THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2013 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

DHCP—DHCPv6 Guard 1
Finding Feature Information 1
Restrictions for DHCPv6 Guard 1
Information About DHCPv6 Guard 2
DHCPv6 Guard Overview 2
How to Configure DHCPv6 Guard 3
Configuring DHCP—DHCPv6 Guard 3
Configuration Examples for DHCPv6 Guard 6
Example: Configuring DHCP—DHCPv6 Guard 6
Additional References 7
Feature Information for DHCP—DHCPv6 Guard 8

CHAPTER 2

DHCPv6 Relay—Lightweight DHCPv6 Relay Agent 9
Finding Feature Information 9
Prerequisites for DHCPv6 Relay—Lightweight DHCPv6 Relay Agent 10
Restrictions for DHCPv6 Relay—Lightweight DHCPv6 Relay Agent 10
Information About DHCPv6 Relay—Lightweight DHCPv6 Relay Agent 10
Background 10
Interoperability between DHCPv6 Relay Agents and LDRA 10
LDRA for VLANs and Interfaces 11
How to Configure a Lightweight DHCPv6 Relay Agent 12
Configuring LDRA Functionality on a VLAN 12
Configuring LDRA Functionality on an Interface 15
Verifying and Troubleshooting LDRA 16
Configuration Examples for a Lightweight DHCPv6 Relay Agent 20
Example: Configuring LDRA Functionality on a VLAN 20
Example: Configuring LDRA Functionality on an Interface 20
Additional References for DHCPv6 Relay—Lightweight DHCPv6 Relay Agent 21
This module describes the Dynamic Host Configuration Protocol version 6 (DHCPv6) Guard feature. This feature blocks DHCP reply and advertisement messages that originate from unauthorized DHCP servers and relay agents that forward DHCP packets from servers to clients. Client messages or messages sent by relay agents from clients to servers are not blocked. The filtering decision is determined by the device role assigned to the receiving switch port, trunk, or VLAN. In addition, to provide a finer level of filter granularity, messages can be filtered based on the address of the sending server or relay agent, or by the prefixes and addresses ranges listed in the reply message. This functionality helps to prevent traffic redirection or denial of service (DoS).

- Finding Feature Information, page 1
- Restrictions for DHCPv6 Guard, page 1
- Information About DHCPv6 Guard, page 2
- How to Configure DHCPv6 Guard, page 3
- Configuration Examples for DHCPv6 Guard, page 6
- Additional References, page 7
- Feature Information for DHCP—DHCPv6 Guard, page 8

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for DHCPv6 Guard

- The DHCPv6 guard feature is not supported on Etherchannel ports.
Information About DHCPv6 Guard

DHCPv6 Guard Overview

The DHCPv6 Guard feature blocks reply and advertisement messages that come from unauthorized DHCP servers and relay agents.

Packets are classified into one of the three DHCP type messages. All client messages are always switched regardless of device role. DHCP server messages are only processed further if the device role is set to server. Further processing of server messages includes DHCP server advertisements (for source validation and server preference) and DHCP server replies (for permitted prefixes).

If the device is configured as a DHCP server, all the messages need to be switched, regardless of the device role configuration.
How to Configure DHCPv6 Guard

