and PE2 Are Catalyst 6500 Series Switches Configured for MVPN Extranet Support

The following are sample outputs from the `show ip mroute` and `show mls ip multicast` commands on PE1 and PE2, when PE1 and PE2 are Catalyst 6500 series switches that have been configured to support extranet MVPN services. The sample output from the `show ip mroute` command shows the global table for the MDT default group 232.1.1.1 on PE1 and PE2. In the output, the “RPF-MFD” flag indicates that a multicast flow is completely hardware switched and “H” flag indicates that the flow is being hardware...
switched on an outgoing interface. The sample output from the `show mls ip multicast` command shows MLS information related to multicast group 232.1.1.1 on PE1 and PE2.

PE1# show ip mroute 232.1.1.1

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
 L - Local, P - Pruned, R - RP-bit set, F - Register flag,
 T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
 X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
 U - URD, I - Received Source Specific Host Report,
 Z - Multicast Tunnel, z - MDT-data group sender,

Outgoing interface flags: H - Hardware switched, A - Assert winner

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(10.2.0.2, 232.1.1.1), 00:01:19/00:02:42, flags: sT

Incoming interface: GigabitEthernet2/16, RPF nbr 10.0.1.4, RPF-MFD

Outgoing interface list:

MVRF VPN-Green, Forward/Sparse-Dense, 00:01:19/00:02:07, H

(10.1.0.1, 232.1.1.1), 00:02:19/00:03:11, flags: sT

Incoming interface: Loopback0, RPF nbr 0.0.0.0, RPF-MFD

Outgoing interface list:

GigabitEthernet2/16, Forward/Sparse-Dense, 00:02:00/00:02:36, H

PE1# show mls ip multicast group 232.1.1.1

Multicast hardware switched flows:

(10.2.0.2, 232.1.1.1) Incoming interface: Gi2/16, Packets switched: 28

Hardware switched outgoing interfaces:

MVRF VPN-Green

RPF-MFD installed

(10.1.0.1, 232.1.1.1) Incoming interface: Lo0, Packets switched: 28

Hardware switched outgoing interfaces:

Gi2/16

RPF-MFD installed

Total hardware switched flows : 2

PE2# show ip mroute 232.1.1.1

IP Multicast Routing Table

Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
 L - Local, P - Pruned, R - RP-bit set, F - Register flag,
 T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
 X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
 U - URD, I - Received Source Specific Host Report,
 Z - Multicast Tunnel, z - MDT-data group sender,

Outgoing interface flags: H - Hardware switched, A - Assert winner

Timers: Uptime/Expires

Interface state: Interface, Next-Hop or VCD, State/Mode

(10.1.0.1, 232.1.1.1), 00:02:04/00:02:38, flags: sT

Incoming interface: GigabitEthernet4/1, RPF nbr 10.0.1.4, RPF-MFD

Outgoing interface list:

MVRF VPN-Green, Forward/Sparse-Dense, 00:02:04/00:02:09, H

(10.2.0.2, 232.1.1.1), 00:02:04/00:03:09, flags: sT

Incoming interface: Loopback0, RPF nbr 0.0.0.0, RPF-MFD

Outgoing interface list:

GigabitEthernet4/1, Forward/Sparse-Dense, 00:01:22/00:03:09, H

PE2# show mls ip multicast group 232.1.1.1

Multicast hardware switched flows:

(10.1.0.1, 232.1.1.1) Incoming interface: Gi4/1, Packets switched: 28

Hardware switched outgoing interfaces:

MVRF VPN-Green

RPF-MFD installed

(10.2.0.2, 232.1.1.1) Incoming interface: Lo0, Packets switched: 28

Hardware switched outgoing interfaces:

Gi4/1

RPF-MFD installed

Total hardware switched flows : 2
States in the VRF Table for VPN-Green on PE1 After Receivers in VPN-Red Join Multicast Group 228.8.8.8

The following is sample output from the `show ip mroute` command on PE1. The sample output shows the state of the VRF table for VPN-Green on PE1 when receivers join the multicast group 228.8.8.8.

