IP Multicast: MFIB Configuration Guide,
Cisco IOS Release 15M&T

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
CONTENTS

Multicast Forwarding Information Base Overview 1
Finding Feature Information 1
Information About the Multicast Forwarding Information Base 1
 Benefits of the MFIB Architecture 2
 Types of Multicast Tables 2
 Types of Multicast Entries 2
MFIB Components 2
 MFIB 4
 Distributed MFIB 4
 MRIB 4
 Multicast Control Plane 4
Multicast Packet Forwarding Using the MFIB 5
MFIB and MRIB Entry and Interface Flags 5
Introduction of New Multicast Forwarding Entries 10
Introduction of PIM Tunnel Interfaces 10
MFIB Statistics Support 11
Where to Go Next 11
Additional References 11
Feature Information for the Multicast Forwarding Information Base 12

Verifying IPv4 Multicast Forwarding Using the MFIB 15
Finding Feature Information 15
Prerequisites for Verifying IPv4 Multicast Forwarding Using the MFIB 15
Restrictions for Verifying IPv4 Multicast Forwarding Using the MFIB 16
Information About Verifying IPv4 Multicast Forwarding Using the MFIB 16
 Guidelines for Verifying IPv4 Multicast Forwarding Using the MFIB 16
 Common Commands for Verifying IPv4 Multicast Forwarding Using the MFIB 16
 Common Mroute Flags 17
 Common MRIB Flags 18
 Common MFIB Flags 19
Bidir-PIM Example No Active Sources with No Interested Receivers 71

Additional References 75

Feature Information for Verifying IPv4 Multicast Forwarding Using the MFIB 76

Distributed MFIB for IPv6 Multicast 79

Finding Feature Information 79

Information About Distributed MFIB for IPv6 Multicast 79

Distributed MFIB 79

How to Disable MFIB on a Distributed Platform 80

Disabling MFIB on a Distributed Platform 80

Configuration Example for Distributed MFIB for IPv6 Multicast 81

Additional References 81

Feature Information for Distributed MFIB for IPv6 Multicast 82

MFIB Display Enhancements 85

Finding Feature Information 85

Information About MFIB Display Enhancements 85

MFIB 85

How to Use MFIB Display Enhancements 86

Verifying MFIB Operation in IPv6 Multicast 86

Resetting MFIB Traffic Counters 88

Disabling MFIB on the device 88

Disabling MFIB Interrupt-Level IPv6 Multicast Forwarding 89

Configuration Examples for MFIB Display Enhancements 90

Example: MFIB Display Enhancements 90

Additional References 91

Feature Information for MFIB Display Enhancements 92
Multicast Forwarding Information Base
Overview

The Multicast Forwarding Information Base (MFIB) architecture provides modularity and separation between the multicast control plane (Protocol Independent Multicast [PIM] and Internet Group Management Protocol [IGMP]) and the multicast forwarding plane (MFIB). This architecture is used in Cisco IOS IPv6 multicast implementations. With the introduction of the IPv4 MFIB infrastructure, the Cisco IOS IPv4 multicast implementation has been enhanced, making the MFIB forwarding model the only forwarding engine used.

- Finding Feature Information, page 1
- Information About the Multicast Forwarding Information Base, page 1
- Where to Go Next, page 11
- Additional References, page 11
- Feature Information for the Multicast Forwarding Information Base, page 12

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About the Multicast Forwarding Information Base

- Benefits of the MFIB Architecture, page 2
- Types of Multicast Tables, page 2
- Types of Multicast Entries, page 2
- MFIB Components, page 2
- Multicast Packet Forwarding Using the MFIB, page 5
- MFIB and MRIB Entry and Interface Flags, page 5
- Introduction of New Multicast Forwarding Entries, page 10
- Introduction of PIM Tunnel Interfaces, page 10
Benefits of the MFIB Architecture

- Simplifies multicast operation through the separation of the control and forwarding planes.
- Protects mission critical multicast applications by enabling new services such as multicast high availability (HA).
- Eliminates the need for the route cache maintenance associated with demand caching schemes such as multicast fast switching.

Types of Multicast Tables

The following tables are used for general multicast routing and forwarding:

- IGMP--Contains local IGMP memberships on the router.
- Multicast Route (Mroute)--Contains (*, G) and (S, G) multicast states on the router (including PIM mode, incoming interfaces, and outgoing interfaces).
- Multicast Source Discovery Protocol (MSDP)--Contains all Source-Active (SA) messages.
- Multicast Routing Information Base (MRIB)--Contains (*, G), (S, G), and (*, G/m) MRIB entries.
- MFIB--Contains (*, G), (S, G), and (*, G/m) MFIB entries.

Multicast tables can be further defined by the following contexts:

- Global--Non-VRF context.
- VRF--Layer-3 VPN context.
- IPv4--IPv4 address family context.
- IPv6--IPv6 address family context.

Types of Multicast Entries

- (*, G)--Shared tree entries used by PIM sparse mode (PIM-SM) and bidirectional PIM (bidir-PIM).
- (S, G)--Source tree entries used by PIM-SM and Source Specific Multicast (PIM-SSM).
- (*, G/mask)--Shared tree entries used by the bidir-PIM and the MFIB.

Note

For more information about (*, G/mask) entries, see the Introduction of New Multicast Forwarding Entries, page 10 section.

MFIB Components

The following sections describe the components that make up the MFIB architecture:
The figure illustrates the components that make up the MFIB architecture.

Figure 1 **IPv4 MFIB Architecture**

![Diagram of IPv4 MFIB Architecture]

Note

When you enter the `show ip mrib client` command on a multicast router in an IP multicast network, PIM, the mroute table, and IGMP will appear as one client to the MRIB. For more information, see the Cisco IOS IP Multicast Command Reference.

The figure illustrates the IPv4 MFIB distributed architecture.

Figure 2 **IPv4 MFIB Distributed Architecture**

![Diagram of IPv4 MFIB Distributed Architecture]

- MFIB, page 4
- Distributed MFIB, page 4
- MRIB, page 4
- Multicast Control Plane, page 4
MFIB

The MFIB is a multicast routing protocol independent forwarding engine; that is, it does not depend on PIM or any other multicast routing protocol. It is responsible for:

- Forwarding multicast packets
- Registering with the MRIB to learn the entry and interface flags set by the control plane
- Handling data-driven events that must be sent to the control plane
- Maintaining counts, rates, and bytes of received, dropped, and forwarded multicast packets

Distributed MFIB

Distributed MFIB (dMFIB) is used to switch multicast packets on distributed platforms. dMFIB may also contain platform-specific information on replication across line cards. The basic MFIB routines that implement the core of the forwarding logic are common to all forwarding environments.

dMFIB implements the following functions:

- Distributes a copy of the MFIB to the line cards.
- Relays data-driven protocol events generated in the line cards to PIM.
- Provides an MFIB platform application program interface (API) to propagate MFIB changes to platform-specific code responsible for programming the hardware acceleration engine. This API also includes entry points to switch a packet in software (necessary if the packet is triggering a data-driven event) and to upload traffic statistics to the software.
- Provides hooks to allow clients residing on the Route Processor (RP) to read traffic statistics on demand. (dMFIB does not periodically upload these statistics to the RP.)

The combination of dMFIB and MRIB subsystem (MRIB proxy) also allows the router to have a “customized” copy of the MFIB database in each line card and to transport MFIB-related platform-specific information from the RP to the line cards.

MRIB

The MRIB is the communication channel between MRIB clients. Examples of MRIB clients are PIM, IGMP, the multicast routing (mroute) table, and the MFIB.

MRIB communication is based on the setting and clearing of entry and interface flags. MRIB entries are keyed on source, group, and group mask; and appear as (*, G), (S, G), and (*, G/m) multicast entries in the output of the `show ip mrib route` commands. In addition, every MRIB entry will have a list of interfaces associated with it and each interface will have flags set that describe its forwarding state.

The MRIB does not interpret any entry or interface flags. The flags are significant only to MRIB clients.

Note

The MRIB uses different tables for different contexts. MRIB tables are separated by address family to distinguish between IPv4 and IPv6 multicast entries. Each table can further be divided within a VRF or global context.

Multicast Control Plane

The multicast control plane is responsible for building and maintaining multicast distribution trees. It consists of PIM, IGMP, and the mroute table, which are MRIB clients in the MFIB architecture. Any
changes, additions, and deletions to the mroute table (learned from either PIM or IGMP) are communicated across the MRIB and then distributed to the MFIB for multicast forwarding. Any events related to packet reception that require updates to the control plane are handled between the MRIB and MFIB. Such events include liveness checking, shortest path tree (SPT) switchover, and PIM asserts.

Multicast Packet Forwarding Using the MFIB

The core forwarding engine used by the MFIB is shared by both interrupt-level (fast switching) and process-level forwarding (process switching) as shown in the figure. Multicast packets received with a forwarding entry in the MFIB will be fast-switched by the MFIB, and multicast packets received without a forwarding entry that require the creation of a new forwarding entry will be process-switched by the MFIB.

Figure 3 Multicast Forwarding Engine

MFIB and MRIB Entry and Interface Flags

The table lists the significant MFIB and MRIB entry and interface flags used by IPv4 multicast.
Table 1 Significant MFIB and MRIB Flags

<table>
<thead>
<tr>
<th>Entry Flag</th>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>MFIB/MRIB</td>
<td>Connected--Indicates that the MFIB will inform the multicast control plane when it receives traffic from a directly connected source. This flag is used for multicast groups running in PIM sparse mode (PIM-SM) or PIM dense mode (PIM-DM). For PIM-SM, it triggers PIM registration. For PIM-DM, it triggers dense mode flooding. Note MFIB entries with Source Specific Multicast (PIM-SSM) and bidirectional PIM (bidir-PIM) environments will not have the C flag set.</td>
</tr>
<tr>
<td>DDE</td>
<td>MFIB/MRIB</td>
<td>Data Driven Event--Set by the forwarding plane when an entry is created due to receiving traffic. This flag is used only for HA operations. When there is a RP switchover, entries with this flag set are replayed by the MFIB and signaled to PIM.</td>
</tr>
<tr>
<td>ET</td>
<td>MFIB/MRIB</td>
<td>Data Rate Exceeds a Threshold--Set by the forwarding plane when an entry surpasses the data multicast distribution tree (MDT) threshold in a Multicast VPN (MVPN) environment (configured using the <code>mdt data</code> command). This flag is used by PIM to initiate the switchover of the data MDT to the default MDT, and vice versa.</td>
</tr>
</tbody>
</table>
Entry Flag Table

<table>
<thead>
<tr>
<th>Entry Flag</th>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>MFIB/MRIB</td>
<td>Inherit A Flag--(, G) entries with the IA flag set indicate that the accept check be performed using its (, G/mask) parent entry. In other words, the accept check is used to inherit interfaces with the A flag set in the (*, G/m) parent entry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note The IA flag is used for bidir-PIM entries.</td>
</tr>
<tr>
<td>K</td>
<td>MFIB/MRIB</td>
<td>Keepalive--Set by PIM to indicate that the entry has been processed and should be stored in the MFIB.</td>
</tr>
<tr>
<td>S</td>
<td>MFIB/MRIB</td>
<td>Signal--Indicates the MFIB will notify the multicast control plane when traffic is received on any interface for this entry that does not have the NS flag set.</td>
</tr>
</tbody>
</table>

Interface Flag Table

<table>
<thead>
<tr>
<th>Interface Flag</th>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MFIB/MRIB</td>
<td>Accept--Indicates that multicast data can be accepted on this interface. For example, for PIM-SM and PIM-SSM, the A flag would appear on the Reverse Path Forwarding (RPF) interface set in the mroute table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note The A flag in the MFIB is cleared if MFIB forwarding has been disabled on the interface using the <code>no ip mfib forwarding input</code> command.</td>
</tr>
</tbody>
</table>
Multicast Forwarding Information Base Overview

Multicast Control Plane

<table>
<thead>
<tr>
<th>Entry Flag</th>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
</table>
| F | MFIB/MRIB | Forward--Indicates that multicast data can be forwarded out this interface. For example, the interfaces that are in the outgoing interface list in the mroute table will have this flag set.

Note The F flag in the MFIB is cleared if the MFIB forwarding has been disabled on the interface using the `no ip mfib forwarding output` command. |
| IC | MFIB/MRIB | Internal Copy--Indicates that a copy of the packet will be processed by the control plane.

The IC flag applies to:
- Static IGMP joins--Indicates that the `ip igmp join-group` interface command is configured.
- Auto-RP groups (224.0.1.39 and 224.0.1.40)--Indicates that the router is participating in Auto-RP.
- Linkscope multicast groups (224.0.0.0/24)--Indicates that the router is listening to linkscope multicast groups, which include PIM hellos, PIM joins and prunes, IGMPv2/v3 reports, and IGP hello packets (Enhanced Interior Gateway Protocol [EIGRP], Open Shortest Path First [OSPF], and Routing Information Protocol Version 2 [RIPv2]). |
<p>| NP | MFIB | Not Platform Switched--Indicates that this interface is not being hardware switched. The NP flag is an MFIB specific flag. |</p>
<table>
<thead>
<tr>
<th>Entry Flag</th>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>MFIB/MRIB</td>
<td>Negate Signal--Indicates that the MFIB will notify the multicast control plane when traffic is received on the specified interface, if the S flag is not set. The NS flag is used for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SPT switchover in PIM-SM--The NS flag is set on the (*, G) accept interface towards the RP to trigger SPT switchover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Asserts--The NS-flag is set on (*, G) and (S, G) forward interfaces to trigger PIM asserts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Liveness checking for active sources in PIM-SM--The NS flag is set on the (S, G) accept interface toward the source to check for active sources.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proxy registers that enable a PIM-DM domain to register within a PIM-SM domain--The NS flag is set on the (S, G) accept interface where the <code>ip pim dense-mode proxy-register</code> command is configured.</td>
</tr>
</tbody>
</table>

Note For PIM-SSM, the accept interface entries will not have the NS flag set. PIM-SSM neither performs SPT-switchover nor liveness checking.

Note For PIM-SM, entries that have the `ip pim spt-threshold infinity` command configured globally will not have the NS flag set on their accept interfaces because SPT switchover will be disabled.
Introduction of New Multicast Forwarding Entries

The MFIB architecture introduces (*, G/mask) entries to describe a group range present in a router’s local group-to-RP mapping cache (static, Auto-RP, Bootstrap Router [BSR]).

(*, G/mask) entries are used by the MFIB to:

- Create (S, G) entries if they are not already present in the MFIB table (for PIM-SM)
- Create (*, G) entries along source-only branches (for bidir-PIM)
- Forward multicast traffic along shared-tree branches (for bidir-PIM)

Note

(*, G/mask) entries are present until the group-to-RP mapping cache either times out or is cleared.

Introduction of PIM Tunnel Interfaces

The MFIB architecture introduces PIM tunnel interfaces. PIM tunnel interfaces are used by the MFIB for the PIM-SM registration process. Two types of PIM tunnel interfaces are used by the MFIB:

- A PIM encapsulation tunnel (PIM Encap Tunnel)
- A PIM decapsulation tunnel (PIM Decap Tunnel)

The PIM Encap Tunnel interface is dynamically created whenever a group-to-RP mapping is learned (via Auto-RP, BSR, or static RP configuration). The PIM Encap Tunnel interface is used to encapsulate multicast packets sent by first-hop designated routers (DRs) that have directly connected sources.

Similar to the PIM Encap Tunnel, the PIM Decap Tunnel interface is dynamically created--with the exception that it is created on the RP only whenever a group-to-rp mapping is learned. The PIM Decap Tunnel interface is used by the RP to decapsulate PIM registers.

Note

PIM tunnels will not appear in the running configuration. To display information about PIM Tunnel interfaces, use the `show ip pim tunnel` command.

The following syslog message will appear when a PIM tunnel interface is created:

```
* %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel<interface_number>, changed state to up
```
MFIB Statistics Support

In the MFIB forwarding model, the MFIB maintains multicast state packet and byte counts and packet rates. The MFIB calculates these statistics as it forwards traffic. There is no periodic polling of these statistics by the control plane, nor does the MFIB periodically upload these statistics to the control plane. The MFIB has an API to these statistics allowing the control plane to query multicast counters when requested from the command-line interface (CLI) for the `show ip mroute count` command and for MIB statistics objects.

Where to Go Next

Proceed to the “Verifying IPv4 Multicast Forwarding Using the MFIB” module.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast verification tasks and examples using the MFIB</td>
<td>“Verifying IPv4 Multicast Forwarding Using the MFIB” module</td>
</tr>
<tr>
<td>IP multicast commands: complete command syntax,</td>
<td>Cisco IOS IP Multicast Command Reference</td>
</tr>
<tr>
<td>command mode, command history, defaults, usage guidelines,</td>
<td></td>
</tr>
<tr>
<td>and examples</td>
<td></td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified standards are supported, and support for existing standards has not been modified.</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported, and support for existing RFCs has not been modified.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for the Multicast Forwarding Information Base

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 2 Feature Information for Multicast Forwarding Information Base Overview

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Multicast Support of the MFIB</td>
<td>15.0(1)M</td>
<td>The MFIB architecture provides modularity and separation between the multicast control plane (PIM and IGMP) and the multicast forwarding plane (MFIB). This architecture is used in Cisco IOS IPv6 and Cisco IOS XR multicast implementations. With the introduction of the IPv4 MFIB infrastructure, the Cisco IOS IPv4 multicast implementation has been enhanced, making the MFIB forwarding model the only forwarding engine used. The following commands were introduced or modified: <code>clear ip mfib counters</code>, <code>debug ip mfib mcache</code>, <code>debug ip mfib adjacency</code>, <code>debug ip mfib db</code>, <code>debug ip mfib fs</code>, <code>debug ip mfib init</code>, <code>debug ip mfib interface</code>, <code>debug ip mfib mrib</code>, <code>debug ip mfib pak</code>, <code>debug ip mfib platform</code>, <code>debug ip mfib ppr</code>, <code>debug ip mfib ps</code>, <code>debug ip mfib signal</code>, <code>debug ip mfib table</code>, <code>debug ip mpacket</code>, <code>debug ip mrib</code>, <code>ip mfib</code>, <code>ip mfib cef</code>, <code>ip mfib forwarding</code>, <code>ip mroutecache</code>, <code>ip multicast cache-headers</code>, <code>ip multicast rate-limit</code>, <code>ip multicast ttl-threshold</code>, <code>ip pim register-rate-limit</code>, <code>show ip mcache</code>, <code>show ip mfib</code>, <code>show ip mfib active</code>, <code>show ip mfib count</code>, <code>show ip mfib interface</code>, <code>show ip mfib route</code>, <code>show ip mfib status</code>, <code>show ip mfib summary</code>, <code>show ip pim interface</code>, <code>show ip pim tunnel</code>.</td>
</tr>
</tbody>
</table>
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Verifying IPv4 Multicast Forwarding Using the MFIB

This module describes how to verify IPv4 multicast forwarding using the Multicast Forwarding Information Base (MFIB) in multicast networks operating in Protocol Independent Multicast (PIM) sparse mode (PIM-SM), Source Specific Multicast (PIM-SSM) mode, or bidirectional PIM (bidir-PIM) mode.