Configuring DHCP—DHCPv6 Guard

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 access-list access-list-name
4. permit host address any
5. exit
6. ipv6 prefix-list list-name permit ipv6-prefix 128
7. ipv6 dhcp guard policy policy-name
8. device-role {client | server}
9. match server access-list ipv6-access-list-name
10. match reply prefix-list ipv6-prefix-list-name
11. preference min limit
12. preference max limit
13. trusted-port
14. exit
15. interface type number
16. switchport
17. ipv6 dhcp guard [attach-policy policy-name] [vlan {add | all | all | except | none | remove} vlan-id[[... vlan-id]]
18. exit
19. vlan vlan-id
20. ipv6 dhcp guard [attach-policy policy-name]
21. exit
22. exit
23. show ipv6 dhcp guard policy [policy-name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Defines the IPv6 access list and enters IPv6 access list configuration mode.</td>
</tr>
<tr>
<td>ipv6 access-list access-list-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ipv6 access-list acl1</td>
</tr>
<tr>
<td>Step 4</td>
<td>Sets the conditions in the named IP access list.</td>
</tr>
<tr>
<td>permit host address any</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ipv6-acl)# permit host FE80::A8BB:CCFF:FE01:F700 any</td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits IPv6 access list configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ipv6-acl)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>Creates an entry in an IPv6 prefix list.</td>
</tr>
<tr>
<td>ipv6 prefix-list list-name permit ipv6-prefix 128</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ipv6 prefix-list abc permit 2001:0DB8::/64 le 128</td>
</tr>
<tr>
<td>Step 7</td>
<td>Defines the DHCPv6 guard policy name and enters DHCP guard configuration mode.</td>
</tr>
<tr>
<td>ipv6 dhcp guard policy policy-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ipv6 dhcp guard policy pol1</td>
</tr>
<tr>
<td>Step 8</td>
<td>Specifies the device role of the device attached to the target (interface or VLAN).</td>
</tr>
<tr>
<td>device-role {client</td>
<td>server}</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-dhcp-guard)# device-role server</td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) Enables verification of the advertised DHCP server and relay address in inspected messages from the configured authorized server access list. If not configured, this check will be bypassed. An empty access list is treated as a permit.</td>
</tr>
<tr>
<td>match server access-list ipv6-access-list-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-dhcp-guard)# match server access-list acl1</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 10 match reply prefix-list ipv6-prefix-list-name</td>
<td>(Optional) Enables verification of the advertised prefixes in DHCP reply messages from the configured authorized prefix list. If not configured, this check will be bypassed. An empty prefix list is treated as a permit.</td>
</tr>
<tr>
<td>Example: Device(config-dhcp-guard)# match reply prefix-list abc</td>
<td></td>
</tr>
<tr>
<td>Step 11 preference min limit</td>
<td>(Optional) Enables verification that the advertised preference (in preference option) is greater than the specified limit. If not specified, this check will be bypassed.</td>
</tr>
<tr>
<td>Example: Device(config-dhcp-guard)# preference min 0</td>
<td></td>
</tr>
<tr>
<td>Step 12 preference max limit</td>
<td>(Optional) Enables verification that the advertised preference (in preference option) is less than the specified limit. If not specified, this check will be bypassed.</td>
</tr>
<tr>
<td>Example: Device(config-dhcp-guard)# preference max 255</td>
<td></td>
</tr>
<tr>
<td>Step 13 trusted-port</td>
<td>(Optional) Specifies that this policy is being applied to trusted ports. All DHCP guard policing will be disabled.</td>
</tr>
<tr>
<td>Example: Device(config-dhcp-guard)# trusted-port</td>
<td></td>
</tr>
<tr>
<td>Step 14 exit</td>
<td>Exits DHCP guard configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-dhcp-guard)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 15 interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface GigabitEthernet 0/2/0</td>
<td></td>
</tr>
<tr>
<td>Step 16 switchport</td>
<td>Puts an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration.</td>
</tr>
<tr>
<td>Example: Device(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td>Step 17 ipv6 dhcp guard [attach-policy policy-name] [vlan {add</td>
<td>all</td>
</tr>
<tr>
<td>Example: Device(config-if)# ipv6 dhcp guard attach-policy pol1 vlan add vlan1</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 18</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Device(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Exits interface configuration mode and returns to global configuration mode.

<table>
<thead>
<tr>
<th>Step 19</th>
<th>vlan vlan-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Device(config)# vlan 1</td>
<td></td>
</tr>
</tbody>
</table>

Specifies a VLAN and enters VLAN configuration mode.

<table>
<thead>
<tr>
<th>Step 20</th>
<th>ipv6 dhcp guard [attach-policy policy-name]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Device(config-vlan)# ipv6 dhcp guard attach-policy pol1</td>
<td></td>
</tr>
</tbody>
</table>

Attaches a DHCPv6 guard policy to a VLAN.

<table>
<thead>
<tr>
<th>Step 21</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Device(config-vlan)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Exits interface configuration mode and returns to global configuration mode.