PE1# show ip mroute vrf VPN-Green 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet, X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement, U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel, z - MDT-data group sender, Y - Joined MDT-data group, y - Sending to MDT-data group, V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:01:43/00:02:52, RP 10.100.0.5, flags: S
Incoming interface: Ethernet3/0, RPF nbr 10.100.0.5
Outgoing interface list:
Tunnel0, Forward/Sparse-Dense, 00:01:43/00:02:52, H
Outgoing interface list:
Tunnel0, Forward/Sparse-Dense, 00:01:15/00:03:19

States in the VRF Table for VPN-Green on PE1 After Receivers in VPN-Red Join Multicast Group 228.8.8.8
When PE1 is a Catalyst 6500 Series Switch Configured for MVPN Extranet Support

The following are sample outputs from the `show ip mroute` and `show mls ip multicast` commands on PE1, when PE1 is a Catalyst 6500 series switch configured to support extranet MVPN services. The sample output from the `show ip mroute` command shows the state of the VRF table for VPN-Green on PE1 when receivers join the multicast group 228.8.8.8. The sample output from the `show mls ip multicast` command shows MLS information related to multicast group 228.8.8.8 in VPN-Red.

PE1# show ip mroute vrf VPN-Green 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected, L - Local, P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet, X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement, U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel, z - MDT-data group sender, Y - Joined MDT-data group, y - Sending to MDT-data group, V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:01:43/00:02:52, RP 10.100.0.5, flags: S
Incoming interface: GigabitEthernet3/1, RPF nbr 10.100.0.5
Outgoing interface list:
Tunnel0, Forward/Sparse-Dense, 00:01:43/00:02:52, H
Incoming interface: GigabitEthernet3/1, RPF nbr 10.100.0.5
Outgoing interface list:
Tunnel0, Forward/Sparse-Dense, 00:01:15/00:03:19, H

PE1# show mls ip multicast vrf VPN-Green group 228.8.8.8
vrf VPN-Red tableid 1
Multicast hardware switched flows:
(*, 228.8.8.8) Incoming interface: Gl3/1, Packets switched: 4
Hardware switched outgoing interfaces:
Tu0
RPF-MFD installed
(10.1.1.200, 228.8.8.8) Incoming interface: Gl3/1, Packets switched: 2179579
Hardware switched outgoing interfaces:
Tu0
RPF-MFD installed
Total hardware switched flows : 2

States in the VRF Table for VPN-Green on PE2 After Receivers in VPN-Red Join Multicast Group 228.8.8.8

The following is sample output from the `show ip mroute` command on PE2. The output shows the state of the VRF table for VPN-Green on PE1 when receivers join the multicast group 228.8.8.8. The output indicates that extranet receivers in VPN-Red are receiving content from the source in VPN-Green that is sending to multicast group 228.8.8.8. The “E” flag indicates that a (*, G) or (S, G) entry in the VRF routing table is a source VRF entry and has extranet receiver MVRF mroute entries linked to it.

PE2# show ip mroute vrf VPN-Green 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:01:59/stopped, RP 10.100.0.5, flags: SE
Incoming interface: Tunnel0, RPF nbr 10.1.1.0.1
Outgoing interface list: Null
Extranet receivers in vrf VPN-Red:
Extranet receivers in vrf VPN-Red:

States in the VRF Table for VPN-Green on PE2 After Receivers in VPN-Red Join Multicast Group 228.8.8.8
When PE2 Is a Catalyst 6500 Series Switch Configured for MVPN Extranet Support

The following are sample outputs from the `show ip mroute` and `show mls ip multicast` commands on PE2, when PE2 is a Catalyst 6500 series switch configured to support extranet MVPN services. The sample output from the `show ip mroute` command shows the state of the VRF table for VPN-Green on PE1 when receivers join the multicast group 228.8.8.8. The sample output indicates that extranet receivers in VPN-Red are receiving content from the source in VPN-Green that is sending to multicast group 228.8.8.8. The “E” flag indicates that a (*, G) or (S, G) entry in the VRF routing table is a source VRF entry and has extranet receiver MVRF mroute entries linked to it. The sample output from the `show mls ip multicast` command shows MLS information related to multicast group 228.8.8.8 in VPN-Green.