- Finding Feature Information, page 15
- Prerequisites for Verifying IPv4 Multicast Forwarding Using the MFIB, page 15
- Restrictions for Verifying IPv4 Multicast Forwarding Using the MFIB, page 16
- Information About Verifying IPv4 Multicast Forwarding Using the MFIB, page 16
- How to Verify IPv4 Multicast Forwarding Using the MFIB, page 29
- Configuration Examples for Verifying IPv4 Multicast Forwarding Using the MFIB, page 33
- Additional References, page 75
- Feature Information for Verifying IPv4 Multicast Forwarding Using the MFIB, page 76

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Verifying IPv4 Multicast Forwarding Using the MFIB

- Before performing the tasks in this module, you should be familiar with concepts described in the “Multicast Forwarding Information Base Overview” and “IP Multicast Technology Overview” modules.
- The tasks in this module assume that IP multicast has been enabled and that PIM-SM, PIM-SSM, or bidir-PIM have been configured using the relevant tasks described in the “Configuring Basic IP Multicast” module.
Restrictions for Verifying IPv4 Multicast Forwarding Using the MFIB

- You must be running a software image that supports the IPv4 MFIB infrastructure.

Information About Verifying IPv4 Multicast Forwarding Using the MFIB

- Guidelines for Verifying IPv4 Multicast Forwarding Using the MFIB, page 16
- Common Commands for Verifying IPv4 Multicast Forwarding Using the MFIB, page 16
- Common Mroute Flags, page 17
- Common MRIB Flags, page 18
- Common MFIB Flags, page 19

Guidelines for Verifying IPv4 Multicast Forwarding Using the MFIB

When you verify IPv4 multicast forwarding using the MFIB in PIM network environments, a useful approach is to begin the verification process on the last-hop designated router (DR), and then continue the verification process on the routers along the SPT for PIM-SM or PIM-SSM (or on the shared tree for bidir-PIM) until the first-hop DR has been reached. The goal of the verification is to ensure that IP multicast traffic is being forwarded properly through an IP multicast network.

Common Commands for Verifying IPv4 Multicast Forwarding Using the MFIB

The table describes the common commands used to verify multicast forwarding using the MFIB.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description and Purpose</th>
</tr>
</thead>
</table>
| show ip igmp groups | Displays the multicast groups with receivers that are directly connected to the router and that were learned through Internet Group Management Protocol (IGMP).
<p>| | • Use this command to confirm that the IGMP cache is being properly populated on the last-hop DR for the groups that receivers on the LAN have joined. |
| show ip mfib | Displays the multicast forwarding entries within the MFIB. |</p>
<table>
<thead>
<tr>
<th>Command</th>
<th>Description and Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip mrib route</td>
<td>Displays entries in the Multicast Routing Information Base (MRIB) table set by PIM, IGMP, or the MFIB.</td>
</tr>
<tr>
<td>show ip mroute</td>
<td>Displays the contents of the multicast routing (mroute) table.</td>
</tr>
<tr>
<td>show ip pim rp mapping</td>
<td>Displays all group-to-Rendezvous Point (RP) mappings of which the router is aware (either configured or learned from Auto-RP or bootstrap router [BSR]). Note: The <code>show ip pim rp mapping</code> command does not apply to routers in a PIM-SSM network because PIM-SSM does not use rendezvous points (RPs).</td>
</tr>
</tbody>
</table>

Common Mroute Flags

When you verify multicast forwarding, it is helpful to start by looking at the control plane using the `show ip mroute` command. The table describes some of the common flags that you will observe in the output of the `show ip mroute` command when verifying multicast forwarding.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Flags (All Routers)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Sparse—Entry is operating in sparse mode.</td>
</tr>
<tr>
<td>s</td>
<td>SSM—GroupEntry is operating in SSM mode.</td>
</tr>
<tr>
<td>B</td>
<td>B Bidir—GroupEntry is operating in bidirectional mode.</td>
</tr>
<tr>
<td>Last-Hop DR Flags</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Connected—Indicates that an IGMPv2 report for the multicast group was received.</td>
</tr>
<tr>
<td>I</td>
<td>Received Source Specific Host Report—Indicates that an IGMPv3 report for the multicast group was received.</td>
</tr>
</tbody>
</table>
Common MRIB Flags

When you verify multicast forwarding, it is helpful to confirm the communication between the control plane and the MFIB by examining the MRIB using the `show ip mrib route` command. The table describes some of the common flags that you will encounter in the output of the `show ip mrib route` command when verifying multicast forwarding.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Local—Indicates that the router itself is a member of the multicast group. Examples are groups that are joined locally by the <code>ip igmp join-group</code> command, the <code>ip sap listen</code> commands, and the well-known Auto-RP groups, 224.0.1.39 and 224.0.1.40. Note Locally joined groups are process switched.</td>
</tr>
<tr>
<td>J</td>
<td>Joined SPT—Indicates that the SPT threshold is set to 0 kbps and the next (S, G) packet received down the shared tree will trigger an (S, G) join in the direction of the source. Note If the SPT threshold is set to infinity (using the <code>ip pim spt-threshold infinity</code> command), the J flag will not be set and all (S, G) packets will stay on the shared tree.</td>
</tr>
<tr>
<td>F</td>
<td>Register Flag—Indicates that the router is a candidate to register for the multicast group.</td>
</tr>
<tr>
<td>T</td>
<td>SPT-bit Set—Indicates that packets have been received on the SPT.</td>
</tr>
<tr>
<td>P</td>
<td>Pruned—Entry is in a prune state. Multicast traffic for the multicast group will be dropped by the router.</td>
</tr>
</tbody>
</table>

Information About Verifying IPv4 Multicast Forwarding Using the MFIB

When you verify multicast forwarding, it is helpful to confirm the communication between the control plane and the MFIB by examining the MRIB using the `show ip mrib route` command. The table describes some of the common flags that you will encounter in the output of the `show ip mrib route` command when verifying multicast forwarding.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Local—Indicates that the router itself is a member of the multicast group. Examples are groups that are joined locally by the <code>ip igmp join-group</code> command, the <code>ip sap listen</code> commands, and the well-known Auto-RP groups, 224.0.1.39 and 224.0.1.40. Note Locally joined groups are process switched.</td>
</tr>
<tr>
<td>J</td>
<td>Joined SPT—Indicates that the SPT threshold is set to 0 kbps and the next (S, G) packet received down the shared tree will trigger an (S, G) join in the direction of the source. Note If the SPT threshold is set to infinity (using the <code>ip pim spt-threshold infinity</code> command), the J flag will not be set and all (S, G) packets will stay on the shared tree.</td>
</tr>
<tr>
<td>F</td>
<td>Register Flag—Indicates that the router is a candidate to register for the multicast group.</td>
</tr>
<tr>
<td>T</td>
<td>SPT-bit Set—Indicates that packets have been received on the SPT.</td>
</tr>
<tr>
<td>P</td>
<td>Pruned—Entry is in a prune state. Multicast traffic for the multicast group will be dropped by the router.</td>
</tr>
</tbody>
</table>
Common MFIB Flags

When you verify multicast forwarding, it is important to examine the MFIB using the `show ip mfib` command to ensure that multicast traffic is being forwarded as expected. This section describes some of the common flags that you will observe in the output of the `show ip mfib` command when verifying multicast forwarding.

- C Flag, page 20
- C Flag Sample Output, page 20
- K Flag, page 21
- K Flag Sample Output, page 21
- IA Flag, page 22
- IA Flag Sample Output, page 22
- A Flag, page 23
- A Flag Sample Output, page 23
- F Flag, page 24
- F Flag Sample Output, page 24
- NS Flag, page 25
- IC Flag, page 25
- IC Flag Sample Output, page 26
- PIM Tunnel Interfaces, page 28
C Flag

The table describes the C flag.

<table>
<thead>
<tr>
<th>Entry Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Connected--Indicates that the MFIB will inform the multicast control plane when it receives traffic from a directly connected source. This flag is used for multicast groups running in PIM-SM or PIM-DM. For PIM-SM, it triggers PIM registration. For PIM-DM, it triggers dense mode flooding.</td>
</tr>
</tbody>
</table>

Note PIM-SSM and bidir-PIM MFIB entries will not have the C flag set.

C Flag Sample Output

The following is sample output from the `show ip mfib` command. In this example, the output has been filtered to display only entries that have the C flag set.

```
RP# show ip mfib | inc Flags: C
(*,224.0.0.0/4) Flags: C
(*,239.1.1.1) Flags: C
(*,224.0.1.39) Flags: C
(*,224.0.1.40) Flags: C
```

- **Well-Known Groups**, page 20
- **Standard Multicast Group Entry**, page 21

Well-Known Groups

(*, 224.0.0.0/4) Flags: C

This entry indicates that a directly connected check is being performed for the multicast range 224.0.0.0/4. The assumption is that this range is in the group-to-RP mapping cache. If it is not in the group-to-RP mapping cache, this entry will not appear. (*, G/m) parent entries, such as this entry, are used when a match for a (*, G) or (S, G) entry is not found. When traffic from a directly connected source matches a parent entry, the appropriate (*, G) and (S, G) entries in the MFIB, MRIB, and mroute tables will be created.

(*, 224.0.1.39) Flags: C

This entry indicates that a directly connected check is being performed for the Auto-RP Announce multicast group. When traffic from a directly connected source matches this entry and no corresponding (S, G) entry is found, the appropriate (S, G) entry will be created in the MFIB, MRIB, and mroute tables.
(*, 224.0.1.39) appears in routers that are configured as an RP for Auto-RP using the `ip pim send-rp-announce` command. The C flag will always be set for this entry, whether the multicast group is running in PIM-DM or PIM-SM.

(*, 224.0.1.40) Flags: C

This entry indicates that a directly connected check is being performed for the Auto-RP Discovery multicast group. When traffic from a directly connected source matches this entry and no corresponding (S, G) entry is found, the appropriate (S, G) entry will be created in the MFIB, MRIB, and mroute table.

Note

(*, 224.0.1.40) appears on routers that are configured as a Mapping Agent using the `ip pim send-rp-discovery` command. The C flag will always be set for this entry, whether the multicast group is running in PIM-DM or PIM-SM.

Standard Multicast Group Entry

(*, 239.1.1.1) Flags: C

This entry indicates that a directly connected check is being performed for the multicast group 239.1.1.1.

239.1.1.1 was arbitrarily chosen for this example to represent a standard multicast group entry in the `show ip mfib` output; in practice, the multicast group entries that will display in the output will depend upon your multicast network environment and application.

For this example, the (*, 224.0.0.0/4) entry will not be used because (*, 239.1.1.1) is more specific. When traffic from a directly connected source matches the (*, 239.1.1.1) entry and no (S, G) entry match is found, the MFIB will create the appropriate (S, G) entry then inform the multicast control plane to do the same in the mroute table. If the source is sending for the first time, the multicast control plane will then perform PIM registration or dense mode flooding based on the mode running for the multicast group.

K Flag

The table describes the K flag.

Table 7

<table>
<thead>
<tr>
<th>Entry Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Keepalive--Set by PIM to indicate that the entry has been processed and should be stored in the MFIB.</td>
</tr>
</tbody>
</table>

K Flag Sample Output

The K flag is set to indicate that the control plane (PIM/IGMP/TRANS) owns this entry. When the K flag is set the entry stays in the MFIB until the control plane removes it.
If all flags on an entry (or interface) are removed, MFIB deletes the entry. Therefore, the K flag is used to ensure that MFIB keeps the entry in the absence of any other entry flags (or interfaces with flags on the entry).

The following is sample output from the `show ip mfib` command. In this example, the output has been filtered to display only entries that have the K flag set.

```text
Note
The K flag is displayed only when the `verbose` keyword is also specified.
```

```text
RP# show ip mfib verbose | inc Flags: K
ET - Data Rate Exceeds Threshold, K - Keepalive Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
(*,224.0.0.0/4) Flags: K
(*,224.0.1.40) Flags: C K
(*,232.0.0.0/8) Flags: K
(*,239.0.0.0/8) Flags: K
(*,239.1.1.1) Flags: IA K
```

IA Flag

The table describes the IA flag.

<table>
<thead>
<tr>
<th>Entry Flag</th>
<th>IA Flag Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Inherit A Flag--(, G) entries with the IA flag set indicate that the accept check be performed using its (, G/mask) parent entry. In other words, the accept check is used to inherit interfaces with the A flag set in the (*, G/m) parent entry.</td>
</tr>
</tbody>
</table>

Note: The IA flag is used for bidir-PIM entries.

IA Flag Sample Output

In the following output from the `show ip mfib` and `show ip pim rp-mapping` commands, the multicast group 239.195.1.1 is running bidir-PIM and there are two entries: (*, 239.195.1.1) and (*, 239.195.0.0/16). The (*, 239.195.1.1) entry indicates that there is an interested receiver in the network. The parent entry, (*, 239.195.0.0/16), indicates that there is a bidir-PIM group-to-RP mapping. The (*, 239.195.1.1) entry will be used for forwarding multicast traffic for the multicast group 239.195.1.1. The (*, 239.195.1.1) entry will also have the IA flag set, indicating it will inherit the following interfaces from its parent entry for performing accept checks: Serial interface 4/0, Serial interface 2/0, GigabitEthernet interface 0/0/0, and Null interface 0.

Note: The portions of output relevant to the IA flag are highlighted in bold.

```text
Router# show ip mfib 239.195.1.1
(*,239.195.1.1) Flags: IA
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial4/0 Flags: F
```
A Flag

The table describes the A flag.

<table>
<thead>
<tr>
<th>I/O Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Accept—Indicates that multicast data can be accepted on this interface. For example, for PIM-SM and PIM-SSM, the A flag would appear on the Reverse Path Forwarding (RPF) interface set in the mroute table.</td>
</tr>
</tbody>
</table>

Note The A flag in the MFIB is cleared if MFIB forwarding has been disabled on the interface using the `no ip mfib forwarding input` command.

A Flag Sample Output

Interfaces with the A flag set in the MFIB correspond to the incoming interfaces for their respective mroute entries, as shown in the following output for the multicast group 239.1.1.1:

Note The portions of sample output relevant to the A flag are highlighted in bold.

```
Router# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
   SW Forwarding: 366/0/28/0, Other: 0/0/0
Serial4/0 Flags: A
NS
GigabitEthernet0/0/0 Flags: F NS
   Pkts: 366/0
(192.168.1.2,239.1.1.1) Flags:
   SW Forwarding: 107/10/28/2, Other: 1/1/0
Serial2/0 Flags: A
```
F Flag

The table describes the F flag.

Table 10

<table>
<thead>
<tr>
<th>I/O Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Forward--Indicates that multicast data can be forwarded out this interface. For example, the interfaces that are in the outgoing interface list in the mroute table will have this flag set.</td>
</tr>
</tbody>
</table>

Note The F flag in the MFIB is cleared if the MFIB forwarding has been disabled on the interface using the `no ip mfib forwarding output` command.

F Flag Sample Output

Interfaces with the F flag set in the MFIB correspond to interfaces in the outgoing interface list for their respective mroute entries, as shown in the following output for the multicast group 239.1.1.1:

The portions of sample output relevant to the F flag are highlighted in bold.
Outgoing interface list:
GigabitEthernet0/0/0,
Forward/Sparse, 00:00:03/00:02:59

NS Flag

The table describes the NS flag.

<table>
<thead>
<tr>
<th>I/O Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>Negate Signal--Indicates the MFIB will notify the multicast control plane when traffic is received on the specified interface, if the S flag is not set. The NS flag is used for:</td>
</tr>
</tbody>
</table>

- SPT switchover in PIM-SM--The NS flag is set on the (*, G) accept interface toward the RP to trigger SPT switchover.
- Asserts--The NS flag is set on (*, G) and (S, G) forward interfaces to trigger PIM asserts.
- Liveness checking for active sources in PIM-SM--The NS flag is set on the (S, G) accept interface toward the source to check for active sources.
- Proxy-registers that enable a PIM-DM domain to register within a PIM-SM domain--The NS flag is set on the (S, G) accept interface where the `ip pim dense-mode proxy-register` command is configured.

Note For PIM-SSM, the accept interface entries will not have the NS flag set. PIM-SSM neither performs SPT-switchover nor liveness checking.

Note For PIM-SM, entries that have `ip pim spt-threshold infinity` configured globally will not have the NS flag set on their accept interfaces because SPT switchover will be disabled.

IC Flag

The table describes the IC flag.
Table 12 IC Flag Description

<table>
<thead>
<tr>
<th>I/O Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>Internal Copy--Indicates that a copy of the packet will be processed by the control plane. The IC flag applies to:</td>
</tr>
<tr>
<td></td>
<td>• Static IGMP joins--Indicates that the ip igmp join-group interface command is configured.</td>
</tr>
<tr>
<td></td>
<td>• Auto-RP groups (224.0.1.39 and 224.0.1.40)--Indicates that the router is participating in Auto-RP.</td>
</tr>
<tr>
<td></td>
<td>• Linkscope multicast groups (224.0.0.0/24)--Indicates that the router is listening to linkscope multicast groups, which include PIM hellos, PIM joins and prunes, IGMPv2/v3 reports, and Interior Gateway Protocol hello packets (Enhanced Interior Gateway Routing Protocol [EIGRP], Open Shortest Path First [OSPF], and Routing Information Protocol version 2 [RIPv2]).</td>
</tr>
</tbody>
</table>

IC Flag Sample Output

Note

The configuration lines and portions of sample output relevant to the IC flag are highlighted in bold.

