VRF-Aware Tunnels

Virtual Routing and Forwarding (VRF)-aware tunnels are used to connect customer networks separated by untrusted core networks or core networks with different infrastructures (IPv4 or IPv6).

- Finding Feature Information, on page 1
- Prerequisites for VRF-Aware Tunnels, on page 1
- Information About VRF-Aware Tunnels, on page 2
- How to Configure VRF-Aware IPv6 Tunnels, on page 3
- Configuration Examples for VRF-Aware Tunnels, on page 11
- Additional References, on page 19
- Feature Information for VRF-Aware Tunnels, on page 20

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VRF-Aware Tunnels

- You must configure customer edge networks. See the Configuring Customer Edge Networks for Tunneling section.

- You must configure the customer and transport VRFs. See the Defining a VRF Instance section.
Information About VRF-Aware Tunnels

Tunnel IP Source and Destination VRF Membership

You can configure the source and destination of a tunnel to belong to any VPN routing and forwarding (VRFs) tables. A VRF table stores routing data for each VPN. The VRF table defines the VPN membership of a customer site that is attached to the network access server (NAS). Each VRF table comprises an IP routing table, a derived Cisco Express Forwarding table, and guidelines and routing protocol parameters that control the information that is included in the routing table.

You can configure the tunnel source and destination to belong to any VRF or to a global table. The tunnel becomes disabled if no route to the tunnel destination is defined.

VRF-Aware Tunnels

Virtual Routing and Forwarding (VRF)-aware tunnels are used to connect customer networks that are separated by untrusted IPv4 or IPv6 core networks.

Figure 1: VRF-Aware Tunnels

In the above topology, a tunnel is configured in the core network. Provider edge (PE) device PEi, is the tunnel head for packets entering on Interface 1. PE device PEe, is the tunnel tail for packets entering on Interface 1.

The VRF configured on Interface 1 is the customer VRF. Packets entering through Interface 1 are routed using this VRF. Packets exiting the tunnel are forwarded to this VRF. The routing by the customer VRF is called inner IP packet routing.

The VRF configured on the tunnel using the `tunnel vrf` command is the transport VRF. The transport VRF is the VRF that applies to the encapsulated payload and is used to look up the tunnel endpoints. This VRF is the same as the VRF associated with the physical interface over which the tunnel sends packets. The routing by the transport VRF is the outer IP packet routing.

The tunnel endpoint can be configured as an address from the global routing table or an address from a configured transport VRF table.

VRF-Aware IPv6 over IPv6 Tunnels

You can forward IPv6 packets on an untrusted IPv6 infrastructure by creating Virtual Routing and Forwarding (VRF)-aware IPv6 tunnels in it. These tunnels can have endpoints in a VRF table or in a global routing table. The tunnel modes used are `tunnel mode gre ipv6` and `tunnel mode ipv6`.
VRF-Aware IPv4 over IPv6 Tunnels

You can forward IPv4 packets on an untrusted IPv6 infrastructure by creating Virtual Routing and Forwarding (VRF)-aware IPv4 tunnels in it. These tunnels can have endpoints in a VRF table or in a global routing table. The tunnel modes used are **tunnel mode gre ipv6** and **tunnel mode ipv6**.

VRF-Aware IPv6 over IPv4 Tunnels

You can forward IPv6 packets on an untrusted IPv4 infrastructure by creating Virtual Routing and Forwarding (VRF)-aware IPv6 tunnels in it. These tunnels can have endpoints in a VRF table or in a global routing table. The tunnel modes used are **tunnel mode gre ipv4** (default mode) and **tunnel mode ipv4**.

How to Configure VRF-Aware IPv6 Tunnels

To configure a VRF-aware tunnel, you need to perform the following steps:

1. **Define the customer and transport VRF**—Define a customer VRF if the tunnel is VRF-aware. Define a transport VRF if the tunnel endpoint needs to be in a VRF. See the Defining a VRF Instance section.