PE2# show ip mroute vrf VPN-Green 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:01:59/stopped, RP 10.100.0.5, flags: SE
Incoming interface: Tunnel0, RPF nbr 10.1.1.0.1, RPF-MFD
Outgoing interface list: Null
Extranet receivers in vrf VPN-Red:
Extranet receivers in vrf VPN-Red:
Incoming interface: Tunnel0, RPF nbr 10.1.0.1, RPF-MFD
Outgoing interface list: Null
Extranet receivers in vrf VPN-Red:
(10.1.1.200, 228.8.8.8), 00:01:31/00:03:29, OIF count: 1, flags:

PE2# show mls ip multicast vrf VPN-Green group 228.8.8.8
vrf VPN-Green tableid 1
Multicast hardware switched flows:
(*, 228.8.8.8) Incoming interface: Tu0, Packets switched: 4
Hardware switched outgoing interfaces:
Extranet VPN-Red
RPF-MFD installed
Extranet receivers in vrf VPN-Red(2):
(*, 228.8.8.8) Incoming interface: Tu0, Packets switched: 4
Hardware switched outgoing interfaces:
G19/1
RPF-MFD installed
(10.1.1.200, 228.8.8.8) Incoming interface: Tu0, Packets switched: 2179579
Hardware switched outgoing interfaces:
Extranet VPN-Red
RPF-MFD installed
Extranet receivers in vrf VPN-Red(2):
(10.1.1.200, 228.8.8.8) Incoming interface: Tu0, Packets switched: 2179579
Hardware switched outgoing interfaces:
G19/1
RPF-MFD installed
Total hardware switched flows : 4

States in the VRF Table for VPN-Red on PE2 After Receivers in VPN-Red Join Multicast Group 228.8.8.8

The following is sample output from the show ip mroute command on PE2. The sample output shows the state of the VRF table for VPN-Red on PE2 when receivers join the multicast group 228.8.8.8. The “using vrf VPN-Green” field indicates that VPN-Red is using unicast routing information from VPN-Green to determine the RPF interface through which the source is reachable.

PE2# show ip mroute vrf VPN-Red 228.8.8.8

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
K - Prune Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
X - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:02:00/stopped, RP 10.100.0.5, flags: S
Incoming interface: Tunnel0, RPF nbr 10.1.0.1, using vrf VPN-Green
Outgoing interface list:
Ethernet9/0, Forward/Sparse-Dense, 00:02:00/00:02:34
(10.1.1.200, 228.8.8.8), 00:01:32/00:03:28, flags:
Incoming interface: Tunnel0, RPF nbr 10.1.0.1, using vrf VPN-Green
Outgoing interface list:
Ethernet9/0, Forward/Sparse-Dense, 00:01:32/00:03:01

States in the VRF Table for VPN-Red on PE2 After Receivers in VPN-Red Join Multicast Group 228.8.8.8 When PE2 Is a Catalyst 6500 Series Switch Configured for MVPN Extranet Support

The following are sample outputs from the show ip mroute and show mls ip multicast commands on PE2, when PE2 is a Catalyst 6500 series switch configured to support extranet MVPN services. The sample output from the show ip mroute command shows the state of the VRF table for VPN-Red on PE2 when receivers join the multicast group 228.8.8.8. The “using vrf VPN-Green” field indicates that VPN-Red is using unicast routing information from VPN-Green to determine the RPF interface through which the
source is reachable. The sample output from the `show mls ip multicast` command shows MLS information related to multicast group 228.8.8.8 in VPN-Red.

```
PE2# show ip mroute vrf VPN-Red 228.8.8.8
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.8.8.8), 00:02:00/stopped, RP 10.100.0.5, flags: S
Incoming interface: Tunnel0, RPF nbr 10.1.0.1, using vrf VPN-Green, RPF-MFD
Outgoing interface list:
  GigabitEthernet9/1, Forward/Sparse-Dense, 00:02:00/00:02:34, H
  (10.1.1.200, 228.8.8.8), 00:01:12/00:03:28, flags: S
  Incoming interface: Tunnel0, RPF nbr 10.1.0.1, using vrf VPN-Green, RPF-MFD
  Outgoing interface list:
    GigabitEthernet9/1, Forward/Sparse-Dense, 00:01:12/00:03:01, H