Static IGMP Join

The following example configures a static IGMP join for multicast group 239.1.1.1 under GigabitEthernet interface 0/0/0:

```
interface GigabitEthernet0/0/0
ip address 192.168.7.7 255.255.255.0
ip pim sparse-mode
ip igmp join-group 239.1.1.1
```

The following sample output from the `show ip mfib` command verifies that the IC flag is set for GigabitEthernet interface 0/0/0:

```
Router# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
  SW Forwarding: 366/0/28/0, Other: 0/0/0
  Serial4/0 Flags: A NS
GigabitEthernet0/0/0
  Flags: F IC
  NS
  Pkts: 366/0
(192.168.1.2,239.1.1.1) Flags:
  SW Forwarding: 3978/10/28/2, Other: 1/1/0
  Serial2/0 Flags: A
GigabitEthernet0/0/0
  Flags: F IC
```
The `ip igmp static-group` command will not set the IC flag.

Auto-RP Groups 224.0.1.39 and 224.0.1.40

The following output from the `show ip igmp group` and `show ip mfib` command confirms that this router is both an RP and Mapping Agent and has the IC flag set to process switch Auto-RP multicast packets.

All routers, including the RP, will join the multicast group 224.0.1.40. In addition to the multicast group 224.0.1.40, Mapping Agents will also join 224.0.1.39.
Serial1/0 Flags: F NS
Pkts: 0/0

Linkscope Multicast Groups 224.0.0.0/24

The following output from the `show ip mfib linkscope` command confirms that the IC flag is set to process multicast control packets:

```
Router# show ip mfib linkscope

(*,224.0.0.1) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  Loopback0 Flags: IC
  Serial4/0 Flags: IC
  Serial3/0 Flags: IC
  Serial2/0 Flags: IC
  GigabitEthernet1/0/0 Flags: IC
  GigabitEthernet0/0/0 Flags: IC

(*,224.0.0.2) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  Loopback0 Flags: IC
  Serial4/0 Flags: IC
  Serial3/0 Flags: IC
  Serial2/0 Flags: IC
  GigabitEthernet1/0/0 Flags: IC
  GigabitEthernet0/0/0 Flags: IC

(*,224.0.0.13) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  Loopback0 Flags: IC
  Serial4/0 Flags: IC
  Serial3/0 Flags: IC
  Serial2/0 Flags: IC
  GigabitEthernet1/0/0 Flags: IC
  GigabitEthernet0/0/0 Flags: IC

(*,224.0.0.22) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  Loopback0 Flags: IC
  Serial4/0 Flags: IC
  Serial3/0 Flags: IC
  Serial2/0 Flags: IC
  GigabitEthernet1/0/0 Flags: IC
  GigabitEthernet0/0/0 Flags: IC
```

PIM Tunnel Interfaces

PIM tunnel interfaces are used by MFIB for the PIM-SM registration process. Two types of PIM tunnel interfaces are used by the MFIB:

- A PIM encapsulation tunnel (PIM Encap Tunnel)
- A PIM decapsulation tunnel (PIM Decap Tunnel)

The PIM Encap Tunnel is dynamically created whenever a group-to-RP mapping is learned (via Auto-RP, BSR, or static RP configuration). The PIM Encap Tunnel is used to encapsulate multicast packets sent by first-hop DRs that have directly connected sources.

Similar to the PIM Encap Tunnel, the PIM Decap Tunnel interface is dynamically created--with the exception that it is created on the RP only whenever a group-to-RP mapping is learned. The PIM Decap Tunnel interface is used by the RP to decapsulate PIM registers.

Note
PIM tunnels will not appear in the running configuration.
The following syslog message will appear when a PIM tunnel interface is created:

* %LINEPROTO-5-UPDOWN: Line protocol on Interface Tunnel<interface_number>, changed state to up

How to Verify IPv4 Multicast Forwarding Using the MFIB

- Verifying IPv4 Multicast Forwarding Using the MFIB for PIM-SM PIM-SSM and Bidir-PIM, page 29
- Verifying PIM Tunnel Interfaces for PIM-SM, page 31

Verifying IPv4 Multicast Forwarding Using the MFIB for PIM-SM PIM-SSM and Bidir-PIM

Perform this optional task to verify multicast forwarding using the MFIB in PIM-SM, PIM-SSM, and bidir-PIM networks.

When you verify IPv4 multicast forwarding using the MFIB in PIM network environments, a useful approach is to begin the verification process on the last-hop DR, and then continue the verification process on the routers along the SPT for PIM-SM or PIM-SSM (or on the shared tree for bidir-PIM) until the first-hop DR has been reached. The goal of the verification is to ensure that IP multicast traffic is being forwarded properly through an IP multicast network.

The tasks in this module assume that IP multicast has been enabled and that PIM-SM, PIM-SSM, or bidir-PIM have been configured.

Note
You must be running a Cisco software image that supports the IPv4 MFIB infrastructure.

SUMMARY STEPS

1. enable
2. show ip mroute
3. show ip mrib route
4. show ip mfib
5. show ip pim rp mapping
6. show ip igmp groups

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Router> enable

Step 2
show ip mrouten
Displays the contents of the mroute table.

Router# show ip mrouten

Step 3
show ip mrib routen
Displays the MRIB table.

Router# show ip mrib routen

Step 4
show ip mfib
Displays the forwarding entries and interfaces in the MFIB.

Router# show ip mfib

Step 5
show ip pim rp mapping
Displays all group-to-RP mappings of which the router is aware (either configured or learned from Auto-RP or BSR). Use this command to confirm which router is acting as the RP.

Note The *show ip pim rp mapping* command does not apply to routers in a PIM-SSM network because PIM-SSM does not use RPs.

Sample Output from an RP
The following is sample output from the *show ip pim rp mapping* command. The output confirms that the router in this example is the RP.

Example:

RP# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 01:04:03, expires: 00:02:53

Sample Output from a Non-RP
The following is sample output from the *show ip pim rp mapping* command. The output confirms that this router is not the RP.

Example:

Non-RP# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
Step 6 show ip igmp groups

Displays the multicast groups with receivers that are directly connected to the router and that were learned through IGMP.

Use this command to confirm that the IGMP cache is being properly populated on the last-hop DR for the groups that receivers on the LAN have joined.

Router# show ip igmp groups

Verifying PIM Tunnel Interfaces for PIM-SM

Perform this optional task verify to verify the PIM tunnel interfaces that are used by the MFIB for the PIM-SM registration process. This task can be performed if you suspect that there may be problems related to PIM-SM registration.

SUMMARY STEPS

1. enable
2. show ip pim rp mapping
3. show ip pim tunnel
4. show ip mfib

DETAILED STEPS

Step 1 enable

Enables privileged EXEC mode. Enter your password if prompted.

Router> enable

Step 2 show ip pim rp mapping

Displays all group-to-RP mappings of which the router is aware (either configured or learned from Auto-RP or BSR). Use this command to confirm which router is acting as the RP.

Sample Output from an RP

The following is sample output from the show ip pim rp mapping command. The output confirms that the router in this example is the RP.

Example:

RP# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 224.0.0.0/4
RP 192.168.6.6 (?), v2v1
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 01:04:03, expires: 00:02:53
Sample Output from a Non-RP

The following is sample output from the `show ip pim rp mapping` command. The output confirms that this router is not the RP.

Example:

```plaintext
Non-RP# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
   RP 192.168.6.6 (?), v2v1
     Info source: 192.168.6.6 (?), elected via Auto-RP
     Uptime: 00:40:55, expires: 00:02:45
```

Step 3 `show ip pim tunnel`

Displays the PIM tunnel interfaces used by the MFIB for the PIM-SM registration process.

Sample Output from an RP (show ip pim tunnel)

The following is output from the `show ip pim tunnel` command. The output is used to verify the PIM Encap and Decap Tunnel on the RP.

Example:

```plaintext
RP# show ip pim tunnel
Tunnel0
   Type : PIM Encap
   RP  : 192.168.6.6*
   Source: 192.168.6.6
Tunnel1
   Type : PIM Decap
   RP  : 192.168.6.6*
   Source: -

Note  The asterisk (*) indicates that the router is the RP. The RP will always have a PIM Encap and Decap Tunnel interface.
```

Sample Output from a Non-RP (show ip pim tunnel)

The following is output from the `show ip pim tunnel` command. The output is used to confirm that a PIM Encap Tunnel has been created on a non-RP router.

Example:

```plaintext
Non-RP# show ip pim tunnel
Tunnel0
   Type : PIM Encap
   RP  : 192.168.6.6
   Source: 192.168.6.6
```

Step 4 `show ip mfib`

Displays the forwarding entries and interfaces in the MFIB.

or

`show ip mrib route`

Displays the MRIB table.

Use either the `show ip mfib` command or the `show ip mrib route` command to verify that the entries registering for PIM-SM have the F flag set for the PIM Encap Tunnel.
Configuration Examples for Verifying IPv4 Multicast Forwarding Using the MFIB

- Examples Verifying IPv4 Multicast Forwarding Using the MFIB for PIM-SM, page 33
- Examples Verifying IPv4 Multicast Forwarding Using the MFIB for PIM-SSM, page 49
- Examples Verifying IPv4 Multicast Forwarding Using the MFIB for Bidir-PIM Networks, page 53

Examples Verifying IPv4 Multicast Forwarding Using the MFIB for PIM-SM

This section contains the following examples for verifying multicast forwarding using the MFIB for PIM-SM networks:

Note

The examples in this section were created in a test environment to provide a conceptual view of the multicast environment. The IP addresses, interfaces, and other values are shown as examples only. They do not show real-world deployment values.

- PIM-SM Example Active Sources and Interested Receivers - SPT Switchover, page 33
- PIM-SM Example Active Sources and Interested Receivers - SPT Threshold Set to Infinity, page 38
- PIM-SM Example Source Traffic Only with No Receivers, page 43
- PIM-SM Example Interested Receivers with No Active Sources, page 45

PIM-SM Example Active Sources and Interested Receivers - SPT Switchover
The following example shows how to verify multicast forwarding using the MFIB for PIM-SM in a network environment where there are active sources with interested receivers. This verification example is based on the topology shown in the figure.

Figure 4 PIM-SM Example Topology: Active Sources and Interested Receivers (SPT Switchover)

In this verification example, the following conditions apply:

- All routers have the SPT switchover set to the default (`ip pim spt-threshold 0`).
- Because the SPT threshold is set to 0, all last-hop DRs with interested receivers will perform an SPT switchover when multicast traffic is received on the shared tree.
- During the PIM-SM registration process between the first-hop DR and the RP, a PIM tunnel is used. First-hop DRs will have a PIM Encap Tunnel and the RP will have both a PIM Encap and Decap Tunnel. After the PIM-SM registration process completes, PIM tunnels will not be used for multicast forwarding. For more information, see the Verifying PIM Tunnel Interfaces for PIM-SM, page 31 section.

R1 (First-Hop DR)

R1# show ip pim rp mapping

```
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
  RP 192.168.6.6 (?), v2v1
    Info source: 192.168.6.6 (?), elected via Auto-RP
    Uptime: 03:09:53, expires: 00:02:14
```

R1# show ip mroute 239.1.1.1

```
(*, 239.1.1.1), 00:53:08/stopped, RP 192.168.6.6, flags: SPF
```

In this verification example, the following conditions apply:

- All routers have the SPT switchover set to the default (`ip pim spt-threshold 0`).
- Because the SPT threshold is set to 0, all last-hop DRs with interested receivers will perform an SPT switchover when multicast traffic is received on the shared tree.
- During the PIM-SM registration process between the first-hop DR and the RP, a PIM tunnel is used. First-hop DRs will have a PIM Encap Tunnel and the RP will have both a PIM Encap and Decap Tunnel. After the PIM-SM registration process completes, PIM tunnels will not be used for multicast forwarding. For more information, see the Verifying PIM Tunnel Interfaces for PIM-SM, page 31 section.
Incoming interface: Ethernet1/0, RPF nbr 192.168.123.2
Outgoing interface list: Null
(192.168.1.2, 239.1.1.1), 00:53:08/00:03:12, flags: FT
Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0
Outgoing interface list:
 Ethernet1/0, Forward/Sparse, 00:38:25/00:03:12
R1# show ip mrib route 239.1.1.1
 (*,239.1.1.1) RPF nbr: 192.168.123.2 Flags: C
 Ethernet1/0 Flags: A
 (192.168.1.2,239.1.1.1) RPF nbr: 0.0.0.0 Flags:
 Ethernet0/0 Flags: A
 Ethernet1/0 Flags: F NS
R1# show ip mfib 239.1.1.1
 (*,239.1.1.1) Flags: C
 SW Forwarding: 0/0/0/0, Other: 23058/0/23058
 Ethernet1/0 Flags: A
 (192.168.1.2,239.1.1.1) Flags:
 SW Forwarding: 23059/10/28/2, Other: 8826/0/8826
 Ethernet0/0 Flags: A
 Ethernet1/0 Flags: F NS
 Pkts: 23058/0

R2 (Router Along the SPT)

R2# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R2# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:39:05/00:02:53, RP 192.168.6.6, flags: S
 Incoming interface: Serial2/0, RPF nbr 192.168.26.6
 Outgoing interface list:
 Ethernet1/0, Forward/Sparse, 00:39:05/00:02:53
 (192.168.16.1, 239.1.1.1), 00:03:31/00:02:54, flags: T
 Incoming interface: Serial2/0, RPF nbr 192.168.26.6
 Outgoing interface list:
 Ethernet1/0, Forward/Sparse, 00:03:31/00:02:56
 (192.168.1.2, 239.1.1.1), 00:39:05/00:02:42, flags: PT
 Incoming interface: Ethernet1/0, RPF nbr 192.168.123.1
 Outgoing interface list: Null
R2# show ip mrib route 239.1.1.1
 (*,239.1.1.1) RPF nbr: 192.168.26.6 Flags: C
 Ethernet1/0 Flags: F NS
 Serial2/0 Flags: A
 (192.168.1.2,239.1.1.1) RPF nbr: 192.168.123.1 Flags:
 Ethernet1/0 Flags: A
 (192.168.16.1,239.1.1.1) RPF nbr: 192.168.26.6 Flags:
 Serial2/0 Flags: A
 Ethernet1/0 Flags: F NS
 Pkts: 21343/0
R2# show ip mfib 239.1.1.1
 (*,239.1.1.1) Flags: C
 SW Forwarding: 21343/0/28/0, Other: 0/0/0
 Serial2/0 Flags: A
 Ethernet1/0 Flags: F NS
 Pkts: 21343/0
 (192.168.1.2,239.1.1.1) Flags:
 SW Forwarding: 21643/0/28/0, Other: 1812/1/1811
 Ethernet1/0 Flags: A
 (192.168.16.1,239.1.1.1) Flags:
 SW Forwarding: 2112/10/28/2, Other: 0/0/0
 Serial2/0 Flags: A
 Ethernet1/0 Flags: F NS
 Pkts: 2112/0

R3 (Router Along the SPT)

R3# show ip pim rp mapping
PIM Group-to-RP Mappings

Group(s) 224.0.0.0/4
RP 192.168.6.6 (?), v2v1
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 03:09:53, expires: 00:02:14

R3
* show ip mroute 239.1.1.1
(*, 239.1.1.1), 00:40:32/00:03:19, RP 192.168.6.6, flags: S
Incoming interface: Ethernet1/0, RPF nbr 192.168.123.2
Outgoing interface list:
 Serial3/0, Forward/Sparse, 00:40:32/00:03:19
(192.168.16.1, 239.1.1.1), 00:04:58/00:02:29, flags: T
Incoming interface: Ethernet1/0, RPF nbr 192.168.123.2
Outgoing interface list:
 Serial3/0, Forward/Sparse, 00:04:58/00:03:26
(192.168.1.2, 239.1.1.1), 00:04:58/00:02:26, flags: T
Incoming interface: Ethernet1/0, RPF nbr 192.168.123.1
Outgoing interface list:
 Serial2/0, Forward/Sparse, 00:04:28/00:02:57
 Serial3/0, Forward/Sparse, 00:04:58/00:03:27

R3
* show ip mrib route 239.1.1.1
(*, 239.1.1.1) RPF nbr: 192.168.123.2 Flags: C
Serial3/0 Flags: F NS
Ethernet1/0 Flags: A
(192.168.1.2, 239.1.1.1) RPF nbr: 192.168.123.1 Flags:
 Ethernet1/0 Flags: A
 Serial2/0 Flags: F NS
 Serial3/0 Flags: F NS
(192.168.16.1, 239.1.1.1) RPF nbr: 192.168.123.2 Flags:
 Ethernet1/0 Flags: A
Serial3/0 Flags: F NS

R3
* show ip mfib 239.1.1.1
(*, 239.1.1.1) Flags: C
SW Forwarding: 42686/0/28/0, Other: 0/0/0
Ethernet1/0 Flags: A
Serial3/0 Flags: F NS
Pktks: 42686/0
(192.168.1.2, 239.1.1.1) Flags:
 SW Forwarding: 2984/10/28/2, Other: 0/0/0
 Ethernet1/0 Flags: A
 Serial3/0 Flags: F NS
 Pktks: 2984/0
(192.168.16.1, 239.1.1.1) Flags:
 SW Forwarding: 2984/10/28/2, Other: 0/0/0
 Ethernet1/0 Flags: A
 Serial3/0 Flags: F NS
 Pktks: 2984/0

R4 (Last-Hop DR for Receiver B)

R4
* show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
RP 192.168.6.6 (?), v2v1
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 03:09:53, expires: 00:02:14

R4
* show ip igmp groups 239.1.1.1
IGMP Connected Group Membership
<table>
<thead>
<tr>
<th>Group Address</th>
<th>Interface</th>
<th>Uptime</th>
<th>Expires</th>
<th>Last Reporter</th>
<th>Group Accounted</th>
</tr>
</thead>
<tbody>
<tr>
<td>239.1.1.1</td>
<td>Ethernet0/0</td>
<td>00:06:39</td>
<td>00:02:56</td>
<td>192.168.4.1</td>
<td></td>
</tr>
</tbody>
</table>

R4
* show ip mroute 239.1.1.1
(*, 239.1.1.1), 00:42:12/stopped, RP 192.168.6.6, flags: SJC
Incoming interface: Serial1/0, RPF nbr 192.168.34.3
Outgoing interface list:
 Ethernet0/0, Forward/Sparse, 00:42:12/00:02:02
(192.168.16.1, 239.1.1.1), 00:06:37/00:02:16, flags: JT
Incoming interface: Serial1/0, RPF nbr 192.168.34.3
Outgoing interface list:
 Ethernet0/0, Forward/Sparse, 00:06:37/00:02:02
Verifying IPv4 Multicast Forwarding Using the MFIB