2. **Set up the network**—Configure relevant interfaces and configure relevant routes. Ensure that a valid route exists between the PE devices and the PE device and the customer network.

3. **Configure the tunnel between the PE devices**—See the Configuring a VRF-Aware Tunnel section.
 1. **Configure the tunnel address**
 2. **Configure the tunnel source**—This is an interface on the PE device.
 3. **Configure the tunnel destination**—This is tunnel source of the other PE device. For proper configuration of the tunnel, ensure that the tunnel destination is reachable from the PE device with a ping command (A valid route must exist to the tunnel destination).
 4. **Configure the tunnel mode**

4. **Configure customer edge network**. See the Configuring Customer Edge Networks for Tunneling section.

5. **Configure static routes using the tunnel**—Configure routes on the PE devices to remote CE networks using the configured tunnel.

Configuring a VRF-Aware Tunnel

This task configures a tunnel between PE1 and PE2, as shown in the image below. The configuration task need to be repeated on both PE devices, PE1 and PE2.

Figure 2: Configuring a VRF-Aware Tunnel

<table>
<thead>
<tr>
<th>Tunnel 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE1</td>
</tr>
<tr>
<td>PE1</td>
</tr>
<tr>
<td>PE2</td>
</tr>
<tr>
<td>CE2</td>
</tr>
</tbody>
</table>

SUMMARY STEPS

1. **interface** type number
2. `vrf forwarding transport-vrf-name`
3. • `ip address ip-address mask` or
 • `ipv6 address ipv6-address/prefix-length`
4. `exit`
5. Configure static routes between provider edge devices.
6. `interface tunnel number`
7. `vrf forwarding customer-vrf-name`
8. • `ip address ip-address mask` or
 • `ipv6 address ipv6-address/prefix-length`
9. `tunnel source interface-type interface-number`
10. `tunnel destination [ip-address | ipv6-address]`
11. `tunnel vrf transport-vrf-name`
12. `tunnel mode {aurp | cayman | dvmrp | eon | gre | gre multipoint | gre ipv6 | ipip [decapsulate-any] | ipsec ipv4 | iptalk | ipv6 | ipsec ipv6 | mpls | nos | rbscp}`
13. `exit`
14. • `ip route [vrf vrf-name] prefix mask interface-type interface-number [next-hop-ip-address]` or
 • `ipv6 route [vrf vrf-name] destination-ipv6-prefix interface-type interface-number [next-hop-ipv6-address]`
15. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface ethernet 1/1</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Configures the interface used as a tunnel source.</td>
</tr>
</tbody>
</table>
| **Step 2** | **Required:** `vrf forwarding transport-vrf-name`
| **Example:** | Device(config-if)# vrf forwarding red |
| **Note:** | This step is not required if the tunnel endpoints are in the global routing table. |
| **Step 3** | • `ip address ip-address mask` or
 • `ipv6 address ipv6-address/prefix-length`
| **Example:** | Device(config-if)# ip address 10.22.22.22 255.255.255.255 |
| | or |
| | Device(config-if)# ipv6 address 2001:DB8:3::1/64 |
| **Purpose:** | Sets an IP address for the tunnel source interface. |
| | • The address configured in this step for PE1 is used as the tunnel endpoint or tunnel destination while configuring the tunnel on PE2 and vice versa. |
| | • This address may be in the global routing table or in the VRF. |
| **Step 4** | `exit`
| **Example:** | Device(config-if)# exit |
| **Purpose:** | Exits interface configuration mode and returns to global configuration mode. |
Purpose

Provider edge devices are reachable with a `ping` or `ping vrf` command.

Command or Action

| Step 5 | Configure static routes between provider edge devices. |
| Purpose | Provider edge devices are reachable with a `ping` or `ping vrf` command. |

Step 6

interface tunnel *number*

Example:

```
Device(config)# interface tunnel 0
```

Step 7

vrf forwarding *customer-vrf-name*

Example:

```
Device(config-if)# vrf forwarding green
```

(Optional) Associates the customer VRF instance with the tunnel.