```

```
PE2# show mls ip multicast vrf VPN-Red group 228.8.8.8
vrf VPN-Red tableid 2
Multicast hardware switched flows:
(*, 228.8.8.8) Incoming interface: Tu0, Packets switched: 4
Hardware switched outgoing interfaces:
  Gi9/1
  RPF-MFD installed
(10.1.1.200, 228.8.8.8) incoming interface: Tu0, Packets switched: 2179579
 Hardware switched outgoing interfaces:
  Gi9/1
  RPF-MFD installed
Total hardware switched flows : 2
```

Example: Displaying Statistics for MVPN Extranet Support

This example is a standalone example and does not refer to any other technologies.

The MFIB-based implementation of IP multicast updates counters in source MVRF mroute entries for extranet MVPN. Counters in the source MVRF can be displayed using Cisco IOS commands. Counters in the receiver MVRF mroute entries will remain zero.

Use the `show ip mroute` command to determine the source and receiver MVRFs. The following sample output shows that VRF blue is the source MVRF and VRF red is the receiver MVRF:

```
PE1# show ip mroute vrf blue 228.1.1.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
Y - Joined MDT-data group, y - Sending to MDT-data group,
V - RD & Vector, v - Vector
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.1.1.1), 00:05:48/stopped, RP 202.100.0.5, flags: SE
Incoming interface: Ethernet3/0, RPF nbr 200.1.1.5
Extranet receivers in vrf red:
(*, 228.1.1.1), 00:02:42/00:02:09, flags: TE
Incoming interface: Ethernet3/0, RPF nbr 200.1.1.5
```

31
Outgoing interface list: Null
Extranet receivers in vrf red:
(220.1.1.200, 228.1.1.1), 00:02:42/stopped, OIF count: 1, flags: T

PE1# show ip mroute vrf red 228.1.1.1

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, z - MDT-data group sender,
V - RD & Vector, v - Vector

Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.1.1.1), 00:05:55/stopped, RP 202.100.0.5, flags: S
Incoming interface: Ethernet3/0, RPF nbr 200.1.1.5, using vrf blue
Outgoing interface list:
Tunnel16, Forward/Sparse-Dense, 00:05:55/00:03:26
(220.1.1.200, 228.1.1.1), 00:02:49/stopped, flags: T
Incoming interface: Ethernet3/0, RPF nbr 200.1.1.5, using vrf blue
Outgoing interface list:
Tunnel16, Forward/Sparse-Dense, 00:02:49/00:03:26

Use the show ip mfib vrf vrf-name command, with the source MVRF for the vrf-name argument, to display statistics.

The following example shows statistics for the source MVRF blue. Inspect the output to ensure that the forwarding statistics in the source MVRF MFIB are correct and that the A and F flags are set in the source MVRF. Notice that there is no indication of extranet forwarding in the MFIB.

PE1# show ip mfib vrf blue 228.1.1.1

Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
ET - Data Rate Exceeds Threshold, K - Keepalive
DDE - Data Driven Event, HW - Hardware Installed
I/O Item Flags: IC - Internal Copy, NP - Not platform switched,
NS - Negate Signalling, SP - Signal Present,
A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward,
MA - MFIB Accept
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
I/O Item Counts: FS Pkt Count/PS Pkt Count
VRF blue
(*, 228.1.1.1) Flags: C
SW Forwarding: 1/0/0/0, Other: 0/0/0
Ethernet3/0 Flags: A
Tunnel16, MDT/239.3.3.3 Flags: F
Pkts: 1/0
(220.1.1.200, 228.1.1.1) Flags:
SW Forwarding: 37/0/100/0, Other: 0/0/0
Ethernet3/0 Flags: A NS
Tunnel16, MDT/239.3.3.3 Flags: F
Pkts: 37/0