<table>
<thead>
<tr>
<th>Step 22</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Device(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Exits global configuration mode and returns to privileged EXEC mode.

<table>
<thead>
<tr>
<th>Step 23</th>
<th>show ipv6 dhcp guard policy [policy-name]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Device# show ipv6 dhcp policy guard pol1</td>
<td></td>
</tr>
</tbody>
</table>

(Optional) Displays the policy configuration as well as all the interfaces where the policy is applied.

Configuration Examples for DHCPv6 Guard

Example: Configuring DHCP—DHCPv6 Guard

The following example displays a sample configuration for DHCPv6 Guard:

```
enable
configure terminal
ipv6 access-list acl1
permit host FE80::A8BB:CCFF:FE01:F700 any
```
ipv6 prefix-list abc permit 2001:0DB8::/64 le 128
ipv6 dhcp guard policy pol1
device-role server
match server access-list acl1
match reply prefix-list abc
preference min 0
preference max 255
trusted-port
interface GigabitEthernet 0/2/0
switchport
ipv6 dhcp guard attach-policy pol1 vlan add 1
vlan 1
ipv6 dhcp guard attach-policy pol1
show ipv6 dhcp guard policy pol1

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>DHCP commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP conceptual and configuration information</td>
<td>Cisco IOS IP Addressing Services Configuration Guide</td>
</tr>
</tbody>
</table>

Standards/RFCs

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards/RFCs are supported by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td></td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical</td>
<td></td>
</tr>
<tr>
<td>issues with Cisco products and technologies. Access to most tools on the</td>
<td></td>
</tr>
<tr>
<td>Cisco Support and Documentation website requires a Cisco.com user ID and</td>
<td></td>
</tr>
<tr>
<td>password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for DHCP—DHCPv6 Guard

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for DHCP—DHCPv6 Guard

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP—DHCPv6 Guard</td>
<td>15.2(4)S 15.0(2)SE</td>
<td>The DHCP—DHCPv6 Guard feature blocks DHCP reply and advertisement messages that originate from unauthorized DHCP servers and relay agents that forward DHCP packets from servers to clients. Client messages or messages sent by relay agents from clients to servers are not blocked. The following commands were introduced or modified: device-role, ipv6 dhcp guard attach-policy (DHCPv6 Guard), ipv6 dhcp guard policy, match reply prefix-list, match server access-list, preference (DHCPv6 Guard), show ipv6 dhcp guard policy, trusted-port (DHCPv6 Guard).</td>
</tr>
<tr>
<td></td>
<td>15.1(2)SG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 3.8S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Release 3.2SE</td>
<td></td>
</tr>
</tbody>
</table>
DHCPv6 Relay—Lightweight DHCPv6 Relay Agent

The DHCPv6 Relay—Lightweight DHCPv6 Relay Agent feature allows relay agent information to be inserted by an access node that performs a link-layer bridging (non-routing) function. Lightweight DHCPv6 Relay Agent (LDRA) functionality can be implemented in existing access nodes, such as DSL access multiplexers (DSLAMs) and Ethernet switches, that do not support IPv6 control or routing functions. LDRA is used to insert relay-agent options in DHCP version 6 (DHCPv6) message exchanges primarily to identify client-facing interfaces. LDRA functionality can be enabled on an interface and on a VLAN.

An LDRA device or interface has the following features:

- Maintains interoperability with existing DHCPv6 relay agents and servers.
- Is functionally the equivalent of a Layer 2 relay agent, without routing capabilities.

LDRA is a device or interface on which LDRA functionality is configured.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information...
about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for DHCPv6 Relay—Lightweight DHCPv6 Relay Agent

- You must understand DHCP and the functions of DHCP version 6 (DHCPv6) relay agents.

Restrictions for DHCPv6 Relay—Lightweight DHCPv6 Relay Agent

- An interface or port cannot be configured as both client facing and server facing at the same time.
- Access nodes implementing Lightweight DHCPv6 Relay Agent (LDRA) do not support IPv6 control or routing.
- Unlike a DHCPv6 relay agent, an LDRA does not implement any IPv6 control functions (like Internet Control Message Protocol version 6 [ICMPv6] functions) nor does it have any routing capability in the node.