PIM-SM Example Active Sources and Interested Receivers - SPT Switchover

R4# show ip mrib route 239.1.1.1
(*,239.1.1.1) RPF nbr: 192.168.34.3 Flags: C
Serial1/0 Flags: A NS
Ethernet0/0 Flags: F NS
(192.168.1.2,239.1.1.1) RPF nbr: 192.168.34.3 Flags:
Serial1/0 Flags: A
Ethernet0/0 Flags: F NS
(192.168.16.1,239.1.1.1) RPF nbr: 192.168.34.3 Flags:
Serial1/0 Flags: A
Ethernet0/0 Flags: F NS
R4# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
SW Forwarding: 42684/0/28/0, Other: 0/0/0
Serial1/0 Flags: A NS
Ethernet0/0 Flags: F NS
Pkts: 42684
(192.168.1.2,239.1.1.1) Flags:
SW Forwarding: 3980/10/28/2, Other: 0/0/0
Serial1/0 Flags: A
Ethernet0/0 Flags: F NS
Pkts: 3979/1
(192.168.16.1,239.1.1.1) Flags:
SW Forwarding: 3980/10/28/2, Other: 0/0/0
Serial1/0 Flags: A
Ethernet0/0 Flags: F NS
Pkts: 3979/1

R6 (RP and First-Hop DR for Source B)

R6# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:10:53, expires: 00:02:06
R6# show ip mroute 239.1.1.1
(*, 239.1.1.1), 00:58:12/00:03:25, RP 192.168.6.6, flags: SF
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:43:25/00:03:22
 Serial2/0, Forward/Sparse, 00:43:29/00:03:25
(192.168.1.2, 239.1.1.1), 00:58:12/00:02:47, flags: PT
Incoming interface: Serial2/0, RPF nbr 192.168.26.2
Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:43:25/00:03:17, flags: FT
 Serial1/0, Forward/Sparse, 00:43:29/00:03:27
R6# show ip mrib route 239.1.1.1
(*,239.1.1.1), 00:58:12/00:03:25, RP 192.168.6.6, flags: SF
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:43:25/00:03:22
 Serial2/0, Forward/Sparse, 00:43:29/00:03:27
R6# show ip mfib 239.1.1.1
(*,239.1.1.1) RPF nbr: 0.0.0.0 Flags: C
Serial1/0 Flags: F NS
Serial2/0 Flags: F NS
Tunnel1 Flags: A
(192.168.1.2,239.1.1.1) RPF nbr: 192.168.26.2 Flags:
Serial1/0 Flags: A NS
(192.168.16.1,239.1.1.1) RPF nbr: 0.0.0.0 Flags:
Serial1/0 Flags: F NS
Serial2/0 Flags: F NS
R6# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
SW Forwarding: 0/0/0/0, Other: 0/0/0
Tunnel1 Flags: A
Serial2/0 Flags: F NS
R7 (Last-Hop DR for Receiver A)

```
R7# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
RP 192.168.6.6 (7/5), v2v1
   Info source: 192.168.6.6 (?), elected via Auto-RP
   Uptime: 03:09:53, expires: 00:02:14
R7# show ip igmp groups 239.1.1.1
IGMP Connected Group Membership
Group Address    Interface       Uptime    Expires    Last Reporter   Group Accounted
239.1.1.1        Ethernet0/0     00:08:47  00:02:56   192.168.7.1
R7# show ip mroute 239.1.1.1
(*, 239.1.1.1), 00:44:45/stopped, RP 192.168.6.6, flags: SJC
   Incoming interface: Serial4/0, RPF nbr 192.168.67.6
   Outgoing interface list:
      Ethernet0/0, Forward/Sparse, 00:44:45/00:02:47
      (192.168.1.2, 239.1.1.1), 00:08:45/00:02:13, flags: JT
      Incoming interface: Serial2/0, RPF nbr 192.168.37.3
      Outgoing interface list:
      Ethernet0/0, Forward/Sparse, 00:08:45/00:02:47
      (192.168.16.1, 239.1.1.1), 00:08:45/00:02:10, flags: JT
      Incoming interface: Serial4/0, RPF nbr 192.168.67.6
      Outgoing interface list:
      Ethernet0/0, Forward/Sparse, 00:08:45/00:02:47
R7# show ip mrrib route 239.1.1.1
(*,239.1.1.1) RPF nbr: 192.168.67.6 Flags: C
   Serial4/0 Flags: A NS
   Ethernet0/0 Flags: F NS
   (192.168.1.2,239.1.1.1) RPF nbr: 192.168.37.3 Flags:
      Serial2/0 Flags: A
      Ethernet0/0 Flags: F NS
   (192.168.16.1,239.1.1.1) RPF nbr: 192.168.67.6 Flags:
      Serial4/0 Flags: A
      Ethernet0/0 Flags: F NS
R7# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
   SW Forwarding: 43204/028/0, Other: 0/0/0
   Serial4/0 Flags: A NS
   Ethernet0/0 Flags: F NS
   Serial4/0 Flags: A NS
   Ethernet0/0 Flags: F NS
   (192.168.1.2,239.1.1.1) Flags:
      SW Forwarding: 5255/1028/2, Other: 1/1/0
      Serial2/0 Flags: A
      Ethernet0/0 Flags: F NS
      Pkts: 5254/1
   (192.168.16.1,239.1.1.1) Flags:
      SW Forwarding: 5255/1028/2, Other: 0/0/0
      Serial4/0 Flags: A
      Ethernet0/0 Flags: F NS
      Pkts: 5254/1
```
The following example shows how to verify multicast forwarding using the MFIB for PIM-SM in a network environment where there are active sources with interested receivers. This verification example is based on the topology shown in the figure.

Figure 5
PIM-SM Example Topology: Active Sources and Interested Receivers (SPT Threshold Set to Infinity)

For this verification example, the following conditions apply:

- Last-hop DRs R4 and R7 have the SPT threshold set to infinity (configured with the `ip pim spt-threshold infinity` command).

Note
When the SPT threshold is set to infinity, multicast traffic is configured to stay on the shared tree. Last-hop DRs will not perform an SPT switchover.

- During the PIM-SM registration process between the first-hop DR and the RP, a PIM tunnel is used. First-hop DRs will have a PIM Encap Tunnel and the RP will have both a PIM Encap and Decap Tunnel. After the PIM-SM registration process completes, PIM tunnels will not be used for multicast forwarding. For more information, see the Verifying PIM Tunnel Interfaces for PIM-SM, page 31 section.

R1 (First-Hop DR for Source A)

```
R1# show ip pim rp mapping
```
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R1# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:37:29/stopped, RP 192.168.6.6, flags: SPF
 Incoming interface: Ethernet1/0, RPF nbr 192.168.123.2
 Outgoing interface list: Null
R1# show ip mrib route 239.1.1.1
 (*,239.1.1.1) RPF nbr: 192.168.123.2 Flags: C
 Ethernet1/0 Flags: A
 Serial2/0 Flags: A
R1# show ip mfib 239.1.1.1
 (*,239.1.1.1) Flags: C
 SW Forwarding: 13684/10/28/2, Other: 0/0/0
 Ethernet1/0 Flags: A
 Serial2/0 Flags: A
R2 (Router Along SPT for Source A and Shared Tree for Source B)
R2# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R2# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:23:28/00:02:44, RP 192.168.6.6, flags: S
 Incoming interface: Serial2/0, RPF nbr 192.168.123.2
 Outgoing interface list:
 Serial2/0, Forward/Sparse, 00:23:28/00:02:44
 Ethernet1/0, Forward/Sparse, 00:23:28/00:02:44
R2# show ip mrib route 239.1.1.1
 (*,239.1.1.1) RPF nbr: 192.168.123.2 Flags: C
 Ethernet1/0 Flags: A
 Serial2/0 Flags: A
R2# show ip mfib 239.1.1.1
 (*,239.1.1.1) Flags: C
 SW Forwarding: 14084/10/28/2, Other: 0/0/0
 Ethernet1/0 Flags: F NS
 Serial2/0 Flags: A
R3 (Router Along the Shared Tree)
R3# show ip pim rp mapping
Verifying IPv4 Multicast Forwarding Using the MFIB

PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R3# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:23:57/00:03:10, RP 192.168.6.6, flags: S
 Incoming interface: Ethernet1/0, RPF nbr 192.168.123.2
 Outgoing interface list:
 Serial3/0, Forward/Sparse, 00:23:57/00:03:10
R3# show ip mrib route 239.1.1.1
 (*,239.1.1.1.1) RPF nbr: 192.168.123.2 Flags: C
 Serial3/0 Flags: F NS
 Ethernet1/0 Flags: A
R3# show ip mfib 239.1.1.1
 (*,239.1.1.1) Flags: C
 SW Forwarding: 28742/20/28/4, Other: 0/0/0
 Ethernet1/0 Flags: A
 Serial3/0 Flags: F NS
 Pkts: 28742/0

R4 (Last-Hop DR for Receiver B)

R4# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R4# show ip igmp groups 239.1.1.1
 IGMP Connected Group Membership
 Group Address Interface Uptime Expires Last Reporter Group Accounted
 239.1.1.1 Ethernet0/0 00:24:37 00:02:56 192.168.4.1
R4# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:24:35/00:02:35, RP 192.168.6.6, flags: SC
 Incoming interface: Serial1/0, RPF nbr 192.168.34.3
 Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:24:35/00:02:35
 Serial2/0, Forward/Sparse, 00:25:01/00:03:09
(192.168.1.2, 239.1.1.1), 00:39:44/00:03:18, flags: T
 Incoming interface: Serial2/0, RPF nbr 192.168.26.2
 Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:24:57/00:03:09

R6 (RP and First-Hop DR for Source B)

R6# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 224.0.0.0/4
RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:10:53, expires: 00:02:06
R6# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:39:44/00:03:09, RP 192.168.6.6, flags: SF
 Incoming interface: Null, RPF nbr 0.0.0.0
 Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:24:57/00:03:09
 Serial2/0, Forward/Sparse, 00:25:01/00:03:09
(192.168.1.2, 239.1.1.1), 00:39:44/00:03:18, flags: T
 Incoming interface: Serial2/0, RPF nbr 192.168.26.2
 Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:24:57/00:03:09

IP Multicast: MFIB Configuration Guide, Cisco IOS Release 15M&T
Verifying IPv4 Multicast Forwarding Using the MFIB

PIM-SM Example Active Sources and Interested Receivers - SPT Threshold Set to Infinity

(192.168.16.1, 239.1.1.1), 00:39:44/00:02:35, flags: FT
Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0
Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:24:57/00:03:09
 Serial2/0, Forward/Sparse, 00:25:01/00:03:09
R6# show ip mrib route 239.1.1.1
(*,239.1.1.1) RPF nbr: 0.0.0.0 Flags: C
 Serial1/0 Flags: F NS
 Serial2/0 Flags: F NS
 Tunnel2 Flags: A
(192.168.1.2,239.1.1.1) RPF nbr: 192.168.26.2 Flags:
 Serial2/0 Flags: A
 Serial1/0 Flags: F NS
(192.168.16.1,239.1.1.1) RPF nbr: 0.0.0.0 Flags:
 Ethernet0/0 Flags: A
 Serial1/0 Flags: F NS
 Serial2/0 Flags: F NS
R6# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
SW Forwarding: 0/0/0/0, Other: 0/0/0
 Tunnel2 Flags: A
 Serial2/0 Flags: F NS
 Pkts: 0/0
 Serial1/0 Flags: F NS
 Pkts: 0/0
(192.168.1.2,239.1.1.1) Flags:
SW Forwarding: 14978/10/28/2, Other: 39/1/38
 Serial2/0 Flags: A
 Serial1/0 Flags: F NS
 Pkts: 14978/0
(192.168.16.1,239.1.1.1) Flags:
SW Forwarding: 15019/10/28/2, Other: 8827/0/8827
 Ethernet0/0 Flags: A
 Serial2/0 Flags: F NS
 Pkts: 15018/0
 Serial1/0 Flags: F NS
 Pkts: 14978/0
R6# show ip pim tunnel
Tunnel0
 Type : PIM Encap
 RP : 192.168.6.6*
 Source: 192.168.6.6
Tunnel1*
 Type : PIM Decap
 RP : 192.168.6.6*
 Source: -
R7 (Last-Hop DR for Receiver A)

R7# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R7# show ip igmp groups 239.1.1.1
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter Group Accounted
 239.1.1.1 Ethernet0/0 00:25:39 00:02:56 192.168.7.1
R7# show ip mroute 239.1.1.1
(*, 239.1.1.1), 00:25:37/00:02:58, RP 192.168.6.6, flags: SC
 Incoming interface: Serial4/0, RPF nbr 192.168.67.6
 Outgoing interface list:
 Ethernet0/0, Forward/Sparse, 00:25:37/00:02:58
R7# show ip mrib route 239.1.1.1
(*,239.1.1.1) RPF nbr: 192.168.67.6 Flags: C
 Ethernet0/0 Flags: F NS
 Serial4/0 Flags: A
R7# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
PIM-SM Example Source Traffic Only with No Receivers

The following example shows how to verify multicast forwarding using the MFIB for PIM-SM in a network environment where sources are sending traffic without interested receivers. This verification example is based on the topology shown in the figure.

In this verification example, the following conditions apply:

- Source A and Source B are sending traffic for multicast group 239.1.1.1 to first-hop DRs R1 and R6, respectively.
- When R1 and R6 receive the source traffic, they will then check their group-to-RP mapping cache for multicast group 239.1.1.1 to determine the RP. In this case, R6 is the RP.
- After determining the RP, R1 and R6 will then create state and send PIM registers for (Source A, 239.1.1.1) and (Source B, 239.1.1.1) toward the RP.
- Because there are no interested receivers, the RP will send a register stop to R1 and R6 (itself).
- R1 and R6 are the only routers that will have (S, G) state for 239.1.1.1.
- Routers that are not the RP or directly connected to an active source will not create state for (*, 239.1.1.1).

R1 (First-Hop DR for Source A)

R1# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
RP 192.168.6.6 (7), v2v1
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 03:09:53, expires: 00:02:14

R1# show ip mroute 239.1.1.1
Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 239.1.1.1), 00:02:06/stopped, RP 192.168.6.6, flags: SPF
Incoming interface: Ethernet1/0, RPF nbr 192.168.123.2
Outgoing interface list: Null
(192.168.1.2, 239.1.1.1), 00:02:06/00:02:53, flags: FFT
Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0
Outgoing interface list: Null

R1# show ip mrib route 239.1.1.1
(*,239.1.1.1) RPF nbr: 192.168.123.2 Flags: C Ethernet1/0 Flags: A
(192.168.1.2,239.1.1.1) RPF nbr: 0.0.0.0 Flags: Ethernet0/0 Flags: A

R1# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C SW Forwarding: 0/0/0/0, Other: 0/0/0
Ethernet1/0 Flags: A
(192.168.1.2,239.1.1.1) Flags: Ethernet0/0 Flags: A

R1# show ip pim tunnel
Tunnel0
Type : PIM Encap
RP : 192.168.6.6

R6 (RP and First-Hop DR for Source B)

R6# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 224.0.0.0/4
RP 192.168.6.6 (7), v2v1
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 03:10:53, expires: 00:02:06

R6# show ip mroute 239.1.1.1
(*, 239.1.1.1), 00:02:48/stopped, RP 192.168.6.6, flags: SPF
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list: Null
(192.168.1.2, 239.1.1.1), 00:02:42/00:02:17, flags: P
Incoming interface: Serial2/0, RPF nbr 192.168.26.2
Outgoing interface list: Null
(192.168.16.1, 239.1.1.1), 00:02:48/00:02:11, flags: FFT
Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0
Outgoing interface list: Null

R6# show ip mrib route 239.1.1.1
(*,239.1.1.1) RPF nbr: 192.168.26.2 Flags: C Tunnel Flags: A
Serial2/0 Flags: NS
(192.168.16.1,239.1.1.1) RPF nbr: 0.0.0.0 Flags: Ethernet0/0 Flags: A

R6# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C SW Forwarding: 0/0/0/0, Other: 0/0/0
Tunnel Flags: A
(192.168.16.1,239.1.1.1) Flags: Ethernet0/0 Flags: A

R6# show ip pim tunnel
Tunnel0
Type : PIM Encap
RP : 192.168.6.6

Verifying IPv4 Multicast Forwarding Using the MFIB
Source: 192.168.6.6
Tunnel1*
Type : PIM Decap
RP : 192.168.6.6*
Source: -

In this scenario, R2, R3, R4, and R7 have no interested receivers; therefore, they are not on the multicast forwarding path and will not have multicast state. The output for the `show ip mroute`, `show ip mrib route`, and `show ip mfib route` commands would appear only on R2, R3, R4, and R7, as in this example (taken from R2):

R2 (Router Not Along the Multicast Forwarding Path)

```
R2# show ip mroute 239.1.1.1
Group 239.1.1.1 not found
R2# show ip mrib route 239.1.1.1
No matching routes in MRIB route-DB
R2# show ip mfib 239.1.1.1
Group 239.1.1.1 not found
```

Note
The output for the `show ip mroute`, `show ip mrib route`, and `show ip mfib` commands would be the same for R2, R3, R4, and R7 for this scenario.

PIM-SM Example Interested Receivers with No Active Sources

The following example shows how to verify multicast forwarding using the MFIB for PIM-SM in a network environment where there are interested receivers with no active sources. This verification example is based on the topology shown in the figure.

Figure 7 PIM-SM Example Topology: Interested Receivers with No Active Sources

- No active sources
- PIM-SM Group – 239.1.1.1
- Rendezvous Point (RP) 192.168.6.6/32 (Loopback0)

Shared Tree (*, 239.1.1.1)
For this verification example, the following conditions apply:

- Last-hop DRs R4 and R7 also have the SPT threshold set to infinity (configured with the `ip pim spt-threshold infinity` command).

The unicast routing table is used to build the shared tree entry for (*, 239.1.1.1). Shared tree entries are always rooted at the RP. In this scenario, the shared tree from R4 to R6 is through R3 and R2 because R3’s best unicast route (determined by the underlying IGP) is R2. The shared tree for R7 is directly upstream to R6.

- Routers that are not along the shared tree will not create state for (*, 239.1.1.1).