The following example shows the following information for the receiver MVRF red:

- There are no forwarding statistics in the receiver MVRF MFIB because these statistics are collected in the source MVRF.
- The A and F flags are not set because these flags are only set in the source MVRF for MVPN extranet.
- There is no indication of extranet forwarding in the MFIB.
The NS flag in the output is present for the purpose of receiving PIM control traffic in the receiver MVRF.

```
PE1# show ip mfib vrf red 228.1.1.1

Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag,
              ET - Data Rate Exceeds Threshold, K - Keepalive
              DDE - Data Driven Event, HW - Hardware Installed
I/O Item Flags: IC - Internal Copy, NP - Not platform switched,
              NS - Negate Signalling, SP - Signal Present,
              A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
Other counts: Total/RPF failed/Other drops
I/O Item Counts: FS Pkt Count/PS Pkt Count
VRF red
(*,228.1.1.1) Flags: C
SW Forwarding: 0/0/100/0, Other: 0/0/0
Tunnel16, MDT/239.3.3.3 Flags: NS
(220.1.1.200,228.1.1.1) Flags:
  SW Forwarding: 0/0/100/0, Other: 0/0/0
Tunnel16, MDT/239.3.3.3 Flags: NS
```

You can also use the `show ip mroute count` command to display the extranet MVPN statistics. However, we recommend that you use the `show ip mfib` command instead. If you use the `show ip mroute count` command to display statistics, inspect the output to ensure that the forwarding statistics in the source MVRF are correct and that there are no forwarding statistics in the receiver MVRF.

The following sample output from the `show ip mroute count` command is for the receiver MVRF red:

```
PE1# show ip mroute vrf red 228.1.1.1 count

Use "show ip mfib count" to get better response time for a large number of mroutes.

IP Multicast Statistics
3 routes using 1672 bytes of memory
2 groups, 0.50 average sources per group
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts: Total/RPF failed/Other drops (OIF-null, rate-limit etc)
Group: 228.1.1.1, Source count: 1, Packets forwarded: 0, Packets received: 0
  RP-tree: Forwarding: 0/0/100/0, Other: 0/0/0
Source: 220.1.1.200/32, Forwarding: 37/0/100/0, Other: 37/0/0
```

The following sample output from the `show ip mroute count` command is for the receiver MVRF blue:

```
PE1# show ip mfib vrf blue 228.1.1.1 count

Use "show ip mfib count" to get better response time for a large number of mroutes.

IP Multicast Statistics
3 routes using 1354 bytes of memory
2 groups, 0.50 average sources per group
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts: Total/RPF failed/Other drops (OIF-null, rate-limit etc)
Group: 228.1.1.1, Source count: 1, Packets forwarded: 38, Packets received: 38
  RP-tree: Forwarding: 1/0/100/0, Other: 1/0/0
Source: 220.1.1.200/32, Forwarding: 37/0/100/0, Other: 37/0/0
```

The following sample output from the `show ip mroute count` command is for the receiver MVRF red:

```
PE1# show ip mfib vrf red 228.1.1.1 count

Use "show ip mfib count" to get better response time for a large number of mroutes.

IP Multicast Statistics
3 routes using 1672 bytes of memory
2 groups, 0.50 average sources per group
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts: Total/RPF failed/Other drops (OIF-null, rate-limit etc)
Group: 228.1.1.1, Source count: 1, Packets forwarded: 0, Packets received: 0
  RP-tree: Forwarding: 0/0/100/0, Other: 0/0/0
Source: 220.1.1.200/32, Forwarding: 0/0/100/0, Other: 0/0/0
```
Example Configuring RPF for MVPN Extranet Support Using Static Mroutes