Information About DHCPv6 Relay—Lightweight DHCPv6 Relay Agent

Background

A variety of different link-layer network topologies exist for the aggregation of IPv6 nodes into one or more routers. In Layer 2 aggregation networks (IEEE 802.1D bridging or similar) that have many nodes on a single link, a DHCP version 6 (DHCPv6) server or DHCP relay agent normally does not recognize how a DHCP client is attached to a network. Lightweight DHCPv6 Relay Agent (LDRA) allows relay-agent information, including the Interface-ID option, to be inserted by the access node so that the information may be used by the DHCPv6 server for client identification.

Interoperability between DHCPv6 Relay Agents and LDRA

DHCP version 6 (DHCPv6) relay agents are used to forward DHCPv6 messages between a client and a server when the client and server are not on the same IPv6 link. A DHCPv6 relay agent also adds an interface identifier option in the upstream DHCPv6 message (from client to server) to identify the interface on which the client is connected. This information is used by the DHCPv6 relay agent while forwarding the downstream
DHCPv6 message to the DHCPv6 client. The DHCPv6 relay agent is implemented alongside the routing functionality on the common node.

To maintain interoperability with existing DHCP relays and servers, Lightweight DHCPv6 Relay Agent (LDRA) implements the same message types (Relay-Forward and Relay-Reply) as a DHCPv6 relay agent. LDRA allows relay-agent information to be inserted by an access node that performs a link-layer bridging (i.e., non-routing) function. The LDRA resides on the same IPv6 link as the client and a DHCPv6 relay agent or server.

LDRA for VLANs and Interfaces

You can configure LDRA on VLANs and interfaces. LDRA is not enabled by default. You must enable it on the VLAN or interface first.

In a typical deployment, a majority of the interfaces or ports on a device are client facing. In such a scenario, you can configure Lightweight DHCPv6 Relay Agent (LDRA) functionality on the VLAN. When you configure LDRA functionality on a VLAN, the functionality is configured on all the ports or interfaces within the VLAN. Instead of configuring LDRA functionality individually on the interfaces and ports within a VLAN, you can configure LDRA on the entire VLAN. As a result, all the ports or interfaces associated with the VLAN will be configured as client facing.

Note

The LDRA configuration on a VLAN has to be configured as trusted or untrusted.

You can also configure LDRA functionality on a specific interface or port. An interface or port can be configured as - client-facing trusted, client-facing untrusted, or server facing.

Note

An LDRA must implement a configuration setting for all client-facing interfaces, marking them as trusted or as untrusted.

By default, any interface that is configured as client facing will be configured as an untrusted interface. When a client-facing interface is deemed untrusted, LDRA will discard any message of type RELAY-FORWARD received from the client-facing interface.
How to Configure a Lightweight DHCPv6 Relay Agent

Configuring LDRA Functionality on a VLAN

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. `ipv6 dhcp-ldra {enable | disable}`
4. `vlan configuration vlan-number`
5. `ipv6 dhcp ldra attach-policy {client-facing-trusted | client-facing-untrusted}`
6. **exit**
7. `interface type number`
8. **switchport**
9. `switchport access vlan vlan-number`
10. `ipv6 dhcp-ldra attach-policy {client-facing-trusted | client-facing-untrusted | client-facing-disable | server-facing}`
11. **exit**
12. `interface type number`
13. **switchport**
14. `switchport access vlan vlan-number`
15. `ipv6 dhcp-ldra attach-policy {client-facing-trusted | client-facing-untrusted | client-facing-disable | server-facing}`
16. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable**
| Example: | `Device> enable`
| | Enables privileged EXEC mode.
| | • Enter your password if prompted. |
| **Step 2** | **configure terminal**
| Example: | `Device# configure terminal`
| | Enters global configuration mode. |
Step 3
Command or Action: `ipv6 dhcp-ldr {enable | disable}`
Example:
```
Device(config)# ipv6 dhcp-ldr enable
```
Purpose: Enables LDRA functionality globally.
Note You need to enable LDRA functionality in global configuration mode before configuring it on a VLAN.