R4 (Last-Hop DR)

```
R4# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
  Info source: 192.168.6.6 (?), elected via Auto-RP
  Uptime: 03:09:53, expires: 00:02:14

R4# show ip igmp groups 239.1.1.1
IGMP Connected Group Membership
Group Address    Interface       Uptime    Expires    Last Reporter   Group Accounted
239.1.1.1        Ethernet0/0     00:03:07  00:02:56   192.168.4.1

R4# show ip mroute 239.1.1.1
(*, 239.1.1.1), 00:03:05/00:02:47, RP 192.168.6.6, flags: SJC
  Incoming interface: Serial1/0, RPF nbr 192.168.34.3
  Outgoing interface list:
    Ethernet0/0, Forward/Sparse, 00:03:05/00:02:47

R4# show ip mrib route 239.1.1.1
(*,239.1.1.1) RPF nbr: 192.168.34.3 Flags: C
  Ethernet0/0 Flags: F NS
  Serial1/0 Flags: A NS

R4# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  Serial1/0 Flags: A NS
  Ethernet0/0 Flags: F NS
  Pkts: 0/0
```

R3 (Router Along the Shared Tree)

```
R4# show ip pim rp mapping
PIM Group-to-RP Mappings
```
Verifying IPv4 Multicast Forwarding Using the MFIB

PIM-SM Example Interested Receivers with No Active Sources

Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R3# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:03:40/00:02:47, RP 192.168.6.6, flags: S
 Incoming interface: Ethernet1/0, RPF nbr 192.168.123.2
 Outgoing interface list:
 Serial3/0, Forward/Sparse, 00:03:40/00:02:47
R3# show ip mrib route 239.1.1.1
 (*,239.1.1.1) RPF nbr: 192.168.123.2 Flags: C
 Serial3/0 Flags: F NS
 Ethernet1/0 Flags: A
R3# show ip mfib 239.1.1.1
 (*,239.1.1.1) Flags: C
 SW Forwarding: 0/0/0/0, Other: 0/0/0
 Ethernet1/0 Flags: A
 Serial3/0 Flags: F NS
 Pkts: 0/0

R2 (Router Along the Shared Tree)

R2# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R2# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:04:05/00:03:20, RP 192.168.6.6, flags: S
 Incoming interface: Serial2/0, RPF nbr 192.168.26.6
 Outgoing interface list:
 Ethernet1/0, Forward/Sparse, 00:04:05/00:03:20
R2# show ip mrib route 239.1.1.1
 (*,239.1.1.1) RPF nbr: 192.168.26.6 Flags: C
 Ethernet1/0 Flags: F NS
 Serial2/0 Flags: A
R2# show ip mfib 239.1.1.1
 (*,239.1.1.1) Flags: C
 SW Forwarding: 0/0/0/0, Other: 0/0/0
 Serial2/0 Flags: A
 Ethernet1/0 Flags: F NS
 Pkts: 0/0

R7 (Last-Hop DR)

R7# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:09:53, expires: 00:02:14
R7# show ip mroute 239.1.1.1
 (*, 239.1.1.1), 00:04:31/00:02:36, RP 192.168.6.6, flags: SJ
 Incoming interface: Serial4/0, RPF nbr 192.168.67.6
 Outgoing interface list:
 Ethernet0/0, Forward/Sparse, 00:04:31/00:02:36
R7# show ip mrib route 239.1.1.1
 (*,239.1.1.1) RPF nbr: 192.168.67.6 Flags: C
 Ethernet0/0 Flags: F NS
 Serial4/0 Flags: A NS
R7# show ip mfib 239.1.1.1
 (*,239.1.1.1) Flags: C
 SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial4/0 Flags: A NS
Ethernet0/0 Flags: F NS
Pkts: 0/0

R6 (RP)

R6# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 224.0.0.0/4
 RP 192.168.6.6 (?), v2v1
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 03:10:53, expires: 00:02:06
R6# show ip mroute 239.1.1.1
(*, 239.1.1.1), 00:05:01/00:03:27, RP 192.168.6.6, flags: S
 Incoming interface: Null, RPF nbr 0.0.0.0
 Outgoing interface list:
 Serial1/0, Forward/Sparse, 00:04:57/00:03:27
 Serial2/0, Forward/Sparse, 00:05:01/00:03:23
R6# show ip mrib route 239.1.1.1
(*,239.1.1.1) RPF nbr: 0.0.0.0 Flags: C
 Serial1/0 Flags: F NS
 Serial2/0 Flags: F NS
 Tunnel Flags: A
R6# show ip mfib 239.1.1.1
(*,239.1.1.1) Flags: C
 SW Forwarding: 0/0/0/0, Other: 0/0/0
 Tunnel Flags: A
 Serial1/0 Flags: F NS
 Pkts: 0/0
 Serial1/0 Flags: F NS
 Pkts: 0/0
R6# show ip pim tunnel
Tunnel10
 Type : PIM Encap
 RP : 192.168.6.6*
 Source: 192.168.6.6
 Tunnel1*
 Type : PIM Decap
 RP : 192.168.6.6*
 Source: -

R1 (Router Not Along the Multicast Forwarding Path)

R1# show ip mroute 239.1.1.1
Group 239.1.1.1 not found
R1# show ip mrib route 239.1.1.1
No matching routes in MRIB route-DB
R1# show ip mfib 239.1.1.1
Group 239.1.1.1 not found

Note
R1 does not have any state for 239.1.1.1 because it does not have an interested receiver, is not along the shared tree path, and does not have a directly connected source.
Examples Verifying IPv4 Multicast Forwarding Using the MFIB for PIM-SSM

The examples in this section were created in a test environment to provide a conceptual view of the multicast environment. The IP addresses, interfaces, and other values are shown as examples only. They do not show real-world deployment values.

• PIM-SSM Example Interested Receivers With or Without Active Sources, page 49
• PIM-SSM Example Source Traffic Only with No Active Receivers, page 51
• PIM-SSM Example Unwanted Sources in the SSM Network, page 52

PIM-SSM Example Interested Receivers With or Without Active Sources

The following example shows how to verify multicast forwarding using the MFIB for PIM-SSM in a network environment where there are interested receivers with or without active sources. This verification example is based on the topology shown in the figure.

For this verification example, the following conditions apply:

• All routers in the network have been configured to run PIM-SSM and have the `ip pim ssm default` command configured globally.
• Source A is sending multicast packets to SSM group 232.1.1.1.
• Receiver A and Receiver B are interested in receiving multicast from Source A, (192.168.1.2, 232.1.1.1).
• Receiver A and Receiver B are using IGMPv3.
Verifying IPv4 Multicast Forwarding Using the MFIB

PIM-SSM Example Interested Receivers With or Without Active Sources

R1 (First-Hop DR for Source A)

R1# show ip mroute 232.1.1.1
(192.168.1.2, 232.1.1.1), 00:07:18/00:03:02, flags: sT
Incoming interface: Ethernet0/0, RPF nbr 0.0.0.0
Outgoing interface list:
 Ethernet1/0, Forward/Sparse, 00:07:18/00:03:02
R1# show ip mrib route 232.1.1.1
(192.168.1.2, 232.1.1.1) RPF nbr: 0.0.0.0 Flags:
 Ethernet1/0 Flags: F NS
 Ethernet0/0 Flags: A
R1# show ip mfib 232.1.1.1
(192.168.1.2, 232.1.1.1) Flags:
 SW Forwarding: 3039/10/28, Other: 0/0/0
 Ethernet0/0 Flags: A
 Ethernet1/0 Flags: F NS
 Pkts: 3039/0

R3 (Router Along the SPT)

R3# show ip mroute 232.1.1.1
(192.168.1.2, 232.1.1.1), 00:08:00/00:03:13, flags: sT
Incoming interface: Ethernet1/0, RPF nbr 0.0.0.0
Outgoing interface list:
 Ethernet1/0, Forward/Sparse, 00:08:00/00:03:13
 Serial2/0, Forward/Sparse, 00:08:00/00:02:59
R3# show ip mrib route 232.1.1.1
(192.168.1.2, 232.1.1.1) RPF nbr: 192.168.34.3 Flags:
 Serial3/0 Flags: F NS
 Serial2/0 Flags: F NS
 Ethernet1/0 Flags: A
R3# show ip mfib 232.1.1.1
(192.168.1.2, 232.1.1.1) Flags:
 SW Forwarding: 3514/10/28, Other: 0/0/0
 Ethernet1/0 Flags: A
 Serial3/0 Flags: F NS
 Serial2/0 Flags: F NS
 Pkts: 3514/0

R4 (Last-Hop DR for Receiver B)

R4# show ip igmp groups 232.1.1.1
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter Group Accounted
232.1.1.1 Ethernet0/0 00:12:46 stopped 192.168.7.1
R4# show ip mroute 232.1.1.1
(192.168.1.2, 232.1.1.1), 00:08:42/stopped, flags: sTI
Incoming interface: Serial1/0, RPF nbr 192.168.34.3
Outgoing interface list:
 Ethernet0/0, Forward/Sparse, 00:08:42/00:00:17
R4# show ip mrib route 232.1.1.1
(192.168.1.2, 232.1.1.1) RPF nbr: 192.168.34.3 Flags:
 Serial1/0 Flags: A
 Ethernet0/0 Flags: F NS
R4# show ip mfib 232.1.1.1
(192.168.1.2, 232.1.1.1) Flags:
 SW Forwarding: 3786/10/28, Other: 0/0/0
 Serial1/0 Flags: A
 Ethernet0/0 Flags: F NS
 Pkts: 3786/0

R7 (Last-Hop DR for Receiver A)

R7# show ip igmp groups 232.1.1.1
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter Group Accounted
232.1.1.1 Ethernet0/0 00:12:24 stopped 192.168.7.1
The following example shows how to verify multicast forwarding using the MFIB for PIM-SSM in a network environment where there is an active source with no interested receivers. This verification example is based on the topology shown in the figure.

For this verification example, the following conditions apply:

- All routers in the network have been configured to run PIM-SSM and have the `ip pim ssm default` command configured globally.
- Source A is sending multicast packets to SSM group 232.1.1.1.
- Source B is not actively sending.
- There are no interested receivers in the network.

Routers that support the MFIB will not create state for SSM multicast groups until a join has been requested by an interested receiver, which means that any routers with active sources sending to an SSM group will not have multicast state. Because there are no interested receivers in this network, none of the routers will create state for (192.168.1.2, 232.1.1.1).
The following is output from the `show ip mroute`, `show ip mrib route`, and `show ip mfib` commands taken from R1:

```
R1
R1# show ip mroute 239.1.1.1
Group 239.1.1.1 not found
R1# show ip mrib route 239.1.1.1
No matching routes in MRIB route-DB
R1# show ip mfib 239.1.1.1
Group 239.1.1.1 not found
```

Note

Because there are no interested receivers in this network, the output from the `show ip mroute`, `show ip mrib route`, and `show ip mfib` commands would be the same on R3, R4, and R7 in this example scenario.

PIM-SSM Example Unwanted Sources in the SSM Network

The following example shows how to verify multicast forwarding using the MFIB for PIM-SSM in a network environment where there is an unwanted source. This verification example is based on the topology shown in the figure.

Figure 10 PIM-SSM Example Topology: Unwanted Sources in the SSM Network

For this verification example, the following conditions apply:

- All routers in the network have been configured to run PIM-SSM and have the `ip pim ssm default` command configured globally.
- Receiver A and Receiver B are only interested in receiving multicast from Source A, (192.168.1.2, 232.1.1.1).
- Unwanted source, Source B, is sending traffic to 232.1.1.1.
Even though Source B is directly connected to R3, R3 will not create state for 232.1.1.1. Multicast traffic from Source B sending to SSM group 232.1.1.1, thus, will be immediately dropped by the router.

R3 (First-Hop DR for Unwanted Source B)

```
R3# show ip mroute 232.1.1.1 192.168.3.1
R3# show ip mrib route 232.1.1.1 192.168.3.1
No matching routes in MRIB route-DB
R3# show ip mfib 232.1.1.1 192.168.3.1
(192.168.3.1,232.1.1.1) entry not found
```

Likewise, R1, R4, and R7 will also have no multicast state for (192.168.3.1, 232.1.1.1) and any directly connected sources sending to 232.1.1.1 will be dropped.

Examples Verifying IPv4 Multicast Forwarding Using the MFIB for Bidir-PIM Networks

This section contains the following examples for verifying multicast forwarding using the MFIB for bidir-PIM networks:

- **Bidir-PIM Example Active Sources with Interested Receivers**, page 53
- **Bidir-PIM Example Active Sources with No Interested Receivers**, page 60
- **Bidir-PIM Example No Active Sources with Interested Receivers**, page 65
- **Bidir-PIM Example No Active Sources with No Interested Receivers**, page 71

Bidir-PIM Example Active Sources with Interested Receivers
The following example shows how to verify multicast forwarding using the MFIB for bidir-PIM in a network environment where there are active sources and interested receivers. This verification example is based on the topology shown in the figures.

Figure 11 Bidir-PIM Example Topology: Active Sources with Interested Receivers

Source A – 192.168.1.2
Source B – 192.168.6.1
Source C – 192.168.7.1

Bidir Rendezvous Point (RP) 192.168.254.6/32 (Loopback1)

Bidir Group Range - 239.195.0.0/16

All sources are sending to 239.195.1.1

Note: Source C & Receiver A are the same host.
For this verification example, the following conditions apply:

- Entries for (*, 239.195.0.0/16) are created by the control plane based on the PIM group-to-RP mappings on all routers.
- Entries for (*, 239.195.1.1) will only be created when IGMP joins are initiated by interested receivers joining this group. As a result, all routers along the shared tree between the RP and the last-hop DRs that have interested receivers will have state for (*, 239.195.1.1).

Note

R1 will not have state for (*, 239.195.1.1) because it is not between the RP and the last-hop DRs.

- If both (*, 239.195.0.0/26) and (*, 239.195.1.1) entries are present in a router, the more specific entry, (*, 239.195.1.1) will be used for forwarding.
- All source traffic for this scenario will go to the RP and then out the appropriate interfaces where there are interested receivers.
- Source traffic received by the RP is never sent back out the same interface it was received on.
• In general, multicast packet forwarding can be verified by observing the “SW Forwarding” counter in the show ip mfib output for the most specific entry available in the MFIB. If multicast is being forwarded, this counter will increment.

R1 (First-Hop DR for Source A)

R1# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 1d02h, expires: 00:02:09
R1# show ip pim interface df
* implies this system is the DF
Interface RP DF Winner Metric Uptime
Ethernet0/0 192.168.254.6 *192.168.1.1 75 1d02h
Ethernet1/0 192.168.254.6 192.168.123.2 65 1d02h

R1# show ip mroute 239.195.1.1
Group 239.195.1.1 not found
R1# show ip mrrib route 239.195.1.1
No matching routes in MRIB route-DB
R1# show ip mfib 239.195.1.1
Group 239.195.1.1 not found
R1# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d02h/-, RP 192.168.254.6, flags: B
 Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.123.2
 Incoming interface list:
 Ethernet0/0, Accepting/Sparse
 Ethernet1/0, Accepting/Sparse
R1# show ip mrrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.123.2 Flags:
 Ethernet0/0 Flags: A
 Null0 Flags: A
 Ethernet1/0 Flags: A F
R1# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
 SW Forwarding: 14693/30/28/6, Other: 0/0/0
 Serial2/0 Flags: F
 Ethernet0/0 Flags: F
 Null0 Flags: A

R2 (Router Along the Multicast Forwarding Path)

R2# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 1d02h, expires: 00:02:45
R2# show ip pim interface df
* implies this system is the DF
Interface RP DF Winner Metric Uptime
Ethernet1/0 192.168.254.6 *192.168.123.2 65 1d02h
Serial2/0 192.168.254.6 192.168.26.6 0 1d02h
R2# show ip mroute 239.195.1.1
(*, 239.195.1.1), 02:13:50/00:02:36, RP 192.168.254.6, flags: B
 Bidir-Upstream: Serial2/0, RPF nbr 192.168.26.6
 Outgoing interface list:
 Ethernet1/0, Forward/Sparse, 02:13:50/00:02:36
 Serial2/0, Bidir-Upstream/Sparse, 02:13:50/00:00:00
R2# show ip mrrib route 239.195.1.1
(*,239.195.1.1) RPF nbr: 192.168.26.6 Flags: IA
 Ethernet1/0 Flags: F
 Serial2/0 Flags: F
R2# show ip mfib 239.195.1.1
(*,239.195.1.1) Flags: IA
 SW Forwarding: 14693/30/28/6, Other: 0/0/0
 Serial2/0 Flags: F
Pkts: 4897/0
Ethernet1/0 Flags: F
Pkts: 9796/0
R2# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d02h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Serial2/0, RPF nbr: 192.168.26.6
Incoming interface list:
Ethernet1/0, Accepting/Sparse
Serial2/0, Accepting/Sparse
R2# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.26.6 Flags:
Ethernet1/0 Flags: A
Null0 Flags: A
Serial2/0 Flags: A F
R2# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial2/0 Flags: A F
Pkts: 0/0
Ethernet1/0 Flags: A
Null0 Flags: A
R2# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d02h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.26.6
Incoming interface list:
Ethernet1/0, Accepting/Sparse
Serial2/0, Accepting/Sparse
R2# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.26.6 Flags:
Ethernet1/0 Flags: A
Null0 Flags: A
Serial2/0 Flags: A F
R2# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial2/0 Flags: A F
Pkts: 0/0
Ethernet1/0 Flags: A
Null0 Flags: A
R2# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.26.6 Flags:
Ethernet1/0 Flags: A
Null0 Flags: A
Serial2/0 Flags: A F
R2# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial2/0 Flags: A F
Pkts: 0/0
Ethernet1/0 Flags: A
Null0 Flags: A
R2# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d02h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.26.6
Incoming interface list:
Ethernet1/0, Accepting/Sparse
Serial2/0, Accepting/Sparse
R2# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.26.6 Flags:
Ethernet1/0 Flags: A
Null0 Flags: A
Serial2/0 Flags: A F
R2# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial2/0 Flags: A F
Pkts: 0/0
Ethernet1/0 Flags: A
Null0 Flags: A
R3 (Router Along the Multicast Forwarding Path)