- Packets exiting the tunnel are forwarded to this VRF (inner IP packet routing).

Note

This step is required only for VRF-aware tunnels.

Step 8

- **ip address** *ip-address mask* or
- **ipv6 address** *ipv6-address/prefix-length*

Example:

```
Device(config-if)# ip address 10.4.1.1 255.255.255.0
```

Configure an IPv4 or IPv6 address for the tunnel.

- This address is used as the next-hop address while configuring static routes. Ensure that PE1 and PE2 have addresses within the same network.

Step 9

tunnel source *interface-type interface-number*

Example:

```
Device(config-if)# tunnel source ethernet 1/1
```

Sets the source address for a tunnel interface.

Step 10

tunnel destination *[ip-address | ipv6-address]*

Example:

```
Device(config-if)# tunnel destination 10.44.44.44
```

(Optional) Specifies the destination for a tunnel interface.

- The tunnel source address of device PE2 is used as the tunnel destination address of PE1 and vice versa.
- If an IPv6 infrastructure exists between the two PE devices, use an IPv6 address. If an IPv4 infrastructure exists between the two PE devices, use an IPv4 address (IPv6 over IPv4 tunnel).

Step 11

tunnel vrf *transport-vrf-name*

Example:

```
Device(config-if)# tunnel vrf red
```

(Optional) Associates the transport VRF with the tunnel.

- This VRF is the same as the VRF associated with the physical interface over which the tunnel sends packets (outer IP packet routing).

Note

This step is not required if the tunnel endpoints are in the global routing table.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12</td>
<td>**tunnel mode {aurp</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# tunnel mode ipv6</td>
</tr>
<tr>
<td>Step 13</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# exit</td>
</tr>
</tbody>
</table>
| **Step 14** | **• ip route [vrf vrf-name] prefix mask interface-type interface-number [next-hop-ip-address] or** | **Establishes static routes to remote customer networks by using the configured tunnel.**
| | **• ipv6 route [vrf vrf-name] destination-ipv6-prefix interface-type interface-number [next-hop-ipv6-address]** | **• Use the tunnel address as the next hop.**
| | **Example:** | **• For PE1, configure a static route to network PE2-CE2. For PE2, configure a static route to network PE1-CE1.**
| | **Device(config)# ip route 10.44.44.0 255.255.255.0 10.22.22.23** | **Device(config)# ip route vrf red 10.44.44.0 255.255.255.0 10.22.22.23**
| | **or** | **Device(config)# ipv6 route 2001:DB8:2:2::/64 2001:DB8:2:1::2** |
| | **Device(config)# ip route vrf green 2001:DB8:2:1::64 2001:DB8:2:1::2** | **Device(config)# ipv6 route vrf green 2001:DB8:2:1::64 2001:DB8:2:1::2** |
| **Step 15** | **end** | **Exits global configuration mode and returns to privileged EXEC mode.** |
| **Example:** | **Device(config)# end** |

What to do next

Verify the IPv6 Tunnels. See [Verifying VRF-Aware Tunnels](#)

Defining a VRF Instance

Perform this task to make a device Virtual Routing and Forwarding (VRF)-aware and to configure VRF-aware tunnels.

SUMMARY STEPS

1. vrf definition vrf-name
2. rd route-distinguisher
3. route-target export route-target-ext-community
4. route-target import route-target-ext-community
5. address-family {ipv4 | ipv6}
6. exit-address-family
Configuring Customer Edge Networks for Tunneling

Perform this task to configure a customer edge (CE) network. In this configuration, the CE network is a network with CE devices connected to a provider edge (PE) device. PE1 and CE1 are connected and PE2 and CE2 are connected. Addresses must be configured accordingly.

Before you begin

To define a customer VRF, see the Defining a VRF Instance section.