Step 4
Command or Action: `vlan configuration vlan-number`
Example:
```
Device(config)# vlan configuration 5
```
Purpose: Specifies a VLAN number and enters into VLAN configuration mode.

Step 5
Command or Action: `ipv6 dhcp ldra attach-policy {client-facing-trusted | client-facing-untrusted}`
Example:
```
Device (config-vlan-config)# ipv6 dhcp ldra attach-policy client-facing-trusted
```
Purpose: Enables LDRA functionality on a specified VLAN.
Note
The `client-facing-trusted` keyword configures all the ports or interfaces associated with the VLAN as client facing, trusted ports. The `client-facing-untrusted` keyword configures all the ports or interfaces associated with the VLAN as client facing, untrusted ports.

Step 6
Command or Action: `exit`
Example:
```
Device (config-vlan-config)# exit
```
Purpose: Exits VLAN configuration mode and returns to global configuration mode.

Step 7
Command or Action: `interface type number`
Example:
```
Device(config)# interface ethernet 0/0
```
Purpose: Specifies an interface type and number, and enters interface configuration mode.

Step 8
Command or Action: `switchport`
Example:
```
Device(config-if)# switchport
```
Purpose: Switches an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration.

Step 9
Command or Action: `switchport access vlan vlan-number`
Example:
```
Device(config-if)# switchport access vlan 5
```
Purpose: Specifies that an interface operates in VLAN 5 instead of the default VLAN in the interface configuration mode.

Step 10
Command or Action: `ipv6 dhcp-ldr attach-policy {client-facing-trusted | client-facing-untrusted | client-facing-disable | server-facing}`
Example:
```
Device(config-if)# ipv6 dhcp-ldr attach-policy client-facing-trusted
```
Purpose: Enables LDRA functionality on a specified interface or port.
Note
The `client-facing-trusted` keyword configures the specified port or interface as a client facing, trusted port. The `client-facing-untrusted` keyword disables LDRA functionality on an interface or port. The `server-facing` keyword specifies an interface or port as server facing.

Step 11
Command or Action: `exit`
Example:
```
Device (config-if)# exit
```
Purpose: Exits interface configuration mode and returns to global configuration mode.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td><code>interface type number</code></td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# interface ethernet 1/0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>switchport</code></td>
<td>Switches an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><code>switchport access vlan vlan-number</code></td>
<td>Specifies that an interface operates in VLAN 5 instead of the default VLAN in the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# switchport access vlan 5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>`ipv6 dhcp-ldra attach-policy {client-facing-trusted</td>
<td>client-facing-untrusted</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# ipv6 dhcp-ldra attach-policy server-facing</td>
<td>Note: The <code>client-facing-trusted</code> keyword configures the specified port or interface as a client facing, trusted port. The <code>client-facing-disable</code> keyword disables LDRA functionality on an interface or port. The <code>server-facing</code> keyword specifies an interface or port as server facing.</td>
</tr>
<tr>
<td>16</td>
<td><code>end</code></td>
<td>Exits VLAN configuration mode and returns to user EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring LDRA Functionality on an Interface

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 dhcp-ldra {enable | disable}
4. interface type number
5. switchport
6. ipv6 dhcp-ldra attach-policy {client-facing-trusted | client-facing-untrusted | client-facing-disable | server-facing}
7. exit
8. interface type number
9. switchport
10. ipv6 dhcp-ldra attach-policy {client-facing-trusted | client-facing-untrusted | client-facing-disable | server-facing}
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv6 dhcp-ldra {enable</td>
<td>Enables LDRA functionality globally.</td>
</tr>
<tr>
<td></td>
<td>disable}</td>
</tr>
<tr>
<td>Note</td>
<td>You need to enable LDRA functionality in global configuration mode before configuring it on an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ipv6 dhcp-ldra enable</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface type number</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface ethernet 0/0</td>
<td></td>
</tr>
<tr>
<td>Step 5 switchport</td>
<td>Switches an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td>Enables LDRA functionality on a specified interface or port.</td>
</tr>
<tr>
<td>ipv6 dhcp-ldra attach-policy {client-facing-trusted</td>
<td>client-facing-untrusted</td>
</tr>
<tr>
<td>Example: Device(config-if)# ipv6 dhcp-ldra attach-policy client-facing-trusted</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Specifies an interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>interface type number</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config)# interface ethernet 1/0</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Switches an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration.</td>
</tr>
<tr>
<td>switchport</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Enables the LDRA functionality on the specified interface.</td>
</tr>
<tr>
<td>ipv6 dhcp-ldra attach-policy {client-facing-trusted</td>
<td>client-facing-untrusted</td>
</tr>
<tr>
<td>Example: Device(config-if)# ipv6 dhcp-ldra attach-policy server-facing</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Exits interface configuration mode and returns to user EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example: Device (config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verifying and Troubleshooting LDRA