R3# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 1d02h, expires: 00:02:25
R3# show ip pim interface df
* implies this system is the DF
Interface RP DF Winner Metric Uptime
Ethernet0/0 192.168.254.6 *192.168.3.3 75 1d02h
Ethernet1/0 192.168.254.6 192.168.123.2 65 1d02h
Serial2/0 192.168.254.6 192.168.37.7 65 1d02h
Serial3/0 192.168.254.6 *192.168.34.3 75 1d02h
R3# show ip mroute 239.195.1.1
(*,239.195.1.1), 02:14:09/00:03:08, RP 192.168.254.6, flags: B
Bidir-Upstream: Ethernet1/0, RPF nbr 192.168.123.2
Outgoing interface list:
Serial3/0, Forward/Sparse, 02:14:09/00:03:08
Ethernet1/0, Bidir-Upstream/Sparse, 02:14:09/00:00:00
R3# show ip mrib route 239.195.1.1
(*,239.195.1.1) RPF nbr: 192.168.123.2 Flags: IA
Serial3/0 Flags: F
Ethernet1/0 Flags: F
R3# show ip mfib 239.195.1.1
(*,239.195.1.1) Flags: IA
SW Forwarding: 15263/30/28/6, Other: 0/0/0
Serial3/0 Flags: F
Pkts: 15263/0
Ethernet1/0 Flags: F
Pkts: 0/0
R3# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d02h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.123.2
Incoming interface list:
Serial3/0, Accepting/Sparse
Ethernet0/0, Accepting/Sparse
Ethernet1/0, Accepting/Sparse
R3# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.123.2 Flags:
Serial3/0 Flags: A
Ethernet0/0 Flags: A
Null0 Flags: A
Ethernet1/0 Flags: A F
R3# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial3/0 Flags: A
Ethernet1/0 Flags: A F
R4 (Last-Hop DR for Receiver B)

R4# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 1d02h, expires: 00:02:10

R4# show ip pim interface df
 * Implies this system is the DF
 Interface RP DF Winner Metric Uptime
 Ethernet0/0 192.168.254.6 *192.168.4.4 139 1d02h
 Serial1/0 192.168.254.6 192.168.34.3 75 1d02h

R4# show ip igmp groups 239.195.1.1
 IGMP Connected Group Membership
 Group Address Interface Uptime Expires Last Reporter Group
 Accounted
 239.195.1.1 Ethernet0/0 02:14:25 00:02:25 192.168.4.1

R4# show ip mroute 239.195.1.1
 (*,239.195.1.1) 02:14:25/00:02:25, RP 192.168.254.6, flags: BC
 Bidir-Upstream: Serial1/0, RPF nbr 192.168.34.3
 Outgoing interface list:
 Ethernet0/0, Forward/Sparse, 02:14:25/00:02:25
 Serial1/0, Bidir-Upstream/Sparse, 02:14:25/00:00:00

R4# show ip mrib route 239.195.1.1
 (*,239.195.1.1) RPF nbr: 192.168.34.3 Flags: IA
 Ethernet0/0 Flags: F
 Serial1/0 Flags: F

R4# show ip mfib 239.195.1.1
 (*,239.195.1.1) Flags: IA
 SW Forwarding: 15729/30/28/6, Other: 0/0/0
 Serial1/0 Flags: F
 Ethernet0/0 Flags: F
 Pkts: 15729/0

R4# show ip mroute 239.195.0.0/16
 (*,239.195.0.0/16), 1d02h/-, RP 192.168.254.6, flags: B
 Bidir-Upstream: Serial1/0, RPF nbr 192.168.34.3
 Incoming interface list:
 Ethernet0/0, Accepting/Sparse
 Serial1/0, Accepting/Sparse

R4# show ip mrib route 239.195.0.0/16
 (*,239.195.0.0/16) RPF nbr: 192.168.34.3 Flags: Ethernet0/0 Flags: A
 Null0 Flags: A
 Serial1/0 Flags: A F

R4# show ip mfib 239.195.0.0/16
 (*,239.195.0.0/16) Flags: SW Forwarding: 0/0/0/0, Other: 0/0/0
 Serial1/0 Flags: A F
 Pkts: 0/0
 Ethernet0/0 Flags: A
 Null0 Flags: A

R6 (RP and First-Hop DR for Source B)

R6# show ip pim rp mapping
 PIM Group-to-RP Mappings
 Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.254.6 (?), elected via Auto-RP
 Uptime: 1d02h, expires: 00:02:55

R6# show ip pim interface df
* implies this system is the DF

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback0</td>
<td>192.168.254.6</td>
<td>*192.168.6.6</td>
<td>0</td>
<td>1d02h</td>
</tr>
<tr>
<td>Loopback1</td>
<td>192.168.254.6</td>
<td>*192.168.254.6</td>
<td>0</td>
<td>1d02h</td>
</tr>
<tr>
<td>Ethernet0/0</td>
<td>192.168.254.6</td>
<td>*192.168.16.6</td>
<td>0</td>
<td>1d02h</td>
</tr>
<tr>
<td>Serial1/0</td>
<td>192.168.254.6</td>
<td>*192.168.67.6</td>
<td>0</td>
<td>1d02h</td>
</tr>
<tr>
<td>Serial2/0</td>
<td>192.168.254.6</td>
<td>*192.168.26.6</td>
<td>0</td>
<td>1d02h</td>
</tr>
</tbody>
</table>

R6# `show ip mroute 239.195.1.1`
```
(*, 239.195.1.1), 02:14:43/00:02:49, RP 192.168.254.6, flags: B
Bidir-Upstream: Null, RPF nbr 0.0.0.0
Outgoing interface list:
    Serial1/0, Forward/Sparse, 02:14:35/00:02:49
    Serial2/0, Forward/Sparse, 02:14:43/00:02:41
```

R6# `show ip mrrib route 239.195.1.1`
```
(*,239.195.1.1) RPF nbr: 0.0.0.0 Flags: IA
Serial1/0 Flags: F
Serial2/0 Flags: F
```

R6# `show ip mfib 239.195.1.1`
```
(*,239.195.1.1) Flags: IA
SW Forwarding: 16269/30/28/6, Other: 0/0/0
Serial2/0 Flags: F
Pkt s: 10846/0
Serial1/0 Flags: F
     Pkt s: 10846/0
```

R6# `show ip mroute 239.195.0.0/16`
```
(*,239.195.0.0/16), 1d02h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Loopback1, RPF nbr: 192.168.254.6
Incoming interface list:
    Serial2/0, Accepting/Sparse
    Serial1/0, Accepting/Sparse
    Ethernet0/0, Accepting/Sparse
    Loopback1, Accepting/Sparse
```

R6# `show ip mrrib route 239.195.0.0/16`
```
(*,239.195.0.0/16) RPF nbr: 192.168.254.6 Flags:
Serial2/0 Flags: A
Serial1/0 Flags: A
Ethernet0/0 Flags: A
Loopback0 Flags: A
Null0 Flags: A
Loopback1 Flags: A F
```

R6# `show ip mfib 239.195.0.0/16`
```
(*,239.195.0.0/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
Loopback1 Flags: A F
Pkt s: 0/0
Loopback0 Flags: A
Serial2/0 Flags: A
Serial1/0 Flags: A
Ethernet0/0 Flags: A
Null0 Flags: A
```

R7 (First-Hop DR for Source C and Last-Hop DR for Receiver A)

R7# `show ip pim rp mapping`
```
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
    RP 192.168.254.6 (?), v2v1, bidir
        Info source: 192.168.6.6 (?), elected via Auto-RP
        Uptime: 1d02h, expires: 00:02:35
```

R7# `show ip pim interface df`
```
* implies this system is the DF

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/0</td>
<td>192.168.254.6</td>
<td>*192.168.7.7</td>
<td>65</td>
<td>1d02h</td>
</tr>
<tr>
<td>Serial2/0</td>
<td>192.168.254.6</td>
<td>*192.168.37.7</td>
<td>65</td>
<td>1d02h</td>
</tr>
<tr>
<td>Serial4/0</td>
<td>192.168.254.6</td>
<td>*192.168.67.6</td>
<td>0</td>
<td>1d02h</td>
</tr>
</tbody>
</table>

R7# `show ip igmp groups 239.195.1.1`
```
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter Group
Accounted
 239.195.1.1 Ethernet0/0 02:14:51 00:02:44 192.168.7.1
```

R7# `show ip mroute 239.195.1.1`
Bidir-PIM Example Active Sources with No Interested Receivers

(*, 239.195.1.1), 02:14:51/00:02:43, RP 192.168.254.6, flags: BC
Bidir-Upstream: Serial4/0, RPF nbr 192.168.67.6
Outgoing interface list:
  Ethernet0/0, Forward/Sparse, 02:14:51/00:02:43
  Serial4/0, Bidir-Upstream/Sparse, 02:14:51/00:00:00
R7# show ip mrib route 239.195.1.1
(*,239.195.1.1) RPF nbr: 192.168.67.6 Flags: IA
  Ethernet0/0 Flags: F
  Serial4/0 Flags: F
R7# show ip mfib 239.195.1.1
(*,239.195.1.1) Flags: IA
  SW Forwarding: 16747/30/28/6, Other: 0/0/0
  Serial4/0 Flags: F
  Pkts: 5582/0
  Ethernet0/0 Flags: F
  Pkts: 11165/0
R7# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d02h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Serial4/0, RPF nbr: 192.168.67.6
Incoming interface list:
  Serial2/0, Accepting/Sparse
  Ethernet0/0, Accepting/Sparse
  Serial4/0, Accepting/Sparse
R7# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.67.6 Flags:
  Serial2/0 Flags: A
  Ethernet0/0 Flags: A
  Null0 Flags: A
  Serial4/0 Flags: A F
R7# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  Serial4/0 Flags: A F
  Pkts: 0/0
  Serial2/0 Flags: A
  Ethernet0/0 Flags: A
  Null0 Flags: A

Bidir-PIM Example Active Sources with No Interested Receivers
The following example shows how to verify multicast forwarding using the MFIB for bidir-PIM in a network environment where there are active sources with no interested receivers. This verification example is based on the topology shown in the figures.

**Figure 13**  
*Bidir-PIM Example Topology: Active Sources with No Interested Receivers*

![Bidir-PIM Example Topology](image)

- Source A – 192.168.1.2
- Source B – 192.168.6.1
- Source C – 192.168.7.1

No interested receivers

Bidir Rendezvous Point (RP)  
192.168.254.6:32 (Loopback1)

Bidir Group Range – 239.195.0.0/16

All sources sending to 239.195.1.1

**Figure 14**  
*Bidir-PIM Distribution Trees and Multicast Forwarding Path for Active Sources with No Interested Receivers Example*

![Bidir-PIM Distribution Trees](image)

For this verification example, the following conditions apply:

- Entries for (*, 239.195.0.0/16) are created by the control plane based on the PIM group-to-RP mappings on all routers.
- Because there are no interested receivers, (*, 239.195.0.0/16) will be the only state in the network on all routers.
- All source traffic for this example will go to the RP and then be dropped because there are no interested receivers in the network. In addition, source traffic received by the RP is never sent back out the same interface it was received on.
- In general, multicast packet forwarding can be verified by observing the “SW Forwarding” counter in the `show ip mfib` output for the most specific entry available in the MFIB. If multicast is being forwarded, this counter will increment.
- In this scenario, all traffic stops at the RP because there are no interested receivers. In addition, traffic received by the RP will be forwarded only to the bidir-PIM RP interface to be dropped.

**R1 (First-Hop DR for Source A)**

```
R1# show ip pim rp mapping
PIM Group-to-RP Mappings
 Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 1d03h, expires: 00:02:43

R1# show ip pim interface df
* implies this system is the DF
Interface RP DF Winner Metric Uptime
Ethernet0/1 192.168.254.6 *192.168.132.2 65 1d03h
Ethernet1/0 192.168.254.6 192.168.132.2 65 1d03h

R1# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d03h/-, RP 192.168.254.6, flags: B
 Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.132.2
 Incoming interface list:
 Ethernet0/0, Accepting/Sparse
 Ethernet1/0, Accepting/Sparse

R1# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.123.2 Flags:
 Ethernet0/0 Flags: A
 Null0 Flags: A
 Ethernet1/0 Flags: A F

R1# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
 SW Forwarding: 34754/10/28/2, Other: 58228/0/58228
 Ethernet1/0 Flags: A F
 Pkts: 34754/0
 Ethernet0/0 Flags: A
 Null0 Flags: A
```

**R2**

```
R2# show ip pim rp mapping
PIM Group-to-RP Mappings
 Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 1d03h, expires: 00:02:28

R2# show ip pim interface df
* implies this system is the DF
Interface RP DF Winner Metric Uptime
Ethernet1/0 192.168.254.6 *192.168.132.2 65 1d03h
Serial2/0 192.168.254.6 192.168.16.6 0 1d03h