SUMMARY STEPS

1. **interface** type number
2. **vrf** forwarding customer-vrf-name
3. • ip address \textit{ip-address mask} or
 • ipv6 address \textit{ipv6-address/prefix-length}

4. \texttt{exit}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 \texttt{interface type number}
 \texttt{Example: Device(config)# interface Ethernet 0/0} | Configures an interface type and enters interface configuration mode. |
| **Step 2**
 \texttt{vrf forwarding customer-vrf-name}
 \texttt{Example: Device(config-if)# vrf forwarding green} | (Optional) Associates a VRF instance or a virtual network with the tunnel.
 \textbf{Note}
 This step is required only if the interface needs to be associated with a VRF. |
| **Step 3**
 • ip address \textit{ip-address mask} or
 • ipv6 address \textit{ipv6-address/prefix-length}
 \texttt{Example: Device(config-if)# ip address 10.22.22.22 255.255.255.0}
 or
 Device(config-if)# ipv6 address 2001:DB8:1::1/64 | Configures an address for the interface.
 • Ensure that CE devices connected to the PE device are on the same network. |
| **Step 4**
 \texttt{exit}
 \texttt{Example: Device(config-if)# exit} | Exits interface configuration mode and enters global configuration mode. |

Verifying VRF-Aware Tunnels

Use the following commands to verify Virtual Routing and Forwarding (VRF)-aware tunnels:

SUMMARY STEPS

1. show tunnel interface
2. show ip route \textit{ip-address}
3. show ip route vrf \textit{vrf-name ip-address}
4. ping ipv6 \textit{ipv6-address source ipv6-address}
5. ping vrf \textit{vrf-name ipv6-address source ipv6-address}
6. debug ipv6 icmp

DETAILED STEPS

Step 1
show tunnel interface
This command displays detailed information about all tunnel interfaces.

Example:
The following is sample output from a provider edge (PE) device with Generic Routing Encapsulation (GRE) tunnel mode:

Device# show tunnel interface

Tunnel0
 Mode:GRE/IP, Destination 10.44.44.44, Source Loopback2
 IP transport: output interface Ethernet1/0 next hop 10.0.0.2,
 Tunnel header destination 10.44.44.44
 Application ID 1: unspecified
 Linestate - current up, cached up
 Internal linestate - current up, evaluated up

Example:
The following is sample output from a PE device with IPv6/IP tunnel mode:

Device# show tunnel interface

Tunnel0
 Mode:IPv6/IP, Destination 44.44.44.44, Source Loopback2
 IP transport: output interface Ethernet1/0 next hop 2.0.0.2,
 Tunnel header destination 44.44.44.44
 Application ID 1: unspecified
 Linestate - current up, cached up
 Internal linestate - current up, evaluated up

The output is displayed and the tunnel mode is observed.

Step 2

show ip route ip-address

This command displays detailed routing information to a tunnel destination address.

Example:
The following is sample output from a PE device with the tunnel endpoint in the global routing table:

Device# show ip route 10.44.44.44

Routing entry for 10.44.44.44/32
 Known via "ospf 1", distance 110, metric 21, type intra area
 Last update from 10.0.0.2 on Ethernet1/0, 01:10:25 ago
 Routing Descriptor Blocks:
 * 10.0.0.2, from 10.44.44.44, 01:10:25 ago, via Ethernet1/0
 Route metric is 21, traffic share count is 1

The following is sample output from a PE device having tunnel endpoints in the VRF table:

Device# show ip route 10.44.44.44

% Network not in table

The output is displayed and you can observe if the tunnel destination is in the global routing table or not.

Step 3

show ip route vrf vrf-name ip-address

This command displays detailed routing information to a destination IP address.

Example:
Verifying VRF-Aware Tunnels

The following is sample output from PE1:

```
Device# show ip route vrf green 10.4.4.4
Routing entry for 10.4.4.4/32
  Known via "static", distance 1, metric 0
  Routing Descriptor Blocks:
  * 10.0.0.2, via Ethernet1/0
    Route metric is 0, traffic share count is 1
```

The tunnel destination address 10.4.4.4 is not in the global routing table.

Step 4 `ping ipv6 ipv6-address source ipv6-address`

This command displays the status of the connectivity between two devices.