SUMMARY STEPS

1. show ipv6 dhcp-ldra
2. show ipv6 dhcp-ldra statistics
3. debug ipv6 dhcp-ldra all
DETAILED STEPS

Step 1
show ipv6 dhcp-ldra
This command displays LDRA configuration details. The fields in the example given below are self-explanatory.

Example:

Device # show ipv6 dhcp-ldra

DHCPv6 LDRA is Enabled.
DHCPv6 LDRA policy: client-facing-disable
 Target: none
DHCPv6 LDRA policy: client-facing-trusted
 Target: vlan 5
DHCPv6 LDRA policy: client-facing-untrusted
 Target: none
DHCPv6 LDRA policy: server-facing
 Target: Gi1/0/7

Step 2
show ipv6 dhcp-ldra statistics
This command displays LDRA configuration statistics before and after initiating a DHCP session. The fields in the examples below are self-explanatory.

Example:

Device # show ipv6 dhcp-ldra statistics

 DHCPv6 LDRA client facing statistics.
 Messages received 0
 Messages sent 0
 Messages discarded 0

 DHCPv6 LDRA server facing statistics.
 Messages received 0
 Messages sent 0
 Messages discarded 0

Device # show ipv6 dhcp-ldra statistics

 DHCPv6 LDRA client facing statistics.
 Messages received 2
 Messages sent 2
 Messages discarded 0
 Messages Received
 SOLICIT 1
 REQUEST 1
 Messages Sent
 RELAY-FORWARD 2

 DHCPv6 LDRA server facing statistics.
 Messages received 2
 Messages sent 2
 Messages discarded 0
 Messages Received
 RELAY-REPLY 2
 Messages Sent
 ADVERTISE 1
Step 3 debug ipv6 dhcp-ldra all
This command enables all LDRA debugging flows. The fields in the example below are self-explanatory.

Example:

Device# debug ipv6 dhcp-ldra all

05:44:10: DHCPv6 LDRA API: Entered ipv6_dhcp_ldra_post_processor.
05:44:10: DHCPv6 LDRA EVENT: [Gi1/0/3 Vlan 5] Received SOLICIT from 2001:DB8:1::1 to FF02::1:2.
05:44:10: type SOLICIT(1), xid 8035955
05:44:10: option ELAPSED-TIME(8), len 2
05:44:10: elapsed-time 0
05:44:10: option CLIENTID(1), len 10
05:44:10: 000300010015F906981B
05:44:10: option ORO(6), len 4
05:44:10: option DNS-SERVERS,DOMAIN-LIST
05:44:10: option IA-NA(3), len 12
05:44:10: IAID 0x00040001, T1 0, T2 0
05:44:10: DHCPv6 LDRA EVENT: [Vlan 5] Sending RELAY-FORWARD from 2001:DB8:1::1 to FF02::1:2.
05:44:10: type RELAY-FORWARD(12), hop 0
05:44:10: link ::
05:44:10: peer 2001:DB8:1::1
05:44:10: option RELAY-MSG(9), len 48
05:44:10: type SOLICIT(1), xid 8035955
05:44:10: option ELAPSED-TIME(8), len 2
05:44:10: elapsed-time 0
05:44:10: option CLIENTID(1), len 10
05:44:10: 000300010015F906981B
05:44:10: option ORO(6), len 4
05:44:10: option DNS-SERVERS,DOMAIN-LIST
05:44:10: option IA-NA(3), len 12
05:44:10: IAID 0x00040001, T1 0, T2 0
05:44:10: option INTERFACE-ID(18), len 7
05:44:10: 0x4769312F302F33
05:44:10: option REMOTEID(37), len 22
05:44:10: 0x00000009020013000005000A00030001588D09F89A00
05:44:11: DHCPv6 LDRA API: Entered ipv6 dhcp_ldra_post_processor.
05:44:11: DHCPv6 LDRA EVENT: [Gi1/0/3 Vlan 5] Received SOLICIT from 2001:DB8:1::1 to FF02::1:2.
05:44:11: type SOLICIT(1), xid 8035955
05:44:11: option ELAPSED-TIME(8), len 2
05:44:11: elapsed-time 0
05:44:11: option CLIENTID(1), len 10
05:44:11: 000300010015F906981B
05:44:11: option ORO(6), len 4
05:44:11: option DNS-SERVERS,DOMAIN-LIST
05:44:11: option IA-NA(3), len 12
05:44:11: IAID 0x00040001, T1 0, T2 0
05:44:11: DHCPv6 LDRA EVENT: [Vlan 5] Sending RELAY-FORWARD from 2001:DB8:1::1 to FF02::1:2.
05:44:11: type RELAY-FORWARD(12), hop 0
05:44:11: link ::
05:44:11: peer 2001:DB8:1::1
05:44:11: option RELAY-MSG(9), len 48
05:44:11: type SOLICIT(1), xid 8035955
05:44:11: option ELAPSED-TIME(8), len 2
05:44:11: elapsed-time 0
05:44:11: option CLIENTID(1), len 10
05:44:11: 000300010015F906981B
05:44:11: option ORO(6), len 4
05:44:11: DNS-SERVERS,DOMAIN-LIST
05:44:11: option IA-NA(3), len 12
05:44:11: IAID 0x00040001, T1 0, T2 0
05:44:11: option INTERFACE-ID(18), len 7
05:44:11: 0x4769312F302F33
05:44:11: option REMOTEID(37), len 22
05:44:11: 0x0000000092001300005000A00030001588D09F89A00
05:44:13: DHCPv6 LDRA EVENT: [Gi1/0/3 Vlan 5] Received SOLICIT from 2001:DB8:1::1
to FF02::1:2.
05:44:13: type SOLICIT(1), xid 8035955
05:44:13: option ELAPSED-TIME(8), len 2
05:44:13: elapsed-time 0
05:44:13: option CLIENTID(1), len 10
05:44:13: 000300010015F906981B
05:44:13: option ORO(6), len 4
05:44:13: DNS-SERVERS,DOMAIN-LIST
05:44:13: option IA-NA(3), len 12
05:44:13: IAID 0x00040001, T1 0, T2 0
05:44:13: DHCPv6 LDRA EVENT: [Vlan 5] Sending RELAY-FORWARD from 2001:DB8:1::1
to FF02::1:2.
05:44:13: type RELAY-FORWARD(12), hop 0
05:44:13: link ::
05:44:13: peer 2001:DB8:1::1
05:44:13: option RELAY-MSG(9), len 48
05:44:13: type SOLICIT(1), xid 8035955
05:44:13: option ELAPSED-TIME(8), len 2
05:44:13: elapsed-time 0
05:44:13: option CLIENTID(1), len 10
05:44:13: 000300010015F906981B
05:44:13: option ORO(6), len 4
05:44:13: DNS-SERVERS,DOMAIN-LIST
05:44:13: option IA-NA(3), len 12
05:44:13: IAID 0x00040001, T1 0, T2 0
05:44:13: option INTERFACE-ID(18), len 7
05:44:13: 0x4769312F302F33
05:44:13: option REMOTEID(37), len 22
05:44:13: 0x0000000092001300005000A00030001588D09F89A00
05:44:17: DHCPv6 LDRA API: Entered ipv6 dhcp_ldra_post_processor.
05:44:17: DHCPv6 LDRA EVENT: [Gi1/0/3 Vlan 5] Received SOLICIT from 2001:DB8:1::1
to FF02::1:2.
05:44:17: type SOLICIT(1), xid 8035955
05:44:17: option ELAPSED-TIME(8), len 2
05:44:17: elapsed-time 0
05:44:17: option CLIENTID(1), len 10
05:44:17: 000300010015F906981B
05:44:17: option ORO(6), len 4
05:44:17: DNS-SERVERS,DOMAIN-LIST
05:44:17: option IA-NA(3), len 12
05:44:17: IAID 0x00040001, T1 0, T2 0