The following example shows how to configure the RPF lookup originating in VPN-Red to be resolved in VPN-Green using the static mroute 192.168.1.1:

```
ip mroute vrf VPN-Red 192.168.1.1 255.255.255.255 fallback-lookup vrf VPN-Green
```

Example Configuring Group-Based VRF Selection Policies with MVPN Extranet Support

The following example shows how to use group-based VRF selection policies to configure RPF lookups originating in VPN-Green to be performed in VPN-Red for group addresses that match ACL 1 and to be performed in VPN-Blue for group addresses that match ACL 2.

```
ip multicast vrf VPN-Green rpf select vrf VPN-Red group-list 1
ip multicast vrf VPN-Green rpf select vrf VPN-Blue group-list 2
access-list 1 permit 239.0.0.0 0.255.255.255
access-list 2 permit 238.0.0.0 0.255.255.255
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic IP multicast concepts, configuration tasks, and examples</td>
<td>“Configuring Basic IP Multicast” module</td>
</tr>
<tr>
<td>IP multicast overview</td>
<td>“IP Multicast Technology Overview” module</td>
</tr>
<tr>
<td>MPLS Layer 3 VPN concepts and configuration tasks</td>
<td>“Configuring MPLS Layer 3 VPNs” module</td>
</tr>
<tr>
<td>Multicast VPN concepts, configuration tasks, and examples</td>
<td>“Configuring Multicast VPN” module</td>
</tr>
<tr>
<td>Catalyst 6500 series Multicast VPN concepts, configuration tasks, and examples</td>
<td>“Configuring IPv4 Multicast VPN Support” chapter in the Catalyst 6500 Release 12.2SX Software Configuration Guide</td>
</tr>
<tr>
<td>IP multicast commands: complete command syntax, command mode, command history, command defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Multicast Command Reference</td>
</tr>
</tbody>
</table>
Related Topic

| MPLS commands: complete command syntax, command mode, command history, command defaults, usage guidelines, and examples | *Cisco IOS Multiprotocol Label Switching Command Reference*
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast Virtual Private Network (MVPN) Extranet support on Cisco 7600 series routers: configuration details, and restrictions and usage guidelines</td>
<td>“Configuring Multicast VPN Extranet Support” chapter in the Cisco 7600 Series Router Software Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Configuring Multicast VPN Extranet Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1 Feature Information for Configuring Multicast VPN Extranet Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast VPN Extranet Support</td>
<td>12.2(31)SB2</td>
<td>The Multicast VPN Extranet Support feature enables service providers to distribute IP multicast content originated from one enterprise site to other enterprise sites. This feature enables service providers to offer the next generation of flexible extranet services, helping to enable business partnerships between different enterprise VPN customers. In 15.0(1)S, this feature was introduced on Cisco 7600 series routers. The following commands were introduced or modified by this feature: <code>ip mroute</code>, <code>show ip mroute</code>.</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SXH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.2(33)SRC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0(1)M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0(1)S</td>
<td></td>
</tr>
<tr>
<td>Multicast VPN Extranet VRF Select</td>
<td>12.2(31)SB2</td>
<td>The Multicast VPN Extranet VRF Select feature provides the capability for RPF lookups to be performed to the same source address in different VRFs using the group address as the VRF selector. This feature enhances extranet MVPNs by enabling service providers to distribute content streams coming in from different MVPNs and redistributing them from there. The following commands were introduced or modified by this feature: <code>ip multicast rpf select</code>, <code>show ip rpf</code>, <code>show ip rpf select</code>.</td>
</tr>
<tr>
<td></td>
<td>15.0(1)M</td>
<td></td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Hardware Acceleration for Multicast VPN Extranet Support</td>
<td>12.2(33)SXH</td>
<td>The Hardware Acceleration for Multicast VPN Extranet Support feature introduces the linking of forwarding entries and the replication of packets in hardware for extranet MVPN services on Catalyst 6500 series switches. In 12.2(33)SXH, this feature was introduced on Catalyst 6500 series switches.</td>
</tr>
</tbody>
</table>