Example:

The following is sample output from a customer edge (CE) device CE1 with a `ping` command issued to CE2:

```
Device# ping ipv6 2001:DB8:2::1 source 2001:DB8:1::1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:2::1, timeout is 2 seconds:
Packet sent with a source address of 2001:DB8:1::1
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 0/2/4 ms
```

Step 5 `ping vrf vrf-name ipv6-address source ipv6-address`

The VRF-ping tests the VPN connection.

Example:

The following is sample output from CE1 with a `ping vrf` command issued to CE2:

```
Device# ping vrf green ipv6 2001:DB8:2::1 source 2001:DB8:1::1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:2::1, timeout is 2 seconds:
Packet sent with a source address of 2001:DB8:1::1
!!!!!
```

If the displayed output indicates success, the VPN is configured correctly.

Step 6 `debug ipv6 icmp`

This command displays debugging messages for IPv6 Internet Control Message Protocol (ICMP) transactions.

Example:

The following is sample output:

```
Device# debug ipv6 icmp
ICMP Packet debugging is on
*Apr  6 14:08:10.743: ICMPv6: Received echo request, Src=2001:DB8:1::2, Dst=2001:DB8:2::1
*Apr  6 14:08:10.743: ICMPv6: Sent echo reply, Src=2001:DB8:2::1, Dst=2001:DB8:1::2
...```
If the displayed output indicates success, the VPN is configured correctly.

**Configuration Examples for VRF-Aware Tunnels**

**Example: Configuring a VRF-Aware Tunnel (Tunnel Endpoint in Global Routing Table)**

**Example: Configuring CE1**

```conf
! ipv6 unicast-routing
ipv6 cef
!
vrf definition green
rd 1:1
route-target export 1:1
route-target import 1:1
address-family ipv6
exit-address-family
exit
!
interface Ethernet0/0
vrf forwarding green
no ip address
ipv6 address 2001:DB8:2:1::1/64
no shutdown
exit
!
ipv6 route vrf green 2001:DB8:2:2::/64 2001:DB8:2:1::2
ipv6 route vrf green 2001:DB8:2:4::/64 2001:DB8:2:1::2
!
```

**Example: Configuring PE1**