R2# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.123.2 Flags:
 Ethernet0/0 Flags: A
 Null0 Flags: A
```

**Verifying IPv4 Multicast Forwarding Using the MFIB**

**Bidir-PIM Example Active Sources with No Interested Receivers**

- IP Multicast: MFIB Configuration Guide, Cisco IOS Release 15M&T

62
Verifying IPv4 Multicast Forwarding Using the MFIB

Bidir-PIM Example: Active Sources with No Interested Receivers

R2# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.26.6 Flags: B
Bidir-Upstream: Serial2/0, RPF nbr: 192.168.26.6
Incoming interface list:
Ethernet1/0, Accepting/Sparse
Serial2/0, Accepting/Sparse

R2# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
Serial2/0 Flags: A F

R3

R3# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 1d03h, expires: 00:02:09

R3# show ip pim interface df
* implies this system is the DF

R3# show ip igmp groups 239.195.1.1
IGMP Connected Group Membership

R3# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d03h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.26.6
Incoming interface list:
Ethernet1/0, Accepting/Sparse
Serial2/0, Accepting/Sparse

R3# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
Serial2/0 Flags: A
Serial1/0 Flags: A F

R4

R4# show ip pim rp mapping
PIM Group-to-RP Mappings
Verifying IPv4 Multicast Forwarding Using the MFIB

Bidir-PIM Example Active Sources with No Interested Receivers

Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 1d03h, expires: 00:02:54

R4# show ip pim interface df
* implies this system is the DF

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/0</td>
<td>192.168.254.6</td>
<td>*192.168.4.4</td>
<td>139</td>
<td>1d03h</td>
</tr>
<tr>
<td>Serial0/0</td>
<td>192.168.254.6</td>
<td>192.168.34.3</td>
<td>75</td>
<td>1d03h</td>
</tr>
</tbody>
</table>

R4# show ip igmp groups 239.195.1.1

IGMP Connected Group Membership

<table>
<thead>
<tr>
<th>Group Address</th>
<th>Interface</th>
<th>Uptime</th>
<th>Expires</th>
<th>Last Reporter</th>
<th>Group Accounted</th>
</tr>
</thead>
</table>

R4# show ip mroute 239.195.1.1
Group 239.195.1.1 not found

R4# show ip mrib route 239.195.1.1
No matching routes in Mrib route-DB

R4# show ip mfib 239.195.1.1
Group 239.195.1.1 not found

R4# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d03h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Serial1/0, RPF nbr: 192.168.34.3
Incoming interface list:
  Ethernet0/0, Accepting/Sparse
  Serial1/0, Accepting/Sparse

R4# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.34.3 Flags:
  Ethernet0/0 Flags: A
  Serial1/0 Flags: A F

R4# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  Ethernet0/0 Flags: A
  Pkts: 0/0
  Serial1/0 Flags: A F
  Null0 Flags: A

R6 (RP and First-Hop DR for Source B)

R6# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
Info source: 192.168.254.6 (?), elected via Auto-RP
Uptime: 1d03h, expires: 00:01:59

R6# show ip pim interface df
* implies this system is the DF

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback0</td>
<td>192.168.254.6</td>
<td>*192.168.6.6</td>
<td>0</td>
<td>1d03h</td>
</tr>
<tr>
<td>Loopback1</td>
<td>192.168.254.6</td>
<td>*192.168.254.6</td>
<td>0</td>
<td>1d03h</td>
</tr>
<tr>
<td>Ethernet0/0</td>
<td>192.168.254.6</td>
<td>*192.168.16.6</td>
<td>0</td>
<td>1d03h</td>
</tr>
<tr>
<td>Serial1/0</td>
<td>192.168.254.6</td>
<td>*192.168.67.6</td>
<td>0</td>
<td>1d03h</td>
</tr>
<tr>
<td>Serial2/0</td>
<td>192.168.254.6</td>
<td>192.168.26.6</td>
<td>0</td>
<td>1d03h</td>
</tr>
</tbody>
</table>

R6# show ip mrout 239.195.1.1
Group 239.195.1.1 not found

R6# show ip mrib route 239.195.1.1
No matching routes in Mrib route-DB

R6# show ip mfib 239.195.1.1
Group 239.195.1.1 not found

R6# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d03h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Loopback1, RPF nbr: 192.168.254.6
Incoming interface list:
  Serial2/0, Accepting/Sparse
  Serial1/0, Accepting/Sparse
  Ethernet0/0, Accepting/Sparse
  Loopback0, Accepting/Sparse
  Loopback1, Accepting/Sparse
R6# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.254.6 Flags:
Serial2/0 Flags: A
Serial1/0 Flags: A
Ethernet0/0 Flags: A
Loopback0 Flags: A
Null0 Flags: A
Loopback1 Flags: A F
R6# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
SW Forwarding: 13951/30/28/6, Other: 0/0/0
Loopback1 Flags: A F
Pkts: 13951/0
Loopback0 Flags: A
Serial2/0 Flags: A
Serial1/0 Flags: A
Ethernet0/0 Flags: A
Null0 Flags: A

R7 (First-Hop DR for Source C)

R7# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
   Info source: 192.168.6.6 (?), elected via Auto-RP
   Uptime: 1d03h, expires: 00:02:22
R7# show ip pim interface df
* implies this system is the DF
Interface   RP               DF Winner        Metric     Uptime
Ethernet0/0  192.168.254.6    *192.168.7.7     65         1d03h
Serial2/0    192.168.254.6    *192.168.37.7       65         1d03h
Serial4/0    192.168.254.6      192.168.67.6     0          1d03h
R7# show ip igmp groups 239.195.1.1
IGMP Connected Group Membership
Group Address    Interface                Uptime    Expires   Last Reporter   Group
Accounted
R7# show ip mroute 239.195.1.1
Group 239.195.1.1 not found
R7# show ip mrib route 239.195.1.1
No matching routes in MRIB route-DB
R7# show ip mfib 239.195.1.1
Group 239.195.1.1 not found
R7# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d03h/-, RP 192.168.254.6, flags: B
Incoming interface list:
Serial2/0, Accepting/Sparse
Ethernet0/0, Accepting/Sparse
Serial4/0, Accepting/Sparse
R7# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.254.6 Flags:
Serial2/0 Flags: A
Serial1/0 Flags: A
Ethernet0/0 Flags: A
Null0 Flags: A
Serial4/0 Flags: A F
R7# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
SW Forwarding: 4917/10/28/6, Other: 0/0/0
Serial4/0 Flags: A F
Pkts: 4917/0
Serial2/0 Flags: A
Ethernet0/0 Flags: A
Null0 Flags: A

Bidir-PIM Example No Active Sources with Interested Receivers
The following example shows how to verify multicast forwarding using the MFIB for bidir-PIM in a network environment where there are no active sources with interested receivers. This verification example is based on the topology shown in the figure.

**Figure 15**  
*Bidir-PIM Example Topology: No Active Sources with Interested Receivers*

For this verification example, the following conditions apply:

- Entries for \((*, 239.195.0.0/16)\) are created by the control plane based on the PIM group-to-RP mappings on all routers.
- Entries for \((*, 239.195.1.1)\) will be created only when IGMP joins are initiated by interested receivers joining this group. As a result, all routers along the shared tree between the RP and the last-hop DRs that have interested receivers will have state for \((*, 239.195.1.1)\).

Note

R1 will not have state for \((*, 239.195.1.1)\) because it is not between the RP and the last-hop DRs.

- In general, multicast packet forwarding can be verified by observing the “SW Forwarding” counter in `show ip mfib` command output for the most specific entry available in the MFIB. If multicast is being forwarded, this counter will increment; however, because there are no active sources in this scenario, this counter will not increment.

R1

R1# `show ip pim rp mapping`

PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 1d01h, expires: 00:02:07

R1# show ip pim interface df
* implies this system is the DF

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/0</td>
<td>192.168.254.6</td>
<td>*192.168.1.1</td>
<td>75</td>
<td>1d01h</td>
</tr>
<tr>
<td>Ethernet1/0</td>
<td>192.168.254.6</td>
<td>192.168.123.2</td>
<td>65</td>
<td>1d01h</td>
</tr>
</tbody>
</table>

R1# show ip mroute 239.195.1.1
Group 239.195.1.1 not found

R1# show ip mrib route 239.195.1.1
No matching routes in MRIB route-DB

R1# show ip mfib 239.195.1.1
Group 239.195.1.1 not found

R1# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d01h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.123.2
Incoming interface list:
   Ethernet0/0, Accepting/Sparse
   Ethernet1/0, Accepting/Sparse

R1# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.123.2 Flags:
   Ethernet0/0 Flags: A
   Null0 Flags: A
   Ethernet1/0 Flags: A F

R1# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   Ethernet1/0 Flags: A F
     Pkts: 0/0
   Ethernet0/0 Flags: A
   Null0 Flags: A

R2

R2# show ip pim rp mapping
PIM Group-to-RP Mappings

Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 1d01h, expires: 00:02:32

R2# show ip pim interface df
* implies this system is the DF

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet1/0</td>
<td>192.168.254.6</td>
<td>*192.168.123.2</td>
<td>65</td>
<td>1d01h</td>
</tr>
<tr>
<td>Serial2/0</td>
<td>192.168.254.6</td>
<td>192.168.26.6</td>
<td>0</td>
<td>1d01h</td>
</tr>
</tbody>
</table>

R2# show ip mroute 239.195.1.1
(*, 239.195.1.1), 01:30:22/00:02:50, RP 192.168.254.6, flags: B
Bidir-Upstream: Serial2/0, RPF nbr 192.168.26.6
Outgoing interface list:
   Ethernet1/0, Forward/Sparse, 01:30:22/00:02:50
   Serial2/0, Bidir-Upstream/Sparse, 01:30:22/00:00:00

R2# show ip mrib route 239.195.1.1
(*,239.195.1.1) RPF nbr: 192.168.26.6 Flags: IA
   Ethernet1/0 Flags: F
   Pkts: 0/0
   Serial2/0 Flags: F

R2# show ip mfib 239.195.1.1
(*,239.195.1.1) Flags: IA
   SW Forwarding: 0/0/0/0, Other: 0/0/0
   Serial2/0 Flags: F
   Pkts: 0/0
   Ethernet1/0 Flags: F
   Pkts: 0/0

R2# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d01h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Serial2/0, RPF nbr 192.168.26.6
Incoming interface list:
   Ethernet1/0, Accepting/Sparse
   Serial2/0, Accepting/Sparse

R2# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.26.6 Flags:
Verifying IPv4 Multicast Forwarding Using the MFIB

Bidir-PIM Example No Active Sources with Interested Receivers

Ethernet1/0 Flags: A
Null0 Flags: A
Serial2/0 Flags: A F

R2# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial2/0 Flags: A F
Pkts: 0/0
Ethernet1/0 Flags: A
Null0 Flags: A

R3

R3# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 1d01h, expires: 00:02:17

R3# show ip pim interface df
* implies this system is the DF

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/0</td>
<td>192.168.254.6</td>
<td>*192.168.3.3</td>
<td>75</td>
<td>1d01h</td>
</tr>
<tr>
<td>Ethernet1/0</td>
<td>192.168.254.6</td>
<td>192.168.123.2</td>
<td>65</td>
<td>1d01h</td>
</tr>
<tr>
<td>Serial2/0</td>
<td>192.168.254.6</td>
<td>192.168.37.7</td>
<td>65</td>
<td>1d01h</td>
</tr>
<tr>
<td>Serial3/0</td>
<td>192.168.254.6</td>
<td>*192.168.34.3</td>
<td>75</td>
<td>1d01h</td>
</tr>
</tbody>
</table>

R3# show ip mroute 239.195.1.1
(*, 239.195.1.1), 01:30:36/00:03:21, RP 192.168.254.6, flags: B
Bidir-Upstream: Ethernet1/0, RPF nbr 192.168.123.2
Outgoing interface list:
  Serial3/0, Forward/Sparse, 01:30:36/00:03:21
  Ethernet1/0, Bidir-Upstream/Sparse, 01:30:36/00:00:00

R3# show ip mrib route 239.195.1.1
(*,239.195.1.1) RPF nbr: 192.168.123.2 Flags: IA
Serial3/0 Flags: F
Ethernet1/0 Flags: F

R3# show ip mfib 239.195.1.1
(*,239.195.1.1) Flags: IA
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial3/0 Flags: F
Pkts: 0/0

R3# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 1d01h/-, RP 192.168.254.6, flags: B
Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.123.2
Incoming interface list:
  Serial3/0, Accepting/Sparse
  Ethernet0/0, Accepting/Sparse
  Ethernet1/0, Accepting/Sparse

R3# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.123.2 Flags:
Serial3/0 Flags: A
Ethernet0/0 Flags: A
Null0 Flags: A

R4 (Last-Hop DR for Receiver B)

R4# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16

IP Multicast: MFIB Configuration Guide, Cisco IOS Release 15M&T
Verifying IPv4 Multicast Forwarding Using the MFIB

Bidir-PIM Example No Active Sources with Interested Receivers

```plaintext
RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 1d00h, expires: 00:02:02
R4# show ip pim interface df
 * implies this system is the DF
 Interface RP DF Winner Metric Uptime
 Ethernet0/0 192.168.254.6 *192.168.4.4 139 1d01h
 Serial1/0 192.168.254.6 192.168.34.3 75 1d01h
R4# show ip igmp groups 239.195.1.1
IGMP Connected Group Membership
 Group Address Interface Uptime Expires Last Reporter Group
 Accounted
 239.195.1.1 Ethernet0/0 01:30:51 00:02:56 192.168.4.1
R4# show ip mroute 239.195.1.1
 (*, 239.195.1.1), 01:30:51/00:02:56, RP 192.168.254.6, flags: BC
 Bidir-Upstream: Serial1/0, RPF nbr 192.168.34.3
 Outgoing interface list:
 Ethernet0/0, Forward/Sparse, 01:30:51/00:02:56
 Serial1/0, Bidir-Upstream/Sparse, 01:30:51/00:00:00
R4# show ip mrib route 239.195.1.1
 (*,239.195.1.1) RPF nbr: 192.168.34.3 Flags: IA
 Ethernet0/0 Flags: F
 Serial1/0 Flags: F
R4# show ip mfib 239.195.1.1
 (*,239.195.1.1) Flags: IA
 SW Forwarding: 0/0/0/0, Other: 0/0/0
 Serial1/0 Flags: F
 Pkts: 0/0
 Ethernet0/0 Flags: F
 Pkts: 0/0
R4# show ip mroute 239.195.0.0/16
 (*,239.195.0.0/16), 1d01h/-, RP 192.168.254.6, flags: B
 Bidir-Upstream: Serial1/0, RPF nbr 192.168.34.3
 Incoming interface list:
 Ethernet0/0, Accepting/Sparse
 Serial1/0, Accepting/Sparse
R4# show ip mrib route 239.195.0.0/16
 (*,239.195.0.0/16) RPF nbr: 192.168.34.3 Flags: Ethernet0/0 Flags: A
 Null10 Flags: A
 Serial1/0 Flags: A F
 Pkts: 0/0
 Ethernet0/0 Flags: A
 Null0 Flags: A
R4# show ip mfib 239.195.0.0/16
 (*,239.195.0.0/16) Flags:
 SW Forwarding: 0/0/0/0, Other: 0/0/0
 Serial1/0 Flags: A F
 Pkts: 0/0
 Ethernet0/0 Flags: A
 Null0 Flags: A

R6 (RP)

R6# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.254.6 (?), elected via Auto-RP
 Uptime: 1d00h, expires: 00:02:30
R6# show ip pim interface df
 * implies this system is the DF
 Interface RP DF Winner Metric Uptime
 Loopback0 192.168.254.6 *192.168.6.6 0 1d01h
 Loopback1 192.168.254.6 *192.168.254.6 0 1d01h
 Ethernet0/0 192.168.254.6 192.168.16.6 0 1d01h
 Serial1/0 192.168.254.6 192.168.254.6 0 1d01h
 Serial2/0 192.168.254.6 192.168.254.6 0 1d01h
R6# show ip mroute 239.195.1.1
 (*, 239.195.1.1), 01:31:08/00:03:00, RP 192.168.254.6, flags: B
 Bidir-Upstream: Null, RPF nbr 0.0.0.0
 Outgoing interface list:
 Serial1/0, Forward/Sparse, 01:31:00/00:03:00
```
Verifying IPv4 Multicast Forwarding Using the MFIB

Bidir-PIM Example No Active Sources with Interested Receivers

Serial2/0, Forward/Sparse, 01:31:08/00:02:57
R6# show ip mrib route 239.195.1.1
(*, 239.195.1.1) RPF nbr: 0.0.0.0 Flags: IA
Serial1/0 Flags: F
Serial2/0 Flags: F

R6# show ip mfib 239.195.1.1
(*, 239.195.1.1) Flags: IA
SW Forwarding: 0/0/0/0, Other: 0/0/0
Serial2/0 Flags: F
Pkts: 0/0
Serial1/0 Flags: F
Pkts: 0/0

R6# show ip mroute 239.195.0.0/16
(*, 239.195.0.0/16), 1d01h/-, RP 192.168.254.6, flags: B
Incoming interface list:
Serial2/0, Accepting/Sparse
Serial1/0, Accepting/Sparse
Ethernet0/0, Accepting/Sparse
Loopback0, Accepting/Sparse
Loopback1, Accepting/Sparse

R6# show ip mrib route 239.195.0.0/16
(*, 239.195.0.0/16) RPF nbr: 192.168.254.6 Flags:
Serial2/0 Flags: A
Serial1/0 Flags: A
Ethernet0/0 Flags: A
Loopback0 Flags: A
Null0 Flags: A
Loopback1 Flags: A F

R6# show ip mfib 239.195.0.0/16
(*, 239.195.0.0/16) Flags:
SW Forwarding: 0/0/0/0, Other: 0/0/0
Loopback1 Flags: A F
Pkts: 0/0
Loopback0 Flags: A
Serial2/0 Flags: A
Serial1/0 Flags: A
Ethernet0/0 Flags: A
Null0 Flags: A

R7 (Last-Hop DR for Receiver A)

R7# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
Info source: 192.168.6.6 (?), elected via Auto-RP
Uptime: 1d01h, expires: 00:02:33

R7# show ip pim interface df
* implies this system is the DF
Interface        RP            DF Winner        Metric     Uptime
Ethernet0/0      192.168.254.6 *192.168.7.7  65        1d01h
Serial2/0        192.168.254.6 *192.168.37.7  65        1d01h
Serial4/0        192.168.254.6  192.168.67.6   0         1d01h

R7# show ip igmp groups 239.195.1.1
IGMP Connected Group Membership
Accounted
239.195.1.1     Ethernet0/0  01:31:14  00:02:22  192.168.7.1

R7# show ip mroute 239.195.1.1
(*, 239.195.1.1), 01:31:14/00:02:22, RP 192.168.254.6, flags: BC
Outgoing interface list:
Ethernet0/0, Forward/Sparse, 01:31:14/00:02:22
Serial4/0, Bidir-Upstream/Sparse, 01:31:14/00:00:00

R7# show ip mrib route 239.195.1.1
(*, 239.195.1.1) RPF nbr: 192.168.67.6 Flags: IA
Ethernet0/0 Flags: F
Serial4/0 Flags: F

R7# show ip mfib 239.195.1.1
(*, 239.195.1.1) Flags: IA
SW Forwarding: 0/0/0/0, Other: 0/0/0
Bidir-PIM Example No Active Sources with No Interested Receivers

The following example shows how to verify multicast forwarding using the MFIB for bidir-PIM in a network environment where there are no active sources and no interested receivers. This verification example is based on the topology shown in the figure.

Figure 16  Bidir-PIM Example Topology: No Active Sources with No Interested Receivers

For this verification example, the following conditions apply:

- Entries for (*, 239.195.0.0/16) are created by the control plane based on the PIM group-to-RP mappings on all routers.
Entries for any group within the range 239.195.0.0/16 will be created only when IGMP joins are initiated by interested receivers joining that particular group. For example, if a multicast receiver joins the group 239.195.1.1, an entry for (*, 239.195.1.1) will be created on all routers along the shared tree.

Because there are no interested receivers, (*, 239.195.0.0/16) will be the only state in the network on all routers.

In general, multicast packet forwarding can be verified by observing the “SW Forwarding” counter in `show ip mfib` command output for the most specific entry available in the MFIB. If multicast is being forwarded, this counter will increment; however, because there are no active sources in this scenario, this counter will not increment.

**R1**

```
R1# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 22:06:01, expires: 00:02:30
```

```
R1# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 22:06:01/-, RP 192.168.254.6, flags: B
 Bidir-Upstream: Ethernet1/0, RPF nbr: 192.168.123.2
 Incoming interface list:
 Ethernet0/0, Accepting/Sparse
 Ethernet1/0, Accepting/Sparse
```

```
R1# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.123.2 Flags:
 Ethernet0/0 Flags: A
 Null0 Flags: A
 Ethernet1/0 Flags: A F
```

```
R1# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
 SW Forwarding: 0/0/0, Other: 0/0/0
 Ethernet1/0 Flags: A F
 Pkts: 0/0
 Null0 Flags: A
```

```
R1# show ip pim interface df
* implies this system is the DF
 Interface RP DF Winner Metric Uptime
 Ethernet0/0 192.168.254.6 *192.168.1.1 75 22:06:01
 Ethernet1/0 192.168.254.6 192.168.123.2 65 22:06:01
```

**R2**

```
R2# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
 RP 192.168.254.6 (?), v2v1, bidir
 Info source: 192.168.6.6 (?), elected via Auto-RP
 Uptime: 22:09:00, expires: 00:02:30
```

```
R2# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 22:09:00/-, RP 192.168.254.6, flags: B
 Bidir-Upstream: Serial2/0, RPF nbr: 192.168.26.6
 Incoming interface list:
 Ethernet1/0, Accepting/Sparse
 Serial2/0, Accepting/Sparse
```

```
R2# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.26.6 Flags:
 Ethernet1/0 Flags: A F
 Null0 Flags: A
 Serial2/0 Flags: A F
```