Verifying and Troubleshooting LDRA
Configuration Examples for a Lightweight DHCPv6 Relay Agent

Example: Configuring LDRA Functionality on a VLAN

The following example shows how to configure Lightweight DHCPv6 Relay Agent (LDRA) on a VLAN numbered 5.

Device> enable
Device# configure terminal
Device(config)# ipv6 dhcp-ldra enable
Device(config)# vlan configuration 5
Device(config-vlan-config)# ipv6 dhcp ldra attach-policy client-facing-trusted
Device(config-vlan-config)# exit
Device(config)# interface ethernet 0/0
Device(config-if)# switchport
Device(config-if)# switchport access vlan 5
Device(config-if)# ipv6 dhcp-ldra attach-policy client-facing-trusted
Device(config-if)# exit
Device(config)# interface ethernet 1/0
Device(config-if)# switchport
Device(config-if)# switchport access vlan 5
Device(config-if)# ipv6 dhcp-ldra attach-policy server-facing
Device(config-if)# exit

Example: Configuring LDRA Functionality on an Interface

In the following example, LDRA is configured on the interfaces ethernet 0/0 and ethernet 1/0:

Device> enable
Device# configure terminal
Device(config)# ipv6 dhcp-ldra enable
Device(config)# interface ethernet 0/0
Device(config-if)# switchport
Device(config-if)# ipv6 dhcp-ldra attach-policy client-facing-trusted
Device(config-if)# exit
Device(config)# interface ethernet 1/0
Device(config-if)# switchport
Device(config-if)# ipv6 dhcp-ldra attach-policy server-facing
Device(config-if)# end

Additional References for DHCPv6 Relay—Lightweight DHCPv6 Relay Agent

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring the DHCPv6 Relay Agent</td>
<td>IP Addressing: DHCP Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>DHCP commands</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP conceptual information</td>
<td>DHCP Overview module in the IP Addressing: DHCP Configuration Guide</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 6221</td>
<td>Lightweight DHCPv6 Relay Agent</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for DHCPv6 Relay—Lightweight DHCPv6 Relay Agent

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2: Feature Information for Lightweight DHCPv6 Relay Agent

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCPv6 Relay—Lightweight DHCPv6 Relay Agent</td>
<td>15.1(2)SG</td>
<td>The DHCPv6 Relay—Lightweight DHCPv6 Relay Agent feature allows relay agent information to be inserted by an access node that performs a link-layer bridging function. The following commands were introduced or modified: clear ipv6 dhcp-ldra statistics, debug ipv6 dhcp-ldra, ipv6 dhcp ldra attach-policy, ipv6 dhcp-ldra, ipv6 dhcp-ldra attach-policy, show ipv6 dhcp-ldra.</td>
</tr>
</tbody>
</table>

Glossary

Access Node — A device that combines many interfaces onto one link. An access node is not IP-aware in a data path.
Client facing — An interface on an access node that carries traffic towards a DHCPv6 client.

LDRA — Lightweight DHCPv6 Relay Agent. An interface or device on which LDRA functionality is configured (or that supports LDRA functionality.)

LDRA function — A function on an access node that intercepts DHCP messages between clients and servers.

Link — A communication facility or medium over which nodes can communicate at the link layer.

Link-local address — An IP address having only local scope that can be used to reach neighboring nodes attached to the same link. Every interface has a link-local address, which is defined by the address prefix fe80::/10.

Network-facing — An interface on an access node that carries traffic towards a DHCPv6 server.

Relay Agent — A node that acts as an intermediary to deliver DHCP messages between clients and servers.