```conf
ipv6 unicast-routing
ipv6 cef
!
vrf definition green
rd 1:1
route-target export 1:1
route-target import 1:1
```
address-family ipv6
exit-address-family
exit
interface Tunnel0
no ip address
vrf forwarding green
ipv6 address 2001:DB8:2:4::1/64
tunnel source 10.22.22.22
tunnel destination 10.44.44.44
exit
interface Ethernet0/0
vrf forwarding green
no ip address
ipv6 address 2001:DB8:2:1::2/64
no shutdown
exit
ip route 10.44.44.0 255.255.255.0 10.22.22.23
ipv6 route vrf green 2001:DB8:2:2::/64 Tunnel0 2001:DB8:2:4::2

Example: Configuring PE2

! ipv6 unicast-routing
ipv6 cef
!
vrf definition green
rd 1:1
route-target export 1:1
route-target import 1:1
address-family ipv6
exit-address-family
exit
interface Tunnel0
vrf forwarding green
no ipv6 address
ipv6 address 2001:DB8:2:4::2/64
tunnel source 10.44.44.44
tunnel destination 10.22.22.22
exit
interface Ethernet0/0
vrf forwarding green
no ipv6 address
ipv6 address 2001:DB8:2:2::1/64
no shutdown
exit
interface Ethernet1/0
no ip address
ip address 10.44.44.44 255.255.255.0
Example: Configuring CE2

!  ipv6 unicast-routing
  ipv6 cef
  !
  vrf definition green
  rd 1:1
  route-target export 1:1
  route-target import 1:1
  address-family ipv6
  exit-address-family
  exit
  !
  interface Ethernet0/0
  vrf forwarding green
  no ipv6 address
  ipv6 address 2001:DB8:2:2::2/64
  no shutdown
  exit
  !
  ipv6 route vrf green 2001:DB8:2:1::/64 2001:DB8:2:2::1
  ipv6 route vrf green 2001:DB8:2:4::/64 2001:DB8:2:2::1

Example: Configuring Device X

!  interface Ethernet1/0
  no ip address
  ip address 10.44.44.43 255.255.255.0
  no shutdown
  exit
  !
  interface Ethernet1/1
  no ip address
  ip address 10.22.22.23 255.255.255.0
  no shutdown
  exit

Example: Verifying the Tunnel Configuration

From CE1
Device# ping vrf green ipv6 2001:db8:2:2::2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:2:2::2, timeout is 2 seconds:
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/6 ms

Device# ping vrf green ipv6 2001:db8:2:2::2 source 2001:db8:2:1::1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:2:2::2, timeout is 2 seconds:
Packet sent with a source address of 2001:DB8:2:1::1
!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

From PE1
Device# show tunnel interface
Tunnel0
  Mode:GRE/IP, Destination 10.44.44.44, Source 10.22.22.22
  IP transport: output interface Ethernet1/1 next hop 10.22.22.23
  Application ID 1: unspecified
  Linestate - current up
  Internal linestate - current up, evaluated up
  Tunnel Source Flags: Local
  Transport IPv4 Header DF bit cleared
  OCE: IP tunnel decap
  Provider: interface Tu0, prot 47
  Performs protocol check [47]
  Protocol Handler: GRE: opt 0x0
    ptype: ipv4 [ipv4 dispatcher: punt]
    ptype: ipv6 [ipv6 dispatcher: from if Tu0]
    ptype: mpls [mpls dispatcher: drop]
    ptype: otv [mpls dispatcher: drop]
    ptype: generic [mpls dispatcher: drop]
  There are 0 tunnels running over the EON IP protocol
  There are 0 tunnels running over the IPinIP protocol
  There are 0 tunnels running over the NOSIP protocol
  There are 0 tunnels running over the IPv6inIP protocol
  There are 0 tunnels running over the RBSCP/IP protocol

Device# show ip route 10.44.44.44
Routing entry for 10.44.44.0/24
  Known via "static", distance 1, metric 0
  Routing Descriptor Blocks:
    * 10.22.22.23
      Route metric is 0, traffic share count is 1

Device# debug ipv6 icmp
  ICMP Packet debugging is on
  *Jan 1 10:57:37.882: ICMPv6: Sent R-Advert, Src=FE80::A8BB:CCFF:FE00:5200, Dst=FF02::1
  *Jan 1 11:00:18.634: ICMPv6: Received R-Advert, Src=FE80::A8BB:CCFF:FE00:5200, Dst=FF02::1
Example: Configuring a VRF-Aware Tunnel (Tunnel Endpoint in VRF)

Example: Configuring CE1

```conf
! ipv6 unicast-routing
ipv6 cef
!
vrf definition green
rd 1:1
route-target export 1:1
route-target import 1:1
address-family ipv6
exit-address-family
exit
!
interface Ethernet0/0
vrf forwarding green
no ip address
ipv6 address 2001:DB8:2:1::1/64
no shutdown
exit
!
!
ipv6 route vrf green 2001:DB8:2:2::/64 2001:DB8:2:1::2
ipv6 route vrf green 2001:DB8:2:4::/64 2001:DB8:2:1::2
!
```

Example: Configuring PE1