```
R2# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
 SW Forwarding: 0/0/0, Other: 0/0/0
 Serial2/0 Flags: A F
 Pkts: 0/0
```

Verifying IPv4 Multicast Forwarding Using the MFIB

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet1/0</td>
<td>192.168.254.6</td>
<td>*192.168.123.2</td>
<td>65</td>
<td>22:09:00</td>
</tr>
<tr>
<td>Serial2/0</td>
<td>192.168.254.6</td>
<td>192.168.26.6</td>
<td>0</td>
<td>22:09:00</td>
</tr>
</tbody>
</table>

R3

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet1/0</td>
<td>192.168.254.6</td>
<td>*192.168.123.2</td>
<td>65</td>
<td>22:09:20</td>
</tr>
<tr>
<td>Serial2/0</td>
<td>192.168.254.6</td>
<td>192.168.37.7</td>
<td>65</td>
<td>22:09:20</td>
</tr>
<tr>
<td>Serial3/0</td>
<td>192.168.254.6</td>
<td>*192.168.34.3</td>
<td>75</td>
<td>22:09:20</td>
</tr>
</tbody>
</table>

R4

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet1/0</td>
<td>192.168.254.6</td>
<td>*192.168.123.2</td>
<td>65</td>
<td>22:09:20</td>
</tr>
<tr>
<td>Serial1/0</td>
<td>192.168.254.6</td>
<td>192.168.34.3</td>
<td>75</td>
<td>22:09:20</td>
</tr>
</tbody>
</table>

IP Multicast: MFIB Configuration Guide, Cisco IOS Release 15M&T
Verifying IPv4 Multicast Forwarding Using the MFIB

Bidir-PIM Example No Active Sources with No Interested Receivers

Ethernet0/0  192.168.254.6  *192.168.4.4  139  22:09:47
Serial1/0   192.168.254.6  192.168.34.3  75   22:09:47

R6 (RP)

R6# show ip pim rp mapping
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent (Loopback0)
Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
  Info source: 192.168.254.6 (?), elected via Auto-RP
  Uptime: 22:11:08, expires: 00:02:48

R6# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 22:11:08/-, RP 192.168.254.6, flags: B
  Bidir-Upstream: Loopback1, RPF nbr: 192.168.254.6
  Incoming interface list:
    Serial1/0, Accepting/Sparse
    Serial1/0, Accepting/Sparse
    Ethernet0/0, Accepting/Sparse
    Loopback1, Accepting/Sparse

R6# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.254.6 Flags:
  Serial1/0 Flags: A
  Serial1/0 Flags: A
  Ethernet0/0 Flags: A
  Null0 Flags: A
  Loopback1 Flags: A F

R6# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0
  Loopback1 Flags: A F
  Pkts: 0/0

R6# show ip pim interface df
* implies this system is the DF
Interface          RP            DF Winner         Metric  Uptime
Loopback1          192.168.254.6  *192.168.254.6  0       22:11:08
Ethernet0/0        192.168.254.6  *192.168.16.6  0       22:11:08
Serial1/0           192.168.254.6  *192.168.67.6  0       22:11:08
Serial2/0           192.168.254.6  *192.168.26.6  0       22:11:08

R7

R7# show ip pim rp mapping
PIM Group-to-RP Mappings
Group(s) 239.195.0.0/16
RP 192.168.254.6 (?), v2v1, bidir
  Info source: 192.168.6.6 (?), elected via Auto-RP
  Uptime: 22:10:23, expires: 00:02:04

R7# show ip mroute 239.195.0.0/16
(*,239.195.0.0/16), 22:10:23/-, RP 192.168.254.6, flags: B
  Bidir-Upstream: Serial4/0, RPF nbr: 192.168.67.6
  Incoming interface list:
    Serial2/0, Accepting/Sparse
    Ethernet0/0, Accepting/Sparse
    Serial4/0, Accepting/Sparse

R7# show ip mrib route 239.195.0.0/16
(*,239.195.0.0/16) RPF nbr: 192.168.67.6 Flags:
  Serial2/0 Flags: A
  Ethernet0/0 Flags: A
  Null0 Flags: A
  Serial4/0 Flags: A F

R7# show ip mfib 239.195.0.0/16
(*,239.195.0.0/16) Flags:
  SW Forwarding: 0/0/0/0, Other: 0/0/0

IP Multicast: MFIB Configuration Guide, Cisco IOS Release 15M&T
R7# show ip pim interface df
* implies this system is the DF

<table>
<thead>
<tr>
<th>Interface</th>
<th>RP</th>
<th>DF Winner</th>
<th>Metric</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet0/0</td>
<td>192.168.254.6</td>
<td>*192.168.7.7</td>
<td>65</td>
<td>22:10:23</td>
</tr>
<tr>
<td>Serial2/0</td>
<td>192.168.254.6</td>
<td>*192.168.37.7</td>
<td>65</td>
<td>22:10:23</td>
</tr>
<tr>
<td>Serial4/0</td>
<td>192.168.254.6</td>
<td>192.168.67.6</td>
<td>0</td>
<td>22:10:23</td>
</tr>
</tbody>
</table>

Additional References

**Related Documents**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFIB overview concepts and MFIB/MRIB entry and interface flag descriptions</td>
<td>“Multicast Forwarding Information Base Overview”</td>
</tr>
<tr>
<td>Overview of the IP multicast technology area</td>
<td>“IP Multicast Technology Overview”</td>
</tr>
<tr>
<td>Concepts, tasks, and examples for configuring an IP multicast network using PIM</td>
<td>“Configuring Basic IP Multicast”</td>
</tr>
<tr>
<td>IP multicast commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td><em>Cisco IOS IP Multicast Command Reference</em></td>
</tr>
</tbody>
</table>

**Standards**

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified standards are supported, and support for existing standards has not been modified.</td>
</tr>
</tbody>
</table>

**MIBs**

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS software releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>--</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported, and support for existing RFCs has not been modified.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Verifying IPv4 Multicast Forwarding Using the MFIB

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Table 13  
**Feature Information for Verifying IPv4 Multicast Forwarding Using the MFIB**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 Multicast Support of the MFIB</td>
<td>15.0(1)M 12.2(33)SRE</td>
<td>The MFIB architecture provides modularity and separation between the multicast control plane (PIM and IGMP) and the multicast forwarding plane (MFIB). This architecture is used in Cisco IOS IPv6 and Cisco IOS XR multicast implementations. With the introduction of the IPv4 MFIB infrastructure, the Cisco IOS IPv4 multicast implementation has been enhanced, making the MFIB forwarding model the only forwarding engine used. The following commands were introduced or modified: clear ip mfib counters, debug ip mcache, debug ip mfib adjacency, debug ip mfib db, debug ip mfib fs, debug ip mfib init, debug ip mfib interface, debug ip mfib mrib, debug ip mfib pak, debug ip mfib platform, debug ip mfib ppr, debug ip mfib ps, debug ip mfib signal, debug ip mfib signal, debug ip mfib table, debug ip mpacket, debug ip mroute-cache, ip multicast cache-headers, ip multicast rate-limit, ip multicast ttl-threshold, ip pim register-rate-limit, show ip mcache, show ip mfib, show ip mfib active, show ip mfib count, show ip mfib interface, show ip mfib route, show ip mfib status, show ip mfib summary, show ip pim interface, show ip pim tunnel.</td>
</tr>
</tbody>
</table>
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Distributed MFIB for IPv6 Multicast

Distributed MFIB (dMFIB) is used to switch multicast IPv6 packets on distributed platforms. The basic MFIB routines that implement the core of the forwarding logic are common to all forwarding environments.

- Finding Feature Information, page 79
- Information About Distributed MFIB for IPv6 Multicast, page 79
- How to Disable MFIB on a Distributed Platform, page 80
- Configuration Example for Distributed MFIB for IPv6 Multicast, page 81
- Additional References, page 81
- Feature Information for Distributed MFIB for IPv6 Multicast, page 82

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Distributed MFIB for IPv6 Multicast

- Distributed MFIB, page 79

Distributed MFIB

Distributed Multicast Forwarding Information Base (MFIB) is used to switch multicast IPv6 packets on distributed platforms. Distributed MFIB may also contain platform-specific information on replication across line cards. The basic MFIB routines that implement the core of the forwarding logic are common to all forwarding environments.

dMFIB implements the following functions:

- Distributes a copy of the MFIB to the line cards.
- Relays data-driven protocol events generated in the line cards to PIM.
- Provides an MFIB platform application program interface (API) to propagate MFIB changes to platform-specific code responsible for programming the hardware acceleration engine. This API also
includes entry points to switch a packet in software (necessary if the packet is triggering a data-driven event) and to upload traffic statistics to the software.

- Provides hooks to allow clients residing on the RP to read traffic statistics on demand. Distributed MFIB does not periodically upload these statistics to the RP.

The combination of distributed MFIB and MRIB subsystems allows the device to have a "customized" copy of the MFIB database in each line card and to transport MFIB-related platform-specific information from the RP to the line cards.

### How to Disable MFIB on a Distributed Platform

#### SUMMARY STEPS

1.

#### DETAILED STEPS

Example:

- Disabling MFIB on a Distributed Platform, page 80

### Disabling MFIB on a Distributed Platform

Multicast forwarding is automatically enabled when IPv6 multicast routing is enabled. However, you may want to disable multicast forwarding on a distributed platform.

#### SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 mfib-mode centralized-only
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable                      | Enables privileged EXEC mode.  
  • Enter your password if prompted. |
| Example:                           |         |
| Device> enable                     |         |
| Step 2 configure terminal          | Enters global configuration mode. |
| Example:                           |         |
| Device# configure terminal         |         |
| Step 3 ipv6 mfib-mode centralized-only | Disables distributed forwarding on a distributed platform. |
| Example:                           |         |
| Device(config)# ipv6 mfib-mode centralized-only |         |

Configuration Example for Distributed MFIB for IPv6 Multicast

This example shows how to disable multicast forwarding on a distributed platform:

Device(config)# ipv6 mfib-mode centralized-only

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IP multicast commands</td>
<td>Cisco IOS IP Multicast Command Reference</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
</tbody>
</table>
Feature Information for Distributed MFIB for IPv6 Multicast

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Table 14  Feature Information for Distributed MFIB for IPv6 Multicast

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed MFIB for IPv6 Multicast</td>
<td>12.0(26)S</td>
<td>Distributed MFIB is used to switch multicast IPv6 packets on distributed platforms.</td>
</tr>
<tr>
<td></td>
<td>12.2(25)S</td>
<td>The following command was introduced: <code>ipv6 mfib-mode centralized-only</code>.</td>
</tr>
<tr>
<td></td>
<td>12.2(28)SB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.3(4)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 2.1</td>
<td></td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: [www.cisco.com/go/trademarks](http://www.cisco.com/go/trademarks). Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
MFIB Display Enhancements

• Finding Feature Information, page 85
• Information About MFIB Display Enhancements, page 85
• How to Use MFIB Display Enhancements, page 86
• Configuration Examples for MFIB Display Enhancements, page 90
• Additional References, page 91
• Feature Information for MFIB Display Enhancements, page 92

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About MFIB Display Enhancements

• MFIB, page 85

MFIB

The MFIB is a platform-independent and routing-protocol-independent library for IPv6 software. Its main purpose is to provide a Cisco platform with an interface with which to read the IPv6 multicast forwarding table and notifications when the forwarding table changes. The information provided by the MFIB has clearly defined forwarding semantics and is designed to make it easy for the platform to translate to its specific hardware or software forwarding mechanisms.

When routing or topology changes occur in the network, the IPv6 routing table is updated, and those changes are reflected in the MFIB. The MFIB maintains next-hop address information based on the information in the IPv6 routing table. Because there is a one-to-one correlation between MFIB entries and routing table entries, the MFIB contains all known routes and eliminates the need for route cache maintenance that is associated with switching paths such as fast switching and optimum switching.
How to Use MFIB Display Enhancements

- Verifying MFIB Operation in IPv6 Multicast, page 86
- Resetting MFIB Traffic Counters, page 88
- Disabling MFIB on the device, page 88
- Disabling MFIB Interrupt-Level IPv6 Multicast Forwarding, page 89

Verifying MFIB Operation in IPv6 Multicast

Note
Multicast forwarding is automatically enabled when IPv6 multicast routing is enabled.

SUMMARY STEPS

1. `enable`

Example:
Device> enable

Enables privileged EXEC mode.

- Enter your password if prompted.

Step 2 `show ipv6 mfib [vrf vrf-name] [link-local | verbose | group-address-name | ipv6-prefix | prefix-length | source-address-name | active | count | interface | status | summary]`

Example:
Device# show ipv6 mfib

Displays the forwarding entries and interfaces in the IPv6 MFIB.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> `show ipv6 mfib [vrf vrf-name] [link-local</td>
<td>verbose</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# show ipv6 mfib</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong> show ipv6 mfib [vrf vrf-name] [link-local] group-name</td>
<td>Displays the rate at which active sources are sending to multicast groups.</td>
</tr>
<tr>
<td>active [kbps]</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device# show ipv6 mfib active</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> show ipv6 mfib [vrf vrf-name] [all</td>
<td>linkscope] group-name</td>
</tr>
<tr>
<td>group-address [source-name</td>
<td>source-address]] count</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device# show ipv6 mfib count</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> show ipv6 mfib interface</td>
<td>Displays information about IPv6 multicast-enabled interfaces and their forwarding status.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device# show ipv6 mfib interface</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> show ipv6 mfib status</td>
<td>Displays general MFIB configuration and operational status.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device# show ipv6 mfib status</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> show ipv6 mfib [vrf vrf-name] summary</td>
<td>Displays summary information about the number of IPv6 MFIB entries and interfaces.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device# show ipv6 mfib summary</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> debug ipv6 mfib [vrf vrf-name] [group-name] group-address</td>
<td>Enables debugging output on the IPv6 MFIB.</td>
</tr>
<tr>
<td>[adjacency</td>
<td>db</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device# debug ipv6 mfib FF04::10 pak</td>
<td></td>
</tr>
</tbody>
</table>
Resetting MFIB Traffic Counters

**SUMMARY STEPS**

1. enable
2. clear ipv6 mfib [vrf vrf-name] counters [group-name | group-address [source-address | source-name]]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> clear ipv6 mfib</td>
<td>Resets all active MFIB traffic counters.</td>
</tr>
<tr>
<td>[vrf vrf-name] counters</td>
<td></td>
</tr>
<tr>
<td>[group-name</td>
<td>group-address [source-address</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device# clear ipv6 mfib</td>
<td></td>
</tr>
<tr>
<td>counters FF04::10</td>
<td></td>
</tr>
</tbody>
</table>

Disabling MFIB on the device

Multicast forwarding is automatically enabled when IPv6 multicast routing is enabled. However, a user may want to disable multicast forwarding on the router.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. no ipv6 mfib

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>
Disabling MFIB Interrupt-Level IPv6 Multicast Forwarding

MFIB interrupt-level IPv6 multicast forwarding of outgoing packets on a specific interface is enabled on interfaces that support Cisco Express Forwarding. However, you may want to disable MFIB interrupt-level forwarding on a specified interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. no ipv6 mfib cef output

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>interface type number</td>
</tr>
<tr>
<td>4</td>
<td>no ipv6 mfib cef output</td>
</tr>
</tbody>
</table>

#### Purpose

- **Step 3**
  - Specifies an interface type and number, and places the device in interface configuration mode.
  - Example:
    ```
 Device(config)# interface FastEthernet 1/0
    ```

- **Step 4**
  - Disables MFIB interrupt-level IPv6 multicast forwarding of outgoing packets on a specific interface.
  - Example:
    ```
 Device(config-if)# no ipv6 mfib cef output
    ```

### Configuration Examples for MFIB Display Enhancements

- Example: MFIB Display Enhancements, page 90

#### Example: MFIB Display Enhancements

**Sample Output from the show ipv6 mfib Command**

The following example displays the forwarding entries and interfaces in the MFIB.

```
Device# show ipv6 mfib
```

**IP Multicast Forwarding Information Base**

- Entry Flags: C - Directly Connected, S - Signal, IA - Inherit A flag, AR - Activity Required, D - Drop
- Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
- Other counts: Total/RPF failed/Other drops
- Interface Flags: A - Accept, F - Forward, NS - Negate Signalling
  - IC - Internal Copy, NP - Not platform switched
  - SP - Signal Present
- Interface Counts: FS Pkt Count/PS Pkt Count
- (*,FF00::/8) Flags: C
  - Forwarding: 0/0/0/0, Other: 0/0/0
  - Tunnel0 Flags: NS
- (*,FF00::/15) Flags: D
  - Forwarding: 0/0/0/0, Other: 0/0/0
- (*,FF05::1) Flags: C
  - Forwarding: 2/0/100/0, Other: 0/0/0
  - Tunnel0 Flags: A NS
  - Ethernet1/1 Flags: F NS
  - Pkts: 0/2
- (2001:DB8:11:1::200,FF05::1) Flags:
  - Forwarding: 5/0/100/0, Other: 0/0/0
  - Ethernet1/2 Flags: A
  - Ethernet1/1 Flags: F NS
  - Pkts: 3/2
- (*,FF10::/15) Flags: D
  - Forwarding: 0/0/0/0, Other: 0/0/0

**Sample Output from the show ipv6 mfib active Command**

---

**IP Multicast: MFIB Configuration Guide, Cisco IOS Release 15M&T**

90
The following example displays statistics on the rate at which active IP multicast sources are sending information. The device is switching traffic from 2001:DB8:1:1:200 to FF05::1:

Device# show ipv6 mfib active

Active IPv6 Multicast Sources - sending >= 4 kbps
Group: FF05::1
  Source: 2001:DB8:1:1:200
    Rate: 20 pps/16 kbps(1sec), 0 kbps(last 128 sec)

Sample Output from the show ipv6 mfib count Command

The following example displays statistics from the MFIB about the group and source. The device is switching traffic from 2001:DB8:1:1:200 to FF05::1:

Device# show ipv6 mfib count

IP Multicast Statistics
54 routes, 7 groups, 0.14 average sources per group
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts: Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Group: FF00::/8
  RP-tree:  Forwarding: 0/0/0/0, Other: 0/0/0
Group: FF00::/15
  RP-tree:  Forwarding: 0/0/0/0, Other: 0/0/0
Group: FF05::1
  RP-tree:  Forwarding: 2/0/100/0, Other: 0/0/0
  Source: 10::1:1:200, Forwarding: 367/10/100/7, Other: 0/0/0
  Tot. shown: Source count: 1, pkt count: 369
Group: FF10::/15
  RP-tree:  Forwarding: 0/0/0/0, Other: 0/0/0
Group: FF20::/15
  RP-tree:  Forwarding: 0/0/0/0, Other: 0/0/0

Sample Output from the show ipv6 mfib interface Command

The following example displays information about IPv6 multicast-enabled interfaces and their forwarding status. The device is configured for fast switching:

Device# show ipv6 mfib interface

IPv6 Multicast Forwarding (MFIB) status:
  Configuration Status: enabled
  Operational Status: running
MFIB interface status CEF-based output
  [configured,available]
  Ethernet1/1    up    [yes ,yes ]
  Ethernet1/2    up    [yes ,?   ]
  Tunnel10       up    [yes ,?   ]
  Tunnel11       up    [yes ,?   ]

Sample Output from the show ipv6 mfib summary Command

The following example displays summary information about the number of IPv6 MFIB entries and interfaces:

Device# show ipv6 mfib summary

IPv6 MFIB summary:
  54    total entries [1 (S,G), 7 (*,G), 46 (*,G/m)]
  17    total MFIB interfaces
### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td><em>Cisco IOS Master Commands List, All Releases</em></td>
</tr>
<tr>
<td>IP multicast commands</td>
<td><em>Cisco IOS IP Multicast Command Reference</em></td>
</tr>
<tr>
<td>IPv6 commands</td>
<td><em>Cisco IOS IPv6 Command Reference</em></td>
</tr>
<tr>
<td>IPv6 features</td>
<td><em>Cisco IOS IPv6 Feature Mapping</em></td>
</tr>
<tr>
<td>IPv6 addressing and connectivity</td>
<td><em>IPv6 Configuration Guide</em></td>
</tr>
</tbody>
</table>

### Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported, and support for existing MIBs has not been modified.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

---

**Feature Information for MFIB Display Enhancements**

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software
release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

**Table 15 Feature Information for MFIB Display Enhancements**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFIB: Display Enhancements</td>
<td>12.0(26)S</td>
<td>The MFIB: Display Enhancements feature for IPv6 provides an enhanced display of MFIB data to provide better and more complete information for troubleshooting MFIB. The following command was introduced: <code>show ipv6 mfib</code>.</td>
</tr>
<tr>
<td></td>
<td>12.2(18)S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.3(2)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4(2)T</td>
<td></td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.