```conf
ipv6 unicast-routing
ipv6 cef
!
vrf definition green
rd 1:1
route-target export 1:1
route-target import 1:1
address-family ipv6
exit-address-family
exit
!
!
vrf definition red
rd 2:2
route-target export 2:2
route-target import 2:2
address-family ipv4
exit-address-family
exit
```
Example: Configuring PE2

! ipv6 unicast-routing
ipv6 cef
vrf definition green
rd 1:1
route-target export 1:1
route-target import 1:1
address-family ipv6
exit-address-family
exit
vrf definition red
rd 2:2
route-target export 2:2
route-target import 2:2
address-family ipv4
exit-address-family
exit
interface Tunnel0
vrf forwarding green
no ipv6 address
ipv6 address 2001:DB8:2:4::2/64
tunnel source 10.44.44.44
tunnel destination 10.22.22.22
tunnel vrf red
exit
interface Ethernet0/0
vrf forwarding green
no ip address
ipv6 address 2001:DB8:2:1::2/64
no shutdown
exit
!
Example: Configuring CE2

!ipv6 unicast-routing
ipv6 cef
!
vrf definition green
rd 1:1
route-target export 1:1
route-target import 1:1
address-family ipv6
exit-address-family
exit
!
interface Ethernet0/0
vrf forwarding green
no ipv6 address
ipv6 address 2001:DB8:2:2::2/64
no shutdown
exit
!
ipv6 route vrf green 2001:DB8:2:1::/64 2001:DB8:2:2::1
ipv6 route vrf green 2001:DB8:2:4::/64 2001:DB8:2:2::1
!

Example: Configuring Device X

!interface Ethernet1/0
vrf forwarding red
no ip address
ip address 10.44.44.43 255.255.255.0
no shutdown
exit
!
interface Ethernet1/1
vrf forwarding red
no ip address
ip address 10.22.22.23 255.255.255.0
Example: Verifying the Tunnel Configuration

From CE1

Device# ping vrf green ipv6 2001:db8:2:2::2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:2:2::2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/6 ms

Device# ping vrf green ipv6 2001:db8:2:2::2 source 2001:db8:2:1::1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:DB8:2:2::2, timeout is 2 seconds:
Packet sent with a source address of 2001:DB8:2:1::1
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms

From PE1

Device# show tunnel interface

Tunnel0
Mode:GRE/IP, Destination 10.44.44.44, Source 10.22.22.22
IP transport: output interface Ethernet1/1 next hop 10.22.22.23
Application ID 1: unspecified
Linestate - current up
Internal linestate - current up, evaluated up
Tunnel Source Flags: Local
Transport IPv4 Header DF bit cleared
OCE: IP tunnel decap
Provider: interface Tu0, prot 47
Performs protocol check [47]
Protocol Handler: GRE: opt 0x0
  ptype: ipv4 [ipv4 dispatcher: punt]
  ptype: ipv6 [ipv6 dispatcher: from if Tu0]
  ptype: mpls [mpls dispatcher: drop]
  ptype: otv [mpls dispatcher: drop]
  ptype: generic [mpls dispatcher: drop]
There are 0 tunnels running over the EON IP protocol
There are 0 tunnels running over the IPinIP protocol
There are 0 tunnels running over the NOSIP protocol
There are 0 tunnels running over the IPv6inIP protocol
There are 0 tunnels running over the RBSCP/IP protocol

Device# show ip route 10.44.44.44
% Network not in table

Device# show ip route vrf red 10.44.44.44
Routing Table: red
Routing entry for 10.44.44.0/24
  Known via "static", distance 1, metric 0
Routing Descriptor Blocks:
* 10.22.22.23
  Route metric is 0, traffic share count is 1

Device# debug ipv6 icmp

ICMP Packet debugging is on
*Jan 1 10:57:37.882: ICMPv6: Sent R-Advert, Src=FE80::A8BB:CCFF:FE00:5200, Dst=FF02::1
*Jan 1 11:00:18.634: ICMPv6: Received R-Advert, Src=FE80::A8BB:CCFF:FE00:5200, Dst=FF02::1

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>Cisco IOS IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco IOS IPv6 Feature Mapping</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

Standards and RFCs

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Feature Information for VRF-Aware Tunnels

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for VRF-Aware Tunnels

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF-Aware Tunnels</td>
<td>Cisco IOS XE Release 3.8S</td>
<td>Virtual Routing and Forwarding (VRF)-aware tunnels are used to connect customer networks separated by untrusted core networks or core networks with different infrastructures (IPv4 or IPv6). The following command was modified to support IPv6 transport: tunnel vrf.</td>
</tr>
</tbody>
</table>